JP3650193B2 - Method for melting metal raw materials - Google Patents

Method for melting metal raw materials Download PDF

Info

Publication number
JP3650193B2
JP3650193B2 JP34157395A JP34157395A JP3650193B2 JP 3650193 B2 JP3650193 B2 JP 3650193B2 JP 34157395 A JP34157395 A JP 34157395A JP 34157395 A JP34157395 A JP 34157395A JP 3650193 B2 JP3650193 B2 JP 3650193B2
Authority
JP
Japan
Prior art keywords
melting
preheating
raw material
melting furnace
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP34157395A
Other languages
Japanese (ja)
Other versions
JPH09176716A (en
Inventor
伸明 小林
良輝 菊地
公夫 飯野
康之 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP34157395A priority Critical patent/JP3650193B2/en
Publication of JPH09176716A publication Critical patent/JPH09176716A/en
Application granted granted Critical
Publication of JP3650193B2 publication Critical patent/JP3650193B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02W30/54

Landscapes

  • Furnace Details (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Manufacture Of Iron (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属原料の溶解方法に関し、詳しくは、金属原料、例えば、スクラップや製造時のリターン材等の鉄原料(鋼を含む)を酸素を支燃性ガスとした酸素バーナーの燃焼火炎で効率よく連続的に溶解する方法に関する。
【0002】
【従来の技術】
スクラップやリターン材等の鉄(鋼を含む)原料を溶解する方式として、主たるエネルギー源が電気であるアーク式電気炉が多く用いられている。このような電気を利用した溶解法は、昇温が容易で温度管理も容易であるなどの利点を有するものの、別途に発生させた電気を使用するため、総合的な燃料の利用効率やエネルギーコストの面で問題があった。
【0003】
一方、電気に代えて酸素あるいは酸素富化空気を支燃性ガスとする酸素バーナーで化石燃料を燃焼させ、その燃焼熱でスクラップやリターン材等の鉄原料を溶解させることが行われている。このような酸素バーナーを利用した溶解炉は、エネルギーを、アークではなくバーナーで導入するため、安定した溶解が可能であり、炉開口部からの作業等を極力減らすことが可能で、さらに、アーク式電気炉に比べて総合的な燃料の利用効率を向上させることができる。
【0004】
【発明が解決しようとする課題】
しかし、上記酸素バーナーを用いた各種金属原料の溶解方法においても、燃料の利用効率やエネルギーコストをより低減させるため、溶解部で直接的に着熱しなかった酸素バーナーからの入熱分を、溶解部に連設した予熱部で回収するようにしてはいるが、その回収効率は、未だ十分ではなかった。
【0005】
そこで本発明は、酸素バーナーの燃焼排ガスが有する熱エネルギーを効率的に回収することができ、熱効率を大幅に向上させることが可能な金属原料の溶解方法を提供することを目的としている。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の金属原料の溶解方法は、酸素バーナーの燃焼火炎で金属原料を溶解する溶解部の上方に、金属原料を予熱する予熱部を着脱可能に連設するとともに、溶解部と予熱部との間に、溶解部及び予熱部の内径よりも小さな内径の絞り部を設けた溶解炉で金属原料を溶解するにあたり、金属原料の溶解処理時に、前記溶解炉の予熱部から排出される燃焼排ガスを、溶解炉に連設した予熱部と同形状の予熱槽に導入して該予熱槽内に装入されている次回の溶解処理原料を予熱し、前記溶解部から溶湯を出湯した溶解処理終了後に、前記予熱部を溶解炉から取り外し、内部に次次回の溶解処理原料を装入して予熱槽として用いるとともに、予熱した次回の溶解処理原料と共に前記予熱槽を溶解炉に装着して予熱部として用いることを特徴としている。
【0007】
さらに、本発明方法は、上記方法において、前記予熱部及び予熱槽は、底部に開閉可能なスクリーンを備えていることを特徴としている。
【0009】
【発明の実施の形態】
以下、本発明を、図面を参照してさらに詳細に説明する。まず、図1は、溶解炉の参考例を示すものである。この溶解炉1は、酸素を支燃性ガスとした酸素バーナー2の燃焼熱のみで、鉄(鋼を含む)のスクラップやリターン材等の鉄原料を溶解再生するためのものであって、下部に溶解部3を、上部に予熱部4を一体的に連設するとともに、溶解部3と予熱部4との間に絞り部5を設けたものである。
【0010】
上記溶解部3は、通常の金属溶解炉、例えば電気炉等と略同様の内部形状を有しており、その一側底部には、出湯口6及び該出湯口6を開閉する栓体6aが設けられている。また、前記予熱部4は略円筒状に形成されており、予熱部4の上部開口には、ダクト7に接続される排気口8aを有する蓋体8が着脱可能に装着されている。
【0011】
上記絞り部5は、予熱部4から溶解部3に落下する鉄原料の落下速度を制御するために設けられるもので、溶解部3及び予熱部4の各内径よりも小さな内径で形成されている。この絞り部5と大径の溶解部3あるいは予熱部4との間は、図に示すように斜辺3a,4aで接続してコーン状にすることが好ましい。この部分を曲面で接続することも可能であるが、耐火物を内張りして形成する炉の場合は、耐火物の内張り作業が面倒になる。このとき斜辺3a,4aが垂直に近くなると炉の高さが高くなり、水平に近くなるとデッドスペースを生じて熱効率や操業性に悪影響を及ぼすことがある。このため、通常は、水平線に対して溶解部2の天井部は20〜60度程度、予熱部3の底部は20〜70度程度に設定することが好ましい。
【0012】
前記酸素バーナー2は、必要な溶解能力に応じて1本乃至複数本が溶解部3の周壁に設けられた挿入孔3bに挿入されて設置されるもので、その取付け位置は、溶解部3の大きさなどに応じて炉壁の垂直部あるいは前記天井部(斜辺3a部分)の適当な位置に設定することができる。また、酸素バーナー2は、溶解部3内に投入された鉄原料を溶解部3の底部側から溶解させることができるように、火炎噴出方向が溶解部3の底部に向くように設けられており、図示しない経路から重油や微粉炭等の燃料と支燃性ガスとがそれぞれ導入される。また、溶解部3の底部あるいは周壁の下部には、溶湯を撹拌するためのノズル(図示せず)を必要に応じて設けることができる。
【0013】
このように、溶解部3の上方に絞り部5を介して予熱部4を連設した溶解炉1で溶解処理を行うことにより、予熱部4から溶解部3に落下する原料の量を最適な速度に制御することができるので、従来の鉄格子のような原料投入量を制御する機器を設ける必要がなく、簡単な構造の溶解炉でスクラップ等を効率よく溶解処理することができ、炉の構造の簡略化により製造コストや保守コストの低減が図れるとともに、熱効率の向上や溶解時間の短縮も図れる。
【0014】
さらに、前記溶解炉1には、次回の溶解処理に供する鉄原料を装入する予熱槽9が連設されている。この予熱槽9は、中空円筒状に形成されたもので、上部には前記ダクト7に着脱可能に接続される排ガス導入口10が設けられるとともに、下部には排ガス通路11に着脱可能に接続される排ガス導出口12が設けられている。
【0015】
また、排ガス導出口12部分には、予熱槽9内に装入される鉄原料を保持可能なスクリーン13が開閉可能に設けられている。このスクリーン13には、網目構造等の、必要に応じて水冷構造に形成された鉄格子を用いることができ、例えば、従来の溶解炉に設けられていた原料投入量制御用の鉄格子と同様の構造,機構のものを用いることができる。
【0016】
前記ダクト7は、溶解炉1からの高温で含熱量の高い燃焼排ガスを予熱槽9に導入するためのものであり、その熱量をできるだけ逃がさない構造にすることが好ましい。そのためには、ダクト7は断熱構造とし、キャスタブルやボード形状の耐熱性の高い断熱材などを内張することが望ましい。
【0017】
また、燃焼排ガスに未燃成分が含まれていると、予熱槽9での熱回収効率が低下することがあるため、例えば、予熱部4の排気口8a近傍に排ガスの成分及び流量を連続的に測定する分析器を設けるとともに、ダクト7に支燃性ガス供給用のノズル14を設け、計測した未燃成分量に応じて最適な支燃性ガス量を吹き込み2次燃焼させることが望ましい。
【0018】
さらに、予熱槽9内の原料の過熱防止や炭酸ガスや水蒸気等の酸化性ガスの割合を低減するため、ノズル14から窒素ガス等の希釈ガスの添加も同時に行うことができる。この燃焼排ガスの希釈には、支燃性ガスの一部あるいは全部に空気を用いることで行うこともできる。
