WO2013134949A1 - 内窥式x射线发光断层成像装置及方法 - Google Patents

内窥式x射线发光断层成像装置及方法 Download PDF

Info

Publication number
WO2013134949A1
WO2013134949A1 PCT/CN2012/072434 CN2012072434W WO2013134949A1 WO 2013134949 A1 WO2013134949 A1 WO 2013134949A1 CN 2012072434 W CN2012072434 W CN 2012072434W WO 2013134949 A1 WO2013134949 A1 WO 2013134949A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
ray
infrared light
equation
probe
Prior art date
Application number
PCT/CN2012/072434
Other languages
English (en)
French (fr)
Inventor
梁继民
陈雪利
屈晓超
朱守平
陈多芳
赵恒�
田捷
Original Assignee
西安电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安电子科技大学 filed Critical 西安电子科技大学
Priority to PCT/CN2012/072434 priority Critical patent/WO2013134949A1/zh
Priority to CN201280066407.3A priority patent/CN104168830B/zh
Priority to US14/379,732 priority patent/US10034647B2/en
Publication of WO2013134949A1 publication Critical patent/WO2013134949A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0084Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters
    • A61B5/0086Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for introduction into the body, e.g. by catheters using infrared radiation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/485Diagnostic techniques involving fluorescence X-ray imaging

