WO2013131379A1 - 液晶显示面板及其制作方法 - Google Patents

液晶显示面板及其制作方法 Download PDF

Info

Publication number
WO2013131379A1
WO2013131379A1 PCT/CN2012/084245 CN2012084245W WO2013131379A1 WO 2013131379 A1 WO2013131379 A1 WO 2013131379A1 CN 2012084245 W CN2012084245 W CN 2012084245W WO 2013131379 A1 WO2013131379 A1 WO 2013131379A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
mixture
discotic
display panel
photoinitiator
Prior art date
Application number
PCT/CN2012/084245
Other languages
English (en)
French (fr)
Inventor
郭仁炜
陈东
Original Assignee
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京京东方光电科技有限公司 filed Critical 北京京东方光电科技有限公司
Priority to JP2014560219A priority Critical patent/JP6144708B2/ja
Priority to US13/824,526 priority patent/US9904092B2/en
Priority to KR1020137010101A priority patent/KR101584415B1/ko
Priority to EP12830909.3A priority patent/EP2653914B1/en
Publication of WO2013131379A1 publication Critical patent/WO2013131379A1/zh

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/32Non-steroidal liquid crystal compounds containing condensed ring systems, i.e. fused, bridged or spiro ring systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0425Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect
    • C09K2019/0429Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a specific unit that results in a functional effect the specific unit being a carbocyclic or heterocyclic discotic unit
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Definitions

