WO2013136841A1 - Metal melting furnace and metal melting method - Google Patents

Metal melting furnace and metal melting method Download PDF

Info

Publication number
WO2013136841A1
WO2013136841A1 PCT/JP2013/051078 JP2013051078W WO2013136841A1 WO 2013136841 A1 WO2013136841 A1 WO 2013136841A1 JP 2013051078 W JP2013051078 W JP 2013051078W WO 2013136841 A1 WO2013136841 A1 WO 2013136841A1
Authority
WO
WIPO (PCT)
Prior art keywords
furnace body
storage chamber
material storage
exhaust
metal
Prior art date
Application number
PCT/JP2013/051078
Other languages
French (fr)
Japanese (ja)
Inventor
裕介 脇田
一文 丹羽
Original Assignee
アイシン高丘株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン高丘株式会社 filed Critical アイシン高丘株式会社
Publication of WO2013136841A1 publication Critical patent/WO2013136841A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • F27B1/20Arrangements of devices for charging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B1/00Shaft or like vertical or substantially vertical furnaces
    • F27B1/10Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners

Definitions

  • the present invention is based on a Japanese patent application: Japanese Patent Application No. 2012-060016 (filed on March 16, 2012), and the entire contents of the application are incorporated herein by reference.
  • the present invention relates to a metal melting furnace for melting a metal material to create a molten metal, and a metal melting method using the same.
  • a metal melting furnace that melts a metal material put into a furnace body with a hot gas obtained by burning liquefied natural gas or the like.
  • fuel such as liquefied natural gas
  • high-temperature exhaust gas containing carbon monoxide is generated.
  • the hot exhaust gas rises in the furnace body, is introduced into an exhaust port provided in the upper part of the furnace body, and is discharged outside the furnace body.
  • the exhaust gas is mixed with outside air around the exhaust port, the contained carbon monoxide may ignite and burn.
  • carbon monoxide burns around the exhaust port the pressure in the furnace body becomes negative, and the air around the exhaust port is pulled into the furnace body and air is sucked into the furnace from the outlet.
  • Patent Document 1 discloses a vertical furnace body having a material inlet that is opened and closed by a furnace lid at the top, and a bottom portion in the furnace body.
  • a metal melting furnace having a plurality of oxyfuel combustion burners arranged in the vicinity is disclosed.
  • the furnace body of the metal melting furnace of Patent Document 1 is provided with a non-oxidizing substance introduction section for introducing a non-oxidizing gas having a specific gravity larger than air into the furnace body at a position higher than the combustion burner.
  • a technique is disclosed in which the non-oxidized gas that has been used functions as a gas barrier layer to suppress the entry of outside air when the material is charged.
  • the non-oxidizing gas introduction technique of Patent Document 1 does not assume the entry of outside air except when the furnace lid is opened, and it is difficult to completely prevent the entry of outside air due to suction from the hot water outlet. Met. For this reason, there is still a possibility that the metal material is oxidized by the introduction of outside air containing a large amount of oxygen. The oxidation of the metal material contributes to the generation of slag, which lowers the quality and quantity of the molten metal and ultimately leads to material loss. For this reason, there is a need for technology that not only prevents the entry of outside air when materials are added, but also promotes the metal melting process as efficiently as possible to further reduce material loss (generally referred to as “oxidation loss”) due to oxidation of metal materials. It was done.
  • a metal melting furnace is desired in which a decrease in furnace pressure and a decrease in furnace thermal efficiency are prevented. It is also desirable to provide a metal melting furnace capable of avoiding metal oxidation by preventing outside air from entering the furnace. In addition, there is a demand for a metal melting method in which the furnace has high thermal efficiency, the pressure in the furnace is stable, and metal oxidation can be avoided as much as possible.
  • a metal melting furnace includes a vertical furnace body having a blower opening at the top and a tapping opening at the bottom, and a material storage chamber that is adjacent to the top of the furnace body and stores metal materials.
  • the material input door is provided at the boundary between the furnace body and the material storage chamber so as to be openable and closable so that the furnace body and the material storage chamber communicate with each other and the metal material is input from the material storage chamber into the furnace body.
  • a combustion burner provided near the bottom of the furnace body to heat and melt the metal material charged into the furnace body, exhaust gas containing carbon monoxide generated by combustion of the combustion burner, and oxygen supplied from the blower port
  • an ignition burner provided at the top of the furnace body and supplying the reburned exhaust gas to the material storage chamber to preheat the stored metal material.
  • One end is open to the furnace body and the other end is material Comprises a heat discharge passage which opens into the tube chamber, the.
  • the carbon monoxide contained in the exhaust gas generated by the combustion in the combustion burner is ignited at the upper part of the furnace body by the ignition burner, and reacts with oxygen contained in the air supplied from the blower port. It becomes carbon dioxide by complete combustion. Since carbon monoxide in the exhaust gas is removed by this reaction, the exhaust gas is discharged from the exhaust port at a high temperature and does not burn even when mixed with air.
  • exhaust gas from which carbon monoxide has been removed is supplied to the material storage chamber by a heat exhaust passage having one end opened in the furnace body and the other end opened in the material storage chamber.
  • the stored metal material is preheated. By introducing the preheated metal material into the furnace body, the metal material is efficiently dissolved.
  • the first exhaust duct including the first exhaust damper is connected to the upper portion of the furnace body, and the second exhaust duct including the second exhaust damper is provided. It is preferable to be connected to the upper part of the material storage chamber.
  • the first exhaust damper is closed and the second exhaust damper is opened.
  • the first exhaust damper is opened and the second exhaust damper is closed.
  • the exhaust gas exhaust path from the furnace body is controlled, and when the metal material is stored in the material storage room and when the metal material is charged And an exhaust gas flow suitable for each can be selected.
  • the exhaust gas can be introduced into the material storage chamber and discharged from the second exhaust duct, so that the metal material is efficiently preheated.
  • the exhaust gas can be discharged from the first exhaust duct at the top of the furnace body, so that the pressure in the furnace is controlled to be constant.
  • a metal melting method includes a vertical furnace body having a first exhaust duct having a first exhaust damper and an air blowing port at an upper portion and a hot water outlet at a bottom portion, and adjacent to the upper portion of the furnace body. And is provided at the boundary between the material storage chamber provided with the second exhaust duct having the second exhaust damper and the furnace body and the material storage chamber, and can be opened and closed.
  • an ignition burner provided at the top of the furnace body and the exhaust gas after the re-combustion are used as materials Metal materials supplied and stored in the storage room.
  • one end is a metal dissolution method and the other end is open and the heat discharge passage is opened to the material storage chamber, using a metal melting furnace having a furnace body.
  • the first exhaust damper is closed and the second exhaust damper is opened, thereby allowing the The reburned exhaust gas is supplied to the material storage room.
  • the first exhaust damper is opened and the second exhaust damper is closed, so that the recombusted exhaust gas is removed from the first exhaust damper.
  • the pressure inside the furnace is controlled by introducing it into the exhaust duct side.
  • the melting furnace according to the third aspect can include the following elements: A vertical furnace body having an air outlet at the top and a tapping outlet at the bottom; A combustion burner provided near the bottom of the furnace body for heating and melting the metal material charged into the furnace body; An ignition burner provided at an upper portion of the furnace body so that exhaust gas containing carbon monoxide generated by combustion of the combustion burner and oxygen supplied from the blower port are recombusted at the upper portion of the furnace body.
  • the melting furnace of the third aspect can include one or more of the following elements: A material storage chamber for storing a metal material charged into the furnace body; A first exhaust passage connected to the furnace body and capable of exhausting the exhaust gas out of the furnace body; A second exhaust passage connected to the furnace body through the material storage chamber and capable of exhausting the exhaust gas out of the furnace body; A heat exhaust passage that bypasses between the furnace body and the material storage chamber; The air outlet, the ignition burner, and the heat exhaust passage are arranged close to each other; The material storage chamber is openable and closable with respect to the furnace body and outside air.
  • the dissolution method of the fourth aspect can include the following elements: A process of carrying a metal material into a material storage chamber; Supplying exhaust gas in the furnace to the metal material in the material storage chamber; Introducing the metal material in the material storage chamber into the furnace; Discharging the exhaust gas in the furnace without passing through the material storage chamber when the metal material is charged;
  • the dissolution method of the fourth aspect can include one or more of the following elements: Reburning the exhaust gas in the furnace body;
  • the exhaust gas supplied into the material storage chamber includes the re-combusted secondary exhaust gas;
  • the material storage chamber is closed to the outside air when the metal material is charged.
  • the metal melting furnace and metal melting method of each viewpoint contribute to the following effects.
  • Carbon monoxide in the exhaust gas generated by the combustion in the combustion burner is ignited at the upper part of the furnace body by the ignition burner, and becomes carbon dioxide by performing a combustion reaction with oxygen supplied from the blower port. Since carbon monoxide in the exhaust gas is removed by this combustion reaction, the exhaust gas discharged from the exhaust port does not burn even when mixed with air. Since the combustion around the exhaust port does not occur, the inside of the furnace is always maintained at a positive pressure, and the possibility of outside air entering the furnace from both the exhaust port and the hot water outlet is avoided. As a result, the pressure in the furnace body is always stable and the thermal efficiency is kept constant.
  • the metal melting furnace and metal melting method from each viewpoint contribute to the following effects.
  • the exhaust gas supplied through the heat exhaust passage is used for preheating the metal material in the material storage chamber, so that the thermal efficiency of the furnace can be further improved.
  • the metal melting furnace and metal melting method from each viewpoint contribute to the following effects. By preventing intrusion of outside air into the furnace body, metal oxidation in the melting process is avoided as much as possible.
