WO2013125111A1 - 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム - Google Patents

放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム Download PDF

Info

Publication number
WO2013125111A1
WO2013125111A1 PCT/JP2012/079825 JP2012079825W WO2013125111A1 WO 2013125111 A1 WO2013125111 A1 WO 2013125111A1 JP 2012079825 W JP2012079825 W JP 2012079825W WO 2013125111 A1 WO2013125111 A1 WO 2013125111A1
Authority
WO
WIPO (PCT)
Prior art keywords
reset
charge
shooting
radiographic imaging
radiation
Prior art date
Application number
PCT/JP2012/079825
Other languages
English (en)
French (fr)
Inventor
岩切 直人
北野 浩一
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013125111A1 publication Critical patent/WO2013125111A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4283Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by a detector unit being housed in a cassette
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14658X-ray, gamma-ray or corpuscular radiation imagers
    • H01L27/14663Indirect radiation imagers, e.g. using luminescent members
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/30Circuitry of solid-state image sensors [SSIS]; Control thereof for transforming X-rays into image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/56Details of data transmission or power supply, e.g. use of slip rings

Definitions

  • the present invention relates to a radiographic imaging control device, a radiographic imaging system, a radiographic imaging device control method, and a radiographic imaging control program.
  • radiation detectors such as FPD (Flat Panel Detector) that can arrange radiation sensitive layers on TFT (Thin Film Transistor) active matrix substrates and convert radiation dose into digital data (electrical signals) (referred to as “electronic cassettes”)
  • FPD Fluor Deposition Detector
  • TFT Thin Film Transistor
  • electrospray cassettes a radiation image capturing apparatus that captures a radiation image represented by the amount of irradiated radiation using this radiation detector has been put into practical use.
  • the readout circuit unit includes a first operational amplifier connected to each terminal and a second operational amplifier that receives an output of the first operational amplifier, and the first operational amplifier includes: An inverting input terminal connected to a corresponding terminal, an output terminal connected to an integral capacitor and a switch connected in parallel between the inverting input terminal, and a non-inverting input terminal to which a reference voltage is supplied Proposed signal processing devices have been proposed.
  • the second operational amplifier includes a normal input terminal to which a reference voltage is supplied and an inverting input terminal that receives the output of the first operational amplifier.
  • the second operational amplifier includes an inverting input terminal and an output terminal. It is described that a circuit for controlling an open / close time of the switch of the first operational amplifier and the reset switch of the second operational amplifier is provided by connecting an integration capacitor and a reset switch therebetween.
  • the present invention has been made in consideration of the above facts, and aims to shorten the shooting time.
  • a radiographic imaging control apparatus includes a sensor unit that generates a charge corresponding to irradiated radiation and a switching element for reading out the charge generated by the sensor unit.
  • a plurality of pixels arranged in correspondence with each of the pixels of the radiation detector, reset means for resetting the charge of the integrating capacitor for integrating the charge, and corresponding pixels
  • Control means for controlling the switch means so that the reset time by the reset means is shorter than a predetermined time; It is provided.
  • a plurality of pixels configured to include a sensor unit and a switching element are arranged, and charges corresponding to the irradiated radiation are generated in the sensor unit. The charge is read by the switching element.
  • the amplifying means is provided corresponding to each pixel of the radiation detector, and is provided with reset means for resetting the charge of the integrating capacitor for integrating the charge, and the charge read out from the corresponding pixel by the switching element. Is amplified at a predetermined amplification factor.
  • the control means controls the switch means so that the reset time by the reset means is shorter than a predetermined time when the charge generated by imaging using the radiation detector is expected to be lower than a predetermined value. Is done. That is, when photographing is performed when the charge generated by photographing using the radiation detector is expected to be lower than a predetermined value, the charge is less than when performing other photographing. Can be shortened, whereby the photographing time can be shortened. Therefore, since the imaging time can be shortened, the radiation dose of the subject is reduced, and the burden on the subject can be reduced.
  • the control means may control the switch means so that the reset time becomes shorter as the charge generated by the shooting is smaller, or in the case of moving image shooting, compared with still image shooting.
  • the switch means may be controlled so that the reset time by the reset means is shortened, or in the case of positioning moving image shooting for adjusting at least one of the shooting position and shooting timing, the reset time is
  • the switch means may be controlled so as to be shorter than a predetermined time, or the switch means may be controlled so that the reset time is shortened according to the type of continuous shooting. In the case of video continuous shooting that cuts out a still image from a moving image, the reset time is shorter than the shooting that is the target of the still image. As to the reset at a predetermined time without, it may control the reset means.
  • the present invention may be a radiographic imaging system including the radiographic imaging control device described above and radiation irradiating means for irradiating the radiation detector via a subject.
  • the method for controlling a radiographic imaging apparatus of the present invention includes (a) a sensor unit that generates charges according to irradiated radiation and a switching element for reading out the charges generated by the sensor units.
  • the remaining charge before imaging is reset by the resetting means in the amplifying means for amplifying the electric signal generated by the charge at a predetermined amplification rate, and (b) the charge generated by imaging using the radiation detector is predetermined. If the value is expected to be lower than the value of (a), the reset time by the reset means in (a) is shorter than the predetermined time So as to, to control said switch means.
  • a reset means provided corresponding to each pixel of the radiation detector and resetting the charge of an integrating capacitor for integrating the charge.
  • the remaining charge before photographing is reset by the resetting means in the amplifying means for amplifying the electric signal based on the charge read out from the corresponding pixel by the switching element at a predetermined amplification factor.
  • the reset time by the reset means in (a) is made shorter than a predetermined time. , Controlling the switch means. That is, when photographing is performed when the charge generated by photographing using the radiation detector is expected to be lower than a predetermined value, the charge is less than when performing other photographing. Can be shortened, and thus the photographing time can be shortened. By shortening this imaging time, the radiation dose of the subject is reduced, and the burden on the subject can be reduced.
  • the switch means may be controlled so that the reset time becomes shorter as the charge generated by the shooting is smaller, or compared with still image shooting in the case of moving image shooting. Then, the switch means may be controlled so that the reset time by the reset means is shortened, or in the case of positioning video shooting for adjusting at least one of the shooting position and the shooting timing, the reset time
  • the switch means may be controlled so that the time is shorter than a predetermined time, or the switch means is controlled so that the reset time is shortened according to the type of continuous shooting.
  • the reset time for the shooting that is the target of the still image The without shortening to reset at a predetermined time, it may be controlled to the reset means.
  • the radiographic image capturing control program of the present invention includes (a) a pixel that includes a sensor unit that generates a charge corresponding to irradiated radiation and a switching element for reading out the charge generated by the sensor unit. Is provided corresponding to each pixel of the radiation detector arranged in plural, reset means for resetting the charge of the integration capacitor for integrating the charge is provided, and read out from the corresponding pixel by the switching element The remaining charge before imaging is reset by the resetting means in the amplifying means for amplifying the electric signal generated by the charge at a predetermined amplification factor, and (b) the charge generated by imaging using the radiation detector is a predetermined value. If it is expected to be lower, the reset time by the reset means in (a) is shorter than a predetermined time. So that, for controlling the switching means to execute the process to the computer.
  • reset means provided corresponding to each pixel of the radiation detector and resetting the charge of an integrating capacitor for integrating the charge. Then, the remaining charge before photographing is reset by the resetting means in the amplifying means for amplifying the electric signal based on the charge read out from the corresponding pixel by the switching element at a predetermined amplification factor.
  • the reset time by the reset means in (a) is made shorter than a predetermined time. , Controlling the switch means. That is, when photographing is performed when the charge generated by photographing using the radiation detector is expected to be lower than a predetermined value, the charge is less than when performing other photographing. Can be shortened, and thus the photographing time can be shortened. Therefore, since the imaging time can be shortened, the radiation dose of the subject is reduced, and the burden on the subject can be reduced.
  • the switch means may be controlled so that the reset time becomes shorter as the charge generated by the shooting is smaller, or compared with still image shooting in the case of moving image shooting. Then, the switch means may be controlled so that the reset time by the reset means is shortened, or in the case of positioning video shooting for adjusting at least one of the shooting position and the shooting timing, the reset time
  • the switch means may be controlled so that the time is shorter than a predetermined time, or the switch means is controlled so that the reset time is shortened according to the type of continuous shooting.
  • the reset time for the shooting that is the target of the still image The without shortening to reset at a predetermined time, it may be controlled to the reset means.
  • the imaging time is shortened by shortening the reset time from a predetermined time. And it has the outstanding effect that the burden on a test subject can be reduced.
  • FIG. 1 is a schematic configuration diagram of a radiation information system (hereinafter referred to as “RIS” (Radiology Information System)) 10 according to the present embodiment.
  • the RIS 10 can shoot moving images in addition to still images.
  • the definition of a moving image means that still images are displayed one after another at a high speed and recognized as a moving image.
  • the still image is shot, converted into an electric signal, transmitted, and the still image is reproduced from the electric signal. This process is repeated at high speed.
  • the RIS 10 is a system for managing information such as medical appointments and diagnosis records in the radiology department, and is a part of a hospital information system (hereinafter referred to as “HIS” (Hospital Information System)).
  • HIS Hospital Information System
  • the RIS 10 includes a plurality of radiographic imaging systems installed individually in a plurality of imaging request terminal devices (hereinafter referred to as “terminal devices”) 12, a RIS server 14, and a radiographic room (or operating room) in a hospital.
  • terminal devices hereinafter referred to as “terminal devices”
  • RIS server a radiographic room (or operating room) in a hospital.
  • imaging system which are connected to an in-hospital network 18 composed of a wired or wireless LAN (Local Area Network) or the like.
  • the hospital network 18 is connected to an HIS server that manages the entire HIS.
  • the imaging system 16 may be single or three or more facilities. In FIG. 1, the imaging system 16 is installed for each imaging room, but two or more imaging systems 16 are arranged in a single imaging room. May be.
  • the terminal device 12 is used by doctors and radiographers to input and view diagnostic information and facility reservations, and radiographic image capturing requests and imaging reservations are performed via the terminal device 12.
  • Each terminal device 12 includes a personal computer having a display device, and is capable of mutual communication via the RIS server 14 and the hospital network 18.
  • the RIS server 14 receives an imaging request from each terminal device 12 and manages a radiographic imaging schedule in the imaging system 16, and includes a database 14A.
  • the database 14A was photographed in the past as attribute information (name, gender, date of birth, age, blood type, weight, patient ID (Identification), etc.), medical history, medical history of the patient as the subject.