  • Liquid crystal display panel and manufacturing method thereof Liquid crystal display panel and manufacturing method thereof
  • Embodiments of the present invention relate to a liquid crystal display panel and a method of fabricating the same. Background technique
  • the nematic liquid crystal alignment between the substrates of the liquid crystal display using nematic liquid crystal is different.
  • a nematic liquid crystal plane orientation mode and a nematic liquid crystal vertical alignment mode.
  • the display mode is TN (Twistde Nematic, twisted nematic (90 degree distortion of liquid crystal molecules)), STN (Super Twistde Nematic, 180 degree twisted nematic), IPS (In-Plane Switching), FFS ( Fringe Field Switching, etc., using a planar orientation method to induce nematic liquid crystal orientation.
  • TN Transmissionde Nematic, twisted nematic (90 degree distortion of liquid crystal molecules)
  • STN Super Twistde Nematic, 180 degree twisted nematic
  • IPS In-Plane Switching
  • FFS Fringe Field Switching, etc., using a planar orientation method to induce nematic liquid crystal orientation.
  • the preparation method is as follows.
  • An alignment agent for example, polyimide (PI), polyvinyl alcohol (PVA)
  • PI polyimide
  • PVA polyvinyl alcohol
  • the nematic liquid crystal is dropped on the substrate on which the groove is formed. After the liquid crystal cell is formed, the liquid crystal layer is sandwiched between the two substrates. The nematic liquid crystal molecules are induced to be oriented by the alignment layer formed on the substrate.
  • the display mode is MVA (Multi-domain Vertical Alignment)
  • different alignment agents can be used to induce alignment of the nematic liquid crystal.
  • the preparation method is substantially the same as the method of planar orientation.
  • the vertically oriented alignment agent can be selected from siloxane, the siloxane is coated on the surface of the substrate, dried, and the siloxane is adhered to the substrate by chemical bonding, and the siloxane end is flexible.
  • the chain group is capable of inducing alignment of the nematic liquid crystal perpendicular to the substrate.
  • the above two common liquid crystal alignment methods achieve liquid crystal alignment by processing the surface of the substrate.
  • the orientation mechanism is to induce alignment of the nematic liquid crystals in the entire liquid crystal cell by liquid crystal induction near the surface of the alignment layer.
  • the alignment layer coated on the substrate is opposite to the liquid crystal molecules of the alignment layer The orientation effect is small, so that the orientation of the liquid crystal molecules is inconsistent, thereby affecting the liquid crystal display effect.
  • Embodiments of the present invention provide a liquid crystal display panel and a method for fabricating the same, which are used to make the orientation of the nematic liquid crystal of the liquid crystal cell away from the alignment layer and the orientation of the nematic liquid crystal close to the alignment layer become uniform, thereby reducing liquid crystal.
  • the response speed of the panel is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to fabricating the same.
  • An aspect of the invention provides a liquid crystal display panel comprising two opposite substrates and a liquid crystal layer filled between the two substrates, the liquid crystal layer comprising a discotic liquid crystal, a nematic liquid crystal and a photoinitiator
  • the mixture is formed by ultraviolet light irradiation, and the mixture includes a discotic liquid crystal having a mass percentage of 5 to 50%, a nematic liquid crystal having a mass percentage of 40 to 90%, and a photoinitiator having a mass percentage of 0.05 to 10%.
  • the discotic liquid crystal has a mass percentage of 5 to 10%.
  • the photoinitiator is dibenzoyl peroxide, dodecyl peroxide, azobisisodinonitrile, azobisisoheptanenitrile, diisopropyl peroxydicarbonate or One or more of dicyclohexyl peroxydicarbonate.
  • Another aspect of the present invention provides a method of fabricating a liquid crystal display panel, the method comprising: applying an alignment agent on at least one of two substrates for fabricating a liquid crystal panel to form an alignment layer; and forming a discotic liquid crystal, a nematic phase
  • the liquid crystal and the photoinitiator are mixed and stirred in the dark to obtain a mixture; the mixture is dropped on the substrate on which the alignment layer is formed, and the substrate is shielded from light; the substrate after the cassette is irradiated by ultraviolet light,
  • the discotic liquid crystal is polymerized by a photoinitiator to form a discotic liquid crystal polymer network.
  • the ultraviolet light has a wavelength of from 350 nm to 390 nm; the ultraviolet light irradiation time is from 1 to 180 minutes, and the ultraviolet light irradiation intensity is from 0.1 to 100 mW/cm 2 .
  • the method further comprises: defoaming the mixture from light for 1 to 20 hours.
  • the mass percentage of the nematic liquid crystal in the mixture is 40-90%
  • the mass percentage of the discotic liquid crystal is 5 to 50%
  • the mass percentage of the photoinitiator is 0.05 to 10%.
  • the discotic liquid crystal has a mass percentage of 5 to 10%.
  • the photoinitiator is dibenzoyl peroxide, dodecyl peroxide, azobisisobutyronitrile, azobisisoheptonitrile, diisopropyl peroxydicarbonate or Oxidized dicarbonate One or more of hexyl esters.
  • FIG. 1 is a schematic flow chart of a method for fabricating a liquid crystal display panel according to the present invention
  • FIG. 2 is a structural diagram of a benzene ring in a common discotic liquid crystal molecule
  • Figure 3 (a) is a schematic view showing the structure of the liquid crystal display panel of the present invention before being irradiated by ultraviolet light under the action of a vertical alignment agent;
  • 3(b) is a schematic view showing the structure of the liquid crystal display panel of the present invention irradiated by ultraviolet light under the action of a vertical alignment agent;
  • FIG. 4( a ) is a schematic view showing the structure of the liquid crystal display panel of the present invention before being irradiated by ultraviolet light under the action of a planar alignment agent;
  • FIG. 4(b) is a schematic view showing the structure of the liquid crystal display panel of the present invention irradiated by ultraviolet light under the action of a planar alignment agent;
  • Figure 5 is a photomicrograph of a polymer network after polymerization of a discotic liquid crystal
  • FIG. 6( a ) is a polarized photograph in which the nematic liquid crystal does not pass the orientation of the discotic liquid crystal
  • FIG. 6 ( b ) is a polarized photograph of the plane orientation of the nematic liquid crystal induced by the discotic liquid crystal
  • Fig. 6 (c) is a polarized photograph of the vertical orientation of the nematic liquid crystal induced by the discotic liquid crystal. detailed description
  • FIG. 1 is a schematic flow chart of a method for fabricating a liquid crystal display panel according to the present invention.
  • the manufacturing method of the liquid crystal display panel includes the following steps.
  • Step 101 The discotic liquid crystal, the nematic liquid crystal, and the photoinitiator are mixed in a certain ratio and stirred in the dark to obtain a mixture.
  • the certain ratio means that the mass percentage of the nematic liquid crystal in the mixture may be
  • the mass percentage of the discotic liquid crystal may be 5 to 50%, and the mass percentage of the photoinitiator may be 0.05 10% as long as the object and technical effects of the present invention can be achieved.
  • Nematic liquid crystals are commonly used liquid crystals currently on the market, which are usually a mixture of liquid crystal single crystals composed of 20-30 components.
  • the photoinitiator is, for example, benzoin benzoin or the like.
  • the step and the subsequent step are performed in the dark is that a photoinitiator is mixed in the liquid crystal, and ultraviolet light in the light excites the initiator to cause polymerization to occur. Therefore, the "light shielding" condition is a condition for avoiding photo-induced polymerization.
  • the mass percentage of the selected discotic liquid crystal is 5 to 10%.
  • the photoinitiator is generally selected from the group consisting of dibenzoyl peroxide, dodecyl peroxide, azobisisodinonitrile, azobisisoheptanenitrile, diisopropyl peroxydicarbonate or bicarbonate peroxydicarbonate. Hexyl ester and the like.
  • the discotic liquid crystal Since the discotic liquid crystal has a unique disc-like molecular structure and is highly miscible with the nematic liquid crystal, the discotic liquid crystal has fluidity in the nematic liquid crystal, and by stirring the mixture, the discotic liquid crystal and the nematic The phase liquid crystals are better compatible and form a relatively stable solution.
  • Step 102 The mixture is placed in a deaerator to be protected from light defoaming.
  • the defoaming treatment time can be from 1 to 20 hours.
  • Step 103 Applying an alignment agent to the substrate for corresponding treatment to form an alignment layer.
  • the formed alignment layer is treated to be able to orient the liquid crystal.
