WO2013141268A1 - 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法 - Google Patents

多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法 Download PDF

Info

Publication number
WO2013141268A1
WO2013141268A1 PCT/JP2013/057957 JP2013057957W WO2013141268A1 WO 2013141268 A1 WO2013141268 A1 WO 2013141268A1 JP 2013057957 W JP2013057957 W JP 2013057957W WO 2013141268 A1 WO2013141268 A1 WO 2013141268A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
substrate
alloy
multilayer reflective
reflective film
Prior art date
Application number
PCT/JP2013/057957
Other languages
English (en)
French (fr)
Inventor
貴弘 尾上
敏彦 折原
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to KR1020147019934A priority Critical patent/KR102124176B1/ko
Priority to US14/373,715 priority patent/US9383637B2/en
Priority to JP2014506260A priority patent/JP6082385B2/ja
Publication of WO2013141268A1 publication Critical patent/WO2013141268A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/48Protective coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0334Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/0337Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the present invention uses a substrate with a multilayer reflective film in which loss of a protective film due to dry etching using a chlorine-based gas and subsequent wet cleaning is very small, a reflective mask blank for EUV lithography obtained from the substrate, and the mask blank
  • the present invention relates to a method for manufacturing a reflective mask for EUV lithography, and a method for manufacturing a semiconductor device using the reflective mask for EUV lithography obtained by the manufacturing method.
  • EUV lithography which is an exposure technique using extreme ultraviolet (Extreme Ultra Violet, hereinafter referred to as EUV) light with a shorter wavelength is promising.
  • EUV light refers to light in the wavelength band of the soft X-ray region or the vacuum ultraviolet region, and specifically refers to light having a wavelength of about 0.2 to 100 nm.
  • a multilayer reflective film that reflects EUV light and an absorber film that absorbs EUV light are sequentially formed on a substrate such as glass or silicon, and the absorber film and the multilayer reflective film.
  • a protective film for protecting the multilayer reflective film is formed when a transfer pattern is formed on the absorber film.
  • a predetermined transfer pattern is formed on the absorber film.
  • light incident on a reflective mask is absorbed at a portion having an absorber film pattern and reflected by a multilayer reflective film at a portion without an absorber film pattern.
  • the reflected light image is transferred onto a transfer medium such as a silicon wafer through a reflection optical system.
  • a resist pattern is formed on the absorber film of an EUV reflective mask blank in which the multilayer reflective film, the protective film, and the absorber film are formed in this order on the substrate. Then, using the resist pattern as a mask, the absorber film is etched by dry etching or the like, and the resist pattern is removed (for example, when the absorber film is a Ta-based material, the absorber film is dried by Cl-based gas dry etching). Form a pattern).
  • a protective film is generally provided on the multilayer reflective film.
  • a protective film made of Ru has been proposed (patent) Reference 1).
  • the protection is made of Ru alloy with Zr or B added to Ru A film has been proposed (Patent Document 2).
  • the Ru protective film described in Patent Documents 1 and 2 and the Ru alloy protective film of Ru- (Zr, B) are remarkably thin after the mask cleaning, and in some cases, all of the protective film disappears. A problem occurs.
  • the present inventors examined the reduction or disappearance of this protective film, and Ru chloride or Ru- (Zr, B) chloride was generated by the Cl-based gas used when forming the absorber film pattern, followed by chemical cleaning. Thus, it was confirmed by an SEM photograph that the Ru protective film or the Ru- (Zr, B) protective film was reduced or disappeared together with the Ru chloride or Ru- (Zr, B) chloride.
  • the present invention is a substrate with a multilayer reflective film used for manufacturing a reflective mask blank for EUV lithography in which dry etching using a Cl-based gas is performed, and the protective film formed by the dry etching and subsequent wet cleaning is used.
  • An object of the present invention is to provide a substrate with a multilayer reflective film with very little loss.
  • the present invention is obtained by a reflective mask blank for EUV lithography manufactured using the substrate with a multilayer reflective film, a manufacturing method of a reflective mask for EUV lithography using the mask blank, and the manufacturing method. It is another object of the present invention to provide a method for manufacturing a semiconductor device using a mask.
  • the present invention is a substrate with a multilayer reflective film used for the production of a reflective mask blank for EUV lithography
  • the substrate with a multilayer reflective film includes a substrate, a multilayer reflective film that reflects EUV light formed on the substrate, and a protective film that protects the multilayer reflective film formed on the multilayer reflective film.
  • the protective film is made of an alloy containing at least two kinds of metals, and the alloy is a solid solution with a total percentage.
  • the alloy includes an alloy composed of ruthenium (Ru) and cobalt (Co), an alloy composed of ruthenium (Ru) and rhenium (Re), an alloy composed of nickel (Ni) and copper (Cu), and gold (Au).
  • the content of ruthenium (Ru) in the alloy is 75 atomic% or more and 99.5. It is preferably at most atomic%.
  • the present invention provides a reflective mask blank for EUV lithography, comprising the substrate with a multilayer reflective film and an absorber film that absorbs EUV light and is formed on a protective film on the substrate.
  • the absorber film is usually made of a material that can be etched by dry etching with chlorine (Cl) gas, and preferably made of a tantalum compound containing tantalum (Ta).
  • the present invention is characterized in that the absorber film of the reflective mask blank for EUV lithography is etched by dry etching with a chlorine (Cl) gas to form an absorber film pattern on the protective film.
  • a method of manufacturing a reflective mask for EUV lithography is provided.
  • the present invention further includes a step of forming a transfer pattern on a transfer object using the reflective mask for EUV lithography obtained by the method for manufacturing a reflective mask for EUV lithography.
  • a manufacturing method is provided.
  • a substrate with a multilayer reflective film used for manufacturing a reflective mask blank for EUV lithography in which dry etching using a Cl-based gas is performed, and the protective film by the dry etching and subsequent wet cleaning Substrate with a multilayer reflective film with a very low loss, a reflective mask blank for EUV lithography manufactured using the substrate with the multilayer reflective film, a method for manufacturing a reflective mask for EUV lithography using the mask blank, and A method of manufacturing a semiconductor device using a mask obtained by the manufacturing method is provided.
  • FIG. 1 It is a schematic diagram of the board
  • FIG. 1 is a schematic view showing a substrate with a multilayer reflective film of the present invention.
  • the substrate 1 used for the multilayer reflective film-coated substrate 10 of the present invention has a low thermal expansion coefficient (0 ⁇ 1.0 ⁇ 10 ⁇ 7 / ° C.) in order to prevent distortion of the absorber film pattern due to heat during exposure. Within the range, more preferably within the range of 0 ⁇ 0.3 ⁇ 10 ⁇ 7 / ° C.), and excellent in smoothness and flatness and resistance to acidic and alkaline aqueous solutions.
  • a low thermal expansion glass such as TiO 2 —SiO 2 glass is used.
  • crystallized glass on which ⁇ quartz solid solution is deposited, quartz glass, silicon, or a metal substrate can be used. Examples of the metal substrate include Invar alloy (Fe—Ni alloy).
  • the substrate 1 has a smooth surface of 0.2 nmRms or less and a flatness of 100 nm or less in order to obtain high reflectivity and high transfer accuracy in a reflective mask for EUV lithography obtained from the substrate 10 with a multilayer reflective film. Is preferable.
  • the substrate 1 preferably has high rigidity in order to prevent deformation due to film stress of a film (such as the multilayer reflective film 2) formed thereon.
  • the substrate 1 preferably has a high Young's modulus of 65 GPa or more.
  • the unit Rms indicating smoothness is the root mean square roughness, and can be measured with an atomic force microscope.
  • the flatness is a value representing a warp (deformation amount) of the surface indicated by TIR (Total Indicated Reading), and a plane determined by the least square method with respect to the substrate surface is defined as a focal plane. It is the absolute value of the difference in height between the highest position of the substrate surface above and the lowest position of the substrate surface below the focal plane.
  • the flatness is a measured value in an area of 142 mm ⁇ 142 mm.
  • the multilayer reflective film 2 is formed on the substrate 1 described above.
  • This film 2 gives a function of reflecting EUV light in a reflective mask for EUV lithography, and has a multilayer film structure in which elements having different refractive indexes are periodically stacked.
  • the material of the multilayer reflective film 2 is not particularly limited as long as it reflects EUV light. However, the reflectance of the multilayer reflective film 2 is usually 65% or more, and the upper limit is usually 73%.
  • Such a multilayer reflective film 2 is generally a multilayer film in which thin films of heavy elements or their compounds and thin films of light elements or their compounds are alternately stacked for about 40 to 60 cycles.
  • the multilayer reflective film 2 for EUV light having a wavelength of 13 to 14 nm a Mo / Si periodic laminated film in which Mo films and Si films are alternately laminated for about 40 periods is preferably used.
  • a multilayer reflective film used in the EUV light region Ru / Si periodic multilayer film, Mo / Be periodic multilayer film, Mo compound / Si compound periodic multilayer film, Si / Nb periodic multilayer film, Si / Mo / Examples include Ru periodic multilayer films, Si / Mo / Ru / Mo periodic multilayer films, and Si / Ru / Mo / Ru periodic multilayer films.