  • the metal material held in the material storage chamber is also prevented from being oxidized as much as possible. Avoidance of oxidation of the metal material leads to a decrease in slag discharge and contributes to an improvement in the quality and yield of the molten metal. Since the alloy addition cost in the subsequent process is suppressed by improving the quality and yield of the molten metal, it is possible to obtain a high-quality molten metal at a lower cost.
  • Metal melting furnaces from various viewpoints contribute to the following effects.
  • the quality and yield of the molten metal can be improved by simply installing an ignition burner, a heat exhaust passage and a second exhaust duct in the existing furnace body.
  • FIG. 2 is a horizontal sectional view of the metal melting furnace shown in FIG. 1 along the line AA.
  • FIG. 1 the vertical direction sectional view of the metal melting furnace of this embodiment is shown.
  • the metal melting furnace of the present embodiment includes a vertical furnace body 10, and the vertical furnace body 10 has a bottomed and covered cylindrical shape standing upright along the vertical direction. Yes.
  • a hot water outlet 11 is provided at the bottom of the furnace body 10, and a material inlet 18 is provided at the upper side wall of the furnace body 10.
  • An air blowing port 12 is provided at a position closer to the material charging port 18 than the center of the top of the furnace body 10.
  • a blower passage 31 including a blower fan 32 is connected to the blower opening 12 and air is supplied in a state where the supply amount is controlled.
  • a melting chamber 13 for melting an input M made of a metal material is defined in the furnace body 10.
  • the hearth surface 15 corresponding to the bottom surface of the melting chamber 13 is formed as an inclined surface that descends toward the hot water outlet 11, and the hot water outlet 11 is located at the lowest place of the melting chamber 13.
  • a material storage chamber 21 for storing a metal material is provided adjacent to the furnace body 10 outside the material input port 18 of the furnace body 10.
  • the material storage chamber 21 includes a carry-in port 27 provided with a carry-in door 25 at the top, and a carry-out port 28 at a position corresponding to the material input port 18 of the furnace body 10.
  • the floor surface 22 of the material storage chamber 21 descends linearly from the carry-in port 27 toward the carry-out port 28, and the carry-out port 28 is located at the lowest position of the material storage chamber 21.
  • a material input door 23 is disposed at a location where the material outlet 28 on the material storage chamber 21 side and the material input port 18 on the furnace body 10 side are connected (that is, the boundary between the material storage chamber 21 and the furnace body 10). Yes.
  • a hinge-type support structure 24 that rotates the material charging door 23 between an open position (a position indicated by a solid line) and a closed position (a position indicated by a two-dot chain line) is provided above the material charging door 23.
  • the material input door 23 is supported by the support structure 24 so as to be opened and closed.
  • the material input door 23 is normally in a closed position and functions as a bottom plate of the material storage chamber, and holds the metal material stacked in the material storage chamber 21.
  • the material charging door 23 rotates to the furnace body 10 side and moves to the open position, the furnace body 10 and the material storage chamber 21 communicate with each other, and the held metal material is charged into the furnace body 10. To do.
  • the material storage chamber 21 can be opened and closed with respect to the furnace body 10 and the outside air.
  • a plurality of oxygen combustion burners 16 for burning fuel gas such as liquefied natural gas or fuel liquid using oxygen as a combustion aid.
  • a group of burners composed of eleven oxyfuel combustion burners 16 is arranged in the upper part of the passage from the melting chamber 13 of the furnace body 10 toward the hot water outlet 11.
  • the combustion flames ejected from the respective oxygen combustion burners 16 form a hollow flame f (indicated by a two-dot chain line) having a hollow shape very similar to a cylinder.
  • the oxyfuel burner 16 uses high-concentration oxygen gas (oxygen concentration of 90% or more) as an auxiliary combustion gas, the temperature of the hollow flame f reaches a high temperature of 1800 ° C. to 3300 ° C. Therefore, even when the input M is a refractory metal, the input M can be efficiently and rapidly dissolved.
  • high-concentration oxygen gas oxygen concentration of 90% or more
  • An ignition burner 17 (one in this example) that is an oxyfuel burner having the same specifications as the oxyfuel burner 16 is provided at the top of the furnace body 10.
  • the ignition burner 17 is disposed on the upper portion of the furnace body 10, and in particular, is disposed above the plurality of oxygen combustion burners 16.
  • the ignition burner 17 is disposed in the vicinity of an exhaust gas inlet 19 of a heat exhaust passage 26 described later.
  • the ignition burner 17 is disposed in the vicinity of the air blowing port 12, and again transmits the exhaust gas containing carbon monoxide generated by the combustion of the oxyfuel combustion burner 16 and the oxygen contained in the air supplied from the air blowing port 12. Burn.
  • the exhaust gas ignited by the ignition burner 17 and recombusted is also referred to as secondary exhaust gas.
  • the carbon monoxide initially contained in the exhaust gas reacts with oxygen during recombustion to become carbon dioxide, so it is hardly contained in the secondary exhaust gas.
  • FIG. 2 schematically shows a cross section when the furnace body 10 and the material storage chamber 21 are cut in the horizontal direction at the center position in the height direction of the material charging port 18.
  • the material charging door 23 is in the closed position.
  • a first exhaust duct 33 is connected to a position facing the material charging port 18 in the diameter direction of the furnace body 10.
  • a first exhaust damper 34 is provided inside the first exhaust duct 33.
  • a second exhaust duct 35 including a second exhaust damper 36 is connected to the upper part of the material storage chamber 21.
  • the exhaust dampers 34 and 36 are butterfly-shaped valve bodies, and the opening and closing thereof are controlled in synchronization with the material charging door 23 by a control means (not shown).
  • a heat exhaust passage 26 is provided at substantially the same height as the material storage chamber 21 in order to connect the upper portion of the side wall of the furnace body 10 and the side surface of the material storage chamber 21.
  • One end of the heat exhaust passage 26 opens into the furnace body 10 as an exhaust gas inlet 19.
  • the blower opening 12, the ignition burner 17, and the heat exhaust passage 26 are arranged close to each other.
  • the other end of the heat exhaust passage 26 opens into the material storage chamber 21 as an exhaust gas inlet 29.
  • the heat exhaust passage 26 is bypass-connected between the furnace body 10 and the material storage chamber 21.
  • the exhaust gas containing carbon monoxide generated by the combustion of the oxyfuel burner 16 passes between the charged metal materials and rises to the top of the furnace body 10.
  • the carbon monoxide contained in the exhaust gas that has reached the top of the furnace body 10 is ignited at the top of the furnace body 10 by the hollow flame f of the ignition burner 17, and oxygen contained in the air supplied from the blower port 12. It reacts with and completely burns to carbon dioxide.
  • the amount of oxygen required around the ignition burner 17 is continuously calculated by an external analysis means (not shown), and the blower port 12 is controlled by controlling the blown amount of the blower fan 32.
  • the amount of air supplied from is optimized. As a result of supplying an appropriate amount of air from the blower opening 12, almost no carbon monoxide and oxygen remain in the secondary exhaust gas.
  • a metal melting method using the metal melting furnace of this embodiment will be described below.
  • the first exhaust damper 34, the second exhaust damper 36, and the material charging door 23 are opened and closed in a synchronized state by a control means (not shown).
  • the opening amounts of the first exhaust damper 34 and the second exhaust damper 36 are adjusted so that the internal pressure of the furnace body 10 becomes a positive pressure (+ pressure) with respect to the outside air.
  • Step of supplying exhaust gas in furnace body 10 to metal material in material storage chamber 21 While the carried-in metal material is held in the material storage chamber 21, the control means maintains the material charging door 23 and the first exhaust damper 34 in a closed state, and the second exhaust damper is synchronized with this. 36 is kept open.
  • the high-temperature secondary exhaust gas continues to pass through the material storage chamber 21 via the heat discharge passage 26 and is discharged from the second exhaust duct 35.
  • the secondary exhaust gas warms the metal material stored in the material storage chamber 21.
  • High-temperature secondary exhaust gas contains almost no oxygen or carbon monoxide, so metal materials that are exposed to secondary exhaust gas during storage maintain good quality without material deterioration due to oxidation In this state, it is fully preheated.
  • Step of charging the metal material in the material storage chamber 21 into the furnace body 10 In the material charging process in which the metal material is charged into the furnace body 10 from the material storage chamber 21, the control means opens the material charging door 23 and synchronizes with this to open the first exhaust damper 34. The exhaust duct 33 is opened. At the same time, the control means closes the second exhaust duct 35 by closing the second exhaust damper 36. Thus, the material storage chamber 21 is closed against the outside air. The secondary exhaust gas is discharged from the upper part of the furnace body 10 via the first exhaust duct 33. That is, the exhaust gas is discharged without passing through the material storage chamber 21.
  • the opening amount of the first exhaust damper 34 is controlled so that the internal pressure of the furnace body 10 becomes a positive pressure with respect to the outside air. Thereby, the fluctuation of the pressure in the furnace when the material is charged is minimized, and the inflow of outside air is prevented at the same time. Moreover, since the metal material thrown into the melting chamber 13 is sufficiently preheated, it can be efficiently melted to obtain a molten metal.
  • the shape of the material storage chamber and the arrangement with respect to the furnace body described in the present embodiment can be appropriately changed.
  • the material storage chamber is disposed above the furnace body so that a part of the floor surface of the material storage chamber is adjacent to the upper portion of the furnace body, and the heat exhaust passage is provided as a passage rising from the furnace body to the material storage chamber. It is possible. By changing the positions of the exhaust gas inlet and the exhaust gas inlet so that the high-temperature secondary exhaust gas naturally rises from the furnace body to the heat exhaust passage, the metal material can be preheated more efficiently.
  • other burners such as an air burner can be applied to the ignition burner.
  • the present invention is applicable to a metal melting furnace for melting metal-based scrap and / or pig iron ingots.
  • Each disclosure of the cited patent documents and the like cited above is incorporated herein by reference.
  • the embodiments and examples can be changed and adjusted based on the basic technical concept.
  • Various disclosed elements including each element of each claim, each element of each embodiment or example, each element of each drawing, etc.
  • Selection is possible. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea.
  • any numerical value or small range included in the range should be construed as being specifically described even if there is no specific description.

