WO2013145871A1 - 粒子選別機 - Google Patents

粒子選別機 Download PDF

Info

Publication number
WO2013145871A1
WO2013145871A1 PCT/JP2013/052808 JP2013052808W WO2013145871A1 WO 2013145871 A1 WO2013145871 A1 WO 2013145871A1 JP 2013052808 W JP2013052808 W JP 2013052808W WO 2013145871 A1 WO2013145871 A1 WO 2013145871A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
particles
cross
airflow
tube
Prior art date
Application number
PCT/JP2013/052808
Other languages
English (en)
French (fr)
Inventor
達也 大木
智弘 野口
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to CN201380017836.6A priority Critical patent/CN104271267B/zh
Priority to US14/387,428 priority patent/US9821343B2/en
Priority to JP2014507486A priority patent/JP5862763B2/ja
Publication of WO2013145871A1 publication Critical patent/WO2013145871A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • B07B4/02Separating solids from solids by subjecting their mixture to gas currents while the mixtures fall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B4/00Separating solids from solids by subjecting their mixture to gas currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/01Selective separation of solid materials carried by, or dispersed in, gas currents using gravity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04CAPPARATUS USING FREE VORTEX FLOW, e.g. CYCLONES
    • B04C9/00Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks
    • B04C2009/007Combinations with other devices, e.g. fans, expansion chambers, diffusors, water locks with internal rotors, e.g. impeller, ventilator, fan, blower, pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B11/00Arrangement of accessories in apparatus for separating solids from solids using gas currents
    • B07B11/04Control arrangements