  • the material of the multilayer reflective film 2 and the thickness of each constituent film may be appropriately selected depending on the exposure wavelength, and the thickness is selected so as to satisfy Bragg's law. Also, which film is the film in contact with the substrate 1 in the multilayer reflective film 2 and which film is the film in contact with the protective film 3 formed on the multilayer reflective film 2 depends on the reflectance characteristics at the exposure wavelength. Etc. are selected as appropriate.
  • the method of forming the multilayer reflective film 2 is known in the art, but can be formed by depositing each layer by, for example, magnetron sputtering or ion beam sputtering.
  • an Si film having a thickness of about several nanometers is first formed on the substrate 1 using an Si target, for example, by ion beam sputtering, and then the number of thicknesses using an Mo target.
  • a Mo film having a thickness of about nm is formed, and this is taken as one period, and laminated for 40 to 60 periods to form the multilayer reflective film 2.
  • the multilayer reflective film 2 is formed.
  • the substrate with film 10 is completed.
  • the present inventors examined the reduction or disappearance of the protective film, and a chloride was generated by the Cl-based gas used at the time of forming the absorber film pattern. It was found that the protective film or the Ru- (Zr, B) protective film was reduced or disappeared.
  • the means for preventing such a chloride from being generated in the protective film by dry etching is repeatedly studied, and an alloy containing at least two kinds of metals, which is a solid solution, is used as the protective film 3. It has been found that the loss can be suppressed very effectively and damage to the multilayer reflective film 2 can be prevented.
  • the total solid solution is an alloy in which each constituent metal melts at any concentration in both a liquid phase state and a solid phase state.
  • An alloy that is a solid solution of all percentages is very stable and is not easily chlorinated by dry etching using a Cl-based gas.
  • an alloy that is a solid solution for example, an alloy composed of ruthenium (Ru) and cobalt (Co), an alloy composed of ruthenium (Ru) and rhenium (Re), and composed of nickel (Ni) and copper (Cu) Alloys, alloys composed of gold (Au) and silver (Ag), alloys composed of silver (Ag) and tin (Sn), alloys composed of silver (Ag) and copper (Cu), and germanium (Ge) and silicon An alloy composed of (Si) is mentioned.
  • These alloys may form the protective film 3 alone, or two or more alloys may be used in combination to form the protective film 3.
  • the protective film 3 is configured in such a range that it is less susceptible to chlorination by dry etching using a Cl-based gas and the effect of reducing or eliminating the protective film 3 by wet cleaning is exerted.
  • the alloy which is a solid solution having a total percentage, may contain elements such as oxygen, nitrogen, hydrogen, and carbon.
  • the entire surface of the protective film 3 is completely exposed to the extent that it is less susceptible to chlorination by dry etching using a Cl-based gas and the effect of reducing or eliminating the protective film 3 by wet cleaning is exerted.
  • An oxide, nitride, hydride, carbide, oxynitride, oxycarbide, oxynitride carbide, or the like of an alloy that is a solid solution may be formed.
  • the protective film 3 Since the protective film 3 remains as a constituent layer in the reflective mask for EUV lithography, the absorption of EUV light is low (the reflectance of the multilayer reflective film 2 is usually 63% or more (normally 73% when the protective film 3 is formed). Less than%)).
  • the protective film is composed of an alloy composed of ruthenium (Ru) and cobalt (Co), an alloy composed of ruthenium (Ru) and rhenium (Re), and composed of nickel (Ni) and copper (Cu). More preferably, it is an alloy or an alloy composed of germanium (Ge) and silicon (Si), an alloy composed of ruthenium (Ru) and cobalt (Co), or an alloy composed of ruthenium (Ru) and rhenium (Re). It is particularly preferred.
  • an alloy comprising ruthenium (Ru) and cobalt (Co) or In the alloy composed of ruthenium (Ru) and rhenium (Re), the content of Ru in the alloy is preferably 75 atomic% or more and 99.5 atomic% or less, and 90 atomic% or more and 99.5% or less. More preferably, it is 95 atomic% or more and 99.5 atomic% or less.
  • This atomic composition can be measured by Auger electron spectroscopy.
  • the present invention uses an alloy containing at least two kinds of metals as the protective film 3 and is an all solid solution.
  • a method for forming the protective film 3 made of the alloy a conventionally known method is used.
  • a method similar to the method for forming the protective film can be employed without any particular limitation. Examples of such a forming method include a magnetron sputtering method and an ion beam sputtering method.
  • the content of each constituent metal in the alloy can be adjusted to a desired value.
  • the thickness of the protective film 3 is not particularly limited, but is appropriately set so as not to significantly affect the reflectance of the multilayer reflective film 2 and to protect the multilayer reflective film 2 from dry etching and subsequent wet cleaning.
  • the range is 1 to 5 nm.
  • the thickness of the protective film 3 can be adjusted by the amount of sputtering in a sputtering method or the like.
  • a back conductive film may be formed on the main surface of the substrate 1 opposite to the side on which the multilayer reflective film 2 is formed.
  • the back surface conductive film is an electrostatic chuck used as a support means for the substrate 10 with a multilayer reflective film in the production of a mask blank, or a mask during pattern processing or exposure of a reflective mask blank for EUV lithography according to the present invention described later. It is formed for the purpose of adsorbing a substrate or mask blank with a multilayer reflective film to an electrostatic chuck used as a support means for handling, or for the purpose of correcting the stress of the multilayer reflective film 2.
  • a base film may be formed between the substrate 1 and the multilayer reflective film 2.
  • the base film is formed for the purpose of improving the smoothness of the surface of the substrate 1, for the purpose of reducing defects, for the purpose of enhancing the light reflection of the multilayer reflective film 2, and for the purpose of correcting the stress of the multilayer reflective film 2.
  • a reference mark serving as a reference for a defect existing position of the substrate 1 or the substrate 10 with a multilayer reflective film is formed on the multilayer reflective film 2 or the protective film 3 by photolithography.
  • a mode in which a resist film is formed on the multilayer reflective film 2 or the protective film 3 is also included.
  • FIG. 2 is a schematic diagram of a reflective mask blank 12 for EUV lithography according to the present invention.
  • the mask blank 12 of the present invention is obtained by forming the absorber film 4 that absorbs EUV light on the protective film 3 of the substrate 10 with the multilayer reflective film of the present invention described above.
  • a predetermined absorber film pattern is obtained, and a portion that reflects light (EUV light in the present invention) (a portion where the protective film 3 and the multilayer reflective film 2 below it are exposed)
  • a reflective mask for EUV lithography having a light absorbing portion (absorber film pattern) is obtained.
  • a back conductive film may be formed on the surface of the substrate 1 opposite to the surface in contact with the multilayer reflective film 2 for the purpose of electrostatic chuck as described above.
  • the electrical characteristics required for the back conductive film are usually 100 ⁇ / ⁇ or less.
  • a method for forming the back conductive film is known, and can be formed by using a target of metal or alloy such as chromium (Cr) or tantalum (Ta), for example, by magnetron sputtering or ion beam sputtering.
  • the thickness of the back conductive film is not particularly limited as long as the above object is achieved, but it is usually 10 to 200 nm.
  • the constituent material of the absorber film 4 is not particularly limited as long as it has a function of absorbing the EUV light and can be removed by etching or the like (preferably, it can be etched by dry etching of chlorine (Cl) gas).
  • a tantalum (Ta) simple substance or a tantalum compound containing Ta as a main component can be preferably used.
  • the tantalum compound is usually a Ta alloy.
  • the crystalline state of the absorber film 4 is preferably an amorphous or microcrystalline structure from the viewpoint of smoothness and flatness. If the surface of the absorber film 4 is not smooth and flat, the edge roughness of the absorber film pattern increases, and the dimensional accuracy of the pattern may deteriorate.
  • the surface roughness of the absorber film 4 is preferably 0.5 nmRms or less, more preferably 0.4 nmRms or less and 0.3 nmRms or less.
  • a compound containing Ta and B a compound containing Ta and N, a compound containing Ta and B and further containing at least one of O and N, a compound containing Ta and Si, Ta A compound containing Si and N, a compound containing Ta and Ge, a compound containing Ta, Ge and N, and the like can be used.
  • Ta is a material that has a large EUV light absorption coefficient and can be easily dry-etched with a chlorine-based gas, it is an absorber film material that is excellent in light absorption and workability. Furthermore, by adding B, Si, Ge or the like to Ta, an amorphous material can be easily obtained, and the smoothness of the absorber film 4 can be improved. Further, when N or O is added to Ta, the resistance of the absorber film 4 to oxidation is improved, so that it is possible to improve the stability over time.
  • the absorber film material can be microcrystallized by adjusting the substrate heating temperature during the formation of the absorber film 4 and the sputtering gas pressure during the film formation.
  • the absorber film 4 described above has a thickness of the absorber film 4 small when the absorption coefficient is 0.025 or more, further 0.030 or more (usually 0.080 or less) with respect to the wavelength of the exposure light. It is preferable in that it can be performed.
  • the thickness of the absorber film 4 may be any thickness that can sufficiently absorb EUV light as exposure light, but is usually about 30 to 100 nm.
  • the absorber film 4 can be formed by a known method such as a sputtering method such as magnetron sputtering.
  • the absorber film 4 can be formed on the protective film 3 by a sputtering method using a target containing tantalum and boron and using an argon gas to which oxygen or nitrogen is added.
