WO2013139062A1 - 一种液晶显示面板及其制造方法 - Google Patents

一种液晶显示面板及其制造方法 Download PDF

Info

Publication number
WO2013139062A1
WO2013139062A1 PCT/CN2012/074757 CN2012074757W WO2013139062A1 WO 2013139062 A1 WO2013139062 A1 WO 2013139062A1 CN 2012074757 W CN2012074757 W CN 2012074757W WO 2013139062 A1 WO2013139062 A1 WO 2013139062A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
color filter
array region
black matrix
radiation
Prior art date
Application number
PCT/CN2012/074757
Other languages
English (en)
French (fr)
Inventor
马小龙
Original Assignee
深圳市华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电技术有限公司 filed Critical 深圳市华星光电技术有限公司
Priority to US13/521,698 priority Critical patent/US20130250217A1/en
Publication of WO2013139062A1 publication Critical patent/WO2013139062A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/08Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 light absorbing layer
    • G02F2201/086UV absorbing

Definitions

  • the present invention relates to a liquid crystal display panel, and in particular to a liquid crystal display panel and a method of fabricating the same.
  • the display is an important component for displaying relevant information.
  • the user can read the information from the display to control the operation of the device.
  • the liquid crystal display panel is a main component of the liquid crystal display, and mainly includes a color filter substrate (CF substrate) and a thin film transistor substrate (TFT substrate).
  • a transparent electrode is disposed on the opposite inner side of the two substrates, and a layer of liquid crystal molecules is dropped between the two substrates.
  • the liquid crystal display panel controls the orientation of the liquid crystal molecules by an electric field, changes the polarization state of the light, and realizes the penetration and blocking of the light by the polarizing plate, thereby achieving the purpose of display.
  • the CF substrate and the TFT substrate are generally paired by a radiation curing agent (frame glue).
  • the radiation curing agent is generally composed of acrylic, epoxy resin, photoinitiator, etc., and curing of the radiation curing agent is achieved by heating or ultraviolet light (UV light) irradiation or both, so that the CF substrate and the TFT substrate are bonded. Together.
  • the current mainstream curing method is to use a combination of heating and UV light to achieve curing.
  • the radiation curing agent is irradiated with UV light to cure it, the UV light is generally irradiated from the side of the TFT substrate.
  • a UV mask UV is placed between the UV light and the TFT substrate.
  • Mask is used to block UV light from being irradiated onto the display area to prevent UV light from damaging the polyimide (PI) material and the liquid crystal material in the display area.
  • the above method has the following drawbacks: whenever the panel size is changed, a corresponding UV mask is produced, which causes waste of resources and increases manufacturing costs. At the same time, since the periphery of the TFT substrate usually has a large area of opaque metal traces, the radiation curing agent under the metal traces in the curing process may be insufficiently cured due to the shading of the metal traces.
  • the technical problem to be solved by the present invention is to provide a liquid crystal display panel and a method of manufacturing the same, which solves the problems of increased manufacturing cost and insufficient curing of the radiation curing agent existing in the prior art.
  • the manufacturing method of the liquid crystal display panel includes: a first substrate and a second substrate are disposed oppositely, wherein the first substrate comprises a color filter array region and a first non-display region disposed at a periphery of the color filter array region, at the first
  • the substrate or the second substrate is coated with a radiation curing agent corresponding to the first non-display area; the first substrate is irradiated from the side of the first substrate remote from the second substrate by using curing radiation to make incident to the color filter array
  • the solidified radiation of the region is absorbed by the color filter array region, and the curing radiation incident on the first non-display region cures the radiation curing agent, thereby bonding the first substrate and the second substrate.
  • the second substrate includes a thin film transistor array region opposite to the color filter array region and a second non-display region located at a periphery of the thin film transistor array region, and a first black matrix is formed on the second non-display region, and the radiation curing agent is coated. An area on the first black matrix or coated on the first non-display area corresponding to the first black matrix.
  • the color filter array region includes a plurality of color filter units arranged in an array, and the thin film transistor array region includes a second black matrix corresponding to a boundary position between the color filter units.
  • the first black matrix is formed in synchronization with the second black matrix.
  • the color filter array region includes a plurality of color filter units arranged in an array and a second black matrix located between the color filter units.
  • the radiation curing agent is an ultraviolet curing agent, and the curing radiation is ultraviolet light.