【0019】
予熱槽9は、燃焼排ガスと鉄原料とを効率的に熱交換させるため、排ガスを一端部から導入して他端部に排出する構造とすることが好ましい。また、予熱する鉄原料中に燃焼排ガスを偏流無く通過させるためには、図に示すような縦型槽か途中に排ガス導入口を設けた横型槽等が有効である。また、支燃性ガス供給用のノズルを適当な箇所に設け、燃焼排ガスの2次燃焼を槽の中間部で行うことにより、燃焼排ガスを段階的に燃焼させて昇温と組成変化とを徐々に行うこともできる。
【0020】
また、予熱槽9の排ガス導出口12のスクリーン13は、排ガスが槽内での熱交換で低温になっているため、比較的容易に水冷化できる。このスクリーン13の機能は、予熱期間中及び予熱後に予熱槽9を溶解炉1の上部に移動して鉄原料を溶解炉1内に投入するまでの間、鉄原料を支持することと、その開閉操作によって予熱されている原料を溶解炉1内に投入することにある。なお、スクリーン13が排ガス導出口12に設けられている場合は、予熱中の排ガスを槽外に安定して排出することも一つの要件ではあるが、排ガス導出口12をスクリーン13の直上の予熱槽側壁部等に設けた場合は、排ガス排出機能を考慮する必要はなくなる。
【0021】
上記スクリーン13は、例えば、予熱槽9の底部の相対向する部分に、水冷構造を有する複数の櫛歯状のフィンガーを引き出し入れが可能に設置したものであって、鉄原料の装入及び予熱時には、対向するフィンガーが互いのフィンガー間に入り込むように、中央部より更に奥まで予熱槽9内に挿入される。このフィンガーは、例えば、予熱槽9と一体的に設けたシリンダー等のフィンガー駆動部材により開閉駆動することができる。
【0022】
このように酸素バーナー2の燃焼火炎で鉄原料を溶解するにあたり、溶解炉1と予熱槽9とを組み合わせ、溶解炉1の燃焼排ガスを予熱槽9に導入して熱回収を行うことにより、総合的な熱効率を大幅に高めることができる。また、本構造の溶解炉1では、基本的に鉄原料の炉内への装入から溶解終了まで、特別の操作が不要で、炉の開口部が最小限で良く、燃焼排ガスの利用が簡単に行えるという利点もある。
【0023】
一方、溶解炉1内で溶解した溶湯を排出するには、当初装入した絞り部5及び予熱部4内の鉄原料を溶解部3に全て落下させ、完全に溶解させる工程が必須である。このとき、溶解初期には、高温の燃焼排ガスは、絞り部5及び予熱部4内の鉄原料を予熱することで有効に利用することができ、鉄原料が溶解部3に全て落下し、絞り部5及び予熱部4が空間となった溶解後期には、燃焼排ガスを予熱槽9に導入して次回の溶解処理に供する鉄原料を予熱するために用いることにより、燃焼排ガスの熱エネルギーを効率的に回収することができ、排ガスが炉外に持ち去る熱エネルギーを大幅に少なくすることができる。
【0024】
そして、溶解炉1で溶解処理を終えた溶湯を出湯した後、ダクト7や蓋体8を適宜に取り外すとともに、予熱槽9をクレーン等で予熱部4の上部開口直上に搬送し、スクリーン13を開いて予熱槽9内で予熱した鉄原料を溶解炉1内に投入する。次いで、予熱槽9を戻して次次回の溶解処理原料を装入し、ダクト7や蓋体8を装着した後、溶解炉1での溶解処理を開始する。これにより、溶解炉1では、予熱槽9で予熱された鉄原料を溶解処理すればよいため、溶解時間の短縮や重油原単位の低減が図れる。
【0025】
なお、予熱槽9の容量や装入する鉄原料の量は、必ずしも溶解炉1の1チャージ分の処理量と同一にする必要はない。例えば、1チャージ分より少ない場合は、熱交換の効率が低下する傾向となり、予熱槽9から排出される排ガスの温度は上昇する傾向となるが、次の溶解処理原料の一部は確実に予熱することができ、溶解時間の短縮や重油原単位の低減の効果は、ある程度期待できる。また、1チャージ分より多い場合は、熱回収の効果は大きくなる方向となるが、設備が大きくなることや分割装入等、操業が複雑になるなどの欠点もあるので、各生産現場の状況に応じて採用すればよい。
【0026】
図2は、本発明を実施するための溶解炉の一例を示すもので、溶解炉1の予熱部41を溶解部3等に対して着脱可能に形成するとともに、該予熱部41と予熱槽91とを同形状に形成した例を示すものである。なお、前記参考例と実質的に同一な構成要素には同一符号を付し、その説明は省略する。
【0027】
本形態例は、溶解炉1で溶湯を出湯した後、予熱部41を溶解炉1の本体部から取り外すとともに予熱槽91を溶解炉1の本体部に装着することにより、予熱部41と予熱槽91とを交換し、予熱部41内に次次回の溶解処理の原料を装入して予熱槽として用い、予熱槽91を予熱部として用いるようにしたものである。
【0028】
この場合、予熱部41と予熱槽91との交換には、両者の底部に設けた開閉可能なスクリーン13を予熱部として用いるときに全開状態にできるとともに、溶解部3あるいは絞り部5にできるだけ密着させることができるような設備的な配慮が若干必要とはなるが、予熱槽内で原料が融着等により棚吊りして装入が不安定な状態になっても、引き続いて予熱部として用いられる際の溶解処理による燃焼熱で、なんら特別な作業をすることなく落下させることができるという利点がある。
【0029】
なお、予熱部の着脱位置は、予熱部の下部だけでなく、絞り部を含んで着脱可能に形成してもよく、場合によっては、溶解部の天井部に分離部を設定することも可能である。
【0035】
【発明の効果】
以上説明したように、本発明の金属原料の溶解方法によれば、溶解時の高温の燃焼排ガスを次回の溶解処理原料の予熱に効率的に利用でき、溶解に必要な燃料及び酸素の使用量を大幅に削減することができる。また、生産性の向上により、炉の耐火物の消耗や冷却水、ガス等の使用原単位の削減も図れる。さらには、最終的な排ガスの温度が低下するため、排気装置の容量も小さくできるなどの効果も期待できる。
【図面の簡単な説明】
【図1】 溶解炉の参考例を示す概略図である。
【図2】 本発明を実施するための溶解炉の一例を示す概略図である。
【符号の説明】
1…溶解炉、2…酸素バーナー、3…溶解部、5…絞り部、6…出湯口、7…ダクト、8…蓋体、10…排ガス導入口、11…排ガス通路、12…排ガス導出口、13…スクリーン、14…ノズル、41…予熱部、91…予熱槽
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for melting a metal raw material, and more specifically, in a combustion flame of an oxygen burner using a metal raw material, for example, iron raw materials (including steel) such as scrap and return material at the time of manufacture, using oxygen as a combustion supporting gas. The present invention relates to a method for efficiently and continuously dissolving.
[0002]
[Prior art]
As a method of melting iron (including steel) raw materials such as scrap and return material, an arc type electric furnace whose main energy source is electricity is often used. Although such a melting method using electricity has advantages such as easy temperature rise and easy temperature control, since it uses electricity generated separately, the total fuel utilization efficiency and energy cost There was a problem in terms of.
[0003]
On the other hand, fossil fuels are burned with an oxygen burner that uses oxygen or oxygen-enriched air as a combustion-supporting gas instead of electricity, and iron raw materials such as scraps and return materials are dissolved by the combustion heat. In such a melting furnace using an oxygen burner, energy is introduced not by an arc but by a burner, so that stable melting is possible, work from the opening of the furnace can be reduced as much as possible, and arc Compared to the electric furnace, the overall fuel utilization efficiency can be improved.
[0004]
[Problems to be solved by the invention]