Abstract

The purpose of the present invention is a metal melting furnace and a metal melting method that preemptively prevents ignition of exhaust gases, including carbon monoxide, in the vicinity of the exhaust vent and make it possible to preheat a metal material loaded into the furnace unit to efficiently melt the same. A metal melting furnace is provided with the following: a furnace unit (10), provided with a blower port (12) and a hot water outlet (11); a material storage chamber (21) that is adjacent to the upper part of the furnace unit (10) and is for storing a metal material; a material loading door (23) disposed at the border between the furnace unit (10) and the material storage chamber (21) so as to be openable and closable; a fuel burner (16) that is disposed near the base section of the furnace unit (10) and is for heating and melting the metal material; an ignition burner (17) disposed at the vertex section of the furnace unit (10); and a heat discharge passage (26) one end of which opens into the furnace unit (10) and the other end of which opens into the material storage chamber (21). The ignition burner (17) causes carbon monoxide contained in exhaust gases to react with oxygen fed from the blower port (12) to generate secondary exhaust gases, and the secondary exhaust gases are fed from the heat discharge passage (26) into the material storage chamber (21).

Description

金属溶解炉および金属溶解方法Metal melting furnace and metal melting method
 [関連出願についての記載]
 本発明は、日本国特許出願:特願2012-060016号(2012年 3月16日出願)に基づくものであり、同出願の全記載内容は引用をもって本書に組み込み記載されているものとする。
 本発明は、金属材料を溶解させて金属溶湯を作り出すための金属溶解炉と、これを用いた金属溶解方法に関する。
[Description of related applications]
The present invention is based on a Japanese patent application: Japanese Patent Application No. 2012-060016 (filed on March 16, 2012), and the entire contents of the application are incorporated herein by reference.
The present invention relates to a metal melting furnace for melting a metal material to create a molten metal, and a metal melting method using the same.
 炉体に投入された金属材料を、液化天然ガス等を燃焼させて得た熱ガスで溶解する金属溶解炉が知られている。液化天然ガス等の燃料を炉体の内部で燃焼させると、一酸化炭素を含む高温の排気ガスが発生する。高温の排気ガスは、炉体内を上昇し炉体上部に設けられた排気口に導入されて炉体の外に排出される。しかし排気ガスが排気口の周辺で外の空気と混合すると、含まれている一酸化炭素が着火して燃焼することがある。排気口周辺で一酸化炭素が燃焼した場合には、炉体内が負圧となり、排気口周辺の空気が炉体内に引っ張られると共に出湯口から炉内に空気が吸い込まれる。このような吸い込みによる外気の進入が発生すると、炉体内の圧力が不安定になる。また、外部の冷たい空気が炉体に進入することで炉内の材料温度が低下し、進入した空気に含まれる窒素が熱を持ち出すために、炉の熱効率が低下するという不具合が生じる。このため、排気ガスから一酸化炭素を除去し、排気口周辺での排気ガスの燃焼を防止する必要があった。 There is known a metal melting furnace that melts a metal material put into a furnace body with a hot gas obtained by burning liquefied natural gas or the like. When fuel such as liquefied natural gas is burned inside the furnace body, high-temperature exhaust gas containing carbon monoxide is generated. The hot exhaust gas rises in the furnace body, is introduced into an exhaust port provided in the upper part of the furnace body, and is discharged outside the furnace body. However, if the exhaust gas is mixed with outside air around the exhaust port, the contained carbon monoxide may ignite and burn. When carbon monoxide burns around the exhaust port, the pressure in the furnace body becomes negative, and the air around the exhaust port is pulled into the furnace body and air is sucked into the furnace from the outlet. When the outside air enters due to such suction, the pressure in the furnace becomes unstable. Moreover, since the external cold air enters the furnace body, the material temperature in the furnace is lowered, and nitrogen contained in the entered air brings out heat, so that the heat efficiency of the furnace is lowered. For this reason, it has been necessary to remove carbon monoxide from the exhaust gas to prevent combustion of the exhaust gas around the exhaust port.
 これに加えて、炉内に外部の空気が進入すると、空気に含まれる酸素が金属材料の酸化を進行させるおそれがあった。外気の進入を防止して金属材料の酸化を低減する技術として、例えば特許文献1には、炉蓋によって開閉される材料投入口を頭頂部に有する縦型の炉体と、その炉体内の底部付近に配置された複数の酸素燃焼バーナーとを具備した金属溶解炉が開示されている。特許文献1の金属溶解炉の炉体には、燃焼バーナーよりも高い位置に、空気よりも比重の大きい非酸化ガスを炉体内に導入するための非酸化物質導入部が設けられており、導入された非酸化ガスがガスバリヤー層として機能することによって材料投入時の外気の進入を抑制する技術が開示されている。 In addition to this, when outside air enters the furnace, oxygen contained in the air may cause oxidation of the metal material. As a technique for preventing the entry of outside air and reducing oxidation of a metal material, for example, Patent Document 1 discloses a vertical furnace body having a material inlet that is opened and closed by a furnace lid at the top, and a bottom portion in the furnace body. A metal melting furnace having a plurality of oxyfuel combustion burners arranged in the vicinity is disclosed. The furnace body of the metal melting furnace of Patent Document 1 is provided with a non-oxidizing substance introduction section for introducing a non-oxidizing gas having a specific gravity larger than air into the furnace body at a position higher than the combustion burner. A technique is disclosed in which the non-oxidized gas that has been used functions as a gas barrier layer to suppress the entry of outside air when the material is charged.
 他方で、特許文献1の非酸化ガスの導入技術は、炉蓋を開放する時以外の外気の進入を想定しておらず、出湯口からの吸い込みによる外気の進入を完全に防止することは困難であった。このため酸素を多く含む外気が導入されることによって金属材料が酸化するおそれは依然として存在していた。金属材料の酸化はスラグの生成の一因であり、金属溶湯の質及び量を低下させて、最終的には材料の損失につながる。このため、材料の投入時に外気の進入を防止するだけではなく、金属の溶解工程をできるだけ効率よく進めて、金属材料の酸化による材料損(一般に「酸化損失」という)を一層低減する技術が求められていた。 On the other hand, the non-oxidizing gas introduction technique of Patent Document 1 does not assume the entry of outside air except when the furnace lid is opened, and it is difficult to completely prevent the entry of outside air due to suction from the hot water outlet. Met. For this reason, there is still a possibility that the metal material is oxidized by the introduction of outside air containing a large amount of oxygen. The oxidation of the metal material contributes to the generation of slag, which lowers the quality and quantity of the molten metal and ultimately leads to material loss. For this reason, there is a need for technology that not only prevents the entry of outside air when materials are added, but also promotes the metal melting process as efficiently as possible to further reduce material loss (generally referred to as “oxidation loss”) due to oxidation of metal materials. It was done.
特開2010-230237号公報(第0010段落、図1)Japanese Patent Laying-Open No. 2010-230237 (paragraph 0010, FIG. 1)
 なお、上記先行技術文献の各開示を、本書に引用をもって繰り込むものとする。以下の分析は、本発明の観点からなされたものである。
 かかる実情に鑑みて、炉内圧力の低下及び炉の熱効率の低下が未然に防止された金属溶解炉が望まれる。また、炉内への外気の進入を防止することで、金属の酸化を回避することが可能な金属溶解炉を提供することが望まれる。これに加えて、炉の熱効率が高く、炉内の圧力が安定しており、又金属の酸化を極力回避可能な金属溶解方法が望まれる。
Each disclosure of the above prior art document is incorporated herein by reference. The following analysis has been made from the viewpoint of the present invention.
In view of such circumstances, a metal melting furnace is desired in which a decrease in furnace pressure and a decrease in furnace thermal efficiency are prevented. It is also desirable to provide a metal melting furnace capable of avoiding metal oxidation by preventing outside air from entering the furnace. In addition, there is a demand for a metal melting method in which the furnace has high thermal efficiency, the pressure in the furnace is stable, and metal oxidation can be avoided as much as possible.
 第1の視点の金属溶解炉は、上部に送風口を有すると共に、底部に出湯口を有する縦型の炉体と、炉体の上部に隣接しており、金属材料を保管する材料保管室と、炉体と材料保管室との境界に開閉可能に設けられており、開放されることで炉体と材料保管室とを連通させて金属材料を材料保管室から炉体内に投入する材料投入扉と、炉体内に投入された金属材料を加熱溶解すべく炉体の底部付近に設けられた燃焼バーナーと、燃焼バーナーの燃焼によって発生する一酸化炭素を含む排気ガスと送風口から供給される酸素とを炉体の上部で再燃焼させるべく、炉体の頭頂部に設けられた着火バーナーと、再燃焼させた排気ガスを材料保管室に供給して保管されている金属材料を予熱するための、一端部が炉体に開口しており且つ他端部が材料保管室に開口している熱排出通路と、を備えている。 A metal melting furnace according to a first aspect includes a vertical furnace body having a blower opening at the top and a tapping opening at the bottom, and a material storage chamber that is adjacent to the top of the furnace body and stores metal materials. The material input door is provided at the boundary between the furnace body and the material storage chamber so as to be openable and closable so that the furnace body and the material storage chamber communicate with each other and the metal material is input from the material storage chamber into the furnace body. A combustion burner provided near the bottom of the furnace body to heat and melt the metal material charged into the furnace body, exhaust gas containing carbon monoxide generated by combustion of the combustion burner, and oxygen supplied from the blower port In order to reheat at the top of the furnace body, an ignition burner provided at the top of the furnace body and supplying the reburned exhaust gas to the material storage chamber to preheat the stored metal material. , One end is open to the furnace body and the other end is material Comprises a heat discharge passage which opens into the tube chamber, the.
 第1の視点によれば、燃焼バーナーにおける燃焼で発生した排気ガスに含まれる一酸化炭素は、着火バーナーにより炉体の上部で着火し、送風口から供給された空気に含まれる酸素と反応して完全燃焼することで二酸化炭素となる。この反応によって排気ガス中の一酸化炭素が除去されるために、排気ガスは、高温の状態で排気口から排出されて空気と混合しても燃焼しない。 According to the first aspect, the carbon monoxide contained in the exhaust gas generated by the combustion in the combustion burner is ignited at the upper part of the furnace body by the ignition burner, and reacts with oxygen contained in the air supplied from the blower port. It becomes carbon dioxide by complete combustion. Since carbon monoxide in the exhaust gas is removed by this reaction, the exhaust gas is discharged from the exhaust port at a high temperature and does not burn even when mixed with air.
 これに加えて、一端部が炉体に開口しており且つ他端部が材料保管室に開口している熱排出通路によって、一酸化炭素が除去された排気ガスが材料保管室に供給されて、保管されている金属材料が予熱される。予熱された金属材料が炉体に投入されることにより、効率よく金属材料が溶解される。 In addition, exhaust gas from which carbon monoxide has been removed is supplied to the material storage chamber by a heat exhaust passage having one end opened in the furnace body and the other end opened in the material storage chamber. The stored metal material is preheated. By introducing the preheated metal material into the furnace body, the metal material is efficiently dissolved.
 第1の視点の金属溶解炉にあっては、第一の排気ダンパーを備える第一の排気ダクトが炉体の上部に接続されており、且つ第二の排気ダンパーを備える第二の排気ダクトが材料保管室の上部に接続されていることが好ましい。材料保管室に金属材料が保管されているときには、第一の排気ダンパーが閉鎖され、且つ第二の排気ダンパーが開放される。また金属材料が材料保管室から炉体内に投入されるときには、第一の排気ダンパーが開放され且つ第二の排気ダンパーが閉鎖される。 In the metal melting furnace according to the first aspect, the first exhaust duct including the first exhaust damper is connected to the upper portion of the furnace body, and the second exhaust duct including the second exhaust damper is provided. It is preferable to be connected to the upper part of the material storage chamber. When the metal material is stored in the material storage chamber, the first exhaust damper is closed and the second exhaust damper is opened. When the metal material is introduced from the material storage chamber into the furnace body, the first exhaust damper is opened and the second exhaust damper is closed.