  • the liquid crystal display panel includes a first substrate including a color filter array region and a first non-display region disposed at a periphery of the color filter array region, and a second substrate disposed opposite to the first substrate and including the color filter a thin film transistor array region opposite to the light film array region and a second non-display region located at a periphery of the thin film transistor array region; a first black matrix is formed on the second non-display region; and a radiation curing agent is coated on the first black matrix. To bond the first substrate and the second substrate.
  • the color filter array region includes a plurality of color filter units arranged in an array, and the thin film transistor array region includes a second black matrix corresponding to a boundary position between the color filter units.
  • the first black matrix is formed in synchronization with the second black matrix.
  • the color filter array region includes a plurality of color filter units arranged in an array and a second black matrix located between the color filter units.
  • the radiation curing agent is a UV curing agent.
  • the manufacturing method of the liquid crystal display panel includes: a first substrate and a second substrate are oppositely disposed.
  • the first substrate includes a color filter array region and a first non-display region disposed at a periphery of the color filter array region
  • the second substrate includes a thin film transistor array region opposite to the color filter array region, and is located in the thin film transistor array region a second non-display area on the periphery, a first black matrix formed on the second non-display area
  • the color filter array area includes a plurality of color filter units arranged in an array
  • the thin film transistor array area includes color filtering a second black matrix corresponding to the boundary position between the slice units, the region corresponding to the first black matrix on the first black matrix or the first non-display region is coated with a radiation curing agent; and the curing radiation is used to be away from the first substrate
  • One side of the second substrate illuminates the first
  • the first black matrix is formed in synchronization with the second black matrix.
  • the radiation curing agent is an ultraviolet curing agent, and the curing radiation is ultraviolet light.
  • the invention has the beneficial effects that the manufacturing method of the liquid crystal display panel of the invention adopts curing radiation to be irradiated from the side of the substrate on which the color filter array region is located, and absorbs the solidified radiation incident thereon by using the color filter array region. And using the non-display area around the color filter array area to transmit the curing radiation incident thereon, thereby realizing the curing of the radiation curing agent, effectively solving the occlusion of the peripheral metal traces in the thin film transistor array area.
  • the resulting radiation curing agent has insufficient curing, and does not require a UV mask, thereby reducing the manufacturing cost of the liquid crystal display panel.
  • FIG. 1 is a flow chart showing a method of fabricating a liquid crystal display panel according to an embodiment of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a liquid crystal display panel manufactured by the manufacturing method shown in FIG. 1;
  • Fig. 3 is a schematic structural view showing another embodiment of a liquid crystal display panel manufactured by the manufacturing method shown in Fig. 1.
  • FIG. 1 is a flow chart showing a method of manufacturing a liquid crystal display panel according to an embodiment of the present invention.
  • 2 is a schematic structural view of an embodiment of a liquid crystal display panel manufactured by the manufacturing method shown in FIG. 1. As shown in FIGS. 1 and 2, the manufacturing method of the liquid crystal display panel of this embodiment includes the following steps:
  • Step S100 The first substrate 21 and the second substrate 22 are oppositely disposed.
  • the first substrate 21 includes a color filter array region 211 and a first non-display region 212 disposed at a periphery of the color filter array region 211
  • the second substrate 22 includes a color filter array region 211.
  • the first thin matrix transistor region 221 and the second non-display region 222 located at the periphery of the thin film transistor array region 221 are formed with a first black matrix 2221 on the second non-display region 222.
  • the thin film transistor array region 221 refers to an array region composed of a thin film transistor (i.e., TFT, not shown) and a pixel electrode (not shown).
  • the first black matrix 2221 surrounds the thin film transistor array region 221 for blocking defects in the edge regions thereof due to diffraction of curing radiation.
  • the color filter patch array area 211 includes a plurality of color filter units 2111 arranged in an array and a second black matrix 2112 located between the color filter units 2111.
  • the plurality of color filter units 2111 are configured to transmit light of a predetermined wavelength band while reflecting or absorbing light of other wavelength bands to realize color display of the liquid crystal display panel.