Definitions

  • the present invention relates to an air flow sorter that sorts particles using an air flow, and is suitable for use in the fields of the recycling industry, food and materials for powder sorting, and the like.
  • Patent Document 1 has a structure in which the first stage is not a column type, but simply a fluidized bed on the net. Here, needles are dropped under the net and the lump is overlapped with the second column type.
  • the present invention relates to a method and an apparatus for airflow sorting of solids of a type that separates products and light products.
  • Patent Document 2 relates to a method and an apparatus for airflow sorting of solids having two columns. First, it is put into the first column for separating light products and intermediate products. Light products are discharged and collected from the upper part of the first column, and intermediate products are dropped and slid on the net to enter the second column. The second column separates the intermediate product and the heavy product.
  • Patent Document 3 relates to a multistage wind power sorter that introduces a diffuser and changes the thickness stepwise in the same column to make it multistage.
  • the basic air flow is performed by one blower.
  • the wind speed ratio between the two columns is performed by introducing a secondary air flow, a plurality of blowers are eventually required.
  • Patent Document 4 There are many ordinary cyclone type sorters, which use centrifugal force generated by swirling flow to carry finer particles on swirling flow along with air, and to remove heavy particles separated from swirling flow. To separate.
  • the wind power sorting apparatus of Patent Document 4 relates to an example in which a cyclone is combined with a straight column airflow sorter for the purpose of discharging intermediate products. Further, in a straight column or straight column airflow sorter with an orifice, there is an example of a solid-state airflow sorting device disclosed in Patent Document 5 as long as sorting is performed only by dividing into three without requiring high accuracy. .
  • Patent Document 6 discloses primary concentration in which elements mounted on a substrate are peeled and collected from a used printed circuit board, and particles in the same size range as a tantalum capacitor are collected by screening and separating the peeled and collected elements with a sieve.
  • a secondary concentration step that collects the same specific gravity range as the tantalum capacitor from the primary concentrated product by specific gravity selection, and a non-magnetized material is recovered from the secondary concentrated product by weak magnetic separation to obtain a highly concentrated product of the tantalum capacitor.
  • a vertical air flow sorter is used in the specific gravity sorting of the secondary concentration step.
  • a vertical airflow sorter is used as a secondary concentration step for a primary concentrated product of 2.8 mm to 4.75 mm, and first a flow rate of 11 m / s to 14 m / s is increased.
  • a flow rate of 11 m / s to 14 m / s is increased.
  • light products having a specific gravity of 2.5 or less are removed by overflow, and then separated in an air stream having a flow velocity of 22 to 24 m / s (specifically, a specific gravity of 6.0 or more).
  • the intermediate specific gravity group overflowed and recovered as a secondary concentrated product, and two batch operations using a vertical airflow sorter were necessary.
  • the present inventors have earnestly researched an air flow sorter that can achieve the secondary concentration step that has been performed in these two batch operations with a single operation with high accuracy and without increasing the size of the apparatus. As a result of repeated development, the present invention has been achieved.
  • the performance required for the airflow sorter is related to the equipment itself, except for the type of target object such as applicable particle size, etc., with high separation accuracy, high separation speed, a large number of separation products, and simple equipment.
  • the straight column type air flow sorter has a relatively narrow wind velocity distribution in the column that serves as a separation threshold, it can be separated with higher accuracy than other air flow sorters. Strictly speaking, however, the wind speed of the column cross section has a wind speed distribution that is high in the central part and low in the peripheral part. Therefore, a width is generated in the threshold by the width of the wind speed distribution, and the separation accuracy decreases.
  • the straight column type air flow sorter has one wind speed (threshold value) for the entire column, so that the particles repeatedly rise and fall, and the separation speed becomes relatively slow compared to other air flow sorters.
  • a method for improving this is a method of accelerating particles by providing an orifice in the middle of the column.
  • the separation speed is increased, while the wind speed of the column cross section is remarkably high in the central portion, and the nonuniformity of the column cross section wind speed increases. Therefore, in order to eliminate this non-uniformity, it is necessary to secure a long straight column portion after the orifice, which makes the column longer and the apparatus larger.
  • a straight column type airflow sorter and a zigzag type airflow sorter with high separation accuracy two components are separated into one that rises at one wind speed and one that falls due to this.
  • a method of connecting multiple columns is used to sort into three or more components.
  • a blower is provided for each column to control the wind speed. Will become larger.
  • the problem to be solved by the present invention is to provide an air flow sorter having a simple device configuration without increasing the separation accuracy and reducing the separation speed.
  • the problem to be solved by the present invention is to provide an air flow sorter that achieves the separation of three or more components without slowing the separation speed and achieving no increase in the size of the apparatus while maintaining the separation accuracy. To do.
  • an air flow sorter of the present invention includes a first column for inserting a gas from below and allowing a sample to flow therein, a heavy particle recovery device provided at a lower portion of the first column,
  • a weak swirl flow generating mechanism is provided in the first column, and the wind speed distribution in the pipe cross section of the first column is determined from
  • the center-tube wall is smoothed by making it substantially W-shaped, and the heavy particle recovery device drops and recovers heavy particles in the sample, and recovers exhaust gas, intermediate particles, and light particles from the top of the first column. It is characterized by that.
  • the weak swirl flow generating mechanism provided in the first column may be provided on a spiral structure provided on a pipe inner wall peripheral surface of the first column or a lower portion of the first column.
  • the low-speed rotating impeller is provided.
  • the present invention further includes a first column cross-sectional area changing mechanism that changes a cross-sectional area of the first column by moving a part of the wall surface of the first column, and The first column cross-sectional area changing mechanism is controlled.
  • the present invention is the above air flow sorter, further comprising a second column, wherein the second column and the upper part of the first column are connected through a joint part, and the exhaust gas from the upper part of the first column and the intermediate particles, All the light particles are sucked into the second column through the joint portion, and a weak swirl flow generating mechanism is provided in the second column, so that the wind speed distribution in the tube cross section of the second column is determined from the tube wall-tube center-tube.
  • the wall is smoothed by making it substantially W-shaped over the wall, and the intermediate particles are dropped and collected by the intermediate particle collecting device provided at the lower part of the second column, and the light particle collecting device provided at the upper part of the second column
  • the exhaust from the upper part of the second column and the light particles are collected and exhausted.
  • the weak swirl flow generating mechanism provided in the second column is provided in a spiral structure provided on a pipe inner wall peripheral surface of the second column or a lower portion of the second column.
  • the low-speed rotating impeller is provided.
  • the present invention provides a second column cross-sectional area changing mechanism for changing a cross-sectional area of the second column by moving a part of the wall surface of the second column in the air flow sorter, and the controller controls the The second column cross-sectional area changing mechanism is controlled.
  • the joint portion may be obliquely upward in the second column along the joint extension direction, and the exhaust gas from the upper part of the first column and the intermediate / light particles. Is connected to the pipe peripheral wall of the second column so as to enter, and an orifice is provided in the joint portion, so that the wind speed in the joint portion is made faster than the wind speed in the first column from the top of the first column.
  • the present invention is characterized in that, in the air flow sorter, a storage type anemometer is provided in the first column and the second column, and the tube cross section wind speed distribution of both columns is monitored.
  • the control device includes means for storing a previously obtained sorting database, and sets airflow sorting conditions for the first column and the second column based on the sorting database. Thus, the control operation can be performed.