  • Information related to the patient such as a radiographic image, information related to the electronic cassette 20 used in the imaging system 16, such as an identification number (ID information), model, size, sensitivity, start date of use, number of times of use, etc.
  • ID information an identification number
  • model e.g., model, size, sensitivity, start date of use, number of times of use, etc.
  • an environment in which a radiographic image is taken using the electronic cassette 20 that is, an environment in which the electronic cassette 20 is used (for example, a radiographic room or an operating room).
  • medical-related data managed by medical institutions is stored almost permanently, and when necessary, a system (sometimes referred to as a “medical cloud”) that instantly retrieves data from the required location can be used outside the hospital. You may make it acquire the past personal information etc. of a patient (subject) from a server.
  • a system sometimes referred to as a “medical cloud”
  • the imaging system 16 captures a radiographic image by an operation of a doctor or a radiographer according to an instruction from the RIS server 14.
  • the imaging system 16 is a radiation generator that irradiates a subject with radiation X having a dose according to irradiation conditions from a radiation irradiation source 22A that irradiates radiation X under the control of a radiation irradiation control unit 22 (see FIG. 6). 24 and a radiation detector 26 (see FIG. 3A) that generates radiation by absorbing the radiation X that has passed through the region to be imaged of the subject and generates image information indicating a radiation image based on the amount of the generated charge.
  • a built-in electronic cassette 20, a cradle 28 for charging a battery built in the electronic cassette 20, and a console 30 for controlling the electronic cassette 20 and the radiation generator 24 are provided.
  • the console 30 acquires various types of information included in the database 14A from the RIS server 14 and stores them in an HDD 88 (see FIG. 6) described later, and uses the information as necessary to use the electronic cassette 20 and the radiation generator 24. Control.
  • FIG. 2 shows an example of the arrangement state of each device in the radiation imaging room 32 of the imaging system 16 according to the present embodiment.
  • the radiation imaging room 32 there are a standing table 34 used when performing radiography in a standing position and a prone table 36 used when performing radiation imaging in a lying position.
  • the space in front of the standing table 34 is set as the imaging position of the subject 38 when performing radiography in the standing position, and the upper space of the prone table 36 is used in performing radiography in the prone position. This is the imaging position of the subject 40.
  • the standing table 34 is provided with a holding unit 42 that holds the electronic cassette 20, and the electronic cassette 20 is held by the holding unit 42 when a radiographic image is taken in the standing position.
  • a holding unit 44 that holds the electronic cassette 20 is provided in the lying position table 36, and the electronic cassette 20 is held by the holding unit 44 when a radiographic image is taken in the lying position.
  • the radiation irradiation source 22A is arranged around a horizontal axis in order to enable radiation imaging in a standing position and in a supine position by radiation from a single radiation irradiation source 22A.
  • a support movement mechanism 46 that can be rotated in the direction of arrow A in FIG. 2, can move in the vertical direction (in the direction of arrow B in FIG. 2), and can move in the horizontal direction (in the direction of arrow C in FIG. 2). Is provided.
  • a drive source that moves (including rotation) in the directions of arrows A to C in FIG.
  • the cradle 28 is formed with an accommodating portion 28A capable of accommodating the electronic cassette 20.
  • the built-in battery is charged in a state of being accommodated in the accommodating portion 28A of the cradle 28.
  • the electronic cassette 20 is taken out of the cradle 28 by a radiographer or the like, and the photographing posture is established. If it is in the upright position, it is held in the holding part 42 of the standing table 34, and if it is in the upright position, it is held in the holding part 44 of the standing table 36.
  • various types of information are transmitted and received by radio communication between the radiation generator 24 and the console 30 and between the electronic cassette 20 and the console 30 (details will be described later). .
  • the electronic cassette 20 is not used only in the state of being held by the holding portion 42 of the standing base 34 or the holding portion 44 of the prone position base 36. When photographing, it can be used in a state where it is not held by the holding unit.
  • the electronic cassette 20 includes a radiation detector described later.
  • the built-in radiation detector is an indirect conversion method that converts radiation into light with a scintillator and then converts it into charges with a photoelectric conversion element such as a photodiode, and a direct conversion method that converts radiation into charges with a semiconductor layer such as amorphous selenium. Either may be used.
  • the direct conversion type radiation detector is configured by laminating a photoelectric conversion layer that absorbs radiation X and converts it into charges on a TFT active matrix substrate.
  • the photoelectric conversion layer is made of amorphous a-Se (amorphous selenium) containing, for example, selenium as a main component (for example, a content rate of 50% or more), and when irradiated with radiation X, a charge corresponding to the amount of irradiated radiation. By generating a certain amount of charge (electron-hole pairs) internally, the irradiated radiation X is converted into a charge.
  • An indirect conversion type radiation detector indirectly uses a phosphor material and a photoelectric conversion element (photodiode) instead of the radiation-to-charge conversion material that directly converts the radiation X such as amorphous selenium into an electric charge. It may be converted into an electric charge.
  • GOS gadolinium oxysulfide
  • CsI cesium iodide
  • FIG. 3A is a schematic cross-sectional view schematically showing the configuration of the four pixel portions of the radiation detector 26 provided in the electronic cassette 20, and FIG. 3B is a diagram showing the electrical configuration of the pixel portion of the radiation detector 26. It is.
  • a signal output unit 52, a sensor unit 54 (TFT substrate 74), and a scintillator 56 are sequentially laminated on an insulating substrate 50, and the signal output unit 52,
  • the sensor unit 54 constitutes a pixel group of the TFT substrate 74. That is, the plurality of pixels are arranged in a matrix on the substrate 50, and the signal output unit 52 and the sensor unit 54 in each pixel are configured to overlap each other.
  • An insulating film 53 is interposed between the signal output unit 52 and the sensor unit 54.
  • the scintillator 56 is formed on the sensor unit 54 via a transparent insulating film 58, and forms a phosphor that emits light by converting radiation incident from above (opposite side of the substrate 50) or below into light. It is what. Providing such a scintillator 56 absorbs radiation transmitted through the subject and emits light.
  • the wavelength range of light emitted by the scintillator 56 is preferably in the visible light range (wavelength 360 nm to 830 nm), and in order to enable monochrome imaging by the radiation detector 26, the wavelength range of green is included. Is more preferable.
  • the phosphor used in the scintillator 56 preferably contains cesium iodide (CsI) when imaging using X-rays as radiation, and has an emission spectrum at 420 nm to 700 nm when irradiated with X-rays. It is particularly preferable to use (Tl) (cesium iodide with thallium added). Note that the emission peak wavelength of CsI (Tl) in the visible light region is 565 nm.
  • CsI cesium iodide
  • Tl cesium iodide with thallium added
  • ISS Irradiation Side Sampling
  • PSS Penetration Side Sampling
  • the sensor unit 54 includes an upper electrode 60, a lower electrode 62, and a photoelectric conversion film 64 disposed between the upper and lower electrodes.
  • the photoelectric conversion film 64 absorbs light emitted from the scintillator 56 and generates electric charges. It is composed of an organic photoelectric conversion material.
  • the upper electrode 60 is preferably made of a conductive material that is transparent at least with respect to the emission wavelength of the scintillator 56 because light generated by the scintillator 56 needs to be incident on the photoelectric conversion film 64. It is preferable to use a transparent conductive oxide (TCO) having a high light transmittance and a low resistance value. Although a metal thin film such as Au can be used as the upper electrode 60, the TCO is preferable because it tends to increase the resistance when it is desired to obtain a transmittance of 90% or more.
  • TCO transparent conductive oxide
  • the upper electrode 60 may have a single configuration common to all pixels, or may be divided for each pixel.
  • the photoelectric conversion film 64 includes an organic photoelectric conversion material, absorbs light emitted from the scintillator 56, and generates electric charge according to the absorbed light.
  • the photoelectric conversion film 64 including the organic photoelectric conversion material has a sharp absorption spectrum in the visible region, and electromagnetic waves other than light emitted by the scintillator 56 are hardly absorbed by the photoelectric conversion film 64, and X-rays are obtained.
  • the noise generated by the radiation such as being absorbed by the photoelectric conversion film 64 can be effectively suppressed.
  • the organic photoelectric conversion material of the photoelectric conversion film 64 is preferably such that its absorption peak wavelength is closer to the emission peak wavelength of the scintillator 56 in order to absorb light emitted by the scintillator 56 most efficiently.
  • the absorption peak wavelength of the organic photoelectric conversion material matches the emission peak wavelength of the scintillator 56, but if the difference between the two is small, the light emitted from the scintillator 56 can be sufficiently absorbed.
  • the difference between the absorption peak wavelength of the organic photoelectric conversion material and the emission peak wavelength with respect to the radiation of the scintillator 56 is preferably within 10 nm, and more preferably within 5 nm.
  • the organic photoelectric conversion material examples include quinacridone organic compounds and phthalocyanine organic compounds.
  • quinacridone organic compounds since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI (Tl) is used as the material of the scintillator 56, the difference in peak wavelength can be made within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film 64 can be substantially maximized.
  • the photoelectric conversion film 64 including an organic photoelectric conversion material is described as an example. However, the present invention is not limited thereto, and the photoelectric conversion film 64 may be a material that absorbs light and generates charges. For example, other materials such as amorphous silicon may be applied. When the photoelectric conversion film 64 is composed of amorphous silicon, it can be configured to absorb light emitted from the scintillator over a wide wavelength range.
  • the sensor unit 54 of each pixel only needs to include at least the lower electrode 62, the photoelectric conversion film 64, and the upper electrode 60, but in order to suppress an increase in dark current, the electron blocking film 66 and the hole blocking film 68 It is preferable to provide at least one, and it is more preferable to provide both.
  • the electron blocking film 66 can be provided between the lower electrode 62 and the photoelectric conversion film 64.
  • a bias voltage is applied between the lower electrode 62 and the upper electrode 60, electrons are transferred from the lower electrode 62 to the photoelectric conversion film 64. It is possible to suppress the dark current from increasing due to the injection of.
  • An electron donating organic material can be used for the electron blocking film 66.
  • the hole blocking film 68 can be provided between the photoelectric conversion film 64 and the upper electrode 60. When a bias voltage is applied between the lower electrode 62 and the upper electrode 60, the hole blocking film 68 is transferred from the upper electrode 60 to the photoelectric conversion film 64. It is possible to suppress the increase in dark current due to the injection of holes.
  • An electron-accepting organic material can be used for the hole blocking film 68.