  • a resist film is formed on the absorber film 4 of the mask blank 12 (FIG. 3A), a desired pattern is drawn (exposure) thereon, and further developed and rinsed to obtain a predetermined resist pattern. 5a is formed.
  • this resist pattern 5a As a mask and performing dry etching with a chlorine-based gas, the portion of the absorber film 4 that is not covered with the resist pattern 5a is etched, and the absorber film pattern 4a becomes the protective film 3. It is formed on the top (FIG. 3B).
  • the protective film 3 is also dry-etched.
  • a specific alloy that is a solid solution is used as a protective film material. Therefore, the protective film 3 is very stable against the etching gas, and there is almost no film loss or disappearance in the subsequent wet cleaning (including wet cleaning in the process of using the reflective mask). Very few. Therefore, the multilayer reflective film 2 under the protective film 3 is not damaged, and an excellent reflectance is achieved and maintained.
  • chlorine-based gas chlorine alone gas, mixed gas containing chlorine and oxygen in a predetermined ratio, mixed gas containing chlorine and helium in a predetermined ratio, mixed gas containing chlorine and argon in a predetermined ratio, In addition, a mixed gas containing chlorine and boron trichloride in a predetermined ratio can be given.
  • a reflective mask 20 for EUV lithography that achieves the above is obtained (FIG. 3C).
  • the obtained reflective mask 20 for EUV lithography is usually subjected to pattern inspection and correction.
  • the above-described wet cleaning is usually performed even after pattern inspection and correction.
  • the wet cleaning method is appropriately selected depending on the object to be removed. Examples of wet cleaning include acid / alkaline cleaning using sulfuric acid / water (SPM) and ammonia water (APM), functional water cleaning using ozone water, ammonia-added hydrogen water, scrub cleaning and MHz order Examples include megasonic cleaning using ultrasonic waves.
  • a transfer pattern based on the absorber film pattern of the mask is formed on a transfer target such as a semiconductor substrate, and various other processes are performed on the semiconductor substrate.
  • a semiconductor device in which the pattern or the like is formed can be manufactured.
  • the pattern transfer apparatus 50 equipped with the reflective mask 20 is roughly composed of a laser plasma X-ray source 31, a reflective mask 20, a reduction optical system 32, and the like.
  • the reduction optical system 32 an X-ray reflection mirror is used.
  • the pattern reflected by the reflective mask 20 is usually reduced to about 1 ⁇ 4 by the reduction optical system 32.
  • a wavelength band of 13 to 14 nm is used as the exposure wavelength, and the optical path is preset so as to be a vacuum.
  • EUV light obtained from the laser plasma X-ray source 31 is incident on the reflective mask 20, and the light reflected here is transferred onto the semiconductor substrate 33 with resist through the reduction optical system 32.
  • the light incident on the reflective mask 20 is absorbed and not reflected by the absorber film at a portion where the absorber film pattern 4a is present, while the light incident on the portion where the absorber film pattern 4a is not present is reflected by the multilayer reflective film 2. It is reflected by. In this way, an image formed by the light reflected from the reflective mask 20 enters the reduction optical system 32.
  • the exposure light passing through the reduction optical system 32 forms a transfer pattern on the resist layer on the semiconductor substrate 33 with resist.
  • the resist pattern can be formed on the semiconductor substrate 33 with resist by developing the exposed resist layer.
  • a predetermined wiring pattern can be formed on the semiconductor substrate.
  • a semiconductor device is manufactured through such a process and other necessary processes.
  • Protective film formation conditions Ru target, sputtering in Ar gas atmosphere, film thickness 14 nm.
  • Example sample 1 In the same manner as in Comparative Sample 1, a RuCo (Ru: 97 atomic%, Co: 3 atomic%) protective film was formed on the main surface of the substrate.
  • the protective film formation conditions are the same as those of Comparative Example Sample 1 except that a Ru97Co3 target (the numerical value is an atomic% ratio) is used. Note that the composition of each element constituting the protective film is a value measured by Auger electron spectroscopy. The same applies to Example Samples 2 to 5 and Comparative Sample 2.
  • Example sample 2 In the same manner as in Comparative Example Sample 1, a RuCo (Ru: 90 atomic%, Co: 10 atomic%) protective film was formed on the main surface of the substrate.
  • the protective film formation conditions are the same as those of Comparative Example Sample 1 except that a Ru90Co10 target (the numerical value is an atomic percentage) is used.
  • Example sample 3 A RuCo (Ru: 75 atomic%, Co: 25 atomic%) protective film was formed on the main surface of the substrate in the same manner as in Comparative Example Sample 1.
  • the protective film formation conditions are the same as those of Comparative Example Sample 1 except that a Ru75Co25 target (the numerical value is an atomic percentage) is used.
  • Example Sample 4 A RuCo (Ru: 50 atomic%, Co: 50 atomic%) protective film was formed on the main surface of the substrate in the same manner as in Comparative Example Sample 1.
  • the protective film formation conditions are the same as those of Comparative Example Sample 1 except that a Ru50Co50 target (the numerical value is an atomic percentage) is used.
  • Example Sample 5 In the same manner as Comparative Example Sample 1, a RuRe (Ru: 97 atomic%, Re: 3 atomic%) protective film was formed on the main surface of the substrate.
  • the protective film formation conditions are the same as those of Comparative Example Sample 1 except that a Ru97Re3 target (the numerical value is an atomic percentage) is used.
  • Comparative sample 2 In the same manner as in Comparative Example Sample 1, a RuZr (Ru: 80 atomic%, Zr: 20 atomic%) protective film (RuZr is not a total solid solution) was formed on the main surface of the substrate.
  • the protective film formation conditions are the same as those of Comparative Example Sample 1 except that a Ru80Zr20 target (the numerical value is an atomic percentage) is used.
  • the film thickness of the protective film after the wet cleaning was measured by XRR, the change in film thickness due to the wet cleaning was measured, and the protective film cleaning resistance of each sample was evaluated.
  • Example Sample 1 ( ⁇ 1.0 nm), Example Sample 2 (-2.3 nm), Example sample 3 (-2.9 nm), Example sample 4 (-3.2 nm), and Example sample 5 (-1.8 nm).
  • Example Sample 2 ( ⁇ 1.0 nm)
  • Example Sample 2 (-2.3 nm)
  • Example sample 3 (-2.9 nm)
  • Example sample 4 (-3.2 nm)
  • Example sample 5 (-1.8 nm).
  • Example 1 Production of substrate with multilayer reflective film Using a polishing liquid containing colloidal silica abrasive grains on both main surfaces of a TiO 2 -SiO 2 glass (low thermal expansion glass) substrate having a size of 152 mm x 152 mm Then, the substrate was precisely polished and washed to obtain a substrate having a flatness of 0.05 ⁇ m and a surface roughness Rms (root mean square roughness) of 0.12 nm. A multilayer reflective film was formed on the main surface of this substrate by ion beam sputtering (Mo target, Si target).
  • Multilayer reflective film Si (4.2 nm) / Mo (2.8 nm) as one period, 40 periods (Si) film is in contact with the main surface of the substrate: total film thickness 280 nm
  • Example Sample 1 On the formed multilayer reflective film, the RuCo protective film (Ru: 97 atomic%, Co: 3 atomic%) of Example Sample 1 was formed by the magnetron sputtering method to obtain a substrate with the multilayer reflective film.
  • the protective film had a thickness of 2.5 nm.
  • the reflectance of EUV light (wavelength: 13.5 nm) was measured for this substrate with a multilayer reflective film using an EUV reflectance measuring apparatus, the reflectance was as high as 66%.
  • Example 2 A substrate with a multilayer reflective film was formed in the same manner as in Example 1 except that the protective film was RuCo (Ru: 90 atomic%, Co: 10 atomic%) and the film thickness was 2.5 nm. The reflectance of the EUV light was 65%.
  • Example 3 A substrate with a multilayer reflective film was formed in the same manner as in Example 1 except that the protective film was RuCo (Ru: 75 atomic%, Co: 25 atomic%) and the film thickness was 2.5 nm. The reflectance of the EUV light was 64%.
  • Example 4 A substrate with a multilayer reflective film was formed in the same manner as in Example 1 except that the protective film was RuRe (Ru: 97 atomic%, Re: 3 atomic%) and the film thickness was 2.5 nm. The reflectance of the EUV light was 65%.
  • TaBN film an absorber film
  • Example 6 Fabrication of a reflective mask A resist film was applied on the absorber film of the reflective mask blank obtained in Example 5 by spin coating, heated and cooled to form a resist film (film thickness 120 nm). did.
  • a predetermined pattern was drawn and developed on the resist film to form a resist pattern.
  • the absorber film which is a TaBN film
  • any of the reflective masks prepared from the substrates with multilayer reflective films of Examples 1 to 4 disappearance of the protective film was not confirmed, and all the EUV light reflectances were maintained at a high reflectance of 64% or more. The same result was obtained for the reflectance even after the wet cleaning was repeated three times. Therefore, when the lithography process using the pattern transfer apparatus is performed using the reflective masks of Examples 1 to 4, the EUV light is reflected on each film surface and the protective film surface constituting the multilayer reflective film; Since a high contrast can be maintained with the absorption of EUV light in the absorber film pattern, for example, a semiconductor device having a desired circuit pattern can be manufactured.
  • Example 6 In Example 6, when the reflective masks were prepared using the comparative samples 1 and 2 as the protective film, all of the protective film disappeared in the mask, and the reflectance of the EUV light of the mask was also changed to the multilayer reflective film. It was reduced to 60% due to damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Inorganic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 本発明は、Cl系ガスを使用したドライエッチングが行われるEUVリソグラフィー用反射型マスクブランクの製造に使用される多層反射膜付き基板であって、前記ドライエッチング及びその後のウェット洗浄による保護膜の減損が非常に少ない多層反射膜付き基板等を提供することを目的とする。 本発明は、EUVリソグラフィー用反射型マスクブランクの製造に使用される多層反射膜付き基板であって、該多層反射膜付き基板は、基板と、該基板上に形成された、EUV光を反射する多層反射膜と、該多層反射膜上に形成された、該多層反射膜を保護する保護膜とを有し、該保護膜は、少なくとも2種の金属を含む合金からなり、該合金は全率固溶体であることを特徴とする多層反射膜付き基板である。

