WO2013132679A1 - 熱交換器および冷凍サイクル装置 - Google Patents

熱交換器および冷凍サイクル装置 Download PDF

Info

Publication number
WO2013132679A1
WO2013132679A1 PCT/JP2012/072132 JP2012072132W WO2013132679A1 WO 2013132679 A1 WO2013132679 A1 WO 2013132679A1 JP 2012072132 W JP2012072132 W JP 2012072132W WO 2013132679 A1 WO2013132679 A1 WO 2013132679A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
heat exchanger
fluid flow
flow path
heat
Prior art date
Application number
PCT/JP2012/072132
Other languages
English (en)
French (fr)
Inventor
宗史 池田
寿守務 吉村
瑞朗 酒井
裕之 森本
傑 鳩村
進一 内野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12870627.2A priority Critical patent/EP2840342B1/en
Priority to JP2014503412A priority patent/JP5784215B2/ja
Publication of WO2013132679A1 publication Critical patent/WO2013132679A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/005Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00 using primary and secondary systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F7/00Elements not covered by group F28F1/00, F28F3/00 or F28F5/00
    • F28F7/02Blocks traversed by passages for heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present invention relates to a heat exchanger and a refrigeration cycle apparatus, and in particular, a heat exchanger having a first fluid channel through which a high-temperature fluid flows and a second fluid channel through which a low-temperature fluid flows in a heat transfer block, and the heat exchanger. Relates to the refrigeration cycle apparatus.
  • a heat pump refrigeration / air-conditioning system including a vapor compression refrigeration circuit has been used.
  • a heat exchanger for exchanging heat between the first fluid and the second fluid is provided in the refrigeration circuit.
  • the first fluid channel through which the first fluid flows and the second fluid channel through which the second fluid flows are arranged substantially in parallel in the same block (solid), and the respective fluids are in the same direction with each other. (Hereinafter referred to as “parallel” or “parallel flow”) or in opposite directions (hereinafter referred to as “opposite” or “opposite flow”), and heat exchange is performed between the two.
  • the first fluid is “water” and the second fluid is “R410a”, and heat is exchanged between the low-temperature and low-pressure water and the high-temperature and high-pressure R410a to heat the water (at this time, R410a is Cooled).
  • the first fluid channel or the second fluid channel has a small diameter. By reducing the diameter, the heat transfer area per unit volume of the heat exchanger can be increased, and high heat transfer can be realized.
  • the first fluid channel and the second fluid are not included in the same block (solid), only one channel is formed in the block, and the block is disposed in the other channel.
  • a tube for heat exchange in which a flow path formed in a block is reduced in diameter is formed by integrally extruding a row of a plurality of flow paths through which a fluid flows in a flat cross section (for example, , See Patent Document 1).
  • the block since the block is arranged in the other channel, the block is located on the upstream side of the other channel and the downstream side of the other channel. Since there is a temperature difference (difference in heat exchange amount) with the flow path in the block, a horizontal hole is provided to communicate the flow path in the block located on the downstream side from the flow path in the block located on the upstream side, The difference in fluid temperature between the flow paths in the block is reduced. For this reason, in order to distribute and mix a fluid into each flow path, it is necessary to open a horizontal hole.
  • the combination of the first fluid channel and the second fluid channel is one stage, but when the heat exchanger is configured in multiple stages, the one stage is changed to the other. Since the fluid flows into the stage, the number of times of passing through the header portion increases. For this reason, as a result, the flow path cross-sectional area repeatedly expands and contracts, and the pressure loss of the heat exchanger increases.
  • the ratio of the flow rate of gas and liquid for each flow path in the condition of the fluid flowing into the heat exchanger, particularly in the gas-liquid two-phase state where gas and liquid are mixed is Different or non-uniform distribution occurs and the performance of the heat exchanger deteriorates.
  • the present invention solves the above problem, and even if a plurality of fluid flow paths are communicated with each other, pressure loss can be reduced, and even distribution to each flow path can be realized. It is possible to obtain a heat exchanger capable of suppressing performance degradation and a refrigeration cycle apparatus equipped with the heat exchanger.
  • a heat exchanger according to the present invention is formed in parallel to each other on a first surface, which is a plane in a heat transfer block, and a plurality of rows of first fluid flow paths penetrating the heat transfer block, and in the heat transfer block
  • a second surface parallel to the first surface is formed in parallel to the first fluid flow path, a plurality of rows of second fluid flow paths penetrating the heat transfer block, and formed in the heat transfer block,
  • the lateral hole communicates with the second fluid flow path, and the second fluid flow path is adjacent to the first fluid flow path. Characterized in that it does not protrude to the heat block portion.
  • the cross-sectional area of the horizontal hole can be optimally designed, so that pressure loss can be suppressed, and performance degradation of the heat exchanger can be suppressed by even distribution. be able to.
  • Sectional drawing explaining the A type heat exchanger which concerns on Embodiment 1 of this invention Sectional drawing explaining the B type and C type heat exchanger which concern on Embodiment 1 of this invention, respectively. Sectional drawing explaining the D type heat exchanger which concerns on Embodiment 2 of this invention. Sectional drawing explaining the E type heat exchanger which concerns on Embodiment 2 of this invention. Sectional drawing explaining each F type heat exchanger which concerns on Embodiment 2 of invention. Sectional drawing explaining the H type and I type heat exchanger which concern on Embodiment 3 of this invention. Sectional drawing explaining the J type heat exchanger which concerns on Embodiment 4 of this invention. Sectional drawing explaining the K type, L type, and M type heat exchanger which concern on Embodiment 5 of this invention.
  • the block diagram of the apparatus which shows the heat pump type heating system explaining the refrigerating-cycle apparatus which concerns on Embodiment 7 of this invention.
  • the block diagram of the apparatus which shows the heat pump type hot-water supply system explaining the refrigerating-cycle apparatus which concerns on Embodiment 8 of this invention.
  • Baker diagram referred to for explaining a refrigeration cycle apparatus according to Embodiment 6 of the present invention.
  • FIG. 1A is a cross-sectional view of a cross section perpendicular to the longitudinal direction of the A type
  • FIG. 1 (b) is a cross-sectional view of a cross section parallel to the longitudinal direction of the A type
  • FIG. 2 (a) is a cross sectional view of the B type
  • FIG. 2 (b) is a cross section of the cross section of the B type parallel to the longitudinal direction
  • 2C is a cross-sectional view of the C type
  • FIG. 2D is a cross-sectional view of a cross section parallel to the longitudinal direction of the C type.
  • an A type heat exchanger 10a includes a plurality of (for example, four) first fluid channels 1 and a first fluid channel arranged in a heat transfer block 4. 1 and a plurality of (for example, 45) second fluid flow paths 2a arranged in parallel with each other in a flowing direction, and perpendicular to the second fluid flow paths 2a, and all the second fluid flow paths 2a communicate with each other. And one row of horizontal holes 3a formed to do so.
  • the first fluid channel 1 is disposed on a first surface 41 that is a flat surface, a plurality of rows are disposed in parallel to each other, and has a circular cross section.
  • the second fluid flow path 2a is parallel to the first fluid flow path 1 and has a plurality of rows (for example, 15 rows) arranged in the second surface 42a which is a plane substantially parallel to the first surface 41.
  • a plurality of rows (for example, 15 rows) of second fluid flow paths 21c arranged in 42c are collectively referred to.
  • the second fluid flow paths 2a are arranged in 15 rows each in three layers and have a rectangular cross section.
  • the axial direction of the first fluid channel 1 and the second fluid channel 2a is referred to as the “longitudinal direction”.
  • the above description shows that the first fluid channel 1 has a circular cross-sectional shape and the second fluid channel 2a has a rectangular cross-sectional shape, but the present invention is not limited to this.
  • the shape can be arbitrarily set.
  • the horizontal hole 3a is perpendicular to the second fluid channel and communicates a plurality of rows (for example, 45 rows) of the second fluid channels with each other, but the second fluid channel adjacent to the first fluid channel 1 It does not protrude into the heat transfer block 4 formed between 21a. Further, the pressure loss can be reduced by determining the diameter and number of the horizontal holes 3a according to the mass velocity of the fluid flowing in, the length of the horizontal holes, the size and the number of the second fluid flow paths. .
  • the second fluid flow path as shown in FIG. 1 is arranged in three layers, 15 rows with dimensions of 1 mm ⁇ 1 mm, the length of the heat transfer block is 300 mm, and the length of the lateral hole is 25 mm,
  • the horizontal hole 3a is drilled from one side surface 44 of the heat transfer block 4 by machining (drilling) or plastic working (punching).
  • the present invention does not limit the formation method. Absent.
  • the heat transfer area of the second fluid channel 2a is increased by configuring the second fluid channel 2a so as to extend over a plurality of layers in order to increase the diameter Da of the lateral hole 3a. Accordingly, it is possible to improve the heat exchange performance.
  • the heat exchanger is configured in multiple stages, there is a flow of the second fluid from one stage to the other, and the number of times of passing through the side hole 3a (corresponding to the header portion) increases.
  • the flow path cross-sectional area repeatedly expands and contracts, in the heat exchanger 10a, the flow path cross-sectional area of the horizontal hole 3a is large, so the effect of reducing the pressure loss becomes remarkable.
  • the horizontal hole 3a having the diameter Da of the channel cross-sectional area within the above range has the same diameter in one layer as in the conventional heat exchanger. Since the distance with the 1 fluid flow path 1 can be shortened, it becomes possible to improve heat exchange performance.
  • the horizontal hole 3a having the channel cross-sectional area diameter Da within the above range does not protrude from the heat transfer block 4 formed between the first fluid channel 1 and the second fluid channel 21a. Therefore, since the distance between the first fluid channel 1 and the second fluid channel 21a can be shortened, the heat exchange performance can be improved.
  • the lateral hole 3 a is configured not to protrude from the second fluid flow path 21 c located farthest from the first fluid flow path 1 to the portion of the heat transfer block 4 outside. That is, the height of the horizontal hole 3a is set to fall within the range from the lowest layer to the uppermost layer of the second fluid channel 2a with respect to the second fluid channel 2a arranged to form a plurality of layers. By doing in this way, the thickness of the heat-transfer block 4 can be made thin.
  • the layer of the second fluid channel 2a sandwiched between them is The heat exchange performance can be improved because it can be disposed close to the upper and lower layers of the first fluid flow path 1.