  • the present invention uses the primary concentrated product obtained by collecting particles in the same size range as the tantalum capacitor from the elements separated and collected from the used printed circuit board as the sample in the air flow sorter, and as the intermediate particles, Particles in the same specific gravity range as the tantalum capacitor are collected.
  • the wind speed distribution in the cross section in the column is smoothed, so that the separation accuracy can be further improved.
  • the wind speed can be adjusted by controlling the gas insertion amount or the column cross-sectional area changing mechanism by the control device.
  • the wind speed ratio between the columns can be changed by changing the cross-sectional area of at least one of the columns. Wind speed ratio can be realized.
  • the flow velocity distribution (tube wall-tube center-tube wall) of the cross section in the column is convex upward in FIG. 1 (a) is the flow velocity distribution in FIG. 1 (c) of the weak swirl upflow of the present invention.
  • the flow velocity at the tube wall increases, the flow velocity at the tube center decreases, resulting in a substantially W-shaped wind speed distribution, and the cross-section wind speed difference in FIG. 1 (c) is smaller than the cross-section wind speed difference in FIG. 1 (a). Therefore, in the weak swirl upward flow of the present invention, the wind speed distribution in the column cross section is smoothed, and the separation accuracy is further improved.
  • the weak swirling upflow refers to a low-speed swirling upflow in which the airflow rises 10 times or more the column diameter in the vertical direction while the airflow makes one rotation (turning) in the column.
  • the airflow rises 10 times or more the column diameter in the vertical direction while the airflow makes one rotation (turning) in the column.
  • an upward flow of 14.8 m / s is obtained with a column having an inner diameter of 90 mm, it rotates about 4 to 5 rps (4 to 5 times per second), that is, once as the air flow rises by 3 m.
  • a smooth wind speed distribution with a cross-sectional wind speed can be obtained.
  • Its manifestation mechanism includes a method of rotating the impeller gently from below, a method of rotating the column itself, a method of arranging a helical structure inside the column, and a spiral stepped screw shape such as a non-rotating inclined blade or static mixer
  • a method of rotating the air flow in the tube by supplying air into the tube through an object and a method of rotating the air flow in the tube by arranging an air supply nozzle inclined from the vertical direction on the inner wall of the column.
  • the impeller either a type in which the blades stand up in parallel with the vertical direction or a type in which the blades incline from the vertical direction can be used.
  • a method of arranging the spiral structure a method of pushing the spiral structure such as a spring along the inner wall of the pipe, a method of forming a spiral groove on the inner wall of the pipe, a restraining material such as a ribbon or a tape on the inner wall of the pipe
  • a method of attaching the coil in a spiral shape a method of attaching the coil in a spiral shape.
  • the method of rotating the impeller and the method of rotating the column itself require a separate drive source.
  • the method of attaching the spiral structure does not require a drive source, so energy saving can be achieved. . If the wind direction in the column is disturbed before the swirl flow is generated, it is difficult to generate a precise weak swirl upflow.
  • the method for supplying the sample into the column can be selected according to the configuration of the above-described weak swirl flow generating mechanism, and the sample may be supplied in an upward flow from the bottom of the column.
  • the sample may be supplied by dropping its weight from an obliquely upward direction to the supply port, or a combination of both.
  • the cross-sectional wind velocity distribution serving as a reference is different between the two (this invention)
  • the orifice is used under normal vertical flow.
  • a column length of 20 cm is required to return to normal straight column level smoothness, but when a weak swirl upflow is applied, it returns to a very smooth wind speed distribution based on the weak swirl upflow. Only a column length of 10 cm is required.
  • the acceleration effect by the orifice is increased by 7% in the former, whereas in the latter present invention, the acceleration effect is only increased by 5%, and the acceleration effect is somewhat reduced.
  • the second column 4 connected from the first column 2 through the joint portion 3 performs the wind speed control by sucking the exhaust gas from the first column 2 through the joint portion 3 and changing the cross-sectional area of the second column 4. .
  • a spiral structure is attached to the inner peripheral surfaces of the tube walls of the first column 2 and the second column 4 so as to cause a weak swirling upward flow.
  • the length of the straight section of a flat ellipse (track shape of track and field) that combines a straight line and a semicircle should be expanded and contracted, instead of extending and contracting the length with a rectangular cross section.
  • the wind speed distribution in the column cross section of the column is made substantially W-shaped across the tube wall-tube center-tube wall, so that the wind speed distribution in the column cross section is further smoothed and separated.
  • the accuracy is improved, it can be used as an air flow sorter with a single column (that is, only the first column 2), and at that time, a cross-sectional area changing mechanism for changing the cross-sectional area is provided. Also good.
  • the gas insertion is performed by directly connecting the blower 1 to the lower part of the first column 2. You may do it.
  • the heavy particles 5 are dropped and collected in the first column 2 of the first stage, and the exhaust of the first column 2 and the intermediate particles 6 and light particles 7 are collected in the second column 4 of the second stage.
  • the intermediate particles 6 are dropped and collected here, and the light particles 7 are collected together with the exhaust of the second column 4. That is, the wind speed is always adjusted so that the first column> the second column.
  • the first column 2 and the second column 4 are connected by opening the joint portion 3 provided at the top of the first column 2 to the pipe peripheral wall of the second column 4 and moving upward in the second column 4 along the joint extending direction. Exhaust gas and particles from the upper part of the first column 2 are allowed to enter obliquely.
  • FIG. 4B shows an example in which the orifice 9 is provided.
  • symbol 13 in Fig.4 (a) shows a joint part.
  • the air velocity in the first column 2 and the second column 4 is actually adjusted by monitoring with an anemometer. At this time, the frequency in the inverter control of the blower 1 and the wind velocity of the first column 2, for example, are adjusted. And the relationship between the number of steps of the pulse motor that changes the cross-sectional area of the second column 4 (feeding distance) and the cross-sectional area are preliminarily investigated and created in advance as a sorting database. By recording the data in the database storage means), it is possible to determine the wind speeds of the first column 2 and the second column 4 quickly.
  • the wind speed at many points in the cross section direction is continuously measured while changing the position of the anemometer in the cross section direction, and the cross section wind speed in the column and its smoothness are measured. It is important to monitor the conversion. Furthermore, if the anemometer stays in the column, it will interfere with the actual sorting. Therefore, it is important that the anemometer is stored after the monitoring is finished and no protrusions are left on the inner wall of the column.
  • the air flow sorting there are a method of sucking from the exhaust side and a method of inserting air from the suction side.
  • the latter is mainly assumed, but the air flow in the column may be generated by any method.
  • the supply feeder for example, the sample feeder 8 in FIG. 3
  • the hopper connected thereto are opened, air is sucked in the former case and air is discharged in the latter case. It happens that the wind speed in the column and the swirl upflow are less stable.
  • it is important to continuously supply the sample by making the hopper and feeder into which a certain amount of the selected sample has been put into a sealed type.
  • the operation of the apparatus is controlled based on a preliminarily obtained sorting database to separate light particles, intermediate particles, and heavy particles into three types.
  • a preliminarily obtained sorting database to separate light particles, intermediate particles, and heavy particles into three types.
  • the user can collect specific particles simply by inputting product information such as product type and size.
  • the specific gravity sorting in the secondary concentration step of the tantalum capacitor recycling method of Patent Document 6 can be realized by using the two-stage column airflow sorter of the present invention, and the element group peeled from the separately obtained printed circuit board.
  • the user can automatically adjust to the optimum selection condition to achieve the selection. Is possible.
  • the present invention was developed with the airflow sorter in the recycling industry in mind, but can be used in all fields where airflow sorting is performed, for example, raw material management in the manufacturing industry, in addition to the recycling industry.