However, even in the melting method of various metal raw materials using the above-mentioned oxygen burner, in order to further reduce the fuel utilization efficiency and energy cost, the heat input from the oxygen burner that did not directly heat at the melting part is dissolved. However, the recovery efficiency has not been sufficient yet.
[0005]
Therefore, an object of the present invention is to provide a metal raw material melting method capable of efficiently recovering thermal energy of combustion exhaust gas of an oxygen burner and capable of greatly improving thermal efficiency.
[0006]
[Means for Solving the Problems]
In order to achieve the above-mentioned object, the metal raw material melting method of the present invention is provided with a preheating part that preheats the metal raw material detachably connected above the melting part for melting the metal raw material in the combustion flame of the oxygen burner, When melting a metal raw material in a melting furnace provided with a constricted part having an inner diameter smaller than the inner diameter of the melting part and the preheating part between the melting part and the preheating part, the preheating part of the melting furnace is used during the melting process of the metal raw material. Combustion exhaust gas discharged from the furnace is introduced into a preheating tank having the same shape as the preheating section connected to the melting furnace, and the next melting treatment raw material charged in the preheating tank is preheated, and the molten metal is melted from the melting section. the after dissolution treatment completion was tapped, remove the preheating section from the melting furnace, dissolving Rutotomoni, the preheater together with the next dissolution process feedstock preheated used as preheating tank was charged with the following next dissolution treatment material therein Installed in the furnace as a preheating part It is characterized in that there.
[0007]
Furthermore, the method of the present invention is characterized in that, in the above method, the preheating part and the preheating tank are provided with a screen that can be opened and closed at the bottom .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to the drawings. First, FIG. 1 shows a reference example of dissolve furnace. The melting furnace 1 is for melting and regenerating iron raw materials such as iron (including steel) scraps and return materials only by the combustion heat of an oxygen burner 2 using oxygen as a combustion-supporting gas. In addition, the melting portion 3 is integrally connected to the upper portion, and the preheating portion 4 is integrally connected to the upper portion, and the throttle portion 5 is provided between the melting portion 3 and the preheating portion 4.
[0010]
The melting part 3 has substantially the same internal shape as that of a normal metal melting furnace, for example, an electric furnace, etc., and a hot water outlet 6 and a plug 6a for opening and closing the hot water outlet 6 are provided at the bottom of one side thereof. Is provided. The preheating unit 4 is formed in a substantially cylindrical shape, and a lid 8 having an exhaust port 8a connected to the duct 7 is detachably attached to an upper opening of the preheating unit 4.
[0011]
The said restriction | limiting part 5 is provided in order to control the fall speed | rate of the iron raw material which falls to the melt | dissolution part 3 from the preheating part 4, and is formed with an internal diameter smaller than each internal diameter of the melt | dissolution part 3 and the preheating part 4. . It is preferable that the constricted portion 5 and the large-diameter melting portion 3 or the preheating portion 4 are connected to each other at the oblique sides 3a and 4a to form a cone shape as shown in the figure. Although it is possible to connect this portion with a curved surface, in the case of a furnace formed by lining a refractory, the work of lining the refractory becomes troublesome. At this time, if the hypotenuses 3a and 4a are close to vertical, the height of the furnace becomes high, and if they are close to horizontal, a dead space is generated, which may adversely affect thermal efficiency and operability. For this reason, normally, it is preferable to set the ceiling part of the melting part 2 to about 20 to 60 degrees and the bottom part of the preheating part 3 to about 20 to 70 degrees with respect to the horizontal line.