  • the signal output unit 52 corresponds to the lower electrode 62, a capacitor 70 that accumulates the electric charge transferred to the lower electrode 62, and a field effect thin film transistor (Thin) that converts the electric charge accumulated in the capacitor 70 into an electric signal and outputs it.
  • Film-Transistor (hereinafter sometimes simply referred to as a thin film transistor) 72 is formed.
  • the region in which the capacitor 70 and the thin film transistor 72 are formed has a portion that overlaps the lower electrode 62 in plan view. With this configuration, the signal output unit 52 and the sensor unit 54 in each pixel are thick. There will be overlap in the vertical direction. In order to minimize the plane area of the radiation detector 26 (pixel), it is desirable that the region where the capacitor 70 and the thin film transistor 72 are formed is completely covered with the lower electrode 62.
  • the signal output unit 52 in the pixels arranged in a matrix is extended in a certain direction (row direction), and a plurality of gate wirings for turning on and off the thin film transistors 72 of the individual pixels.
  • G and a plurality of data lines D are provided to read accumulated charges from the capacitor 70 through the thin film transistor 72 that is turned on and extends in a direction orthogonal to the gate line G.
  • Individual gate lines G are connected to a gate line driver 71, and individual data lines D are connected to a signal processing unit 73.
  • the thin film transistors 72 of the individual pixel units are sequentially turned on in units of rows by a signal supplied from the gate line driver 71 via the gate wiring G.
  • the electric charge accumulated in the capacitor 70 of the pixel portion in which the thin film transistor 72 is turned on is transmitted through the data wiring D as an analog electric signal and input to the signal processing portion 73. Therefore, the electric charges accumulated in the capacitors 70 of the individual pixel portions are sequentially read out in units of rows.
  • the gate line driver 71 sequentially outputs an on signal to each gate line G one line at a time in one image reading operation, and reads out the electric charge accumulated in the capacitor 70 of each pixel unit line by line.
  • an ON signal is sequentially output from the gate line driver 71 to each gate wiring G by a plurality of lines (for example, two lines or four lines) in one image readout operation, and each pixel is formed by a plurality of lines. It is possible to read out the charge accumulated in the capacitor 70 of the unit (by combining and reading out the charges of the pixels read out simultaneously) in the binning readout method, and sequentially read out the image into the readout method and the binning readout method. Can be switched.
  • the sequential scanning method and the gate wiring G are divided into odd and even rows for each row, and an ON signal is output to the odd or even gate wiring G for each image reading operation.
  • the image reading method may be switched between an interlaced scanning method (interlaced scanning method) in which charges accumulated in each pixel portion are alternately read for each line.
  • the signal processing unit 73 and the gate line driver 71 are connected to a cassette control unit 69, and the gate control unit 69 controls the gate line driver 71 and the signal processing unit 73.
  • the cassette control unit 69 is composed of a microcomputer including a CPU, ROM, RAM, HDD, fresh memory, and the like.
  • each pixel in the radiation detector 26 is not limited to the matrix arrangement arranged in rows and columns, and other arrangements such as a staggered arrangement may be applied.
  • the pixel shape may be a rectangular pixel shape or a polygonal shape such as a honeycomb shape.
  • FIG. 4 is a block diagram illustrating a schematic configuration of the signal processing unit 73 of the radiation detector 26 according to the present embodiment
  • FIG. 5 focuses on one pixel portion of the radiation detector 26 according to the present embodiment. It is a figure which shows an equivalent circuit.
  • the electric charge photoelectrically converted by the scintillator 56 is read and output to the signal processing unit 73 when the thin film transistor 72 is turned on.
  • the signal processing unit 73 includes a charge amplifier 75, a sample hold circuit 76, a multiplexer 77, and an A / D converter 78.
  • the electric charge read out by the thin film transistor 72 is integrated by the charge amplifier 75, amplified by a predetermined amplification factor, held by the sample hold circuit, and output to the A / D converter 78 via the multiplexer 77. .
  • An analog signal is converted into a digital signal by the A / D converter 78 so that image processing can be performed.
  • the source of the thin film transistor 72 is connected to the data line D, and the data line D is connected to the charge amplifier 75.
  • the drain of the thin film transistor 72 is connected to the capacitor 70, and the gate of the thin film transistor 72 is connected to the gate wiring G.
  • the charge signal transmitted through each data line D is integrated by the charge amplifier 75 and held in the sample and hold circuit 76.
  • the charge amplifier 75 is provided with a reset switch 79. While the reset switch 79 is turned off, the charge is read out and the charge signal is held in the sample hold circuit 76. When the reading of the charge is completed, the reset switch 79 is turned on to release the charge remaining in the integrating capacitor C1 of the charge amplifier 75 and reset it.
  • the charge signal held in the sample and hold circuit 76 is converted into an analog voltage, and sequentially (serially) input to the multiplexer 77, and converted into digital image information by the A / D converter 78.
  • the cassette control unit 69 controls on / off of the thin film transistor 72 and on / off of the reset switch 79 of the charge amplifier 75.
  • FIG. 6 is a control block diagram of the imaging system 16 according to the present embodiment.
  • the console 30 is configured as a server computer, and includes a display 80 that displays an operation menu, a captured radiographic image, and the like, and a plurality of keys, and an operation panel on which various information and operation instructions are input. 82.
  • the console 30 includes a CPU 84 that controls the operation of the entire apparatus, a ROM 86 that stores various programs including a control program in advance, a RAM 87 that temporarily stores various data, and various data.
  • An HDD (Hard Disk Drive) 88 that stores and holds, a display driver 92 that controls display of various types of information on the display 80, and an operation input detector 90 that detects an operation state of the operation panel 82 are provided. .
  • the console 30 transmits and receives various information such as irradiation conditions to be described later between the image processing device 23 and the radiation generation device 24 by wireless communication, and also various information such as image data with the electronic cassette 20.
  • various information such as irradiation conditions to be described later between the image processing device 23 and the radiation generation device 24 by wireless communication, and also various information such as image data with the electronic cassette 20.
  • I / F for example, a wireless communication unit
  • I / O 94 are provided with an I / O 94.
  • the CPU 84, ROM 86, RAM 87, HDD 88, display driver 92, operation input detection unit 90, I / O 94, and wireless communication unit 96 are connected to each other via a bus 98 such as a system bus or a control bus. Therefore, the CPU 84 can access the ROM 86, RAM 87, and HDD 88, controls display of various information on the display 80 via the display driver 92, and the radiation generator 24 via the wireless communication unit 96. Control of transmission and reception of various types of information with the electronic cassette 20 can be performed. Further, the CPU 84 can grasp the operation state of the user with respect to the operation panel 82 via the operation input detection unit 90.
  • the image processing device 23 includes an I / F (for example, a wireless communication unit) 100 that transmits and receives various types of information such as irradiation conditions to and from the console 30, and the electronic cassette 20 and the radiation generation device 24 based on the irradiation conditions. And an image processing control unit 102 for controlling. Further, the radiation generator 24 includes a radiation irradiation control unit 22 that controls radiation irradiation from the radiation irradiation source 22A.
  • I / F for example, a wireless communication unit
  • the radiation generator 24 includes a radiation irradiation control unit 22 that controls radiation irradiation from the radiation irradiation source 22A.
  • the image processing control unit 102 includes a system control unit 104, a panel control unit 106, and an image processing control unit 108, and exchanges information with each other via a bus 110.
  • the panel control unit 106 receives information from the electronic cassette 20 wirelessly or by wire, and the image processing control unit 108 performs image processing.
  • the system control unit 104 receives information such as tube voltage and tube current as irradiation conditions from the console 30, and irradiates radiation X from the radiation irradiation source 22A of the radiation irradiation control unit 22 based on the received irradiation conditions. Take control.
  • FIG. 7 is a diagram showing an output waveform accompanying charge reading of the charge amplifier 75.
  • the charge accumulated in the capacitor 70 is read by turning on and off the thin film transistor 72. However, before the charge is read, the charge remaining in the integrating capacitor C1 of the charge amplifier 75 by the previous reading is read. In order to reset, the reset operation of the charge amplifier 75 is performed.
  • the reset operation by the charge amplifier 75 is performed by turning on and off the reset switch 79 by the cassette control unit 69.
  • the reset switch 79 When the reset switch 79 is turned on by the cassette control unit 69, the output OP of the charge amplifier 75 is reset during the reset time trst as shown by the output voltage in FIG. At this time, charges are released with a time constant depending on the response characteristics of the charge amplifier 75, and the discharge of the charges is saturated at some point. Therefore, although the reset switch 79 is turned off, the charge CDS1 is superimposed when the reset switch 79 is turned off.
  • the gate of the thin film transistor 72 (TFT gate) is turned on to read out the charge, and after the gate on time tgon elapses, the gate is turned off to complete the reading of the charge.
  • Feedthrough noise is superimposed by turning the gate on and off, but is integrated by the charge amplifier 75, so that the feedthrough overlap is canceled out and the charge CDS2 is obtained.
  • charge CDS2 ⁇ charge CDS1 actual output, the actual output is calculated by the sample and hold circuit.
  • the charge CDS1 is not a constant charge but a random charge. If the reset period is short, the charge CDS1 cannot be released and the charge CDS1 becomes large. However, the charge CDS1 is simply shifted upward by the charge CDS1. There is no real harm in conditions such as shooting with few.
  • FIG. 8A is a diagram showing amplifier reset by the reset switch 79, reference sampling of the sample and hold circuit 76, signal sampling of the sample and hold circuit 76, and on / off timing of the gate of the thin film transistor 72 in the data read period
  • FIG. 8C is a diagram in which the amplifier reset time is shortened.
  • the amplifier reset time for shooting of an amount of charge larger than a predetermined amount of charge is T 1 shown in FIG.
  • a predetermined amount of charge for example, still image shooting or high-definition still image shooting
  • the amplifier reset time is shortened by shortening the ON time of the switch 79 to T 2 ( ⁇ T 1 ).
  • the readout time is shortened and the photographing time is shortened.
  • the amount of reduction in the amplifier reset time is determined in advance by experiments or the like.
  • FIG. 9 is a flowchart showing the radiographic imaging preparation control routine.
  • step 200 it is determined whether or not a shooting instruction has been issued. If the determination is negative, the routine ends. If the determination is affirmative, the routine proceeds to step 202.
  • step 202 an initial information input screen is displayed on the display 80, and the process proceeds to step 204. That is, the display driver 92 is controlled so that a predetermined initial information input screen is displayed on the display 80.
  • step 204 it is determined whether or not predetermined information has been input.
  • the process waits until the determination is affirmed, and the process proceeds to step 206.