  • the formation method of the heat-transfer block 4 is not limited, For example, if it forms by integral extrusion processing, increase / decrease in the number of the lines of the 1st fluid flow path 1, the number of the 1st surfaces 41, or 2nd fluid. Since it is easy to increase or decrease the number of rows of the flow paths and the number of the second surfaces 42, the flow path cross-sectional area of the horizontal hole 3a can be optimally designed.
  • a pipe joint for example, a tube, not shown
  • the heat exchanger 10a can be used by connecting a pipe of a system (for example, a hot water supply system) to the pipe joint.
  • a pipe of a system for example, a hot water supply system
  • both ends in the longitudinal direction of the second fluid flow path 2a are closed.
  • a lid may be installed in the horizontal hole 3a on the one side surface 44 of the heat transfer block 4 to close the opening.
  • both ends of the second fluid flow path 2a in the longitudinal direction are connected to piping of a system (for example, a hot water supply system) (directly via a pipe joint or indirectly via an external header section). Connected).
  • the fluid flowing through the first fluid channel 1 (first fluid) and the fluid flowing through the second fluid channel 2a (second fluid) are not limited, and tap water, distilled water, and brine are used as the first fluid.
  • natural refrigerants such as chlorofluorocarbon refrigerants and hydrocarbons, and mixtures thereof may be used as the second fluid.
  • the flow direction of the fluid flowing through the first fluid flow path 1 and the flow direction of the fluid flowing through the second fluid flow path 2a may be parallel or opposed.
  • the B type heat exchanger 10b includes four rows of the first fluid flow paths 1 arranged in the heat transfer block 4, and 15 rows of 5 layers (75 rows in total).
  • the heat exchanger 10b includes a plurality of rows (for example, 15 rows) of the second fluid flow paths 21d and 21e disposed on the second surfaces 42d and 42e substantially parallel to the first surface 41, respectively. This is the same as that added to the heat exchanger 10a.
  • the inner diameter Db of the horizontal hole 3b is large because it extends over the five layers of the second fluid flow path 2b.
  • the C-type heat exchanger 10c includes four rows of first fluid flow paths 1 arranged in the heat transfer block 4, and 15 layers in two layers (30 rows in total). Second fluid flow path 2c, and a row of horizontal holes 3c formed perpendicular to the second fluid flow path 2c and communicating with each other. At this time, the inner diameter Dc of the horizontal hole 3c only needs to straddle the two layers of the second fluid flow path 2c, and thus has a small value.
  • the velocity of the fluid increases in the order of liquid, gas-liquid two-phase, and gas at the same mass velocity.
  • it is necessary to design the diameter of the horizontal hole according to the state of the refrigerant, that is, the speed of the refrigerant.
  • the configuration is such that the diameter of the horizontal hole 3 is increased according to the speed change accompanying the fluid state (the A type to the C type are properly used).
  • the pressure loss in the 2nd fluid flow path 2 can be reduced by using each type properly.
  • the diameter of the horizontal hole 3 is the diameter Da that can straddle the second fluid channel 21a and the second fluid channel 21c, but the second fluid channel 21a and the second fluid As long as it can straddle the flow path 21c, the diameter may be smaller than the diameter Da.
  • FIGS. 3 to 5 schematically illustrate a heat exchanger according to Embodiment 2 of the present invention.
  • FIG. 3A is a cross-sectional view in a cross section perpendicular to the longitudinal direction of the D type.
  • 3 (b) is a cross-sectional view of the D type in a cross section parallel to the longitudinal direction
  • FIG. 4 (a) is a cross section of the E type
  • FIG. 4 (b) is a cross section of the E type in a cross section parallel to the longitudinal direction
  • 5A is a cross-sectional view of the F type
  • FIG. 5B is a cross-sectional view of a cross section parallel to the longitudinal direction of the F type.
  • symbol is attached
  • the D-type heat exchanger 10d includes four rows of first fluid flow paths 1 arranged in the heat transfer block 4 and two layers of 15 rows of second fluid flow. It has a channel 2d and a rectangular lateral hole 3d that allows the second fluid channel 2d to communicate with each other. At this time, the horizontal hole 3d has the height of the second fluid channel 2d, has a long side in the longitudinal direction, and is provided perpendicular to the second fluid channel 2d. Other configurations and operations are the same as those in the first embodiment. In the heat exchanger 10d configured as described above, the following operational effects are obtained.
  • the flow path cross-sectional area in the horizontal hole 3d is increased as compared with a circular shape, so that the influence of the expansion / reduction of the flow path is reduced. Therefore, the pressure loss in the horizontal hole 3d, that is, the pressure loss in the heat exchanger 10d is reduced.
  • the length of the long side is designed such that the refrigerant distribution performance is good. Therefore, the performance deterioration of the heat exchanger accompanying the deterioration of distribution performance can be suppressed.
  • the thickness of the heat transfer block 4 is suppressed (not increased) by providing the lateral holes 3d in a rectangular shape, it is possible to reduce the material cost by reducing the thickness of the heat exchanger.
  • the cross-sectional area of the rectangular lateral hole 3d is larger than that in the case where the horizontal hole 3d is formed in a circular shape, the use member filled therein is compared with the case in which the horizontal hole 3d is formed in a circular shape.
  • the material cost can be reduced.
  • the long side of the horizontal hole 3d is the longitudinal direction, but a configuration having a short side in the longitudinal direction may be used.
  • an E-type heat exchanger 10e includes four rows of first fluid flow paths 1 arranged in the heat transfer block 4 and two layers of second fluid flow of 15 rows. It has a channel 2e and an elliptical lateral hole 3e that allows the second fluid channel 2e to communicate with each other. At this time, the horizontal hole 3e has the height of the second fluid channel 2e, has a long side in the longitudinal direction, and is provided perpendicular to the second fluid channel 2e. Other configurations and operations are the same as those in the first embodiment. In the heat exchanger 10e configured as described above, the following operational effects are obtained.
  • the flow passage cross-sectional area in the lateral hole 3e is increased as compared with a circular shape, so that the influence of expansion / reduction of the flow path is reduced. Therefore, the pressure loss in the horizontal hole 3e, that is, the pressure loss in the heat exchanger 10e is reduced.
  • the length of the long side is designed such that the refrigerant distribution performance is good. Therefore, the performance deterioration of the heat exchanger accompanying the deterioration of distribution performance can be suppressed.
  • the thickness of the heat transfer block 4 is suppressed (not increased) by providing the horizontal hole 3e in an elliptical shape, it is possible to reduce the material cost by reducing the thickness of the heat exchanger.
  • the cross-sectional area of the elliptical lateral hole 3e is larger than that in the case where the horizontal hole 3d is formed in a circular shape, the use member filled therein is compared with the case in which the horizontal hole 3d is formed in a circular shape. The material cost can be reduced.
  • the E type heat exchanger 10e is obtained by making one row of rectangular horizontal holes 3d in the D type heat exchanger 10d into an elliptical shape. It becomes easy to form the horizontal hole 3e by machining such as an end mill.
  • the long side of the horizontal hole 3e is the longitudinal direction, but a configuration having a short side in the longitudinal direction may be used.
  • the F type heat exchanger 10f includes four rows of first fluid flow paths 1 arranged in the heat transfer block 4 and 15 layers of second fluid flow in two layers.
  • the passage 2f and a plurality of lateral holes 3f communicating with the second fluid passage 2f are provided.
  • the horizontal hole 3f has a diameter that is the height of the second fluid channel 2f, and is provided in a plurality of rows (for example, two rows) perpendicular to the second fluid channel 2f and in the direction of the channel.
  • Other configurations and operations are the same as those in the first embodiment.
  • the heat exchanger 10f configured as described above, the following operational effects are obtained.
  • the flow path cross-sectional area in the horizontal hole 3f is increased as compared with the case where there is one, so that the influence of the expansion / reduction of the flow path is reduced. Therefore, the pressure loss in the horizontal hole 3f, that is, the pressure loss in the heat exchanger 10f is reduced. Further, by providing a plurality of rows of the horizontal holes 3f, the thickness of the heat transfer block 4 is suppressed (not increased), so that it is possible to reduce the material cost by reducing the thickness of the heat exchanger.
  • the length of the long side is designed such that the refrigerant distribution performance is good.
  • the performance deterioration of the heat exchanger accompanying the deterioration of distribution performance can be suppressed.
  • the thickness of the heat transfer block 4 is suppressed (not increased), so that it is possible to reduce the material cost by reducing the thickness of the heat exchanger. Since the cross-sectional area of the horizontal holes 3f in the plurality of rows is larger than that in the case where the horizontal holes 3f are formed in a single circle, the cross holes are filled in compared to the case where the horizontal holes 3f are configured in a single circle. It becomes possible to reduce the material cost of the used members.
  • the F type heat exchanger 10f is configured such that one row of rectangular lateral holes 3d in the D type heat exchanger 10d is formed in a plurality of rows of circles. It becomes easy to form the horizontal hole 3f by machining such as an end mill. Furthermore, by configuring the horizontal holes 3f in a plurality of rows, it is possible to improve the pressure resistance performance as compared with the case of configuring the rectangular holes and the ellipse. In the above, the horizontal holes 3f are configured in two rows, but the number of rows is not limited.
  • FIG. 6 schematically illustrates a heat exchanger according to Embodiment 3 of the present invention.
  • FIG. 6A is a cross-sectional view in a cross section perpendicular to the longitudinal direction of the H type
  • FIG. b) is a cross-sectional view in a cross section parallel to the longitudinal direction of the H type
  • FIG. 6C is a cross sectional view in a cross section perpendicular to the longitudinal direction of the I type
  • FIG. 6D is parallel to the longitudinal direction of the I type.
  • It is sectional drawing in a simple cross section.
  • symbol is attached
  • an H type heat exchanger 10h includes four layers of first fluid flow paths 1 in one layer and two layers of second fluid flow in one layer in the heat transfer block 4. It has a passage 21a, a horizontal hole 3h, and a slit-like space 5h that is arranged on the opposite side of the first fluid passage 1 in parallel with the second fluid passage 21a. That is, the second fluid flow path 21a has a form sandwiched between the first fluid flow path 1 and the slit-shaped space 5h.
  • the slit-shaped space 5h is disposed on the third surface 43 parallel to the second surface 42a, and the lateral hole 3h is formed so as to straddle the second fluid flow path 21a and the slit-shaped space 5h.
  • Sealing is applied to the slit-shaped space 5h in the portion where the horizontal hole 3h is opened so that the second fluid does not flow from the flow path 21a into the slit-shaped space 5h via the horizontal hole 3h. That is, the sealing block 81 is liquid-tightly installed in a predetermined range of the slit-shaped space 5 h, and the horizontal hole 3 h penetrates a part of the sealing block 81. Note that the sealing process is not limited to the sealing block 81.