Definitions

  • the present invention relates to the field of medical imaging technology, and further relates to an endoscopic X-ray ray tomography apparatus and an endoscopic X-ray luminescence tomography method. Background technique
  • Fluorescence diffuse optical tomography Due to the three-dimensional reconstruction of the spatial position and concentration distribution of fluorescent probes in vivo, Fluorescence diffuse optical tomography (FDOT) has become a promising molecular imaging technique. In its potential applications, FDOT has been widely used for imaging small animals or superficial organs such as the brain and breast. In this case, the fluorescent signal can penetrate the imaged object and be received by an external detecting component. However, for internal organs deep in, for example, large animals or human subjects, FDOT technology cannot provide accurate images due to the severe attenuation of fluorescence in the body, and it is impossible to measure the fluorescence signals of the body surface.
  • Endoscopic imaging technology allows precise imaging of internal organs by allowing the probe to penetrate deep into the body and close to the region of interest through cavity-like organs in the body, such as the intestines, esophagus, stomach, bladder, and the like.
  • Piao Diqing Piao, Hao Xie, Weili Zhang, and Jerzy S. Krasinski, "Endoscopic, rapid near-infrared optical tomography," Optics Letters 2006, 31(19), 2876-2878), etc.
  • An endoscopic fluorescence diffuse optical tomography (eFDOT) system is proposed, including an eFDOT device and method for imaging internal organs of an organism.
  • a miniaturized endoscopic probe having a diameter of centimeter is used, wherein the excitation fiber and the detection fiber are equally spaced and distributed on the top side of the endoscopic probe. Since the endoscopic probe has a small diameter, the distance between the excitation fiber and the detection fiber is small. Such a small excitation source-detector distance will result in strong interference between the signals, making the imaging results no longer accurate.
  • DEM ⁇ is a forward optical transmission model. Due to its limitations, DE does not accurately describe the light transmission process near low-scattering regions, light sources, and refractive index mismatched tissue boundaries. Therefore, in the eFDOT method, DE will no longer apply.
  • XLCT X-ray luminescence computed tomography
  • the XLCT uses X-rays to excite fluorescent particles (Phosphor Nanoparticles, PNP;) probes in small animals, which can emit near-infrared light.
  • fluorescent particles Phosphor Nanoparticles, PNP;
  • the near-infrared light emitted by a CCD camera can be reconstructed by near-infrared optical tomography.
  • This imaging technique uses X-rays as an excitation source to excite PNP probes deep in the living tissue and to remove autofluorescence.
  • XLCT technology can only be used for imaging small animals and superficial organs. Summary of the invention
  • embodiments of the present invention provide an endoscopic X-ray illuminating tomography apparatus and an endoscopic X-ray illuminating tomography method for accurately imaging a targeted target inside a subject.
  • an endoscopic X-ray luminescence tomography apparatus including: an excitation source unit for exciting a probe inside an object from an external excitation source; and a signal acquisition unit for Acquiring an X-ray image of the object to be inspected and an image of the near-infrared light signal emitted by the probe after being excited; and calculating a unit for pre-processing the acquired X-ray image and the near-infrared light signal image X-ray image is sparsely reconstructed to acquire structural information of the object to be inspected and within the signal acquisition unit Observing the position information of the probe inside the object to be inspected, and performing optical three-dimensional reconstruction on the preprocessed near-infrared light signal image by using the acquired structural information and position information, and acquiring the position information and distribution of the targeted target inside the object to be inspected information.
  • the signal acquisition unit comprises a near-infrared light signal acquisition module comprising a balloon imaging catheter, an endoscopic probe, a signal transmission fiber bundle and a photomultiplier array detector.
  • the balloon imaging catheter comprises a medical catheter having one end connected to the air delivery tube in the signal transmission bundle and the other end fixed to the outer surface of the signal transmission bundle and enclosing the endoscopic probe therein.
  • the image of the near-infrared light signal is filled with air to prop up the cavity wall of the cavity-like organ.
  • the image forming apparatus further includes: an operating unit including a C-shaped rotating arm for acquiring an X-ray projection image of the object to be inspected at multiple angles; and an image forming fixed bed for fixing the object to be inspected and adjusting So that it is within the field of view of X-ray imaging.
  • an operating unit including a C-shaped rotating arm for acquiring an X-ray projection image of the object to be inspected at multiple angles
  • an image forming fixed bed for fixing the object to be inspected and adjusting So that it is within the field of view of X-ray imaging.
  • the endoscopic probe comprises N sets of drum lenses and rod lens pairs, each pair of drum lenses and rod lenses being connected to a signal transmission fiber in the signal transmission fiber bundle for collecting the probes after excitation An image of a near-infrared light signal emitted.
  • the signal transmission fiber bundle comprises N signal transmission fibers for transmitting the acquired near-infrared optical signal image to the photomultiplier array detector; and an air delivery tube for charging the balloon imaging catheter Into the air.
  • the probe is a fluorescent nanoparticle probe.
  • the computing unit displays the result of the optical three-dimensional reconstruction, comprising image fusion of the reconstructed result of the obtained internal target of the subject and the structural information for three-dimensional display of the fused image.
  • the computing unit includes an image pre-processing module for pre-processing the X-ray image, including noise removal, dead-point compensation, and image correction.
  • the computing unit includes an image pre-processing module that pre-processes the near-infrared optical signal image, including noise removal, region of interest extraction, and dead pixel compensation.
  • the computing unit comprises an image reconstruction module for: constructing a forward optical transmission hybrid model; establishing a total system equation of the endoscopic X-ray illuminating tomography according to the forward optical transmission hybrid model, obtaining a near-infrared optical signal Calculated value vector of the image; root According to the obtained error between the calculated value vector of the near-infrared light signal image and the measured value vector of the acquired near-infrared light signal image, combined with the sparse distribution of the probe and the non-negative constraint, a sparse regularized objective function is established; The objective function is solved to obtain the spatial position and concentration distribution of the probe inside the object to be obtained, thereby obtaining position information and distribution information of the target target inside the object to be inspected.
  • constructing the forward optical transmission hybrid model comprises: dividing the biological tissue into a low scattering characteristic tissue according to the position information of the obtained endoscopic probe inside the object to be inspected according to the optical characteristic parameter of the biological tissue of the object to be inspected, High scattering characteristics of microstructure and cavity; respectively, using the third-order simplified spherical harmonic equation, diffusion equation and free-space optical transmission equation to describe the transmission process of near-infrared light in these three types of tissues; constructing boundary coupling conditions to couple these three A light transmission equation, combined with the process of X-ray excitation of the probe, constructs a forward optical transmission hybrid model of endoscopic X-ray luminescence tomography.
  • establishing the total system equation comprises: discretizing the constructed forward optical transmission hybrid model based on the finite element method using the following equation, assembling the subsystem equations at each discrete point:
  • is the system matrix corresponding to the first X-ray irradiation angle, depending on the distribution of three major types of tissues in the living body, optical characteristic parameters, and the position of X-rays irradiated onto the body surface
  • p is the concentration of the fluorescent nanoparticle probe
  • a 7 P where A is the total system matrix
  • the sparse regularization objective function is established according to a preferred implementation using the following formula:
  • is a measured value vector of the collected near-infrared light signal image corresponding to all M X-ray irradiation angles; is a sparse regularization parameter;
  • the type of biological tissue is divided according to the following rules: the tissue in which the fluorescent nanoparticle probe is located, the tissue to which the body surface belongs, and the tissue having a ratio of the scattering coefficient to the absorption coefficient of less than 10 are classified into a low scattering characteristic tissue, The tissue whose ratio of the scattering coefficient to the absorption coefficient is greater than or equal to 10 is divided into a high scattering characteristic structure, and the tissue in which the endoscopic probe is placed is divided into a cavity when the near-infrared light signal image is acquired.
  • the third-order simplified spherical harmonic equation, the diffusion equation, and the free-space optical transmission equation are used to describe the transmission process of near-infrared light in these three types of tissues according to the following rules: a third-order simplified spherical harmonic equation is used. Describe the transmission process of near-infrared light in low-scattering structures.
  • the diffusion equation is used to describe the transmission process of near-infrared light in high-scattering structures.
  • the free-space optical transmission equation is used to describe the near-infrared light from the cavity and scattering characteristics. The boundary to the endoscopic probe transmission process.
  • ⁇ ( ⁇ ) is the luminous flux at the point r calculated by the diffusion equation
  • ⁇ human ⁇ and
  • ( iy is the luminous flux component at the point r calculated by the third-order simplified spherical harmonic equation
  • (r) is the diffusion equation Boundary index mismatch coefficient
  • A(r) and (r) are the boundary refractive index mismatch systems of the third-order simplified spherical harmonic equation
  • the underlying coupled scattering characteristic structure and the optical transmission side of the cavity are applied
  • J(r) ⁇ (D(r) + ( ⁇ - ⁇ )( ⁇ ⁇ ( ⁇ ) ⁇ ( ⁇ ) + ⁇ 2 ( ⁇ ) 2 ( ⁇ ))
  • (r) r is any point on the boundary where the scattering characteristic is intersected by the cavity; ⁇ r) is the optical flow rate at point r, pointing to the inside of the cavity; ⁇ is the identification factor of the scattering characteristic organization, if low scattering characteristic organization When the cavity is opposite to the cavity, the value of ⁇ is taken as 0; if the high scattering characteristic is intersected with the cavity, the value of ⁇ is taken as 1
  • an endoscopic X-ray luminescence tomography method comprising the following steps: (a) acquiring an image of a near-infrared light signal emitted by a probe inside the subject after being stimulated, and Acquiring an X-ray image of the object to be inspected; (b) performing image preprocessing on the acquired near-infrared light signal image and the X-ray image; (C) performing sparse reconstruction on the preprocessed X-ray data to obtain a subject to be inspected Structural information and position information of the endoscopic probe inside the object to be inspected; (d) Optically three-dimensional reconstruction of the preprocessed near-infrared light signal image using the acquired structural information and position information to acquire the internal target of the object to be inspected Location information and distribution information of the target.
  • the endoscopic tomography apparatus and method according to the present invention have the advantages of:
  • the present invention is overcome.
  • the signal interference and imaging inaccuracy caused by the simultaneous excitation source and detector integrated into the front end of the miniaturized endoscopic probe can improve the signal interference and imaging accuracy of the endoscopic optical tomography technique in the excitation mode.
  • the optical transmission hybrid model is adopted as the forward model of the endoscopic X-ray illuminating tomography technique, and the sparse distribution characteristics of the fluorescent nanoparticle probe and the sparse characteristics of the endoscopic measurement data with respect to the whole region of the living body are simultaneously considered.
  • a sparse regularization objective function which overcomes the problems of insufficient imaging accuracy and resolution caused by diffusion equation and norm regularization in the prior art, can effectively improve the accuracy and resolution of endoscopic optical tomography.
  • the endoscopic probe is used as an internal detector to collect the near-infrared light emitted by the fluorescent nanoparticle probe after excitation, which overcomes the problem that the existing X-ray illuminating tomography technology is limited to imaging of small animals and superficial organs. Accurate imaging of deep targeted targets inside a subject, such as a large animal or human body, can be achieved.
  • FIG. 1 is a block diagram showing the composition of an endoscopic X-ray illuminating tomography apparatus according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of an endoscopic X-ray luminescence tomography apparatus according to an embodiment of the present invention
  • 3 is a schematic cross-sectional view showing a near-infrared light signal acquisition sub-module of an endoscopic X-ray illuminating tomography apparatus according to an embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view of an endoscopic probe of an endoscopic X-ray illuminating tomography apparatus according to an embodiment of the present invention
  • FIG. 5 is a flow chart of an endoscopic X-ray luminescence tomography method according to an embodiment of the present invention.
  • FIG. 6 is a three-dimensional reconstruction sub-flow diagram of an internal targeting target of an endoscopic X-ray luminescence tomography method in accordance with an embodiment of the present invention. detailed description
  • an X-ray tube is used as an external excitation source to excite a probe inside the subject, and a micro endoscopic probe is used as a detector to collect near-infrared light emitted by the probe after being excited. Then, the three-dimensional structure imaging information of the object to be inspected is acquired by an X-ray flat panel detector collinear with the X-ray tube and the fixed bed of the imaging body.
  • a physical model and a forward optical transmission model of endoscopic X-ray luminescence tomography are established; based on the model, the finite element method is used simultaneously for the object to be inspected
  • the sparse distribution characteristics of the internal probe and the serious deficiencies of the measured data construct the sparse regularization objective function; use the appropriate optimization algorithm to solve the objective function to achieve accurate imaging of the internal organ lesions or deep targets of the subject.
  • the endoscopic X-ray illuminating tomography apparatus may include: an excitation source unit 1, a signal acquisition unit 2, a manipulation unit 3, and a calculation unit 4.
  • the excitation source unit 1 may include an X-ray tube 11 and an X-ray tube power source 12 as an external excitation source to excite the fluorescent nanoparticle probe inside the subject, and is also used for scanning the subject to obtain anatomical information thereof and Endoscopic position information of the probe in the body.
  • the fluorescent nanoparticle probe is taken as an example for description, and those skilled in the art can
  • the probe may also be, for example, a rare earth probe or the like.
  • the signal acquisition unit 2 may include an X-ray signal acquisition module 21 and a near-infrared light signal acquisition module 22.
  • the X-ray signal acquisition module 21 may include an X-ray CMOS flat panel detector 211 for acquiring an X-ray projection image of the subject;