  • the initial information input screen for example, the name of the subject who is going to take a radiographic image, the part to be imaged, the posture at the time of imaging, and the irradiation condition of the radiation X at the time of imaging (in this embodiment, the radiation X is irradiated)
  • Message for prompting the input of the tube voltage and tube current) and an input area for such information are displayed.
  • the photographer When the initial information input screen is displayed on the display 80, the photographer displays the name of the subject to be imaged, the region to be imaged, the posture at the time of imaging, and the irradiation conditions in the corresponding input areas on the operation panel 82. Enter through.
  • the radiographer enters the radiography room 32 together with the subject.
  • the radio cassette 22A is supported while holding the electronic cassette 20 in the holding unit 44 of the corresponding prone position table 36.
  • the subject is positioned (positioned) at a predetermined imaging position.
  • the subject and the electronic cassette 20 are ready to capture the imaging target site.
  • the radiation source 22A are positioned (positioned).
  • step 204 is affirmed and the routine proceeds to step 206.
  • step 204 is an infinite loop, but it may be forcibly terminated by operating a cancel button provided on the operation panel 82.
  • step 206 information input on the initial information input screen (hereinafter referred to as “initial information”) is transmitted to the electronic cassette 20 via the wireless communication unit 96, and then the process proceeds to the next step 208.
  • the irradiation conditions included in the initial information are set by transmitting the irradiation conditions to the radiation generator 24 via the wireless communication unit 96.
  • the image processing control unit 102 of the radiation generator 24 prepares for irradiation under the received irradiation conditions.
  • step 210 the start of ABC control is instructed, and then the process proceeds to step 212, where the instruction information instructing the start of radiation irradiation is transmitted to the radiation generator 24 via the wireless communication unit 96. Ends.
  • FIG. 10 is a flowchart showing a radiation irradiation control routine.
  • step 300 it is determined whether or not there has been an irradiation start instruction. If a negative determination is made, this routine ends. If an affirmative determination is made, the routine proceeds to step 302.
  • step 302 the steady-state radiation dose (initial value) XN is read, and the process proceeds to step 304.
  • step 304 irradiation is started with the read steady-state radiation dose, and the process proceeds to step 306. That is, irradiation from the radiation irradiation source 22 ⁇ / b> A is started by applying a tube voltage and a tube current corresponding to the irradiation upper limit received from the console 30 to the radiation generator 24. The radiation X emitted from the radiation source 22A passes through the subject and reaches the electronic cassette 20.
  • step 306 the currently stored radiation dose correction information is read, and the process proceeds to step 308.
  • This radiation dose correction information is generated by ABC control and is stored as a correction coefficient ⁇ X.
  • step 308 correction processing based on ABC control is executed, and the process proceeds to step 310. That is, based on the gradation signal (QL value) obtained from the electronic cassette 20, an average value of the QL values of the region of interest image is calculated, and the average value of the QL values is compared with a predetermined threshold value. The radiation dose is feedback controlled so as to converge to the threshold value.
  • QL value the gradation signal
  • step 310 it is determined whether or not an instruction to end shooting is given. If the determination is affirmative, the process proceeds to step 312. If the determination is negative, the process returns to step 306 and the above-described processing is repeated.
  • step 312 the irradiation is terminated, and the radiographic image capturing control is terminated.
  • FIG. 11 is a flowchart showing an image processing control routine.
  • step 400 gradation information for one frame is sequentially captured, and the process proceeds to step 402. That is, gradation signals generated by the TFT substrate 74 of the electronic cassette 20 are sequentially taken into the image processing control unit 102 under the control of the panel control unit 106. Before the gradation signal is captured by the image processing control unit 102, the gradation signal is sequentially captured in the cassette control unit 69 by a gradation signal capturing process described later, and the gradation signal captured by the cassette control unit 69 is sequentially displayed on the panel. The image is sent to the image processing control unit 102 under the control of the control unit 106.
  • step 402 a still image is generated, and the process proceeds to step 403. That is, a still image is generated when a grayscale signal for one frame is captured.
  • step 403 it is determined whether or not moving image shooting is performed. If the determination is affirmative, the process proceeds to step 404. If the determination is negative, the image processing control is terminated as it is.
  • step 404 the moving image editing process is performed, and the process proceeds to step 406.
  • moving image editing is performed by combining still images for each frame generated in step 402.
  • step 406 image display processing is performed, and the process proceeds to step 408.
  • the display driver 92 displays the moving image generated by the moving image editing process on the display 80 by sending it to the display driver 92.
  • step 408 the region of interest is set, and the process proceeds to step 410.
  • the region of interest is set by, for example, pattern matching or detecting a region with a large amount of movement, but the region of interest may be set by a user operation.
  • step 410 the gradation signal of the set region of interest is extracted, and the process proceeds to step 412.
  • step 412 the average QL value of the gradation signal of the region of interest is calculated and the process proceeds to step 414.
  • step 414 the pre-stored reference QL value is read and the process proceeds to step 416.
  • step 416 the calculated average QL value is compared with the read reference QL value to determine whether correction is possible or not, and the process proceeds to step 418.
  • the determination as to whether correction is possible may be an on / off determination in which a predetermined amount of correction is performed if the difference is greater than or equal to a predetermined value in the comparison result, and no correction is performed if the difference is less than a predetermined value.
  • it may be a solution of a calculation using a predetermined calculation formula (for example, a calculation formula based on PID control or the like).
  • step 418 radiation dose correction information ⁇ X is generated based on the comparison / correction determination result in step 416, and the process proceeds to step 420.
  • step 420 the generated correction information ⁇ X is stored, and the image processing control is terminated.
  • FIG. 12 is a flowchart showing the gradation signal fetch processing routine.
  • step 500 it is determined whether or not the photographing is performed when the charge is expected to be lower than a predetermined value. In this determination, for example, it is determined whether or not the instructed shooting is moving image shooting, positioning moving image shooting, or infant shooting. If the determination is affirmative, the process proceeds to step 502, and if the determination is negative, the process proceeds to step 504. It should be noted that the determination is denied when a moving image continuous shooting for cutting out a still image is instructed even in moving image shooting. In other words, when cutting out still images from movie shooting, if the reset time is shortened as in the following processing, there is a possibility that charges will remain and adversely affect still images that require high definition.
  • the reset time is not shortened for the shooting that is the target of the still image.
  • control is performed so as not to shorten the reset time for the still image shooting frame.
  • Cut out a still image from movie shooting here means to cut out a still image by shooting a movie with still image shooting (still image shooting under still image shooting conditions) that increases the amount of charge during movie shooting. Represents that.
  • step 502 the amplifier reset time of the charge amplifier 75 is set to a value shorter than a predetermined specified value, and the process proceeds to step 506. Note that the amount of shortening of the amplifier reset time is determined in advance through experiments or the like.
  • step 504 the amplifier reset time of the charge amplifier 75 is set to a predetermined specified value, and the process proceeds to step 506.
  • step 506 gradation signals for one frame are sequentially read, and the process proceeds to step 508. That is, in the case of shooting other than shooting when the charge is expected to be lower than the predetermined value, as shown in FIG. 8B, the amplifier reset time of the specified value is set, and the charge is expected to be lower than the predetermined value. In the case of shooting, as shown in FIG. 8C, the amplifier reset time when the reset switch 79 is turned on for each line is shortened below a specified value, and gradation signals are sequentially read out. As a result, in the case of imaging where the charge is expected to be lower than a predetermined value, the imaging time is shortened and the burden on the subject can be reduced.
  • step 508 it is determined whether or not the photographing is finished. If the determination is negative, the process returns to step 500 and the above-described processing is repeated. When the determination is affirmed, the series of processing ends.
  • the amplifier reset time of the charge amplifier 75 is set as an amplifier for other shooting.
  • the photographing time corresponding to the shortened amplifier reset time can be shortened.
  • the radiation dose exposed to the subject can be reduced, and the burden on the subject can be reduced.
  • moving image shooting, positioning moving image shooting, infant shooting and the like are examples of shooting when the reset time of the charge amplifier 75 is shortened, that is, when the charge is expected to be lower than a predetermined value.
  • the present invention is not limited to this, and in the case of shooting that is expected to have a lower charge than usual even in still image shooting (for example, pre-exposure that is shot in advance before shooting), the charge amplifier 75
  • the reset time may be shortened. Further, the reset time may be shortened as the electric charge generated by photographing is smaller. Furthermore, the reset time may be shortened according to the type of continuous shooting.
  • the present invention is not limited to this. If the charge amount estimated from the order is smaller than a predetermined charge amount, the reset time may be shortened.
  • the electronic cassette 20 detects an irradiation amount of the radiation X with respect to the radiation detector 26 and terminates the capturing of the radiation image based on the accumulated irradiation amount.
  • the electronic cassette 20 controls AEC (Automatic Exposure Control).
  • the reset time is controlled based on the result of the AEC control process so that the reset time is shortened when the amount of charge generated by imaging is smaller than a predetermined value. You may make it do.
  • the reset time is shortened.
  • the reset time is shortened, that is, the charge is expected to be lower than the predetermined value.
  • the photographing in the case where the charge is generated is not limited to the above.
  • photographing with a charge that is lower in charge generated in a specific pixel than in other pixels or a predetermined value may be applied. It may be possible to apply photographing in which the average charge or maximum charge of a specific area (or the whole area) is lower than a predetermined charge or an average charge or maximum charge other than the specific area, or a specific pixel or specific charge. You may make it apply imaging
  • representative values for example, an average value, a centroid value, and a maximum value of a specific region
  • a predetermined specific region for example, a region of interest (ROI: Region Of Interest) or a predetermined pixel
  • ROI Region Of Interest
  • predetermined pixel for example, a region of interest (ROI: Region Of Interest) or a predetermined pixel
  • each flowchart in the above embodiment may be stored and distributed as various programs in various storage media.
  • (Modification 1) (A) In each pixel of the radiation detector in which a plurality of pixels configured to include a sensor unit that generates charges according to the irradiated radiation and a switching element for reading out the charges generated by the sensor unit are arranged A reset means for resetting the charge of the integrating capacitor for integrating the charge is provided, and an electric signal due to the charge read out from the corresponding pixel by the switching element is set at a predetermined amplification factor.
  • Control means A non-transitory computer-readable storage medium storing a radiographic imaging control program for causing a computer to execute processing.
  • Modification 2 In (b), the computer-readable storage medium according to the first modification, in which the switch unit is controlled so that the reset time becomes shorter as the charge generated by the photographing is smaller.