  • the process of this process includes: drying and rubbing, etc.
  • the orientation agent may be different depending on the direction in which the nematic liquid crystal is desired to be oriented.
  • the alignment agent may be polyimide (PI), polyvinyl alcohol (PVA), etc.; if the nematic liquid crystal is required to be oriented perpendicular to the substrate, the alignment agent may be Silicone, etc.
  • the substrate may be an array substrate and/or a substrate (for example, a CF (Color Film) substrate) disposed opposite to the array substrate.
  • a substrate for example, a CF (Color Film) substrate
  • Step 104 On the premise of being protected from light, the mixture in step 101 is dropped on the substrate on which the alignment layer is formed, and the substrate on which the mixture is added is placed on the other substrate by means of a vacuum-on-box method. .
  • the vacuum-to-cassette method is to form two liquid crystal panels of the liquid crystal panel opposite each other under a certain vacuum condition (under reduced pressure) and form a liquid crystal cell by the sealant.
  • the alignment layer is formed on the inner surface of the substrate of the liquid crystal cell after the cartridge, the nematic liquid crystal in the mixture can be induced to be oriented, and the planar direction of the disc-shaped liquid crystal molecule main disc is parallel to the long axis direction of the nematic liquid crystal.
  • a vertical alignment layer 3 is formed on the surface of the substrate 4, and the orientation of the nematic liquid crystal 2 is perpendicular to the substrate 4, and the plane of the discotic liquid crystal molecule 1 is perpendicular to
  • the alignment agent is PI or polyvinyl alcohol (PVA)
  • a horizontal alignment layer 6 is formed on the surface of the substrate 4, and the alignment of the nematic liquid 2 is parallel to the substrate 4, at which time the discotic liquid crystal molecules 1
  • the plane is also parallel to the substrate 4, as shown in Fig. 3 (a) and Fig. 4 (a).
  • this step 104 is to be protected from light.
  • Step 105 ultraviolet light irradiation on the substrate after the box is irradiated, the photoinitiator is induced to generate free radicals, and the discotic liquid crystal molecules 1 are polymerized to form a discotic liquid crystal polymer network 5, and the anchor oriented liquid crystal molecules are aligned. 2 orientation.
  • 3(b) and 4(b) are schematic views showing the structure of the liquid crystal layer irradiated with ultraviolet light, and it can be seen that the discotic liquid crystal 1 in the mixture induces photoinitiator formation under ultraviolet light irradiation.
  • Polymerization occurs under the action of free radicals, and a polymer network 5 is formed. Due to the function of the polymer network 5, the position of the discotic liquid crystal in the liquid crystal cell is fixed, so that the nematic liquid crystal 2 is oriented in a vertical orientation or a plane orientation of the discotic liquid crystal, and the orientation of the column liquid crystal is oriented by the anchor, so that the nematic column inside the liquid crystal cell
  • the phase liquid crystals have the same orientation.
  • the basic conditions of ultraviolet light irradiation may be as follows.
  • the wavelength of the ultraviolet light is selected from 350 nm to 390 nm, and the wavelength of the ultraviolet light is usually selected to be 365 nm, the irradiation time of the ultraviolet light is 1 to 180 minutes, and the irradiation intensity of the ultraviolet light is 0.1 to 100 mW/cm 2 .
  • a branch containing a double bond functional group is introduced onto the discotic molecule of the discotic liquid crystal,
  • the double bond functional group on the discotic liquid crystal molecules is polymerized by the action of a radical to form a discotic liquid crystal polymer network.
  • the polymer network is a spatial network structure that fixes the position of the disc-shaped liquid crystal master in the liquid crystal cell and causes the nematic liquid crystal to be oriented in accordance with the discotic liquid crystal plane.
  • the disc-shaped liquid crystal is composed of a main disc and a branch.
  • the structure of the main disc in the discotic liquid crystal is different, and the effect of inducing orientation on the nematic liquid crystal after polymerization is also different: the more the number of benzene rings in the main disc, the para-phase liquid crystal The induction effect is greater.
  • FIG. 2 it is a structural diagram of a main disk in a common discotic liquid crystal molecule. As can be seen from FIG. 2, the number of benzene rings in the main disk may be 1, 3, 4, and 7, but The number of benzene rings in the master disk of the discotic liquid crystal molecules usable in the present embodiment is not limited thereto.
  • the content of the discotic liquid crystal will affect the effect of inducing alignment of the nematic liquid crystal.
  • the general rule is: The less the discotic liquid crystal content, the sparse polymer network formed after polymerization is sparse, the orientation of the nematic liquid crystal is induced. The worse the effect is; the more the discotic liquid crystal content is, the denser the polymer network formed after polymerization, the better the effect of inducing orientation on the nematic liquid crystal.
  • the content of the discotic liquid crystal is too high, the solubility of the discotic liquid crystal in the nematic liquid crystal molecules will be lowered, and the orientation of the nematic liquid crystal will be suppressed. Therefore, when the discotic liquid crystal, the nematic liquid crystal, and the photoinitiator are mixed in a certain ratio, the mass percentage of the discotic liquid crystal is 5 to 50%, and preferably, it is 5 to 10%.
  • the structure of the branched chains in the discotic liquid crystal molecules is different, and the mechanical properties of the resulting polymer network are also different.
  • the number of double bond functional groups in the discotic liquid crystal branches affects the rate of polymerization of the discotic liquid crystal.
  • the number of double bond functional groups in the discotic liquid crystal branch is small, the polymerization speed of the discotic liquid crystal under the action of ultraviolet light and photoinitiator is slow; when the number of double bond functional groups in the discotic liquid crystal branch is large, the disc shape The liquid crystal polymerizes faster under the action of ultraviolet light and a photoinitiator.
  • the mass percentage of the discotic liquid crystal is 6%, and the light is cited.
  • the mass percentage of the hair agent is 1%, the mass percentage of the nematic liquid crystal is 93%, and the mixture obtained by mixing in this ratio is subjected to the step 101 to the step 105, thereby anchoring the liquid crystal of the column phase to make the nematic column inside the liquid crystal cell
  • the phase liquid crystals have the same orientation.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the mass percentage of the discotic liquid crystal is 8%
  • the mass percentage of the photoinitiator is 2%
  • the mass percentage of the nematic liquid crystal is 90%, which will be
  • the mixture obtained by the ratio mixing is subjected to the step 101 to the step 105, thereby anchoring the aligned liquid crystals to make the alignment of the nematic liquid crystals inside the liquid crystal cell uniform.
  • the mass percentage of the discotic liquid crystal is 5%
  • the mass percentage of the photoinitiator is 2%
  • the mass percentage of the nematic liquid crystal is 93%, and the mixture obtained by mixing in this ratio is mixed.
  • the aligned liquid crystals can be anchored to make the alignment of the nematic liquid crystals inside the liquid crystal cell uniform.
  • the mass percentage of the discotic liquid crystal is 9%, the mass percentage of the photoinitiator is 3%, and the mass percentage of the nematic liquid crystal is 88%, and the mixture obtained by mixing in this ratio is mixed.
  • the aligned liquid crystals can be anchored to make the alignment of the nematic liquid crystals inside the liquid crystal cell uniform.
  • the mass percentage of the discotic liquid crystal is 10%
  • the mass percentage of the photoinitiator is 6%
  • the mass percentage of the nematic liquid crystal is 84%
  • the aligned liquid crystals can be anchored to make the alignment of the nematic liquid crystals inside the liquid crystal cell uniform.
  • the embodiments listed above are five preferred embodiments of the invention.
  • the discotic liquid crystal, the nematic liquid crystal and the photoinitiator are mixed in a certain ratio, and the vacuum is applied to the substrate on which the alignment layer is formed, and the disk is formed by the ultraviolet radiation.
  • the orientation of the anchor-aligned liquid crystals is such that the nematic liquid crystals relatively far from the alignment layer are aligned with the alignment of the nematic liquid crystals close to the alignment layer, thereby reducing the response time of the liquid crystal panel display.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种液晶显示面板及其制作方法。液晶显示面板包括两块彼此对置的基板及填充于两块基板间的液晶层,液晶层由包括盘状液晶、向列相液晶和光引发剂的混合物经紫外光辐射形成,混合物包括质量百分比为5〜50%的盘状液晶、质量百分比为40〜90%的向列相液晶、质量百分比为0.05〜10%的光引发剂。