  • the near-infrared light signal acquisition module 22 may include a balloon imaging catheter 221, an endoscopic probe 222, and signal transmission.
  • the fiber bundle 223 and the photomultiplier array detector 224 are used for endoscopically collecting images of near-infrared light signals emitted by the fluorescent nanoparticle probe after being stimulated.
  • the manipulation unit 3 may include a C-type rotary arm module 31 and an image forming fixed bed module 32.
  • the C-type swivel arm module 31 may include a C-arm 311, a rotation control device 312, a C-arm support column 313, and a plunging motor 314 for collecting an X-ray projection image of the object to be inspected at multiple angles;
  • the module 32 includes an imaging body fixed bed 321, a translational slide 322, a lifting platform 323, and a squeezing motor 324 for fixing the object to the imaging body fixed bed and for the subject in the X-ray imaging field of view. Position adjustment.
  • the computing unit 4 can include a system operation control module 41, an image pre-processing module 42, and an image reconstruction module 43.
  • a system operation control module 41 for example, the structural relationship of each of the above components is as follows:
  • the X-ray tube 11 and the X-ray CMOS flat panel detector 211 are fixed to both ends of the C-arm 311 and placed opposite each other.
  • the X-ray tube 11 is connected to the X-ray tube power source 12 through a power line, and is further connected to the calculation unit 4 through a control line for controlling the X-ray switch and signal strength of the X-ray tube 11; X-ray CMOS panel detection
  • the controller 211 is connected to the computing unit 4 via a control line and a data line for controlling the acquisition of the X-ray signal by the X-ray CMOS flat panel detector 211 and the data transmission of the acquired signal to the computing unit 4.
  • the C-arm 311 is coupled to the rotation control unit 312, and the rotation control unit 312 is attached to the C-arm support column 313. Further, the rotation control device 312 is connected to the motor 314 via a control line, and the motor 314 is connected to the calculation unit 4 via a control line; the system operation control module 41 of the calculation unit 4 controls the motor 314 so that the C-arm 311
  • the rotation control device 312 is slid at equal intervals, for example.
  • the image forming fixed bed 321 is fixed to the translational slide 322, and the translational slide 322 is connected to the boring motor 324 through a control line.
  • the translational slide 322 is fixed to the lifting platform 323
  • the lifting platform 323 is also connected to the motor 324 via a control line; the motor 324 is connected to the computing unit 4 via a control line.
  • the object to be examined is fixed to the fixed bed 321 of the image forming body.
  • the system operation control module 41 of the calculation unit 4 controls the boring motor 324, adjusts the lifting platform 323, and raises and lowers the imaging body fixed bed 321 in the vertical direction; and simultaneously adjusts the translational sliding rail 322 to make the imaging body fixed bed 321 along Slide in the horizontal direction, and finally the image fixed bed 321 is collinear with the X-ray tube 11 and the X-ray CMOS flat panel detector 211, and the C-arm 311 is always in the X-ray tube when the C-arm 311 is rotated in an arc. 11 radiation and X-ray CMOS flat panel detector 211 within the imaging range.
  • the balloon imaging catheter 221 is composed of a medical catheter, one end is connected to the air delivery tube 2232 in the signal transmission fiber bundle 223, and the other end is fixed to the outer surface of the signal transmission fiber bundle 223, and
  • the endoscopic probe 222 is wrapped therein for being filled with air to capture the cavity wall of the cavity-like organ when the near-infrared light signal image is acquired.
  • the endoscopic probe 222 may include N sets of drum lens 2221 and rod lens 2222 pairs (for example, generally not less than 60, in this example, 60 sets), each pair of drum lens 2221 and rod lens 2222 and signal transmission fiber
  • the signal transmission fiber 2231 in the beam 223 is connected for collecting an image of a near-infrared light signal emitted by the fluorescent nanoparticle probe after being excited.
  • the near-infrared light signal reaches the rod lens 2222 via the drum lens 2221, and is coupled to the signal transmission fiber 2231 via the rod lens 2222.
  • the signal transmission fiber bundle 223 adopts a double-layer annular step mode, and the outer layer is composed of N signal transmission fibers 2231 (for example, generally not less than 60, 60 in this example) uniformly distributed at equal intervals, and the inner layer is composed of one.
  • the root air delivery tube 2232 is formed, the inner layer is slightly longer than the outer layer 2 cm, and the two layers and the outermost layer are wrapped by the anti-interference material; wherein one end of the signal transmission fiber 2231 is connected to the drum shape in the endoscopic probe 222
  • the lens 2221 and the rod lens 2222 are connected at the other end to the photomultiplier array detector 224 for transmitting the near-infrared light signal collected by the endoscopic probe 222 to the photomultiplier array detector 224; one end of the air delivery tube 2232 is connected to the balloon
  • the imaging catheter 221 has the other end connected to the air inflator 2233 and has a circular aperture in the portion longer than the outer layer signal transmission fiber 2231 for charging the balloon imaging catheter 221 with air.
  • the photomultiplier tube array detector 224 is composed of a group (generally not less than 60, 60 in this example) photomultiplier tube arranged in a square matrix, and passes through the control line and the photomultiplier tube.
  • the array detector power box 2241 is connected while being connected to the computing unit 4 via control lines and data lines.
  • the system operation control module 41 in the calculation unit 4 is for controlling the overall operations of the manipulation unit 3, the excitation source unit 1 and the signal acquisition unit 2 to complete the rotation control device 312 for the C-arm 311, the fixed bed 321 of the image forming body, X
  • the control of the ray tube 11, the X-ray CMOS flat panel detector 211 and the near-infrared light signal acquisition module 22 realizes the acquisition of the X-ray projection image and the near-infrared light signal image.
  • the image preprocessing module 42 is configured to preprocess the acquired X-ray projection image and the near-infrared optical signal image, for example, performing dead pixel compensation, denoising, image correction, etc. on the collected X-ray projection image, and collecting the near infrared
  • the optical signal image performs processing such as dead point compensation, denoising, and region of interest extraction.
  • the image reconstruction module 43 is configured to perform sparse reconstruction on the preprocessed X-ray projection image, acquire anatomical information of the object to be inspected and position information of the endoscopic probe, and perform optical three-dimensional reconstruction on the preprocessed near-infrared optical signal image. Obtaining location information and distribution information of deep target targets within the object under test.
  • An endoscopic X-ray tomography method according to an embodiment of the present invention will now be described with reference to FIG. The method may include: step Sl, multi-angle data acquisition
  • the system operation control module 41 in the calculation unit 4 is used to adjust the imaging body fixed bed 321, so that it is located at a position suitable for X-ray luminescence tomography:
  • the object to be inspected is first fixed on the fixed bed 321 of the image forming body, and the system 301 is controlled by the system operation control module 41 of the calculating unit 4 to adjust the lifting table 323 to raise and lower the fixed bed 321 of the image forming body along the height direction.
  • the translational slide rail 322 is adjusted to slide the image forming body fixed bed 321 in the horizontal direction to ensure the image forming body fixed bed 321 and the X-ray light pipe 11, the X-ray CMOS flat panel detector 211 Co-linear placement; Finally, fine-tuning the translational slide 322 and the lifting platform 323 to ensure that the C-arm 311 is in the arc, the imaging body fixed bed 321 is always in the X-ray tube 11 radiation and the X-ray CMOS flat panel detector 211 is optimal. Within the imaging range. (2)
  • the system operation control module 41 in the calculation unit 4 is used to acquire X-ray projection images and near-infrared light signal images at multiple angles:
  • the boring motor 314 is controlled by the system operation control module 41 of the calculation unit 4, so that the C-arm 311 is slid at a small angle on the rotation control device 312 (generally not more than 3°, in this example, 3 Q ).
  • a small angle on the rotation control device 312 generally not more than 3°, in this example, 3 Q .
  • Step S2 Data Preprocessing
  • the imaged pre-processing module 42 in the computing unit 4 is used to pre-process the acquired multi-angle X-ray projection data, including, but not limited to, noise removal, dead pixel compensation, and image correction.
  • Step S3 Acquisition of anatomical structure information
  • the pre-processed X-ray projection data is sparsely reconstructed by the image reconstruction module 43 in the calculation unit 4, and the three-dimensional volume data of the object to be inspected and the position information of the endoscopic probe in the body are obtained; and then, for example, the person in the 3DMED software is utilized.
  • the machine interactive segmentation method performs organ segmentation on the obtained three-dimensional volume data to obtain the anatomical structure information.
  • the anatomical information of the subject can also be obtained by three-dimensional volume data by other methods.
  • the processed near-infrared light signal image is optically three-dimensionally reconstructed to obtain precise position and distribution information of the target target inside the object to be inspected.
  • this step can be specifically implemented as follows:
  • a fusion-based third-order simplified spherical harmonic equation-diffusion equation-free is constructed by using the refractive index boundary coupling condition.
  • the biological tissue is divided into a low scattering characteristic tissue and a high scattering characteristic tissue.
  • the division process can be carried out according to the following two rules:
  • the rough division is based on the specific location of the organization.
  • the tissue of the fluorescent nanoparticle probe and the tissue belonging to the body surface are classified into a low scattering characteristic tissue, and the tissue of the endoscopic probe is divided into a cavity when the near infrared light signal image is collected;
  • the fine division is based on the optical parameter characteristics of the organization. Apply the formula (1) and the following guidelines to divide biological tissue into different scattering characteristics:
  • V ( 1 ) ⁇ ⁇
  • V is the partitioning standard factor for the tissue of different scattering properties, which is the reduced scattering coefficient of the biological tissue
  • / a is the absorption coefficient of the biological tissue.
  • the division can be carried out according to the following criteria: If V ⁇ 10, the biological tissue is divided into high scattering characteristic tissues; if V ⁇ 10, the biological tissue is divided into low scattering characteristic tissues. Then, the third-order simplified spherical harmonic equation, the diffusion equation and the free-space optical transmission equation are respectively used to describe the transmission process of the near-infrared light in the three types of tissues divided in the above-mentioned steps.
  • the description process can be carried out according to the following rules: the third-order simplified spherical harmonic equation is used to describe the transmission process of near-infrared light in low-scattering structure, and the diffusion equation is used to describe the transmission process of near-infrared light in high-scattering structure.
  • Spatial light transmission equation description Infrared light travels from the boundary between the cavity and the scattering characteristic tissue to the endoscopic probe. The specific description method is well known in the art and will not be described here.
  • the boundary coupling conditions are constructed to couple the three optical transmission equations, and the X-ray excitation fluorescent nanoparticle probe process is combined to construct a forward optical transmission hybrid model of the endoscopic X-ray luminescence tomography.
  • X-ray excitation of a fluorescent nanoparticle probe can be described by the following formula (7), gp, which can establish the fluorescence nanoparticle probe concentration, X-ray intensity, and emitted near-infrared light intensity according to formula (7).
  • formula (7) gp
  • the relationship is then combined with equation (7) in the optical transmission equation.
  • the construction process can be carried out as follows:
  • the coupling relationship between the third-order simplified spherical harmonic equation and the diffusion equation is established. Since the third-order simplified spherical harmonic equation and the diffusion equation describe the light transmission process in the biological properties of the scattering characteristics, that is, the light is transmitted by the diffused light in the biological tissues on both sides of the coupling boundary, so the two optical transmission equations are The outgoing light flow rate obtained at the coupling boundary is the same. Therefore, the exit optical flow rate (r) obtained at the coupling boundary of the third-order simplified spherical harmonic equation is:
  • J 3 (r) A(r (r) + (r) ⁇ 2 (r) (2) where r is any point on the coupling boundary where the low-scattering structure and the high-scattering structure intersect, ⁇ ⁇ ( r) and ⁇ are the luminous flux components at the point r calculated by the third-order simplified spherical harmonic equation, and A(r) and (r) are the boundary refractive index mismatch coefficients of the third-order simplified spherical harmonic equation.
  • the outgoing optical flow rate obtained at the coupling boundary is:
  • J(r) ⁇ (D(r) + ( ⁇ - ⁇ )( ⁇ ⁇ ( ⁇ ) ⁇ ⁇ ( ⁇ ) + ⁇ 2 ( ⁇ ) ⁇ 2 ( ⁇ )) ( 5 )
  • the finite element method is used to discretize the forward optical transmission hybrid model established by the step (S41), and the subsystem equations at each discrete point are assembled to establish the system equation corresponding to the first X-ray illumination angle:
  • is the system matrix corresponding to the first X-ray illumination angle, which depends on the distribution of three major types of tissues in the living body, optical characteristic parameters and the position of X-rays on the body surface;
  • p is fluorescence
  • concentration of the nanoparticle probe is the calculated value of the near-infrared light signal image on the endoscopic probe corresponding to the first X-ray irradiation angle.
  • A7 P (9)
  • A is the total system matrix, defined as input ⁇ ,...] is the matrix transpose operator
  • P is the near-infrared light on the endoscopic probe corresponding to all M X-ray illumination angles
  • the near-infrared light signal images collected under 1 to 5 X-ray illumination angles are selected for optical three-dimensional reconstruction.
  • P m is a measured value vector of the original near-infrared light signal image acquired by the endoscopic probe corresponding to an X-ray irradiation angle; is a sparse regularization parameter;
  • the optimal solution of the objective function is solved by using the appropriate sparse regularization problem solving algorithm to solve the objective function established by the step (S43), and obtain the spatial position and concentration distribution of the fluorescent nanoparticle probe inside the object to be inspected, thereby indirectly Get location information and distribution information of the targeted target.
  • the location information and distribution information of the targeted object herein generally correspond to the location information and distribution information of the lesion or abnormal tissue of the subject.
  • the distribution information typically provides information such as the strength of the targeted target.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Endoscopes (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种内窥式X射线发光断层成像装置,包括:激发源单元(1),用于从外部激发源激发受检对象内部的探针;信号采集单元(2),用于采集受检对象的X射线图像和所述探针受激发后发出的近红外光信号图像;计算单元(4),用于对采集的X射线图像和红外光信号图像进行预处理,对预处理后的X射线图像进行稀疏重建,以获取受检对象的结构信息和信号采集单元中的内窥探头在受检对象内部的位置信息,以及利用获取的结构信息和位置信息,对预处理后的近红外光信号图像进行光学三维重建,获取受检对象内部的靶向目标的位置信息和分布信息。