  • Modification 3 In (b), in the case of moving image shooting, the computer-readable storage medium according to Modification 1 or Modification 2 that controls the switch unit so that the reset time by the reset unit is shorter than still image shooting .
  • Modification 4 In (b), in the case of positioning moving image shooting for adjusting at least one of the shooting position and the shooting timing, the switch unit is controlled such that the reset time is shorter than a predetermined time. 4. The computer-readable storage medium according to any one of 3. (Modification 5) 5. The computer-readable storage medium according to any one of Modifications 1 to 4, wherein the switch unit is controlled so that the reset time is shortened according to the type of continuous shooting in (b).

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

 照射された放射線に応じた電荷を発生するセンサ部及び当該センサ部で発生された電荷を読み出すためのスイッチング素子を含んで構成された画素が複数配列された放射線検出器と、前記放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段と、前記放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、前記リセット手段によるリセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する制御手段と、を備えた放射線画像撮影制御装置。

Description

放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム
 本発明は、放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラムに関する。
 近年、TFT(Thin Film Transistor)アクティブマトリクス基板上に放射線感応層を配置し、放射線量をデジタルデータ(電気信号)に変換できるFPD(Flat Panel Detector)等の放射線検出器(「電子カセッテ」等という場合がある)が実用化されており、この放射線検出器を用いて、照射された放射線量により表わされる放射線画像を撮影する放射線画像撮影装置が実用化されている。
 このような放射線検出器では、放射線量に対応する電荷を蓄積して読み出して信号処理を行うが、この信号処理を行う装置の一例として、例えば、特開2002-199292号公報に記載の技術が提案されている。
 特開2002-199292号公報に記載の技術では、複数の信号源に接続される複数の端子と、複数の端子から入力される信号を直列信号に変換して出力する読み出し用回路部と、を有する信号転送装置において、読み出し用回路部が、各端子に接続された第1演算増幅器と、該第1演算増幅器の出力を受ける第2演算増幅器と、を有して、第1演算増幅器が、対応する端子に接続された反転入力端子と、該反転入力端子との間に、並列接続された積分容量とスイッチが接続された出力端子と、基準電圧が供給される正転入力端子と、を備えた信号処理装置が提案されている。また、第2演算増幅器が、基準電圧が供給される正転入力端子と、第1演算増幅器の出力を受ける反転入力端子と、を備えて、第2演算増幅器の反転入力端子と出力端子との間に積分容量とリセットスイッチを接続し、第1演算増幅器のスイッチと第2演算増幅器のリセットスイッチの開閉時間を制御する回路を備えることが記載されている。
 特開2002-199292号公報に記載の技術では、増幅器のリセット時間を制御することが記載されている。しかしながら、残存電荷をリセットしきることが前提であるため、リセット時間を更に短縮して撮影時間を短縮するためにはまだ改善の余地がある。
 本発明は、上記事実を考慮して成されたもので、撮影時間を短縮することを目的とする。
 上記目的を達成するために本発明の放射線画像撮影制御装置は、照射された放射線に応じた電荷を発生するセンサ部及び当該センサ部で発生された電荷を読み出すためのスイッチング素子を含んで構成された画素が複数配列された放射線検出器と、前記放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段と、前記放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、前記リセット手段によるリセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する制御手段と、を備えている。
 本発明の放射線画像撮影制御装置によれば、放射線検出器では、センサ部及びスイッチング素子を含んで構成された画素が複数配列されており、照射された放射線に応じた電荷がセンサ部で発生され、当該電荷がスイッチング素子により読み出される。
 増幅手段では、放射線検出器の各画素に対応して設けられ、電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号が予め定めた増幅率で増幅される。
 そして、制御手段では、放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、リセット手段によるリセット時間が予め定めた時間よりも短くなるように、スイッチ手段が制御される。すなわち、放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合に撮影を行う場合には、他の撮影を行う場合よりも電荷が少ないので、リセット手段によるリセット時間を短くすることができ、これにより、撮影時間を短縮することができる。従って、撮影時間を短縮することができるので、被験者の放射線の照射量が低減され、被験者への負担を軽減することができる。
 なお、制御手段は、前記撮影によって発生する電荷が少ない程、前記リセット時間が短くなるように、前記スイッチ手段を制御するようにしてもよいし、動画撮影の場合に、静止画撮影に比較して前記リセット手段によるリセット時間が短くなるように、前記スイッチ手段を制御するようにしてもよいし、撮影位置及び撮影タイミングの少なくとも一方を調整するためのポジショニング動画撮影の場合に、前記リセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御するようにしてもよいし、連続撮影の種類に応じて前記リセット時間が短くなるように、前記スイッチ手段を制御するようにしてもよいし、動画像から静止画を切り出す動画連写撮影の場合は、静止画の対象となる撮影に対して前記リセット時間を短くせずに前記予め定めた時間でリセットするように、前記リセット手段を制御するようにしてもよい。
 また、本発明は、上述の放射線画像撮影制御装置と、被検体を介して前記放射線検出器に放射線を照射する放射線照射手段と、を備えた放射線画像撮影システムとしてもよい。
 一方、本発明の放射線画像撮影装置の制御方法は、(a)照射された放射線に応じた電荷を発生するセンサ部及び当該センサ部で発生された電荷を読み出すためのスイッチング素子を含んで構成された画素が複数配列された放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段における前記リセット手段によって撮影前に残存した電荷をリセットし、(b)前記放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、(a)におけるリセット手段によるリセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する。
 本発明の放射線画像撮影装置の制御方法によれば、(a)では、放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段におけるリセット手段によって撮影前に残存した電荷をリセットする。
 また、(b)では、放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、(a)におけるリセット手段によるリセット時間が予め定めた時間よりも短くなるように、スイッチ手段を制御する。すなわち、放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合に撮影を行う場合には、他の撮影を行う場合よりも電荷が少ないので、リセット手段によるリセット時間を短くすることができ、これにより撮影時間を短縮することができる。この撮影時間の短縮によって、被験者の放射線の照射量が低減され、被験者への負担を軽減することができる。
 なお、(b)において、前記撮影によって発生する電荷が少ない程、前記リセット時間が短くなるように、前記スイッチ手段を制御するようにしてもよいし、動画撮影の場合に、静止画撮影に比較して前記リセット手段によるリセット時間が短くなるように、前記スイッチ手段を制御するようにしてもよいし、撮影位置及び撮影タイミングの少なくとも一方を調整するためのポジショニング動画撮影の場合に、前記リセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御するようにしてもよいし、連続撮影の種類に応じて前記リセット時間が短くなるように、前記スイッチ手段を制御するようにしてもよいし、動画像から静止画を切り出す動画連写撮影の場合は、静止画の対象となる撮影に対して前記リセット時間を短くせずに前記予め定めた時間でリセットするように、前記リセット手段を制御するようにしてもよい。
 一方、本発明の放射線画像撮影制御プログラムは、(a)照射された放射線に応じた電荷を発生するセンサ部及び当該センサ部で発生された電荷を読み出すためのスイッチング素子を含んで構成された画素が複数配列された放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段における前記リセット手段によって撮影前に残存した電荷をリセットし、(b)前記放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、(a)におけるリセット手段によるリセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する、処理をコンピュータに実行させる。
 本発明の放射線画像撮影制御プログラムによれば、(a)では、放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段におけるリセット手段によって撮影前に残存した電荷をリセットする。
 また、(b)では、放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、(a)におけるリセット手段によるリセット時間が予め定めた時間よりも短くなるように、スイッチ手段を制御する。すなわち、放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合に撮影を行う場合には、他の撮影を行う場合よりも電荷が少ないので、リセット手段によるリセット時間を短くすることができ、これにより撮影時間を短縮することができる。従って、撮影時間を短縮することができるので、被験者の放射線の照射量が低減され、被験者への負担を軽減することができる。