Description

液晶显示面板及其制作方法 技术领域
本发明的实施例涉及一种液晶显示面板及其制作方法。 背景技术
根据不同的显示模式要求, 使用向列液晶的液晶显示器的基板间的向列 相液晶取向方式不同。 一般向列相液晶取向的方式有两种: 向列相液晶平面 取向模式和向列相液晶垂直取向模式。
当显示模式为 TN ( Twistde Nematic, 扭曲向列(液晶分子的扭曲取向偏 转 90度) )、 STN ( Super Twistde Nematic, 180度扭曲向列)、 IPS ( In-Plane Switching, 平面转换) 、 FFS ( Fringe Field Switching, 边缘场转换)等, 釆 用平面取向的方法诱导向列相液晶取向。 例如, 制备方法如下所述。
1、 将取向剂 (例如: 聚酰亚胺(PI ) 、 聚乙烯醇(PVA ) )涂覆在基板 的表面, 形成取向层。
2、 烘干基板表面的取向层。
3、 对烘干后的具有取向层的基板表面进行摩擦(rubbing ) , 使得在具 有取向层的基板上形成多个细小的沟槽。
4、将向列相液晶滴加在形成有沟痕的基板上,在形成液晶盒后, 液晶层 夹置在两块基板之间。 在基板上形成的取向层的作用下, 向列相液晶分子被 诱导取向。
当显示模式为 MVA ( Multi-domain Vertical Alignment, 多畴垂直取向) 时, 可釆用不同的取向剂诱导向列相液晶取向。 制备方法和平面取向的方法 大致相同, 垂直取向的取向剂可选择硅氧烷, 将硅氧烷涂覆在基板表面, 烘 干, 硅氧烷通过化学键粘附在基板上, 硅氧烷末端柔性链基团能够诱导向列 相液晶垂直于基板排列。
以上两种常见的液晶取向方法, 均通过对基板表面进行处理实现液晶取 向。 取向机理是通过对接近取向层表面的液晶诱导, 促使整个液晶盒内向列 相液晶发生排列。 但是, 涂覆在基板上的取向层对远离取向层的液晶分子的 取向作用较小, 使得液晶分子取向作用不一致, 进而影响液晶显示效果。 发明内容
本发明实施例提供了一种液晶显示面板及其制作方法, 用于使液晶盒内 部远离取向层的向列相液晶的取向与靠近取向层的向列相液晶的取向趋于一 致, 从而减少液晶面板的响应速度。
本发明的一个方面提供一种液晶显示面板, 包括两块彼此对置的基板及 填充于该两块基板之间的液晶层, 所述液晶层为包括盘状液晶、 向列相液晶 和光引发剂的混合物经紫外光辐射形成, 所述混合物包括质量百分比为 5~50%的盘状液晶、 质量百分比为 40~90%的向列相液晶、 质量百分比为 0.05~10%的光引发剂。
在该液晶面板中, 例如, 所述盘状液晶的质量百分比为 5~10%。
在该液晶面板中, 例如, 所述光引发剂为过氧化二苯曱酰、 过氧化十二 酰、 偶氮二异定腈、 偶氮二异庚腈、 过氧化二碳酸二异丙脂或过氧化二碳酸 二环己酯中的一种或几种。
本发明的另一个方面还提供一种液晶显示面板的制作方法,该方法包括: 在制作液晶面板的两块基板至少之一上涂覆取向剂, 形成取向层; 将盘状液晶、向列相液晶和光引发剂进行混合并避光搅拌,得到混合物; 将所述混合物滴加在所述形成有取向层的基板上, 避光进行对盒; 通过紫外光对对盒后的基板进行辐照, 使得盘状液晶在光引发剂作用下 聚合, 形成盘状液晶高分子网络。
在该方法中, 例如, 所述紫外光的波长为 350nm~390nm; 紫外光辐照的 时间为 1~180分钟, 紫外光辐照强度为 0. l~100mW/cm2
例如,将所述混合物滴加在涂有取向剂的基板上之前,所述方法还包括: 将所述混合物避光脱泡 1~20小时。
在该方法中, 例如, 所述混合物中的向列相液晶的质量百分比为 40-90% , 盘状液晶的质量百分比为 5~50% , 光引发剂的质量百分比 0.05〜: 10%。 在该方法中, 例如, 所述盘状液晶的质量百分比为 5~10%。
在该方法中, 例如, 所述光引发剂为过氧化二苯曱酰、 过氧化十二酰、 偶氮二异定腈、 偶氮二异庚腈、 过氧化二碳酸二异丙脂或过氧化二碳酸二环 己酯中的一种或几种。 附图说明
为了更清楚地说明本发明实施例的技术方案, 下面将对实施例的附图作 简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例, 而非对本发明的限制。
图 1为本发明的一种液晶显示面板的制作方法流程示意图;
图 2为常见的盘状液晶分子中的苯环结构图;
图 3 ( a )为本发明的液晶显示面板在垂直取向剂的作用下受紫外光辐照 前的结构示意图;
图 3 ( b )为本发明的液晶显示面板在垂直取向剂的作用下受紫外光辐照 后的结构示意图;
图 4 ( a )为本发明的液晶显示面板在平面取向剂的作用下受紫外光辐照 前的结构示意图;
图 4 ( b )为本发明的液晶显示面板在平面取向剂的作用下受紫外光辐照 后的结构示意图;
图 5为盘状液晶聚合后的高分子网络电镜照片;
图 6 ( a )为向列相液晶没有通过盘状液晶诱导取向的偏光照片; 图 6 ( b )为盘状液晶诱导向列相液晶平面取向的偏光照片;
图 6 ( c )为盘状液晶诱导向列相液晶垂直取向的偏光照片。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例的附图,对本发明实施例的技术方案进行清楚、 完整地描述。显然, 所描述的实施例是本发明的一部分实施例, 而不是全部的实施例。 基于所描 述的本发明的实施例, 本领域普通技术人员在无需创造性劳动的前提下所获 得的所有其他实施例, 都属于本发明保护的范围。
除非另作定义, 此处使用的技术术语或者科学术语应当为本发明所属领 域内具有一般技能的人士所理解的通常意义。 本发明专利申请说明书以及权 利要求书中使用的 "第一" 、 "第二" 以及类似的词语并不表示任何顺序、 数量或者重要性,而只是用来区分不同的组成部分。同样, "一个 "或者 "一" 等类似词语也不表示数量限制, 而是表示存在至少一个。 "连接" 或者 "相 连" 等类似的词语并非限定于物理的或者机械的连接, 而是可以包括电性的 连接, 不管是直接的还是间接的。 "上" 、 "下" 、 "左" 、 "右" 等仅用 于表示相对位置关系, 当被描述对象的绝对位置改变后, 则该相对位置关系 也相应地改变。
如图 1所示,为本发明提供的一种液晶显示面板的制作方法流程示意图。 该液晶显示面板的制作方法包括如下步骤。
步骤 101 : 将盘状液晶、 向列相液晶和光引发剂按照一定比例进行混合 并避光搅拌, 得到混合物。
这里, 所述一定比例是指所述混合物中向列相液晶的质量百分比可以为
40-90%, 盘状液晶的质量百分比可以为 5~50%, 光引发剂的质量百分比可 以为 0.05 10%, 只要能够实现本发明的目的和技术效果即可。
向列相液晶是目前市场上销售的常用的液晶, 其通常是一种液晶单晶的 混合物, 由 20-30组分组成。 光引发剂例如为安息香苯曱醚等。
该步骤以及后续步骤进行避光操作原因在于, 在液晶中混有光引发剂, 光中的紫外光会激发引发剂进行导致聚合发生。 因此, 所述 "避光" 的条件 为避免光引发的聚合反应的条件即可。
较优地, 选取的盘状液晶的质量百分比为 5~10%。
所述光引发剂一般可选择过氧化二苯曱酰、 过氧化十二酰、 偶氮二异定 腈、 偶氮二异庚腈、 过氧化二碳酸二异丙脂或过氧化二碳酸二环己酯等。