  • the side hole 3h is substantially half (semicircle) of a circle having a diameter Dh that covers the second fluid channel 21a and the slit-shaped space 5h in the side view, and the first fluid channel 1 and the second fluid channel. It functions as a flow path communicating with 21a.
  • Other configurations and operations are the same as those in the first embodiment.
  • the following effects can be obtained.
  • the flow path cross-sectional area the area of the semicircular communication portion
  • the pressure loss in the horizontal hole 3h that is, the heat exchanger 10h is reduced.
  • the slit-shaped space 5h the slit-shaped space 5h portion becomes a heat insulating layer, and the heat exchange performance is improved by preventing heat radiation from the second fluid flow path 21a to the outside of the heat transfer block 4.
  • the horizontal hole 3h has a circular cross section, but the shape is not limited.
  • an I type heat exchanger 10i is obtained by dividing the slit-shaped space 5h in the H-type heat exchanger 10h into a plurality of slit-shaped spaces 5i.
  • the slit-shaped space 5i having a rectangular cross section is shown, the present invention is not limited to this, and may be a rectangle such as a circle, an ellipse, or a square.
  • the sealing block 82 is liquid-tightly installed in a predetermined range in the slit-shaped space 5i having a rectangular cross section.
  • the heat exchanger 10i can obtain the same effect as the heat exchanger 10h, and the rigidity of the side surface 45 close to the slit-like space 5i of the heat transfer block 4 is increased, so that heat transfer is performed as compared with the heat exchanger 10h.
  • the block 4 is more difficult to deform.
  • the formation method of the heat-transfer block 4 is not limited, For example, if it forms by integral extrusion processing, increase / decrease in the number of the lines of the 1st fluid flow path 1, the number of the 1st surfaces 41, or 2nd fluid. As the number of flow paths and the number of second surfaces 42 increase or decrease, the degree of freedom in selecting the form of the slit-shaped space 5 i increases.
  • Embodiment 4 7 schematically illustrates a heat exchanger according to Embodiment 4 of the present invention, in which (a) is a cross-sectional view in a cross section perpendicular to the longitudinal direction of the J type, and (b) is a J type. It is sectional drawing in a cross section parallel to a longitudinal direction.
  • symbol is attached
  • the heat exchanger 10j is a two-layered slit-like space 5i in the I-type heat exchanger 10i. That is, the slit-shaped space 5j includes a plurality of lower-layer slit-shaped spaces 51a disposed intermittently on the third surface 43a parallel to the second surface 42a, and a plurality disposed intermittently on the third surface 43b parallel to the third surface 43a. Upper-layer slit-like space 51b.
  • Each of the lower layer slit-like space 51a and the upper layer slit-like space 51b has a substantially square cross section, and the upper layer slit-like space 51b is disposed above the range sandwiched between the pair of lower-layer slit-like spaces 51a (a pair of upper-layer slit-like spaces 51a).
  • the lower slit-like space 51a is arranged below the area sandwiched by 51b), and has a checkered pattern.
  • a sealing block 83a and a sealing block 83b are liquid-tightly installed in predetermined ranges of the lower layer slit-like space 51a and the upper layer slit-like space 51b, respectively.
  • the slit-shaped space 5j is the same as the H-type heat exchanger 10h except that the slit-shaped space 5j is constituted by the lower-layer slit-shaped space 51a and the upper-layer slit-shaped space 51a that are fine flow paths. 10j has the same effect as the heat exchanger 10h.
  • the formation method of the heat-transfer block 4 is not limited, For example, if it forms by integral extrusion processing, increase / decrease in the number of the lines of the 1st fluid flow path 1, the number of the 1st surfaces 41, or 2nd fluid. As the number of flow paths and the number of second surfaces 42 increase or decrease, the degree of freedom in selecting the shape of the slit-shaped space 5j increases.
  • FIG. 8 schematically illustrates a heat exchanger according to Embodiment 5 of the present invention, in which (a) is a cross-sectional view in a cross section perpendicular to the longitudinal direction of the K type, and (b) is a K type. Sectional view in a cross section parallel to the longitudinal direction, (c) is a sectional view in a section perpendicular to the longitudinal direction of the L type, (d) is a sectional view in a section parallel to the longitudinal direction of the L type, (e) is an M type Sectional drawing in a cross section perpendicular
  • symbol is attached
  • the K-type heat exchanger 10k includes four rows of the first fluid flow paths 1 arranged in the heat transfer block 4, and six layers of 15 rows (total of 90 rows). Second fluid flow path 2k and a row of horizontal holes 3k that are perpendicular to the second fluid flow path 2k and are formed to communicate with each other. That is, in the heat exchanger 10k, a plurality of rows (for example, 15 rows) of second fluid flow paths 21f arranged on the second surface 42f substantially parallel to the first surface 41 are added to the B type heat exchanger 10b. Is the same. At this time, the inner diameter Dk of the horizontal hole 3k is a large value because it extends over the six layers of the second fluid flow path 2k.
  • an L-type heat exchanger 10l (10 ell) is obtained by dividing the lateral hole 3k in the K-type heat exchanger 10k into two strips. That is, the three layers of the second fluid flow paths 21a to 21c are a lower layer group, and the three layers of the small-diameter lateral hole 33a that communicates all the second fluid flow paths 21a to 21c of the lower layer group and the second fluid flow paths 21d to 21f. Is formed as an upper layer group, and a horizontal hole 3l (3 ell) is formed which includes a small-diameter horizontal hole 33b that communicates all the second fluid flow paths 21d to 21f of the upper layer group.
  • the inner diameter of the horizontal hole 3l (3 ell) is approximately 1 ⁇ 2 of the inner diameter of the horizontal hole 3k.
  • the fluid velocity increases in the order of liquid, gas-liquid two-phase, and gas at the same mass velocity.
  • an M type heat exchanger 10m is obtained by dividing the horizontal hole 3k in the K type heat exchanger 10k into three strips. That is, the two layers of the second fluid flow paths 21a and 21b are set as a lower layer group, and the two layers of the small-diameter lateral hole 32a that communicates all the second fluid flow paths 21a and 21b of the lower layer group and the second fluid flow paths 21c and 21d.
  • the middle layer group Is the middle layer group, and the two layers of the small-diameter lateral hole 32b and the second fluid flow channels 21e and 21f communicating with all the second fluid flow paths 21c and 21d of the middle layer group are the upper layer group, and the second fluid flow of the upper layer group
  • a horizontal hole 3m is formed, which includes a small-diameter horizontal hole 32c that allows the passages 21e and 21f to communicate with each other. Therefore, the inner diameter of the horizontal hole 3m is approximately 1/3 of the inner diameter of the horizontal hole 3k. Therefore, in the K-type heat exchanger 10k or the L-type heat exchanger 10l (10 ell), the M-type heat exchanger 10m can be selected when it is not possible to respond to the speed change associated with the fluid state. .
  • the 2nd fluid flow path which consists of 6 layers as an example
  • this invention is not limited to this,
  • the number of layers of a 2nd fluid flow path may be arbitrary.
  • any one of the slit-like spaces 5h to 5j described in the third and fourth embodiments may be provided.
  • the sealing block 81 or the like is installed in any of the provided slit-shaped spaces 5h to 5j, and a part of the installed sealing block 81 or the like is penetrated to provide the provided slit-shaped spaces 5h to 5j.
  • the second fluid flow paths 21d to 21f (or 21e, 21f) of the group closest to any of the above are formed.
  • the horizontal hole described in the first to fifth embodiments may be an ellipse or a rectangle.
  • the width of the horizontal hole can be expanded in the flow direction of the second fluid flow path for the ellipse or the rectangle. That is, the pressure loss can be reduced by determining the cross-sectional area of the horizontal hole in accordance with the mass velocity of the refrigerant flowing in, the ratio of the vapor and liquid mass velocity (hereinafter, dryness).
  • dryness the ratio of the vapor and liquid mass velocity
  • the flows that are easily distributed equally are an annular flow, an annular spray flow, a bubbling flow, a slag flow, and a spiral flow, and it is desirable to flow into the side holes in these flow modes.
  • the appearance of the fluid flow in the two-phase state can be confirmed by a flow pattern diagram (for example, the Baker diagram (see FIG. 11)).
  • the refrigeration cycle apparatus according to Embodiment 6 of the present invention described below takes into consideration the flow mode.
  • the mass velocity of the refrigerant flowing into the side hole is “G”
  • the mass velocities of the gas phase and liquid phase are “Gg and Gl”
  • the density of the gas phase and the liquid phase is “ ⁇ g and ⁇ l”
  • Viscosity coefficient of gas phase and liquid phase is “ ⁇ g and ⁇ l”
  • the surface tension is ⁇ ,
  • the density of air and water at an atmospheric temperature of 20 ° C. is “ ⁇ a and ⁇ w”,
  • FIG. 9 illustrates a refrigeration cycle apparatus according to Embodiment 7 of the present invention, and is a configuration diagram of equipment showing a heat pump heating system that uses warm heat.
  • symbol is attached
  • the heat pump heating system 60 is a heat exchange that performs heat exchange between the use side fluid pipe 61 through which the first fluid flows, the heat source side fluid pipe 62 through which the second fluid flows, and the first fluid and the second fluid.
  • the usage-side fluid pipe 61 sequentially connects the heat exchanger 10a (first fluid flow path 1), the pump 61a, and the usage-side heat exchanger 61b to enable circulation of the first fluid.
  • the heat source side fluid pipe 62 sequentially connects the compressor 62a, the heat exchanger 10a (second fluid flow path 2), the expansion valve 62b, the heat source side heat exchanger 62c, and the fan 62d to enable circulation of the second fluid. ing.
  • the first fluid in the use side fluid pipe 61 is heated in the heat exchanger 10a (receives heat from the second fluid), is sent out by the pump 61a, and radiates heat in the use side heat exchanger 61b (to the use side fluid or the like). Hand over the heat).
  • the use-side heat exchanger 61b for example, a radiator or a floor heater is applied and used as a heating system.
  • the second fluid that has become high temperature and pressure in the compressor 62a exchanges heat with the first fluid in the heat exchanger 10a (delivering the heat).
  • the heat pump type heating system 60 using the heat exchanger 10 a of the present invention is used as a heat source to heat or hot water in the use side heat exchanger 61 b, thereby comparing with a heating system using a conventional boiler as a heat source. Energy saving effect.
  • the present invention is not limited to this, and any of the B type to M type may be used.
  • the number of rows of the first fluid channel 1, the number of layers of the second fluid channel 2, and the number of rows in each layer are not limited.
  • FIG. 10 illustrates a refrigeration cycle apparatus according to Embodiment 8 of the present invention, and is a configuration diagram of equipment showing a heat pump type hot water supply system using warm heat.
  • symbol is attached
  • a heat pump hot water supply system 70 is a hot water supply system in which the use-side heat exchanger 61 b in the heat pump hot water supply system 60 is installed in the tank 63 and the water supplied to the tank 63 is heated to take water. is there. As shown in FIG.
  • the heat pump hot water supply system 70 (same as the heat pump hot water supply / heating system) using the heat exchanger 10a of the present invention is used as a heat source for heating or hot water supply by the use side heat exchanger 61b. Compared to a hot water supply system using a boiler as a heat source, there is an energy saving effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