 なお、(b)において、前記撮影によって発生する電荷が少ない程、前記リセット時間が短くなるように、前記スイッチ手段を制御するようにしてもよいし、動画撮影の場合に、静止画撮影に比較して前記リセット手段によるリセット時間が短くなるように、前記スイッチ手段を制御するようにしてもよいし、撮影位置及び撮影タイミングの少なくとも一方を調整するためのポジショニング動画撮影の場合に、前記リセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御するようにしてもよいし、連続撮影の種類に応じて前記リセット時間が短くなるように、前記スイッチ手段を制御するようにしてもよいし、動画像から静止画を切り出す動画連写撮影の場合は、静止画の対象となる撮影に対して前記リセット時間を短くせずに前記予め定めた時間でリセットするように、前記リセット手段を制御するようにしてもよい。
 以上説明した如く、本発明では、放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、リセット時間を予め定めた時間よりも短くすることにより、撮影時間を短縮して被験者への負担を軽減することができる、という優れた効果を有する。
実施の形態に係る放射線情報システムの構成を示すブロック図である。 実施の形態に係る放射線画像撮影システムの放射線撮影室における各装置の配置状態の一例を示す側面図である。 実施の形態に係る放射線検出器の4画素部分の概略構成を示す断面模式図である。 実施の形態に係る放射線検出器の画素部の電気的構成を示す図である。 実施の形態に係る放射線検出器の信号処理部の概略構成を示すブロック図である。 実施の形態に係る放射線検出器の1画素部分に注目した等価回路を示す図である。 本発明の実施の形態に係る撮影システムの制御ブロック図である。 チャージアンプの電荷の読み出しに伴う出力波形を示す図である。 データ読み出し期間におけるリセットスイッチによるアンプリセット、サンプルホールド回路の基準サンプリング、サンプルホールド回路の信号サンプリング、及び薄膜トランジスタのゲートのオンオフタイミングを示す図である。 図8Aの1ライン分のデータ読み出し期間を拡大した図である。 図8Bのアンプリセット時間を短縮した図である。 本発明の実施の形態に係る放射線画像撮影準備制御ルーチンを示すフローチャートである。 本発明の実施の形態に係る放射線照射制御ルーチンを示すフローチャートである。 本発明の実施の形態に係る画像処理制御ルーチンを示すフローチャートである。 本発明の実施の形態に係る階調信号取込処理ルーチンを示すフローチャートである。
 図1は、本実施の形態に係る放射線情報システム(以下、「RIS」(Radiology Information System)という。)10の概略構成図である。このRIS10は、静止画に加え、動画を撮影することが可能である。なお、動画の定義は、静止画を高速に次々と表示して、動画として認知させることを言い、静止画を撮影し、電気信号に変換し、伝送して当該電気信号から静止画を再生する、というプロセスを高速に繰り返すものである。従って、前記「高速」の度合いによって、予め定められた時間内に同一領域(一部又は全部)を複数回撮影し、かつ連続的に再生する、「コマ送り」も動画に包含されるものとする。
 RIS10は、放射線科部門内における、診療予約、診断記録等の情報管理を行うためのシステムであり、病院情報システム(以下、「HIS」(Hospital Information System)という。)の一部である。
 RIS10は、複数台の撮影依頼端末装置(以下、「端末装置」という。)12、RISサーバー14、および病院内の放射線撮影室(あるいは手術室)の個々に設置された複数の放射線画像撮影システム(以下、「撮影システム」という。)16を有しており、これらが有線や無線のLAN(Local Area Network)等から成る病院内ネットワーク18に各々接続されて構成されている。なお、病院内ネットワーク18には、HIS全体を管理するHISサーバーが接続されている。また、撮影システム16は、単一、或いは3以上の設備であってもよく、図1では、撮影室毎に設置しているが、単一の撮影室に2台以上の撮影システム16を配置してもよい。
 端末装置12は、医師や放射線技師が、診断情報や施設予約の入力、閲覧等を行うためのものであり、放射線画像の撮影依頼や撮影予約は、この端末装置12を介して行われる。各端末装置12は、表示装置を有するパーソナル・コンピュータを含んで構成され、RISサーバー14と病院内ネットワーク18を介して相互通信が可能とされている。
 一方、RISサーバー14は、各端末装置12からの撮影依頼を受け付け、撮影システム16における放射線画像の撮影スケジュールを管理するものであり、データベース14Aを含んで構成されている。
 データベース14Aは、被検体としての患者(被検者)の属性情報(氏名、性別、生年月日、年齢、血液型、体重、患者ID(Identification)等)、病歴、受診歴、過去に撮影した放射線画像等の患者に関する情報、撮影システム16で用いられる、後述する電子カセッテ20の識別番号(ID情報)、型式、サイズ、感度、使用開始年月日、使用回数等の電子カセッテ20に関する情報、および電子カセッテ20を用いて放射線画像を撮影する環境、すなわち、電子カセッテ20を使用する環境(一例として、放射線撮影室や手術室等)を示す環境情報を含んで構成されている。
 なお、医療機関が管理する医療関連データをほぼ永久に保管し、必要なときに、必要な場所から瞬時に取り出すシステム(「医療クラウド」等と言う場合がある)を利用して、病院外のサーバーから、患者(被検者)の過去の個人情報等を入手するようにしてもよい。
 撮影システム16は、RISサーバー14からの指示に応じて医師や放射線技師の操作により放射線画像の撮影を行う。撮影システム16は、放射線照射制御ユニット22(図6参照)の制御により放射線Xを照射する放射線照射源22Aから、照射条件に従った線量とされた放射線Xを被検者に照射する放射線発生装置24と、被検者の撮影対象部位を透過した放射線Xを吸収して電荷を発生し、発生した電荷量に基づいて放射線画像を示す画像情報を生成する放射線検出器26(図3A参照)を内蔵する電子カセッテ20と、電子カセッテ20に内蔵されているバッテリを充電するクレードル28と、電子カセッテ20および放射線発生装置24を制御するコンソール30と、を備えている。
 コンソール30は、RISサーバー14からデータベース14Aに含まれる各種情報を取得して後述するHDD88(図6参照。)に記憶し、必要に応じて当該情報を用いて、電子カセッテ20および放射線発生装置24の制御を行う。
 図2には、本実施の形態に係る撮影システム16の放射線撮影室32における各装置の配置状態の一例が示されている。
 図2に示される如く、放射線撮影室32には、立位での放射線撮影を行う際に用いられる立位台34と、臥位での放射線撮影を行う際に用いられる臥位台36とが設置されており、立位台34の前方空間は立位での放射線撮影を行う際の被検者38の撮影位置とされ、臥位台36の上方空間は臥位での放射線撮影を行う際の被検者40の撮影位置とされている。
 立位台34には電子カセッテ20を保持する保持部42が設けられており、立位での放射線画像の撮影を行う際には、電子カセッテ20が保持部42に保持される。同様に、臥位台36には電子カセッテ20を保持する保持部44が設けられており、臥位での放射線画像の撮影を行う際には、電子カセッテ20が保持部44に保持される。
 また、放射線撮影室32には、単一の放射線照射源22Aからの放射線によって立位での放射線撮影も臥位での放射線撮影も可能とするために、放射線照射源22Aを、水平な軸回り(図2の矢印A方向)に回動可能で、鉛直方向(図2の矢印B方向)に移動可能で、さらに水平方向(図2の矢印C方向)に移動可能に支持する支持移動機構46が設けられている。この図2の矢印A~C方向へ移動(回動を含む)させる駆動源は、支持移動機構46に内蔵されている。
 一方、クレードル28には、電子カセッテ20を収納可能な収容部28Aが形成されている。
 電子カセッテ20は、未使用時にはクレードル28の収容部28Aに収納された状態で内蔵されているバッテリに充電が行われ、放射線画像の撮影時には放射線技師等によってクレードル28から取り出され、撮影姿勢が立位であれば立位台34の保持部42に保持され、撮影姿勢が臥位であれば臥位台36の保持部44に保持される。
 ここで、本実施の形態に係る撮影システム16では、放射線発生装置24とコンソール30との間、および電子カセッテ20とコンソール30との間で、無線通信によって各種情報の送受信を行う(詳細後述)。
 なお、電子カセッテ20は、立位台34の保持部42や臥位台36の保持部44で保持された状態のみで使用されるものではなく、その可搬性から、腕部,脚部等を撮影する際には、保持部に保持されていない状態で使用することもできる。
 また、電子カセッテ20には後述する放射線検出器が内蔵される。内蔵された放射線検出器は、放射線をシンチレータで光に変換した後にフォトダイオード等の光電変換素子で電荷に変換する間接変換方式、放射線をアモルファスセレン等の半導体層で電荷に変換する直接変換方式の何れでもよい。直接変換方式の放射線検出器は、TFTアクティブマトリクス基板上に、放射線Xを吸収し、電荷に変換する光電変換層が積層されて構成されている。光電変換層は例えばセレンを主成分(例えば含有率50%以上)とする非晶質のa-Se(アモルファスセレン)からなり、放射線Xが照射されると、照射された放射線量に応じた電荷量の電荷(電子-正孔の対)を内部で発生することで、照射された放射線Xを電荷へ変換する。間接変換方式の放射線検出器は、アモルファスセレンのような放射線Xを直接的に電荷に変換する放射線-電荷変換材料の代わりに、蛍光体材料と光電変換素子(フォトダイオード)を用いて間接的に電荷に変換してもよい。蛍光体材料としては、テルビウム賦活酸硫化ガドリニウム(GdS:Tb)(略称GOS)やタリウム賦活ヨウ化セシウム(CsI:Tl)がよく知られている。この場合、蛍光体材料によって放射線X-光変換を行い、光電変換素子のフォトダイオードによって光-電荷変換を行う。本実施の形態に係る電子カセッテ20は、間接変換方式の放射線検出器を内蔵するものとして説明する。
 図3Aは、電子カセッテ20に装備される放射線検出器26の4画素部分の構成を概略的に示す断面模式図であり、図3Bは、放射線検出器26の画素部の電気的構成を示す図である。
 図3Aに示される如く、放射線検出器26は、絶縁性の基板50上に、信号出力部52、センサ部54(TFT基板74)、およびシンチレータ56が順次積層しており、信号出力部52、センサ部54によりTFT基板74の画素群が構成されている。すなわち、複数の画素は、基板50上にマトリクス状に配列されており、各画素における信号出力部52とセンサ部54とが重なりを有するように構成されている。なお、信号出力部52とセンサ部54との間には、絶縁膜53が介在されている。
 シンチレータ56は、センサ部54上に透明絶縁膜58を介して形成されており、上方(基板50の反対側)または下方から入射してくる放射線を光に変換して発光する蛍光体を成膜したものである。このようなシンチレータ56を設けることで、被写体を透過した放射線を吸収して発光することになる。
 シンチレータ56が発する光の波長域は、可視光域(波長360nm~830nm)であることが好ましく、この放射線検出器26によってモノクロ撮像を可能とするためには、緑色の波長域を含んでいることがより好ましい。