由于盘状液晶具有独特的盘状分子结构且与向列相液晶的互溶性较强, 因此, 盘状液晶在向列相液晶中具有流动性, 通过搅拌混合物, 可以使盘状 液晶与向列相液晶更好地相溶, 形成相对稳定的溶液。
步骤 102: 将所述混合物放置到脱泡机中进行避光脱泡处理。
脱泡处理的时间可以为 1~20小时。
步骤 103: 将取向剂涂覆到基板上进行相应的处理, 形成取向层。
对形成的取向层进行处理,以能够对液晶进行取向。该处理的过程包括: 烘干和摩 ^察等。
所述取向剂根据所需的向列相液晶取向的方向不同, 可以选择不同的取 向剂。 例如, 如果需要向列相液晶平行于基板取向, 则取向剂可以为聚酰亚 胺(PI ) 、 聚乙烯醇(PVA )等; 如果需要向列相液晶垂直于基板取向, 则 取向剂可以为硅氧烷等。
所述基板可以为阵列基板和 /或与阵列基板相对设置的基板(例如 CF ( Color Film, 彩膜)基板) 。
步骤 104: 在避光的前提下, 将步骤 101 中的混合物滴加在形成有取向 层的基板上, 并利用真空对盒的方法将滴加有所述混合物的基板与另一基板 进行对盒。
该真空对盒的方法系在一定的真空条件下 (减压条件下)将形成液晶面 板的两块面板彼此对置且通过封框胶形成液晶盒。
由于对盒后液晶盒的基板内表面上形成有取向层, 可诱导混合物中向列 相液晶发生取向, 且盘状液晶分子主盘的平面方向平行于向列相液晶长轴方 向。 换句话说, 当取向剂是硅氧烷时, 在基板 4表面形成垂直取向层 3 , 向 列相液晶 2的取向是垂直于基板 4的, 此时盘状液晶分子 1的平面也就是垂 直于基板 4的; 当取向剂是 PI、 聚乙烯醇 (PVA)时, 在基板 4表面形成水平 取向层 6, 向列相液 2的取向是平行于基板 4的, 此时盘状液晶分子 1的平 面也是平行于基板 4的, 如图 3 ( a ) 、 图 4 ( a )所示。
还需要说明的是本步骤 104的实施过程要避光操作。
步骤 105: 通过紫外光对对盒后的基板进行紫外光辐照, 诱导光引发剂 生成自由基, 使盘状液晶分子 1发生聚合, 形成盘状液晶高分子网络 5 , 锚 定向列相液晶分子 2取向。
图 3 ( b )和图 4 ( b )所示的是液晶层受紫外光辐照后的结构示意图, 可 以看出, 所述混合物中的盘状液晶 1在紫外光辐照诱导光引发剂生成的自由 基的作用下发生聚合, 生成了高分子网络 5。 由于高分子网络 5的作用, 固 定盘状液晶在液晶盒中的位置, 使向列相液晶 2按照盘状液晶垂直取向或平 面取向, 锚定向列相液晶的取向, 使液晶盒内部的向列相液晶取向一致。
需要说明的是紫外光辐照的基本条件可以为如下所述。 选择紫外光波长 为 350nm~390nm,通常选择紫外光波长为 365nm,紫外光辐照的时间为 1~180 分钟, 紫外光辐照强度为 0.1~100mW/cm2
在本实施例中,将含有双键官能团的支链引入到盘状液晶的盘状分子上, 通过自由基的作用, 使盘状液晶分子上的双键官能团发生聚合, 生成盘状液 晶高分子网络。 该高分子网络是一种空间网络结构, 可固定盘状液晶主盘在 液晶盒中的位置, 并促使向列相液晶按照盘状液晶平面进行取向。
盘状液晶由主盘和支链组成, 盘状液晶中主盘的结构不同, 聚合后对向 列相液晶诱导取向的效果也不同: 主盘中的苯环数量越多, 对向列相液晶的 诱导作用较大。 如图 2所示, 为常见的盘状液晶分子中主盘的结构图, 从图 2中可以看出, 主盘中的苯环数量可以为 1个、 3个、 4个和 7个, 但本实施 例中可用的盘状液晶分子的主盘中的苯环数量不限于此。
再者盘状液晶的含量多少会影响到诱导向列相液晶排列的效果, 一般规 律是: 盘状液晶含量越少, 聚合后生成的高分子网络较稀疏, 则对向列相液 晶的取向诱导效果越差; 盘状液晶含量越多, 聚合后生成的高分子网络较密 集, 则对向列相液晶的诱导取向效果越好。 但是, 当盘状液晶含量过高时, 盘状液晶在向列相液晶分子中的溶解度将会降低, 进而将抑制向列相液晶的 取向。 因此,在盘状液晶、 向列相液晶和光引发剂按照一定比例进行混合时, 盘状液晶的质量百分比为 5~50%, 较优地, 可选取为 5~10%。
需要说明的是, 在盘状液晶的质量百分比为 5~10%时, 对向列相液晶的 取向效果最好, 如图 6 ( b )和图 6 ( c )所示, 通过图 6 ( b )和图 6 ( c )与 图 6 ( a )对比可以看到, 图 6 ( a ) 中有明显的紋影结构, 而在图 6 ( b )和 图 6 ( c ) 中, 通过加入盘状液晶, 紋影结构消失, 说明向列相的液晶在盘状 液晶高分子网络的作用下取向趋于一致。
另外, 盘状液晶分子中支链的结构不同, 生成的高分子网络的机械性能 也不同。 支链中含有的苯环或者萘环的盘状液晶分子的数量越多时, 生成的 高分子网络的刚性越强, 机械性能越好; 支链中含有酯基的盘状液晶分子的 数量越多时, 生成的高分子网络刚性越弱, 机械性能越差。
此外, 盘状液晶支链中双键官能团的数量会影响盘状液晶聚合的速度。 当盘状液晶支链中的双键官能团数量较少时, 盘状液晶在紫外线和光引发剂 的作用下的聚合速度较慢; 当盘状液晶支链中的双键官能团数量较多时, 盘 状液晶在紫外线和光引发剂的作用下的聚合速度较快。
实施例一
本实施例中, 在上述步骤 101 中, 盘状液晶的质量百分比为 6%, 光引 发剂的质量百分比为 1%, 向列相液晶的质量百分比为 93%, 将按此比例混 合得到的混合物经过步骤 101〜步骤 105, 即可锚定向列相液晶, 使液晶盒内 部的向列相液晶取向一致。
实施例二:
本实施例中, 本实施例中, 在上述步骤 101中, 盘状液晶的质量百分比 为 8%, 光引发剂的质量百分比为 2%, 向列相液晶的质量百分比为 90%, 将 按此比例混合得到的混合物经过步骤 101〜步骤 105, 即可锚定向列相液晶, 使液晶盒内部的向列相液晶取向一致。
实施例三
本实施例中, 在上述步骤 101 中, 盘状液晶的质量百分比为 5%, 光引 发剂的质量百分比为 2%, 向列相液晶的质量百分比为 93%, 将按此比例混 合得到的混合物经过步骤 101〜步骤 105, 即可锚定向列相液晶, 使液晶盒内 部的向列相液晶取向一致。
实施例四
本实施例中, 在上述步骤 101 中, 盘状液晶的质量百分比为 9%, 光引 发剂的质量百分比为 3%, 向列相液晶的质量百分比为 88%, 将按此比例混 合得到的混合物经过步骤 101〜步骤 105, 即可锚定向列相液晶, 使液晶盒内 部的向列相液晶取向一致。
实施例五
本实施例中, 在上述步骤 101中, 盘状液晶的质量百分比为 10%, 光引 发剂的质量百分比为 6%, 向列相液晶的质量百分比为 84%, 将按此比例混 合得到的混合物经过步骤 101〜步骤 105, 即可锚定向列相液晶, 使液晶盒内 部的向列相液晶取向一致。
以上列出的实施例是本发明的五个优选实施例。本方案通过将盘状液晶、 向列相液晶和光引发剂按照一定比例混合, 并滴加在形成有取向层的基板上 进行真空对盒后, 在紫外光辐射的作用下, 使盘状液晶生成高分子网络, 锚 定向列相液晶的取向, 使相对远离取向层的向列相液晶与靠近取向层的向列 相液晶的取向一致, 减少液晶面板显示屏的响应时间。
以上所述仅是本发明的示范性实施方式, 而非用于限制本发明的保护范 围, 本发明的保护范围由所附的权利要求确定。