 このように、排気ダンパーを備えた排気ダクトを二個設けることによって、炉体からの排気ガスの排出経路を制御して、金属材料が材料保管室に保管されている時と金属材料の投入時とで、それぞれに適した排気ガスの流れを選択することができる。金属材料が材料保管室に保管されているとき、排気ガスを材料保管室に導入して第二の排気ダクトから排出することができるので、金属材料の予熱が効率よく行われる。金属材料が投入されるとき、排気ガスを、炉体の上部の第一の排気ダクトから排出することができるので、炉内の圧力が一定に制御される。 In this way, by providing two exhaust ducts with exhaust dampers, the exhaust gas exhaust path from the furnace body is controlled, and when the metal material is stored in the material storage room and when the metal material is charged And an exhaust gas flow suitable for each can be selected. When the metal material is stored in the material storage chamber, the exhaust gas can be introduced into the material storage chamber and discharged from the second exhaust duct, so that the metal material is efficiently preheated. When the metal material is charged, the exhaust gas can be discharged from the first exhaust duct at the top of the furnace body, so that the pressure in the furnace is controlled to be constant.
 本発明はまた第2の視点において、効率の良い金属溶解方法を提供する。第2の視点の金属溶解方法は、上部に第一の排気ダンパーを備える第一の排気ダクト及び送風口を有すると共に、底部に出湯口を有する縦型の炉体と、炉体の上部に隣接しており、第二の排気ダンパーを備える第二の排気ダクトが設けられている材料保管室と、炉体と材料保管室との境界に開閉可能に設けられており、開放されることで炉体と材料保管室とを連通させる材料投入扉と、炉体内に材料保管室から投入された金属材料を加熱溶解すべく炉体の底部付近に設けられた燃焼バーナーと、燃焼バーナーの燃焼によって発生する一酸化炭素を含む排気ガスと送風口から供給される酸素とを炉体の上部で再燃焼させるべく、前記炉体の頭頂部に設けられた着火バーナーと、再燃焼後の排気ガスを材料保管室に供給して保管されている金属材料を予熱するための、一端部が炉体に開口しており且つ他端部が材料保管室に開口している熱排出通路と、を備えた金属溶解炉を用いた金属溶解方法である。第2の視点の金属溶解方法は、材料保管室に金属材料が保管されているときには、第一の排気ダンパーを閉鎖し且つ第二の排気ダンパーを開放することで、熱排出通路を介して、再燃焼した排気ガスを材料保管室に供給する。一方、材料保管室に保管されている前記金属材料が炉体に投入されるときには、第一の排気ダンパーを開放し且つ第二の排気ダンパーを閉鎖することで、再燃焼した排気ガスを第一の排気ダクト側に導入して炉内の圧力を制御する。
 第3の視点の溶解炉は、下記の各要素を含むことができる:
 上部に送風口を有すると共に、底部に出湯口を有する縦型の炉体;
 前記炉体内に投入された前記金属材料を加熱溶解すべく前記炉体の底部付近に設けられた燃焼バーナー;
 前記燃焼バーナーの燃焼によって発生する一酸化炭素を含む排気ガスと前記送風口から供給される酸素とを前記炉体の上部で再燃焼させるべく、前記炉体の上部に設けられた着火バーナー。
 好ましくは、第3の視点の溶解炉は、下記の一又は複数の要素を含むことができる:
 前記炉体内に投入される金属材料を保管する材料保管室;
 前記炉体に接続され、前記排気ガスを前記炉体外に排出自在な第一の排気通路;
 前記炉体に前記材料保管室を通じて接続され、前記排気ガスを前記炉体外に排出自在な第二の排気通路;
 前記炉体内と前記材料保管室内の間をバイパスする熱排出通路;
 前記送風口、前記着火バーナーおよび前記熱排出通路は、近接して配置されること;
 前記材料保管室は、前記炉体内および外気に対して開閉自在であること。
 第4の視点の溶解方法は、下記の各要素を含むことができる:
 金属材料を材料保管室内に搬入する工程;
 前記材料保管室内の前記金属材料に、炉体内の排気ガスを供給する工程;
 前記材料保管室内の前記金属材料を、前記炉体内に投入する工程;
 前記金属材料の投入時、前記炉体内の排気ガスを、前記材料保管室内を通さずに排出する工程。
 好ましくは、第4の視点の溶解方法は、下記の一又は複数の要素を含むことができる:
 前記炉体内で前記排気ガスを再燃焼させる工程;
 前記材料保管室内に供給される排気ガスは、前記再燃焼された二次排気ガスを含むこと;
 前記金属材料の投入時、前記材料保管室を外気に対して閉鎖すること。
In the second aspect, the present invention also provides an efficient metal melting method. A metal melting method according to a second aspect includes a vertical furnace body having a first exhaust duct having a first exhaust damper and an air blowing port at an upper portion and a hot water outlet at a bottom portion, and adjacent to the upper portion of the furnace body. And is provided at the boundary between the material storage chamber provided with the second exhaust duct having the second exhaust damper and the furnace body and the material storage chamber, and can be opened and closed. Generated by the combustion of the combustion burner provided near the bottom of the furnace body to heat and melt the metal material introduced from the material storage room into the furnace body In order to re-combust the exhaust gas containing carbon monoxide and oxygen supplied from the blower at the upper part of the furnace body, an ignition burner provided at the top of the furnace body and the exhaust gas after the re-combustion are used as materials Metal materials supplied and stored in the storage room The for preheating, one end is a metal dissolution method and the other end is open and the heat discharge passage is opened to the material storage chamber, using a metal melting furnace having a furnace body. In the metal melting method of the second aspect, when the metal material is stored in the material storage chamber, the first exhaust damper is closed and the second exhaust damper is opened, thereby allowing the The reburned exhaust gas is supplied to the material storage room. On the other hand, when the metal material stored in the material storage chamber is put into the furnace body, the first exhaust damper is opened and the second exhaust damper is closed, so that the recombusted exhaust gas is removed from the first exhaust damper. The pressure inside the furnace is controlled by introducing it into the exhaust duct side.
The melting furnace according to the third aspect can include the following elements:
A vertical furnace body having an air outlet at the top and a tapping outlet at the bottom;
A combustion burner provided near the bottom of the furnace body for heating and melting the metal material charged into the furnace body;
An ignition burner provided at an upper portion of the furnace body so that exhaust gas containing carbon monoxide generated by combustion of the combustion burner and oxygen supplied from the blower port are recombusted at the upper portion of the furnace body.
Preferably, the melting furnace of the third aspect can include one or more of the following elements:
A material storage chamber for storing a metal material charged into the furnace body;
A first exhaust passage connected to the furnace body and capable of exhausting the exhaust gas out of the furnace body;
A second exhaust passage connected to the furnace body through the material storage chamber and capable of exhausting the exhaust gas out of the furnace body;
A heat exhaust passage that bypasses between the furnace body and the material storage chamber;
The air outlet, the ignition burner, and the heat exhaust passage are arranged close to each other;
The material storage chamber is openable and closable with respect to the furnace body and outside air.
The dissolution method of the fourth aspect can include the following elements:
A process of carrying a metal material into a material storage chamber;
Supplying exhaust gas in the furnace to the metal material in the material storage chamber;
Introducing the metal material in the material storage chamber into the furnace;
Discharging the exhaust gas in the furnace without passing through the material storage chamber when the metal material is charged;
Preferably, the dissolution method of the fourth aspect can include one or more of the following elements:
Reburning the exhaust gas in the furnace body;
The exhaust gas supplied into the material storage chamber includes the re-combusted secondary exhaust gas;
The material storage chamber is closed to the outside air when the metal material is charged.
 以上詳述したように各視点の金属溶解炉及び金属溶解方法は下記の効果に寄与する。燃焼バーナーにおける燃焼で発生した排気ガスの中の一酸化炭素は、着火バーナーにより炉体の上部で着火し、送風口から供給された酸素と燃焼反応することで二酸化炭素となる。この燃焼反応によって排気ガス中の一酸化炭素が除去されるために、排気口から排出される排気ガスは、空気と混合しても燃焼しない。排気口周辺での燃焼が発生しないために、炉体内は常に正圧に維持されて、排気口と出湯口のいずれからも炉内に外気が進入するおそれが未然に回避されている。この結果、炉体内の圧力が常に安定し、熱効率も一定に維持される。 As detailed above, the metal melting furnace and metal melting method of each viewpoint contribute to the following effects. Carbon monoxide in the exhaust gas generated by the combustion in the combustion burner is ignited at the upper part of the furnace body by the ignition burner, and becomes carbon dioxide by performing a combustion reaction with oxygen supplied from the blower port. Since carbon monoxide in the exhaust gas is removed by this combustion reaction, the exhaust gas discharged from the exhaust port does not burn even when mixed with air. Since the combustion around the exhaust port does not occur, the inside of the furnace is always maintained at a positive pressure, and the possibility of outside air entering the furnace from both the exhaust port and the hot water outlet is avoided. As a result, the pressure in the furnace body is always stable and the thermal efficiency is kept constant.
 また各視点の金属溶解炉及び金属溶解方法は下記の効果に寄与する。熱排出通路によって供給される排気ガスが、材料保管室の金属材料の予熱に利用されることで、炉の熱効率を一層向上させることができる。 Also, the metal melting furnace and metal melting method from each viewpoint contribute to the following effects. The exhaust gas supplied through the heat exhaust passage is used for preheating the metal material in the material storage chamber, so that the thermal efficiency of the furnace can be further improved.
 各視点の金属溶解炉及び金属溶解方法は下記の効果に寄与する。炉体内への外気の侵入が防止されることにより、溶解工程における金属の酸化が極力回避される。また、炉体内から熱排出通路を介して材料保管室に再燃焼した排気ガスが供給されるので、材料保管室に保持されている金属材料も同時に、酸化が極力回避される。金属材料の酸化の回避はスラグの排出量の減少をもたらし、金属溶湯の質及び収量の向上に貢献する。金属溶湯の質及び収量の向上によって後工程における合金添加費用が抑制されるので、結果として良質の金属溶湯をより安価に得ることを可能とする。 The metal melting furnace and metal melting method from each viewpoint contribute to the following effects. By preventing intrusion of outside air into the furnace body, metal oxidation in the melting process is avoided as much as possible. In addition, since the reburned exhaust gas is supplied from the furnace body to the material storage chamber through the heat exhaust passage, the metal material held in the material storage chamber is also prevented from being oxidized as much as possible. Avoidance of oxidation of the metal material leads to a decrease in slag discharge and contributes to an improvement in the quality and yield of the molten metal. Since the alloy addition cost in the subsequent process is suppressed by improving the quality and yield of the molten metal, it is possible to obtain a high-quality molten metal at a lower cost.
 各視点の金属溶解炉は下記の効果に寄与する。既存の炉体に着火バーナーと熱排出通路と第二の排出ダクトとを追加設置するだけで金属溶湯の質及び収量を向上させることができる。 金属 Metal melting furnaces from various viewpoints contribute to the following effects. The quality and yield of the molten metal can be improved by simply installing an ignition burner, a heat exhaust passage and a second exhaust duct in the existing furnace body.
実施形態に従った金属溶解炉の概要を示す鉛直方向断面図である。It is a vertical direction sectional view showing an outline of a metal melting furnace according to an embodiment. 図1に示す金属溶解炉のA-A線水平断面図である。FIG. 2 is a horizontal sectional view of the metal melting furnace shown in FIG. 1 along the line AA.
 以下、本発明の実施形態について、図面を参照しつつ説明する。なお、この概要及び実施形態(実施例)に付記する図面参照符号は、専ら理解を助けるための例示であり、本発明を図示の態様に限定することを意図するものではない。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the reference numerals attached to the outline and the embodiments (examples) are merely examples for facilitating understanding, and are not intended to limit the present invention to the illustrated embodiments. *