複数の流体流路を連通しても、圧力損失を低減することができ、かつ各流路への均等分配を実現し、熱交換器の性能低下を抑制することができる熱交換器を得る。 熱交換器10aは、伝熱ブロック4を貫通する複数行の第1流体流路1と、第1流体流路1に平行に形成され、伝熱ブロック4を貫通する複数行の第2流体流路2aと、伝熱ブロック4内に形成され、第2流体流路2aの全てを連通する横穴3aと、を有し、横穴3aが第2流体流路2aに垂直であって、前記横穴が、第2流体流路の流路断面積A、相当直径d、長さL、横穴の流路断面積A、相当直径d、相当長さLとしたとき、L/Ad>L/A となるような直径及び数で形成され、前記横穴は前記第2流体流路をすべて連通し、前記第1流体流路と隣接する前記第2流体流路の間の前記伝熱ブロック部分にははみ出さない。

Description

熱交換器および冷凍サイクル装置
 本発明は熱交換器および冷凍サイクル装置、特に、高温流体が流れる第1流体流路および低温流体が流れる第2流体流路を伝熱ブロック内に有する熱交換器と、該熱交換器を装備した冷凍サイクル装置に関する。
 従来、ヒートポンプ式冷凍・空調システムとして、蒸気圧縮式冷凍回路で構成されるものが利用されている。冷凍回路内には、第1流体と第2流体との間で熱交換を行う熱交換器が備えられている。
 熱交換器は、第1流体が流れる第1流体流路と第2流体が流れる第2流体流路とが同一ブロック(固体)内に略平行に配置され、それぞれにおいてそれぞれの流体を互いに同一方向に流したり(以下「並行」あるいは「並行流」と称す)、あるいは互いに反対方向に流したりして(以下「対向」あるいは「対向流」と称す)、両者の間で熱交換を行う。
 例えば、第1流体を「水」、第2流体を「R410a」にして、低温低圧の水と高温高圧のR410aとの間で熱交換を行うことで、水を加熱する(このとき、R410aは冷却される)。
 そして、熱交換器を高性能化・小型化する手段の一つとして、第1流体流路または第2流体流路を細径にしている。細径化を行うことにより、熱交換器の単位体積あたりの伝熱面積を増大させることが可能となり、高伝熱化が実現可能となる。
 また、同一ブロック(固体)内に第1流体流路および第2流体を有するものではなく、一方の流路のみをブロック内に形成し、当該ブロックを他方の流路内に配置するもので、ブロック内に形成された流路の細径化を図ったものとして、扁平状の断面に、流体が流れる複数の流路の列を一体で押出成形した熱交換用チューブが知られている(例えば、特許文献1参照)。
特開2000-234881号公報(第3-4頁、図2)
 特許文献1に開示された発明は、ブロックが他方の流路内に配置されるため、他方の流路の上流側に位置するブロック内の流路と、他方の流路の下流側に位置するブロック内の流路とでは、温度差(熱交換量に差)があることから、上流側に位置するブロック内の流路から下流側に位置するブロック内の流路を連通する横穴を設け、ブロック内の流路間の流体温度の差を緩和している。
 このため、流体を各流路へ分配して混合するために横穴を開ける必要がある。横穴の直径は流路の高さにより制限されるため、横穴3a部分において流路断面積が縮小し、当該ブロック内で流路が拡大・縮小を繰り返すことで圧力損失が増大するといった問題があった。 すなわち、流路断面積が異なる(ヘッダー断面積が小さい)ことから、ヘッダー部で流体の流速が増加するため、圧力損失が増大し、その繰り返しによって熱交換器の圧力損失が増大する。
 そして、特許文献1に開示された発明を、同一ブロック(固体)内に第1流体流路および第2流体を有する熱交換器に適用した場合、同様の問題があった。特に、特許文献1に開示された発明は、第1流体流路及び第2流体通路の組み合わせが1段であるものの、熱交換器が多段で構成された場合には、一方の段から他方の段への流体の流れ込みがあるため、ヘッダー部を通過する回数が増大する。このため、結果として、流路断面積が拡大・縮小を繰り返すということになり、熱交換器の圧力損失が増大する。
 また、流体を各流路へ分配する際に、熱交換器に流入する流体の条件、特に気体と液体が混在する気液二相の状態において、流路ごとの気体と液体の流入する比率が異なる、つまり不均等分配が生じ、熱交換器の性能が悪化する。
 本発明は、前記問題を解消するものであって、複数の流体流路を連通しても、圧力損失を低減することができ、かつ各流路への均等分配を実現し、熱交換器の性能低下を抑制することができる熱交換器と、該熱交換器を装備する冷凍サイクル装置を得るものである。
 本発明に係る熱交換器は、伝熱ブロック内の平面である第1面に互いに平行に形成され、該伝熱ブロックを貫通する複数行の第1流体流路と、前記伝熱ブロック内で前記第1面に平行な第2面において前記第1流体流路に平行に形成され、該伝熱ブロックを貫通する複数行の第2流体流路と、前記伝熱ブロック内に形成され、前記第2流体流路の全てを連通する横穴と、を有し、前記横穴が前記第2流体流路に垂直であって、前記横穴が第2流体流路の流路断面積A、相当直径d、長さL、横穴の流路断面積A、相当直径d、相当長さLとしたとき、L/ Ad>L/A となるような直径及び数で形成され、前記横穴は前記第2流体流路をすべて連通し、前記第1流体流路と隣接する前記第2流体流路の間の前記伝熱ブロック部分にははみ出さないことを特徴とする。
 本発明に係る熱交換器は、前記構成であるから、横穴の断面積を最適設計することができるため、圧力損失を抑えることができ、かつ均等分配により、熱交換器の性能低下を抑制することができる。
本発明の実施の形態1に係るAタイプの熱交換器を説明する断面図。 本発明の実施の形態1に係るBタイプおよびCタイプの熱交換器をそれぞれ説明する断面図。 本発明の実施の形態2に係るDタイプの熱交換器を説明する断面図。 本発明の実施の形態2に係るEタイプの熱交換器を説明する断面図。 発明の実施の形態2に係るFタイプの熱交換器をそれぞれ説明する断面図。 本発明の実施の形態3に係るHタイプおよびIタイプの熱交換器を説明する断面図。 本発明の実施の形態4に係るJタイプの熱交換器を説明する断面図。 本発明の実施の形態5に係るKタイプ、LタイプおよびMタイプの熱交換器を説明する断面図。 本発明の実施の形態7に係る冷凍サイクル装置を説明するヒートポンプ式暖房システムを示す機器の構成図。 本発明の実施の形態8に係る冷凍サイクル装置を説明するヒートポンプ式給湯システムを示す機器の構成図。 本発明の実施の形態6に係る冷凍サイクル装置を説明するために参照したBaker線図。
 [実施の形態1]
 図1および図2は本発明の実施の形態1に係る熱交換器を模式的に説明するものであって、図1の(a)はAタイプの長手方向に垂直な断面における断面図、図1の(b)はAタイプの長手方向に平行な断面における断面図、図2の(a)はBタイプの断面図、図2の(b)はBタイプの長手方向に平行な断面における断面図、図2の(c)はCタイプの断面図、図2の(d)はCタイプの長手方向に平行な断面における断面図である。なお、各図において、同じ部分または対応する部分には同じ符号(数字部分)を付し、一部の説明を省略する。また、共通する内容を説明する場合に、符号の添え字(a、b・・・)を省略することがある(実施の形態2~5においても同様)。
 (Aタイプ)
 図1の(a)および(b)において、Aタイプの熱交換器10aは、伝熱ブロック4に配置された複数行(例えば4行)の第1流体流路1と、第1流体流路1と流れる方向が並行になるように配置された複数行(例えば45行)の第2流体流路2aと、第2流体流路2aに垂直で、第2流体流路2aの全てを互いに連通するように形成された1列の横穴3aとを有している。
 (第1流体流路、第2流体流路)
 第1流体流路1は平面である第1面41に配置され、互いに平行に複数行が配置され、断面円形を呈している。
 また、第2流体流路2aは、第1流体流路1に平行であって、第1面41に略平行な平面である第2面42aに配置された複数行(例えば15行)の第2流体流路21aと、第1面41に略平行な第2面42bに配置された複数行(例えば15行)の第2流体流路21bと、第1面41に略平行な第2面42cに配置された複数行(例えば15行)の第2流体流路21cと、を総称するものである。すなわち、第2流体流路2aは、3層にそれぞれ15行ずつ配置され、断面矩形を呈している。
 なお、第1流体流路1および第2流体流路2aの軸方向を「長手方向」と称している。
 また、以上は、第1流体流路1の断面形状が円形、第2流体流路2aの断面形状が矩形のものを示しているが、本発明はこれに限定するものではなく、それぞれの断面形状は任意に設定することができるものである。
 (横穴)
 横穴3aは、第2流体流路に垂直であり、複数行(例えば45行)の第2流体流路を互いに連通するものであるが、第1流体流路1に隣接する第2流体流路21aとの間に形成された伝熱ブロック4には、はみ出さない。また、横穴3aは流入する流体の質量速度、横穴の長さ、第2流体流路の寸法及び数に応じて、横穴3aの直径及び数を決定することにより、圧力損失を低減することができる。伝熱ブロックの長手方向に第2流体が通過する際、冷媒の密度ρ、流速v(「v=G/ρ×1/A」、G:質量速度、A:流路断面積)、圧力損失係数λ、第2流体流路の相当直径d(「d=4S/L’」、S:総断面積、L’:濡れぶち長さ)、第2流体流路の長さLとしたとき、圧力損失ΔPは「ΔP=λ×L/d×v/2×ρ」となる。