Description

多層反射膜付き基板、EUVリソグラフィー用反射型マスクブランク、EUVリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法
 本発明は、塩素系ガスを使用したドライエッチング及びその後のウェット洗浄による保護膜の減損が非常に少ない多層反射膜付き基板、当該基板から得られるEUVリソグラフィー用反射型マスクブランク、当該マスクブランクを使用したEUVリソグラフィー用反射型マスクの製造方法、及び該製造方法により得られるEUVリソグラフィー用反射型マスクを使用した半導体装置の製造方法に関する。
 近年半導体産業において、半導体デバイスの微細化に伴い、フォトリソグラフィー法の転写限界を上回る微細パターンが必要とされている。そこで、このような微細パターンの転写を可能とするため、より波長の短い極端紫外(Extreme Ultra Violet、以下、EUVと称す)光を用いた露光技術であるEUVリソグラフィーが有望視されている。なお、ここで、EUV光とは軟X線領域又は真空紫外線領域の波長帯の光を指し、具体的には波長が0.2~100nm程度の光のことである。
 このEUVリソグラフィーにおいて用いられる反射型マスクは、ガラスやシリコンなどの基板上に、EUV光を反射する多層反射膜及びEUV光を吸収する吸収体膜が順次形成され、その吸収体膜と多層反射膜との間に、吸収体膜に転写パターンを形成する際に多層反射膜を保護するための保護膜が形成された構造をとっているのが一般的である。
 前記の通り、吸収体膜には所定の転写パターンが形成されている。パターン転写を行う露光機において、反射型マスクに入射した光は、吸収体膜パターンのある部分では吸収され、吸収体膜パターンのない部分では多層反射膜により反射される。そして反射された光像が反射光学系を通してシリコンウエハ等の被転写体上に転写される。
 前記吸収体膜における転写パターンの形成には、例えば、基板上に前記多層反射膜、保護膜及び吸収体膜がこの順に形成されてなるEUV反射型マスクブランクの吸収体膜上にレジストパターンを形成し、当該レジストパターンをマスクとして吸収体膜をドライエッチング等でエッチングし、レジストパターンを除去する方法がとられる(たとえば吸収体膜がTa系材料の場合、Cl系ガスのドライエッチングで吸収体膜パターンを形成する。)。
 このような方法においては、吸収体膜パターンの形成の完全を期すため、若干のオーバーエッチングを行うため、吸収体膜の下の膜もエッチングを受けることになる。そこで、エッチングによる多層反射膜表面の損傷を防止するために、一般的に多層反射膜上に保護膜が設けられているが、この保護膜として、Ruからなる保護膜が提案されている(特許文献1)。さらに、多層反射膜表層のSi層と保護膜との間での拡散層形成(多層反射膜の反射率減少につながる)を抑制する観点から、RuにZrやBを添加したRu合金からなる保護膜が提案されている(特許文献2)。
特開2002-122981号公報 特開2008-016821号公報
 通常、EUV反射型マスクの製造工程において、吸収体膜パターンを形成した後に、レジスト除去等のために酸性やアルカリ性の水溶液(薬液)を用いたウェット洗浄が行われる。また、半導体装置の製造においても、露光時に反射型マスクに付着した異物を除去するため、薬液を用いたウェット洗浄が行われる。これらの洗浄は、反射型マスクの異物等の汚染状況に応じて、ある程度の清浄度が得られるまで複数回行われる。
 ここで、特許文献1、2に記載のRu保護膜やRu-(Zr、B)のRu合金保護膜は、マスク洗浄後の減膜が著しく、場合によっては保護膜すべてが消失してしまうという問題が発生する。
 本発明者らはこの保護膜の減膜又は消失について検討し、吸収体膜パターン形成時に使用するCl系ガスによりRu塩化物又はRu-(Zr,B)塩化物が生成し、それに引き続く薬液洗浄により、前記Ru塩化物又はRu-(Zr,B)塩化物と共に、Ru保護膜又はRu-(Zr,B)保護膜が減膜若しくは消失することをSEM写真により確認した。
 そこで本発明は、Cl系ガスを使用したドライエッチングが行われるEUVリソグラフィー用反射型マスクブランクの製造に使用される多層反射膜付き基板であって、前記ドライエッチング及びその後のウェット洗浄による保護膜の減損が非常に少ない多層反射膜付き基板を提供することを目的とする。
 さらに本発明は、当該多層反射膜付き基板を使用して製造されるEUVリソグラフィー用反射型マスクブランク、当該マスクブランクを利用したEUVリソグラフィー用反射型マスクの製造方法、並びに当該製造方法により得られたマスクを利用した半導体装置の製造方法を提供することをも目的としている。
 本発明者らは上記課題を解決するために検討を行った結果、全率固溶体である合金を保護膜材料として使用すると、得られる保護膜は、Cl系ガスによるドライエッチング及びそれに引き続くウェット洗浄がなされても、その減損が非常に少ないことを見出し、本発明を完成するにいたった。
 本発明は、EUVリソグラフィー用反射型マスクブランクの製造に使用される多層反射膜付き基板であって、
 該多層反射膜付き基板は、基板と、該基板上に形成された、EUV光を反射する多層反射膜と、該多層反射膜上に形成された、該多層反射膜を保護する保護膜とを有し、
 該保護膜は、少なくとも2種の金属を含む合金からなり、該合金は全率固溶体であることを特徴とする多層反射膜付き基板を提供する。
 前記合金は、ルテニウム(Ru)とコバルト(Co)とからなる合金、ルテニウム(Ru)とレニウム(Re)とからなる合金、ニッケル(Ni)と銅(Cu)とからなる合金、金(Au)と銀(Ag)とからなる合金、銀(Ag)とスズ(Sn)とからなる合金、銀(Ag)と銅(Cu)とからなる合金又はゲルマニウム(Ge)とシリコン(Si)とからなる合金であることが好ましく、ルテニウム(Ru)とコバルト(Co)とからなる合金、ルテニウム(Ru)とレニウム(Re)とからなる合金、ニッケル(Ni)と銅(Cu)とからなる合金又はゲルマニウム(Ge)とシリコン(Si)とからなる合金であることがより好ましく、ルテニウム(Ru)とコバルト(Co)とからなる合金又はルテニウム(Ru)とレニウム(Re)とからなる合金であることが特に好ましい。
 前記ルテニウム(Ru)とコバルト(Co)とからなる合金及びルテニウム(Ru)とレニウム(Re)とからなる合金において、ルテニウム(Ru)の前記合金中の含有量は、75原子%以上99.5原子%以下であることが好ましい。
 本発明は、前記多層反射膜付き基板と、当該基板における保護膜上に形成された、EUV光を吸収する吸収体膜とを有することを特徴とするEUVリソグラフィー用反射型マスクブランクを提供する。
 前記吸収体膜は、通常塩素(Cl)系ガスのドライエッチングでエッチング可能な材料からなり、タンタル(Ta)を含むタンタル化合物からなることが好ましい。
 本発明は、前記EUVリソグラフィー用反射型マスクブランクの前記吸収体膜を、塩素(Cl)系ガスによるドライエッチングでエッチングして、前記保護膜上に吸収体膜パターンを形成することを特徴とするEUVリソグラフィー用反射型マスクの製造方法を提供する。
 さらに本発明は、前記EUVリソグラフィー用反射型マスクの製造方法により得られたEUVリソグラフィー用反射型マスクを使用して、被転写体に転写パターンを形成する工程を有することを特徴とする半導体装置の製造方法を提供する。
 本発明によれば、Cl系ガスを使用したドライエッチングが行われるEUVリソグラフィー用反射型マスクブランクの製造に使用される多層反射膜付き基板であって、前記ドライエッチング及びその後のウェット洗浄による保護膜の減損が非常に少ない多層反射膜付き基板、当該多層反射膜付き基板を使用して製造されるEUVリソグラフィー用反射型マスクブランク、当該マスクブランクを利用したEUVリソグラフィー用反射型マスクの製造方法、並びに当該製造方法により得られたマスクを利用した半導体装置の製造方法が提供される。
本発明の多層反射膜付き基板の模式図である。 本発明のEUVリソグラフィー用反射型マスクブランクの模式図である。 本発明のEUVリソグラフィー用反射型マスクの製造方法を示す模式図である。 パターン転写装置によりレジスト付き半導体基板にパターンを転写する工程を示す模式図である。 実施例における保護膜洗浄耐性評価の結果を示す図である。当該図における七つのバーは、それぞれ左から実施例試料1、実施例試料2、実施例試料3、実施例試料4、実施例試料5、比較例試料1及び比較例試料2の結果を示す。
 以下、本発明について詳細に説明する。
 [多層反射膜付き基板]
 <基板>
 図1は、本発明の多層反射膜付き基板を示す模式図である。本発明の多層反射膜付き基板10に使用される基板1としては、露光時の熱による吸収体膜パターンの歪みを防止するため、低熱膨張係数(0±1.0×10-7/℃の範囲内、より好ましくは0±0.3×10-7/℃の範囲内)を有し、平滑性及び平坦性並びに酸性やアルカリ性の水溶液に対する耐性に優れたものが好ましい。そのような基板1として、低熱膨張性のガラス、例えばTiO2-SiO2系ガラス等が用いられる。その他には、β石英固溶体を析出した結晶化ガラスや、石英ガラス、シリコンや金属基板を用いることもできる。前記金属基板の例としては、インバー合金(Fe-Ni系合金)などが挙げられる。
 基板1は、0.2nmRms以下の平滑な表面と、100nm以下の平坦度を有することが、多層反射膜付き基板10から得られるEUVリソグラフィー用反射型マスクにおいて高反射率及び高転写精度を得るために好ましい。また、基板1は、その上に形成される膜(多層反射膜2など)の膜応力による変形を防止するために、高い剛性を有していることが好ましい。特に基板1は、65GPa以上の高いヤング率を有していることが好ましい。
 なお、本明細書において平滑性を示す単位Rmsは、二乗平均平方根粗さであり、原子間力顕微鏡で測定することができる。また本明細書において平坦度は、TIR(Total Indicated Reading)で示される表面の反り(変形量)を表す値で、基板表面を基準として最小二乗法で定められる平面を焦平面とし、この焦平面より上にある基板表面の最も高い位置と、焦平面より下にある基板表面の最も低い位置との高低差の絶対値である。なお、本発明においては、平坦度は、142mm×142mmエリアでの測定値である。
 <多層反射膜>
 本発明の多層反射膜付き基板10においては、以上説明した基板1の上に多層反射膜2が形成されている。この膜2は、EUVリソグラフィー用反射型マスクにおいてEUV光を反射する機能を付与するものであり、屈折率の異なる元素が周期的に積層された多層膜の構成を取っている。
 多層反射膜2はEUV光を反射する限りその材質は特に限定されないが、その単独での反射率は通常65%以上であり、上限は通常73%である。このような多層反射膜2は、一般的には、重元素又はその化合物の薄膜と、軽元素又はその化合物の薄膜とが交互に40~60周期程度積層された多層膜である。
 例えば、波長13~14nmのEUV光に対する多層反射膜2としては、Mo膜とSi膜を交互に40周期程度積層したMo/Si周期積層膜が好ましく用いられる。その他に、EUV光の領域で使用される多層反射膜として、Ru/Si周期多層膜、Mo/Be周期多層膜、Mo化合物/Si化合物周期多層膜、Si/Nb周期多層膜、Si/Mo/Ru周期多層膜、Si/Mo/Ru/Mo周期多層膜、Si/Ru/Mo/Ru周期多層膜などがある。
 なお、多層反射膜2の材質や各構成膜の厚みは、露光波長により適宜選択すればよく、また前記厚みはブラッグの法則を満たすように選択される。また、多層反射膜2において基板1と接する膜をどの膜とするか、また多層反射膜2の上に形成される保護膜3と接する膜をどの膜とするかは、露光波長における反射率特性等を考慮して適宜選択される。
 多層反射膜2の形成方法は当該技術分野において公知であるが、例えば、マグネトロンスパッタリング法や、イオンビームスパッタ法などにより、各層を成膜することにより形成できる。上述したMo/Si周期多層膜の場合、例えばイオンビームスパッタ法により、まずSiターゲットを用いて厚さ数nm程度のSi膜を基板1上に成膜し、その後Moターゲットを用いて厚さ数nm程度のMo膜を成膜し、これを一周期として、40~60周期積層して、多層反射膜2を形成する。
 <保護膜>
 上記で形成された多層反射膜2の上に、EUVリソグラフィー用反射型マスクの製造工程におけるドライエッチングやウェット洗浄からの多層反射膜2の保護のため、保護膜3を形成することで、多層反射膜付き基板10として完成する。
 [発明が解決しようとする課題]にて説明したように、通常、EUV反射型マスクの製造工程及びその使用工程においては、Cl系ガスによるドライエッチング及び複数回にわたるウェット洗浄が行われる。ドライエッチングから多層反射膜を保護するための保護膜として、Ru保護膜やRu-(Zr、B)のRu合金保護膜が提案されているが、これらはマスク洗浄後の減膜が著しく、場合によっては保護膜3すべてが消失してしまい、多層反射膜2が損傷を受ける。これにより多層反射膜2の反射率や平坦性が損なわれ、反射型マスクにおいて優れた品質が達成できない。また反射型マスクはその使用工程においてもウェット洗浄を受けるので、当初の品質が優れていたとしても、それを維持することが非常に困難である。
 本発明者らは前述の通りこの保護膜の減膜又は消失について検討し、吸収体膜パターン形成時に使用するCl系ガスにより塩化物が生成し、それに引き続く薬液洗浄により、前記塩化物と共に、Ru保護膜又はRu-(Zr,B)保護膜が減膜若しくは消失することを見出した。
 そこで、ドライエッチングにより保護膜においてこのような塩化物が生成しない手段について検討を重ね、全率固溶体である、少なくとも2種の金属を含む合金を保護膜3として使用することによって、保護膜3の減損が非常に有効に抑制され、多層反射膜2の損傷を防ぐことができることを見出した。
 前記全率固溶体とは、液相状態でも固相状態でも各構成金属があらゆる濃度で溶け合う合金のことである。全率固溶体である合金は非常に安定なので、Cl系ガスを使用したドライエッチングによる塩素化を受けにくい。
 全率固溶体である合金としては、例えばルテニウム(Ru)とコバルト(Co)とからなる合金、ルテニウム(Ru)とレニウム(Re)とからなる合金、ニッケル(Ni)と銅(Cu)とからなる合金、金(Au)と銀(Ag)とからなる合金、銀(Ag)とスズ(Sn)とからなる合金、銀(Ag)と銅(Cu)とからなる合金及びゲルマニウム(Ge)とシリコン(Si)とからなる合金が挙げられる。
 これらの合金が単独で保護膜3を形成していても、2種以上の合金が併用されて保護膜3を形成していてもよい。
 また、保護膜3においては、Cl系ガスを使用したドライエッチングによる塩素化を受けにくくし、ウェット洗浄による保護膜3の減膜若しくは消失の抑制効果が発揮される範囲で、保護膜3を構成する全率固溶体である合金に、酸素、窒素、水素、炭素等の元素が含まれていても構わない。
 また、Cl系ガスを使用したドライエッチングによる塩素化を受けにくくし、ウェット洗浄による保護膜3の減膜若しくは消失の抑制効果が発揮される範囲で、保護膜3の極最表面に、全率固溶体である合金の酸化物、窒化物、水素化物、炭化物、酸化窒化物、酸化炭化物、酸化窒化炭化物等が形成されていても構わない。
 保護膜3はEUVリソグラフィー用反射型マスクにおいてその構成層として残存するため、EUV光の吸収が低い(保護膜3が形成された状態において多層反射膜2の反射率が通常63%以上(通常73%未満)である)ことが好ましい。そのような観点からは、保護膜はルテニウム(Ru)とコバルト(Co)とからなる合金、ルテニウム(Ru)とレニウム(Re)とからなる合金、ニッケル(Ni)と銅(Cu)とからなる合金又はゲルマニウム(Ge)とシリコン(Si)とからなる合金であることがより好ましく、ルテニウム(Ru)とコバルト(Co)とからなる合金又はルテニウム(Ru)とレニウム(Re)とからなる合金であることが特に好ましい。
 本発明の多層反射膜付き基板から得られるEUVリソグラフィー用反射型マスクにおけるEUV光に対する高反射率の観点(反射率63%以上)から、前記ルテニウム(Ru)とコバルト(Co)とからなる合金又はルテニウム(Ru)とレニウム(Re)とからなる合金においては、Ruの前記合金中の含有量は、75原子%以上99.5原子%以下であることが好ましく、90原子%以上99.5%以下であることがより好ましく、95原子%以上99.5原子%以下であることが特に好ましい。この原子組成は、オージェ電子分光法により測定することができる。
 本発明は、保護膜3として少なくとも2種の金属を含む合金であって、全率固溶体であるものを使用するものであるが、当該合金からなる保護膜3の形成方法としては、従来公知の保護膜の形成方法と同様のものを特に制限なく採用することができる。そのような形成方法の例としては、マグネトロンスパッタリング法及びイオンビームスパッタ法が挙げられる。
 そして、例えばこれらのスパッタリング法に用いられるスパッタリングターゲットの種類、組成を変更することによって、前記合金中の各構成金属の含有量を所望の値に調整することができる。
 保護膜3の厚みは特に制限されないが、多層反射膜2の反射率に大きく影響を与えず、かつドライエッチング及びそれに引き続くウェット洗浄から多層反射膜2を保護することができるように適宜設定され、例えば1~5nmの範囲である。前記保護膜3の厚みは、スパッタリング法等におけるスパッタ量等により調整することができる。
 本発明の多層反射膜付き基板10においては、多層反射膜2が形成されている側とは反対側の基板1の主表面上に裏面導電膜を形成してもよい。裏面導電膜は、マスクブランク製造の際に多層反射膜付き基板10の支持手段として使用される静電チャックや、後述する本発明のEUVリソグラフィー用反射型マスクブランクのパターンプロセス時や露光時のマスクハンドリングの支持手段として使用される静電チャックに、多層反射膜付き基板又はマスクブランクを吸着させる目的や、多層反射膜2の応力補正の目的で形成される。
 また、本発明の多層反射膜付き基板10においては、基板1と多層反射膜2との間に下地膜を形成してもよい。下地膜は、基板1の表面の平滑性向上の目的、欠陥低減の目的、多層反射膜2の光反射増強の目的、並びに多層反射膜2の応力補正の目的で形成される。
 また、本発明の多層反射膜付き基板10としては、多層反射膜2や保護膜3上に、基板1や多層反射膜付き基板10の欠陥存在位置の基準となる基準マークを、フォトリソグラフィーで形成する場合において、多層反射膜2や保護膜3上にレジスト膜を形成した態様も含まれる。
 [EUVリソグラフィー用反射型マスクブランク]
 図2は、本発明のEUVリソグラフィー用反射型マスクブランク12の模式図である。上述の本発明の多層反射膜付き基板10の保護膜3上にEUV光を吸収する吸収体膜4を形成することによって、本発明のマスクブランク12が得られる。
 これにドライエッチングを施すことにより所定の吸収体膜パターンを得て、光(本発明においてはEUV光)を反射する部分(保護膜3及びその下の多層反射膜2が露出している部分)及び光を吸収する部分(吸収体膜パターン)を有するEUVリソグラフィー用反射型マスクが得られる。
 なお、多層反射膜付き基板10において、基板1の多層反射膜2と接する面と反対側の面には、前述の通り静電チャックの目的のために裏面導電膜を形成してもよい。裏面導電膜に求められる電気的特性は通常100Ω/□以下である。裏面導電膜の形成方法は公知であり、例えばマグネトロンスパッタリング法やイオンビームスパッタ法により、クロム(Cr)、タンタル(Ta)等の金属や合金のターゲットを使用して形成することができる。裏面導電膜の厚みは前記目的を達成する限り特に限定されないが、通常10~200nmである。
 前記のEUV光を吸収する機能を有し、エッチング等により除去が可能(好ましくは塩素(Cl)系ガスのドライエッチングでエッチング可能)である限り、吸収体膜4の構成材料は特に限定されない。そのような機能を有するものとして、タンタル(Ta)単体又はTaを主成分として含むタンタル化合物を好ましく用いることができる。
 前記タンタル化合物は、通常Taの合金である。このような吸収体膜4の結晶状態は、平滑性及び平坦性の点から、アモルファス状又は微結晶の構造であることが好ましい。吸収体膜4表面が平滑・平坦でないと、吸収体膜パターンのエッジラフネスが大きくなり、パターンの寸法精度が悪くなることがある。吸収体膜4の好ましい表面粗さは0.5nmRms以下であり、更に好ましくは0.4nmRms以下、0.3nmRms以下であれば更に好ましい。
 前記タンタル化合物としては、TaとBとを含む化合物、TaとNとを含む化合物、TaとBとを含み、更にOとNの少なくとも何れかを含む化合物、TaとSiとを含む化合物、TaとSiとNとを含む化合物、TaとGeとを含む化合物、TaとGeとNとを含む化合物、等を用いることが出来る。
 TaはEUV光の吸収係数が大きく、また塩素系ガスで容易にドライエッチングすることが可能な材料であるため、吸光性と加工性に優れた吸収体膜材料である。さらにTaにBやSi、Ge等を加えることにより、アモルファス状の材料が容易に得られ、吸収体膜4の平滑性を向上させることができる。また、TaにNやOを加えれば、吸収体膜4の酸化に対する耐性が向上するため、経時的な安定性を向上させることが出来るという効果が得られる。
 一方吸収体膜4の成膜時の基板加熱温度や、成膜時のスパッタリングガス圧力を調整することにより吸収体膜材料を微結晶化することができる。
 以上説明した吸収体膜4は、露光光の波長に対し、吸収係数が0.025以上、更には0.030以上(通常0.080以下)であると、吸収体膜4の膜厚を小さくできる点で好ましい。
 なお、吸収体膜4の膜厚は、露光光であるEUV光が十分に吸収できる厚みであればよいが、通常30~100nm程度である。
 また、前記吸収体膜4は、マグネトロンスパッタリングなどのスパッタ法といった公知の方法で形成することが出来る。例えば、タンタルとホウ素を含むターゲットを用い、酸素或いは窒素を添加したアルゴンガスを用いたスパッタリング法で吸収体膜4を保護膜3上に成膜することができる。
 [EUVリソグラフィー用反射型マスクの製造方法]
 以上説明した本発明のEUVリソグラフィー用反射型マスクブランクを使用して、EUVリソグラフィー用反射型マスクを製造することができる。その製造方法の模式図を図3に示す。
 まず、前記マスクブランク12(図3(a))の吸収体膜4上にレジスト膜を形成し、これに所望のパターンを描画(露光)し、さらに現像・リンスすることによって、所定のレジストパターン5aを形成する。
 このレジストパターン5aをマスクとして使用して、塩素系ガスによるドライエッチングを実施することにより、吸収体膜4のレジストパターン5aで被覆されていない部分がエッチングされ、吸収体膜パターン4aが保護膜3上に形成される(図3(b))。
 この際、吸収体膜パターン4aの形成の完全を期すために、通常オーバーエッチングが行われて保護膜3もドライエッチングされるが、本発明においては全率固溶体である特定の合金を保護膜材料として使用しているため、保護膜3はエッチングガスに対して非常に安定で、その後のウェット洗浄(反射型マスクの使用工程におけるウェット洗浄を含む)で減膜若しくは消失がほとんどなく、つまり減損が非常に少ない。そのため保護膜3の下の多層反射膜2がダメージを受けるということがなく、優れた反射率が達成・維持される。
 なお、前記塩素系ガスとしては、塩素単独のガス、塩素及び酸素を所定の割合で含む混合ガス、塩素及びヘリウムを所定の割合で含む混合ガス、塩素及びアルゴンを所定の割合で含む混合ガス、並びに塩素及び三塩化ホウ素を所定の割合で含む混合ガスが挙げられる。
 そして、例えば、レジスト剥離液によりレジストパターン5aを除去した後、酸性やアルカリ性の水溶液を用いたウェット洗浄を行い、多層反射膜2がドライエッチング及び前記洗浄によりダメージを受けておらず、高い反射率を達成したEUVリソグラフィー用反射型マスク20が得られる(図3(c))。
 この得られたEUVリソグラフィー用反射型マスク20については、通常、パターンの検査、修正が行われる。パターンの検査、修正後にも通常、上述のウェット洗浄が行われる。ウェット洗浄の方法は除去する対象によって適宜選定する。ウェット洗浄としては、例えば、硫酸過水(SPM)、アンモニア過水(APM)を使用した酸・アルカリ洗浄や、オゾン水、アンモニア添加水素水などを使用した機能水洗浄、スクラブ洗浄やMHzオーダーの超音波を利用したメガソニック洗浄などが挙げられる。
 [半導体装置の製造方法]
 以上説明した反射型マスクを使用したリソグラフィー技術により、半導体基板等の被転写体に前記マスクの吸収体膜パターンに基づく転写パターンを形成し、その他種々の工程を経ることで、半導体基板上に種々のパターン等が形成された半導体装置を製造することができる。
 より具体的な例として、図4に示すパターン転写装置50により、EUVリソグラフィー用反射型マスク20を用いてレジスト付き半導体基板33にEUV光によってパターンを転写する方法を説明する。
 反射型マスク20を搭載したパターン転写装置50は、レーザープラズマX線源31、反射型マスク20、縮小光学系32等から概略構成される。縮小光学系32としては、X線反射ミラーを用いている。
 縮小光学系32により、反射型マスク20で反射されたパターンは通常1/4程度に縮小される。例えば、露光波長として13~14nmの波長帯を使用し、光路が真空になるように予め設定する。このような状態で、レーザープラズマX線源31から得られたEUV光を反射型マスク20に入射させ、ここで反射された光を縮小光学系32を通してレジスト付き半導体基板33上に転写する。
 反射型マスク20に入射した光は、吸収体膜パターン4aのある部分では、吸収体膜に吸収されて反射されず、一方、吸収体膜パターン4aのない部分に入射した光は多層反射膜2により反射される。このようにして、反射型マスク20から反射される光により形成される像が縮小光学系32に入射する。縮小光学系32を経由した露光光は、レジスト付き半導体基板33上のレジスト層に転写パターンを形成する。そして、この露光済レジスト層を現像することによってレジスト付き半導体基板33上にレジストパターンを形成することができる。
 そして前記レジストパターンをマスクとして使用してエッチング等を実施することにより、例えば半導体基板上に所定の配線パターンを形成することができる。
 このような工程その他の必要な工程を経ることで、半導体装置が製造される。
 [保護膜洗浄耐性評価]
 (比較例試料1)
 大きさが152mm×152mmのTiO-SiOガラス(低熱膨張ガラス)基板の両主表面を、コロイダルシリカの研磨砥粒を含む研磨液を使用して精密研磨・洗浄し、平坦度0.05μm、表面粗さRms(二乗平均平方根粗さ)0.12nmの基板を得た。この基板の主表面上に、マグネトロンスパッタリング法によりRu保護膜を形成した。
 保護膜形成条件:Ruターゲット、Arガス雰囲気にてスパッタリング、膜厚14nm。
 (実施例試料1)
 比較例試料1と同様にしてRuCo(Ru:97原子%、Co:3原子%)保護膜を基板の主表面上に形成した。Ru97Co3ターゲット(数値は原子%割合)を使用した以外は、保護膜形成条件は比較例試料1と同じである。なお、保護膜を構成する各元素の組成は、オージェ電子分光分析法により測定された値である。以下、実施例試料2~5、比較例試料2も同様である。
 (実施例試料2)
 比較例試料1と同様にしてRuCo(Ru:90原子%、Co:10原子%)保護膜を基板の主表面上に形成した。Ru90Co10ターゲット(数値は原子%割合)を使用した以外は、保護膜形成条件は比較例試料1と同じである。
 (実施例試料3)
 比較例試料1と同様にしてRuCo(Ru:75原子%、Co:25原子%)保護膜を基板の主表面上に形成した。Ru75Co25ターゲット(数値は原子%割合)を使用した以外は、保護膜形成条件は比較例試料1と同じである。
 (実施例試料4)
 比較例試料1と同様にしてRuCo(Ru:50原子%、Co:50原子%)保護膜を基板の主表面上に形成した。Ru50Co50ターゲット(数値は原子%割合)を使用した以外は、保護膜形成条件は比較例試料1と同じである。
 (実施例試料5)
 比較例試料1と同様にしてRuRe(Ru:97原子%、Re:3原子%)保護膜を基板の主表面上に形成した。Ru97Re3ターゲット(数値は原子%割合)を使用した以外は、保護膜形成条件は比較例試料1と同じである。
 (比較例試料2)
 比較例試料1と同様にしてRuZr(Ru:80原子%、Zr:20原子%)保護膜(RuZrは全率固溶体でない)を基板の主表面上に形成した。Ru80Zr20ターゲット(数値は原子%割合)を使用した以外は、保護膜形成条件は比較例試料1と同じである。
 <評価方法>
 上記比較例試料1~2、実施例試料1~5の保護膜表面に対して、Clガスによる全面スパッタエッチングを行った。全面スパッタエッチング条件は、ガス圧力:4mTorr、処理時間15秒とした。
 その後、各試料についてXRR(X線反射率測定)により保護膜の膜厚を測定した後、硫酸過水、アンモニア過水を使用してエッチング表面のウェット洗浄を行った。
 尚、硫酸過水の洗浄条件は、硫酸(98質量%)と過酸化水素(30質量%)を混合比率4:1とした硫酸過水を使用し、温度90℃、時間20分とした。また、アンモニア過水の洗浄条件は、アンモニア(29質量%)と過酸化水素(30質量%)と水を混合比率1:1:5としたアンモニア過水を使用し、温度70℃、時間20分とした。
 次に、上記ウェット洗浄後の保護膜の膜厚をXRRにより測定して、ウェット洗浄による膜厚変化を測定し、各試料の保護膜洗浄耐性を評価した。
 <評価結果>
 比較例試料1及び2について、塩素ガスで全面スパッタエッチングした保護膜表面に塩化物生成層による膜厚増加を確認し、ウェット洗浄により、比較例試料1についてはRu保護膜が全部消失し(膜厚変化-14nm)、比較例試料2については膜厚変化は-6.0nmであった。
 一方実施例試料1~5の全率固溶体のRuCo、RuRe合金の場合、ウェット洗浄による実施例試料1~5の膜厚変化量は、実施例試料1(-1.0nm)、実施例試料2(-2.3nm)、実施例試料3(-2.9nm)、実施例試料4(-3.2nm)、実施例試料5(-1.8nm)であった。以上の結果を図5にまとめて示す。このように、実施例試料1~5の全率固溶体のRuCo、RuRe合金の場合では、膜厚変化は約3nm以下に抑えることができ、良好な結果が得られた。
 [実施例1]多層反射膜付き基板の作製
 大きさが152mm×152mmのTiO-SiOガラス(低熱膨張ガラス)基板の両主表面を、コロイダルシリカの研磨砥粒を含む研磨液を使用して精密研磨・洗浄し、平坦度0.05μm、表面粗さRms(二乗平均平方根粗さ)0.12nmの基板を得た。この基板の主表面上に、イオンビームスパッタリング法(Moターゲット、Siターゲット)により多層反射膜を形成した。
 多層反射膜:Si(4.2nm)/Mo(2.8nm)を1周期として40周期(Si)膜が基板の主表面に接している:総膜厚280nm
 形成された多層反射膜上に、実施例試料1のRuCo保護膜(Ru:97原子%、Co:3原子%)をマグネトロンスパッタリング法により形成し、多層反射膜付き基板を得た。なお、保護膜の膜厚は2.5nmであった。
 この多層反射膜付き基板についてEUV光(波長13.5nm)の反射率をEUV反射率測定装置により測定したところ、反射率は66%と高反射率であった。
 [実施例2]
 保護膜をRuCo(Ru:90原子%、Co:10原子%)、膜厚2.5nmとした以外は、実施例1と同様にして多層反射膜付き基板を形成した。そのEUV光の反射率は65%であった。
 [実施例3]
 保護膜をRuCo(Ru:75原子%、Co:25原子%)、膜厚2.5nmとした以外は、実施例1と同様にして多層反射膜付き基板を形成した。そのEUV光の反射率は64%であった。
 [実施例4]
 保護膜をRuRe(Ru:97原子%、Re:3原子%)、膜厚2.5nmとした以外は、実施例1と同様にして多層反射膜付き基板を形成した。そのEUV光の反射率は65%であった。
 [実施例5]反射型マスクブランクの作製
 実施例1~4で作製された多層反射膜付き基板の、多層反射膜が形成された側と反対側の基板主表面上に、裏面導電膜をマグネトロンスパッタリング法により形成した。
裏面導電膜形成条件:Crターゲット、Ar+Nガス雰囲気(Ar:N=90%:10%)、膜組成(Cr:90原子%、N:10原子%)、膜厚20nm。
 続いて保護膜上に吸収体膜(TaBN膜)をマグネトロンスパッタリング法により形成し、反射型マスクブランクを得た。
TaBN膜形成条件:TaBターゲット(Ta:B=80:20)、Xe+N雰囲気(Xe:N=90%:10%)、膜組成(Ta:80原子%、B:10原子%、N:10原子%)、膜厚65nm
 [実施例6]反射型マスクの作製
 実施例5で得られた反射型マスクブランクの吸収体膜上に、スピンコート法によりレジストを塗布、加熱・冷却してレジスト膜(膜厚120nm)を形成した。
 レジスト膜に所定のパターンを描画・現像して、レジストパターンを形成した。このレジストパターンをマスクにして、Clガスによるドライエッチングにより、TaBN膜である吸収体膜をパターニングした。レジスト剥離液によるレジスト膜の除去後、上述のウェット洗浄を行い、反射型マスクを作製した。
 実施例1~4の多層反射膜付き基板から作製した反射型マスクのいずれも、保護膜の消失は確認されず、EUV光の反射率もすべて64%以上と高反射率を維持していた。ウェット洗浄を3回繰り返しても反射率について同じ結果が得られた。
 従って、この実施例1~4の反射型マスクを使用して、パターン転写装置を使用したリソグラフィープロセスを行った場合、多層反射膜を構成する各膜表面および保護膜表面におけるEUV光の反射と、吸収体膜パターンにおけるEUV光の吸収との間で高いコントラストを維持できるので、例えば所望の回路パターンを有する半導体装置を作製することができる。
 [比較例1]
 実施例6において、保護膜として比較例試料1及び2を用いてそれぞれ反射型マスクを作製したところ、マスクにおいて保護膜はすべて消失しており、マスクのEUV光の反射率も、多層反射膜へのダメージにより、60%に低下していた。
1  基板
2  多層反射膜
3  保護膜
4  吸収体膜
4a 吸収体膜パターン
5a レジストパターン
10 多層反射膜付き基板
12 EUVリソグラフィー用反射型マスクブランク
20 反射型マスク
31 レーザープラズマX線源
32 縮小光学系
33 レジスト付き半導体基板
50 パターン転写装置

Claims (10)

  1.  EUVリソグラフィー用反射型マスクブランクの製造に使用される多層反射膜付き基板であって、
     該多層反射膜付き基板は、基板と、該基板上に形成された、EUV光を反射する多層反射膜と、該多層反射膜上に形成された、該多層反射膜を保護する保護膜とを有し、
     該保護膜は、少なくとも2種の金属を含む合金からなり、該合金は全率固溶体であることを特徴とする多層反射膜付き基板。
  2.  前記合金は、
     ルテニウム(Ru)とコバルト(Co)とからなる合金、ルテニウム(Ru)とレニウム(Re)とからなる合金、ニッケル(Ni)と銅(Cu)とからなる合金、金(Au)と銀(Ag)とからなる合金、銀(Ag)とスズ(Sn)とからなる合金、銀(Ag)と銅(Cu)とからなる合金又はゲルマニウム(Ge)とシリコン(Si)とからなる合金であることを特徴とする請求項1に記載の多層反射膜付き基板。
  3.  前記合金は、
     ルテニウム(Ru)とコバルト(Co)とからなる合金、ルテニウム(Ru)とレニウム(Re)とからなる合金、ニッケル(Ni)と銅(Cu)とからなる合金又はゲルマニウム(Ge)とシリコン(Si)とからなる合金であることを特徴とする請求項1又は2に記載の多層反射膜付き基板。
  4.  前記ルテニウム(Ru)とコバルト(Co)とからなる合金及びルテニウム(Ru)とレニウム(Re)とからなる合金において、ルテニウム(Ru)の前記合金中の含有量が、75原子%以上99.5原子%以下であることを特徴とする請求項2又は3に記載の多層反射膜付き基板。
  5.  前記合金は、
     ルテニウム(Ru)とコバルト(Co)とからなる合金又はルテニウム(Ru)とレニウム(Re)とからなる合金であることを特徴とする請求項1乃至4の何れか一項に記載の多層反射膜付き基板。
  6.  請求項1乃至5の何れか一項に記載の多層反射膜付き基板と、当該基板における保護膜上に形成された、EUV光を吸収する吸収体膜とを有することを特徴とするEUVリソグラフィー用反射型マスクブランク。
  7.  前記吸収体膜は、塩素(Cl)系ガスのドライエッチングでエッチング可能な材料からなることを特徴とする請求項6に記載のEUVリソグラフィー用反射型マスクブランク。
  8.  前記吸収体膜は、タンタル(Ta)を含むタンタル化合物からなることを特徴とする請求項6又は7に記載のEUVリソグラフィー用反射型マスクブランク。
  9.  請求項6乃至8の何れか一項に記載のEUVリソグラフィー用反射型マスクブランクの前記吸収体膜を、塩素(Cl)系ガスによるドライエッチングでエッチングして、前記保護膜上に吸収体膜パターンを形成することを特徴とするEUVリソグラフィー用反射型マスクの製造方法。
  10.  請求項9に記載のEUVリソグラフィー用反射型マスクの製造方法により得られたEUVリソグラフィー用反射型マスクを使用して、被転写体に転写パターンを形成する工程を有することを特徴とする半導体装置の製造方法。
PCT/JP2013/057957 2012-03-23 2013-03-21 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法 WO2013141268A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147019934A KR102124176B1 (ko) 2012-03-23 2013-03-21 다층 반사막 부착 기판, euv 리소그래피용 반사형 마스크 블랭크, euv 리소그래피용 반사형 마스크의 제조 방법 및 반도체 장치의 제조 방법
US14/373,715 US9383637B2 (en) 2012-03-23 2013-03-21 Substrate with multilayer reflective film, reflective mask blank for EUV lithography, method of manufacturing reflective mask for EUV lithography and method of manufacturing semiconductor device
JP2014506260A JP6082385B2 (ja) 2012-03-23 2013-03-21 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012067142 2012-03-23
JP2012-067142 2012-03-23

Publications (1)

Publication Number Publication Date
WO2013141268A1 true WO2013141268A1 (ja) 2013-09-26

Family

ID=49222725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/057957 WO2013141268A1 (ja) 2012-03-23 2013-03-21 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法

Country Status (5)

Country Link
US (1) US9383637B2 (ja)
JP (1) JP6082385B2 (ja)
KR (1) KR102124176B1 (ja)
TW (1) TWI587078B (ja)
WO (1) WO2013141268A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056423A (ja) * 2013-09-10 2015-03-23 Hoya株式会社 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
WO2015095808A1 (en) * 2013-12-22 2015-06-25 Applied Materials, Inc. Extreme ultraviolet lithography system having chuck assembly and method of manufacturing thereof
JP2019116682A (ja) * 2017-12-27 2019-07-18 光洋應用材料科技股▲分▼有限公司 ルテニウム/レニウムを含むスパッタリングターゲット、ルテニウム/レニウムを含む層およびその製法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5495338B2 (ja) * 2009-09-30 2014-05-21 Necディスプレイソリューションズ株式会社 画像信号処理装置及び画像信号処理方法
US9739913B2 (en) * 2014-07-11 2017-08-22 Applied Materials, Inc. Extreme ultraviolet capping layer and method of manufacturing and lithography thereof
CN104732911B (zh) * 2015-04-09 2017-03-15 京东方科技集团股份有限公司 显示驱动方法、驱动电路和显示装置
KR20180057813A (ko) * 2016-11-22 2018-05-31 삼성전자주식회사 극자외선 리소그래피용 위상 반전 마스크
WO2024010631A1 (en) * 2022-07-05 2024-01-11 Fujifilm Electronic Materials U.S.A., Inc. Cleaning compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353123A (ja) * 2001-05-29 2002-12-06 Toppan Printing Co Ltd 反射型投影露光マスク
JP2004171034A (ja) * 2004-03-22 2004-06-17 Hoya Corp 積層体
JP2007294840A (ja) * 2006-03-30 2007-11-08 Toppan Printing Co Ltd 反射型フォトマスクブランク及びその製造方法、反射型フォトマスク、並びに、半導体装置の製造方法
JP2011192693A (ja) * 2010-03-12 2011-09-29 Hoya Corp 多層反射膜付基板、反射型マスクブランク及びそれらの製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5013681A (en) * 1989-09-29 1991-05-07 The United States Of America As Represented By The Secretary Of The Navy Method of producing a thin silicon-on-insulator layer
JP5371162B2 (ja) 2000-10-13 2013-12-18 三星電子株式会社 反射型フォトマスク
DE10150874A1 (de) * 2001-10-04 2003-04-30 Zeiss Carl Optisches Element und Verfahren zu dessen Herstellung sowie ein Lithographiegerät und ein Verfahren zur Herstellung eines Halbleiterbauelements
WO2003085709A1 (en) * 2002-04-11 2003-10-16 Hoya Corporation Reflection type mask blank and reflection type mask and production methods for them
JP2006173502A (ja) * 2004-12-17 2006-06-29 Nikon Corp 光学素子及びこれを用いた投影露光装置
JP2006171577A (ja) * 2004-12-17 2006-06-29 Nikon Corp 光学素子及びこれを用いた投影露光装置
JP2007127698A (ja) * 2005-11-01 2007-05-24 Nikon Corp 多層膜反射鏡、その再生方法および露光装置
JP4910856B2 (ja) 2006-06-08 2012-04-04 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク、および該マスクブランク用の機能膜付基板
EP2333816A4 (en) * 2008-09-05 2014-01-22 Asahi Glass Co Ltd REFLECTING MASK ROLLING FOR EUV LITHOGRAPHY AND METHOD OF MANUFACTURING THEREOF
WO2010050518A1 (ja) * 2008-10-30 2010-05-06 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
JP2012009537A (ja) * 2010-06-23 2012-01-12 Dainippon Printing Co Ltd 反射型マスクブランクス、反射型マスク、反射型マスクブランクスの製造方法、および、反射型マスクの製造方法
KR20130111524A (ko) * 2010-07-27 2013-10-10 아사히 가라스 가부시키가이샤 Euv 리소그래피용 반사층 형성 기판, 및 euv 리소그래피용 반사형 마스크 블랭크

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002353123A (ja) * 2001-05-29 2002-12-06 Toppan Printing Co Ltd 反射型投影露光マスク
JP2004171034A (ja) * 2004-03-22 2004-06-17 Hoya Corp 積層体
JP2007294840A (ja) * 2006-03-30 2007-11-08 Toppan Printing Co Ltd 反射型フォトマスクブランク及びその製造方法、反射型フォトマスク、並びに、半導体装置の製造方法
JP2011192693A (ja) * 2010-03-12 2011-09-29 Hoya Corp 多層反射膜付基板、反射型マスクブランク及びそれらの製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015056423A (ja) * 2013-09-10 2015-03-23 Hoya株式会社 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
WO2015095808A1 (en) * 2013-12-22 2015-06-25 Applied Materials, Inc. Extreme ultraviolet lithography system having chuck assembly and method of manufacturing thereof
US10691013B2 (en) 2013-12-22 2020-06-23 Applied Materials, Inc. Extreme ultraviolet lithography system having chuck assembly and method of manufacturing thereof
JP2019116682A (ja) * 2017-12-27 2019-07-18 光洋應用材料科技股▲分▼有限公司 ルテニウム/レニウムを含むスパッタリングターゲット、ルテニウム/レニウムを含む層およびその製法

Also Published As

Publication number Publication date
JP6082385B2 (ja) 2017-02-15
US20140370424A1 (en) 2014-12-18
KR102124176B1 (ko) 2020-06-17
TWI587078B (zh) 2017-06-11
JPWO2013141268A1 (ja) 2015-08-03
KR20140138601A (ko) 2014-12-04
TW201348856A (zh) 2013-12-01
US9383637B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP6082385B2 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスクの製造方法、及び半導体装置の製造方法
JP6470176B2 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP6422873B2 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
US9535318B2 (en) Reflective mask blank and method for manufacturing same, method for manufacturing reflective mask, and method for manufacturing semiconductor device
JP4521753B2 (ja) 反射型マスクの製造方法及び半導体装置の製造方法
KR20220150290A (ko) 반사형 마스크 블랭크 및 반사형 마스크, 그리고 반도체 디바이스의 제조 방법
JP5381441B2 (ja) Euvリソグラフィ用反射型マスクブランクの製造方法
WO2021200325A1 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
JP4390418B2 (ja) Euv露光用反射型マスクブランクおよびeuv露光用反射型マスク並びに半導体の製造方法
JP6223756B2 (ja) 多層反射膜付き基板、euvリソグラフィー用反射型マスクブランク、euvリソグラフィー用反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2003249434A (ja) 露光用反射型マスクブランク及び露光用反射型マスク
JP2021148928A (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
WO2022065144A1 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスクの製造方法、及び半導体装置の製造方法
WO2021039163A1 (ja) 導電膜付基板、反射型マスクブランク及び反射型マスク、並びに半導体デバイスの製造方法
JP4541654B2 (ja) 反射型マスクの製造方法
WO2022149417A1 (ja) マスクブランク用基板、多層反射膜付基板、マスクブランク、転写用マスクの製造方法、及び半導体デバイスの製造方法
WO2022138434A1 (ja) 多層反射膜付き基板、反射型マスクブランク、反射型マスク、及び半導体装置の製造方法
KR20220024004A (ko) 박막 부착 기판, 다층 반사막 부착 기판, 반사형 마스크 블랭크, 반사형 마스크 및 반도체 장치의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506260

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147019934

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14373715

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764234

Country of ref document: EP

Kind code of ref document: A1