Description

内窥式 x射线发光断层成像装置及方法
技术领域
本发明涉及医学影像技术领域, 更进一歩, 涉及一种内窥式 X射 线发光断层成像装置以及一种内窥式 X射线发光断层成像方法。 背景技术
由于能够三维地重建生物体内荧光探针的空间位置和浓度分布, 扩散荧光断层成像 (Fluorescence diffuse optical tomography, FDOT)已 经成为一种很有应用潜力的分子影像技术。在其潜在的应用中, FDOT 已经广泛地应用于小动物或表层器官成像, 如脑部和乳腺等。这种情 况下,荧光信号可以穿透成像物体,并被外部的探测部件接收。但是, 对于深埋于例如大型动物体或人体的受检对象的内部器官, 由于荧光 在体内的严重衰减, FDOT技术无法提供准确的图像, 甚至于无法测 量体表的荧光信号。
内窥成像技术通过生物体内的空腔类器官, 如肠道、 食管道、 胃 道、 膀胱等, 将探测部件深入体内并靠近感兴趣区域, 可以获得内部 器官的精确成像。 鉴于内窥成像技术的优势, Piao (Daqing Piao, Hao Xie, Weili Zhang, and Jerzy S. Krasinski, "Endoscopic, rapid near-infrared optical tomography," Optics Letters 2006, 31(19), 2876-2878 ) 等提出了一种内窥式扩散荧光断层成像 (endoscopic fluorescence diffuse optical tomography, eFDOT)***, 包括 eFDOT装 置和方法, 用于对生物体内部器官的成像。
然而, 这种 eFDOT***在实际应用过程中存在一些问题, 严重 制约着进一歩的临床应用。
首先, 由于外部近红外激发光源的照射, 生物体内将会产生很强 的自体荧光, 这将严重影响重建图像的质量。 自体荧光的去除也是 FDOT技术中存在的棘手问题, 一般采用图像后处理算法将其去除; 但这并未从根本上消除自体荧光,并且严重依赖于图像后处理算法的 性能。
其次, 在已有的 eFDOT装置中, 采用直径在厘米级的微型化内 窥探头, 其中激发光纤和探测光纤等间隔地、交叉分布于内窥探头的 顶部侧面。 由于内窥探头直径很小, 因此激发光纤与探测光纤之间的 距离很小。 如此小的激发源-探测器距离, 将会导致信号间的强干扰, 从而使成像结果不再准确。
第三,在已有的 eFDOT方法中,采用扩散方程 (Diffusion Equation,
DEM乍为前向光传输模型。 由于自身的局限性, 在低散射区域、 光源 和折射率不匹配组织边界附近, DE不能准确描述光的传输过程。 因 此, 在 eFDOT方法中, DE将不再适用。
近年来, 一种名为 X 射线发光断层成像 (X-ray luminescence computed tomography, XLCT)的分子影像技术用于小型动物成像。
XLCT 采用 X 射线激发小型动物体内的荧光纳米颗粒 (Phosphor Nanoparticles, PNP;)探针, 能够发射近红外光; 通过 CCD相机采集发 射的近红外光,采用近红外光学断层成像技术可以重建小型受检对象 内部的 PNP探针分布。 这种成像技术由于采用 X射线作为激发源, 能够激发处于生物体组织深部的 PNP探针, 并且能够去除自体荧光。 然而, 由于发射的近红外光穿透深度的限制, XLCT技术仍只能用于 小型动物体和表层器官的成像。 发明内容
因此, 本发明实施例提供了一种内窥式 X射线发光断层成像装 置以及一种内窥式 X射线发光断层成像方法, 以实现对受检对象内 部的靶向目标的精确成像。
根据本发明实施例的一方面, 公开了一种内窥式 X射线发光断 层成像装置, 包括: 激发源单元, 用于从外部激发源激发受检对象内 部的探针; 信号采集单元, 用于采集受检对象的 X射线图像和所述 探针受激发后发出的近红外光信号图像; 计算单元, 用于对采集的 X 射线图像和近红外光信号图像进行预处理, 对预处理后的 X射线图 像进行稀疏重建, 以获取受检对象的结构信息和信号采集单元中的内 窥探头在受检对象内部的位置信息,以及利用获取的结构信息和位置 信息, 对预处理后的近红外光信号图像进行光学三维重建, 获取受检 对象内部的靶向目标的位置信息和分布信息。
根据优选实施例, 信号采集单元包括近红外光信号采集模块, 所 述近红外光信号采集模块包括气球式成像导管、 内窥探头、信号传输 光纤束和光电倍增管阵列探测器。
根据优选实施例, 气球式成像导管包括医用导管, 医用导管的一 端连接于信号传输光纤束中的空气输送管,另一端固定于信号传输光 纤束的外表面, 并将内窥探头包裹其中, 用于采集近红外光信号图像 时充入空气以撑起空腔类器官的腔壁。
根据优选实施例,成像装置还包括:操纵单元,包括 C型旋转臂, 用于多角度地采集受检对象的 X射线投影图像; 以及成像体固定床, 用于固定受检对象, 并进行调整以使其位于 X射线成像的视场内。
根据优选实施例, 内窥探头包括 N组鼓形透镜和棒透镜对,每对 鼓形透镜和棒透镜均与信号传输光纤束中的信号传输光纤相连,用于 采集所述探针受激后发出的近红外光信号图像。
根据优选实施例,信号传输光纤束包括 N根信号传输光纤,用于 将采集的近近红外光信号图像传输到光电倍增管阵列探测器;和空气 输送管, 用于向气球式成像导管中充入空气。
根据优选实施例, 探针是荧光纳米颗粒探针。
根据优选实施例, 计算单元显示光学三维重建的结果, 包括对获 得的受检对象内部靶向目标的重建结果和所述结构信息进行图像融 合, 以便对融合图像进行三维显示。
根据优选实施例, 计算单元包括图像预处理模块, 用于对 X射 线图像进行预处理, 包括噪声去除、 坏点补偿以及图像校正。
根据优选实施例, 计算单元包括图像预处理模块, 对近红外光信 号图像进行预处理, 包括噪声去除、 感兴趣区域提取以及坏点补偿。
根据优选实施例, 计算单元包括图像重建模块, 用于: 构建前向 光传输混合模型; 根据前向光传输混合模型, 建立内窥式 X射线发 光断层成像的总***方程, 获得近红外光信号图像的计算值向量; 根 据获得的近红外光信号图像的计算值向量与采集的近红外光信号图 像的测量值向量之间的误差, 结合探针的稀疏分布和非负约束, 建立 稀疏正则化目标函数; 对建立的目标函数进行求解, 获得探针在受检 对象内部的空间位置和浓度分布,从而获得受检对象内部的靶向目标 的位置信息和分布信息。
根据优选实施例, 构建前向光传输混合模型包括: 基于获得的内 窥探头在受检对象内部的位置信息,根据受检对象生物组织的光学特 性参数,将生物组织划分为低散射特性组织、高散射特性组织、空腔; 分别采用三阶简化球谐波方程、扩散方程和自由空间光传输方程来描 述近红外光在这三大类组织中的传输过程;构造边界耦合条件来耦合 这三个光传输方程, 同时结合 X射线激发探针的过程,构建内窥式 X 射线发光断层成像的前向光传输混合模型。
根据优选实施例, 建立总***方程包括: 利用下式, 基于有限元 方法对构建的前向光传输混合模型进行离散化,组装每个离散点上的 子***方程:
AP = PK
其中, Λ是第 个 X射线照射角度对应的***矩阵, 取决于生物体 内三大类组织的分布、光学特性参数和 X射线照射到体表的位置; p 是荧光纳米颗粒探针的浓度; 是与第 个 X射线照射角度对应的、 内窥探头上近红外光信号图像的计算值;
通过联立 M个 X射线照射角度对应的***方程, 建立内窥式 X 射线发光断层成像的总***方程:
A 7 = P 其中, A是总***矩阵,
Figure imgf000006_0001
是矩阵转置操作符; ρ是与所有 Μ个 X射线照射角度对应的、 内窥探头上近红外 光信号图像的计算值向量, 定义为 Ρ=[/½, 是选取的 X射线照射角度的个数。 根据优选实施 利用下式建立稀疏正则化目标函数:
Figure imgf000007_0001
其中, 卩^是与所有 M个 X射线照射角度对应的、 所述采集的近红外 光信号图像的测量值向量; 是稀疏正则化参数;
|^¾定义为求解矩阵 F的 范数; 以及 对所建立的稀疏正则化目标函数进行求解,获得探针在受检对象 内部的空间位置和浓度分布,从而间接获取受检对象内部的靶向目标 的位置信息和分布信息。
根据优选实施例, 按照如下规则对生物组织的类型进行划分: 将 荧光纳米颗粒探针所在组织、体表所属组织以及约化散射系数与吸收 系数比值小于 10的组织划分为低散射特性组织, 将约化散射系数与 吸收系数比值大于等于 10的组织划分为高散射特性组织, 将近红外 光信号图像采集时内窥探头所处的组织划分为空腔。
根据优选实施例, 按照如下规则分别采用三阶简化球谐波方程、 扩散方程和自由空间光传输方程来描述近红外光在这三大类组织中 的传输过程:采用三阶简化球谐波方程描述近红外光在低散射特性组 织中的传输过程,采用扩散方程描述近红外光在高散射特性组织中的 传输过程,采用自由空间光传输方程描述近红外光从空腔与散射特性 组织之间的边界到内窥探头的传输过程。
根据优选实施例,应用下式来耦合低散射特性组织和高散射特性 组织的光传输方程: {γ) = α{ν){βι{γ)φι {γ) + β2{ν)φ2{ν)) 其中, r是低散射特性组织与高散射特性组织相交的边界上的任意一 点;
Φ(Γ)是采用扩散方程计算得到的点 r处的光通量; φ人 γ、和 ( iy 是采用三阶简化球谐波方程计算得到的点 r处的 光通量分量; (r)是扩散方程的边界折射率不匹配系数;
A(r)和 (r)是三阶简化球谐波方程的边界折射率不匹配系
根据优选实施例,应用下式耦合散射特性组织与空腔的光传输方
1
J(r) = σ (D(r) + (\ - σ)(βι (ν) ι (ν) + β2 (ν) 2 (ν))
(r) r是散射特性组织与空腔相交的边界上的任意一点; ^r)是点 r处、 指向空腔内部的光流率; σ是散射特性组织的标识因子, 若低散射特性组织与空腔相 乂 , 则 σ的值取 0; 若高散射特性组织与空腔相交, 则 σ的值取 1
根据本发明的另一方面, 提供了一种内窥式 X射线发光断层成 像方法, 包括如下歩骤: (a) 采集受检对象内部的探针受激后发射的 近红外光信号图像, 并采集受检对象的 X射线图像; (b) 对采集的近 红外光信号图像和 X射线图像进行图像预处理; (C) 对预处理后的 X 射线数据进行稀疏重建, 以获得受检对象的结构信息和内窥探头在受 检对象内部的位置信息; (d) 利用获取的结构信息和位置信息, 对预 处理后的近红外光信号图像进行光学三维重建,获取受检对象内部的 靶向目标的位置信息和分布信息。 有利地, 根据本发明的内窥式 X射线断层成像装置和方法, 其 优点在于:
第一, 由于采用 X射线作为外部激发源激发受检对象内部的荧 光纳米颗粒探针,克服了现有技术中采用近红外激发光源激发荧光探 针带来的强自体荧光干扰的问题,能够获取高质量的近红外光信号图 像, 从而有效地改善重建图像的质量。
第二, 由于采用 X射线作为外部激发源激发受检对象内部的荧 光纳米颗粒探针,同时采用内窥探头作为内部探测器采集荧光纳米颗 粒探针受激后发出的近红外光,克服了现有技术中将激发源和探测器 同时集成于微型化内窥探头前端而带来的信号干扰和成像不准确问 题,能够改善激发模式下的内窥式光学断层成像技术的信号干扰和成 像准确性。
第三, 由于采用光传输混合模型作为内窥式 X射线发光断层成 像技术的前向模型,并且同时考虑荧光纳米颗粒探针的稀疏分布特性 和内窥测量数据相对于生物体整体区域的稀疏特性来建立稀疏正则 化目标函数, 克服了现有技术中采用扩散方程和 范数正则化带来 的成像精度和分辨率不足的问题,能够有效地改善内窥式光学断层成 像的精度和分辨率。
第四, 由于采用内窥探头作为内部探测器来采集荧光纳米颗粒探 针受激后发出的近红外光, 克服了现有 X射线发光断层成像技术仅 局限于小型动物体和表层器官成像的问题,能够实现对例如大型动物 体或人体的受检对象内部的深层靶向目标的准确成像。 附图说明
将结合在附图的辅助下对本发明优选实施例进行的说明来对教导 的优选实施例和其它改进进行说明。 在附图中:
图 1是根据本发明实施例的内窥式 X射线发光断层成像装置的组 成框图;
图 2是根据本发明实施例的内窥式 X射线发光断层成像装置的示 意图; 图 3是根据本发明实施例的内窥式 X射线发光断层成像装置的近 红外光信号采集子模块剖面组成示意图;
图 4是根据本发明实施例的内窥式 X射线发光断层成像装置的内 窥探头剖面示意图;
图 5是根据本发明实施例的内窥式 X射线发光断层成像方法的流 程图;
图 6是根据本发明实施例的内窥式 X射线发光断层成像方法的内 部靶向目标的三维重建子流程图。 具体实施方式
下面结合附图来详细说明本发明实施例,所描述的实例仅旨在便 于对本发明的理解, 而不应理解为对本发明的限制。 根据本发明实施例, 利用 X射线光管作为外部激发源激发受检 对象内部的探针,同时利用微型内窥探头作为探测器来采集探针受激 后发出的近红外光。然后利用与 X射线光管、成像体固定床共线的 X 射线平板探测器获取受检对象的三维结构成像信息。 基于内窥式 X 射线发光断层成像装置及其成像过程, 建立内窥式 X射线发光断层 成像的物理模型和前向光传输模型; 在该模型基础上, 利用有限元方 法,同时针对受检对象内部探针的稀疏分布特性和测量数据的严重不 足性,构造稀疏正则化目标函数;采用合适的优化算法求解目标函数, 实现对受检对象内部器官病变或深层靶标的精确成像。
下面结合图 1、 图 2、 图 3和图 4对根据本发明实施例的内窥式 X射线发光断层成像装置进行详细描述。根据本发明实施例的内窥式 X射线发光断层成像装置可以包括: 激发源单元 1、信号采集单元 2、 操纵单元 3和计算单元 4。
激发源单元 1可以包括 X射线光管 11和 X射线光管电源 12,作 为外部激发源激发受检对象内部的荧光纳米颗粒探针,同时还用于扫 描受检对象以获取其解剖结构信息和内窥探头在体内的位置信息。在 实施例中以荧光纳米颗粒探针为例进行说明,本领域技术人员可以理 解, 探针也可以是例如稀土探针等。
信号采集单元 2可以包括 X射线信号采集模块 21和近红外光信 号采集模块 22。 X射线信号采集模块 21可以包括 X射线 CMOS平 板探测器 211, 用于采集受检对象的 X射线投影图像; 近红外光信号 采集模块 22可以包括气球式成像导管 221、 内窥探头 222、信号传输 光纤束 223和光电倍增管阵列探测器 224, 用于内窥式地采集荧光纳 米颗粒探针受激后发出的近红外光信号图像。
操纵单元 3可以包括 C型旋转臂模块 31和成像体固定床模块 32。 该 C型旋转臂模块 31可以包括 C型臂 311、 旋转控制装置 312、 C 型臂支撑柱 313和歩进电机 314,用于多角度地采集受检对象的 X射 线投影图像; 成像体固定床模块 32包括成像体固定床 321、 平动滑 轨 322、 升降台 323和歩进电机 324, 用于将受检对象固定于成像体 固定床上, 并在 X射线成像视场内对受检对象的位置进行调整。
计算单元 4可以包括***操作控制模块 41、 图像预处理模块 42 以及图像重建模块 43。 例如, 上述各部件的结构关系如下所述:
将 X射线光管 11和 X射线 CMOS平板探测器 211固定于 C型 臂 311的两端, 相对放置。 X射线光管 11通过电源线连接于 X射线 光管电源 12, 另外通过控制线连接于计算单元 4, 用于控制 X射线 光管 11发射 X射线的开关和信号强弱; X射线 CMOS平板探测器 211通过控制线和数据线与计算单元 4相连,用于控制 X射线 CMOS 平板探测器 211对 X射线信号的采集以及采集的信号到计算单元 4 的数据传输。 C型臂 311与旋转控制装置 312相连,旋转控制装置 312 固定于 C型臂支撑柱 313上。此外,旋转控制装置 312通过控制线与 歩进电机 314相连, 歩进电机 314通过控制线与计算单元 4相连; 通 过计算单元 4的***操作控制模块 41控制歩进电机 314, 使 C型臂 311在旋转控制装置 312上例如等弧度间隔滑动。
成像体固定床 321固定于平动滑轨 322上,而平动滑轨 322通过 控制线与歩进电机 324相连。 此外, 平动滑轨 322固定于升降台 323 上, 而升降台 323亦通过控制线与歩进电机 324相连; 歩进电机 324 通过控制线与计算单元 4相连。
操作中, 将受检对象固定于成像体固定床 321。 之后, 通过计算 单元 4的***操作控制模块 41控制歩进电机 324, 调节升降台 323, 使成像体固定床 321沿着垂直方向升降; 同时调节平动滑轨 322, 使 成像体固定床 321 沿水平方向滑动, 最终使成像体固定床 321 与 X 射线光管 11、 X射线 CMOS平板探测器 211共线,并保证 C型臂 311 等弧度滑动时, 成像体固定床 321始终处于 X射线光管 11辐射和 X 射线 CMOS平板探测器 211成像范围之内。
在近红外光信号采集模块 22中, 气球式成像导管 221 由医用导 管组成, 一端连接于信号传输光纤束 223 中的空气输送管 2232, 另 一端固定于信号传输光纤束 223的外表面,并将内窥探头 222包裹其 中,用于在采集近红外光信号图像时被充入空气以撑起空腔类器官的 腔壁。内窥探头 222可以包括 N组鼓形透镜 2221和棒透镜 2222对(例 如, 一般不少于 60个, 本例中取 60组), 每对鼓形透镜 2221和棒透 镜 2222均与信号传输光纤束 223中的信号传输光纤 2231相连,用于 采集荧光纳米颗粒探针受激后发出的近红外光信号图像。
近红外光信号经鼓形透镜 2221 到达棒透镜 2222, 再经棒透镜 2222作用后耦合到信号传输光纤 2231上。 信号传输光纤束 223采用 双层环状阶梯模式,外层由等间隔均匀分布的 N根信号传输光纤 2231 (例如, 一般不少于 60个, 本例中取 60根)构成, 内层由一根空气 输送管 2232构成, 内层略长于外层 2厘米, 并且两层之间和最外层 由抗干扰材料进行包裹; 其中, 信号传输光纤 2231 的一端连接于内 窥探头 222中的鼓形透镜 2221和棒透镜 2222, 另一端连接于光电倍 增管阵列探测器 224, 用于向光电倍增管阵列探测器 224传送内窥探 头 222采集的近红外光信号; 空气输送管 2232的一端连接于气球式 成像导管 221, 另一端连接于空气充气机 2233, 并在长于外层信号传 输光纤 2231的部分开个圆形小孔, 用于向气球式成像导管 221中充 入空气。光电倍增管阵列探测器 224由方阵排列的一组(一般不少于 60个, 本例中取 60)光电倍增管组成, 并通过控制线与光电倍增管 阵列探测器电源箱 2241相连, 同时通过控制线和数据线与计算单元 4相连。
计算单元 4中的***操作控制模块 41用于控制操纵单元 3、激发 源单元 1和信号采集单元 2的整体操作,以完成对 C型臂 311的旋转 控制装置 312、 成像体固定床 321、 X射线光管 11、 X射线 CMOS平 板探测器 211和近红外光信号采集模块 22的控制, 实现对 X射线投 影图像和近红外光信号图像的采集。
图像预处理模块 42用于对采集的 X射线投影图像和近红外光信 号图像进行预处理, 例如对采集的 X射线投影图像进行坏点补偿、 去噪、 图像校正等处理, 对采集的近红外光信号图像进行坏点补偿、 去噪和感兴趣区域提取等处理。
图像重建模块 43用于对预处理后的 X射线投影图像进行稀疏重 建, 获取受检对象的解剖结构信息和内窥探头的位置信息, 并且对预 处理后的近红外光信号图像进行光学三维重建,获取受检对象内部深 层靶向目标的位置信息和分布信息。 下面参照图 5来描述根据本发明实施例的内窥式 X射线断层成 像方法。 该方法可以包括: 步骤 Sl, 多角度数据采集
( 1 )利用计算单元 4中的***操作控制模块 41调节成像体固定 床 321, 使之位于适合 X射线发光断层成像的位置:
具体地, 首先将受检对象固定于成像体固定床 321上, 通过计算 单元 4的***操作控制模块 41控制歩进电机 324,来调节升降台 323, 使成像体固定床 321沿着高度方向升降至 C型臂 311的中心高度处; 然后, 调节平动滑轨 322, 使成像体固定床 321沿水平方向滑动, 保 证成像体固定床 321与 X射线光管 11、X射线 CMOS平板探测器 211 共线放置; 最后, 微调平动滑轨 322和升降台 323, 保证 C型臂 311 等弧度滑动时, 成像体固定床 321始终处于 X射线光管 11辐射和 X 射线 CMOS平板探测器 211最佳成像范围之内。 (2)利用计算单元 4中的***操作控制模块 41采集多个角度的 X射线投影图像和近红外光信号图像:
首先,通过计算单元 4的***操作控制模块 41控制歩进电机 314, 使 C型臂 311在旋转控制装置 312上等间隔小角度滑动(一般不大于 3°, 本例中取 3Q)。 本领域技术人员可以理解, 也可以按照可变间隔 来采集图像。
然后, 在每个角度上, 通过计算单元 4 的***操作控制模块 41 开启 X射线光管 11, 照射受检对象; 最后, 利用信号采集模块 2中 的近红外光信号采集子模块 22采集受检对象内部的荧光纳米颗粒探 针受激后发射的近红外光信号图像, 同时利用 X射线信号采集子模 块 21采集 X射线投影图像。 步骤 S2 数据预处理
( 521 )利用计算单元 4中的图像预处理模块 42对采集的多角度 近红外光信号图像进行预处理, 例如包括但不限于噪声去除、感兴趣 区域提取以及坏点补偿等;
( 522)利用计算单元 4中的图像预处理模块 42对采集的多角度 X射线投影数据进行预处理, 例如包括但不限于噪声去除、坏点补偿 以及图像校正等。 步骤 S3 解剖结构信息的获取
利用计算单元 4中的图像重建模块 43对预处理后的 X射线投影 数据进行稀疏重建,获得受检对象的三维体数据和内窥探头在体内的 位置信息; 然后, 利用例如 3DMED软件中的人机交互式分割方法对 获得的三维体数据进行器官分割, 获取其解剖结构信息。本领域技术 人员可以理解,也可以通过其他方法来通过三维体数据得到受检对象 的解剖结构信息。 步骤 S4 内部靶向目标的三维重建
利用图像重建模块 43, 结合预处理后的 X射线投影图像, 对预 处理后的近红外光信号图像进行光学三维重建,获取受检对象内部靶 向目标的精确位置和分布信息。
参照图 6, 本歩骤可以具体实现如下:
( S41 ) 前向光传输混合模型的构建
基于获取的受检对象的解剖结构信息、各组织的光学特性参数以 及内窥探头 222在体内的位置信息, 采用折射率边界耦合条件, 构建 基于混合三阶简化球谐波方程 -扩散方程-自由空间光传输方程的内窥 式 X射线发光断层成像的前向光传输混合模型。
具体地, 基于歩骤 S3获取的受检对象的解剖结构信息以及内窥 探头在受检对象内部的位置信息, 结合组织的光学特性参数, 将生物 组织划分为低散射特性组织、 高散射特性组织、 空腔三大类。划分过 程可以按如下两歩规则进行:
首先, 根据组织的特定位置进行粗划分。将荧光纳米颗粒探针所 在组织和体表所属组织划分为低散射特性组织,将近红外光信号图像 采集时内窥探头所处的组织划分为空腔;
第二歩, 根据组织的光学参数特性进行细划分。 应用式 (1 ) 和 下面的准则将生物组织划分为不同散射特性组织:
V = ( 1 ) μα
式中, V是不同散射特性组织的划分标准因子, 是生物组织的约化 散射系数, / a是生物组织的吸收系数。 可以按照如下准则进行划分: 如果 V≥10, 则将生物组织划分为高散射特性组织; 如果 V < 10, 则 将生物组织划分为低散射特性组织。 然后, 分别采用三阶简化球谐波方程、扩散方程和自由空间光传 输方程来描述近红外光在上述歩骤中划分的三大类组织中的传输过 程。
该描述过程可以按如下规则进行:采用三阶简化球谐波方程描述 近红外光在低散射特性组织中的传输过程,采用扩散方程描述近红外 光在高散射特性组织中的传输过程,采用自由空间光传输方程描述近 红外光从空腔与散射特性组织之间的边界到内窥探头的传输过程。具 体的描述方法是本领域公知的, 此处不再赘述。 然后, 构造边界耦合条件以耦合 (couple) 这三个光传输方程, 同时结合 X射线激发荧光纳米颗粒探针过程, 构造内窥式 X射线发 光断层成像的前向光传输混合模型。例如, X射线激发荧光纳米颗粒 探针的过程可以用下面的公式 (7) 来描述, gp, 可以根据公式 (7) 建立起荧光纳米颗粒探针浓度、 X射线强度和发射的近红外光强度的 关系, 然后在光传输方程中结合公式 (7 )。 该构造过程可以按如下歩骤进行:
首先, 建立三阶简化球谐波方程与扩散方程之间的耦合关系。 由 于三阶简化球谐波方程和扩散方程描述的均是散射特性生物组织中 的光传输过程, 亦即光在耦合边界两侧的生物组织中均以漫射光传 输,因此两个光传输方程在耦合边界处获得的出射光流率相同。因此, 三阶简化球谐波方程在耦合边界上获得的出射光流率 (r)为:
J 3(r) = A(r (r) + (r)^2(r) (2) 式中, r是低散射特性组织与高散射特性组织相交的耦合边界上的任 意一点, φγ (r)和 φ^是采用三阶简化球谐波方程计算得到的点 r处 的光通量分量, A(r)和 (r)是三阶简化球谐波方程的边界折射率不 匹配系数。 扩散方程在耦合边界上获得的出射光流率 为:
式中, Φ( 是采用扩散方程计算得到的点 r处的光通量, (r)是扩散 方程的边界折射率不匹配系数。 联立上述两个方程,并令 J ( = ^^ ,建立三阶简化球谐波方 程与扩散方程之间的物理量在耦合边界上的转换关系,以实现低散射 特性组织和高散射特性组织光传输方程的耦合: (Γ) = (r)( βχ {χ) χ (r) + β2 {ν)φ2 (r)) ( 4 )
此外,可以建立三阶简化球谐波方程或扩散方程与自由空间光传 输方程之间的耦合关系。
在内窥式 X射线发光断层成像技术中, 近红外光从荧光纳米颗 粒探针发出后, 先在散射特性生物组织中传输, 然后到达散射特性组 织与空腔的边界, 最后穿过空腔到达内窥探测器。 因此, 在散射特性 组织与空腔的边界两侧, 光由漫射光变换为非漫射光。根据自由空间 光传输理论,漫射光将在两者边界上形成朗伯源(Lambertian source ) , 而形成的朗伯源的光流率即为从散射特性组织出射的光流率。 因此, 可通过下式构建散射特性组织与空腔的光传输方程之间的耦合关系:
1
J(r) = σ (D(r) + (\ - σ)(βι(ν)φι(ν) + β2(ν)φ2(ν)) ( 5 )
(r) 式中, r是散射特性组织与空腔相交的边界上的任意一点; J(r)是点 r处、 指向空腔内部的光流率; σ是散射特性组织的标识因子, 可以 按如下规则取值: 若低散射特性组织与空腔相交, 则其值取 0 ; 若高 散射特性组织与空腔相交, 则其值取 1。 最后, 基于上述建立的边界耦合条件, 同时结合 X射线激发荧 光纳米颗粒探针过程, 建立内窥式 X射线发光断层成像的前向光传
Figure imgf000017_0001
Figure imgf000018_0001
(6) 式中, 和 是低散射特性组织及其边界; Ω 和 是高散 射特性组织及其边界; BLH是低散射特性组织与高散射特性组织相交 的耦合边界; ^是散射特性组织与空腔相交的耦合边界; 是内窥 探头的采集点集合; /a(r), μα1{ν), μα2{ν) , /a3(r)和/) (r)是生物组 织的光学特性参数; ^, Α2, Βλ, B2, Q, C2, A和 A分别是生物 组织边界折射率相关参数; V是生物组织边界的外法向; /^是空腔的 吸收系数; Pfe)是内窥探测器上接收的光功率; ,和 分别是点 , 处的表面法向量与两者之间的方向向量之间的夹角; r',rj是点 r' 与点 之间的可见度因子; S(r)是荧光纳米颗粒探针受激后发出的近 红外光形成的近红外光光源的能量密度,其由照射到荧光纳米颗粒探 针的 X射线强度 /(r)、 荧光纳米颗粒探针的浓度 (r)和荧光纳米颗 粒探针向近红外光的转化效率 S共同确定:
S(r) = εΙ(ν)ρ(ν) (7)
(S42) ***方程的建立
首先, 利用有限元方法对歩骤 (S41) 建立的前向光传输混合模 型进行离散化,组装每个离散点上的子***方程,建立第 个 X射线 照射角度对应的***方程:
P = Pk (8) 式中, Λ是第 个 X射线照射角度对应的***矩阵, 依赖于生物体 内三大类组织的分布、光学特性参数和 X射线照射到体表的位置; p 是荧光纳米颗粒探针的浓度; 是第 个 X射线照射角度对应的、 内窥探头上近红外光信号图像的计算值。
然后, 通过联立 M个 X射线照射角度对应的***方程, 建立内 窥式 X射线发光断层成像的总***方程:
A7 = P (9) 式中, A是总***矩阵, 定义为入 ^^,… ] 是矩阵转置操作 符; P是与所有 M个 X射线照射角度对应的、 内窥探头上近红外光 信号图像的计算值向量, 定义为 Ρ= ,Ρ2, Μ是选取的 X射 线照射角度的个数。 一般选取 1~5个 X射线照射角度下采集的近红 外光信号图像进行光学三维重建。
(S43) 目标函数的建立 根据歩骤 S42 获得的近红外光信号图像的计算值向量与针对原 始采集的近红外光信号图像得到的测量值向量之间的误差,结合荧光 纳米颗粒探针的稀疏分布和非负约束, 建立下列稀疏正则化目标函 7 = arg mm \\Ap - Pm ^ ΐρΐ ( 10) p≥
式中, Pm是与 个 X射线照射角度对应的, 由内窥探头采集的原始 近红外光信号图像的测量值向量; 是稀疏正则化参数;
|^¾定义为求解矩阵 F的 范数。
( 544) 目标函数的优化求解 选用合适的稀疏正则化问题求解算法对歩骤 (S43 ) 建立的目标 函数进行求解,获得荧光纳米颗粒探针在受检对象内部的空间位置和 浓度分布, 从而间接获取靶向目标的位置信息和分布信息。本领域技 术人员可以理解,这里的靶向目标的位置信息和分布信息通常对应于 受检对象的病灶或异常组织的位置信息和分布信息。本领域技术人员 还可以理解, 分布信息通常提供了靶向目标的强度等信息。
( 545 ) 三维重建结果显示。
对歩骤 (S44) 获得的受检对象内部的靶向目标的重建结果和歩 骤 S3获取的解剖结构信息进行图像融合, 获得重建的靶向目标在受 检对象中的三维图像, 并显示重建的靶向目标的三维图像。 本领域技术人员将受益于前述说明书和相关附图中呈现的教导 而想到本文所述的本发明的多种改型和其它实施例。 因此, 应该理解 本发明不限于所公开的具体实施例, 并且应该理解, 本发明旨在将变 型和其它实施例包括在由所附权利要求限定的范围内。尽管本文采用 了具体术语, 但是只是从描述的角度来使用它们, 而并非限制

Claims

权 利 要 求
1、 一种内窥式 X射线发光断层成像装置, 包括:
激发源单元 (1 ), 用于从外部激发源激发受检对象内部的探针; 信号采集单元 (2), 用于采集受检对象的 X射线图像和所述探针受 激发后发出的近红外光信号图像;
计算单元 (4), 用于对采集的 X射线图像和红外光信号图像进行预 处理, 对预处理后的 X射线图像进行稀疏重建, 以获取受检对象的结构 信息和信号采集单元中的内窥探头在受检对象内部的位置信息, 以及利 用获取的结构信息和位置信息, 对预处理后的近红外光信号图像进行光 学三维重建, 获取受检对象内部的靶向目标的位置信息和分布信息。
2、 根据权利要求 1所述的成像装置, 其中, 所述信号采集单元包括 近红外光信号采集模块 (22), 所述近红外光信号采集模块 (22 ) 包括气 球式成像导管 (221 )、 内窥探头 (222)、 信号传输光纤束 (223 ) 和光电 倍增管阵列探测器 (224)。
3、根据权利要求 2所述的成像装置,其中所述气球式成像导管(221 ) 包括医用导管, 所述医用导管的一端连接于信号传输光纤束 (223 ) 中的 空气输送管 (2232), 另一端固定于信号传输光纤束 (223 ) 的外表面, 并将内窥探头 (222) 包裹其中, 用于采集近红外光信号图像时充入空气 以撑起空腔类器官的腔壁。
4、 根据权利要求 1所述的成像装置, 还包括:
操纵单元(3 ), 包括 C型旋转臂 (31 ), 用于多角度地采集受检对象 的 X射线投影图像; 以及成像体固定床(32), 用于固定受检对象, 并进 行调整以使受检对象位于 X射线成像的视场内。
5、 根据权利要求 1所述的成像装置, 其中, 所述内窥探头包括 N组 鼓形透镜 (2221 ) 和棒透镜 (2222 ) 对, 每对鼓形透镜 (2221 ) 和棒透 镜 (2222 ) 分别与信号传输光纤束 (223 ) 中的信号传输光纤 (2231 ) 相 连, 用于采集所述探针受激后发出的近红外光信号图像。
6、根据权利要求 2所述的成像装置,其中,所述信号传输光纤束 (223 ) 包括 N根信号传输光纤(2231 ), 用于将采集的近红外光信号图像传输到
7、 根据权利要求 1-6之一所述的成像装置, 其中, 所述探针是荧光 纳米颗粒探针。
8、 根据权利要求 1所述的成像装置, 其中, 所述计算单元显示光学 三维重建的结果, 包括对获得的受检对象内部靶向目标的重建结果和所 述结构信息进行图像融合, 以便对融合图像进行三维显示。
9、 根据权利要求 1所述的成像装置, 其中, 计算单元包括图像预处 理模块, 用于对 X射线图像进行预处理, 包括噪声去除、 坏点补偿以及 图像校正。
10、 根据权利要求 1或 9所述的成像装置, 其中, 计算单元包括图 像预处理模块, 对近红外光信号图像进行预处理, 包括噪声去除、 感兴 趣区域提取以及坏点补偿。
11、 根据权利要求 1 所述的成像装置, 其中, 计算单元包括图像重 建模块, 用于:
构建前向光传输混合模型;
根据前向光传输混合模型,建立内窥式 X射线发光断层成像的总系 统方程, 获得近红外光信号图像的计算值向量;
根据获得的近红外光信号图像的计算值向量与采集的近红外光信号 图像的测量值向量之间的误差, 结合探针的稀疏分布和非负约束, 建立 稀疏正则化目标函数;
对建立的目标函数进行求解, 获得探针在受检对象内部的空间位置 和浓度分布, 从而获得受检对象内部的靶向目标的位置信息和分布信息。
12、 根据权利要求 11所述的成像装置, 其中, 构建前向光传输混合 模型包括: 基于获得的内窥探头在受检对象内部的位置信息, 根据受检 对象生物组织的光学特性参数, 将生物组织划分为低散射特性组织、 高 散射特性组织、 空腔; 分别采用三阶简化球谐波方程、 扩散方程和自由 空间光传输方程来描述近红外光在这三大类组织中的传输过程; 构造边 界耦合条件来耦合这三个光传输方程, 同时结合 X射线激发探针的过程, 构建内窥式 X射线发光断层成像的前向光传输混合模型。
13、 根据权利要求 11或 12所述的成像装置, 其中, 建立总***方 程包括: 利用下式, 基于有限元方法对构建的前向光传输混合模型进行 离散化, 组装每个离散点上的子***方程: 其中, Λ是第 个 X射线照射角度对应的***矩阵, 取决于生物体内三 大类组织的分布、 光学特性参数和 X射线照射到体表的位置; 是荧光 纳米颗粒探针的浓度; 是与第 个 X射线照射角度对应的、 内窥探头 上近红外光信号图像的计算值;
通过联立 M个 X射线照射角度对应的***方程,建立内窥式 X射线 发光断层成像的总***方程:
A 7 = P
是矩阵转置操作符;
P是与所有 M个 X射线照射角度对应的、 内窥探头上近红外光信 号图像的计算值向量, 定义为 P=[/½, 是选取的 X射线照射角度的个数。
14、 根据权利要求 11-13之一所述的成像装置, 其中, 利用下式建立 稀疏正则化目标函数:
Figure imgf000024_0001
其中, 卩^是与所有 M个 X射线照射角度对应的、所述采集的近红外光信 号图像的测量值向量; 是稀疏正则化参数;
|^¾定义为求解矩阵 F的 范数; 以及 对所建立的稀疏正则化目标函数进行求解, 获得探针在受检对象内 部的空间位置和浓度分布, 从而间接获取受检对象内部的靶向目标的位 置信息和分布信息。
15、 根据权利要求 12所述的成像装置, 其中, 按照如下规则对生物 组织的类型进行划分: 将荧光纳米颗粒探针所在组织、 体表所属组织以 及约化散射系数与吸收系数比值小于 10的组织划分为低散射特性组织, 将约化散射系数与吸收系数比值大于等于 10的组织划分为高散射特性组 织, 将近红外光信号图像采集时内窥探头所处的组织划分为空腔。
16、 根据权利要求 12所述的成像装置, 其中, 按照如下规则分别采 用三阶简化球谐波方程、 扩散方程和自由空间光传输方程来描述近红外 光在这三大类组织中的传输过程: 采用三阶简化球谐波方程描述近红外 光在低散射特性组织中的传输过程, 采用扩散方程描述近红外光在高散 射特性组织中的传输过程, 采用自由空间光传输方程描述近红外光从空 腔与散射特性组织之间的边界到内窥探头的传输过程。
17、 根据权利要求 12所述的成像装置, 其中, 应用下式来耦合低散 射特性组织和高散射特性组织的光传输方程: {γ) = α{ν){βι{γ)φι {γ) + β2{ν)φ2{ν)) 其中, r是低散射特性组织与高散射特性组织相交的边界上的任意一点; Φ(Γ)是采用扩散方程计算得到的点 r处的光通量; φ人 γ、和 ( iy是采用三阶简化球谐波方程计算得到的点 r处的光通 (r)是扩散方程的边界折射率不匹配系数;
A(r)和 (r)是三阶简化球谐波方程的边界折射率不匹配系数。
18、 根据权利要求 12中所述的成像装置, 其中应用下式耦合散射特 组织与空腔的光传输方程:
1
J(r) = σ (D(r) + (\ - σ)(βι(ν) ι(ν) + β2(ν) 2(ν))
(r) 式中, r是散射特性组织与空腔相交的边界上的任意一点; ^r)是点 r处、 指向空腔内部的光流率; σ是散射特性组织的标识因子,若低散射特性组织与空腔相交,则 σ的值取 0; 若高散射特性组织与空腔相交, 则 σ的值取 1。
19、 一种 X射线发光断层成像方法, 包括如下歩骤:
(a) 采集受检对象内部的探针受激后发射的近红外光信号图像, 并采 集受检对象的 X射线图像;
(b) 对采集的近红外光信号图像和 X射线图像进行图像预处理;
(c) 对预处理后的 X射线图像进行稀疏重建,以获得受检对象的结构 信息和内窥探头在受检对象内部的位置信息;
(d) 利用获取的结构信息和位置信息,对预处理后的近红外光信号图 像进行光学三维重建, 获取受检对象内部的靶向目标的位置信息和分布 自
20、根据权利要求 19所述的方法,还包括显示光学三维重建的结果, 包括对获得的受检对象内部靶向目标的重建结果和所述结构信息进行图 像融合, 以便对融合图像进行三维显示。
21、 根据权利要求 19所述的方法, 其中, 对 X射线图像进行的图像 预处理包括噪声去除、 坏点补偿以及图像校正。
22、 根据权利要求 19所述的方法, 其中, 对近红外光信号图像进行 的图像预处理包括噪声去除、 感兴趣区域提取以及坏点补偿。
23、 根据权利要求 19所述的方法, 其中, 所述歩骤 (d) 包括
(dl ) 构建前向光传输混合模型;
(d2) 根据前向光传输混合模型, 建立内窥式 X射线发光断层成像 的总***方程, 获得近红外光信号图像的计算值向量;
( d3 ) 根据获得的近红外光信号图像的计算值向量与采集的近红外 光信号图像的测量值向量之间的误差, 结合探针的稀疏分布和非负约束, 建立稀疏正则化目标函数;
( d4 ) 对建立的目标函数进行求解, 获得探针在受检对象内部的空 间位置和浓度分布, 从而获得受检对象内部的靶向目标的位置信息和分 布信息。
24、 根据权利要求 23所述的方法, 其中, 歩骤 (dl ) 包括: 基于获 得的内窥探头在受检对象内部的位置信息, 根据受检对象生物组织的光 学特性参数, 将生物组织划分为低散射特性组织、 高散射特性组织、 空 腔; 分别采用三阶简化球谐波方程、 扩散方程和自由空间光传输方程来 描述近红外光在这三大类组织中的传输过程; 构造边界耦合条件来耦合 这三个光传输方程, 同时结合 X射线激发探针的过程, 构建内窥式 X射 线发光断层成像的前向光传输混合模型。
25、 根据权利要求 23或 24所述的方法, 其中, 歩骤 (d2) 包括利 用有限元方法对构建的前向光传输混合模型进行离散化, 组装每个离散 点上的子***方程, 建立第 个 X射线照射角度对应的***方程: 其中, Λ是第 个 X射线照射角度对应的***矩阵, 取决于生物体内三 大类组织的分布、 光学特性参数和 X射线照射到体表的位置; 是荧光 纳米颗粒探针的浓度; 是与第 个 X射线照射角度对应的、 内窥探头 上近红外光信号图像的计算值;
通过联立 M个 X射线照射角度对应的***方程,建立内窥式 X射线 发光断层成像的总***方程:
A 7 = P 其中, A是总***矩阵,
Figure imgf000027_0001
;
是矩阵转置操作符;
Ρ是与所有 Μ个 X射线照射角度对应的、 内窥探头上近红外光信 号图像的计算值向量, 定义为 Ρ=[/½, 是选取的 X射线照射角度的个数。
26、 根据权利要求 23-25之一所述的方法, 其中, 所述歩骤(d3 )包 括: 建立下列稀疏正
Figure imgf000027_0002
其中, 卩^是与所有 M个 X射线照射角度对应的、所述采集的近红外光信 号图像的测量值向量; 是稀疏正则化参数;
|^¾定义为求解矩阵 F的 范数; 以及 所述歩骤 (d4 ) 包括对所建立的目标函数进行求解, 获得探针在受 检对象内部的空间位置和浓度分布, 从而间接获取受检对象内部的靶向 目标的位置信息和分布信息。
27、 根据权利要求 24所述的方法, 其中, 按照如下规则对生物组织 的类型进行划分: 将荧光纳米颗粒探针所在组织、 体表所属组织以及约 化散射系数与吸收系数比值小于 10的组织划分为低散射特性组织, 将约 化散射系数与吸收系数比值大于等于 10的组织划分为高散射特性组织, 将近红外光信号图像采集时内窥探头所处的组织划分为空腔。
28、 根据权利要求 24所述的方法, 其中, 按照如下规则分别采用三 阶简化球谐波方程、 扩散方程和自由空间光传输方程来描述近红外光在 这三大类组织中的传输过程: 采用三阶简化球谐波方程描述近红外光在 低散射特性组织中的传输过程, 采用扩散方程描述近红外光在高散射特 性组织中的传输过程, 采用自由空间光传输方程描述近红外光从空腔与 散射特性组织之间的边界到内窥探头的传输过程。
29、 根据权利要求 28所述的方法, 还包括应用下式来耦合低散射特 性组织和高散射特性组织的光传输方程: {γ) = α{ν){βι{γ)φι {γ) + β2{ν)φ2{ν)) 其中, r是低散射特性组织与高散射特性组织相交的边界上的任意一点; Φ(Γ)是采用扩散方程计算得到的点 r处的光通量; φ人 γ、和 ( iy是采用三阶简化球谐波方程计算得到的点 r处的光通 (r)是扩散方程的边界折射率不匹配系数; A(r)和 (r)是三阶简化球谐波方程的边界折射率不匹配系数。
30、 根据权利要求 28中所述的方法, 其中, 应用下式耦合散射特性 组织与空腔的光传输方程:
1
J(r) = σ (D(r) + (\ - σ)(βι(ν) ι(ν) + β2(ν) 2(ν))
(r) r是散射特性组织与空腔相交的边界上的任意一点; ^r)是点 r处、 指向空腔内部的光流率; σ是散射特性组织的标识因子,若低散射特性组织与空腔相交,则 σ的值取 0 ; 若高散射特性组织与空腔相交, 则 σ的值取 1。
PCT/CN2012/072434 2012-03-16 2012-03-16 内窥式x射线发光断层成像装置及方法 WO2013134949A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2012/072434 WO2013134949A1 (zh) 2012-03-16 2012-03-16 内窥式x射线发光断层成像装置及方法
CN201280066407.3A CN104168830B (zh) 2012-03-16 2012-03-16 内窥式x射线发光断层成像装置及方法
US14/379,732 US10034647B2 (en) 2012-03-16 2012-03-16 System and method for endoscopic X-ray luminescence computed tomographic imaging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/072434 WO2013134949A1 (zh) 2012-03-16 2012-03-16 内窥式x射线发光断层成像装置及方法

Publications (1)

Publication Number Publication Date
WO2013134949A1 true WO2013134949A1 (zh) 2013-09-19

Family

ID=49160239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/072434 WO2013134949A1 (zh) 2012-03-16 2012-03-16 内窥式x射线发光断层成像装置及方法

Country Status (3)

Country Link
US (1) US10034647B2 (zh)
CN (1) CN104168830B (zh)
WO (1) WO2013134949A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147049A (zh) * 2018-07-28 2019-01-04 天津大学 用于x射线光动力治疗的影像重建方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10603001B2 (en) 2015-07-01 2020-03-31 General Electric Company Energy modulated luminescence tomography
CN106137129B (zh) * 2016-06-28 2020-03-06 中国科学院深圳先进技术研究院 荧光散射光学断层成像***及方法
WO2018000186A1 (zh) * 2016-06-28 2018-01-04 中国科学院深圳先进技术研究院 荧光散射光学断层成像***及方法
CN106709967B (zh) * 2016-12-23 2024-03-26 天津恒宇医疗科技有限公司 一种内窥成像算法及控制***
CN110338831B (zh) * 2019-08-14 2022-12-02 晓智未来(成都)科技有限公司 一种调整x光成像***中各部件物理对齐的方法
CN112386335A (zh) 2019-08-12 2021-02-23 巴德阿克塞斯***股份有限公司 用于医疗装置的形状感测***和方法
WO2021108688A1 (en) 2019-11-25 2021-06-03 Bard Access Systems, Inc. Shape-sensing systems with filters and methods thereof
US11850338B2 (en) 2019-11-25 2023-12-26 Bard Access Systems, Inc. Optical tip-tracking systems and methods thereof
CN113325524A (zh) 2020-02-28 2021-08-31 巴德阿克塞斯***股份有限公司 光学连接***及其方法
CN113456054A (zh) 2020-03-30 2021-10-01 巴德阿克塞斯***股份有限公司 光学和电气诊断***及其方法
WO2021263023A1 (en) 2020-06-26 2021-12-30 Bard Access Systems, Inc. Malposition detection system
EP4171373A1 (en) 2020-06-29 2023-05-03 Bard Access Systems, Inc. Automatic dimensional frame reference for fiber optic
CN113907705A (zh) 2020-07-10 2022-01-11 巴德阿克塞斯***股份有限公司 连续光纤功能监测和自诊断报告***
US11630009B2 (en) 2020-08-03 2023-04-18 Bard Access Systems, Inc. Bragg grated fiber optic fluctuation sensing and monitoring system
CN114344514A (zh) 2020-10-13 2022-04-15 巴德阿克塞斯***股份有限公司 用于光纤连接器的消毒罩及其方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236558B2 (en) * 2005-07-07 2007-06-26 Terarecon, Inc. Three-dimensional image display device creating three-dimensional image directly from projection data
CN101467887A (zh) * 2007-12-29 2009-07-01 复旦大学 一种手术导航***中x射线透视图像标定方法
CN101594825A (zh) * 2006-02-27 2009-12-02 罗切斯特大学 锥束ct动态成像的方法和设备
CN201879710U (zh) * 2010-12-13 2011-06-29 北京大基康明医疗设备有限公司 闪烁分层摄影仪
WO2011137538A1 (en) * 2010-05-05 2011-11-10 Melanie Croitibie Williams Campbell Method and system for imaging amyloid beta in the retina of the eye in association with alzheimer's disease

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0808124B1 (en) * 1995-01-03 2003-04-16 Non-Invasive Technology, Inc. Optical coupler for in vivo examination of biological tissue
EP1968431B2 (en) * 2005-12-22 2022-06-01 Visen Medical, Inc. Combined x-ray and optical tomographic imaging system
CN101301192B (zh) * 2007-05-10 2010-06-23 中国科学院自动化研究所 一种多模态自发荧光断层分子影像仪器及重建方法
CN101856220B (zh) * 2010-05-14 2011-08-24 西安电子科技大学 定量光学分子断层成像装置和重建方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7236558B2 (en) * 2005-07-07 2007-06-26 Terarecon, Inc. Three-dimensional image display device creating three-dimensional image directly from projection data
CN101594825A (zh) * 2006-02-27 2009-12-02 罗切斯特大学 锥束ct动态成像的方法和设备
CN101467887A (zh) * 2007-12-29 2009-07-01 复旦大学 一种手术导航***中x射线透视图像标定方法
WO2011137538A1 (en) * 2010-05-05 2011-11-10 Melanie Croitibie Williams Campbell Method and system for imaging amyloid beta in the retina of the eye in association with alzheimer's disease
CN201879710U (zh) * 2010-12-13 2011-06-29 北京大基康明医疗设备有限公司 闪烁分层摄影仪

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109147049A (zh) * 2018-07-28 2019-01-04 天津大学 用于x射线光动力治疗的影像重建方法
CN109147049B (zh) * 2018-07-28 2022-11-01 天津大学 用于x射线光动力治疗的影像重建方法

Also Published As

Publication number Publication date
US10034647B2 (en) 2018-07-31
CN104168830A (zh) 2014-11-26
CN104168830B (zh) 2016-06-22
US20150119700A1 (en) 2015-04-30

Similar Documents

Publication Publication Date Title
WO2013134949A1 (zh) 内窥式x射线发光断层成像装置及方法
Guo et al. A combined fluorescence and microcomputed tomography system for small animal imaging
US7804075B2 (en) Method and system for tomographic imaging using fluorescent proteins
EP1968431B1 (en) Combined x-ray and optical tomographic imaging system
EP2579777B1 (en) Second generation hand-held optical imager
US20090018451A1 (en) Dynamic Sampling System and Method for In Vivo Fluorescent Molecular Imaging
WO2005089637A9 (en) Method and system for tomographic imaging using fluorescent proteins
WO2011025950A2 (en) Systems and methods for tomographic imaging in diffuse media using a hybrid inversion technique
KR20170060698A (ko) 컴퓨터 단층 촬영장치 및 그 제어방법
Huang et al. Noncontact 3-D speckle contrast diffuse correlation tomography of tissue blood flow distribution
CN109589128B (zh) 基于乳腺癌检测的平板pet与光学双模融合成像***及方法
US20090069695A1 (en) Device for imaging a turbid medium
CN105662354B (zh) 一种广视角光学分子断层成像导航***及方法
CN107184181A (zh) 动态荧光分子断层成像的处理方法和***
CN108335338B (zh) 实验动物体多模融合成像***及使用方法
EP1797818A2 (en) Method and system for tomographic imaging using fluorescent proteins
CN205795645U (zh) 一种广视角光学分子断层成像导航***
CN110367931A (zh) 一种基于飞秒激光的光断层透射成像***
CN1307944C (zh) 数字异物定位仪
CN114468998B (zh) 单视角反射式近红外二区荧光动态断层成像***及方法
Pandian et al. Laser reflectance imaging of human chest for localization of internal organs
Malone et al. Multipath Artifacts in Co-registered Optical Coherence Tomography and Autofluorescence Imaging Provide Biomarkers for Ovarian Cancer Detection
Koenig et al. Development of a bi-modality XCT: fDOT instrument
Hagen et al. Depth-sensitive detection of absorbing objects in a liquid tissue phantom from diffuse reflectance
Yokoyama et al. Conference 9316: Multimodal Biomedical Imaging X

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14379732

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 12871142

Country of ref document: EP

Kind code of ref document: A1