同様に横穴3aを通過する際、圧力損失ΔPは横穴3a部分での流速vとすると、「ΔP×L/d×v /2×ρ」となる。横穴3a部分での圧力損失が、伝熱ブロックの長手方向に通過する際に生じる圧力損失よりも小さくなるような横穴の直径及び数を選定することが望ましい。「ΔP>ΔP」となる、つまり「L/ Ad>L/A 」となるような横穴3aの直径及び数を選定することが望ましい。
具体例として、図1のような第2流体流路が3層に、寸法1mm×1mmで15行で、配置され、かつ伝熱ブロックの長さが300mm、横穴の長さが25mmの場合、「L/Ad=0.3/(4.5×10-5×0.001=1.48×1011>L/A 」を満足する横穴3aの直径及び数にすることが好ましく、「d>0.003」つまり3mm以上の直径をもつ横穴3aにすることが望ましい。なお、上記の範囲以外の流路断面積である場合、横穴部での圧力損失が増大し、熱交換器の性能劣化を引き起こすため、好ましくない。
 なお、横穴3aは、伝熱ブロック4の一方の側面44から、機械加工(ドリル)あるいは塑性加工(ポンチ)等によって穿孔されたものであるが、本発明は、その形成方法を限定するものではない。
 (作用効果)
 上記のように構成された熱交換器10aにおいては、次のような作用効果が得られる。
 前記範囲内の流路断面積を持つ横穴3aは、従来の熱交換器のような1層分の直径を持つ横穴(特許文献1参照)よりも大きくなるため、流体が熱交換器10aを通過する際に、横穴3a部分での流路の拡大・縮小の影響が小さくなる。すなわち、横穴3aがヘッダー部として機能するため、横穴3aにおける圧力損失、つまり熱交換器10aでの圧力損失を低減することとなる。
 よって、横穴3aの直径Daを拡大するために第2流体流路2aを複数層に渡るように構成したことにより、第2流体流路2aの伝熱面積が増大している。従って、熱交換性能の向上を図ることが可能となる。
 特に、熱交換器が多段で構成される場合には、一方の段から他方に段への第2流体の流れ込みがあり、横穴3a(ヘッダー部に相当する)を通過する回数が増大するため、流路断面積が拡大・縮小を繰り返すものの、熱交換器10aでは横穴3aの流路断面積が大きいことから、圧力損失を低減する効果が顕著になる。
 前記範囲内の流路断面積の直径Daを持つ横穴3aは、従来の熱交換器のような1層で同等直径を持つように伝熱ブロックの厚みを増大させた場合と比較して、第1流体流路1との距離を短くすることができるため、熱交換性能を向上させることが可能となる。
 前記範囲内の流路断面積の直径Daを持つ横穴3aは、第1流体流路1に隣接する第2流体流路21aとの間に形成された伝熱ブロック4には、はみ出さないように構成されるため、第1流体流路1と第2流体流路21aとの距離を短くすることができるため、熱交換性能を向上させることが可能となる。
 また、横穴3aは、第1流体流路1から最も遠い側にある第2流体流路21cから外側の伝熱ブロック4の部分にも、はみ出さないように構成される。つまり、複数の層をなすように配列された第2流体流路2aに対して横穴3aの高さは第2流体流路2aの最下層から最上層までの範囲に収まるようにされている。このようにすることで、伝熱ブロック4の厚みを薄くすることができる。また、第1流体流路1の層、第2流体流路2aの層、第1流体流路1の層、のように積層した場合、間に挟まれた第2流体流路2aの層が上下の第1流体流路1の層に近接して配置できるようになり熱交換性能を向上させることができる。
 なお、伝熱ブロック4の形成方法は限定するものではないが、例えば、一体押し出し加工によって形成すれば、第1流体流路1の行数や第1面41の数の増減、あるいは第2流体流路の行数や第2面42の数の増減が容易になるから、横穴3aの流路断面積を最適設計することができる。
 なお、熱交換器10aは、伝熱ブロック4の一方の側面44において、横穴3aには配管接続のための管継手(例えば、チューブ等、図示しない)が、ろう付けによって取り付けられている。したがって、かかる管継手にシステム(例えば、給湯システム等)の配管を接続することで、熱交換器10aの使用が可能となる。このとき、第2流体流路2aの長手方向の両端は閉塞される。
 また、伝熱ブロック4の一方の側面44における横穴3aに蓋を設置して、当該開口部を閉塞してもよい。このとき、第2流体流路2aの長手方向の両端はシステム(例えば、給湯システム等)の配管に接続される(管継手を介して直接的に、または外付けヘッダー部を介して間接的に接続される)。
 また、第1流体流路1を流れる流体(第1流体)および第2流体流路2aを流れる流体(第2流体)は限定されるものではなく、第1流体として水道水、蒸留水及びブラインなどの水を用い、第2流体として、R410aの他に、フロン系冷媒及び炭化水素などの自然冷媒及びそれらの混合物を用いても良い。
 さらに、第1流体流路1を流れる流体の流れ方向と第2流体流路2aを流れる流体の流れ方向とは、並行であっても対向であってもよい。
 (Bタイプ)
 図2の(a)および(b)において、Bタイプの熱交換器10bは、伝熱ブロック4に配置された4行の第1流体流路1と、5層で15行(合計75行)の第2流体流路2bと、第2流体流路2bに垂直で、第2流体流路2bを互いに連通するように形成された1列の横穴3bとを有している。
 このとき、熱交換器10bは、第1面41に略平行な第2面42d、42eにそれぞれ配置された複数行(例えば15行)の第2流体流路21d、21eと、をAタイプの熱交換器10aに追加したものに同じである。このとき、横穴3bの内径Dbは、5層の第2流体流路2bに跨がるため、大きな値になっている。
 (Cタイプ)
 図2の(c)および(d)において、Cタイプの熱交換器10cは、伝熱ブロック4に配置された4行の第1流体流路1と、2層で15行(合計30行)の第2流体流路2cと、第2流体流路2cに垂直で、第2流体流路2cを互いに連通するように形成された1列の横穴3cとを有している。このとき、横穴3cの内径Dcは、2層の第2流体流路2cに跨がるだけでよいため、小さな値になっている。
 熱交換器を流れる流体が相変化を伴う場合、同一質量速度においては、液体、気液二相、気体の順に流体の速度は速くなる。圧力損失を低減するためには、冷媒の状態つまり冷媒の速度に応じて横穴の径を設計する必要がある。流体の状態に伴う速度変化に応じて、横穴3の径を大きくする(Aタイプ~Cタイプを使い分ける)といった構成である。
 また、それぞれのタイプを使い分けることによって、第2流体流路2内の圧力損失の低減を図ることができる。
 なお、以上は、説明の便宜上、Aタイプ~Cタイプと称したものであって、第1流体流路1の行数、第2流体流路2の層数、その各層における行数を限定するものではない。
 なお、以上は、説明の便宜上、横穴3の直径を、第2流体流路21aと第2流体流路21cとを跨ぐことができる直径Daとしたが、第2流体流路21aと第2流体流路21cとを跨ぐことができるのであれば、直径Daより小径で構成してもかまわない。
 [実施の形態2]
 図3~図5は本発明の実施の形態2に係る熱交換器を模式的に説明するものであって、図3の(a)はDタイプの長手方向に垂直な断面における断面図、図3の(b)はDタイプの長手方向に平行な断面における断面図、図4の(a)はEタイプの断面図、図4の(b)はEタイプの長手方向に平行な断面における断面図、図5の(a)はFタイプの断面図、図5の(b)はFタイプの長手方向に平行な断面における断面図である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
 (Dタイプ)
 図3の(a)および(b)において、Dタイプの熱交換器10dは、伝熱ブロック4に配置された4行の第1流体流路1と、2層で15行の第2流体流路2dと、第2流体流路2dを互いに連通する長方形状の横穴3dとを有している。
 このとき、横穴3dは、第2流体流路2dの高さを持ち、長手方向に長辺を持ち、第2流体流路2dに垂直に設けられている。その他の構成及び動作に関しては、実施の形態1と同様である。
 上記のように構成された熱交換器10dにおいては、次のような作用効果が得られる。
 すなわち、長方形状の横穴3dを持つ熱交換器10dは、横穴3dにおける流路断面積が円形の場合に比較して増大するため、流路の拡大・縮小の影響が小さくなる。そのため、横穴3dにおける圧力損失、つまり熱交換器10dでの圧力損失が低減されることになる。
 長辺の長さは、冷媒の分配性能が良好になるような長さで設計される。そのため、分配性能の悪化に伴う、熱交換器の性能劣化を抑制することができる。
 また、横穴3dを長方形状にて設けることにより、伝熱ブロック4の厚みを抑える(増加させない)ため、熱交換器の薄型化によるコンパクト化及び材料費の削減を図ることが可能となる。
 長方形状の横穴3dは、円形で横穴3dを構成した場合と比較して、断面積が増大しているため、円形で横穴3dを構成した場合と比較して、そこに充填されていた使用部材の材料費の削減を図ることが可能となる。
なお、以上は、横穴3dの長辺を長手方向としたが、長手方向に短辺を持つような構成であってもかまわない。
 (Eタイプ)
 図4の(a)および(b)において、Eタイプの熱交換器10eは、伝熱ブロック4に配置された4行の第1流体流路1と、2層で15行の第2流体流路2eと、第2流体流路2eを互いに連通する楕円形状の横穴3eとを有している。
 このとき、横穴3eは、第2流体流路2eの高さを持ち、長手方向に長辺を持ち、第2流体流路2eに垂直に設けられている。その他の構成及び動作に関しては、実施の形態1と同様である。
 上記のように構成された熱交換器10eにおいては、次のような作用効果が得られる。
 すなわち、楕円形状の横穴3eを持つ熱交換器10eは、横穴3eにおける流路断面積が円形の場合に比較して増大するため、流路の拡大・縮小の影響が小さくなる。そのため、横穴3eにおける圧力損失、つまり熱交換器10eでの圧力損失が低減されることになる。
 長辺の長さは、冷媒の分配性能が良好になるような長さで設計される。そのため、分配性能の悪化に伴う、熱交換器の性能劣化を抑制することができる。
 また、横穴3eを楕円形状にて設けることにより、伝熱ブロック4の厚みを抑える(増加させない)ため、熱交換器の薄型化によるコンパクト化及び材料費の削減を図ることが可能となる。
 楕円形状の横穴3eは、円形で横穴3dを構成した場合と比較して、断面積が増大しているため、円形で横穴3dを構成した場合と比較して、そこに充填されていた使用部材の材料費の削減を図ることが可能となる。
 また、Eタイプの熱交換器10eは、Dタイプの熱交換器10dにおける1列の長方形状の横穴3dを、楕円形状にしたものである。横穴3eをエンドミル等の機械加工によって形成することが容易になる。
なお、以上は、横穴3eの長辺を長手方向としたが、長手方向に短辺を持つような構成であってもかまわない。
 (Fタイプ)
 図5の(a)および(b)において、Fタイプの熱交換器10fは、伝熱ブロック4に配置された4行の第1流体流路1と、2層で15行の第2流体流路2fと、第2流体流路2fを互いに連通する複数の横穴3fとを有している。
 このとき、横穴3fは、第2流体流路2fの高さの直径を持ち、第2流体流路2fに垂直かつ流路の方向に複数列(例えば2列)設けられている。その他の構成及び動作に関しては、実施の形態1と同様である。
 上記のように構成された熱交換器10fにおいては、次のような作用効果が得られる。
 すなわち、複数の横穴3fを持つ熱交換器10fは、横穴3fにおける流路断面積が1個の場合に比較して増大するため、流路の拡大・縮小の影響が小さくなる。そのため、横穴3fにおける圧力損失、つまり熱交換器10fでの圧力損失が低減されることになる。
 また、横穴3fを複数列設けることにより、伝熱ブロック4の厚みを抑える(増加させない)ため、熱交換器の薄型化によるコンパクト化及び材料費の削減を図ることが可能となる。
 長辺の長さは、冷媒の分配性能が良好になるような長さで設計される。そのため、分配性能の悪化に伴う、熱交換器の性能劣化を抑制することができる。
 また、横穴3fを複数列設けることにより、伝熱ブロック4の厚みを抑える(増加させない)ため、熱交換器の薄型化によるコンパクト化及び材料費の削減を図ることが可能となる。
 複数列の横穴3fは、単一円形で横穴3fを構成した場合と比較して、断面積が増大しているため、単一円形で横穴3fを構成した場合と比較して、そこに充填されていた使用部材の材料費の削減を図ることが可能となる。
 また、Fタイプの熱交換器10fは、Dタイプの熱交換器10dにおける1列の長方形状の横穴3dを、複数列の円形で構成したものである。横穴3fをエンドミル等の機械加工によって形成することが容易になる。
 さらに、横穴3fを複数列で構成することにより、長方形及び楕円形で構成した場合と比較して、耐圧性能を向上させることが可能となる。
なお、以上は、横穴3fを2列で構成したが、列数を限定するものではない。
 [実施の形態3]
 図6は本発明の実施の形態3に係る熱交換器を模式的に説明するものであって、図6の(a)はHタイプの長手方向に垂直な断面における断面図、図6の(b)はHタイプの長手方向に平行な断面における断面図、図6の(c)はIタイプの長手方向に垂直な断面における断面図、図6の(d)はIタイプの長手方向に平行な断面における断面図である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
 (Hタイプ)
 図6の(a)および(b)において、Hタイプの熱交換器10hは、伝熱ブロック4に1層で4行の第1流体流路1と、1層で5行の第2流体流路21aと、横穴3hと、第2流体流路21aに平行で、第1流体流路1とは反対側に配置されたスリット状空間5hと、を有している。すなわち、第2流体流路21aは、第1流体流路1とスリット状空間5hとに挟まれた形態を呈している。
 このとき、スリット状空間5hは第2面42aに平行な第3面43に配置され、横穴3hは、第2流体流路21aおよびスリット状空間5hに跨がるように形成され、第2流体流路21aからスリット状空間5hに横穴3hを経由して第2流体が流入しないよう、横穴3hを開けた部分のスリット状空間5hには、封止加工が施される。
 すなわち、スリット状空間5hの所定の範囲に封止ブロック81が液密的に設置され、横穴3hは封止ブロック81の一部を貫通している。なお、封止加工の要領は、封止ブロック81に限定されるものではない。
 したがって、横穴3hは、側面視において、第2流体流路21aとスリット状空間5hとを覆う直径Dhを有する円の略半分(半円)が、第1流体流路1と第2流体流路21aとを連通する流路として機能する。そして、その他の構成及び動作に関しては、実施の形態1と同様である。
 上記のように構成された熱交換器1においては、次のような作用効果が得られる。
 スリット状空間5hにより横穴3hの直径が拡大した熱交換器10hは、横穴3h部分での流路断面積(前記、半円状の連通部の面積)が増大するため、流路の拡大・縮小の影響が小さくなる。
 そのため、横穴3hつまり熱交換器10hにおける圧力損失を低減することとなる。また、スリット状空間5hを設けることにより、スリット状空間5h部分が断熱層となり、第2流体流路21aから伝熱ブロック4の外への放熱を防ぐことにより、熱交換性能の向上を図ることが可能となる。
 なお、以上は、横穴3hを断面円形で構成しているが、その形状は限定されるものではない。
 (Iタイプ)
 図6の(c)および(d)において、Iタイプの熱交換器10iは、Hタイプの熱交換器10hにおけるスリット状空間5hを、分割して複数のスリット状空間5iにしたものである。なお、断面長方形のスリット状空間5iを示しているが、本発明はこれに限定するものではなく、円形、楕円形あるいは正方形等の矩形であってもよい。
 このとき、断面長方形のスリット状空間5iには、所定の範囲に封止ブロック82が液密的に設置されている。
 したがって、熱交換器10iは熱交換器10hと同様の作用効果が得られると共に、伝熱ブロック4のスリット状空間5iに近い側面45の剛性が高まるから、熱交換器10hと比較して伝熱ブロック4の方が変形し難くなる。
 なお、伝熱ブロック4の形成方法は限定するものではないが、例えば、一体押し出し加工によって形成すれば、第1流体流路1の行数や第1面41の数の増減、あるいは第2流体流路の行数や第2面42の数の増減と共に、スリット状空間5iの形態を選定の自由度が増す。
 [実施の形態4]
 図7は本発明の実施の形態4に係る熱交換器を模式的に説明するものであって、(a)はJタイプの長手方向に垂直な断面における断面図、(b)はJタイプの長手方向に平行な断面における断面図である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
 (Jタイプ)
 図7の(a)および(b)において、熱交換器10jは、Iタイプの熱交換器10iにおけるスリット状空間5iを、2層に設けたものである。
 すなわち、スリット状空間5jは、第2面42aに平行な第3面43aに間歇配置された複数の下層スリット状空間51aと、第3面43aに平行な第3面43bに間歇配置された複数の上層スリット状空間51bと、から形成されている。下層スリット状空間51aおよび上層スリット状空間51bは、それぞれ断面略正方形で、一対の下層スリット状空間51aに挟まれた範囲の上側に、上層スリット状空間51bが配置され(一対の上層スリット状空間51bに挟まれた範囲の下側に、下層スリット状空間51aが配置されているに同じ)、市松模様を呈している。
 そして、下層スリット状空間51aおよび上層スリット状空間51bの所定の範囲にそれぞれ封止ブロック83aおよび封止ブロック83bが液密的に設置されている。
 したがって、スリット状空間5jは、微細な流路である下層スリット状空間51aおよび上層スリット状空間51aによって構成されている点を除き、Hタイプの熱交換器10hと同様であるから、熱交換器10jは熱交換器10hと同様の作用効果が得られる。
 なお、伝熱ブロック4の形成方法は限定するものではないが、例えば、一体押し出し加工によって形成すれば、第1流体流路1の行数や第1面41の数の増減、あるいは第2流体流路の行数や第2面42の数の増減と共に、スリット状空間5jの形態を選定の自由度が増す。
 [実施の形態5]
 図8は本発明の実施の形態5に係る熱交換器を模式的に説明するものであって、(a)はKタイプの長手方向に垂直な断面における断面図、(b)はKタイプの長手方向に平行な断面における断面図、(c)はLタイプの長手方向に垂直な断面における断面図、(d)はLタイプの長手方向に平行な断面における断面図、(e)はMタイプの長手方向に垂直な断面における断面図、(f)はMタイプの長手方向に平行な断面における断面図である。なお、実施の形態1と同じ部分または相当する部分には同じ符号を付し、一部の説明を省略する。
 (Kタイプ)
 図8の(a)および(b)において、Kタイプの熱交換器10kは、伝熱ブロック4に配置された4行の第1流体流路1と、6層で15行(合計90行)の第2流体流路2kと、第2流体流路2kに垂直で、第2流体流路2kを互いに連通するように形成された1列の横穴3kとを有している。
 すなわち、熱交換器10kは、Bタイプの熱交換器10bに、第1面41に略平行な第2面42fに配置された複数行(例えば15行)の第2流体流路21fを追加したものと同じである。このとき、横穴3kの内径Dkは、6層の第2流体流路2kに跨がるため、大きな値になっている。
 (Lタイプ)
 図8の(c)および(d)において、Lタイプの熱交換器10l(10エル)は、Kタイプの熱交換器10kにおける横穴3kを2条に分割したものである。すなわち、第2流体流路21a~21cの3層を下層グループとし、該下層グループの第2流体流路21a~21cを全て連通する小径横穴33aと、第2流体流路21d~21fの3層を上層グループとし、該上層グループの第2流体流路21d~21fを全て連通する小径横穴33bと、からなる横穴3l(3エル)が形成されている。
 したがって、横穴3l(3エル)の内径は、横穴3kの内径の概ね1/2になっている。
 なお、熱交換器を流れる流体が相変化を伴う場合、同一質量速度においては、液体、気液二相、気体の順に流体の速度は速くなる。圧力損失を低減するためには、冷媒の状態つまり冷媒の速度に応じて横穴の内径を設定する必要がある。
 そこで、Kタイプの熱交換器10k(内径Dk)において、流体の状態に伴う速度変化に応じられない場合に、Lタイプの熱交換器10l(10エル、内径Dl(Dエル))を選定することができる。
 (Mタイプ)
 図8の(e)および(f)において、Mタイプの熱交換器10mは、Kタイプの熱交換器10kにおける横穴3kを3条に分割したものである。すなわち、第2流体流路21a、21bの2層を下層グループとし、該下層グループの第2流体流路21a、21bを全て連通する小径横穴32aと、第2流体流路21c、21dの2層を中層グループとし、該中層グループの第2流体流路21c、21dを全て連通する小径横穴32bと、第2流体流路21e、21fの2層を上層グループとし、該上層グループの第2流体流路21e、21fを全て連通する小径横穴32cと、からなる横穴3mが形成されている。
 したがって、横穴3mの内径は、横穴3kの内径の概ね1/3になっている。
 したがって、Kタイプの熱交換器10kあるいはLタイプの熱交換器10l(10エル)において、流体の状態に伴う速度変化に応じられない場合に、Mタイプの熱交換器10mを選定することができる。
 なお、以上は、6層からなる第2流体流路を例に説明しているが、本発明はこれに限定されるものではなく、第2流体流路の層数は何れであってもよい。また、実施の形態3、4において説明したスリット状空間5h~5jの何れかを設けてもよい。このとき、設けられたスリット状空間5h~5jの何れかに封止ブロック81等が設置され、設置された封止ブロック81等の一部を貫通して、設けられたスリット状空間5h~5jの何れかに最も近いグループの第2流体流路21d~21f(または21e、21f)が形成されることになる。
 [実施の形態6]
 実施の形態1~5において説明した横穴は、楕円や矩形であってもよく、特に楕円や矩形について、第2流体流路の流れ方向へ横穴の幅を拡大することができる。すなわち、流入する冷媒の質量速度、蒸気及び液の質量速度の比率(以下、乾き度)に応じて、横穴の流路断面積を決定することにより、圧力損失を低減することができる。
さらに、流路断面積を最適設計することにより、複数の第2流体流路へ均等に分配しやすい二相冷媒の流れの様相(以下、流動様式)で流入させることが可能となる。それにより、分配悪化による熱交換器の性能低下を抑制する効果が得られる。均等に分配しやすい流れとは、環状流、環状噴霧流、気泡流、スラグ流及びせん状流であり、横穴にはこれらの流動様式で流入させることが望ましい。二相状態での流体の流れの様相は、流動様式線図で確認することができる(例えば、Baker線図(図11参照))。
以下に説明する本発明の実施の形態6に係る冷凍サイクル装置は、流動様式を考慮したものである。
横穴に流入する冷媒の質量速度を「G」、
気相及び液相の質量速度を「Gg及びGl」、
気相及び液相の密度を「ρg及びρl」、
気相及び液相の粘性係数を「μg及びμl」、
表面張力を「σ」、
大気温度20℃の空気と水の密度を「ρa及びρw」、
大気温度20℃の水の粘性係数を「μw」、
大気温度20℃の空気-水の表面張力を「σw」、
補正係数を「λ(=((ρg/ρa)×(ρl/ρw))1/2)」
及び「ψ(=(σw/σ)×((μl/μw)×(ρw/ρl)21/3)」としたとき、
「Gl/Gg×λ×ψ」及び「Gg/λ」の関係が流動様式線図上で環状流、環状噴流、スラグ流、気泡流及びせん状流の領域に存在する。
つまり、「Gg/λ>84544×(Gl/Gg×λ×ψ)-0.676」となるよう横穴の流路断面積を選定することが望ましい。
具体例として、質量速度200kg/ms、入口乾き度0.2、圧力2MPaとすると、「Gl/Gg×λ×ψ=266」となり、「84544×(Gl/Gg×λ×ψ)-0.676=1952」となる。
つまり、「Gg/λ>1952」を満足する流路断面積を持つ横穴にすることが好ましく、その範囲は、横穴の流路断面積を「Ah」とすると、「Ah<2.78×10-3」である。なお、上記の範囲以外の流路断面積である場合、流動様式が悪化し、熱交換器の性能劣化を引き起こすため、好ましくない。
 [実施の形態7:ヒートポンプ式暖房システム]
 図9は本発明の実施の形態7に係る冷凍サイクル装置を説明するものであって、温熱を利用するヒートポンプ式暖房システムを示す機器の構成図である。なお、実施の形態1と同じ部分には同じ符号を付し、一部の説明を省略する。
 図9において、ヒートポンプ式暖房システム60は、第1流体が流れる利用側流体配管61と、第2流体が流れる熱源側流体配管62と、第1流体と第2流体との熱交換を行う熱交換器10aを有する。すなわち、第1流体流路1は利用側流体配管61の一部を形成し、第2流体流路2は熱源側流体配管62の一部を形成している。
 ヒートポンプ式暖房システム60では、第1流体として「水」、第2流体として「R410a」を用いている。
 利用側流体配管61は、熱交換器10a(第1流体流路1)、ポンプ61a及び利用側熱交換器61bを順次連結し、第1流体の循環を可能にしている。
 熱源側流体配管62は、圧縮機62a、熱交換器10a(第2流体流路2)、膨張弁62b、熱源側熱交換器62c及びファン62dを順次連結し、第2流体の循環を可能にしている。
 利用側流体配管61における第1流体は、熱交換器10aにおいて加熱され(第2流体から温熱を受け取り)、ポンプ61aよって送出され、利用側熱交換器61bにおいて放熱する(利用側の流体等に温熱を受け渡す)。利用側熱交換器61bとして、例えばラジエターや床暖房ヒーターなどを適用して暖房システムとして使用する。
 熱源側流体配管62においては、圧縮機62aで高温高圧となった第2流体は、熱交換器10aにおいて第1流体と熱交換を行う(温熱を受け渡す)。その後、膨張弁62bにおいて減圧され、低温低圧となった第2流体は、熱源側熱交換器62cにおいてファン62dによって送風された空気と熱交換(冷熱の放出)を行い、蒸発した後、圧縮機62aへと戻る。
 図9に示すように、本発明の熱交換器10aを用いたヒートポンプ式暖房システム60を熱源として利用側熱交換器61bで暖房または給湯することにより、従来のボイラを熱源とした暖房システムに比べて省エネ効果がある。
 なお、以上は、Aタイプの熱交換器10aを搭載したものを示しているが、本発明はこれに限定するものではなく、Bタイプ~Mタイプの何れであってもよく、また、前記のように、第1流体流路1の行数、第2流体流路2の層数や、その各層における行数を限定するものではない。
 [実施の形態8:ヒートポンプ式給湯システム]
 図10は本発明の実施の形態8に係る冷凍サイクル装置を説明するものであって、温熱を利用するヒートポンプ式給湯システムを示す機器の構成図である。なお、実施の形態1、2と同じ部分には同じ符号を付し、一部の説明を省略する。
 図10において、ヒートポンプ式給湯システム70は、ヒートポンプ式給湯システム60における利用側熱交換器61bをタンク63内に設置し、タンク63に給水される水を加熱して取水する給湯システムにしたものである。
 図10に示すように、本発明の熱交換器10aを用いたヒートポンプ式給湯システム70(ヒートポンプ給湯・暖房システムに同じ)を熱源として利用側熱交換器61bで暖房または給湯することにより、従来のボイラを熱源とした給湯システムに比べて省エネ効果がある。
 1 第1流体流路、2 第2流体流路、3 横穴、4 伝熱ブロック、5 スリット状空間、10a 熱交換器(Aタイプ)、10b 熱交換器(Bタイプ)、10c 熱交換器(Cタイプ)、10d 熱交換器(Dタイプ)、10e 熱交換器(Eタイプ)、10f 熱交換器(Fタイプ)、10h 熱交換器(Hタイプ)、10i 熱交換器(Iタイプ)、10j 熱交換器(Jタイプ)、10k 熱交換器(Kタイプ)、10l 熱交換器(Lタイプ)、10m 熱交換器(Mタイプ)、21a~21f 第2流体流路、32a 小径横穴、32b 小径横穴、32c 小径横穴、33a 小径横穴、33b 小径横穴、41 第1面、42a~42c 第2面、43 第3面、44 側面、45 側面、51a 下層スリット状空間、51b 上層スリット状空間、60 ヒートポンプ式暖房システム(実施の形態6)、61 利用側流体配管、61a ポンプ、61b 利用側熱交換器、62 熱源側流体配管、62a 圧縮機、62b 膨張弁、62c 熱源側熱交換器、62d ファン、63 タンク、70 ヒートポンプ式給湯システム(実施の形態7)、81 封止ブロック、82 封止ブロック、83a 封止ブロック、83b 封止ブロック。

Claims (11)

  1.  伝熱ブロック内の平面である第1面に互いに平行に形成され、該伝熱ブロックを貫通する複数行の第1流体流路と、
     前記伝熱ブロック内で前記第1面に平行な第2面において前記第1流体流路に平行に形成され、該伝熱ブロックを貫通する複数行の第2流体流路と、
     前記伝熱ブロック内に形成され、前記第2流体流路の全てを連通する横穴と、
    を有し、
     前記横穴が前記第2流体流路に垂直であって、
    前記横穴が第2流体流路の流路断面積A、相当直径d、長さL、横穴の流路断面積A、相当直径d、相当長さLとしたとき、L/ Ad>L/A となるような直径及び数で形成され、
    前記横穴は前記第2流体流路をすべて連通し、前記第1流体流路と隣接する前記第2流体流路の間の前記伝熱ブロック部分にははみ出さないことを特徴とする熱交換器。
  2.  前記第2面が互いに平行な複数層であって、
     前記横穴が、前記複数層の全ての層に形成された前記第2流体流路を連通することを特徴とする請求項1記載の熱交換器。
  3.  前記第2面が互いに平行な複数層であって、
     前記横穴が、長方形で形成され、
    前記複数層の全ての層に形成された前記第2流体流路を連通することを特徴とする請求項1記載の熱交換器。
  4.  前記第2面が互いに平行な複数層であって、
     前記横穴が、楕円形で形成され、
    前記複数層の全ての層に形成された前記第2流体流路を連通することを特徴とする請求項1記載の熱交換器。
  5.  前記第2面が互いに平行な複数層であって、
    前記第2流体流路が複数のグループに分けられ、
     前記横穴が、前記複数のグループに分けられた第2流体流路毎に形成されていることを特徴とする請求項1記載の熱交換器。
  6.  前記第2面が複数層であって、
     前記横穴が、所定の間隔を空けて複数列に形成されていることを特徴とする請求項1記載の熱交換器。
  7.  前記第2流体流路を挟んで前記第1流体流路の反対側に形成され、所定の厚さのスリット状空間を有すことを特徴とする請求項1記載の熱交換器。
  8.  前記スリット状空間が、互いに平行に形成され複数行の小幅スリット状空間によって形成されていることを特徴とする請求項7記載の熱交換器。
  9.  前記スリット状空間の所定範囲に封止ブロックが液密的に設置され、
     前記横穴が、前記封止ブロックの一部を貫通して前記伝熱ブロックの一方の側面から機械加工または塑性加工によって形成され、前記側面に形成された開口が閉塞されていることを特徴とする請求項7記載の熱交換器。
  10.  前記横穴に流入する冷媒の質量速度をG、
    気相及び液相の質量速度をGg及びGl、
    気相及び液相の密度をρg及びρl、
    気相及び液相の粘性係数をμg及びμl、
    表面張力をσ、
    大気温度20℃の空気と水の密度をρa及びρw、
    大気温度20℃の水の粘性係数をμw、
    大気温度20℃の空気-水の表面張力をσw、
    補正係数をλ(=((ρg/ρa)×(ρl/ρw))1/2
    及びψ(=(σw/σ)×((μl/μw)×(ρw/ρl)21/3)としたとき、
    Gg/λとGl/Gg×λ×ψとの関係を示す流動様式線図において、環状流、環状噴霧流、スラグ流、気泡流及びせん状流の領域に存在する関係である
    Gg/λ>84544×(Gl/Gg×λ×ψ)-0.676
    となるように前記横穴の流路断面積が選定されていることを特徴とする請求項1及至9の何れか一項に記載の熱交換器。
  11.  第1流体が流れる利用側流体配管と、第2流体が流れる熱源側流体配管と、第1流体と第2流体との間で熱交換を行う請求項1乃至10の何れか一項に記載の熱交換器とを有し、
     利用側流体配管は、前記熱交換器の第1流体流路、前記第1流体を送り出すポンプおよび利用側熱交換器を順次連結して、前記第1流体の循環を可能にし、
    前記熱源側流体配管は、前記熱交換器の第2流体を圧縮する圧縮機、前記第2流体流路、膨張弁および熱源側熱交換器を順次連結して、第2流体の循環を可能にしていることを特徴とする冷凍サイクル装置。
PCT/JP2012/072132 2012-03-07 2012-08-31 熱交換器および冷凍サイクル装置 WO2013132679A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12870627.2A EP2840342B1 (en) 2012-03-07 2012-08-31 Heat exchanger and refrigeration cycle device
JP2014503412A JP5784215B2 (ja) 2012-03-07 2012-08-31 熱交換器および冷凍サイクル装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-050412 2012-03-07
JP2012050412 2012-03-07

Publications (1)

Publication Number Publication Date
WO2013132679A1 true WO2013132679A1 (ja) 2013-09-12

Family

ID=49116186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072132 WO2013132679A1 (ja) 2012-03-07 2012-08-31 熱交換器および冷凍サイクル装置

Country Status (3)

Country Link
EP (1) EP2840342B1 (ja)
JP (1) JP5784215B2 (ja)
WO (1) WO2013132679A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092122A (ja) * 2013-11-08 2015-05-14 三菱電機株式会社 熱交換器
WO2015162678A1 (ja) * 2014-04-21 2015-10-29 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
JP2017032244A (ja) * 2015-08-05 2017-02-09 東芝キヤリア株式会社 冷凍サイクル装置
WO2019078224A1 (ja) * 2017-10-17 2019-04-25 イビデン株式会社 熱交換器
CN113922179A (zh) * 2020-07-08 2022-01-11 通用电气精准医疗有限责任公司 用于低温装置的高温超导电流引线组件

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101764666B1 (ko) * 2017-02-22 2017-08-03 (주)대주기계 유량 균등분배를 위한 분지관의 관경산출방법
CN111581844B (zh) * 2020-05-20 2023-04-25 山东大学 一种多模块换热器的设计方法
CN113883752B (zh) * 2020-07-01 2023-06-06 浙江盾安热工科技有限公司 换热器连接件及换热器

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170582U (ja) * 1984-04-20 1985-11-12 東洋ラジエ−タ−株式会社 熱交換器用多穴管
JP2000234881A (ja) 1999-02-17 2000-08-29 Showa Alum Corp 熱交換器用チューブの製造方法
JP2001033182A (ja) * 1999-06-25 2001-02-09 Ford Motor Co 熱交換器用冷媒チューブ
JP2002018512A (ja) * 2000-07-04 2002-01-22 Yano Engineering:Kk 金属中空型材とその製造方法
JP2007017132A (ja) * 2005-07-11 2007-01-25 Denso Corp 熱交換用チューブおよび熱交換器
WO2007122685A1 (ja) * 2006-04-14 2007-11-01 Mitsubishi Denki Kabushiki Kaisha 熱交換器及び冷凍空調装置
JP2011007486A (ja) * 2009-06-02 2011-01-13 Valeo Systemes Thermiques 熱交換ユニットと熱交換器及びその製造方法
WO2012017681A1 (ja) * 2010-08-05 2012-02-09 三菱電機株式会社 熱交換器及び冷凍空調装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6354002B1 (en) * 1997-06-30 2002-03-12 Solid State Cooling Systems Method of making a thick, low cost liquid heat transfer plate with vertically aligned fluid channels
JP2001194081A (ja) * 1999-03-08 2001-07-17 Denso Corp 放熱器又は蒸発器用のチューブ
JP2002098486A (ja) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp 熱交換器及びその製造方法
CN1526061A (zh) * 2001-05-23 2004-09-01 松下电器产业株式会社 冷冻循环装置
WO2008034604A2 (de) * 2006-09-19 2008-03-27 Behr Gmbh & Co. Kg Wärmetauscher für einen verbrennungsmotor
JP2008232548A (ja) * 2007-03-22 2008-10-02 Daikin Ind Ltd 熱交換器
US20110139404A1 (en) * 2009-12-16 2011-06-16 General Electric Company Heat exchanger and method for making the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170582U (ja) * 1984-04-20 1985-11-12 東洋ラジエ−タ−株式会社 熱交換器用多穴管
JP2000234881A (ja) 1999-02-17 2000-08-29 Showa Alum Corp 熱交換器用チューブの製造方法
JP2001033182A (ja) * 1999-06-25 2001-02-09 Ford Motor Co 熱交換器用冷媒チューブ
JP2002018512A (ja) * 2000-07-04 2002-01-22 Yano Engineering:Kk 金属中空型材とその製造方法
JP2007017132A (ja) * 2005-07-11 2007-01-25 Denso Corp 熱交換用チューブおよび熱交換器
WO2007122685A1 (ja) * 2006-04-14 2007-11-01 Mitsubishi Denki Kabushiki Kaisha 熱交換器及び冷凍空調装置
JP2011007486A (ja) * 2009-06-02 2011-01-13 Valeo Systemes Thermiques 熱交換ユニットと熱交換器及びその製造方法
WO2012017681A1 (ja) * 2010-08-05 2012-02-09 三菱電機株式会社 熱交換器及び冷凍空調装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2840342A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015092122A (ja) * 2013-11-08 2015-05-14 三菱電機株式会社 熱交換器
WO2015162678A1 (ja) * 2014-04-21 2015-10-29 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
JPWO2015162678A1 (ja) * 2014-04-21 2017-04-13 三菱電機株式会社 積層型ヘッダー、熱交換器、及び、空気調和装置
JP2017032244A (ja) * 2015-08-05 2017-02-09 東芝キヤリア株式会社 冷凍サイクル装置
WO2019078224A1 (ja) * 2017-10-17 2019-04-25 イビデン株式会社 熱交換器
JP2019074264A (ja) * 2017-10-17 2019-05-16 イビデン株式会社 熱交換器
CN113922179A (zh) * 2020-07-08 2022-01-11 通用电气精准医疗有限责任公司 用于低温装置的高温超导电流引线组件

Also Published As

Publication number Publication date
EP2840342B1 (en) 2016-11-09
JP5784215B2 (ja) 2015-09-24
EP2840342A4 (en) 2016-02-17
EP2840342A1 (en) 2015-02-25
JPWO2013132679A1 (ja) 2015-07-30

Similar Documents

Publication Publication Date Title
JP5784215B2 (ja) 熱交換器および冷凍サイクル装置
US20230288143A1 (en) Heat exchanger channels
JP6202451B2 (ja) 熱交換器及び空気調和機
JP6017047B2 (ja) 熱交換器、空調機、冷凍サイクル装置及び熱交換器の製造方法
JP5759068B2 (ja) 熱交換器及び冷凍サイクル装置
JP4987685B2 (ja) 二重管式熱交換器およびその製造方法並びにそれを備えたヒートポンプシステム
WO2012153361A1 (ja) 熱交換器及びそれを備えた冷凍サイクル装置
US20110056667A1 (en) Integrated multi-circuit microchannel heat exchanger
JPWO2018116413A1 (ja) 分配器、熱交換器、及び、冷凍サイクル装置
WO2006053311A2 (en) Parallel flow evaporator with shaped manifolds
JP2011106738A (ja) 熱交換器およびヒートポンプシステム
JP2018189352A (ja) 熱交換器
JP6188926B2 (ja) 積層型ヘッダー、熱交換器、及び、空気調和装置
JP2013057426A (ja) プレート式熱交換器及びこれを備えた冷凍サイクル装置
JP4561305B2 (ja) 熱交換器
JP6611335B2 (ja) 熱交換器及び空気調和機
JP6671380B2 (ja) 熱交換器
CN107208948A (zh) 制冷剂蒸发器
JP5858877B2 (ja) 熱交換器
JP4867569B2 (ja) 熱交換器および冷凍空調装置
WO2013114435A1 (ja) 熱交換器及びヒートポンプシステム
JP3210909U (ja) ガスクーラ
KR20030027609A (ko) 열교환기
KR101673605B1 (ko) 공기조화기용 증발기
KR20050030359A (ko) 이산화탄소용 열교환기의 헤더파이프 결합구조

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12870627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014503412

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012870627

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012870627

Country of ref document: EP