 シンチレータ56に用いる蛍光体としては、詳細には、放射線としてX線を用いて撮像する場合、ヨウ化セシウム(CsI)を含むものが好ましく、X線照射時の発光スペクトルが420nm~700nmにあるCsI(Tl)(タリウムが添加されたヨウ化セシウム)を用いることが特に好ましい。なお、CsI(Tl)の可視光域における発光ピーク波長は565nmである。
 なお、本実施の形態では、シンチレータ56の放射線照射面側にTFT基板74が配置された方式の「表面読取方式(ISS:Irradiation Side Sampling)」を適用した例を示すが、シンチレータの放射線入射側とは反対側にTFT基板を配置する「裏面読取方式(PSS:Penetration Side Sampling)」を適用するようにしてもよい。シンチレータは放射線入射側がより強く発光するので、シンチレータの放射線入射側にTFT基板を配置する表面読取方式(ISS)は、シンチレータの放射線入射側とは反対側にTFT基板を配置する裏面読取方式(PSS)」よりもTFT基板とシンチレータの発光位置とが接近することから、撮影によって得られる放射線画像の分解能が高く、また、TFT基板の受光量が増大することで、結果として放射線画像の感度が向上する。
 センサ部54は、上部電極60、下部電極62、および当該上下の電極間に配置された光電変換膜64を有し、光電変換膜64は、シンチレータ56が発する光を吸収して電荷が発生する有機光電変換材料により構成されている。
 上部電極60は、シンチレータ56により生じた光を光電変換膜64に入射させる必要があるため、少なくともシンチレータ56の発光波長に対して透明な導電性材料で構成することが好ましく、詳細には、可視光に対する透過率が高く、抵抗値が小さい透明導電性酸化物(TCO:Transparent Conducting Oxide)を用いることが好ましい。なお、上部電極60としてAuなどの金属薄膜を用いることもできるが、透過率を90%以上得ようとすると抵抗値が増大し易いため、TCOの方が好ましい。例えば、ITO、IZO、AZO、FTO、SnO、TiO、ZnO等を好ましく用いることができ、プロセス簡易性、低抵抗性、透明性の観点からはITOが最も好ましい。なお、上部電極60は、全画素で共通の一枚構成としてもよく、画素毎に分割してもよい。
 光電変換膜64は、有機光電変換材料を含み、シンチレータ56から発せられた光を吸収し、吸収した光に応じた電荷を発生する。このように有機光電変換材料を含む光電変換膜64であれば、可視域にシャープな吸収スペクトルを持ち、シンチレータ56による発光以外の電磁波が光電変換膜64に吸収されることがほとんどなく、X線等の放射線が光電変換膜64で吸収されることによって発生するノイズを効果的に抑制することができる。
 光電変換膜64の有機光電変換材料は、シンチレータ56で発光した光を最も効率よく吸収するために、その吸収ピーク波長が、シンチレータ56の発光ピーク波長と近いほど好ましい。有機光電変換材料の吸収ピーク波長とシンチレータ56の発光ピーク波長とが一致することが理想的であるが、双方の差が小さければシンチレータ56から発された光を十分に吸収することが可能である。詳細には、有機光電変換材料の吸収ピーク波長と、シンチレータ56の放射線に対する発光ピーク波長との差が、10nm以内であることが好ましく、5nm以内であることがより好ましい。
 このような条件を満たすことが可能な有機光電変換材料としては、例えばキナクリドン系有機化合物およびフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ56の材料としてCsI(Tl)を用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜64で発生する電荷量をほぼ最大にすることができる。なお、本実施の形態では、有機光電変換材料を含む光電変換膜64を一例として説明するが、これに限るものではなく、光電変換膜64は、光を吸収して電荷を発生する材料であればよく、例えば、アモルファスシリコンなどの他の材料を適用するようにしてもよい。光電変換膜64をアモルファスシリコンで構成した場合には、シンチレータから放出された光を広い波長域に亘って吸収するように構成することができる。
 各画素のセンサ部54は、少なくとも下部電極62、光電変換膜64、および上部電極60を含んでいればよいが、暗電流の増加を抑制するため、電子ブロッキング膜66および正孔ブロッキング膜68の少なくともいずれかを設けることが好ましく、両方を設けることがより好ましい。
 電子ブロッキング膜66は、下部電極62と光電変換膜64との間に設けることができ、下部電極62と上部電極60間にバイアス電圧を印加したときに、下部電極62から光電変換膜64に電子が注入されて暗電流が増加してしまうのを抑制することができる。電子ブロッキング膜66には、電子供与性有機材料を用いることができる。
 正孔ブロッキング膜68は、光電変換膜64と上部電極60との間に設けることができ、下部電極62と上部電極60間にバイアス電圧を印加したときに、上部電極60から光電変換膜64に正孔が注入されて暗電流が増加してしまうのを抑制することができる。正孔ブロッキング膜68には、電子受容性有機材料を用いることができる。
 信号出力部52は、下部電極62に対応して、下部電極62に移動した電荷を蓄積するコンデンサ70と、コンデンサ70に蓄積された電荷を電気信号に変換して出力する電界効果型薄膜トランジスタ(Thin Film Transistor、以下、単に薄膜トランジスタという場合がある。)72が形成されている。コンデンサ70および薄膜トランジスタ72の形成された領域は、平面視において下部電極62と重なる部分を有しており、このような構成とすることで、各画素における信号出力部52とセンサ部54とが厚さ方向で重なりを有することとなる。なお、放射線検出器26(画素)の平面積を最小にするために、コンデンサ70および薄膜トランジスタ72の形成された領域が下部電極62によって完全に覆われていることが望ましい。
 マトリクス状に配列された画素における信号出力部52は、図3Bに示すように、一定方向(行方向)に延設され、個々の画素の薄膜トランジスタ72をオン・オフさせるための複数本のゲート配線Gと、ゲート配線Gと直交する方向に延設され、オンされた薄膜トランジスタ72を介してコンデンサ70から蓄積電荷を読み出すための複数本のデータ配線Dが設けられている。個々のゲート配線Gはゲート線ドライバ71に接続されており、個々のデータ配線Dは信号処理部73に接続されている。個々の画素部のコンデンサ70に電荷が蓄積されると、個々の画素部の薄膜トランジスタ72は、ゲート線ドライバ71からゲート配線Gを介して供給される信号により行単位で順にオンされる。薄膜トランジスタ72がオンされた画素部のコンデンサ70に蓄積された電荷は、アナログの電気信号としてデータ配線Dを伝送されて信号処理部73に入力される。従って、個々の画素部のコンデンサ70に蓄積されている電荷は行単位で順に読み出される。
 また、ゲート線ドライバ71は、1回の画像の読み出し動作で1ラインずつ順に各ゲート配線Gにオン信号を出力して1ラインずつ各画素部のコンデンサ70に蓄積された電荷を読み出す順次走査方式(プログレッシブ走査方式)に加え、1回の画像の読み出し動作でゲート線ドライバ71から複数ライン(例えば、2ラインや4ライン)ずつ順に各ゲート配線Gにオン信号を出力して複数ラインずつ各画素部のコンデンサ70に蓄積された電荷を読み出す(同時に読み出した画素の電荷を合成して読み出す)ビニング読出方式での読み出しが可能とされており、順次読出方式とビニング読出方式とに画像の読出方式が切り替え可能とされている。
 なお、順次走査方式と、ゲート配線Gを1行毎に奇数行目と偶数行目に分けて、画像の読み出し動作毎に、奇数行目又は偶数行目のゲート配線Gにオン信号を出力して1ライン毎に交互に各画素部に蓄積された電荷を読み出す飛越走査方式(インターレース走査方式)とで画像の読出方式が切り替え可能としてもよい。
 また、信号処理部73及びゲート線ドライバ71は、カセッテ制御部69が接続されており、カセッテ制御部69によってゲート線ドライバ71及び信号処理部73が制御される。なお、カセッテ制御部69は、CPU、ROM、RAM、HDDやフレッシュメモリ等を含むマイクロコンピュータで構成されている。
 また、放射線検出器26における各画素の配列は行と列に配置したマトリクス配列に限るものではなく、例えば、千鳥配列等の他の配列を適用するようにしてもよい。また、画素の形状は、矩形形状の画素を適用するようにしてもよいし、ハニカム形状等の多角形の形状を適用するようにしてもよい。
 図4は、本実施の形態に係る放射線検出器26の信号処理部73の概略構成を示すブロック図であり、図5は、本実施の形態に係る放射線検出器26の1画素部分に注目した等価回路を示す図である。
 図4に示すように、シンチレータ56によって光電変換された電荷は、薄膜トランジスタ72がオンされることにより読み出されて信号処理部73へ出力される。
 信号処理部73は、図4に示すように、チャージアンプ75、サンプルホールド回路76、マルチプレクサ77、及びA/D変換器78を備えている。
 薄膜トランジスタ72によって読み出された電荷は、チャージアンプ75によって積分されると共に予め定めた増幅率で増幅されて、サンプルホールド回路によって保持され、マルチプレクサ77を介してA/D変換器78に出力される。そして、A/D変換器78によってアナログ信号がデジタル信号に変換されて画像処理が可能とされるようになっている。
 さらに詳細には、図5に示すように、薄膜トランジスタ72のソースは、データ配線Dに接続されており、このデータ配線Dは、チャージアンプ75に接続されている。また、薄膜トランジスタ72のドレインはコンデンサ70に接続され、薄膜トランジスタ72のゲートはゲート配線Gに接続されている。
 個々のデータ配線Dを伝送された電荷信号はチャージアンプ75によって積分処理されて、サンプルホールド回路76に保持される。チャージアンプ75には、リセットスイッチ79が設けられており、リセットスイッチ79がオフされている間、電荷の読み出しが行われてサンプルホールド回路76で電荷信号が保持される。また、電荷の読み出しが終了すると、リセットスイッチ79をオンすることでチャージアンプ75の積分コンデンサC1に残存した電荷を放出してリセットする。
 サンプルホールド回路76に保持された電荷信号はアナログ電圧に変換されてマルチプレクサ77に順に(シリアル)入力され、A/D変換器78によってデジタルの画像情報に変換される。
 なお、薄膜トランジスタ72のオン・オフや、チャージアンプ75のリセットスイッチ79のオン・オフは、カセッテ制御部69によって制御される。
 図6は、本実施の形態に係る撮影システム16の制御ブロック図である。
 コンソール30は、サーバー・コンピュータとして構成されており、操作メニューや撮影された放射線画像等を表示するディスプレイ80と、複数のキーを含んで構成され、各種の情報や操作指示が入力される操作パネル82と、を備えている。
 また、本実施の形態に係るコンソール30は、装置全体の動作を司るCPU84と、制御プログラムを含む各種プログラム等が予め記憶されたROM86と、各種データを一時的に記憶するRAM87と、各種データを記憶して保持するHDD(ハードディスク・ドライブ)88と、ディスプレイ80への各種情報の表示を制御するディスプレイドライバ92と、操作パネル82に対する操作状態を検出する操作入力検出部90と、を備えている。
 また、コンソール30は、無線通信により、画像処理装置23及び放射線発生装置24との間で後述する照射条件等の各種情報の送受信を行うと共に、電子カセッテ20との間で画像データ等の各種情報の送受信を行うI/F(例えば、無線通信部)96及びI/O94を備えている。
 CPU84、ROM86、RAM87、HDD88、ディスプレイドライバ92、操作入力検出部90、I/O94、無線通信部96は、システムバスやコントロールバス等のバス98を介して相互に接続されている。従って、CPU84は、ROM86、RAM87、HDD88へのアクセスを行うことができると共に、ディスプレイドライバ92を介したディスプレイ80への各種情報の表示の制御、および無線通信部96を介した放射線発生装置24および電子カセッテ20との各種情報の送受信の制御を各々行うことができる。また、CPU84は、操作入力検出部90を介して操作パネル82に対するユーザの操作状態を把握することができる。