[0012]
The oxygen burner 2 is installed by inserting one or more oxygen burners 2 into an insertion hole 3b provided on the peripheral wall of the dissolving portion 3 according to the required dissolving capacity. Depending on the size or the like, it can be set at an appropriate position on the vertical part of the furnace wall or the ceiling part (the oblique side 3a part). The oxygen burner 2 is provided so that the flame ejection direction faces the bottom of the dissolving part 3 so that the iron raw material charged into the dissolving part 3 can be dissolved from the bottom side of the dissolving part 3. A fuel such as heavy oil and pulverized coal and a combustion-supporting gas are introduced from a route not shown. Moreover, a nozzle (not shown) for stirring the molten metal can be provided at the bottom of the melting part 3 or the lower part of the peripheral wall as necessary.
[0013]
In this way, by performing the melting process in the melting furnace 1 in which the preheating unit 4 is continuously provided via the throttle unit 5 above the melting unit 3, the amount of the raw material falling from the preheating unit 4 to the melting unit 3 is optimized. Since it can be controlled at a speed, it is not necessary to provide a device for controlling the amount of raw material input like a conventional iron grid, and scrap can be efficiently melted in a simple melting furnace, and the furnace structure This simplifies manufacturing costs and maintenance costs, and improves thermal efficiency and shortens melting time.
[0014]
Further, the melting furnace 1 is provided with a preheating tank 9 for charging an iron material to be used for the next melting process. The preheating tank 9 is formed in a hollow cylindrical shape, and is provided with an exhaust gas inlet 10 that is detachably connected to the duct 7 at an upper portion and is detachably connected to an exhaust gas passage 11 at a lower portion. An exhaust gas outlet 12 is provided.
[0015]
Further, a screen 13 capable of holding the iron raw material charged in the preheating tank 9 is provided at the exhaust gas outlet 12 so as to be openable and closable. The screen 13 can be an iron grid formed in a water-cooled structure as needed, such as a mesh structure, for example, a structure similar to an iron grid for controlling the amount of raw material provided in a conventional melting furnace , One with mechanism can be used.
[0016]
The duct 7 is for introducing combustion exhaust gas having a high heat content at a high temperature from the melting furnace 1 into the preheating tank 9, and preferably has a structure that does not allow the heat amount to escape as much as possible. For this purpose, it is desirable that the duct 7 has a heat insulating structure and is lined with a heat-resistant material having high heat resistance such as a castable or board shape.
[0017]
In addition, if unburned components are contained in the combustion exhaust gas, the heat recovery efficiency in the preheating tank 9 may decrease. For example, the exhaust gas components and the flow rate are continuously supplied in the vicinity of the exhaust port 8a of the preheating unit 4. It is desirable to provide an analyzer for measurement in addition to providing a nozzle 14 for supplying combustion-supporting gas in the duct 7 and to blow in an optimum amount of combustion-supporting gas in accordance with the measured amount of unburned components and perform secondary combustion.
[0018]
Furthermore, in order to prevent overheating of the raw material in the preheating tank 9 and to reduce the ratio of oxidizing gas such as carbon dioxide and water vapor, dilution gas such as nitrogen gas can be simultaneously added from the nozzle 14. The dilution of the combustion exhaust gas can also be performed by using air for part or all of the combustion-supporting gas.
[0019]