 図1及び図2を参照して、鋳鉄の溶湯を作り出すための金属溶解炉の一実施形態を説明する。図1に、本実施形態の金属溶解炉の鉛直方向断面図を示す。図1に示すように、本実施形態の金属溶解炉は、縦型の炉体10を備えており、この縦型の炉体10は鉛直方向に沿って直立した有底有蓋円筒形状をなしている。炉体10の底部には出湯口11が設けられており、炉体10の側壁上部には材料投入口18が設けられている。炉体10の頭頂部の、中心よりも材料投入口18に近い位置に、送風口12が設けられている。送風口12には、送風ファン32を備えた送風通路31が接続されており、供給量を制御した状態で空気が供給される。炉体10内には、金属材料からなる投入物Mを溶解するための溶解室13が区画形成されている。溶解室13の底面に相当する炉床面15は、出湯口11に向けて下降する傾斜面として形成されており、溶解室13の最も低い場所に出湯口11が位置している。 1 and 2, an embodiment of a metal melting furnace for producing a molten cast iron will be described. In FIG. 1, the vertical direction sectional view of the metal melting furnace of this embodiment is shown. As shown in FIG. 1, the metal melting furnace of the present embodiment includes a vertical furnace body 10, and the vertical furnace body 10 has a bottomed and covered cylindrical shape standing upright along the vertical direction. Yes. A hot water outlet 11 is provided at the bottom of the furnace body 10, and a material inlet 18 is provided at the upper side wall of the furnace body 10. An air blowing port 12 is provided at a position closer to the material charging port 18 than the center of the top of the furnace body 10. A blower passage 31 including a blower fan 32 is connected to the blower opening 12 and air is supplied in a state where the supply amount is controlled. A melting chamber 13 for melting an input M made of a metal material is defined in the furnace body 10. The hearth surface 15 corresponding to the bottom surface of the melting chamber 13 is formed as an inclined surface that descends toward the hot water outlet 11, and the hot water outlet 11 is located at the lowest place of the melting chamber 13.
 炉体10の材料投入口18の外側に、金属材料を保管するための材料保管室21が炉体10に隣接して設けられている。材料保管室21は、頭頂部に搬入扉25を備えた搬入口27を備えており、炉体10の材料投入口18に対応する位置に搬出口28を備えている。材料保管室21の床面22は、搬入口27から搬出口28に向かって直線状に下降しており、材料保管室21の最も低い位置に搬出口28が位置している。材料保管室21側の搬出口28と炉体10側の材料投入口18とが接続されている箇所(即ち材料保管室21と炉体10の境界)には、材料投入扉23が配置されている。材料投入扉23の上部には、材料投入扉23を開位置(実線で示す位置)と閉位置(二点鎖線で示す位置)との間で回動させるヒンジ式の支持構造24が設けられており、材料投入扉23はこの支持構造24によって開閉可能に支持されている。材料投入扉23は、通常は閉位置にあって材料保管室の底板として機能しており、材料保管室21に積み重ねられている金属材料を保持している。材料投入時には、材料投入扉23が炉体10側に回転して開位置に移動し、炉体10と材料保管室21とが連通して、保持していた金属材料を炉体10内に投入する。材料保管室21は、炉体10内および外気に対して開閉自在である。 A material storage chamber 21 for storing a metal material is provided adjacent to the furnace body 10 outside the material input port 18 of the furnace body 10. The material storage chamber 21 includes a carry-in port 27 provided with a carry-in door 25 at the top, and a carry-out port 28 at a position corresponding to the material input port 18 of the furnace body 10. The floor surface 22 of the material storage chamber 21 descends linearly from the carry-in port 27 toward the carry-out port 28, and the carry-out port 28 is located at the lowest position of the material storage chamber 21. A material input door 23 is disposed at a location where the material outlet 28 on the material storage chamber 21 side and the material input port 18 on the furnace body 10 side are connected (that is, the boundary between the material storage chamber 21 and the furnace body 10). Yes. A hinge-type support structure 24 that rotates the material charging door 23 between an open position (a position indicated by a solid line) and a closed position (a position indicated by a two-dot chain line) is provided above the material charging door 23. The material input door 23 is supported by the support structure 24 so as to be opened and closed. The material input door 23 is normally in a closed position and functions as a bottom plate of the material storage chamber, and holds the metal material stacked in the material storage chamber 21. At the time of material charging, the material charging door 23 rotates to the furnace body 10 side and moves to the open position, the furnace body 10 and the material storage chamber 21 communicate with each other, and the held metal material is charged into the furnace body 10. To do. The material storage chamber 21 can be opened and closed with respect to the furnace body 10 and the outside air.
 炉体10の底部付近には、酸素を助燃剤として液化天然ガス等の燃料ガス又は燃料液体を燃焼させる複数基の酸素燃焼バーナー16(本例では11基、図面上では3基)が設けられている。11基の酸素燃焼バーナー16からなるバーナー群は、炉体10の溶解室13から出湯口11に向かう通路の上部に配置されている。それぞれの酸素燃焼バーナー16から噴出される燃焼火炎は、円筒に酷似した空洞状をなす空洞状火炎f(二点鎖線で示す)をなす。酸素燃焼バーナー16は、助燃ガスとして高濃度の酸素ガス(酸素濃度90%以上)を使用するため、空洞状火炎fの温度は1800℃~3300℃という高温度に達する。それ故、投入物Mが高融点金属の場合でも、投入物Mを効率的且つ高速に溶解することができる。 Near the bottom of the furnace body 10, there are provided a plurality of oxygen combustion burners 16 (11 in this example, 3 in the drawing) for burning fuel gas such as liquefied natural gas or fuel liquid using oxygen as a combustion aid. ing. A group of burners composed of eleven oxyfuel combustion burners 16 is arranged in the upper part of the passage from the melting chamber 13 of the furnace body 10 toward the hot water outlet 11. The combustion flames ejected from the respective oxygen combustion burners 16 form a hollow flame f (indicated by a two-dot chain line) having a hollow shape very similar to a cylinder. Since the oxyfuel burner 16 uses high-concentration oxygen gas (oxygen concentration of 90% or more) as an auxiliary combustion gas, the temperature of the hollow flame f reaches a high temperature of 1800 ° C. to 3300 ° C. Therefore, even when the input M is a refractory metal, the input M can be efficiently and rapidly dissolved.
 炉体10の頭頂部に、酸素燃焼バーナー16と同一の仕様の酸素燃焼バーナーである着火バーナー17(本例では1基)が設けられている。すなわち、着火バーナー17は、炉体10の上部に配置され、特に、複数基の酸素燃焼バーナー16よりも上方に配置されている。また、着火バーナー17は、後述する熱排出通路26の排気ガス吸気口19の近傍に配置されている。着火バーナー17は、送風口12に近接して配置されており、酸素燃焼バーナー16の燃焼によって発生する一酸化炭素を含む排気ガスと、送風口12から供給される空気に含まれる酸素とを再度燃焼させる。以下に於いては、着火バーナー17によって着火して再燃焼した排気ガスのことを、二次排気ガスとも言う。排気ガスの中に当初含まれていた一酸化炭素は、再燃焼時に酸素と反応して二酸化炭素となるため、二次排気ガスの中にはほとんど含まれない。 An ignition burner 17 (one in this example) that is an oxyfuel burner having the same specifications as the oxyfuel burner 16 is provided at the top of the furnace body 10. In other words, the ignition burner 17 is disposed on the upper portion of the furnace body 10, and in particular, is disposed above the plurality of oxygen combustion burners 16. The ignition burner 17 is disposed in the vicinity of an exhaust gas inlet 19 of a heat exhaust passage 26 described later. The ignition burner 17 is disposed in the vicinity of the air blowing port 12, and again transmits the exhaust gas containing carbon monoxide generated by the combustion of the oxyfuel combustion burner 16 and the oxygen contained in the air supplied from the air blowing port 12. Burn. In the following, the exhaust gas ignited by the ignition burner 17 and recombusted is also referred to as secondary exhaust gas. The carbon monoxide initially contained in the exhaust gas reacts with oxygen during recombustion to become carbon dioxide, so it is hardly contained in the secondary exhaust gas.
 図2に、炉体10と材料保管室21とを、材料投入口18の高さ方向の中心位置で水平方向に切断したときの断面を模式的に示す。図2では、材料投入扉23は閉位置にある。材料投入口18に対して、炉体10の直径方向で対向する位置に、第一の排気ダクト33が接続されている。第一の排気ダクト33の内部には、第一の排気ダンパー34が設けられている。また、図1に示すように、材料保管室21の上部には、第二の排気ダンパー36を備える第二の排気ダクト35が接続されている。本実施形態では、排気ダンパー34,36は蝶型の弁体であり、図示されない制御手段によって材料投入扉23と同期してその開閉が制御される。 FIG. 2 schematically shows a cross section when the furnace body 10 and the material storage chamber 21 are cut in the horizontal direction at the center position in the height direction of the material charging port 18. In FIG. 2, the material charging door 23 is in the closed position. A first exhaust duct 33 is connected to a position facing the material charging port 18 in the diameter direction of the furnace body 10. A first exhaust damper 34 is provided inside the first exhaust duct 33. As shown in FIG. 1, a second exhaust duct 35 including a second exhaust damper 36 is connected to the upper part of the material storage chamber 21. In this embodiment, the exhaust dampers 34 and 36 are butterfly-shaped valve bodies, and the opening and closing thereof are controlled in synchronization with the material charging door 23 by a control means (not shown).
 図2に示すように、炉体10の側壁上部と材料保管室21の側面とを接続するために、熱排出通路26が、材料保管室21と略同一の高さで設けられている。熱排出通路26の一端部は、排気ガス吸気口19として炉体10に開口している。送風口12、着火バーナー17および熱排出通路26は、近接して配置されている。また熱排出通路26の他端部は、排気ガス導入口29として材料保管室21に開口している。熱排出通路26は、炉体10内と材料保管室21内の間をバイパス接続している。第一の排気ダクト33が開放されており且つ第二の排気ダクト35が閉鎖されているときには、炉体10で発生した二次排気ガスの大部分は、炉体10の上部から第一の排気ダクト33を経由し、更に吸引配管38を経由して排出される。第一の排気ダクト33が閉鎖されており且つ第二の排気ダクト35が開放されているときには、炉体10で発生した二次排気ガスは、熱排出通路26を経由して材料保管室21を通過し、第二の排気ダクト35から排出される。 As shown in FIG. 2, a heat exhaust passage 26 is provided at substantially the same height as the material storage chamber 21 in order to connect the upper portion of the side wall of the furnace body 10 and the side surface of the material storage chamber 21. One end of the heat exhaust passage 26 opens into the furnace body 10 as an exhaust gas inlet 19. The blower opening 12, the ignition burner 17, and the heat exhaust passage 26 are arranged close to each other. The other end of the heat exhaust passage 26 opens into the material storage chamber 21 as an exhaust gas inlet 29. The heat exhaust passage 26 is bypass-connected between the furnace body 10 and the material storage chamber 21. When the first exhaust duct 33 is opened and the second exhaust duct 35 is closed, most of the secondary exhaust gas generated in the furnace body 10 is discharged from the upper part of the furnace body 10 to the first exhaust gas. It is discharged via the duct 33 and further via the suction pipe 38. When the first exhaust duct 33 is closed and the second exhaust duct 35 is opened, the secondary exhaust gas generated in the furnace body 10 enters the material storage chamber 21 via the heat exhaust passage 26. It passes through and is discharged from the second exhaust duct 35.
 本実施形態の金属溶解炉では、酸素燃焼バーナー16の燃焼によって生成した一酸化炭素を含む排気ガスは、投入された金属材料の間を通過して炉体10の上部まで上昇する。炉体10の上部に到達した排気ガスの中に含まれる一酸化炭素は、着火バーナー17の空洞状火炎fにより炉体10の上部で着火し、送風口12から供給された空気に含まれる酸素と反応し完全燃焼することで二酸化炭素となる。炉体内の排気ガスの成分分析から着火バーナー17周辺に必要とされる酸素の量が図示されない外部解析手段によって継続的に算出されており、送風ファン32の送風量を制御することで送風口12から供給される空気の量が最適化される。適量の空気が送風口12から供給される結果、二次排気ガスの中には一酸化炭素及び酸素が、ほとんど残存しない。 In the metal melting furnace of the present embodiment, the exhaust gas containing carbon monoxide generated by the combustion of the oxyfuel burner 16 passes between the charged metal materials and rises to the top of the furnace body 10. The carbon monoxide contained in the exhaust gas that has reached the top of the furnace body 10 is ignited at the top of the furnace body 10 by the hollow flame f of the ignition burner 17, and oxygen contained in the air supplied from the blower port 12. It reacts with and completely burns to carbon dioxide. From the component analysis of the exhaust gas in the furnace, the amount of oxygen required around the ignition burner 17 is continuously calculated by an external analysis means (not shown), and the blower port 12 is controlled by controlling the blown amount of the blower fan 32. The amount of air supplied from is optimized. As a result of supplying an appropriate amount of air from the blower opening 12, almost no carbon monoxide and oxygen remain in the secondary exhaust gas.
 本実施形態の金属溶解炉を用いた金属溶解方法を以下に説明する。本実施形態の金属溶解方法では、第一の排気ダンパー34と、第二の排気ダンパー36と、材料投入扉23の開閉が、図示されない制御手段によって同期された状態で行われる。第一の排気ダンパー34及び第二の排気ダンパー36の開放量は、炉体10の内圧が外気に対して正圧(+の圧力)となるように調整される。 A metal melting method using the metal melting furnace of this embodiment will be described below. In the metal melting method of the present embodiment, the first exhaust damper 34, the second exhaust damper 36, and the material charging door 23 are opened and closed in a synchronized state by a control means (not shown). The opening amounts of the first exhaust damper 34 and the second exhaust damper 36 are adjusted so that the internal pressure of the furnace body 10 becomes a positive pressure (+ pressure) with respect to the outside air.
[金属材料を材料保管室21内に搬入する工程]
 材料保管室21への金属材料の搬入工程は、炉体10内で溶解されている金属材料の残量に応じて、適宜行われる。金属材料は材料保管室21の上部の搬入口27から搬入される。このとき制御手段は、材料投入扉23を閉鎖し、第一の排気ダンパー34を閉鎖することで第一の排気ダクト33を閉鎖し、第二の排気ダンパー36を開放することで第二の排気ダクト35を開放する。この結果、高温の二次排気ガスは、熱排出通路26を経由して材料保管室21を通過し、第二の排気ダクト35から排出される。二次排気ガスは、材料保管室21を通過するときに、搬入された金属材料を加温する。搬入口27に設けられている搬入扉25の開閉時には、第二の排気ダンパー36の開放量を特に小さくすることで、材料保管室21と炉体10の圧力の変化を最小にすることができる。
[Process of carrying metal material into material storage chamber 21]
The step of bringing the metal material into the material storage chamber 21 is appropriately performed according to the remaining amount of the metal material dissolved in the furnace body 10. The metal material is carried in from the carry-in port 27 at the top of the material storage chamber 21. At this time, the control means closes the material charging door 23, closes the first exhaust damper 34, closes the first exhaust duct 33, and opens the second exhaust damper 36 to open the second exhaust. The duct 35 is opened. As a result, the high-temperature secondary exhaust gas passes through the material storage chamber 21 via the heat discharge passage 26 and is discharged from the second exhaust duct 35. When the secondary exhaust gas passes through the material storage chamber 21, it heats the carried metal material. When opening / closing the carry-in door 25 provided at the carry-in entrance 27, the change in the pressure of the material storage chamber 21 and the furnace body 10 can be minimized by particularly reducing the opening amount of the second exhaust damper 36. .
[材料保管室21内の金属材料に、炉体10内の排気ガスを供給する工程]
 搬入された金属材料が材料保管室21に保持されている間、制御手段は、材料投入扉23と第一の排気ダンパー34とを閉鎖状態に維持し、これに同期して第二の排気ダンパー36を開放状態に維持する。高温の二次排気ガスは、引き続き熱排出通路26を経由して材料保管室21を通過し、第二の排気ダクト35から排出される。二次排気ガスは、材料保管室21に保管されている金属材料を加温する。高温の二次排気ガスには酸素も一酸化炭素もほとんど含まれていないため、保管中に二次排気ガスに曝される金属材料は、酸化による材料劣化が発生することなく良好な品質を維持した状態で、充分に予熱される。
[Step of supplying exhaust gas in furnace body 10 to metal material in material storage chamber 21]
While the carried-in metal material is held in the material storage chamber 21, the control means maintains the material charging door 23 and the first exhaust damper 34 in a closed state, and the second exhaust damper is synchronized with this. 36 is kept open. The high-temperature secondary exhaust gas continues to pass through the material storage chamber 21 via the heat discharge passage 26 and is discharged from the second exhaust duct 35. The secondary exhaust gas warms the metal material stored in the material storage chamber 21. High-temperature secondary exhaust gas contains almost no oxygen or carbon monoxide, so metal materials that are exposed to secondary exhaust gas during storage maintain good quality without material deterioration due to oxidation In this state, it is fully preheated.
[材料保管室21内の金属材料を、炉体10内に投入する工程]
 金属材料が材料保管室21から炉体10に投入される材料投入工程で、制御手段は、材料投入扉23を開放し、これに同期して第一の排気ダンパー34を開放することで第一の排気ダクト33を開放する。同時に制御手段は、第二の排気ダンパー36を閉鎖することで第二の排気ダクト35を閉鎖する。かくして、材料保管室21は、外気に対して閉鎖される。二次排気ガスは、炉体10の上部から第一の排気ダクト33を経由して排出される。すなわち、この排気ガスは、材料保管室21内を通さずに排出される。このとき、第一の排気ダンパー34の開放量は、炉体10の内圧が外気に対して正圧となるように制御される。これにより材料投入時の炉内の圧力の変動は最小に抑えられ、同時に外気の流入が防止されている。また、溶解室13に投入される金属材料が充分に予熱されていることから、効率よく溶解されて金属溶湯を得ることができる。
[Step of charging the metal material in the material storage chamber 21 into the furnace body 10]
In the material charging process in which the metal material is charged into the furnace body 10 from the material storage chamber 21, the control means opens the material charging door 23 and synchronizes with this to open the first exhaust damper 34. The exhaust duct 33 is opened. At the same time, the control means closes the second exhaust duct 35 by closing the second exhaust damper 36. Thus, the material storage chamber 21 is closed against the outside air. The secondary exhaust gas is discharged from the upper part of the furnace body 10 via the first exhaust duct 33. That is, the exhaust gas is discharged without passing through the material storage chamber 21. At this time, the opening amount of the first exhaust damper 34 is controlled so that the internal pressure of the furnace body 10 becomes a positive pressure with respect to the outside air. Thereby, the fluctuation of the pressure in the furnace when the material is charged is minimized, and the inflow of outside air is prevented at the same time. Moreover, since the metal material thrown into the melting chamber 13 is sufficiently preheated, it can be efficiently melted to obtain a molten metal.
[着火バーナー17により生成された二次排気ガスの利用]
 第一の排気ダクト33又は第二の排気ダクト35を経由して排出される二次排気ガスは、炉体10の上部で再度燃焼したことにより一酸化炭素が除去されているため、高温の状態で排出されて空気と混合しても燃焼しない。一酸化炭素の不慮の燃焼が回避されていることで、炉体内の圧力は常に正圧に維持され、排気ダクト33,35や出湯口から炉内に空気が吸い込まれるおそれが事前に回避されている。以上のことから、本実施形態の金属溶解炉とこれを用いた金属溶解方法によって、熱効率が高く、炉内の圧力が安定しており、同時に金属の酸化を極力回避可能な金属溶解技術が提供される。
[Use of secondary exhaust gas generated by ignition burner 17]
Since the secondary exhaust gas discharged through the first exhaust duct 33 or the second exhaust duct 35 is burned again in the upper part of the furnace body 10 and carbon monoxide is removed, the secondary exhaust gas is in a high temperature state. It is not burned even if it is exhausted and mixed with air. By avoiding accidental combustion of carbon monoxide, the pressure in the furnace body is always maintained at a positive pressure, and the risk of air being sucked into the furnace from the exhaust ducts 33 and 35 and the outlet is previously avoided. Yes. From the above, the metal melting furnace of this embodiment and the metal melting method using the same provide a metal melting technique that has high thermal efficiency, stable pressure in the furnace, and can avoid metal oxidation as much as possible. Is done.
 [その他の変更例]
 本実施形態で説明した材料保管室の形状および炉体に対する配置は、適宜変更が可能である。例えば、材料保管室の床面の一部が炉体の上部に隣接するように材料保管室を炉体よりも上部に配置し、熱排出通路を炉体から材料保管室に上昇する通路として設けることが可能である。高温の二次排気ガスが炉体から熱排出通路に自然に上昇するように排気ガス吸気口と排気ガス導入口の位置を変更することで、一層効率よく金属材料を予熱することができる。その他、着火バーナーに、空気バーナーを始めとする他のバーナーを適用することも可能である。また送風口から空気を供給する場合について説明を行ったが、酸素単体を供給することでより厳密に酸素の供給量を管理することが可能である。
[Other changes]
The shape of the material storage chamber and the arrangement with respect to the furnace body described in the present embodiment can be appropriately changed. For example, the material storage chamber is disposed above the furnace body so that a part of the floor surface of the material storage chamber is adjacent to the upper portion of the furnace body, and the heat exhaust passage is provided as a passage rising from the furnace body to the material storage chamber. It is possible. By changing the positions of the exhaust gas inlet and the exhaust gas inlet so that the high-temperature secondary exhaust gas naturally rises from the furnace body to the heat exhaust passage, the metal material can be preheated more efficiently. In addition, other burners such as an air burner can be applied to the ignition burner. Moreover, although the case where air was supplied from a ventilation port was demonstrated, it is possible to manage the supply_amount | feed_rate of oxygen more strictly by supplying oxygen simple substance.
 本発明は、金属を基材とするスクラップ及び/又は銑鉄インゴットを溶解する金属溶解炉に適用可能である。
 なお、引用した上記の特許文献等の各開示は、本書に引用をもって繰り込むものとする。本発明の全開示(請求の範囲を含む)の枠内において、さらにその基本的技術思想に基づいて、実施形態ないし実施例の変更・調整が可能である。また、本発明の請求の範囲の枠内において種々の開示要素(各請求項の各要素、各実施形態ないし実施例の各要素、各図面の各要素等を含む)の多様な組み合わせ、ないし、選択が可能である。すなわち、本発明は、請求の範囲を含む全開示、技術的思想にしたがって当業者であればなし得るであろう各種変形、修正を含むことは勿論である。本書に記載した数値範囲については、当該範囲内に含まれる任意の数値ないし小範囲が、別段の記載のない場合でも具体的に記載されているものと解釈されるべきである。
The present invention is applicable to a metal melting furnace for melting metal-based scrap and / or pig iron ingots.
Each disclosure of the cited patent documents and the like cited above is incorporated herein by reference. Within the scope of the entire disclosure (including claims) of the present invention, the embodiments and examples can be changed and adjusted based on the basic technical concept. Various disclosed elements (including each element of each claim, each element of each embodiment or example, each element of each drawing, etc.) within the scope of the claims of the present invention, Selection is possible. That is, the present invention of course includes various variations and modifications that could be made by those skilled in the art according to the entire disclosure including the claims and the technical idea. Regarding numerical ranges described in this document, any numerical value or small range included in the range should be construed as being specifically described even if there is no specific description.
 10  炉体
 11  出湯口
 12  送風口
 13  溶解室
 15  炉床面
 16  酸素燃焼バーナー
 17  着火バーナー
 18  材料投入口
 19  排気ガス吸気口
 21  材料保管室
 22  材料保管室の床面
 23  材料投入扉
 24  支持構造 
 25  搬入扉 
 26  熱排出通路
 27  搬入口 
 28  搬出口
 29  排気ガス導入口
 31  送風通路
 32  送風ファン
 33  第一の排気ダクト
 34  第一の排気ダンパー
 35  第二の排気ダクト
 36  第二の排気ダンパー
 38  吸引配管 
 M   投入物
 f   燃焼火炎、空洞状火炎
DESCRIPTION OF SYMBOLS 10 Furnace 11 Outlet 12 Air outlet 13 Melting room 15 Furnace floor 16 Oxyfuel combustion burner 17 Ignition burner 18 Material inlet 19 Exhaust gas inlet 21 Material storage room 22 Material storage room floor 23 Material inlet door 24 Support structure
25 Loading door
26 Heat exhaust passage 27 Carry-in entrance
28 Unloading port 29 Exhaust gas introduction port 31 Blower passage 32 Blower fan 33 First exhaust duct 34 First exhaust damper 35 Second exhaust duct 36 Second exhaust damper 38 Suction piping
M Input f Combustion flame, hollow flame