Landscapes

  • Combined Means For Separation Of Solids (AREA)

Abstract

【課題】分離精度を維持しつつ、分離速度を遅くせずに、シンプルな装置構成の気流選別機を提供することを目的とする。 【解決手段】本発明の気流選別機は、下方から気体を挿入し、内部で試料を流動させる第1カラムと、前記第1カラム下部に設けた重粒子回収装置と、前記第1カラムへの挿入気体量によって風速を制御する制御装置を備えた気流選別機において、前記第1カラムに微弱旋回流発現機構を設け、前記第1カラムの管断面内風速分布を管壁-管中心-管壁にわたって略W字状にすることにより平滑化し、前記重粒子回収装置で前記試料中の重粒子を落下回収するとともに、前記第1カラム上部から排気と中間粒子・軽粒子を回収することを特徴とする。

Description

粒子選別機
 本発明は、気流を用いて粒子を選別する気流選別機に関するものであり、リサイクル産業分野、粉体選別を行う食品・材料等の分野において用いるのに好適である。
 空気流を用いた粒子の分離装置は多数あり、多くは横型の空気流れの中で、空気に飛ばされる物と慣性力で落下するものとに分ける装置である。また、縦型の分離装置として、代表的な物はジグザグ分級機である。ジグザグ型のカラム内を気流に乗って上昇する物と、落下する物に分ける装置で、中間産物が出にくく迅速な分離ができるが分離精度がやや落ちる。一方、ストレートカラム型やこれに絞り(オリフィス)を設けた型は、本出願人が前身の工業技術院時代から一貫して検討してきた技術であり、多数出願している(特許文献1~5参照)。
 特許文献1は、1段目はカラム型でなく、単に網上を流動層とした構造で、ここで針状物を網下に落下させた上、塊状物を2段目のカラム型で重産物と軽産物を分離するタイプの固形物の気流選別方法及び装置に関する。
 特許文献2は、2本のカラムを有する固形物の気流選別方法及び装置に関する。まずは、軽産物・中間産物を分離する第1カラムに投入する。軽産物は第1カラム上部から排出・回収し、中間産物は落下させ網上を滑らせて第2カラムへ投入する。第2カラムでは中間産物と重産物に分離する。この特許では2つの送風機を用い断面積を固定した2本のカラムに個別に送風し、産物の回収順序は軽産物→中間産物・重産物の順を辿って、カラム間は網上を重力落下により移動させるものである。
 特許文献3は、ディフューザを導入して同一カラム内で段階的に太さを変えて多段にする多段風力選別装置に関する。同軸上に複数のカラムを配するため基本の気流は1つの送風機で行うが、2つのカラム間の風速比は2次気流を導入して行うため、結局、複数の送風機を必要とする。
 通常のサイクロン型選別機は多数存在しており、これは、旋回流により発生した遠心力を利用し、より微細な粒子を旋回流に乗せて空気とともに搬送し、旋回流から離脱した重粒子と分離するものである。特許文献4の風力選別装置は、中間産物を排出する目的でストレートカラム気流選別機にサイクロンを組み合わせた例に関する。
 また、ストレートカラムあるいはオリフィス付きストレートカラム気流選別機において、高い精度は求めずに、単に3つに区分するだけの選別であれば、特許文献5に示される固形物の気流選別装置の例がある。
特許第2535778号公報 特許第2757333号公報 特許第4122438号公報 特許第4096101号公報 特許第2913034号公報 特開2010-214352号公報
 先に、本発明者等は、特許文献6のタンタルコンデンサのリサイクル方法を出願している。特許文献6は、使用済みプリント基板から基板上に実装された素子類を剥離回収し、剥離回収した素子類を篩で篩分け選別することによりタンタルコンデンサと同じ寸法範囲の粒子を回収する一次濃縮工程と、一次濃縮産物から比重選別によりタンタルコンデンサと同じ比重範囲のものを回収する二次濃縮工程と、二次濃縮産物から、弱い磁選により非磁着物を回収してタンタルコンデンサの高濃縮産物とする三次濃縮工程と、からなることを特徴とするタンタルコンデンサのリサイクル方法の発明に関し、この二次濃縮工程の比重選別において縦型気流選別機を使用している。特許文献6に記載の発明では、2.8mm~4.75mmの一次濃縮産物に対して、二次濃縮工程として縦型気流選別機を使用し、まず、流速11m/s~14m/sの上昇気流中で分離することにより、比重2.5以下の軽産物をオーバーフローさせて除去し、次いで、22~24m/sの流速を持つ(上昇)気流中で分離することにより、比重6.0以上を重産物として残し、中間比重群をオーバーフローさせて二次濃縮産物として回収しており、縦型気流選別機を使用した2回のバッチ操作が必要であった。本発明者等は、この2回のバッチ操作で行っていた二次濃縮工程を、一度の操作だけで、精度良く、しかも装置を大型化することなく達成することができる気流選別機について鋭意研究開発を重ねた結果本発明に至ったものである。
 気流選別機に求められる性能は、適用粒径など対象物の種類に関するものを除き、装置自体に関するものとして、分離精度の高さ、分離速度の速さ、分離産物数の多さ、装置のシンプルさなどがある。
 ストレートカラム型気流選別機は、分離の閾値となるカラム内の風速分布が比較的狭いため、他の気流選別機に比べ相対的に精度の高い分離が可能である。しかしながら厳密に言えばカラム断面の風速は中心部が高く周辺部が低い風速分布を持つため、その風速分布の幅の分だけ、閾値に幅が生まれて分離精度が低下する。
 また、ストレートカラム型気流選別機は、カラム全体が1つの風速(閾値)となるため、粒子が上昇-落下を繰り返して分離速度が他の気流選別機に比べ相対的に遅くなる。これを改善する方法がカラムの途中にオリフィス(絞り)を設けて粒子を加速させる方法である。しかし、オリフィスを設けると、分離速度が速くなる一方、カラム断面の風速は中心部が著しく高くカラム断面風速の不均一さが増す。したがって、この不均一を解消するために、オリフィス後のストレートカラム部を長めに確保する必要があり、これによってカラムが長大になり、装置が大型化してしまう。
 一方、分離精度の高いストレートカラム型気流選別機やジグザグ型気流選別機では、1つの風速を境にこれにより上昇するものと、落下するものに2成分分離する。1つの風速による粒子の飛跳距離によって多成分に分離する選別機もあるが、高い選別精度は望めない。ストレートカラム型気流選別機で精度維持しつつ、3成分以上に選別するには複数のカラムを連結する方法がとられるが、従来の方法ではカラムごとに送風機を設けて風速制御を行うため、装置が大型化してしまう。
 本発明の解決すべき課題は、分離精度を向上しつつ、分離速度を遅くせずに、シンプルな装置構成の気流選別機を提供しようとするものである。
 また、本発明の解決すべき課題は、分離精度を維持しつつ、分離速度を遅くせずに、3成分以上に選別し、かつ装置を大型化させないことを達成させる気流選別機を提供しようとするものである。
 上記課題を解決するために、本発明の気流選別機は、下方から気体を挿入し、内部で試料を流動させる第1カラムと、前記第1カラム下部に設けた重粒子回収装置と、前記第1カラムへの挿入気体量によって風速を制御する制御装置を備えた気流選別機において、前記第1カラムに微弱旋回流発現機構を設け、前記第1カラムの管断面内風速分布を管壁-管中心-管壁にわたって略W字状にすることにより平滑化し、前記重粒子回収装置で前記試料中の重粒子を落下回収するとともに、前記第1カラム上部から排気と中間粒子・軽粒子を回収することを特徴とする。
 また、本発明は、上記気流選別機において、前記第1カラムに設けた前記微弱旋回流発現機構は、前記第1カラムの管内壁周面に設けたらせん状構造体又は前記第1カラム下部に設けた低速回転インペラであることを特徴とする。
 また、本発明は、上記気流選別機において、前記第1カラムの壁面の一部を移動させて前記第1カラムの断面積を変化させる第1カラム断面積変更機構を設け、前記制御装置により前記第1カラム断面積変更機構を制御することを特徴とする。