  • the plurality of color filter units 2111 are generally arranged alternately according to different primary colors, such as red, green, blue, and the like.
  • the main function of the second black matrix 2112 is to prevent light leakage between the color filter units 2111 to enhance the contrast of the color contrast of the liquid crystal display panel.
  • the radiation curing agent 23 is applied to the region of the first non-display area 212 corresponding to the first black matrix 2221. In other embodiments, the radiation curing agent 23 may also be coated on the first black matrix 2221 or any suitable position corresponding to the first non-display area 212 coated on the first substrate 21 or the second substrate 22. .
  • Step S200 illuminating the first substrate 21 from the side of the first substrate 21 remote from the second substrate 22 by using curing radiation, so that the curing radiation incident on the color filter array region 211 is absorbed by the color filter array region 211, The curing radiation incident on the first non-display area 212 cures the radiation curing agent 23, thereby bonding the first substrate 21 and the second substrate 22.
  • the radiation curing agent 23 is preferably an ultraviolet curing agent, and the curing radiation is preferably ultraviolet light.
  • the ultraviolet light is irradiated from one side of the first substrate 21, the color filter unit 2111 and the second black matrix 2112 of the color filter array region 211 of the first substrate 21 absorb about 95% of the ultraviolet light, and the color The first non-display area 212 at the periphery of the filter array area 211 is incapable of absorbing ultraviolet light.
  • the photoinitiator in the radiation curing agent 23 absorbs the light energy of the ultraviolet light and decomposes into a radical, thereby initiating photopolymerization of the monomer, and further bonding.
  • a substrate 21 and a second substrate 22 are preferred to carry out heating and curing radiation together.
  • Fig. 3 is a schematic structural view showing another embodiment of a liquid crystal display panel manufactured by the manufacturing method shown in Fig. 1.
  • the liquid crystal display panel of the present embodiment includes a first substrate 31 and a second substrate 32 which are disposed opposite to each other.
  • the first substrate 31 includes a color filter array region 311 and a first non-display region 312 disposed on the periphery of the color filter array region 311.
  • the second substrate 32 includes a color filter array region 311.
  • the color filter array area 311 includes a plurality of color filter units 3111 arranged in an array. The position of the second black matrix 3211 corresponds to the boundary position between the color filter units 3111.
  • the radiation curing agent 33 is applied to the region of the first non-display area 312 corresponding to the first black matrix 3221. In other embodiments, the radiation curing agent 33 may also be coated on the first black matrix 3221 or any suitable position corresponding to the first non-display area 312 coated on the first substrate 31 or the second substrate 32. .
  • the difference between the embodiment and the embodiment shown in FIG. 2 is that the first black matrix 3221 and the second black matrix 3211 are both formed on the second substrate 32, and can be formed simultaneously, thereby reducing the formation on the first substrate 31.
  • the steps of the two black matrix 3211 simplify the process.
  • the color filter unit 3111 of the color filter array region 311 of the first substrate 31 absorbs most of the curing radiation, and
  • the first non-display area 312 on the periphery of the color filter array area 311 cannot absorb the curing radiation, thereby curing the radiation curing agent 33.
  • the defects caused by the transmitted solidified radiation are blocked by the second black matrix 3211 on the second substrate 32, so that the display effect is not affected.
  • the present invention further provides a liquid crystal display panel as shown in FIG. 1 and FIG. 2 manufactured by the above manufacturing method.
  • the specific structure of the liquid crystal display panel has been described in detail above, and details are not described herein again.
  • the manufacturing method of the liquid crystal display panel of the present invention adopts curing radiation to be irradiated from the side of the substrate on which the color filter array region is located, and absorbs the solidified radiation incident thereon by using the color filter array region, and utilizes The non-display area around the color filter array area transmits the curing radiation incident thereon, thereby realizing the curing of the radiation curing agent, effectively solving the radiation generated by the shielding of the peripheral metal traces of the thin film transistor array area.
  • the curing agent is insufficiently cured, and a UV mask is not required, thereby reducing the manufacturing cost of the liquid crystal display panel.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示面板及其制造方法。该液晶显示面板的制造方法包括:相对设置第一基板(21)和第二基板(22),其中第一基板(21)包括彩色滤光片阵列区(211)以及设置于彩色滤光片阵列区(211)***的第一非显示区(212),在第一基板(21)或第二基板(22)上涂布有与第一非显示区(212)对应的辐射固化剂(23);利用固化辐射从第一基板(21)的远离第二基板(22)的一侧照射第一基板(21),以使入射到彩色滤光片阵列区(211)的固化辐射被彩色滤光片阵列区(211)吸收,入射到第一非显示区(212)的固化辐射对辐射固化剂(23)进行固化,进而黏合第一基板(21)和第二基板(22)。通过上述方法,能够有效的解决因薄膜晶体管阵列区(221)的***金属走线的遮挡而产生的辐射固化剂(23)固化不足的问题,并且不需要UV光罩,从而降低了液晶显示面板的制造成本。