Claims

权利要求书
1、一种液晶显示面板, 包括两块彼此对置的基板及填充于该两块基板之 间的液晶层, 其中, 所述液晶层由包括盘状液晶、 向列相液晶和光引发剂的 混合物经紫外光辐射形成, 所述混合物包括质量百分比为 5%~50%的盘状液 晶、 质量百分比为 40~90%的向列相液晶、 质量百分比为 0.05%~10%的光引 发剂。
2、如权利要求 1所述的液晶面板, 其中, 所述盘状液晶的质量百分比为 5~10%
3、如权利要求 1或 2所述的液晶面板, 其中, 所述光引发剂为过氧化二 苯曱酰、 过氧化十二酰、 偶氮二异定腈、 偶氮二异庚腈、 过氧化二碳酸二异 丙脂和过氧化二碳酸二环己酯一种或两种以上的混合。
4、 一种液晶显示面板的制作方法, 其中, 包括:
在制作液晶面板的两块基板至少之一上涂覆取向剂, 形成取向层; 将盘状液晶、向列相液晶和光引发剂进行混合并避光搅拌,得到混合物; 将所述混合物避光滴加在所述形成有取向层的所述基板上, 避光进行对 通过紫外光对对盒后的基板进行辐照, 使得盘状液晶在光引发剂作用下 聚合, 形成盘状液晶高分子网络。
5、如权利要求 4所述的液晶显示面板的制作方法, 其中, 所述紫外光的 波长为 350nm~390nm; 紫外光辐照的时间为 1~180分钟, 紫外光辐照强度为 0.1~100mW/cm2
6、如权利要求 4或 5所述的液晶显示面板的制作方法, 其中, 将所述混 合物滴加在涂有取向剂的基板上之前, 将所述混合物避光脱泡。
7、 如权利要求 4-6任一所述液晶显示面板的制作方法, 其中, 所述混合 物中的向列相液晶的质量百分比为 40~90% , 盘状液晶的质量百分比为 5-50%, 光引发剂的质量百分比 0.05~10%
8、如权利要求 7所述液晶面板的制作方法, 其中, 所述混合物中盘状液 晶的质量百分比为 5%~10%
9、 如权利要求 4-8任一所述液晶显示面板的制作方法, 其中, 所述光引 发剂为过氧化二苯曱酰、 过氧化十二酰、 偶氮二异定腈、 偶氮二异庚腈、 过 氧化二碳酸二异丙脂或过氧化二碳酸二环己酯。
PCT/CN2012/084245 2012-03-08 2012-11-07 液晶显示面板及其制作方法 WO2013131379A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014560219A JP6144708B2 (ja) 2012-03-08 2012-11-07 液晶表示パネル及びその製造方法
US13/824,526 US9904092B2 (en) 2012-03-08 2012-11-07 Liquid crystal display panel using discotic liquid crystal to induce alignment of nematic liquid crystal and manufacturing method thereof
KR1020137010101A KR101584415B1 (ko) 2012-03-08 2012-11-07 액정 디스플레이 패널 및 그의 제조 방법
EP12830909.3A EP2653914B1 (en) 2012-03-08 2012-11-07 Liquid crystal display panel and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210060315.6A CN102645778B (zh) 2012-03-08 2012-03-08 一种液晶显示面板及其制作方法
CN201210060315.6 2012-03-08