Claims (11)

  1.  上部に送風口を有すると共に、底部に出湯口を有する縦型の炉体と、
     前記炉体の上部に隣接しており、金属材料を保管する材料保管室と、
     前記炉体と前記材料保管室との境界に開閉可能に設けられ、開放されることで前記炉体と前記材料保管室とを連通させて前記金属材料を前記材料保管室から炉体内に投入する材料投入扉と、
     前記炉体内に投入された前記金属材料を加熱溶解すべく前記炉体の底部付近に設けられた燃焼バーナーと、
     前記燃焼バーナーの燃焼によって発生する一酸化炭素を含む排気ガスと前記送風口から供給される酸素とを前記炉体の上部で再燃焼させるべく、前記炉体の頭頂部に設けられた着火バーナーと、
     前記再燃焼後の排気ガスを前記材料保管室に供給して保管されている前記金属材料を予熱するための、一端部が前記炉体に開口しており且つ他端部が前記材料保管室に開口している熱排出通路と、
     を備えていることを特徴とする金属溶解炉。
    A vertical furnace body having an air outlet at the top and a tapping outlet at the bottom,
    Adjacent to the top of the furnace body, a material storage chamber for storing metal materials,
    It is provided at the boundary between the furnace body and the material storage chamber so as to be openable and closable, and is opened to allow the furnace body and the material storage chamber to communicate with each other so that the metal material is introduced into the furnace body from the material storage chamber. A material loading door,
    A combustion burner provided near the bottom of the furnace body to heat and melt the metal material charged into the furnace body;
    An ignition burner provided at the top of the furnace body in order to re-combust the exhaust gas containing carbon monoxide generated by the combustion of the combustion burner and oxygen supplied from the blower at the upper part of the furnace body; ,
    One end is opened in the furnace body and the other end is in the material storage chamber for preheating the metal material stored by supplying the exhaust gas after reburning to the material storage chamber. An open heat exhaust passage,
    A metal melting furnace comprising:
  2.  第一の排気ダンパーを備える第一の排気ダクトが前記炉体の上部に接続されており、且つ第二の排気ダンパーを備える第二の排気ダクトが前記材料保管室の上部に接続されており、
     前記材料保管室に前記金属材料が保管されているときには前記第一の排気ダンパーが閉鎖され且つ前記第二の排気ダンパーが開放され、前記金属材料が前記材料保管室から前記炉体内に投入されるときには前記第一の排気ダンパーが開放され且つ前記第二の排気ダンパーが閉鎖されることを特徴とする請求項1に記載の金属溶解炉。
    A first exhaust duct comprising a first exhaust damper is connected to the upper part of the furnace body, and a second exhaust duct comprising a second exhaust damper is connected to the upper part of the material storage chamber;
    When the metal material is stored in the material storage chamber, the first exhaust damper is closed and the second exhaust damper is opened, and the metal material is put into the furnace body from the material storage chamber. The metal melting furnace according to claim 1, wherein the first exhaust damper is sometimes opened and the second exhaust damper is closed.
  3.  上部に第一の排気ダンパーを備える第一の排気ダクト及び送風口を有すると共に、底部に出湯口を有する縦型の炉体と、
     前記炉体の上部に隣接しており、第二の排気ダンパーを備える第二の排気ダクトが設けられている材料保管室と、
     前記炉体と前記材料保管室との境界に開閉可能に設けられており、開放されることで前記炉体と前記材料保管室とを連通させる材料投入扉と、
     前記炉体内に前記材料保管室から投入された金属材料を加熱溶解すべく前記炉体の底部付近に設けられた燃焼バーナーと、
     前記燃焼バーナーの燃焼によって発生する一酸化炭素を含む排気ガスと前記送風口から供給される酸素とを前記炉体の上部で再燃焼させるべく、前記炉体の頭頂部に設けられた着火バーナーと、
     前記再燃焼後の排気ガスを前記材料保管室に供給して保管されている前記金属材料を予熱するための、一端部が前記炉体に開口しており且つ他端部が前記材料保管室に開口している熱排出通路と、
    を備えた金属溶解炉を用いた金属溶解方法であって、
     前記材料保管室に前記金属材料が保管されているときには、前記第一の排気ダンパーを閉鎖し且つ前記第二の排気ダンパーを開放することで、前記熱排出通路を介して、前記再燃焼した排気ガスを前記材料保管室に供給し、
     前記材料保管室に保管されている前記金属材料が前記炉体に投入されるときには、前記第一の排気ダンパーを開放し且つ前記第二の排気ダンパーを閉鎖することで、前記再燃焼した排気ガスを前記第一の排気ダクト側に導入して炉内の圧力を制御することを特徴とする金属溶解方法。
    A vertical furnace body having a first exhaust duct having a first exhaust damper at the top and a blower opening, and having a tapping outlet at the bottom,
    A material storage chamber adjacent to the top of the furnace body and provided with a second exhaust duct comprising a second exhaust damper;
    A material charging door that is openably and closably provided at a boundary between the furnace body and the material storage chamber, and that opens and communicates the furnace body and the material storage chamber;
    A combustion burner provided near the bottom of the furnace body to heat and melt the metal material charged from the material storage chamber into the furnace body;
    An ignition burner provided at the top of the furnace body in order to re-combust the exhaust gas containing carbon monoxide generated by the combustion of the combustion burner and oxygen supplied from the blower at the upper part of the furnace body; ,
    One end is opened in the furnace body and the other end is in the material storage chamber for preheating the metal material stored by supplying the exhaust gas after reburning to the material storage chamber. An open heat exhaust passage,
    A metal melting method using a metal melting furnace comprising:
    When the metal material is stored in the material storage chamber, the re-burned exhaust gas is closed via the heat exhaust passage by closing the first exhaust damper and opening the second exhaust damper. Supplying gas to the material storage chamber;
    When the metal material stored in the material storage chamber is charged into the furnace body, the re-burned exhaust gas is opened by opening the first exhaust damper and closing the second exhaust damper. Is introduced into the first exhaust duct side to control the pressure in the furnace.
  4.  上部に送風口を有すると共に、底部に出湯口を有する縦型の炉体と、
     前記炉体内に投入された前記金属材料を加熱溶解すべく前記炉体の底部付近に設けられた燃焼バーナーと、
     前記燃焼バーナーの燃焼によって発生する一酸化炭素を含む排気ガスと前記送風口から供給される酸素とを前記炉体の上部で再燃焼させるべく、前記炉体の上部に設けられた着火バーナーと、
     を備えることを特徴とする金属溶解炉。
    A vertical furnace body having an air outlet at the top and a tapping outlet at the bottom,
    A combustion burner provided near the bottom of the furnace body to heat and melt the metal material charged into the furnace body;
    An ignition burner provided at the upper part of the furnace body in order to re-combust the exhaust gas containing carbon monoxide generated by the combustion of the combustion burner and oxygen supplied from the blower port at the upper part of the furnace body;
    A metal melting furnace comprising:
  5.  前記炉体内に投入される金属材料を保管する材料保管室と、
     前記炉体に接続され、前記排気ガスを前記炉体外に排出自在な第一の排気通路と、
     前記炉体に前記材料保管室を通じて接続され、前記排気ガスを前記炉体外に排出自在な第二の排気通路と、
     を備えることを特徴とする請求項4記載の金属溶解炉。
    A material storage chamber for storing a metal material charged into the furnace body;
    A first exhaust passage connected to the furnace body and capable of exhausting the exhaust gas out of the furnace body;
    A second exhaust passage connected to the furnace body through the material storage chamber and capable of exhausting the exhaust gas out of the furnace body;
    The metal melting furnace according to claim 4, comprising:
  6.  前記炉体内と前記材料保管室内の間をバイパスする熱排出通路を備えることを特徴とする請求項5記載の金属溶解炉。 The metal melting furnace according to claim 5, further comprising a heat exhaust passage that bypasses between the furnace body and the material storage chamber.
  7.  前記送風口、前記着火バーナーおよび前記熱排出通路は、近接して配置されることを特徴とする請求項6記載の金属溶解炉。 The metal melting furnace according to claim 6, wherein the air blowing port, the ignition burner, and the heat exhaust passage are arranged close to each other.
  8.  前記材料保管室は、前記炉体内および外気に対して開閉自在であることを特徴とする請求項5記載の金属溶解炉。 6. The metal melting furnace according to claim 5, wherein the material storage chamber is openable and closable with respect to the inside of the furnace and outside air.
  9.  金属材料を材料保管室内に搬入する工程と、
     前記材料保管室内の前記金属材料に、炉体内の排気ガスを供給する工程と、
     前記材料保管室内の前記金属材料を、前記炉体内に投入する工程と、
     前記金属材料の投入時、前記炉体内の排気ガスを、前記材料保管室内を通さずに排出する工程と、
     を含む、ことを特徴とする金属溶解方法。
    Carrying a metal material into the material storage room;
    Supplying exhaust gas in the furnace to the metal material in the material storage chamber;
    Charging the metal material in the material storage chamber into the furnace body;
    Exhausting the exhaust gas in the furnace without passing through the material storage chamber when the metal material is charged;
    A metal melting method comprising:
  10.  前記炉体内で前記排気ガスを再燃焼させる工程を含み、
     前記材料保管室内に供給される前記排気ガスは、前記再燃焼された二次排気ガスを含む、ことを特徴とする請求項9記載の金属溶解方法。
    Re-combusting the exhaust gas in the furnace body,
    The metal melting method according to claim 9, wherein the exhaust gas supplied into the material storage chamber includes the re-combusted secondary exhaust gas.
  11.  前記金属材料の投入時、前記材料保管室を外気に対して閉鎖することを特徴とする請求項9記載の金属溶解方法。 10. The metal melting method according to claim 9, wherein the material storage chamber is closed against outside air when the metal material is charged.
PCT/JP2013/051078 2012-03-16 2013-01-21 Metal melting furnace and metal melting method WO2013136841A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-060016 2012-03-16
JP2012060016A JP2013194942A (en) 2012-03-16 2012-03-16 Metal melting furnace and metal melting method