The preheating tank 9 preferably has a structure in which the exhaust gas is introduced from one end and discharged to the other end in order to efficiently exchange heat between the combustion exhaust gas and the iron raw material. Moreover, in order to pass the combustion exhaust gas through the iron material to be preheated without drift, a vertical tank as shown in the figure or a horizontal tank provided with an exhaust gas inlet in the middle is effective. In addition, by providing a nozzle for supplying combustion-supporting gas at an appropriate location and performing secondary combustion of the combustion exhaust gas in the middle part of the tank, the combustion exhaust gas is combusted stepwise to gradually raise the temperature and change the composition. Can also be done.
[0020]
Further, the screen 13 of the exhaust gas outlet 12 of the preheating tank 9 can be water-cooled relatively easily because the exhaust gas has a low temperature due to heat exchange in the tank. The function of the screen 13 is to support the iron raw material during the preheating period and after the preheating until the iron raw material is introduced into the melting furnace 1 by moving the preheating tank 9 to the upper portion of the melting furnace 1, and opening and closing thereof. The raw material preheated by the operation is to be put into the melting furnace 1. When the screen 13 is provided at the exhaust gas outlet 12, it is one requirement to stably discharge the preheated exhaust gas outside the tank, but the exhaust gas outlet 12 is preheated immediately above the screen 13. When it is provided on the tank side wall or the like, it is not necessary to consider the exhaust gas discharge function.
[0021]
For example, the screen 13 is provided with a plurality of comb-like fingers having a water-cooling structure at opposite portions of the bottom of the preheating tank 9 so that the fingers can be pulled out. Sometimes, it is inserted into the preheating tank 9 from the central part to the back so that the opposing fingers enter between the fingers. This finger can be driven to open and close by a finger driving member such as a cylinder provided integrally with the preheating tank 9.
[0022]
In this way, when the iron raw material is melted by the combustion flame of the oxygen burner 2, the melting furnace 1 and the preheating tank 9 are combined, and the combustion exhaust gas of the melting furnace 1 is introduced into the preheating tank 9 to perform heat recovery. Thermal efficiency can be greatly increased. Also, in the melting furnace 1 of this structure, no special operation is basically required from the charging of the iron raw material into the furnace to the end of melting, the furnace opening is minimal, and the use of the combustion exhaust gas is easy. There is also an advantage that can be done.
[0023]
On the other hand, in order to discharge the molten metal melted in the melting furnace 1, it is essential to completely drop the iron material in the drawn portion 5 and the preheating portion 4 initially charged to the melting portion 3 and completely melt them. At this time, at the initial stage of melting, the high-temperature combustion exhaust gas can be effectively used by preheating the iron raw material in the throttle unit 5 and the preheating unit 4, and all the iron raw material falls into the melting unit 3, In the latter stage of melting when the part 5 and the preheating part 4 become spaces, the combustion exhaust gas is introduced into the preheating tank 9 and used to preheat the iron raw material to be used for the next melting treatment, thereby making the thermal energy of the combustion exhaust gas efficient. And the heat energy that the exhaust gas is carried out of the furnace can be greatly reduced.
[0024]
And after discharging the molten metal which completed the melting process in the melting furnace 1, while removing the duct 7 and the cover body 8 suitably, the preheating tank 9 is conveyed just above the upper opening of the preheating part 4 with a crane etc. The iron raw material that has been opened and preheated in the preheating tank 9 is put into the melting furnace 1. Next, after the preheating tank 9 is returned and the next melting treatment raw material is charged and the duct 7 and the lid 8 are mounted, the melting treatment in the melting furnace 1 is started. Thereby, in the melting furnace 1, since the iron raw material preheated with the preheating tank 9 should just be melt | dissolved, shortening of melt | dissolution time and the reduction | decrease of a fuel oil basic unit can be aimed at.
[0025]
The capacity of the preheating tank 9 and the amount of iron raw material to be charged are not necessarily the same as the processing amount for one charge of the melting furnace 1. For example, when the amount is less than one charge, the heat exchange efficiency tends to decrease, and the temperature of the exhaust gas discharged from the preheating tank 9 tends to increase, but a part of the next dissolution treatment raw material is surely preheated. The effects of shortening the dissolution time and reducing the fuel oil intensity can be expected to some extent. If the amount exceeds one charge, the effect of heat recovery tends to increase, but there are drawbacks such as increased equipment and complicated operation such as split charging, so the situation at each production site It may be adopted according to.
[0026]
FIG. 2 shows an example of a melting furnace for carrying out the present invention . The preheating part 41 of the melting furnace 1 is detachably formed with respect to the melting part 3 and the like, and the preheating part 41 and the preheating tank 91 are formed. Are shown in the same shape. In addition, the same code | symbol is attached | subjected to the component substantially the same as the said reference example, and the description is abbreviate | omitted.
[0027]
In this embodiment, after the molten metal is discharged in the melting furnace 1, the preheating part 41 is removed from the main body part of the melting furnace 1 and the preheating tank 91 is attached to the main body part of the melting furnace 1, thereby the preheating part 41 and the preheating tank. 91 is replaced, and the raw material for the next melting process is inserted into the preheating unit 41 and used as a preheating tank, and the preheating tank 91 is used as a preheating part.
[0028]
In this case, the preheating unit 41 and the preheating tank 91 can be exchanged when the openable and closable screen 13 provided at the bottom of both is used as a preheating unit, and can be in close contact with the melting unit 3 or the throttle unit 5 as much as possible. However, even if the raw materials are suspended in the preheating tank by fusing, etc., and the charging becomes unstable, it will continue to be used as a preheating part. There is an advantage that it can be dropped without any special work by the combustion heat generated by the melting process.
[0029]
In addition, the attaching / detaching position of the preheating part may be formed to be detachable including not only the lower part of the preheating part but also the throttle part, and in some cases, it is possible to set a separation part on the ceiling part of the melting part. is there.
[0035]
【The invention's effect】
As described above, according to the melting method of the metal raw material of the present invention, the high-temperature combustion exhaust gas at the time of melting can be efficiently used for preheating of the next melting treatment raw material, and the amount of fuel and oxygen used for melting are used. Can be greatly reduced. In addition, by improving productivity, it is possible to reduce the consumption of refractories in the furnace and the basic unit of use such as cooling water and gas. Furthermore, since the temperature of the final exhaust gas is lowered, an effect of reducing the capacity of the exhaust device can be expected.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a reference example of a melting furnace.
FIG. 2 is a schematic view showing an example of a melting furnace for carrying out the present invention .
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Melting furnace, 2 ... Oxygen burner, 3 ... Melting part, 5 ... Restriction part, 6 ... Outlet, 7 ... Duct, 8 ... Cover body, 10 ... Exhaust gas inlet, 11 ... Exhaust gas passage, 12 ... Exhaust gas outlet , 13 ... Screen, 14 ... Nozzle, 41 ... Preheating part, 91 ... Preheating tank

Claims (2)

酸素バーナーの燃焼火炎で金属原料を溶解する溶解部の上方に、金属原料を予熱する予熱部を着脱可能に連設するとともに、溶解部と予熱部との間に、溶解部及び予熱部の内径よりも小さな内径の絞り部を設けた溶解炉で金属原料を溶解するにあたり、金属原料の溶解処理時に、前記溶解炉の予熱部から排出される燃焼排ガスを、溶解炉に連設した予熱部と同形状の予熱槽に導入して該予熱槽内に装入されている次回の溶解処理原料を予熱し、前記溶解部から溶湯を出湯した溶解処理終了後に、前記予熱部を溶解炉から取り外し、内部に次次回の溶解処理原料を装入して予熱槽として用いるとともに、予熱した次回の溶解処理原料と共に前記予熱槽を溶解炉に装着して予熱部として用いることを特徴とする金属原料の溶解方法。A preheating part for preheating the metal raw material is detachably connected above the melting part for melting the metal raw material by the combustion flame of the oxygen burner, and the inner diameter of the melting part and the preheating part is provided between the melting part and the preheating part. When melting a metal raw material in a melting furnace provided with a throttle part having a smaller inner diameter, a combustion exhaust gas discharged from the preheating part of the melting furnace during the melting process of the metal raw material is connected to a preheating part connected to the melting furnace. Introducing into the preheating tank of the same shape and preheating the next melting treatment raw material charged in the preheating tank, after the completion of the melting process to discharge the molten metal from the melting part , remove the preheating part from the melting furnace, used as preheating tank was charged with the following next dissolution treatment material inside Rutotomoni, the metal source, which comprises using as the preheating section by mounting the preheater into the melting furnace together with the next dissolution process feedstock preheated Dissolution method. 前記予熱部及び予熱槽は、底部に開閉可能なスクリーンを備えていることを特徴とする請求項記載の金属原料の溶解方法。 The preheating unit and the preheater, the dissolution process of claim 1 wherein the metal material, characterized in that it comprises an openable screen bottom.
JP34157395A 1995-12-27 1995-12-27 Method for melting metal raw materials Expired - Lifetime JP3650193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34157395A JP3650193B2 (en) 1995-12-27 1995-12-27 Method for melting metal raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34157395A JP3650193B2 (en) 1995-12-27 1995-12-27 Method for melting metal raw materials

Publications (2)

Publication Number Publication Date
JPH09176716A JPH09176716A (en) 1997-07-08
JP3650193B2 true JP3650193B2 (en) 2005-05-18

Family

ID=18347125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34157395A Expired - Lifetime JP3650193B2 (en) 1995-12-27 1995-12-27 Method for melting metal raw materials

Country Status (1)

Country Link
JP (1) JP3650193B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001006021A1 (en) * 1999-07-20 2001-01-25 Fuchs Services Limited Melting plant with burner heated furnace vessel and charge preheater
JP5561155B2 (en) * 2010-12-27 2014-07-30 住友金属鉱山株式会社 Melting method of vanadium pentoxide
JP5589830B2 (en) * 2010-12-27 2014-09-17 住友金属鉱山株式会社 Vanadium pentoxide melting equipment

Also Published As

Publication number Publication date
JPH09176716A (en) 1997-07-08

Similar Documents

Publication Publication Date Title
JP2875120B2 (en) Electric arc furnace for steelmaking
PL160334B1 (en) Melting furnace
JP2750136B2 (en) Method for melting metal scrap and apparatus for performing the method
JP6027982B2 (en) Arc furnace
CN108624739B (en) Steelmaking equipment and smelting method for steelmaking by using scrap steel
JPH01198415A (en) Method and apparatus for continuously melting scrap
JP3650193B2 (en) Method for melting metal raw materials
JP6172720B2 (en) Starting the smelting process
JP3092083B2 (en) Preheating apparatus and preheating method for iron scrap
US7830947B2 (en) Furnace installation and method for melting down metallic or metal-containing charge materials
JP2013194942A (en) Metal melting furnace and metal melting method
RU2295574C2 (en) Method of production of metal and plant for realization of this method
EP1226283B1 (en) High temperature premelting apparatus
JP4077533B2 (en) Metal melting method
JP2002090066A (en) Scrap preheating type electric steel making furnace
JPS6160261A (en) Ladle heating device
JPH0631686B2 (en) Exhaust gas heat recovery method and apparatus for melting furnace
JP2980481B2 (en) Operation method of double arc furnace equipment
JP2000017319A (en) Operation of arc furnace
JP2000008115A (en) Melting of cold iron source
JP3521277B2 (en) Cold iron source melting method and melting equipment
JPH10311688A (en) Method for melting metal
JPH1123156A (en) Fusion furnace for metal, and fusion method for metal
JPH06174375A (en) Tandem arc furnace equipment
JPH0519326Y2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050217

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term