Publications (1)

Publication Number Publication Date
WO2013131379A1 true WO2013131379A1 (zh) 2013-09-12

Family

ID=46658686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084245 WO2013131379A1 (zh) 2012-03-08 2012-11-07 液晶显示面板及其制作方法

Country Status (6)

Country Link
US (1) US9904092B2 (zh)
EP (1) EP2653914B1 (zh)
JP (1) JP6144708B2 (zh)
KR (1) KR101584415B1 (zh)
CN (1) CN102645778B (zh)
WO (1) WO2013131379A1 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102629013B (zh) 2011-09-15 2014-12-17 北京京东方光电科技有限公司 一种液晶显示装置及其制作方法
CN102645778B (zh) 2012-03-08 2016-01-27 北京京东方光电科技有限公司 一种液晶显示面板及其制作方法
CN102902094B (zh) * 2012-09-28 2015-03-25 北京京东方光电科技有限公司 Tn型液晶面板及其制造方法
CN103207469B (zh) 2013-03-18 2016-01-27 北京京东方光电科技有限公司 液晶面板、显示装置及液晶面板的制造方法
CN103869544B (zh) * 2014-02-14 2016-06-29 北京京东方光电科技有限公司 一种取向层的制备方法、取向层组合物和显示面板
EP3369034B1 (en) 2015-10-26 2023-07-05 RealD Spark, LLC Intelligent privacy system, apparatus, and method thereof
EP3458897A4 (en) 2016-05-19 2019-11-06 RealD Spark, LLC DIRECTIONALLY WIDE IMAGING IMAGING BACKLIGHTS
CN116841075A (zh) 2017-05-08 2023-10-03 瑞尔D斯帕克有限责任公司 用于定向显示器的光学叠堆
US10126575B1 (en) 2017-05-08 2018-11-13 Reald Spark, Llc Optical stack for privacy display
TW201921060A (zh) 2017-09-15 2019-06-01 美商瑞爾D斯帕克有限責任公司 用於可切換定向顯示器的光學堆疊結構
US10948648B2 (en) 2017-09-29 2021-03-16 Reald Spark, Llc Backlights having stacked waveguide and optical components with different coefficients of friction
WO2019090246A1 (en) 2017-11-06 2019-05-09 Reald Spark, Llc Privacy display apparatus
KR20200120650A (ko) 2018-01-25 2020-10-21 리얼디 스파크, 엘엘씨 프라이버시 디스플레이를 위한 터치스크린
KR20200122326A (ko) 2018-01-25 2020-10-27 리얼디 스파크, 엘엘씨 프라이버시 디스플레이를 위한 반사 광학 스택
WO2019183525A1 (en) 2018-03-22 2019-09-26 Reald Spark, Llc Optical waveguide for directional backlight
EP3814832A4 (en) 2018-06-29 2022-04-06 RealD Spark, LLC STABILIZATION FOR PRIVACY DISPLAY
CN112602011A (zh) 2018-07-18 2021-04-02 瑞尔D斯帕克有限责任公司 用于可切换定向显示器的光学堆叠
US11106103B2 (en) 2018-10-03 2021-08-31 Reald Spark, Llc Privacy display apparatus controlled in response to environment of apparatus
CN113167953B (zh) 2018-11-07 2023-10-24 瑞尔D斯帕克有限责任公司 定向显示设备
WO2020146091A1 (en) 2019-01-07 2020-07-16 Reald Spark, Llc Optical stack for privacy display
WO2020167680A1 (en) 2019-02-12 2020-08-20 Reald Spark, Llc Diffuser for privacy display
TW202102883A (zh) 2019-07-02 2021-01-16 美商瑞爾D斯帕克有限責任公司 定向顯示設備
EP4007930A4 (en) 2019-08-02 2023-08-30 RealD Spark, LLC PRIVACY DISPLAY OPTICAL STACK
KR20220074941A (ko) 2019-10-02 2022-06-03 리얼디 스파크, 엘엘씨 프라이버시 디스플레이 기기
EP4058830A4 (en) 2019-11-13 2024-01-24 Reald Spark Llc DISPLAY DEVICE WITH EVEN OFF-AXIAL BRIGHTNESS REDUCTION
CN114761844A (zh) 2019-12-10 2022-07-15 瑞尔D斯帕克有限责任公司 显示装置的反射的控制
EP4078254A4 (en) 2019-12-18 2023-11-01 RealD Spark, LLC AMBIENT LIGHT CONTROL FOR PRIVACY DISPLAY DEVICE
EP4143631A4 (en) 2020-04-30 2024-05-29 Reald Spark Llc DIRECTION INDICATOR
EP4143041A4 (en) 2020-04-30 2024-06-12 Reald Spark Llc DIRECTION INDICATOR
EP4143632A1 (en) 2020-04-30 2023-03-08 RealD Spark, LLC Directional display apparatus
WO2022026536A1 (en) 2020-07-29 2022-02-03 Reald Spark, Llc Backlight for switchable directional display
TW202204818A (zh) 2020-07-29 2022-02-01 美商瑞爾D斯帕克有限責任公司 光瞳照明裝置
US11892717B2 (en) 2021-09-30 2024-02-06 Reald Spark, Llc Marks for privacy display
WO2023154217A1 (en) 2022-02-09 2023-08-17 Reald Spark, Llc Observer-tracked privacy display
WO2023196440A1 (en) 2022-04-07 2023-10-12 Reald Spark, Llc Directional display apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080305A1 (en) * 2000-12-22 2002-06-27 Choi Suk Won Ferroelectric liquid crystal display and fabricating method thereof
CN1641425A (zh) * 2004-01-15 2005-07-20 夏普株式会社 显示元件和显示装置以及显示元件的制造方法
CN101131436A (zh) * 2006-08-25 2008-02-27 富士胶片株式会社 光学薄膜的制造方法、光学薄膜、偏振片、转印材料、液晶显示装置以及偏振光紫外线曝光装置
CN102354081A (zh) * 2011-11-10 2012-02-15 范志新 一种应变液晶透明投影屏幕及其制备方法和应用
CN102645778A (zh) * 2012-03-08 2012-08-22 北京京东方光电科技有限公司 一种液晶显示面板及其制作方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3862473B2 (ja) * 1999-05-14 2006-12-27 キヤノン株式会社 液晶素子、液晶性機能材料および液晶装置
US6497928B1 (en) * 1999-05-14 2002-12-24 Canon Kabushiki Kaisha Liquid crystal device, mesomorphic functional material and liquid crystal apparatus
KR100741903B1 (ko) 2000-10-23 2007-07-24 엘지.필립스 엘시디 주식회사 액정 적하 방식의 lcd 패널 및 그 제조방법
JP2002146353A (ja) * 2000-11-13 2002-05-22 Chisato Kajiyama 重合性円盤状モノマーから形成される高分子ネットワークを利用した液晶光学材料
WO2003102045A1 (en) * 2002-05-31 2003-12-11 Elsicon, Inc. Hybrid polymer materials for liquid crystal alignment layers
JP4569189B2 (ja) 2003-06-23 2010-10-27 チッソ株式会社 液晶性化合物、液晶組成物およびそれらの重合体
JP4744090B2 (ja) * 2004-03-11 2011-08-10 富士通株式会社 液晶表示装置の製造方法
WO2007025111A1 (en) * 2005-08-24 2007-03-01 Kent State University Biaxial liquid crystal electro-optic devices
KR101166831B1 (ko) 2005-09-27 2012-07-23 엘지디스플레이 주식회사 액정표시소자의 제조방법 및 제조장치
TW200804476A (en) * 2005-11-25 2008-01-16 Fujifilm Corp Cellulose acylate film, method of producing the same, cellulose derivative film, optically compensatory film using the same, optically-compensatory film incorporating polarizing plate, polarizing plate and liquid crystal display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020080305A1 (en) * 2000-12-22 2002-06-27 Choi Suk Won Ferroelectric liquid crystal display and fabricating method thereof
CN1641425A (zh) * 2004-01-15 2005-07-20 夏普株式会社 显示元件和显示装置以及显示元件的制造方法
CN101131436A (zh) * 2006-08-25 2008-02-27 富士胶片株式会社 光学薄膜的制造方法、光学薄膜、偏振片、转印材料、液晶显示装置以及偏振光紫外线曝光装置
CN102354081A (zh) * 2011-11-10 2012-02-15 范志新 一种应变液晶透明投影屏幕及其制备方法和应用
CN102645778A (zh) * 2012-03-08 2012-08-22 北京京东方光电科技有限公司 一种液晶显示面板及其制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2653914A4 *