Publications (1)

Publication Number Publication Date
WO2013136841A1 true WO2013136841A1 (en) 2013-09-19

Family

ID=49160763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051078 WO2013136841A1 (en) 2012-03-16 2013-01-21 Metal melting furnace and metal melting method

Country Status (2)

Country Link
JP (1) JP2013194942A (en)
WO (1) WO2013136841A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5724025B1 (en) * 2014-08-29 2015-05-27 アルカエンジニアリング株式会社 Non-ferrous metal melting furnace
JP6284160B2 (en) * 2015-02-26 2018-02-28 アルカエンジニアリング株式会社 Non-ferrous metal melting furnace
KR102393081B1 (en) * 2020-06-17 2022-05-03 재단법인 포항산업과학연구원 Apparatus for injecting of melthing slag
CN114739184B (en) * 2022-03-22 2023-05-16 武钢集团昆明钢铁股份有限公司 Blast furnace gas combustion heat accumulation stabilizing device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136503U (en) * 1974-09-12 1976-03-18
JPS5835799U (en) * 1981-09-03 1983-03-08 有限会社日本特殊技術研究所 Induction furnace connected to material preheating chamber and combustion chamber to improve melting
JPS5855679A (en) * 1981-09-29 1983-04-02 マツダ株式会社 Melting furnace
JPH05271811A (en) * 1992-03-30 1993-10-19 Nippon Sanso Kk Method for melting metal
JPH0755341A (en) * 1993-08-06 1995-03-03 Taiyo Chuki Co Ltd Shaft type melting furnace using gaseous fuel
JPH1121607A (en) * 1997-07-07 1999-01-26 Nkk Corp Operation of arc furnace
JPH11325746A (en) * 1998-05-20 1999-11-26 Osaka Gas Co Ltd Non-ferrous metal melting furnace
JP2002022366A (en) * 2000-07-06 2002-01-23 Nkk Corp Method for melting cold iron source

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10300365A (en) * 1997-04-18 1998-11-13 Daido Steel Co Ltd Scrap preheating device
JP2002156186A (en) * 2000-02-14 2002-05-31 Nkk Corp Melting equipment and treatment method using the same
JP2010230237A (en) * 2009-03-27 2010-10-14 Aisin Takaoka Ltd Furnace for melting metal and method for melting metal

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5136503U (en) * 1974-09-12 1976-03-18
JPS5835799U (en) * 1981-09-03 1983-03-08 有限会社日本特殊技術研究所 Induction furnace connected to material preheating chamber and combustion chamber to improve melting
JPS5855679A (en) * 1981-09-29 1983-04-02 マツダ株式会社 Melting furnace
JPH05271811A (en) * 1992-03-30 1993-10-19 Nippon Sanso Kk Method for melting metal
JPH0755341A (en) * 1993-08-06 1995-03-03 Taiyo Chuki Co Ltd Shaft type melting furnace using gaseous fuel
JPH1121607A (en) * 1997-07-07 1999-01-26 Nkk Corp Operation of arc furnace
JPH11325746A (en) * 1998-05-20 1999-11-26 Osaka Gas Co Ltd Non-ferrous metal melting furnace
JP2002022366A (en) * 2000-07-06 2002-01-23 Nkk Corp Method for melting cold iron source

Also Published As

Publication number Publication date
JP2013194942A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
WO2013136841A1 (en) Metal melting furnace and metal melting method
CN112762443B (en) Multi-burner rotary furnace melting system and method
TWI487797B (en) Heating method and system for controlling air ingress into enclosed spaces
US8114185B2 (en) Method of melting a mixture of scrap metal using scrap rubber
CN205066438U (en) Impregnated aluminum alloy melting stove
US20130038002A1 (en) Portable oven
JP5065108B2 (en) heating furnace
CN201241178Y (en) Sleeved type double-chamber regenerating aluminum melting furnace
JP4722022B2 (en) Glass melting furnace
CN106595305A (en) Smelting furance and aluminum smelting method
JPH11507100A (en) Improved energy input method to bulk scrap
KR20180073991A (en) An apparatus for controlling the pressure of top hopper in a blast furnace and blast furnace installation having the same
JP3111330U (en) Molten metal holding furnace
EP1226283B1 (en) High temperature premelting apparatus
JP3111330U7 (en)
JP3650193B2 (en) Method for melting metal raw materials
JP3912717B2 (en) Radioactive waste incineration melting processing apparatus and incineration melting processing method
CN105612398A (en) Method for melting metal material in a melting plant and relative melting plant
JPH04293740A (en) Method for operating aluminum melting furnace
CN220489694U (en) Melt integrative stove of protecting
JPH0359389A (en) Melting of metal
JP2010230237A (en) Furnace for melting metal and method for melting metal
JPH08200968A (en) Method and apparatus for preheating melting material
WO2023163949A1 (en) Stack melting apparatus
BR102020007078A2 (en) SCRAP HEATER

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13761247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13761247

Country of ref document: EP

Kind code of ref document: A1