 また、本発明は、上記気流選別機において、第2カラムをさらに設け、該第2カラムと前記第1カラム上部はジョイント部を通して接続し、前記第1カラム上部からの前記排気と前記中間粒子・前記軽粒子を前記ジョイント部を介して全て前記第2カラムに吸入させ、前記第2カラムに微弱旋回流発現機構を設けて前記第2カラムの管断面内風速分布を管壁-管中心-管壁にわたって略W字状にすることにより平滑化すると共に、前記第2カラム下部に設けた中間粒子回収装置で前記中間粒子を落下回収し、前記第2カラム上部に設けた軽粒子回収装置により前記第2カラム上部からの前記排気と前記軽粒子を回収し排気することを特徴とする。
 また、本発明は、上記気流選別機において、前記第2カラムに設けた前記微弱旋回流発現機構は、前記第2カラムの管内壁周面に設けたらせん状構造体又は前記第2カラム下部に設けた低速回転インペラであることを特徴とする。
 また、本発明は、上記気流選別機において、前記第2カラムの壁面の一部を移動させて前記第2カラムの断面積を変化させる第2カラム断面積変更機構を設け、前記制御装置により前記第2カラム断面積変更機構を制御することを特徴とする。
 また、本発明は、上記気流選別機において、前記ジョイント部は、ジョイント延長方向に沿って前記第2カラム内に上方斜め向きに前記第1カラム上部からの前記排気と前記中間粒子・前記軽粒子を突入させるように前記第2カラムの管周壁に開口接続すると共に、前記ジョイント部にはオリフィスを設け、前記ジョイント部内の風速を前記第1カラム内の風速より早くして前記第1カラム上部からの前記排気と前記中間粒子・前記軽粒子を前記第2カラム内深くまで搬送させることにより前記ジョイント部から前記第2カラム内に突入直後の失速による落下回収を防止したことを特徴とする。
 また、本発明は、上記気流選別機において、前記第1カラム及び前記第2カラムに格納型風速計を設け、両カラムの前記管断面風速分布をモニタすることを特徴とする。
 また、本発明は、上記気流選別機において、前記制御装置は、予め取得された選別データベースを記憶する手段を備え、該選別データベース基づいて前記第1カラム及び前記第2カラムの気流選別条件を設定して制御運転できるようにしたことを特徴とする。
 また、本発明は、上記気流選別機において、前記試料として、使用済みプリント基板から剥離回収した素子類からタンタルコンデンサと同一の寸法範囲の粒子を回収した一次濃縮産物を用い、前記中間粒子として、前記タンタルコンデンサと同一比重範囲の粒子を回収するようにしたことを特徴とする。
 本発明では、上昇流に微弱な旋回流を起こした微弱旋回上昇流を用いることにより、カラム内断面の風速分布が平滑化するので分離精度をより向上できる。
 本発明では、制御装置により、気体挿入量あるいはカラム断面積変更機構を制御することによって風速を調整することができる。
 本発明では、カラム内周壁面にらせん構造体を設けて微弱旋回流を起こすようにすると、微弱旋回流を起こすための動力が不要で省エネルギとなる。
 本発明では、第1カラムにさらに第2カラムを設けた場合に、少なくとも一方のカラムを断面積可変とすることにより、カラム間の風速比を変化させることができ、1つの送風機のみで所望の風速比が実現できる。
従来のストレートカラム上昇流の場合のカラム内断面の風速分布のイメージを示す図である。 従来のサイクロンの場合のカラム内断面の風速分布のイメージを示す図である。 本発明の微弱旋回上昇流の場合のカラム内断面の風速分布のイメージを示す図である。 通常の鉛直上昇流の場合のカラム内断面の風速分布イメージを示した図であって、オリフィスを通過することで、上昇速度が加速される様子を示した図である。 本発明の微弱旋回上昇流の場合のカラム内断面の風速分布イメージを示した図であって、オリフィスを通過することで、上昇速度が加速される様子を示した図である。 本発明の2段カラム気流選別機の概要を示した図である。 加速流を伴わない従来の2段カラムジョイント部の加速流を説明するための図であある。 本発明のオリフィスにより加速流を伴う2段カラムジョイント部の加速流を説明するための図である。
 ストレートカラム型気流選別機において、鉛直上昇流に微弱な旋回流を起こすと、驚くべきことに、カラム内断面の風速分布がより平滑化され、分離精度がより向上することがわかった。
 従来の鉛直上昇流のみのストレートカラム型気流選別機では、カラム内を上昇する気流は管壁との摩擦により、いわゆる層流域でのポアズイユ流れ、乱流域での1/7乗則で知られるように、中心部で早く周辺部で遅くなる図1(a)に示す上に凸の流速分布となる。これにより、同じ粒子でも、偶然に管の中央部に存在した場合には気流により粒子は上昇し、偶然に管の周辺部に存在した場合には粒子は落下するということが起こり得る。すなわち、その分、分離精度が低下する。
 一方、直管内を高速の旋回流(サイクロン)で空気を流すと、中心よりも外側の流速が大きくなることが知られており、図1(b)に示した下に凸の流速分布となる。
 これらに対して、図1(c)に示した本発明の微弱旋回上昇流では、カラム内を鉛直方向に空気が上昇するのではなく、極わずかに旋回しながらカラム上方へと流すと、上述の図1(a)及び(b)の2ケースの中間的な作用下での図1(c)に示すような略W字状の風速分布を示し、相対的に一様な断面風速を示すようになる。すなわち、カラム内断面の流速分布(管壁-管中心-管壁)が、図1(a)の上に凸であった流速分布が、本発明の微弱旋回上昇流の図1(c)では、管壁での流速が上がると共に管中心での流速は下がり略W字状の風速分布となり、図1(a)の断面風速差より図1(c)の断面風速差の方が小さくなる。したがって、本発明の微弱旋回上昇流では、カラム内断面の風速分布がより平滑化され、分離精度がより向上する。なお、本明細書において、微弱旋回上昇流とは、気流がカラム内を1回転(旋回)する間に、その気流が鉛直方向にカラム直径の10倍以上上昇する、低速旋回の上昇流を指す。
 例えば、内径90mmのカラムで、14.8m/sの上昇流を得るとき、4~5r.p.s.(1秒間に4~5回)程度、すなわち、気流が3m上昇するにつれ1回転するような、極めて緩やかな旋回を与えると、断面風速の平滑な風速分布を得ることができる。
 その発現機構としては、下方から緩やかにインペラを回転させる方法、カラム自体を回転させる方法、カラム内部にらせん構造体を配する方法、非回転の傾斜羽根やスタティックミキサ等のらせん階段状のスクリュー形状物を介して管内に送気して管内の気流を回転させる方法、カラム内壁に鉛直方向から傾斜した送気ノズルを配し、管内の気流を回転させる方法などがある。なお、インペラとしては、羽根が鉛直方向と平行に切り立ったタイプと羽根が鉛直方向から傾斜したタイプのいずれも用いることができる。また、らせん構造体を配する方法としては、スプリング等のらせん構造体を管内壁に沿って押し込む方法、管内壁にらせん状の溝を形成する方法、管内壁にリボンやテープ等の制流物をらせん状に取付ける方法などが挙げられる。これらの発現機構の中では、インペラを回転させる方法及びカラム自体を回転させる方法は、別途駆動源が必要となるが、らせん状構造体を取り付ける方法では駆動源を必要としないため省エネ化が図れる。
 なお、旋回流を起こす前の段階で、カラム内の風向に乱れがあると、精密な微弱旋回上昇流を起こすことが困難となる。そこで、いずれかの旋回流を起こす機構の前に、格子状の整流板を設置することも有効である。また、カラム内への試料の供給方法としては、上述の微弱旋回流発現機構の構成に応じて選択することができ、カラムの下方から試料を上昇流に乗せて供給してもよく、カラム側壁の供給口に対して斜め上方向から試料を自重落下させて供給してもよく、或いは、その両方を組み合わせてもよい。
 一方、既述のように、オリフィス付きストレートカラム気流選別機では、図2(a)に示すように、カラム10a内のオリフィス(絞り)10bを通過することで、カラム10a中心部の上昇速度が加速され、オリフィス10b通過直後には、極端に中心部で早く周辺部で遅くなる断面風速分布となる。このため、断面風速がストレートカラムの通常風速分布に戻るのに、その後、一定のカラム長さを必要とする。
 しかしながら、本発明の微弱旋回流の下では、旋回しながらオリフィス10bを通過するため、図2(b)に示すように、オリフィス10b通過直後、直ちに空気が管壁方向へと広がり、速やかに平滑な断面風速に戻る。
 通常の鉛直流によるオリフィス付きストレートカラム気流選別機と、本発明の微弱旋回上昇流を採用したオリフィス付きストレートカラム気流選別機を比較した場合、両者では、基準となる断面風速分布が異なる(本発明の方がより平滑である)ため、一概に比較ができないが、例えば、内径90mm、オリフィス内径84mmのカラムで、14.8m/sの上昇流を得るとき、通常の鉛直流の元では、オリフィス通過後、通常のストレートカラムレベルの平滑さに戻るに20cmのカラム長さを必要とするが、微弱旋回上昇流を流した場合は、微弱旋回上昇流に基づく極めて平滑な風速分布に戻るのに10cmのカラム長さしか必要としない。ただし、同一オリフィス内径だとオリフィスによる加速効果は、前者が流速7%増であるのに対し、後者の本発明では流速5%増に止まり、加速効果は幾分減少する。
 微弱旋回上昇流を用いて、重産物(重粒子)、中間産物(中間粒子)、軽産物(軽粒子)の3種を1台の気流選別機で選別するには、ストレートカラムを2つ連結し、これを1つの送風機で対応するため、一方のカラムは断面積を固定とし、これと接続したもう一方のカラムは断面積を可変とした。例えば、以下のような仕様とする。
 図3に示すように、送風機1と直接連結する第1カラム2は断面積を固定とし、送風機1のインバータ制御による挿入空気量によって風速を制御する。また、第1カラム2からジョイント部3を通じて接続された第2カラム4は、第1カラム2の排気をジョイント部3を通じて吸入し、第2カラム4の断面積を変化させることにより風速制御を行う。なお、図示していないが、第1カラム2及び第2カラム4の管壁内周面にらせん状構造物を取り付けて、微弱旋回上昇流を起こすようにしている。この際、断面風速平滑化のため、長方形の断面形状で長さを伸び縮みさせるのでなく、直線と半円を組み合わせた扁平な楕円(陸上競技のトラックの形状)の直線部分を伸び縮みさせることにより、四つ角の風速低下を防止できるとともに、前記の微弱旋回上昇流を起こすことも容易になる。
 なお、本発明の微弱旋回上昇流では、カラムの管断面内風速分布を管壁-管中心-管壁にわたって略W字状にすることにより、カラム内断面の風速分布がより平滑化され、分離精度が向上するので、単一のカラム(すなわち第1カラム2のみ)での気流選別機としても用いることができることはいうまでもなく、その際、断面積を変化させる断面積変更機構を設けてもよい。さらに、図3では、気体の挿入は送風機1を第1カラム2下部に直結したが、送風機1に限らずともよく、試料の供給も、試料供給装置に限らず、気体の挿入時に気流と共に供給するなどしてもよい。
 本発明による2段カラム気流選別機では、1段目の第1カラム2で重粒子5を落下回収、第1カラム2の排気と中間粒子6・軽粒子7を2段目の第2カラム4に送り、ここで中間粒子6を落下回収し、軽粒子7を第2カラム4の排気とともに回収する。すなわち、風速は常に、第1カラム>第2カラムとなるように調整する。第1カラム2と第2カラム4の接続は、第1カラム2上部に設けたジョイント部3を第2カラム4の管周壁に開口接続し、ジョイント延長方向に沿って第2カラム4内に上方斜め向きに第1カラム2上部からの排気と粒子を突入させる。このとき、ジョイント部3内の風速を単に第1カラム2の風速を維持しただけで、第2カラム4に接続すると、図4(a)に示すように、第2カラム14内のジョイント延長部分より下部は無風エリアとなり、ここに突入した粒子は、すべて失速して落下し、本来回収すべきでない軽粒子7まで中間粒子6として回収されてしまう。そこで、本発明では、ジョイント部3にオリフィス9を設ける、あるいはジョイント管を細くする、あるいは、特許文献3にあるような2次気流を導入することにより、粒子の重軽にかかわらず、全ての粒子を第2カラム14の深くまで搬送し、そこで、第2カラム4内の風速に応じた分離を行うことを工夫した。図4(b)に、オリフィス9を設けた例を示す。なお、図4(a)中の符号13は、ジョイント部を示す。
 第1カラム2、第2カラム4内の気流速度は、実際に、風速計によりモニタリングを行って調整を行うが、この際、送風機1のインバータ制御における周波数と、例えば、第1カラム2の風速の関係、および、第2カラム4の断面積を可変させるパルスモータのステップ数(送り出し距離)と断面積の関係を事前に調査して、予め選別データベース化し、これを装置内の制御系(選別データベース記憶手段)に記録しておくことにより、いち早く第1カラム2、第2カラム4の風速を粗決めすることが可能となる。
 また、カラム断面の任意の1点を測定するだけでなく、風速計を断面方向に位置を変えながら、断面方向の多数の点の風速を連続的に測定し、カラム内の断面風速及びその平滑化をモニタリングすることが重要である。さらに、風速計がカラム内に止まっていると、実際の選別時の邪魔となることから、モニタリング終了後は、風速計は格納させて、カラム内壁に突起物を残さないことも重要である。
 気流選別では、排気側から吸引する方法と、吸気側から空気を挿入する方法があり、本発明では主として後者を想定としているが、いずれの方法でカラム内の気流を発生しても構わない。しかし、供給フィーダ(例えば、図3中の試料フィーダ8)とこれに接続されたホッパを開放系にした場合には、ここから、前者の場合は空気の吸入、後者の場合は空気の排出が起こり、カラム内の風速と、旋回上昇流が安定しにくくなる。本発明装置の効果を最大限に発揮するには、選別試料を一定量投入したホッパ及びフィーダを密閉型にして、連続的に試料を供給することが重要である。
 本発明の2段カラム気流選別機を用い、予め取得された選別データベースに基づいて装置の運転を制御し、軽粒子、中間粒子、重粒子の3種に分離する。単に重軽産物を2成分分離する装置と異なり、例えば、事前にサイズ分けした多種混合試料から、任意の比重を持つ中間粒子だけを1度の選別操作で直接回収することが可能である。また、対象物の選別データベースを事前に入力しておくことにより、ユーザは製品の種類やサイズなどの製品情報を入力するだけで、特定の粒子の回収をすることができる。そこで、上記特許文献6のタンタルコンデンサのリサイクル方法の2次濃縮工程の比重選別を、本発明の2段カラム気流選別機を用いて実現することができ、別途取得したプリント基板から剥離した素子群のデータベースを導入することにより、ユーザは、例えば、投入試料のサイズと回収したい素子の名称(例えばタンタルコンデンサ)と入力するだけで、自動的に最適選別条件に調整されて選別を達成することが可能である。
 本発明の2段カラム気流選別機のパイロット機を用い、タンタルコンデンサと粒径および比重が近接する(極めて選別困難度の高い)混合素子模擬試料に対して、タンタルコンデンサの濃縮試験を行った結果、元のタンタルコンデンサ品位(純度)14.2%に対し、回収率91.4%で品位が85.5%まで向上し、このときの分離効率が88.9%であった。これは連続式のパイロット機でありながら、古典的なバッチ式1段カラムラボ機で試験をした特許文献6に記載の結果と同等の精度であり、本発明が極めて実用性に富むことを示すものである。
 なお、上記では2段カラムを用いて、軽粒子、中間粒子、重粒子の3種の分離産物を得る場合で説明したが、カラム段数を増やして3段以上の構成とすれば、より多くの分離産物数を得ることも可能である。また、単一カラムによるバッチ処理にも利用できることはもちろんである。
 本発明は、リサイクル産業における気流選別機を念頭に置いて開発したものであるが、リサイクル産業以外でも、例えば製造業の原料管理等、気流選別を行う全ての分野で使用することが出来る。
   1   送風機
   2   第1カラム
 3,13  ジョイント部
 4,14  第2カラム
   5   重粒子
   6   中間粒子
   7   軽粒子
   8   試料フィーダ
 9,10b オリフィス
  10a  カラム

Claims (10)

  1.  下方から気体を挿入し、内部で試料を流動させる第1カラムと、前記第1カラム下部に設けた重粒子回収装置と、前記第1カラムへの挿入気体量によって風速を制御する制御装置を備えた気流選別機において、
     前記第1カラムに微弱旋回流発現機構を設け、前記第1カラムの管断面内風速分布を管壁-管中心-管壁にわたって略W字状にすることにより平滑化し、前記重粒子回収装置で前記試料中の重粒子を落下回収するとともに、前記第1カラム上部から排気と中間粒子・軽粒子を回収することを特徴とする気流選別機。
  2.  前記第1カラムに設けた前記微弱旋回流発現機構は、前記第1カラムの管内壁周面に設けたらせん状構造体又は前記第1カラム下部に設けた低速回転インペラであることを特徴とする請求項1記載の気流選別機。
  3.  前記第1カラムの壁面の一部を移動させて前記第1カラムの断面積を変化させる第1カラム断面積変更機構を設け、前記制御装置により前記第1カラム断面積変更機構を制御することを特徴とする請求項1又は2記載の気流選別機。
  4.  請求項1~3のいずれか1項に記載の気流選別機において、第2カラムをさらに設け、該第2カラムと前記第1カラム上部はジョイント部を通して接続し、前記第1カラム上部からの前記排気と前記中間粒子・前記軽粒子を前記ジョイント部を介して全て前記第2カラムに吸入させ、
     前記第2カラムに微弱旋回流発現機構を設けて前記第2カラムの管断面内風速分布を管壁-管中心-管壁にわたって略W字状にすることにより平滑化すると共に、
     前記第2カラム下部に設けた中間粒子回収装置で前記中間粒子を落下回収し、前記第2カラム上部に設けた軽粒子回収装置により前記第2カラム上部からの前記排気と前記軽粒子を回収し排気することを特徴とする気流選別機。
  5.  前記第2カラムに設けた前記微弱旋回流発現機構は、前記第2カラムの管内壁周面に設けたらせん状構造体又は前記第2カラム下部に設けた低速回転インペラであることを特徴とする請求項4記載の気流選別機。
  6.  前記第2カラムの壁面の一部を移動させて前記第2カラムの断面積を変化させる第2カラム断面積変更機構を設け、前記制御装置により前記第2カラム断面積変更機構を制御することを特徴とする請求項4又は5記載の気流選別機。
  7.  請求項4~6のいずれか1項記載の気流選別機において、前記ジョイント部は、ジョイント延長方向に沿って前記第2カラム内に上方斜め向きに前記第1カラム上部からの前記排気と前記中間粒子・前記軽粒子を突入させるように前記第2カラムの管周壁に開口接続すると共に、前記ジョイント部にはオリフィスを設け、前記ジョイント部内の風速を前記第1カラム内の風速より早くして前記第1カラム上部からの前記排気と前記中間粒子・前記軽粒子を前記第2カラム内深くまで搬送させることにより前記ジョイント部から前記第2カラム内に突入直後の失速による落下回収を防止したことを特徴とする気流選別機。
  8.  前記第1カラム及び前記第2カラムに格納型風速計を設け、両カラムの前記管断面風速分布をモニタすることを特徴とする請求項4~7のいずれか1項記載の気流選別機。
  9.  前記制御装置は、予め取得された選別データベースを記憶する手段を備え、該選別データベース基づいて前記第1カラム及び前記第2カラムの気流選別条件を設定して制御運転できるようにしたことを特徴とする請求項4~8のいずれか1項記載の気流選別機。
  10.  前記試料として、使用済みプリント基板から剥離回収した素子類からタンタルコンデンサと同一の寸法範囲の粒子を回収した一次濃縮産物を用い、前記中間粒子として、前記タンタルコンデンサと同一比重範囲の粒子を回収するようにしたことを特徴とする請求項4~9のいずれか1項記載の気流選別機。
PCT/JP2013/052808 2012-03-28 2013-02-07 粒子選別機 WO2013145871A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380017836.6A CN104271267B (zh) 2012-03-28 2013-02-07 粒子分选机
US14/387,428 US9821343B2 (en) 2012-03-28 2013-02-07 Particle sorting machine
JP2014507486A JP5862763B2 (ja) 2012-03-28 2013-02-07 粒子選別機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012073607 2012-03-28
JP2012-073607 2012-03-28

Publications (1)

Publication Number Publication Date
WO2013145871A1 true WO2013145871A1 (ja) 2013-10-03

Family

ID=49259156

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052808 WO2013145871A1 (ja) 2012-03-28 2013-02-07 粒子選別機

Country Status (5)

Country Link
US (1) US9821343B2 (ja)
JP (1) JP5862763B2 (ja)
CN (1) CN104271267B (ja)
TW (1) TWI566843B (ja)
WO (1) WO2013145871A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512940B2 (en) 2015-09-17 2019-12-24 National Institute Of Advanced Industrial Science And Technology Device and method for sorting objects
CN115283254A (zh) * 2022-07-29 2022-11-04 中触媒新材料股份有限公司 一种用于制氧吸附剂颗粒气流快速筛分活化***及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9539584B2 (en) * 2012-03-28 2017-01-10 National Institute Of Advanced Industrial Science And Technology Magnetic separator
CN111282815B (zh) * 2018-12-07 2022-01-04 中国石油化工股份有限公司 固体颗粒粒度控制器及其应用和分离固体颗粒的方法
CN111286359B (zh) * 2018-12-07 2021-12-17 中国石油化工股份有限公司 一种加工重质烃油原料的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139477U (ja) * 1974-05-01 1975-11-17
EP0145601A1 (fr) * 1983-12-08 1985-06-19 SOCIETE D'ENTREPRISES INDUSTRIELLES INTERNATIONALE Société Anonyme dite Dispositif pour la séparation des matériaux en feuilles dans une installation de traitement de déchets
JPH02211282A (ja) * 1989-02-13 1990-08-22 Nittetsu Mining Co Ltd 気流分級装置
JPH0975851A (ja) * 1995-09-20 1997-03-25 Agency Of Ind Science & Technol 固形物の気流選別方法及び装置
JP2005205282A (ja) * 2004-01-21 2005-08-04 National Institute Of Advanced Industrial & Technology 多段風力選別装置
JP2010214352A (ja) * 2009-03-19 2010-09-30 National Institute Of Advanced Industrial Science & Technology タンタルコンデンサのリサイクル方法
JP2011220707A (ja) * 2010-04-05 2011-11-04 Yamatake Corp 流量計測装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2386975A (en) * 1941-06-27 1945-10-16 Johns Manville Apparatus for recovering waste materials
US4010096A (en) * 1975-10-09 1977-03-01 Allis-Chalmers Corporation Pneumatic classifier for refuse material with adjustable air intake
US4010097A (en) * 1975-10-09 1977-03-01 Allis-Chalmers Corporation Pneumatic classifier for refuse material with double vortex airflow
US4127476A (en) * 1977-06-13 1978-11-28 Fred D. Iannazzi Air-classification apparatus and process for the segregation of mixed office-paper waste
US4568453A (en) * 1984-09-14 1986-02-04 Lowe Jr Henry E Apparatus and method for removing dust from particulate material
US5411142A (en) * 1993-03-29 1995-05-02 Abbott; Kenneth E. Air-flow control for particle cleaning systems
JP2535778B2 (ja) 1994-03-18 1996-09-18 工業技術院長 固形物の気流選別方法及び装置
JP2913034B1 (ja) 1998-07-08 1999-06-28 工業技術院長 固形物の気流選別装置
US6405405B1 (en) * 2000-04-20 2002-06-18 Carter Day International, Inc. Product cleaner with air flow control
JP4096101B2 (ja) 2004-01-19 2008-06-04 独立行政法人産業技術総合研究所 風力選別装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139477U (ja) * 1974-05-01 1975-11-17
EP0145601A1 (fr) * 1983-12-08 1985-06-19 SOCIETE D'ENTREPRISES INDUSTRIELLES INTERNATIONALE Société Anonyme dite Dispositif pour la séparation des matériaux en feuilles dans une installation de traitement de déchets
JPH02211282A (ja) * 1989-02-13 1990-08-22 Nittetsu Mining Co Ltd 気流分級装置
JPH0975851A (ja) * 1995-09-20 1997-03-25 Agency Of Ind Science & Technol 固形物の気流選別方法及び装置
JP2005205282A (ja) * 2004-01-21 2005-08-04 National Institute Of Advanced Industrial & Technology 多段風力選別装置
JP2010214352A (ja) * 2009-03-19 2010-09-30 National Institute Of Advanced Industrial Science & Technology タンタルコンデンサのリサイクル方法
JP2011220707A (ja) * 2010-04-05 2011-11-04 Yamatake Corp 流量計測装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512940B2 (en) 2015-09-17 2019-12-24 National Institute Of Advanced Industrial Science And Technology Device and method for sorting objects
CN115283254A (zh) * 2022-07-29 2022-11-04 中触媒新材料股份有限公司 一种用于制氧吸附剂颗粒气流快速筛分活化***及方法
CN115283254B (zh) * 2022-07-29 2023-08-25 中触媒新材料股份有限公司 一种用于制氧吸附剂颗粒气流快速筛分活化***及方法

Also Published As

Publication number Publication date
CN104271267A (zh) 2015-01-07
TW201402230A (zh) 2014-01-16
TWI566843B (zh) 2017-01-21
JPWO2013145871A1 (ja) 2015-12-10
US20150231669A1 (en) 2015-08-20
US9821343B2 (en) 2017-11-21
CN104271267B (zh) 2017-05-10
JP5862763B2 (ja) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5862763B2 (ja) 粒子選別機
US6739456B2 (en) Apparatus and methods for separating particles
US3720314A (en) Classifier for fine solids
US3670886A (en) Powder classifier
CN104984907A (zh) 一种笼型转子式空气选粉机
CN205110120U (zh) 高效节能气流分选机
CN204866524U (zh) 一种笼型转子式空气选粉机
CN106955799A (zh) 一种超重力多级旋风分离选矿装置
CN107282447A (zh) 组合分选机
WO2015194529A1 (ja) サイクロン型粉体分級装置
JP2014188452A (ja) 選別装置
US8083071B2 (en) Rotating cone classifier
Klujszo et al. Dust collection performance of a swirl air cleaner
JP2597794B2 (ja) 粉末原料の分級方法および分級装置
CN215744068U (zh) 一种基于半成品粗细分离的选粉机
CN108136444B (zh) 物体的筛选装置及其方法
CN105719383B (zh) 一种硬币自动分类计数一体机
CN110662610A (zh) 粉体的分级装置和分级***
CN103785614A (zh) 一种多层错叠布料进气流化的多级粉体分选机
CN106584708A (zh) 一种物料分选***
CN208146239U (zh) 一种粉碎料颗粒粒径的旋流分选装置
CN208082901U (zh) 多产品多级分级机
CN202860845U (zh) 垂直风选机
JP6666206B2 (ja) サイクロン装置及び分級方法
JP4096101B2 (ja) 風力選別装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13767643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014507486

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14387428

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13767643

Country of ref document: EP

Kind code of ref document: A1