Also Published As

Publication number Publication date
US20140111760A1 (en) 2014-04-24
EP2653914B1 (en) 2018-09-19
KR101584415B1 (ko) 2016-01-11
CN102645778A (zh) 2012-08-22
JP2015509617A (ja) 2015-03-30
JP6144708B2 (ja) 2017-06-07
EP2653914A4 (en) 2015-09-02
CN102645778B (zh) 2016-01-27
KR20130126598A (ko) 2013-11-20
EP2653914A1 (en) 2013-10-23
US9904092B2 (en) 2018-02-27

Similar Documents

Publication Publication Date Title
WO2013131379A1 (zh) 液晶显示面板及其制作方法
TWI639872B (zh) 液晶顯示器及其製備方法
KR100208475B1 (ko) 자기장 처리에 의한 액정배향막의 제조방법
WO2013078924A1 (zh) 液晶显示面板及其制备方法
CN105353572B (zh) 液晶显示装置
TWI425281B (zh) 聚合物穩定配向型液晶顯示面板的製造方法
TWI706981B (zh) 聚合物組成物、具有液晶配向膜之基板的製造方法、橫向電場驅動型液晶顯示元件、液晶顯示元件的製造方法及橫向電場驅動型液晶顯示元件用液晶配向膜
JP2005234254A5 (zh)
WO2013037315A1 (zh) 液晶显示装置及其制作方法
WO2014127562A1 (zh) 液晶面板制作方法及液晶混合物、液晶面板
TW201018719A (en) Liquid crystal composition for use in liquid crystal display
WO2017063301A1 (zh) 液晶面板及其制造方法
WO2013102367A1 (zh) 液晶取向膜、液晶面板及其制造方法
JP5951936B2 (ja) 液晶表示素子の製造方法
WO2014045923A1 (ja) 液晶表示装置及びその製造方法
WO2017057162A1 (ja) 液晶表示装置及びその製造方法
JP2013047758A (ja) 光学フィルム積層体およびその製造方法
TWI510847B (zh) 液晶顯示裝置
TWI668505B (zh) 液晶光電裝置及液晶光電裝置的製造方法
TWI746668B (zh) 液晶配向劑、液晶配向膜及液晶元件
KR102196239B1 (ko) 액정 배향제, 액정 배향막, 액정 소자 및 중합체
WO2017170070A1 (ja) 液晶パネルの製造方法
JP2001083516A (ja) 配向膜、液晶表示素子、及び光学フィルム
JP4338001B2 (ja) 液晶配向膜
TWI791838B (zh) 液晶配向劑、液晶配向膜、液晶元件及液晶元件的製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13824526

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012830909

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137010101

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014560219

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE