WO2013140942A1 - 全固体リチウム二次電池 - Google Patents

全固体リチウム二次電池 Download PDF

Info

Publication number
WO2013140942A1
WO2013140942A1 PCT/JP2013/054537 JP2013054537W WO2013140942A1 WO 2013140942 A1 WO2013140942 A1 WO 2013140942A1 JP 2013054537 W JP2013054537 W JP 2013054537W WO 2013140942 A1 WO2013140942 A1 WO 2013140942A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous body
lithium
positive electrode
secondary battery
negative electrode
Prior art date
Application number
PCT/JP2013/054537
Other languages
English (en)
French (fr)
Inventor
西村 淳一
和宏 後藤
細江 晃久
吉田 健太郎
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN201380013962.4A priority Critical patent/CN104205467A/zh
Priority to KR1020147026095A priority patent/KR20140137371A/ko
Priority to US14/382,782 priority patent/US20150017549A1/en
Priority to DE112013001595.1T priority patent/DE112013001595T5/de
Publication of WO2013140942A1 publication Critical patent/WO2013140942A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • H01M4/662Alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/745Expanded metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an all-solid-state lithium secondary battery using a three-dimensional network metal porous body.
  • lithium secondary batteries are actively studied in various fields as batteries capable of obtaining a high energy density because lithium has a small atomic weight and a large ionization energy.
  • an electrode using a compound such as lithium metal oxide such as lithium cobaltate, lithium manganate, lithium nickelate, or lithium metal phosphate such as lithium iron phosphate is practical. Have been commercialized or commercialized.
  • an electrode or alloy electrode mainly composed of carbon, particularly graphite is used as the negative electrode.
  • the electrolyte is generally a non-aqueous electrolyte in which a lithium salt is dissolved in an organic solvent, but a gel electrolyte or a solid electrolyte is also attracting attention.
  • a current collector having a three-dimensional network structure As a current collector of a lithium secondary battery. Since the current collector has a three-dimensional network structure, the contact area with the active material increases. Therefore, according to the said collector, the internal resistance of a lithium secondary battery can be reduced and battery efficiency can be improved. Furthermore, according to the current collector, it is possible to improve the flowability of the electrolytic solution, and it is possible to improve the battery reliability because it is possible to prevent current concentration and Li dendrite formation, which is a conventional problem. Moreover, according to the said collector, heat_generation
  • Patent Document 1 discloses a valve metal having an oxide film formed on the surface of any one of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, antimony, an alloy thereof, a stainless alloy, and the like. It is described that it is used as a porous current collector.
  • Patent Document 2 primary conductive treatment is performed on a skeleton surface of a synthetic resin having a three-dimensional network structure by electroless plating, chemical vapor deposition (CVD), physical vapor deposition (PVD), metal coating, graphite coating, or the like. It describes that the metal porous body obtained by further performing the metallization process by electroplating after using as a collector.
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • metal coating graphite coating, or the like.
  • Aluminum is preferred as the material for the current collector of the positive electrode for lithium secondary batteries.
  • aluminum has a lower standard electrode potential than hydrogen, water is electrolyzed before being plated in an aqueous solution, so that aluminum plating in an aqueous solution is difficult.
  • Patent Document 3 an aluminum porous body obtained by forming an aluminum film on the surface of a polyurethane foam by molten salt plating and then removing the polyurethane foam is used as a current collector for a battery. Is described.
  • an organic electrolytic solution is used as an electrolytic solution.
  • this organic electrolyte shows a high ionic conductivity, it is a flammable liquid. Therefore, when the organic electrolyte is used as a battery electrolyte, a protection circuit for a lithium ion secondary battery, etc. May need to be installed.
  • a metal negative electrode may passivate by reaction with the said organic electrolyte solution, and impedance may increase. As a result, current concentration occurs in a portion with low impedance, dendrite is generated, and this dendrite penetrates the separator existing between the positive and negative electrodes, so that the battery is likely to be short-circuited internally.
  • lithium in which a safer inorganic solid electrolyte is used instead of the organic electrolyte.
  • Ion secondary batteries have been studied. Further, since inorganic solid electrolytes are generally nonflammable and have high heat resistance, development of an all-solid lithium secondary battery using the inorganic solid electrolyte is desired.
  • Patent Document 4 a main component and Li 2 S and P 2 S 5, Li 2 S82.5 ⁇ 92.5 by mol%, the composition of P 2 S 5 7.5 ⁇ 17.5
  • Patent Document 4 a main component and Li 2 S and P 2 S 5, Li 2 S82.5 ⁇ 92.5 by mol%, the composition of P 2 S 5 7.5 ⁇ 17.5
  • the use of lithium ion conductive sulfide ceramics as an electrolyte for all solid state batteries is described.
  • Patent Document 5 discloses the formula M a X-M b Y (wherein M is an alkali metal atom, and X and Y are SO 4 , BO 3 , PO 4 , GeO 4 , WO 4 , MoO 4, respectively). , SiO 4 , NO 3 , BS 3 , PS 4 , SiS 4 and GeS 4 , a is the valence of the X anion, and b is the valence of the Y anion). It is described that a high ion conductive ion glass into which a liquid is introduced is used as a solid electrolyte.
  • Patent Document 6 discloses a positive electrode containing a compound selected from the group consisting of transition metal oxides and transition metal sulfides as a positive electrode active material, a lithium ion conductive glass solid electrolyte containing Li 2 S, lithium And a negative electrode containing a metal to be alloyed as an active material, and an all solid lithium secondary battery in which at least one of a positive electrode active material and a negative electrode metal active material contains lithium is described.
  • Patent Document 7 the flexibility and mechanical strength of the electrode material layer in the all-solid-state battery are improved, and the loss and cracking of the electrode material and the peeling from the current collector are suppressed.
  • an inorganic solid is present in the pores of the porous metal sheet having a three-dimensional network structure as an electrode material used in an all-solid lithium ion secondary battery. It is described that an electrode material sheet formed by inserting an electrolyte is used.
  • a three-dimensional network aluminum porous body is used as a positive electrode current collector, and a secondary battery in which a three-dimensional network copper porous body is used as a negative electrode current collector, is repeatedly charged and discharged.
  • JP 2005-78991 A Japanese Patent Laid-Open No. 7-22021 International Publication No. 2011/118460 JP 2001-250580 A JP 2006-156083 A JP-A-8-148180 JP 2010-40218 A
  • An object of the present invention is to provide an all-solid-state lithium secondary battery that does not increase in internal resistance even after repeated charge and discharge in an all-solid-state lithium secondary battery using a three-dimensional network porous body as a current collector. To do.
  • an aluminum alloy is used as a positive electrode current collector.
  • the present invention was completed by obtaining the knowledge that the above-mentioned problems can be solved by using a three-dimensional network metal porous body and using a three-dimensional network metal porous body made of a copper alloy as a negative electrode current collector. That is, the present invention relates to an all solid lithium secondary battery as described below.
  • An all-solid lithium secondary battery in which the positive electrode and the negative electrode are electrodes in which a three-dimensional network porous body is used as a current collector, and at least an active material is filled in pores of the three-dimensional network porous body,
  • the three-dimensional network porous body of the positive electrode is an aluminum alloy having a Young's modulus of 70 GPa or more
  • the three-dimensional network porous body of the negative electrode is a copper alloy having a Young's modulus of 120 GPa or more. battery.
  • a solid electrolyte filled in pores of the three-dimensional network porous body, and the solid electrolyte forming the solid electrolyte layer is a sulfide solid electrolyte containing lithium, phosphorus and sulfur as constituent elements.
  • the all-solid-state lithium secondary battery of the present invention has an excellent effect that it has a high output and the internal resistance is not increased by repeated charge and discharge. Therefore, the all-solid lithium secondary battery of the present invention exhibits high cycle characteristics and can be manufactured at low cost.
  • FIG. 1 is a schematic diagram showing the basic configuration of an all-solid secondary battery.
  • an all-solid lithium secondary battery will be described as an example of the secondary battery 10.
  • a secondary battery 10 shown in FIG. 1 includes a positive electrode 1, a negative electrode 2, and an ion conductive layer 3 sandwiched between both electrodes 1 and 2.
  • the positive electrode 1 is mixed with a conductive powder 6 and a binder resin and loaded on the positive electrode current collector 7 to form a plate shape.
  • An electrode is used.
  • the negative electrode 2 is a plate-like electrode in which a carbon compound negative electrode active material powder 8 is mixed with a binder resin and supported on a negative electrode current collector 9.
  • a solid electrolyte is used as the ion conductive layer 3.
  • the positive electrode current collector and the negative electrode current collector are connected to the positive electrode terminal and the negative electrode terminal by lead wires, respectively.
  • the positive electrode 1 is a three-dimensional network metal porous body that is a positive electrode current collector 7, a positive electrode active material powder 5 filled in pores of the three-dimensional network metal porous body, and a conductive powder 6. It consists of a conductive aid.
  • the negative electrode 2 includes a three-dimensional network metal porous body that is a negative electrode current collector 9 and a negative electrode active material powder 8 filled in pores of the three-dimensional network metal porous body. In some cases, the pores of the three-dimensional network metal porous body can be further filled with a conductive additive.
  • FIG. 2 is a schematic diagram illustrating the basic configuration of the all solid state secondary battery.
  • an all-solid lithium ion secondary battery will be described as an example of the all-solid secondary battery.
  • the all-solid secondary battery 60 shown in FIG. 2 includes a positive electrode 61, a negative electrode 62, and a solid electrolyte layer (SE layer) 63 disposed between the electrodes 61 and 62.
  • the positive electrode 61 includes a positive electrode layer (positive electrode body) 64 and a positive electrode current collector 65.
  • the negative electrode 62 includes a negative electrode layer 66 and a negative electrode current collector 67.
  • the positive electrode 61 includes a three-dimensional network metal porous body that is a positive electrode current collector 65, a positive electrode active material filled in pores of the three-dimensional network metal porous body, and a lithium ion conductive solid electrolyte.
  • the negative electrode 62 includes a three-dimensional network metal porous body that is a negative electrode current collector 67, a negative electrode active material filled in pores of the three-dimensional network metal porous body, and a lithium ion conductive solid electrolyte.
  • the pores of the three-dimensional network metal porous body can be further filled with a conductive additive.
  • a three-dimensional network aluminum alloy porous body made of an aluminum alloy having a Young's modulus of 70 GPa or more is used as a positive electrode current collector, and a three-dimensional network made of a copper alloy having a Young's modulus of 120 GPa or more is used as a negative electrode current collector.
  • a copper alloy porous body By using a copper alloy porous body, an increase in internal resistance can be prevented. The details of why the increase in internal resistance can be prevented are unknown, but the following reasons are conceivable.
  • the conventional all-solid lithium secondary battery has a gap between the skeleton of the three-dimensional network metal porous body and the active material, and the contact between the three-dimensional network metal porous body and the active material becomes poor. Resistance is thought to increase.
  • the all solid lithium secondary battery of the present invention maintains good contact between the skeleton forming the pores of the three-dimensional network metal porous body and the active material filled in the pores. It is thought that the rise of can be prevented. Further, as in the present invention, when a three-dimensional network aluminum alloy porous body and a three-dimensional network copper alloy porous body are used as a current collector of an all-solid lithium secondary battery, the all-solid lithium secondary battery includes a current collector. It is considered that there is an advantage that the contact state between the electric body and the solid electrolyte layer can be maintained well.
  • the three-dimensional reticulated aluminum alloy porous body can be produced, for example, by performing the following operation.
  • a polyurethane foam having a conductive layer formed on the surface is used as a workpiece.
  • the jig is placed in a glove box maintained in an argon atmosphere and a low moisture condition (dew point -30 ° C. or lower), and a molten salt aluminum having a temperature of 40 ° C.
  • Immerse in the plating bath connect the jig with the work set to the cathode side of the rectifier, and connect the pure aluminum plate to the anode side.
  • molten salt aluminum plating bath for example, a plating bath obtained by adding 1,10-phenanthroline to 33 mol% 1-ethyl-3-methylimidazolium chloride (EMIC) -67 mol% AlCl 3 is used.
  • EMIC 1-ethyl-3-methylimidazolium chloride
  • an aluminum plating layer is formed on the surface of the polyurethane foam by plating with a direct current having a current density of 3.6 A / dm 2 between the work and the pure aluminum plate to obtain an aluminum-resin composite porous body.
  • This plating layer incorporates phenanthroline, which is an organic substance containing carbon.
  • heat treatment is performed by heating the aluminum-resin composite porous body to 450 to 630 ° C.
  • a copper alloy for example, a copper-nickel alloy
  • a copper-nickel alloy can be produced by performing the following operation.
  • Polyurethane foam is used as a workpiece.
  • the workpiece is immersed in a copper plating bath and plated to form a copper plating layer on the surface of the polyurethane foam.
  • the polyurethane foam having a copper plating layer formed on the surface is immersed in a nickel plating bath and plated to form a nickel plating layer on the surface of the copper plating layer.
  • the obtained product is heat-treated by heating to about 600 ° C. in an air atmosphere, and after removing the resin, the obtained product is heat-treated by heating to about 1000 ° C. in a hydrogen atmosphere. Thermal diffusion of nickel.
  • a copper-nickel alloy can be obtained.
  • a nickel plating layer may be formed first, and then a copper plating layer may be formed.
  • the Young's modulus of a three-dimensional network metal porous body is measured by embedding the three-dimensional network metal porous body in a resin, cutting it, polishing the cut surface, and pressing a nanoindenter indenter on the skeleton (plating) section. Can do.
  • the nanoindenter is a measuring means used for measuring the hardness and Young's modulus of a minute region.
  • the three-dimensional network metal porous body is formed on the surface of a porous resin body (porous resin molded body) having continuous pores such as polyurethane foam by using a method such as plating, vapor deposition, sputtering, or thermal spraying. It can be obtained by forming a metal film having a desired thickness and then removing the porous resin body.
  • conductive layer is formed on the surface of the resin porous body. Since the conductive layer serves to enable the formation of a metal film (aluminum plating layer, copper plating layer, nickel plating layer, etc.) on the surface of the porous resin body by plating or the like, it has conductivity. If it does, the material and thickness will not be specifically limited.
  • the conductive layer is formed on the surface of the resin porous body by various methods that can impart conductivity to the resin porous body.
  • an arbitrary method such as an electroless plating method, a vapor deposition method, a sputtering method, or a method of applying a conductive paint containing conductive particles such as carbon particles can be used.
  • the material of the conductive layer is preferably the same material as the metal coating.
  • Examples of the electroless plating method include known methods such as a method including cleaning, activation, and plating steps.
  • the sputtering method various known sputtering methods such as a magnetron sputtering method can be used.
  • aluminum, nickel, chromium, copper, molybdenum, tantalum, gold, aluminum / titanium alloy, nickel / iron alloy, or the like can be used as a material used for forming the conductive layer.
  • aluminum, nickel, chromium, copper, and alloys mainly composed of these are suitable in terms of cost and the like.
  • the conductive layer may be a layer containing at least one powder selected from the group consisting of graphite, titanium, and stainless steel.
  • a conductive layer can be formed by, for example, applying a slurry obtained by mixing a powder of graphite, titanium, stainless steel or the like and a binder to the surface of the resin porous body.
  • the said powder may be used independently and may be used in mixture of 2 or more types. Of these powders, graphite powder is preferred.
  • the binder for example, polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) or the like, which is a fluororesin excellent in electrolytic solution resistance and oxidation resistance, is optimal.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • the binder content in the slurry is generally used as a current collector. It may be about 1 ⁇ 2 of the case of using a metal foil, for example, about 0.5% by weight.
  • a metal film having a desired thickness is formed by performing plating or the like on the surface of the porous resin body on which the conductive layer is formed. . Thereby, a metal-resin composite porous body is obtained.
  • the aluminum alloy film is plated in a molten salt bath containing a component of an aluminum alloy on the surface of a resin porous body whose surface is made conductive according to a method described in International Publication No. 2011/118460. Can be formed. Thereafter, the resin porous body is removed from the metal-resin composite porous body to obtain a three-dimensional network aluminum alloy porous body.
  • the copper alloy film can be formed by using a method in which the surface of the resin porous body having a conductive surface is plated in an aqueous plating bath in which a component of the copper alloy is mixed. Thereafter, the resin porous body is removed from the metal-resin composite porous body to obtain a three-dimensional network copper alloy porous body.
  • a porous body made of any synthetic resin can be selected.
  • the resin porous body include foams of synthetic resins such as polyurethane, melamine resin, polypropylene, and polyethylene.
  • the resin porous body only needs to have not only a synthetic resin foam but also continuous pores (continuous ventilation holes), and a resin molded body having any shape (resin porous body) can be used. .
  • what has a shape like a nonwoven fabric, for example, entangled with a fibrous synthetic resin can be used instead of the synthetic resin foam.
  • the porosity of the resin porous body is preferably 80% to 98%.
  • the pore diameter of the porous resin body is preferably 50 ⁇ m to 500 ⁇ m.
  • resin porous bodies polyurethane foam and melamine resin foam have high porosity, have pore connectivity and are excellent in thermal decomposability, and can be preferably used as resin porous bodies.
  • polyurethane foam is preferable in terms of pore uniformity and availability, and a nonwoven fabric is preferable in that a three-dimensional network metal porous body having a small pore diameter can be obtained.
  • the synthetic resin foams often contain residues such as foaming agents and unreacted monomers used in the production process. From the viewpoint of smoothly performing the above step, it is preferable to perform a washing treatment on the synthetic resin foam used in advance.
  • the skeleton forms a three-dimensional network to form continuous pores as a whole.
  • the skeleton of the polyurethane foam has a substantially triangular shape in a cross section perpendicular to the extending direction.
  • the porosity is defined by the following equation.
  • Porosity (1 ⁇ (mass of resin porous body [g] / (volume of resin porous body [cm 3 ] ⁇ material density))) ⁇ 100 [%]
  • the combination of the metal constituting the positive electrode current collector and the metal constituting the negative electrode current collector and the active material can be variously selected.
  • lithium cobalt oxide is used as the positive electrode active material
  • examples include a positive electrode using an aluminum alloy porous body as a positive electrode current collector, lithium titanate as a negative electrode active material, and a copper alloy porous body as a negative electrode current collector.
  • the active material and the material of the solid electrolyte will be described, and the method of filling the active material into the three-dimensional network metal porous body will be described.
  • the positive electrode active material a material capable of inserting or removing lithium ions can be used.
  • Examples of other positive electrode active materials include lithium transition metal oxides such as olivine compounds such as lithium iron phosphate (LiFePO 4 ) and LiFe 0.5 Mn 0.5 PO 4 .
  • Examples of other materials for the positive electrode active material include lithium metal having a chalcogenide or metal oxide skeleton (that is, a coordination compound containing a lithium atom in the crystal of the chalcogenide or metal oxide).
  • Examples of the chalcogenide include TiS 2 , V 2 S 3 , FeS, FeS 2 , LiMS z [M is a transition metal element (eg, Mo, Ti, Cu, Ni, Fe, etc.), Sb, Sn, or Pb. And z represents a number satisfying 1.0 or more and 2.5 or less].
  • Examples of the metal oxide include TiO 2 , Cr 3 O 8 , V 2 O 5 , MnO 2 and the like.
  • the positive electrode active material can be used in combination with a conductive additive and a binder.
  • the material of the positive electrode active material is a compound containing a transition metal atom
  • the transition metal atom contained in the material may be partially substituted with another transition metal atom.
  • the positive electrode active material may be used alone or in combination of two or more.
  • the positive electrode active materials lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and lithium nickel cobaltate (LiCo x Ni 1-x ) are used from the viewpoint of efficient lithium ion insertion and desorption.
  • lithium manganate LiMn 2 O 4
  • lithium manganate compound LiM y Mn 2 ⁇ y O 4
  • M Cr, Co or Ni, 0 ⁇ y ⁇ 1
  • At least one selected from the group is preferred.
  • lithium titanate Li 4 Ti 5 O 12
  • the negative electrode active material Li 4 Ti 5 O 12
  • the negative electrode active material a material capable of inserting or removing lithium ions can be used.
  • examples of such a negative electrode active material include graphite and lithium titanate (Li 4 Ti 5 O 12 ).
  • An alloy in which at least one kind of the metal is combined with another element and / or compound (that is, an alloy containing at least one kind of the metal) or the like can be used.
  • the negative electrode active material may be used alone or in combination of two or more.
  • lithium titanate Li 4 Ti 5 O 12
  • Li Li, In
  • a metal selected from the group consisting of Al, Si, Sn, Mg and Ca, or an alloy containing at least one of the above metals is preferable.
  • Solid electrolyte for filling three-dimensional mesh metal porous body It is preferable to use a sulfide solid electrolyte having high lithium ion conductivity as the solid electrolyte for filling the pores of the three-dimensional network metal porous body.
  • the sulfide solid electrolyte include a sulfide solid electrolyte containing lithium, phosphorus, and sulfur as constituent elements.
  • the sulfide solid electrolyte may further contain elements such as O, Al, B, Si, and Ge as constituent elements.
  • Such a sulfide solid electrolyte can be obtained by a known method.
  • a sulfide solid electrolyte for example, lithium sulfide (Li 2 S) and diphosphorus pentasulfide (P 2 S 5 ) are used as starting materials, and a molar ratio of Li 2 S and P 2 S 5 (Li 2 S / P 2).
  • S 5 ) is mixed so that it becomes 80/20 to 50/50, and the obtained mixture is melted and quenched (melting quenching method), and the mixture is mechanically milled (mechanical milling method). It is done.
  • the sulfide solid electrolyte obtained by the above method is amorphous.
  • an amorphous sulfide solid electrolyte may be used as the sulfide solid electrolyte, and a crystalline sulfide solid electrolyte obtained by heating an amorphous sulfide solid electrolyte is used. Also good. Crystallization can be expected to improve lithium ion conductivity.
  • Solid electrolyte layer (SE layer)
  • the solid electrolyte layer can be obtained by forming the solid electrolyte material into a film shape.
  • the thickness of the solid electrolyte layer is preferably 1 ⁇ m to 500 ⁇ m.
  • conductive aid in the present invention, known or commercially available conductive assistants can be used.
  • the conductive aid is not particularly limited, and examples thereof include carbon black such as acetylene black and ketjen black; activated carbon; graphite and the like.
  • graphite when graphite is used as the conductive additive, the shape thereof may be any shape such as a spherical shape, a flake shape, a filament shape, and a fibrous shape such as carbon nanotube (CNT).
  • the binder may be any material that is generally used for a positive electrode for a lithium secondary battery.
  • the binder material include fluorine resins such as PVDF and PTFE; polyolefin resins such as polyethylene, polypropylene, and ethylene-propylene copolymer; thickeners (for example, water-soluble thickener such as carboxymethylcellulose, xanthan gum, and pectin agarose). Agent) and the like.
  • the organic solvent used when preparing the slurry is an organic solvent that does not adversely affect the material (that is, the active material, the conductive additive, the binder, and, if necessary, the solid electrolyte) filled in the metal porous body.
  • the organic solvent can be appropriately selected.
  • examples of such organic solvents include n-hexane, cyclohexane, heptane, toluene, xylene, trimethylbenzene, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, propylene carbonate, ethylene carbonate, butylene carbonate, vinylene carbonate, vinyl ethylene carbonate.
  • the binder may be mixed with a solvent when forming the slurry, but may be dispersed or dissolved in the solvent in advance.
  • a solvent when forming the slurry, but may be dispersed or dissolved in the solvent in advance.
  • an aqueous dispersion of a fluororesin in which a fluororesin is dispersed in water, an aqueous binder such as an aqueous solution of carboxymethylcellulose; an NMP solution of PVDF ordinarily used when a metal foil is used as a current collector can be used.
  • an aqueous solvent can be used, and an expensive organic solvent is used.
  • an aqueous binder containing at least one binder selected from the group consisting of a fluororesin, a synthetic rubber, and a thickener, and an aqueous solvent because reuse, consideration for the environment, and the like are not necessary. preferable.
  • Content of each component in a slurry is not specifically limited, What is necessary is just to determine suitably according to the binder, solvent, etc. which are used.
  • Filling the pores of the three-dimensional network metal porous body with the active material or the like for example, using a known method such as an immersion filling method or a coating method, slurry of the active material or the like in the voids inside the three-dimensional network metal porous body. It can be performed by introducing a slurry of the active material or the like.
  • Examples of the coating method include roll coating method, applicator coating method, electrostatic coating method, powder coating method, spray coating method, spray coater coating method, bar coater coating method, roll coater coating method, dip coater coating method, doctor Examples thereof include a blade coating method, a wire bar coating method, a knife coater coating method, a blade coating method, and a screen printing method.
  • the amount of the active material to be filled is not particularly limited, but may be, for example, about 20 to 100 mg / cm 2 , preferably about 30 to 60 mg / cm 2 .
  • the electrode is preferably pressurized in a state where the current collector is filled with slurry.
  • the thickness of the electrode is usually about 100 to 450 ⁇ m.
  • the thickness of the electrode is preferably 100 to 250 ⁇ m in the case of an electrode of a high output secondary battery, and preferably 250 to 450 ⁇ m in the case of an electrode of a high capacity secondary battery.
  • the pressing step is preferably performed with a roller press. Since the roller press machine is most effective in smoothing the electrode surface, the risk of short-circuiting can be reduced by applying pressure with the roller press machine.
  • heat treatment may be performed after the pressurizing step.
  • the binder By performing the heat treatment, the binder can be melted to bind the active material and the three-dimensional porous metal porous body more firmly, and the strength of the active material is improved by firing the active material.
  • the temperature of the heat treatment is 100 ° C. or higher, preferably 150 to 200 ° C.
  • the heat treatment may be performed under normal pressure or under reduced pressure, but is preferably performed under reduced pressure.
  • the pressure is, for example, 1000 Pa or less, preferably 1 to 500 Pa.
  • the heating time is appropriately determined according to the heating atmosphere, pressure, etc., but is usually 1 to 20 hours, preferably 5 to 15 hours.
  • a drying step may be performed according to a conventional method between the filling step and the pressurizing step.
  • the electrode material in the conventional lithium ion secondary battery has applied the active material to the surface of metal foil, and in order to improve the battery capacity per unit area, the application
  • the three-dimensional network metal porous body in the present embodiment has a high porosity and a large surface area per unit area, so that the active material can be effectively used because the contact area between the current collector and the active material is large. The capacity of the battery can be improved and the mixing amount of the conductive assistant can be reduced.
  • the polyurethane foam having a conductive layer formed on the surface was used as a workpiece. After the workpiece is set in a jig having a power feeding function, the jig is put in a glove box maintained in an argon atmosphere and a low moisture condition (dew point -30 ° C. or lower), and a molten salt aluminum having a temperature of 40 ° C. It was immersed in a plating bath.
  • the molten salt aluminum plating bath is a plating bath obtained by adding 1,10-phenanthroline to 33 mol% EMIC-67 mol% AlCl 3 at 5 g / L.
  • the jig on which the workpiece was set was connected to the cathode side of the rectifier, and a pure aluminum plate was connected to the anode side.
  • the surface of the polyurethane foam is plated by applying a direct current of current of 3.6 A / dm 2 for 90 minutes between the work and the pure aluminum plate, thereby plating the surface of the work.
  • [Aluminum-resin composite porous body 1] having an aluminum plating layer (aluminum areal weight: 150 g / m 2 ) formed thereon was obtained.
  • the aluminum plating layer incorporates phenanthroline, which is an organic substance containing carbon atoms.
  • the molten salt aluminum plating bath was stirred using a Teflon (registered trademark) rotor and a stirrer.
  • the current density is a value calculated by the apparent area of the polyurethane foam.
  • the [aluminum-resin composite porous body 1] is heated in the atmosphere at 450 to 630 ° C. to remove the polyurethane foam, and fine (nanometer order) Al in the crystal grains of the aluminum porous body. 4 C 3 was finely dispersed to obtain [aluminum alloy porous body].
  • the Young's modulus of the [aluminum alloy porous body] was 81 GPa.
  • Production Example 2 Manufacture of porous aluminum>
  • a plating bath composition: 33 mol% EMIC-67 mol% AlCl 3
  • the Young's modulus of the [aluminum porous body] was 65 GPa.
  • the polyurethane foam having a conductive layer formed on the surface was immersed in a copper plating bath, and a pure copper plate was used as a counter electrode, and copper plating was performed so that the basis weight of copper was 280 g / m 2 .
  • the obtained product was immersed in a nickel plating bath, and a pure nickel plate was used as a counter electrode, and nickel plating was performed so that the basis weight of nickel was 120 g / m 2 .
  • the obtained product was heat-treated by heating to 600 ° C. in an air atmosphere to remove the resin from the product.
  • the obtained product was heat-treated by heating to 1000 ° C. in a hydrogen atmosphere, and nickel was thermally diffused to obtain a [copper alloy porous body].
  • the Young's modulus of the [copper alloy porous body] was 160 GPa.
  • Production Example 4 In Production Example 3, the same operation as in Production Example 3 was performed, except that copper plating was performed using a copper plating bath so that the weight of copper was 400 g / m 2 and nickel plating was not performed. A [copper porous body] made of pure copper was obtained. The Young's modulus of the [copper porous body] was 115 GPa.
  • Table 1 shows the composition of the porous bodies obtained in Production Examples 1 to 4.
  • Lithium cobaltate powder positive electrode binder
  • Li 2 S—P2S 2 solid electrolyte
  • acetylene black conductive aid
  • PVDF binder
  • the obtained positive electrode mixture slurry is supplied to the surface of the [aluminum alloy porous body] and pressed with a roller under a load of 5 kg / cm ⁇ 2 >, so that the positive electrode is placed in the pores of the [aluminum alloy porous body].
  • the [aluminum alloy porous body] filled with the positive electrode mixture was dried at 100 ° C. for 40 minutes to remove the organic solvent, whereby [Positive electrode 1] was obtained.
  • the obtained negative electrode mixture slurry is supplied to the surface of the [copper alloy porous body] and pressed with a roller under a load of 5 kg / cm ⁇ 2 >, so that the negative electrode mixture is placed in the pores of the [copper alloy porous body].
  • the agent was filled.
  • it was made to dry at 100 degreeC for 40 minute (s), and the [negative electrode 1] was obtained by removing an organic solvent.
  • Solid electrolyte membrane 1 Li 2 S—P 2 S 2 (solid electrolyte), which is a lithium ion conductive glassy solid electrolyte, is pulverized to 100 mesh or less in a mortar and pressed into a disk shape having a diameter of 10 mm and a thickness of 1.0 mm. [Solid electrolyte membrane 1] was obtained.
  • Example 1 [Positive electrode 1] and [Negative electrode 1] were pressed by sandwiching [Solid electrolyte membrane 1] to produce [All solid lithium secondary battery 1].
  • Example 1 In Example 1, the same operation as in Example 1 was performed except that [Positive electrode 2] was used instead of [Positive electrode 1] and [Negative electrode 2] was used instead of [Negative electrode 1]. All-solid lithium secondary battery 2] was obtained.
  • Example 1 For all the solid lithium secondary batteries obtained in Example 1 and Comparative Example 1, a charge / discharge cycle test was conducted at a current density of 100 ⁇ A / cm 2 to evaluate the 100th discharge capacity retention rate. The results are shown in Table 2.
  • the all-solid-state lithium secondary battery of the present invention can be suitably used as a power source for portable electric devices such as mobile phones and smartphones, electric vehicles using a motor as a power source, and hybrid electric vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 充放電を繰り返しても内部抵抗の上昇がない全固体リチウム二次電池を提供する。正極及び負極が三次元網状多孔体を集電体とし、該三次元網状多孔体の気孔中に少なくとも活物質を充填してなる電極である全固体リチウム二次電池であって、前記正極の三次元網状多孔体が、ヤング率が70GPa以上のアルミニウム合金であり、前記負極の三次元網状多孔体が、ヤング率が120GPa以上の銅合金であることを特徴とする全固体リチウム二次電池。

Description

全固体リチウム二次電池
 本発明は、三次元網状金属多孔体が用いられた全固体リチウム二次電池に関する。
 近年、携帯電話、スマートフォン等の携帯電子機器やモーターを動力源とする電気自動車、ハイブリッド電気自動車等の電源として用いられる電池に対して、高エネルギー密度化が望まれている。
 高エネルギー密度を得ることができる電池として、例えば、高容量である特徴を有する非水電解質二次電池等の二次電池の研究がすすめられている。なかでも、リチウム二次電池は、リチウムが小さな原子量を有しかつイオン化エネルギーが大きな物質であることから、高エネルギー密度を得ることができる電池として各方面で盛んに研究が行われている。
 現在、リチウム二次電池の正極として、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等のリチウム金属酸化物、リン酸鉄リチウム等のリチウム金属リン酸化物等の化合物が用いられた電極が、実用化されているか、或いはその商品化が進められている。負極としては、炭素、特に黒鉛を主とする電極や合金電極が使われている。なお、電解質としては、有機溶媒にリチウム塩を溶解させた非水電解液が一般的であるが、ゲル状電解液や固体電解質も注目されている。
 二次電池の高容量化のために、リチウム二次電池の集電体として、三次元網状構造を有する集電体を使用することが提案されている。
 前記集電体は、三次元網目構造を有するため、活物質との接触面積が増大する。したがって、前記集電体によれば、リチウム二次電池の内部抵抗を低下させることができ、電池効率を向上させることができる。更に、前記集電体によれば、電解液の流通性を向上させることができ、電流の集中及び従来の問題点であるLiデンドライト形成を防止できることから、電池信頼性を向上させることができる。また、前記集電体によれば、発熱を抑制することができ、電池出力を増大させることができる。更に、前記集電体は、当該集電体の骨格表面に凹凸を有する。したがって、前記集電体によれば、活物質の保持力の向上、活物質の脱落の抑制、大きい比表面積の確保、活物質の利用効率の向上及び電池のさらなる高容量化が可能となる。
 特許文献1には、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス及びアンチモンのいずれかの単体若しくはこれらの合金、ステンレス合金等の表面に酸化被膜が形成された弁金属を多孔質集電体として用いることが記載されている。
 特許文献2には、三次元網目構造を有する合成樹脂の骨格表面に対し、無電解めっき、化学気相蒸着(CVD)、物理気相蒸着(PVD)、金属コーティング、グラファイトコーティングなどによって一次導電処理を施した後、電気めっきによる金属化処理をさらに施すことによって得られる金属多孔体を集電体として用いることが記載されている。
 リチウム二次電池用正極の集電体の材料としては、アルミニウムが好ましいとされている。しかしながら、アルミニウムは、水素よりも標準電極電位が卑であるため、水溶液中では、めっきされる前に水が電気分解されるので、水溶液中でのアルミニウムめっきは困難である。これに対し、特許文献3には、溶融塩めっきによってポリウレタンフォームの表面にアルミニウム被膜を形成させ、次いでポリウレタンフォームを除去することによって得られたアルミニウム多孔体を、電池用の集電体として用いることが記載されている。
 ところで、現行のリチウムイオン二次電池には、電解液として有機電解液が用いられている。しかしながら、この有機電解液は、高いイオン伝導度を示すものの、可燃性の液体であることから、前記有機電解液を電池の電解液として用いた場合、リチウムイオン二次電池本への保護回路等の設置が必要となることがある。また、前記有機電解液を電池の電解液として用いた場合、当該有機電解液との反応によって金属負極が不動態化し、インピーダンスが増大することがある。その結果、インピーダンスの低い部分への電流集中が起こってデンドライトが発生し、このデンドライトが正負極間に存在するセパレータを貫通するため、電池が内部短絡するといった問題が生じやすい。
 そこで、リチウムイオン二次電池の更なる安全性の向上及び高性能化を図り、上記の課題を解決するために、有機電解液の代わりに、より安全性の高い無機固体電解質が用いられたリチウムイオン二次電池が研究されている。また、無機固体電解質は、一般に不燃性であって高い耐熱性を有しているため、無機固体電解質が用いられた全固体リチウム二次電池の開発が望まれている。
 例えば、特許文献4には、LiSとPとを主成分とし、モル%表示でLiS82.5~92.5、P7.5~17.5の組成を有するリチウムイオン伝導性硫化物セラミックスを全固体電池の電解質として使用することが記載されている。
 また、特許文献5には、式MaX-MbY(式中、Mはアルカリ金属原子であり、X及びYはそれぞれSO4、BO3、PO4、GeO4、WO4、MoO4、SiO4、NO3、BS3、PS4、SiS4及びGeS4から選ばれ、aはXアニオンの価数であり、bはYアニオンの価数である)で表されるイオンガラスにイオン液体が導入された高イオン導電性イオンガラスを固体電解質として用いることが記載されている。
 また、特許文献6には、正極活物質として遷移金属酸化物及び遷移金属硫化物からなる群から選択される化合物を含む正極と、Li2Sを含むリチウムイオン導電性のガラス固体電解質と、リチウムと合金化する金属を活物質として含む負極とを備え、正極の活物質及び負極金属活物質の少なくとも一方がリチウムを含む全固体リチウム二次電池が記載されている。
 更に、特許文献7には、全固体電池における電極材料層の柔軟性や機械的強度を向上させて、電極材料の欠落や割れ、及び、集電体からの剥離を抑制し、さらに、集電体と電極材料の接触性、及び、電極材料同士の接触性を向上させるために、全固体リチウムイオン二次電池において用いる電極材料として三次元網目構造を有する多孔質金属シートの気孔部に無機固体電解質を挿入してなる電極材料シートを用いることが記載されている。
 ところで、二次電池において、正極の集電体として三次元網状アルミニウム多孔体が用いられ、負極の集電体として三次元網状銅多孔体が用いられた二次電池においては、充放電を繰り返すにつれて内部抵抗が高くなり出力が低下するという問題があり、また、内部抵抗を低減するために活物質とともに導電助剤を添加する必要があるため、コストが高くなるという問題がある。
特開2005-78991号公報 特開平7-22021号公報 国際公開第2011/118460号 特開2001-250580号公報 特開2006-156083号公報 特開平8-148180号公報 特開2010-40218号公報
 本発明は、集電体として三次元網状多孔体が用いられた全固体リチウム二次電池において、充放電を繰り返しても内部抵抗の上昇がない全固体リチウム二次電池を提供することを目的とする。
 上記課題を解決するため、本発明者らが鋭意検討を進めた結果、集電体として三次元網状金属多孔体が用いられた全固体リチウム二次電池において、正極の集電体としてアルミニウム合金からなる三次元網状金属多孔体を用い、負極の集電体として銅合金からなる三次元網状金属多孔体を用いることにより前記課題が解決できるとの知見を得て本発明を完成した。
 すなわち、本発明は、以下に記載する通りの全固体リチウム二次電池に係るものである。
(1)正極及び負極が三次元網状多孔体を集電体とし、該三次元網状多孔体の気孔中に少なくとも活物質が充填されてなる電極である全固体リチウム二次電池であって、前記正極の三次元網状多孔体が、ヤング率が70GPa以上のアルミニウム合金であり、前記負極の三次元網状多孔体が、ヤング率が120GPa以上の銅合金であることを特徴とする全固体リチウム二次電池。
(2)前記正極の活物質が、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルト酸リチウム(LiCoNi1-x;0<x<1)、マンガン酸リチウム(LiMn)及びリチウムマンガン酸化合物(LiMyMn2-y;M=Cr、Co又はNi、0<y<1)からなる群より選択された少なくとも一種であり、前記負極の活物質が黒鉛、チタン酸リチウム(LiTi12)、又はLi、In、Al、Si、Sn、Mg及びCaからなる群から選ばれる金属、或いは前記金属の少なくとも一種を含む合金であることを特徴とする前記(1)に記載の全固体リチウム二次電池。
(3)前記正極と、前記負極と、前記正極と前記負極とに挟まれた固体電解質層とを備えることを特徴とする前記(1)又は(2)に記載の全固体リチウム二次電池。
(4)前記三次元網状多孔体の気孔中に固体電解質が充填され、該固体電解質及び前記固体電解質層を形成する固体電解質が、リチウムとリンと硫黄とを構成元素として含む硫化物固体電解質であることを特徴とする前記(3)に記載の全固体リチウム二次電池。
 本発明の全固体リチウム二次電池は、高い出力を有し、また充放電の繰り返しによっても内部抵抗が上昇することがないという優れた効果を奏する。したがって、本発明の全固体リチウム二次電池は、高いサイクル特性を示し、しかも低コストで製造することができるという効果を奏する。
全固体二次電池の基本的構成を示す模式図である。 全固体二次電池の基本的構成を示す模式図である。
 図1は全固体二次電池の基本的構成を示す模式図である。なお、図1においては、二次電池10として全固体リチウム二次電池を例としてあげて説明する。図1に示される二次電池10は、正極1と、負極2と、両電極1,2間に挟まれるイオン伝導層3とを有する。二次電池10においては、正極1には、リチウム-コバルト複合酸化物等の正極活物質粉末5を導電性粉末6及びバインダ樹脂と混合して正極集電体7に担持させて板状とした電極が用いられている。また、負極2には、炭素化合物の負極活物質粉末8をバインダ樹脂と混合して負極集電体9に担持させて板状とした電極が用いられている。イオン伝導層3として固体電解質が用いられている。図示していないが、正極集電体及び負極集電体は、それぞれ、正極端子及び負極端子にリード線で接続されている。
 本発明においては、正極1は、正極集電体7である三次元網状金属多孔体と、この三次元網状金属多孔体の気孔に充填された正極活物質粉末5と、導電性粉末6である導電助剤とからなる。
 また、負極2は、負極集電体9である三次元網状金属多孔体と、この三次元網状金属多孔体の気孔に充填された負極活物質粉末8からなる。
 場合によっては、前記三次元網状金属多孔体の気孔には、更に導電助剤を充填することができる。
 図2は、全固体二次電池の基本的構成を説明する模式図である。なお、図2においては、全固体二次電池として、全固体リチウムイオン二次電池を例として挙げて説明する。
 図2に示される全固体二次電池60は、正極61と、負極62と、両電極61,62間に配置される固体電解質層(SE層)63とを備えている。正極61は、正極層(正極体)64と正極集電体65とからなる。また、負極62は、負極層66と負極集電体67とからなる。
 本発明においては、正極61は、正極集電体65である三次元網状金属多孔体と、この三次元網状金属多孔体の気孔に充填された正極活物質及びリチウムイオン伝導性の固体電解質とからなる。
 また、負極62は、負極集電体67である三次元網状金属多孔体と、この三次元網状金属多孔体の気孔に充填された負極活物質及びリチウムイオン伝導性の固体電解質とからなる。場合によっては、前記三次元網状金属多孔体の気孔には、更に導電助剤を充填することができる。
(三次元網状金属多孔体)
 正極用集電体としてアルミニウム多孔体及び負極用集電体として三次元網状銅多孔体が用いられた従来の二次電池は、充電-放電を繰り返すと内部抵抗が高まることが分かった。
 本発明者らは、正極用集電体として三次元網状アルミニウム合金多孔体を用い、負極用集電体として三次元網状銅合金多孔体を用いることにより上記の問題を解決した。
 二次電池において、正極用集電体としてヤング率が70GPa以上のアルミニウム合金からなる三次元網状アルミニウム合金多孔体を用い、負極用集電体としてヤング率が120GPa以上の銅合金からなる三次元網状銅合金多孔体を用いることにより内部抵抗の上昇を防ぐことができる。
 内部抵抗の上昇を防ぐことができる理由の詳細は不明であるが、次の理由が考えられる。
 すなわち、従来の全固体リチウム二次電池のように、集電体として純アルミニウムからなる三次元網状金属多孔体及び純銅からなる三次元網状金属多孔体を用いた場合には、電池の使用初期においては、活物質が膨張した時には活物質を収容する三次元網状金属多孔体の気孔も膨張し、活物質が収縮した時には三次元網状金属多孔体の気孔も収縮することから、三次元網状金属多孔体の骨格と活物質との間の接触は、良好に保たれる。しかしながら、充放電回数が多くなるにつれて、三次元網状金属多孔体の気孔が膨張したまま収縮しにくくなる。したがって、前記従来の全固体リチウム二次電池は、三次元網状金属多孔体の骨格と活物質との間に隙間ができて三次元網状金属多孔体と活物質との接触が悪くなるため、内部抵抗が上昇すると考えられる。
 一方、本発明のように、集電体として、ヤング率が70GPa以上のアルミニウム合金製の三次元網状金属多孔体及びヤング率が120GPa以上の銅合金製の三次元網状金属多孔体を用いた場合には、これらの多孔体の骨格の剛性が、純アルミニウム又は純銅からなる三次元網状金属多孔体の骨格の剛性と比べて高いため、活物質が膨張又は収縮しても骨格を形成する気孔が塑性変形しにくい。したがって、本発明の全固体リチウム二次電池は、三次元網状金属多孔体の気孔を形成する骨格と該気孔内に充填された活物質との接触が良好な状態に保たれるので、内部抵抗の上昇を防ぐことができると考えられる。
 また、本発明のように、三次元網状アルミニウム合金多孔体及び三次元網状銅合金多孔体を全固体リチウム二次電池の集電体として用いた場合、当該全固体リチウム二次電池には、集電体と固体電解質層との接触状態も良好に維持することができるという利点があると考えられる。
 三次元網状アルミニウム合金多孔体は、例えば、次のような操作を行なうことにより、製造することができる。
 表面に導電層が形成されたポリウレタンフォームをワークとして用いる。前記ワークを、給電機能を有する治具にセットした後、当該治具を、アルゴン雰囲気かつ低水分条件(露点-30℃以下)に保たれたグローブボックス内に入れ、温度40℃の溶融塩アルミニウムめっき浴に浸漬させ、ワークをセットした治具を整流器の陰極側に接続し、純アルミニウム板を陽極側に接続する。前記溶融塩アルミニウムめっき浴として、例えば、33mol%1-エチル-3-メチルイミダゾリウムクロリド(EMIC)-67mol%AlClに1,10-フェナントロリンを添加することによって得られるめっき浴を用いる。次に、ワークと純アルミニウム板の間に、電流密度3.6A/dmの直流電流を流してめっきすることにより、ポリウレタンフォーム表面にアルミニウムめっき層を形成させ、アルミニウム-樹脂複合多孔体を得る。このめっき層には、炭素を含む有機物であるフェナントロリンが取り込まれている。次いで、アルミニウム-樹脂複合多孔体を大気中で450~630℃に加熱することによって熱処理を行ない、ポリウレタンフォームを除去するとともに、アルミニウム多孔体の結晶粒内に微細(ナノメートルオーダー)なAlを微分散させる。これにより、ヤング率を向上させた三次元網状アルミニウム合金多孔体を得ることができる。
 また、銅合金、例えば、銅-ニッケル合金は、次のような操作を行なうことにより、製造することができる。
 ポリウレタンフォームをワークとして用いる。前記ワークを銅めっき浴に浸漬させ、めっきを行なうことにより、ポリウレタンフォーム表面に銅めっき層を形成させる。次いで、表面に銅めっき層が形成されたポリウレタンフォームをニッケルめっき浴に浸漬させ、めっきを行なうことにより、前記銅めっき層の表面にニッケルめっき層を形成させる。次に、得られた産物を、大気雰囲気で600℃程度に加熱することによって熱処理を行ない、樹脂を除去した後、得られた産物を、水素雰囲気で1000℃程度に加熱することによって熱処理を行ない、ニッケルを熱拡散させる。これにより、銅-ニッケル合金を得ることができる。なお、ワークとして用いられるポリウレタンフォームには、ニッケルめっき層を先に形成させ、次いで銅めっき層を形成させてもよい。
 三次元網状金属多孔体のヤング率は、三次元網状金属多孔体を樹脂に埋め込んで切断し、切断面を研磨し、骨格(めっき)断面にナノインデンターの圧子を押し当てることによって測定することができる。
 なお、ナノインデンターは、微小領域の硬さ及びヤング率を測定するために用いられる測定手段である。
 三次元網状金属多孔体は、例えば、ポリウレタンフォーム等の連続気孔を有する樹脂多孔質体(多孔質樹脂成形体)の表面に、めっき法、蒸着法、スパッタ法、溶射法等の方法を用いて所望の厚さの金属被膜を形成させ、その後、樹脂多孔質体を除去することによって得ることができる。
-導電化処理(導電層の形成)-
 樹脂多孔質体の表面に導電層を形成させる方法としては、例えば、めっき法、蒸着法、スパッタ法、溶射法等が挙げられる。これらのなかでは、めっき法が好ましい。この場合、まず、樹脂多孔質体の表面に導電層を形成する。
 前記導電層は、めっき法等による樹脂多孔質体の表面における金属皮膜(アルミニウムめっき層、銅めっき層、ニッケルめっき層等)の形成を可能にする役目を果たすものであるため、導電性を有していればその材料及び厚みは、特に限定されるものではない。導電層は、樹脂多孔質体に導電性を付与することができる種々の方法により樹脂多孔質体の表面に形成される。導電性を付与する方法として、例えば、無電解めっき法、蒸着法、スパッタ法、カーボン粒子等の導電性粒子を含有した導電性塗料を塗布する方法等の任意の方法を用いることができる。
 導電層の材料は、金属被膜と同じ材料であることが好ましい。
 無電解めっき法としては、公知の方法、例えば、洗浄、活性化及びめっきの工程を含む方法等が挙げられる。
 スパッタ法として、公知の種々のスパッタ法、例えば、マグネトロンスパッタ法等を用いることができる。スパッタ法には、導電層の形成に用いられる材料として、アルミニウム、ニッケル、クロム、銅、モリブデン、タンタル、金、アルミニウム・チタン合金、ニッケル・鉄合金等を用いることができる。これらのなかでは、アルミニウム、ニッケル、クロム、銅やこれらを主とする合金がコスト等の点で適当である。
 また、本発明においては、導電層は、黒鉛、チタン及びステンレススチールからなる群より選ばれた少なくとも1種の粉末を含む層であってもよい。かかる導電層は、例えば、黒鉛、チタン、ステンレススチール等の粉末とバインダとを混合したスラリーを樹脂多孔質体の表面に塗布すること等によって形成させることができる。この場合、各粉末は、耐酸化性及び耐食性を有しているので、有機電解液中で酸化されにくくなる。前記粉末は、単独で用いてもよく、2種類以上を混合して用いてもよい。これらの粉末のなかでは、黒鉛の粉末が好ましい。バインダとして、例えば、耐電解液性及び耐酸化性に優れたフッ素樹脂であるポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等が最適である。なお、本発明の全固体リチウム二次電池においては、三次元網状金属多孔体の骨格が活物質を包むように存在しているので、前記スラリー中におけるバインダの含有量は、集電体として汎用の金属箔を用いる場合の1/2程度であればよく、例えば、0.5重量%程度とすることができる。
-金属被膜(アルミニウムめっき層、銅めっき層、ニッケルめっき層等)の形成-
 前記方法によって樹脂多孔質体の表面に薄く導電層を形成させた後、導電層が形成された樹脂多孔質体の表面にめっき処理等を施すことにより、所望の厚さの金属被膜を形成させる。これにより、金属-樹脂複合多孔体が得られる。
 アルミニウム合金の被膜は、国際公開2011/118460号に記載されている方法にしたがい、表面が導電化された樹脂多孔質体の表面に、アルミニウム合金の成分を含有する溶融塩浴中でめっきする方法を用いることによって形成させることができる。その後、金属-樹脂複合多孔体から樹脂多孔体を除去することにより、三次元網状アルミニウム合金多孔体が得られる。
 銅合金の被膜は、表面が導電化された樹脂多孔質体の表面に、銅合金の成分が配合された水系めっき浴中でめっきする方法を用いることによって形成させることができる。その後、金属-樹脂複合多孔体から樹脂多孔体を除去することにより、三次元網状銅合金多孔体が得られる。
-樹脂多孔質体-
 樹脂多孔質体の素材として、任意の合成樹脂からなる多孔質体を選択できる。前記樹脂多孔質体としては、例えば、ポリウレタン、メラミン樹脂、ポリプロピレン、ポリエチレン等の合成樹脂の発泡体等が挙げられる。なお、樹脂多孔質体は、合成樹脂の発泡体のみならず、連続した気孔(連通気孔)を有するものであればよく、任意の形状の樹脂成形体(樹脂多孔質体)を用いることができる。また、合成樹脂の発泡体の代わりに、例えば繊維状の合成樹脂を絡めて不織布のような形状を有するものも使用可能である。樹脂多孔質体の気孔率は、80%~98%が好ましい。また、樹脂多孔質体の気孔径は、50μm~500μmが好ましい。樹脂多孔質体のなかでも、ポリウレタンフォーム及びメラミン樹脂発泡体は、高い気孔率を有し、また気孔の連通性があるとともに熱分解性にも優れているため、樹脂多孔質体として好ましく使用できる。
 特に、ポリウレタンフォームは、気孔の均一性や入手の容易さ等の点で好ましく、不織布は気孔径の小さな三次元網状金属多孔体が得られる点で好ましい。
 樹脂多孔質体のうち、合成樹脂の発泡体には、製造過程に用いられる製泡剤、未反応モノマーなどの残留物が含まれることが多いため、三次元網状金属多孔体の製造に際し、後の工程を円滑に行なう観点から、用いられる合成樹脂の発泡体に対して洗浄処理を予め施しておくことが好ましい。樹脂多孔質体においては、骨格が三次元的に網目を構成することで、全体として連続した気孔を構成している。ポリウレタンフォームの骨格は、その延在方向に垂直な断面において略三角形状をなしている。ここで、気孔率は、次式で定義される。
 気孔率=(1-(樹脂多孔質体の質量[g]/(樹脂多孔質体の体積[cm]×素材密度)))×100[%]
 また、気孔径は、樹脂多孔質体表面を顕微鏡写真等で拡大し、1インチ(25.4mm)あたりの気孔数を計数して、平均気孔径=25.4mm/気孔数として平均的な値を求める。
 正極用集電体を構成する金属及び負極用集電体を構成する金属と活物質との組み合わせは、種々選択することができるが、好ましい例としては、正極活物質としてコバルト酸リチウムを用い、正極集電体としてアルミニウム合金多孔体を用いた正極と、負極活物質としてチタン酸リチウムを用い、負極集電体として銅合金多孔体を用いた例を挙げることができる。
 以下では、リチウム二次電池の場合を例にとって、活物質及び固体電解質の材料について述べ、また、三次元網状金属多孔体への活物質の充填法について述べる。
(正極活物質)
 正極活物質として、リチウムイオンの挿入又は脱離が可能な物質を用いることができる。
 このような正極活物質の材料としては、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルト酸リチウム(LiCoNi1-x;0<x<1)、マンガン酸リチウム(LiMn)、リチウムマンガン酸化合物(LiMMn2-y;M=Cr、Co又はNi、0<y<1)等が挙げられる。他の正極活物質の材料としては、リチウムリン酸鉄(LiFePO)、LiFe0.5Mn0.5PO等のオリビン型化合物等のリチウム遷移金属酸化物等が挙げられる。
 更に他の正極活物質の材料としては、例えば、カルコゲン化物又は金属酸化物を骨格としたリチウム金属(すなわち、カルコゲン化物又は金属酸化物の結晶内にリチウム原子を含む配位化合物)等が挙げられる。前記カルコゲン化物としては、例えば、TiS、V、FeS、FeS、LiMS〔Mは遷移金属元素(例えば、Mo、Ti、Cu、Ni、Fe等)、Sb、Sn、又はPbを示し、zは1.0以上、2.5以下を満たす数を示す〕等の硫化物等が挙げられる。また、前記金属酸化物としては、TiO、Cr、V、MnO等が挙げられる。
 正極活物質は、導電助剤及びバインダと組み合わせて使用することができる。なお、正極活物質の材料が遷移金属原子を含む化合物である場合、かかる材料中に含まれる遷移金属原子が、別の遷移金属原子に一部置換されていてもよい。前記正極活物質は、単独で用いてもよく、2種類以上を混合して用いてもよい。前記正極活物質のなかでは、効率の良いリチウムイオンの挿入及び脱離を行なう観点から、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルト酸リチウム(LiCoNi1-x;0<x<1)、マンガン酸リチウム(LiMn)及びリチウムマンガン酸化合物(LiMMn2-y;M=Cr、Co又はNi、0<y<1)からなる群より選ばれた少なくとも1種が好ましい。なお、前記正極活物質の材料のうち、チタン酸リチウム(LiTi12)は、負極活物質として使用することもできる。
(負極活物質)
 負極活物質として、リチウムイオンの挿入又は脱離が可能な物質を用いることができる。このような負極活物質としては、例えば、黒鉛、チタン酸リチウム(LiTi12)等が挙げられる。
 また、他の負極活物質として、金属リチウム(Li)、金属インジウム(In)、金属アルミニウム(Al)、金属ケイ素(Si)、金属スズ(Sn)、金属マグネシウム(Mn)、金属カルシウム(Ca)等の金属;前記金属の少なくとも1種と他の元素及び/又は化合物とを組み合せた合金(すなわち、前記金属の少なくとも1種を含む合金)等を用いることができる。
 前記負極活物質は、単独で用いてもよく、2種類以上を混合して用いてもよい。前記負極活物質のなかでは、効率の良いリチウムイオンの挿入及び脱離並びに効率の良いリチウムとの合金形成を行なう観点から、黒鉛、チタン酸リチウム(LiTi12)、又はLi、In、Al、Si、Sn、Mg及びCaからなる群より選ばれた金属、或いは前記金属の少なくとも1種を含む合金が好ましい。
(三次元網状金属多孔体に充填するための固体電解質)
 三次元網状金属多孔体の気孔に充填するための固体電解質として、リチウムイオン伝導度の高い硫化物固体電解質を使用することが好ましい。前記硫化物固体電解質としては、リチウムとリンと硫黄とを構成元素として含む硫化物固体電解質が挙げられる。硫化物固体電解質は、さらに、O、Al、B、Si、Ge等の元素を構成元素として含んでいてもよい。
 このような硫化物固体電解質は、公知の方法により得ることができる。かかる方法としては、例えば、出発原料として硫化リチウム(LiS)及び五硫化二リン(P)を用い、LiSとPとをモル比(LiS/P)が80/20~50/50となるように混合し、得られた混合物を溶融させて急冷する方法(溶融急冷法)、前記混合物をメカニカルミリングする方法(メカニカルミリング法)等が挙げられる。
 上記方法により得られる硫化物固体電解質は、非晶質である。本発明においては、硫化物固体電解質として、非晶質の硫化物固体電解質を用いてもよく、非晶質の硫化物個体電解質を加熱することによって得られる結晶性の硫化物固体電解質を用いてもよい。結晶化することで、リチウムイオン伝導度の向上が期待できる。
(固体電解質層(SE層))
 固体電解質層は、前記固体電解質材料を膜状に形成させることによって得ることができる。
この固体電解質層の層厚は、1μm~500μmであることが好ましい。
(導電助剤)
 本発明においては、導電助剤として、公知又は市販のものを用いることができる。前記導電助剤としては、特に限定されるものではなく、例えば、アセチレンブラック、ケッチェンブラック等のカーボンブラック;活性炭;黒鉛等が挙げられる。導電助剤として黒鉛を用いる場合、その形状は、球状、フレーク状、フィラメント状、カーボンナノチューブ(CNT)などの繊維状等のいずれの形状であってもよい。
(活物質等のスラリー)
 活物質及び固体電解質(「活物質等」ともいう)に必要に応じて導電助剤やバインダを加え、得られた混合物に有機溶剤、水等を混合してスラリーを作製する。
 バインダは、リチウム二次電池用正極で一般的に用いられるものであればよい。バインダの材料としては、例えば、PVDF、PTFE等のフッ素樹脂;ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のポリオレフィン樹脂;増粘剤(例えば、カルボキシメチルセルロース、キサンタンガム、ペクチンアガロース等の水溶性増粘剤等)等が挙げられる。
 スラリーを作製する際に用いる有機溶剤は、金属多孔体に充填する材料(即ち、活物質、導電助剤、バインダ、及び必要に応じて固体電解質)に対して悪影響を及ぼさない有機溶剤であればよく、かかる有機溶剤のなかから適宜選択することができる。このような有機溶剤としては、例えば、n-ヘキサン、シクロヘキサン、ヘプタン、トルエン、キシレン、トリメチルベンゼン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、テトラヒドロフラン、1、4-ジオキサン、1,3-ジオキソラン、エチレングリコール、N-メチル-2-ピロリドンなどが挙げられる。また、溶媒に水を使う場合、充填性を高めるために界面活性剤を使用してもよい。
 バインダは、スラリーを形成する際に溶媒と混合してもよいが、前もって溶媒に分散又は溶解させておいてもよい。例えば、フッ素樹脂を水に分散させたフッ素樹脂の水性ディスパージョン、カルボキシメチルセルロース水溶液等の水系バインダ;集電体として金属箔を用いたときに通常用いられるPVDFのNMP溶液等を使用することができる。本発明では、集電体として三次元多孔体を用いることで正極活物質は導電性骨格に包まれた構造になるので、水系溶媒を用いることが可能であり、また、高価な有機溶媒の使用、再利用、環境への配慮等が不要になることから、フッ素樹脂、合成ゴム及び増粘剤からなる群から選択される少なくとも1種のバインダと、水系溶媒とを含む水系バインダを用いることが好ましい。
 スラリー中の各成分の含有量は特に限定されるものではなく、用いられるバインダ、溶媒等に応じて適宜決定すればよい。
(三次元網状金属多孔体への活物質等の充填)
 三次元網状金属多孔体の気孔への活物質等の充填は、例えば、活物質等のスラリーを、浸漬充填法や塗工法などの公知の方法を用い、三次元網状金属多孔体内部の空隙に前記活物質等のスラリーを入り込ませることによって行なうことができる。塗工法としては、例えば、ロール塗工法、アプリケーター塗工法、静電塗工法、粉体塗工法、スプレー塗工法、スプレーコーター塗工法、バーコーター塗工法、ロールコーター塗工法、ディップコーター塗工法、ドクターブレード塗工法、ワイヤーバー塗工法、ナイフコーター塗工法、ブレード塗工法、及びスクリーン印刷法などが挙げられる。
 充填させる活物質の量は、特に限定されないが、例えば、20~100mg/cm、好ましくは30~60mg/cm程度であればよい。
 電極は、集電体にスラリーが充填された状態で加圧されていることが好ましい。
 この加圧により、電極の厚みを、通常、100~450μm程度にする。前記電極の厚みは、高出力用二次電池の電極の場合、好ましくは100~250μmであり、高容量用二次電池の電極の場合、好ましくは250~450μmである。加圧工程は、ローラプレス機で行なうことが好ましい。ローラプレス機は、電極面の平滑化に最も効果があるので、当該ローラプレス機で加圧することにより、短絡のおそれを少なくすることができる。
 電極の製造に際しては、必要に応じて、上記の加圧工程後に加熱処理を行なってもよい。加熱処理を行なうことにより、バインダが溶融して活物質と三次元網状金属多孔体とをより強固に結着することができ、また、活物質が焼成されることにより活物質の強度が向上する。
 加熱処理の温度は、100℃以上であり、好ましくは150~200℃である。
 加熱処理は、常圧下で行なってもよく、減圧下で行なってもよいが、減圧下で行なうことが好ましい。減圧下で加熱処理を行なう場合、圧力は、例えば、1000Pa以下、好ましくは1~500Paである。
 加熱時間は、加熱雰囲気、圧力等に応じて適宜決定されるが、通常1~20時間、好ましくは5~15時間とすればよい。
 さらに必要に応じて、充填工程と加圧工程との間に、常法に従って乾燥工程を行なってもよい。
 なお、従来のリチウムイオン二次電池における電極材料は金属箔の表面に活物質を塗布しており、単位面積当たりの電池容量を向上するために、活物質の塗布厚みを厚くしている。また活物質を有効に利用するためには金属箔と活物質とが電気的に接触している必要があるので、活物質は導電助剤と混合して用いられている。これに対し、本実施形態における三次元網状金属多孔体は、気孔率が高く単位面積当たりの表面積が大きいため、集電体と活物質の接触面積が大きくなるため活物質を有効に利用でき、電池の容量を向上できるとともに、導電助剤の混合量を少なくすることができる。
 以下、実施例に基づいて本発明をより詳細に説明する。しかし、かかる実施例は例示であって、本発明は、これらに限定されるものではない。本発明は、特許請求の範囲の範囲と均等の意味及び範囲内でのすべての変更が含まれる。
(製造例1)
<アルミニウム合金多孔体1の製造>
(導電層の形成)
 樹脂多孔質体として、ポリウレタンフォーム(気孔率:95%、厚さ:1mm、1インチ当たりの気孔数:30個(気孔径847μm))を用いた。前記ポリウレタンフォームの表面に、スパッタ法によってアルミニウムの目付量が10g/mとなるように成膜して導電層を形成させた。
(溶融塩めっき)
 表面に導電層が形成された前記ポリウレタンフォームをワークとして用いた。前記ワークを、給電機能を有する治具にセットした後、当該治具を、アルゴン雰囲気及び低水分条件(露点-30℃以下)に保たれたグローブボックス内に入れ、温度40℃の溶融塩アルミニウムめっき浴に浸漬した。なお、溶融塩アルミニウムめっき浴は、33mol%EMIC-67mol%AlClに、1,10-フェナントロリンを5g/Lとなるように添加することによって得られためっき浴である。ワークがセットされた治具を整流器の陰極側に接続し、純アルミニウム板を陽極側に接続した。次に、溶融塩アルミニウムめっき浴を撹拌しながら、ワークと純アルミニウム板との間に電流密度3.6A/dmの直流電流を90分間流してワークの表面をめっきすることにより、ポリウレタンフォーム表面にアルミニウムめっき層(アルミニウムの目付量:150g/m)が形成された[アルミニウム-樹脂複合多孔体1]を得た。前記アルミニウムめっき層には炭素原子を含む有機物であるフェナントロリンが取り込まれている。なお、前記溶融塩アルミニウムめっき浴の攪拌は、テフロン(登録商標)製の回転子とスターラーとを用いて行なった。ここで、電流密度は、ポリウレタンフォームの見かけの面積で計算した値である。
(ポリウレタンフォームの分解)
 前記[アルミニウム-樹脂複合多孔体1]を大気中で450~630℃に加熱することによって熱処理を行ない、ポリウレタンフォームを除去するとともに、アルミニウム多孔体の結晶粒内に微細(ナノメートルオーダー)なAlを微分散させ、[アルミニウム合金多孔体]を得た。
 [アルミニウム合金多孔体]のヤング率は、81GPaであった。
(製造例2)
<アルミニウム多孔体の製造>
 製造例1において、溶融塩アルミニウムめっき浴として、めっき浴(組成:33mol%EMIC-67mol%AlCl)を用いたことを除き、製造例1と同様の操作を行ない、[アルミニウム多孔体]を得た。
 [アルミニウム多孔体]のヤング率は、65GPaであった。
(製造例3)
<銅合金多孔体1の製造>
 製造例1で用いられたポリウレタンフォームの表面に、スパッタ法によって銅の目付量が10g/mとなるように成膜して導電層を形成させた。
 次に、表面に導電層が形成されたポリウレタンフォームを銅めっき浴に浸漬させ、対極として純銅板を用い、銅の目付量が280g/mとなるように銅めっきを行なった。次いで、得られた産物をニッケルめっき浴に浸漬させ、対極として純ニッケル板を用い、ニッケルの目付量が120g/mとなるようにニッケルめっきを行なった。その後、得られた産物を、大気雰囲気で600℃に加熱することによって熱処理を行ない、前記産物から樹脂を除去した。その後、得られた産物を、水素雰囲気で1000℃に加熱することによって熱処理を行ない、ニッケルを熱拡散させることにより、[銅合金多孔体]を得た。
 [銅合金多孔体]のヤング率は、160GPaであった。
(製造例4)
 製造例3において、銅めっき浴を用いて銅の目付量が400g/mとなるように銅めっきを行なったこと及びニッケルめっきを行なわなかったことを除き、製造例3と同様の操作を行ない、純銅からなる[銅多孔体]を得た。
 [銅多孔体]のヤング率は、115GPaであった。
 製造例1~4で得られた多孔体の組成を表1に示す。
Figure JPOXMLDOC01-appb-T000001
(製造例5)
<正極1の製造>
 正極活物質として、コバルト酸リチウム粉末(平均粒子径:5μm)を用いた。コバルト酸リチウム粉末(正極括物質)と、LiS-P2S(固体電解質)と、アセチレンブラック(導電助剤)と、PVDF(バインダ)とを、質量比(正極活物質/固体電解質/導電助剤/バインダ)が55/35/5/5となるように混合した。得られた混合物にN-メチル-2-ピロリドン(有機溶剤)を滴下して混合し、ペースト状の正極合剤スラリーを得た。次に、得られた正極合剤スラリーを、[アルミニウム合金多孔体]の表面に供給し、ローラで5kg/cmの負荷をかけて押圧することにより、[アルミニウム合金多孔体]の気孔に正極合剤を充填した、その後、正極合剤が充填された[アルミニウム合金多孔体]を100℃で40分間乾燥させて有機溶剤を除去することにより、[正極1]を得た。
(製造例6)
<正極2の製造>
 製造例5において、[アルミニウム合金多孔体]に代えて[アルミニウム多孔体]を用いたことを除き、製造例5と同様の操作を行ない、[正極2]を得た。
(製造例7)
<負極1の製造>
 負極活物質として、チタン酸リチウム粉末(平均粒子径が2μm)を用いた。チタン酸リチウム粉末(負極活物質)と、LiS-P(固体電解質)と、アセチレンブラック(導電助剤)と、PVDF(バインダ)とを、質量比(負極活物質/固体電解質/導電助剤/バインダ)が50/40/5/5となるように混合した。得られた混合物にN-メチル-2-ピロリドン(有機溶剤)を滴下して混合し、ペースト状の負極合剤スラリーを得た。次に、得られた負極合剤スラリーを[銅合金多孔体]の表面に供給し、ローラで5kg/cmの負荷をかけて押圧することにより、[銅合金多孔体]の気孔に負極合剤を充填した。その後、100℃で40分間乾燥させて有機溶剤を除去することにより、[負極1]を得た。
(製造例8)
<負極2の製造>
 製造例7において、[銅合金多孔体]に代えて[銅多孔体]を用いたことを除き、製造例7と同様の操作を行ない、[負極2]を得た。
(製造例9)
<固体電解質膜1の製造>
 リチウムイオン導電性ガラス状固体電解質であるLiS-P(固体電解質)を乳鉢で100メッシュ以下に粉砕し、直径10mm、厚さ1.0mmのディスク状に加圧成形して、[固体電解質膜1]を得た。
(実施例1)
 [正極1]と[負極1]とで[固体電解質膜1]を挟んで圧接し、[全固体リチウム二次電池1]を作製した。
(比較例1)
 実施例1において、[正極1]に代えて[正極2]を用いたこと及び[負極1]に代えて[負極2]を用いたことを除き、実施例1と同様の操作を行ない、[全固体リチウム二次電池2]を得た。
(試験例1)
 実施例1及び比較例1で得られた各全個体リチウム二次電池について、電流密度100μA/cm2で充放電サイクル試験を行ない100回目の放電容量維持率を評価した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示された結果から、本発明の全固体リチウム二次電池は、サイクル特性が良好であることがわかる。
 本発明の全固体リチウム二次電池は、携帯電話、スマートフォン等の携帯電子機器やモーターを動力源とする電気自動車、ハイブリッド電気自動車等の電源として好適に使用することができる。
1 正極
2 負極
3 イオン伝導層
4 電極積層体
5 正極活物質粉末
6 導電性粉末
7 正極集電体
8 負極活物質粉末
9 負極集電体
10 全固体二次電池
60 全固体二次電池
61 正極
62 負極
63 固体電解質層(SE層)
64 正極層(正極体)
65 正極集電体
66 負極層
67 負極集電体

Claims (4)

  1.  正極及び負極が三次元網状多孔体を集電体とし、該三次元網状多孔体の気孔中に少なくとも活物質が充填されてなる電極である全固体リチウム二次電池であって、
     前記正極の三次元網状多孔体が、ヤング率が70GPa以上のアルミニウム合金であり、 前記負極の三次元網状多孔体が、ヤング率が120GPa以上の銅合金である
    ことを特徴とする全固体リチウム二次電池。
  2.  前記正極の活物質が、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、ニッケルコバルト酸リチウム(LiCoNi1-x;0<x<1)、マンガン酸リチウム(LiMn)及びリチウムマンガン酸化合物(LiMyMn2-y;M=Cr、Co又はNi、0<y<1)からなる群より選択された少なくとも一種であり、
     前記負極の活物質が黒鉛、チタン酸リチウム(LiTi12)、又はLi、In、Al、Si、Sn、Mg及びCaからなる群から選ばれる金属、或いは前記金属の少なくとも一種を含む合金であることを特徴とする請求項1に記載の全固体リチウム二次電池。
  3.  前記正極と、前記負極と、前記正極と前記負極とに挟まれた固体電解質層とを備えることを特徴とする請求項1又は2に記載の全固体リチウム二次電池。
  4.  前記三次元網状多孔体の気孔中に固体電解質が充填され、該固体電解質及び前記固体電解質層を形成する固体電解質が、リチウムとリンと硫黄とを構成元素として含む硫化物固体電解質であることを特徴とする請求項3に記載の全固体リチウム二次電池。
PCT/JP2013/054537 2012-03-22 2013-02-22 全固体リチウム二次電池 WO2013140942A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380013962.4A CN104205467A (zh) 2012-03-22 2013-02-22 全固态锂二次电池
KR1020147026095A KR20140137371A (ko) 2012-03-22 2013-02-22 전고체 리튬 2차 전지
US14/382,782 US20150017549A1 (en) 2012-03-22 2013-02-22 All-solid lithium secondary battery
DE112013001595.1T DE112013001595T5 (de) 2012-03-22 2013-02-22 Festkörper-Lithiumsekundärbatterie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012064986 2012-03-22
JP2012-064986 2012-03-22

Publications (1)

Publication Number Publication Date
WO2013140942A1 true WO2013140942A1 (ja) 2013-09-26

Family

ID=49222405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/054537 WO2013140942A1 (ja) 2012-03-22 2013-02-22 全固体リチウム二次電池

Country Status (6)

Country Link
US (1) US20150017549A1 (ja)
JP (1) JPWO2013140942A1 (ja)
KR (1) KR20140137371A (ja)
CN (1) CN104205467A (ja)
DE (1) DE112013001595T5 (ja)
WO (1) WO2013140942A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153459A (ja) * 2014-02-10 2015-08-24 古河機械金属株式会社 電極シート、全固体型リチウムイオン電池、および電極シートの製造方法
JP2017208250A (ja) * 2016-05-19 2017-11-24 マクセルホールディングス株式会社 全固体リチウム二次電池及びその製造方法
JP2018516435A (ja) * 2015-06-04 2018-06-21 イーオープレックス リミテッド 固体電池およびその製造方法
JP2018535535A (ja) * 2016-09-09 2018-11-29 エルジー・ケム・リミテッド 3次元網状構造の電極集電体を含む電極
EP3410516A1 (en) 2017-05-29 2018-12-05 Panasonic Intellectual Property Management Co., Ltd. Lithium metal secondary battery
JP2019054012A (ja) * 2019-01-09 2019-04-04 古河機械金属株式会社 電極シート、全固体型リチウムイオン電池、および電極シートの製造方法
JP2019175838A (ja) * 2018-03-29 2019-10-10 トヨタ自動車株式会社 負極及び硫化物固体電池
JP2020145136A (ja) * 2019-03-08 2020-09-10 トヨタ自動車株式会社 負極用スラリー
JP2022104375A (ja) * 2020-12-28 2022-07-08 本田技研工業株式会社 リチウムイオン二次電池用電極
JP2022108360A (ja) * 2021-01-13 2022-07-26 本田技研工業株式会社 電極及びそれを用いた二次電池
JP2022110670A (ja) * 2021-01-19 2022-07-29 本田技研工業株式会社 円筒形固体電池及びその製造方法
US11404685B2 (en) 2018-03-29 2022-08-02 Toyota Jidosha Kabushiki Kaisha Anode, and sulfide solid-state battery
WO2024029466A1 (ja) * 2022-08-02 2024-02-08 マクセル株式会社 全固体電池

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101655607B1 (ko) * 2014-12-11 2016-09-07 현대자동차주식회사 전고체 전지 및 이의 제조방법
CN105742713B (zh) * 2014-12-12 2020-08-28 东莞新能源科技有限公司 全固态聚合物锂电池
US9722279B2 (en) * 2014-12-24 2017-08-01 Toyota Motor Engineering & Manufacturing North America, Inc. All-solid-state metal-metal battery comprising ion conducting ceramic as electrolyte
WO2016160703A1 (en) 2015-03-27 2016-10-06 Harrup Mason K All-inorganic solvents for electrolytes
CN106159314B (zh) * 2015-04-15 2019-05-24 微宏动力***(湖州)有限公司 全固态锂离子电池及其制备方法
KR101704186B1 (ko) * 2015-04-16 2017-02-07 현대자동차주식회사 리튬황 전고체 전지 양극
KR20170018208A (ko) * 2015-08-07 2017-02-16 오씨아이 주식회사 이차전지용 음극 및 이의 제조방법
KR102461344B1 (ko) 2015-11-10 2022-10-28 삼성에스디아이 주식회사 리튬 이차 전지용 음극 및 이를 포함하는 리튬 이차 전지
WO2017145894A1 (ja) 2016-02-24 2017-08-31 富士フイルム株式会社 二次電池用電極活物質、固体電解質組成物、全固体二次電池用電極シートおよび全固体二次電池、並びに、二次電池用電極活物質、全固体二次電池用電極シートおよび全固体二次電池の製造方法
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
KR20180035602A (ko) * 2016-09-29 2018-04-06 주식회사 엘지화학 다공성 집전체를 포함하는 전고체 전지용 전극 복합체
CN110291675B (zh) * 2017-02-16 2023-02-21 富士胶片株式会社 固体电解质组合物、含固体电解质的片材及全固态二次电池、以及后两者的制造方法
US10944128B2 (en) * 2017-03-30 2021-03-09 International Business Machines Corporation Anode structure for solid-state lithium-based thin-film battery
KR101890844B1 (ko) * 2017-11-24 2018-08-22 주식회사 리베스트 최외곽 전극의 구조 및 집전체의 재질에 의해 사용 안전성이 향상된 전극 조립체 및 상기 전극 조립체를 갖는 리튬이온 이차전지
KR102509138B1 (ko) 2018-04-30 2023-03-13 주식회사 엘지에너지솔루션 음극용 펠릿 조성물, 이를 포함하는 리튬 이차전지용 음극 및 리튬 이차전지
CN112204799A (zh) * 2018-05-17 2021-01-08 本田技研工业株式会社 锂离子二次电池
CN110867560B (zh) * 2018-08-28 2021-04-02 宁德时代新能源科技股份有限公司 一种负极极片及二次电池
CN109546079B (zh) * 2018-11-23 2022-05-17 哈尔滨工业大学 一种高电压型复合固态正极及其制备方法和包含该正极的全固态电池及其制备方法
CN111276668B (zh) * 2018-12-05 2023-03-10 丰田自动车株式会社 全固体电池用电极层叠体及其制造方法
CN109860603B (zh) * 2019-01-21 2022-01-28 珠海冠宇电池股份有限公司 锂电池极片及其制备方法及锂电池
CN109817883B (zh) * 2019-01-21 2021-04-23 珠海冠宇电池股份有限公司 一种锂电池极片及其制备方法及锂电池
CN114079055A (zh) * 2020-08-12 2022-02-22 恒大新能源技术(深圳)有限公司 一体化正极及其制备方法和固态电池
CN112010306B (zh) * 2020-09-04 2022-02-08 中国科学院宁波材料技术与工程研究所 一种max相材料包覆的富锂锰基正极材料及其制备方法
KR20220063392A (ko) * 2020-11-10 2022-05-17 주식회사 엘지에너지솔루션 전고체 전지용 음극 및 이를 포함하는 전고체 전지
JP7174085B2 (ja) * 2021-01-15 2022-11-17 本田技研工業株式会社 二次電池
JP7190517B2 (ja) * 2021-01-19 2022-12-15 本田技研工業株式会社 コイン型全固体電池及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228203A (ja) * 1999-02-05 2000-08-15 Toshiba Battery Co Ltd ポリマーリチウム二次電池
JP2003007305A (ja) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2009176550A (ja) * 2008-01-24 2009-08-06 Panasonic Corp 非水系二次電池用電極板およびこれを用いた非水系二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100047691A1 (en) * 2006-10-25 2010-02-25 Sumitomo Chemical Company, Limited Lithium secondary battery
US9017877B2 (en) * 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
KR101225239B1 (ko) * 2009-06-30 2013-01-22 파나소닉 주식회사 비수 전해질 이차전지용 양극 및 그 제조방법 및 비수 전해질 이차전지
US20130040188A1 (en) * 2011-08-12 2013-02-14 Fortu Intellectual Property Ag Rechargeable electrochemical battery cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000228203A (ja) * 1999-02-05 2000-08-15 Toshiba Battery Co Ltd ポリマーリチウム二次電池
JP2003007305A (ja) * 2001-04-19 2003-01-10 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2009176550A (ja) * 2008-01-24 2009-08-06 Panasonic Corp 非水系二次電池用電極板およびこれを用いた非水系二次電池

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153459A (ja) * 2014-02-10 2015-08-24 古河機械金属株式会社 電極シート、全固体型リチウムイオン電池、および電極シートの製造方法
JP2018516435A (ja) * 2015-06-04 2018-06-21 イーオープレックス リミテッド 固体電池およびその製造方法
JP2017208250A (ja) * 2016-05-19 2017-11-24 マクセルホールディングス株式会社 全固体リチウム二次電池及びその製造方法
JP2018535535A (ja) * 2016-09-09 2018-11-29 エルジー・ケム・リミテッド 3次元網状構造の電極集電体を含む電極
US10840538B2 (en) 2017-05-29 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Lithium metal secondary battery using lithium metal as negative electrode active material
EP3410516A1 (en) 2017-05-29 2018-12-05 Panasonic Intellectual Property Management Co., Ltd. Lithium metal secondary battery
US11404685B2 (en) 2018-03-29 2022-08-02 Toyota Jidosha Kabushiki Kaisha Anode, and sulfide solid-state battery
JP2019175838A (ja) * 2018-03-29 2019-10-10 トヨタ自動車株式会社 負極及び硫化物固体電池
JP2019054012A (ja) * 2019-01-09 2019-04-04 古河機械金属株式会社 電極シート、全固体型リチウムイオン電池、および電極シートの製造方法
JP2020145136A (ja) * 2019-03-08 2020-09-10 トヨタ自動車株式会社 負極用スラリー
JP7074099B2 (ja) 2019-03-08 2022-05-24 トヨタ自動車株式会社 負極用スラリー
JP2022104375A (ja) * 2020-12-28 2022-07-08 本田技研工業株式会社 リチウムイオン二次電池用電極
JP7239551B2 (ja) 2020-12-28 2023-03-14 本田技研工業株式会社 リチウムイオン二次電池用電極
JP2022108360A (ja) * 2021-01-13 2022-07-26 本田技研工業株式会社 電極及びそれを用いた二次電池
JP7170759B2 (ja) 2021-01-13 2022-11-14 本田技研工業株式会社 電極及びそれを用いた二次電池
JP7190516B2 (ja) 2021-01-19 2022-12-15 本田技研工業株式会社 円筒形固体電池及びその製造方法
JP2022110670A (ja) * 2021-01-19 2022-07-29 本田技研工業株式会社 円筒形固体電池及びその製造方法
WO2024029466A1 (ja) * 2022-08-02 2024-02-08 マクセル株式会社 全固体電池

Also Published As

Publication number Publication date
KR20140137371A (ko) 2014-12-02
US20150017549A1 (en) 2015-01-15
DE112013001595T5 (de) 2015-01-08
JPWO2013140942A1 (ja) 2015-08-03
CN104205467A (zh) 2014-12-10

Similar Documents

Publication Publication Date Title
WO2013140942A1 (ja) 全固体リチウム二次電池
JP6016136B2 (ja) リチウム二次電池
WO2013125485A1 (ja) 全固体リチウム二次電池
WO2013140941A1 (ja) 集電体用三次元網状金属多孔体及び電極並びに非水電解質二次電池
US20120264022A1 (en) Electrode for electrochemical device and method for producing the same
WO2011152241A1 (ja) 非水電解質電池用集電体、及び非水電解質電池用電極、並びに非水電解質電池
US9184435B2 (en) Electrode for electrochemical element and method for producing the same
US9484570B2 (en) Method for producing electrode for electrochemical element
JP2012186145A (ja) 電気化学素子用電極の製造方法
WO2013146454A1 (ja) 電極材料及び全固体リチウム二次電池、並びに製造方法
US8541134B2 (en) Electrode using three-dimensional network aluminum porous body, and nonaqueous electrolyte battery, capacitor and lithium-ion capacitor with nonaqueous electrolytic solution, each using the electrode
JP2011249252A (ja) 非水電解質電池用電極の製造方法、非水電解質電池用電極及び非水電解質電池
JP2012256583A (ja) 電気化学素子用電極の製造方法
JP5708928B2 (ja) 電池用集電体及びその製造方法
WO2014192645A1 (ja) アルミニウム多孔体の製造方法、アルミニウム多孔体、集電体、電極、及び電気化学デバイス
WO2012111746A1 (ja) 電気化学素子用電極
JP2014235851A (ja) アルミニウム多孔体、集電体、電極及び電気化学デバイス
JP2012219372A (ja) アルミニウム多孔体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13764287

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014506096

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14382782

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20147026095

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112013001595

Country of ref document: DE

Ref document number: 1120130015951

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13764287

Country of ref document: EP

Kind code of ref document: A1