Description

一种液晶显示面板及其制造方法
【技术领域】
本发明涉及液晶显示面板,具体而言涉及一种液晶显示面板及其制造方法。
【背景技术】
随着高科技的发展,视频产品,特别是数字化的视频或影像装置已经成为一般生活中所常见的产品。这些数字化的视频或影像装置中,显示器是一个重要组件,用来显示相关信息。使用者可由显示器读取信息,进而控制装置的运作。
液晶显示面板作为液晶显示器的主要元件,其主要包含彩色滤光片基板(CF基板)和薄膜晶体管基板(TFT基板)。两片基板的相对内侧设置透明电极,且两片基板之间滴设有一层液晶分子。液晶显示面板是通过电场对液晶分子取向的控制,改变光的偏振状态,并藉由偏光板实现光线的穿透与阻挡,从而实现显示的目的。
CF基板和TFT基板一般通过辐射固化剂(框胶)进行对组。辐射固化剂一般由亚克力、环氧树脂、光起始剂等组成,通过加热或紫外光(UV光)照射、或者两种兼有的方式实现辐射固化剂的固化,使CF基板与TFT基板黏合在一起。现今主流的固化方法是采用加热与UV光照射两种方式相结合共同实现固化。当用UV光照射辐射固化剂使之固化时,UV光一般从TFT基板一侧进行照射。在固化制程中,UV光与TFT基板之间会放置UV光罩(UV mask)用以遮挡UV光照射到显示区域,防止UV光对显示区域内的聚酰亚胺(PI)材料与液晶材料造成损伤。
以上方法存在以下缺陷:每当改变面板尺寸时,就要制作相应的UV光罩,造成资源浪费的问题,增加了制造成本。同时,由于TFT基板***通常会有大面积的不透光金属走线,固化制程中金属走线下方的辐射固化剂会由于金属走线的遮光而造成固化的不足。
【发明内容】
本发明主要解决的技术问题是提供一种液晶显示面板及其制造方法,以解决现有技术存在的制造成本增加以及辐射固化剂固化不足的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种液晶显示面板的制造方法。该液晶显示面板的制造方法包括:相对设置第一基板和第二基板,其中第一基板包括彩色滤光片阵列区以及设置于彩色滤光片阵列区***的第一非显示区,在第一基板或第二基板上涂布有与第一非显示区对应的辐射固化剂;利用固化辐射从第一基板的远离第二基板的一侧照射第一基板,以使入射到彩色滤光片阵列区的固化辐射被彩色滤光片阵列区吸收,入射到第一非显示区的固化辐射对辐射固化剂进行固化,进而黏合第一基板和第二基板。
其中,第二基板包括与彩色滤光片阵列区相对的薄膜晶体管阵列区以及位于薄膜晶体管阵列区***的第二非显示区,第二非显示区上形成有第一黑矩阵,辐射固化剂涂布于第一黑矩阵上或涂布于第一非显示区的与第一黑矩阵对应的区域。
其中,彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元,薄膜晶体管阵列区包括与彩色滤光片单元之间的分界位置对应的第二黑矩阵。
其中,第一黑矩阵与第二黑矩阵同步形成。
其中,彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元以及位于彩色滤光片单元之间的第二黑矩阵。
其中,辐射固化剂为紫外固化剂,固化辐射为紫外光。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶显示面板。该液晶显示面板包括:第一基板,包括彩色滤光片阵列区以及设置于彩色滤光片阵列区***的第一非显示区;第二基板,与第一基板相对设置,且包括与彩色滤光片阵列区相对的薄膜晶体管阵列区以及位于薄膜晶体管阵列区***的第二非显示区,第二非显示区上形成有第一黑矩阵;辐射固化剂,涂布于第一黑矩阵上,以黏合第一基板和第二基板。
其中,彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元,薄膜晶体管阵列区包括与彩色滤光片单元之间的分界位置对应的第二黑矩阵。
其中,第一黑矩阵与第二黑矩阵同步形成。
其中,彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元以及位于彩色滤光片单元之间的第二黑矩阵。
其中,辐射固化剂为紫外固化剂。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种液晶显示面板的制造方法。该液晶显示面板的制造方法包括:相对设置第一基板和第二基板。第一基板包括彩色滤光片阵列区以及设置于彩色滤光片阵列区***的第一非显示区,第二基板包括与彩色滤光片阵列区相对的薄膜晶体管阵列区以及位于薄膜晶体管阵列区***的第二非显示区,第二非显示区上形成有第一黑矩阵,彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元,薄膜晶体管阵列区包括与彩色滤光片单元之间的分界位置对应的第二黑矩阵,第一黑矩阵上或第一非显示区的与第一黑矩阵对应的区域涂布有辐射固化剂;利用固化辐射从第一基板的远离第二基板的一侧照射第一基板,以使入射到彩色滤光片阵列区的固化辐射被彩色滤光片阵列区吸收,入射到第一非显示区的固化辐射对辐射固化剂进行固化,进而黏合第一基板和第二基板。
其中,第一黑矩阵与第二黑矩阵同步形成。
其中,辐射固化剂为紫外固化剂,固化辐射为紫外光。
本发明的有益效果是:本发明的液晶显示面板的制造方法采取固化辐射从彩色滤光片阵列区所在基板一侧进行照射,利用彩色滤光片阵列区对入射到其上的固化辐射进行吸收,并利用彩色滤光片阵列区***的非显示区对入射到其上的固化辐射进行透射,进而实现辐射固化剂的固化,有效的解决了因薄膜晶体管阵列区的***金属走线的遮挡而产生的辐射固化剂固化不足的问题,并且不需要UV光罩,从而降低了液晶显示面板的制造成本。
【附图说明】
图1是本发明实施例的液晶显示面板制造方法的流程图;
图2是由图1所示的制造方法制造的液晶显示面板的一实施例的结构示意图;
图3是由图1所示的制造方法制造的液晶显示面板的另一实施例的结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
图1是本发明实施例的液晶显示面板的制造方法的流程图。图2是由图1所示的制造方法制造的液晶显示面板的一实施例的结构示意图。如图1和2所示,本实施例的液晶显示面板的制造方法包括如下步骤:
步骤S100:相对设置第一基板21和第二基板22。
在本实施例中,第一基板21包括彩色滤光片阵列区211以及设置于彩色滤光片阵列区211***的第一非显示区212,第二基板22包括与彩色滤光片阵列区211相对的薄膜晶体管阵列区221以及位于薄膜晶体管阵列区221***的第二非显示区222,第二非显示区222上形成有第一黑矩阵2221。薄膜晶体管阵列区221是指由薄膜晶体管(即TFT,未图示)以及像素电极(未图示)所构成的阵列区。第一黑矩阵2221包围薄膜晶体管阵列区221,用于阻挡其边缘区域因固化辐射的衍射而导致的不良。
在本实施例中,彩色滤过片阵列区211包括以阵列方式排列的多个彩色滤光片单元2111以及位于彩色滤光片单元2111之间的第二黑矩阵2112。其中,多个彩色滤光片单元2111用于透射预定波段的光线,同时反射或吸收其他波段的光线,以实现液晶显示面板的彩色显示。多个彩色滤光片单元2111一般按照不同基色交替排列,比如:红色、绿色、蓝色等。第二黑矩阵2112的主要作用是用于防止彩色滤光片单元2111之间的漏光,以增强液晶显示面板色彩反差的对比。
在本实施例中,在第一非显示区212的与第一黑矩阵2221对应的区域涂布辐射固化剂23。在其他实施例中,辐射固化剂23也可以涂布于第一黑矩阵2221上,或者是涂布于第一基板21或第二基板22上的与第一非显示区212对应的任意适当位置。
步骤S200:利用固化辐射从第一基板21的远离第二基板22的一侧照射第一基板21,以使入射到彩色滤光片阵列区211的固化辐射被彩色滤光片阵列区211吸收,入射到第一非显示区212的固化辐射对辐射固化剂23进行固化,进而黏合第一基板21和第二基板22。
在本实施例中,辐射固化剂23优选为紫外固化剂,而固化辐射优选为紫外光。当紫外光从第一基板21的一侧照射时,第一基板21的彩色滤光片阵列区211的彩色滤光片单元2111以及第二黑矩阵2112会吸收约95%的紫外光,而彩色滤光片阵列区211***的第一非显示区212不能吸收紫外光。紫外光入射到第一非显示区212上的辐射固化剂23后,辐射固化剂23中的光引发剂吸收紫外光的光能量而分解成游离基进而引发单体进行光聚合反应,进而黏合第一基板21和第二基板22。其中,在进行固化时,优选加热与固化辐射两种方式共同进行。
图3是由图1所示的制造方法制造的液晶显示面板的另一实施例的结构示意图。如图3所示,本实施例的液晶显示面板包括相对设置的第一基板31和第二基板32。
在本实施例中,第一基板31包括彩色滤光片阵列区311以及设置于彩色滤光片阵列区311***的第一非显示区312,第二基板32包括与彩色滤光片阵列区311相对的薄膜晶体管阵列区321以及位于薄膜晶体管阵列区321***的第二非显示区322,第二非显示区322上形成有第一黑矩阵3221,薄膜晶体管阵列区321上形成有第二黑矩阵3211。彩色滤过片阵列区311包括以阵列方式排列的多个彩色滤光片单元3111。第二黑矩阵3211的位置与彩色滤光片单元3111之间的分界位置对应。
在本实施例中,在第一非显示区312的与第一黑矩阵3221对应的区域涂布辐射固化剂33。在其他实施例中,辐射固化剂33也可以涂布于第一黑矩阵3221上,或者是涂布于第一基板31或第二基板32上的与第一非显示区312对应的任意适当位置。
本实施例与图2所示的实施例的区别在于,第一黑矩阵3221和第二黑矩阵3211均形成于第二基板32上,进而可同步形成,减少了在第一基板31上形成第二黑矩阵3211的步骤,简化了制程。当利用固化辐射从第一基板31的远离第二基板32的一侧照射第一基板31,第一基板31的彩色滤光片阵列区311的彩色滤光片单元3111吸收大部分固化辐射,而彩色滤光片阵列区311***的第一非显示区312不能吸收固化辐射,进而对辐射固化剂33进行固化。此时,虽然彩色滤光片单元3111之间会透射少量的固化辐射,但透射的固化辐射所造成的不良被第二基板32上的第二黑矩阵3211遮挡,进而不会影响显示效果。
本发明进一步提供了由上述制造方法制造的如图1和图2所示的液晶显示面板,该液晶显示面板的具体结构已经在上文进行详细描述,在此不再赘述。
通过上述方式,本发明的液晶显示面板的制造方法采取固化辐射从彩色滤光片阵列区所在基板一侧进行照射,利用彩色滤光片阵列区对入射到其上的固化辐射进行吸收,并利用彩色滤光片阵列区***的非显示区对入射到其上的固化辐射进行透射,进而实现辐射固化剂的固化,有效的解决了因薄膜晶体管阵列区的***金属走线的遮挡而产生的辐射固化剂固化不足的问题,并且不需要UV光罩,从而降低了液晶显示面板的制造成本。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (14)

  1. 一种液晶显示面板的制造方法,其特征在于,包括:
    相对设置第一基板和第二基板,其中所述第一基板包括彩色滤光片阵列区以及设置于所述彩色滤光片阵列区***的第一非显示区,在所述第一基板或所述第二基板上涂布有与所述第一非显示区对应的辐射固化剂;
    利用固化辐射从所述第一基板的远离所述第二基板的一侧照射所述第一基板,以使入射到所述彩色滤光片阵列区的所述固化辐射被所述彩色滤光片阵列区吸收,入射到所述第一非显示区的所述固化辐射对所述辐射固化剂进行固化,进而黏合所述第一基板和所述第二基板。
  2. 根据权利要求1所述的制造方法,其特征在于,所述第二基板包括与所述彩色滤光片阵列区相对的薄膜晶体管阵列区以及位于所述薄膜晶体管阵列区***的第二非显示区,所述第二非显示区上形成有第一黑矩阵,所述辐射固化剂涂布于所述第一黑矩阵上或涂布于所述第一非显示区的与所述第一黑矩阵对应的区域。
  3. 根据权利要求2所述的制造方法,其特征在于,所述彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元,所述薄膜晶体管阵列区包括与所述彩色滤光片单元之间的分界位置对应的第二黑矩阵。
  4. 根据权利要求3所述的制造方法,其特征在于,所述第一黑矩阵与所述第二黑矩阵同步形成。
  5. 根据权利要求2所述的制造方法,其特征在于,所述彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元以及位于所述彩色滤光片单元之间的第二黑矩阵。
  6. 根据权利要求1所述的制造方法,其特征在于,所述辐射固化剂为紫外固化剂,所述固化辐射为紫外光。
  7. 一种液晶显示面板,其特征在于,包括:
    第一基板,包括彩色滤光片阵列区以及设置于所述彩色滤光片阵列区***的第一非显示区;
    第二基板,与所述第一基板相对设置,且包括与所述彩色滤光片阵列区相对的薄膜晶体管阵列区以及位于所述薄膜晶体管阵列区***的第二非显示区,所述第二非显示区上形成有第一黑矩阵;
    辐射固化剂,涂布于所述第一黑矩阵上,以黏合所述第一基板和所述第二基板。
  8. 根据权利要求7所述的液晶显示面板,其特征在于,所述彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元,所述薄膜晶体管阵列区包括与所述彩色滤光片单元之间的分界位置对应的第二黑矩阵。
  9. 根据权利要求7所述的液晶显示面板,其特征在于,所述第一黑矩阵与所述第二黑矩阵同步形成。
  10. 根据权利要求9所述的液晶显示面板,其特征在于,所述彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元以及位于所述彩色滤光片单元之间的第二黑矩阵。
  11. 根据权利要求7所述的液晶显示面板,其特征在于,所述辐射固化剂为紫外固化剂。
  12. 一种液晶显示面板的制造方法,其特征在于,包括:
    相对设置第一基板和第二基板,其中所述第一基板包括彩色滤光片阵列区以及设置于所述彩色滤光片阵列区***的第一非显示区,所述第二基板包括与所述彩色滤光片阵列区相对的薄膜晶体管阵列区以及位于所述薄膜晶体管阵列区***的第二非显示区,所述第二非显示区上形成有第一黑矩阵,所述彩色滤光片阵列区包括以阵列方式排列的多个彩色滤光片单元,所述薄膜晶体管阵列区包括与所述彩色滤光片单元之间的分界位置对应的第二黑矩阵,所述第一黑矩阵上或所述第一非显示区的与所述第一黑矩阵对应的区域涂布有辐射固化剂;
    利用固化辐射从所述第一基板的远离所述第二基板的一侧照射所述第一基板,以使入射到所述彩色滤光片阵列区的所述固化辐射被所述彩色滤光片阵列区吸收,入射到所述第一非显示区的所述固化辐射对所述辐射固化剂进行固化,进而黏合所述第一基板和所述第二基板。
  13. 根据权利要求12所述的制造方法,其特征在于,所述第一黑矩阵与所述第二黑矩阵同步形成。
  14. 根据权利要求12所述的制造方法,其特征在于,所述辐射固化剂为紫外固化剂,所述固化辐射为紫外光。
PCT/CN2012/074757 2012-03-23 2012-04-26 一种液晶显示面板及其制造方法 WO2013139062A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/521,698 US20130250217A1 (en) 2012-03-23 2012-04-26 Liquid Crystal Display Panel and Manufacturing Method Thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210081667.X 2012-03-23
CN201210081667XA CN102608794A (zh) 2012-03-23 2012-03-23 一种液晶显示面板及其制造方法

Publications (1)

Publication Number Publication Date
WO2013139062A1 true WO2013139062A1 (zh) 2013-09-26

Family

ID=46526275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/074757 WO2013139062A1 (zh) 2012-03-23 2012-04-26 一种液晶显示面板及其制造方法

Country Status (2)

Country Link
CN (1) CN102608794A (zh)
WO (1) WO2013139062A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102799018A (zh) * 2012-08-09 2012-11-28 深圳市华星光电技术有限公司 液晶显示面板及其制造方法
CN103681730B (zh) * 2012-09-19 2017-06-09 群康科技(深圳)有限公司 显示面板
KR102152737B1 (ko) * 2014-01-13 2020-09-08 삼성디스플레이 주식회사 표시 장치 및 그 제조 방법
CN104049416A (zh) * 2014-06-23 2014-09-17 京东方科技集团股份有限公司 一种液晶显示屏、其制备方法与显示装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135953A1 (en) * 2002-12-30 2004-07-15 Lee Chang Hoon In-plane switching mode liquid crystal display device and method for manufacturing the same
TW200515039A (en) * 2003-10-29 2005-05-01 Hannstar Display Corp Liquid crystal display device with narrow forehead edge
CN1632646A (zh) * 2004-12-31 2005-06-29 友达光电股份有限公司 显示面板
CN1721955A (zh) * 2004-07-13 2006-01-18 鸿富锦精密工业(深圳)有限公司 框胶固化装置和方法以及液晶面板制造方法
TWI282475B (en) * 2002-07-26 2007-06-11 Chi Mei Optoelectronics Corp Liquid crystal display device
CN101533191A (zh) * 2008-03-13 2009-09-16 北京京东方光电科技有限公司 Tft-lcd阵列基板结构及其制备方法
CN101697044A (zh) * 2009-06-24 2010-04-21 深超光电(深圳)有限公司 液晶显示装置及其制造方法
CN102023406A (zh) * 2009-09-14 2011-04-20 北京京东方光电科技有限公司 液晶显示面板及其制造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI282475B (en) * 2002-07-26 2007-06-11 Chi Mei Optoelectronics Corp Liquid crystal display device
US20040135953A1 (en) * 2002-12-30 2004-07-15 Lee Chang Hoon In-plane switching mode liquid crystal display device and method for manufacturing the same
TW200515039A (en) * 2003-10-29 2005-05-01 Hannstar Display Corp Liquid crystal display device with narrow forehead edge
CN1721955A (zh) * 2004-07-13 2006-01-18 鸿富锦精密工业(深圳)有限公司 框胶固化装置和方法以及液晶面板制造方法
CN1632646A (zh) * 2004-12-31 2005-06-29 友达光电股份有限公司 显示面板
CN101533191A (zh) * 2008-03-13 2009-09-16 北京京东方光电科技有限公司 Tft-lcd阵列基板结构及其制备方法
CN101697044A (zh) * 2009-06-24 2010-04-21 深超光电(深圳)有限公司 液晶显示装置及其制造方法
CN102023406A (zh) * 2009-09-14 2011-04-20 北京京东方光电科技有限公司 液晶显示面板及其制造方法

Also Published As

Publication number Publication date
CN102608794A (zh) 2012-07-25

Similar Documents

Publication Publication Date Title
CN106773252B (zh) 一种液晶面板及液晶显示器
WO2014082326A1 (zh) 液晶显示装置及其彩色滤光片基板
JP3905448B2 (ja) 液晶表示素子及びその製造方法
TW505805B (en) Liquid crystal display device and producing method thereof
WO2011062009A1 (ja) 液晶パネルおよび液晶表示装置
WO2013155697A1 (zh) 液晶显示模组及液晶显示装置
WO2013159417A1 (zh) 液晶显示模组及液晶显示装置
WO2012162933A1 (zh) 彩色滤光片基板的制造方法、光学掩膜及光反应层
WO2013139062A1 (zh) 一种液晶显示面板及其制造方法
CN111090218B (zh) 黑矩阵组合物、液晶显示面板及其制备方法
KR20120018978A (ko) 액정패널의 제조방법
WO2015003412A1 (zh) 贴合玻璃面板的方法及使用该方法的真空贴合机
WO2020133818A1 (zh) 紫外光固化设备及框胶固化方法
WO2015043021A1 (zh) 彩色滤光单元宽度的测量方法以及液晶面板的制作方法
WO2013004053A1 (zh) 液晶面板预倾角的制作装置和方法、样品台、光源装置
WO2014000239A1 (zh) 液晶显示装置、液晶显示面板的制造方法及设备
JP2006098525A (ja) 光学部品及びその製造方法並びに当該方法で製造された光学部品を有する液晶表示装置
WO2012063719A1 (ja) 液晶表示パネルとその製造方法
TW200523600A (en) In plane switching type liquid crystal display device with the same
CN104375316B (zh) 彩色滤光基板及液晶显示面板
WO2013166741A1 (zh) 液晶显示装置及其制造方法
CN107357093A (zh) 液晶显示面板
CN106773357A (zh) 液晶显示面板及液晶显示装置
WO2021093049A1 (zh) 薄膜晶体管液晶显示器
WO2020019469A1 (zh) 液晶显示面板及其制作方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13521698

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12872118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12872118

Country of ref document: EP

Kind code of ref document: A1