 一方、画像処理装置23は、コンソール30との間で照射条件等の各種情報を送受信するI/F(例えば無線通信部)100と、照射条件に基づいて、電子カセッテ20及び放射線発生装置24を制御する画像処理制御ユニット102と、を備えている。また、放射線発生装置24は、放射線照射源22Aからの放射線照射を制御する放射線照射制御ユニット22を備えている。
 画像処理制御ユニット102は、システム制御部104、パネル制御部106、画像処理制御部108を備え、相互にバス110によって情報をやりとりしている。パネル制御部106では、前記電子カセッテ20からの情報を、無線又は有線により受け付け、画像処理制御部108で画像処理が施される。
 一方、システム制御部104は、コンソール30から照射条件には管電圧、管電流等の情報を受信し、受信した照射条件に基づいて放射線照射制御ユニット22の放射線照射源22Aから放射線Xを照射させる制御を行う。
 ここで、上述のように構成された放射線検出器26において、シンチレータ56によって光電変換されてコンデンサ70に蓄電された電荷の読み出しについて説明する。図7はチャージアンプ75の電荷の読み出しに伴う出力波形を示す図である。
 放射線検出器26では、薄膜トランジスタ72をオン・オフすることで、コンデンサ70に蓄積された電荷が読み出されるが、電荷の読み出しの前に前回の読み出しによってチャージアンプ75の積分コンデンサC1に残存した電荷をリセットするために、チャージアンプ75のリセット動作が行われる。
 チャージアンプ75によるリセット動作は、カセッテ制御部69によってリセットスイッチ79をオン・オフすることによって行われる。カセッテ制御部69によってリセットスイッチ79がオンされると、図7の出力電圧で示すように、チャージアンプ75の出力OPは、リセット時間trstの間に電荷が放出されてリセットが行われる。このとき、チャージアンプ75の応答特性に依存した時定数を持って電荷が放出されて、あるところで電荷の放出が飽和状態となる。そこで、リセットスイッチ79をオフするが、リセットスイッチ79のオフによって電荷CDS1が重畳されてしまう。
 そして、薄膜トランジスタ72のゲート(TFTゲート)がオンされて電荷の読み出しが行われて、ゲートオン時間tgon経過後にゲートがオフされて電荷の読み出しが終了する。ゲートのオン・オフによってフィードスルーノイズが重畳されるが、チャージアンプ75によって積分されるので、フィードスルー重畳分は相殺されて、電荷CDS2が得られる。ここで、電荷CDS2-電荷CDS1=実出力となるので、サンプルホールド回路によって実出力が算出される。
 ここで、電荷CDS1は、一定ではなくランダム性の電荷で、リセット期間が短いと電荷を放出しきれずに電荷CDS1が大きくなってしまうが、全体が電荷CDS1分上にシフトされるだけで、電荷が少ない撮影などの条件では実害がない。
 そこで、本実施の形態では、電荷が少ない撮影の場合には、リセット時間を短縮しても実害がないことに着目して、電荷が少ない撮影を行う場合にリセット時間を短縮することにより撮影時間を短縮するようにしている。
 図8Aは、データ読み出し期間におけるリセットスイッチ79によるアンプリセット、サンプルホールド回路76の基準サンプリング、サンプルホールド回路76の信号サンプリング、及び薄膜トランジスタ72のゲートのオンオフタイミングを示す図であり、図8Bは1ライン分のデータ読み出し期間を拡大した図であり、図8Cはアンプリセット時間を短縮した図である。
 本実施の形態では、予め定めた電荷量より多い電荷量の撮影(例えば、静止画撮影や高精細静止画撮影)のアンプリセット時間が、図8Bに示すTであったとすると、所定の値より電荷が低いと予想される場合の撮影(例えば、動画撮影、撮影位置及びタイミングの少なくとも一方を調整するためのポジショニング動画撮影、幼児の撮影等)の場合に、図8Cに示すように、リセットスイッチ79のオン時間をT(<T1)に短縮することによってアンプリセット時間を短くする。これによって、読み出し時間が短縮されて撮影時間の短縮につながる。なお、アンプリセット時間の短縮量は実験等によって予め定める。
 続いて、本実施の形態の作用を図9~図12のフローチャートに従い説明する。
 図9は、放射線画像撮影準備制御ルーチンを示すフローチャートである。
 ステップ200では、撮影指示があったか否かが判断され、該判定が否定された場合にはこのルーチンは終了し、肯定された場合にはステップ202へ移行する。
 ステップ202では、初期情報入力画面がディスプレイ80に表示されてステップ204へ移行する。すなわち、予め定められた初期情報入力画面をディスプレイ80に表示させるようにディスプレイドライバ92を制御する。
 ステップ204では、所定情報が入力されたか否かが判定され、該判定が肯定されるまで待機してステップ206へ移行する。初期情報入力画面では、例えば、これから放射線画像の撮影を行う被検者の氏名、撮影対象部位、撮影時の姿勢、および撮影時の放射線Xの照射条件(本実施の形態では、放射線Xを照射する際の管電圧および管電流)の入力を促すメッセージと、これらの情報の入力領域が表示される。
 初期情報入力画面がディスプレイ80に表示されると、撮影者は、撮影対象とする被検者の氏名、撮影対象部位、撮影時の姿勢、および照射条件を、各々対応する入力領域に操作パネル82を介して入力する。
 撮影者は、被検者と共に放射線撮影室32に入室し、例えば、臥位である場合は、対応する臥位台36の保持部44に電子カセッテ20を保持させると共に放射線照射源22Aを対応する位置に位置決めした後、被検者を所定の撮影位置に位置(ポジショニング)させる。なお、撮影対象部位が腕部、脚部等の電子カセッテ20を保持部に保持させない状態で放射線画像の撮影を行う場合は、当該撮影対象部位を撮影可能な状態に被検者、電子カセッテ20、および放射線照射源22Aを位置決め(ポジショニング)させる。
 その後、撮影者は、放射線撮影室32を退室し、例えば、初期情報入力画面の下端近傍に表示されている終了ボタンを、操作パネル82を介して指定する。撮影者によって終了ボタンが指定されると、前記ステップ204が肯定されてステップ206へ移行する。なお、図9のフローチャートでは、ステップ204を無限ループとしたが、操作パネル82上に設けたキャンセルボタンの操作によって、強制終了させるようにしてもよい。
 ステップ206では、上記初期情報入力画面において入力された情報(以下、「初期情報」という。)を電子カセッテ20に無線通信部96を介して送信した後、次のステップ208へ移行して、前記初期情報に含まれる照射条件を放射線発生装置24へ無線通信部96を介して送信することにより当該照射条件を設定する。これに応じて放射線発生装置24の画像処理制御ユニット102は、受信した照射条件での照射準備を行う。
 次のステップ210では、ABC制御の起動を指示し、次いで、ステップ212へ移行して、放射線の照射開始を指示する指示情報を放射線発生装置24へ無線通信部96を介して送信し、このルーチンは終了する。
 次に、図10のフローチャートに従い、放射線照射制御の流れを説明する。図10は、放射線照射制御ルーチンを示すフローチャートである。
 ステップ300では、照射開始指示があった否かが判断され、否定判定された場合はこのルーチンは終了し、肯定判定された場合はステップ302へ移行する。
 ステップ302では、定常時放射線量(初期値)Xが読み出されて、ステップ304へ移行する。
 ステップ304では、読み出された定常時放射線量で照射が開始されてステップ306へ移行する。すなわち、コンソール30から受信した照射上限に応じた管電圧及び管電流を放射線発生装置24に印加することにより、放射線照射源22Aからの照射を開始する。放射線照射源22Aから射出された放射線Xは、被検者を透過した後に電子カセッテ20に到達する。
 ステップ306では、現在格納されている放射線量補正情報が読み出されてステップ308へ移行する。この放射線量補正情報は、ABC制御によって生成されるものであり、補正係数ΔXとして格納されている。
 次のステップ308では、ABC制御に基づく補正処理が実行されてステップ310へ移行する。すなわち、電子カセッテ20から得た階調信号(QL値)に基づいて、関心領域画像のQL値の平均値を演算し、このQL値の平均値が予め定めたしきい値と比較され、しきい値に収束するように、放射線量にフィードバック制御される。
 ステップ310では、撮影終了の指示があったか否かが判断され、該判定が肯定された場合には、ステップ312へ移行し、否定された場合にはステップ306に戻って上述の処理が繰り返される。
 そして、ステップ312では、照射を終了し、放射線画像撮影制御を終了する。
 続いて、図11のフローチャートに従い、画像処理制御の流れを説明する。図11は、画像処理制御ルーチンを示すフローチャートである。
 上述のように放射線画像撮影制御が行われるとステップ400では、1フレーム分の階調情報が順次取り込まれてステップ402へ移行する。すなわち、電子カセッテ20のTFT基板74によって生成された階調信号がパネル制御部106の制御によって画像処理制御ユニット102に順次取り込まれる。なお、階調信号を画像処理制御ユニット102に取り込む前に、後述する階調信号取込処理によってカセッテ制御部69に階調信号を順次取り込み、カセッテ制御部69によって取り込んだ階調信号が順次パネル制御部106の制御によって画像処理制御ユニット102へ送出される。
 ステップ402では、静止画が生成されてステップ403へ移行する。すなわち、1フレーム分の階調信号を取り込んだところで静止画像を生成する。 
 ステップ403では、動画撮影か否かが判定され、該判定が肯定された場合にはステップ404へ移行し、否定された場合にはそのまま画像処理制御を終了する。
 ステップ404では、動画編集処理が行われてステップ406へ移行する。動画編集処理は、ステップ402で生成された1フレーム毎の静止画像を組み合わせて動画編集が行われる。
 ステップ406では、画像表示処理が行われてステップ408へ移行する。画像表示処理では、動画編集処理によって生成された動画像をディスプレイドライバ92へ送出することにより、ディスプレイドライバ92によってディスプレイ80への表示が行われる。
 ステップ408では、関心領域設定が行われてステップ410へ移行する。関心領域の設定は、例えば、パターンマッチングや、移動量が大きい領域の検出などを行うことにより、関心領域を設定するが、ユーザの操作によって関心領域の設定を行うようにしてもよい。
 ステップ410では、設定された関心領域の階調信号が抽出されてステップ412へ移行する。
 ステップ412では、関心領域の階調信号の平均QL値が演算されてステップ414へ移行し、ステップ414では、予め格納された基準QL値が読み出されてステップ416へ移行する。
 ステップ416では、演算された平均QL値と、読み出された基準QL値とが比較されて、補正の可否が判定されてステップ418へ移行する。例えば、補正の可否の判定は、比較の結果において、差が所定以上であれば予め定めた量の補正を行い、差が所定未満であれば補正しないといったオン/オフ判定であってもよいし、差に基づいて、予め定めた演算式(例えば、PID制御等に基づく演算式)による演算の解であってもよい。
 ステップ418では、ステップ416の比較・補正可否判定結果に基づいて、放射線量の補正情報ΔXが生成されて、ステップ420へ移行する。
 そして、ステップ420では、生成した補正情報ΔXが格納されて、画像処理制御を終了する。
 次に、図12のフローチャートに従い、上述の階調信号を順次取り込む際にカセッテ制御部69で行われる階調信号取込処理の流れを説明する。図12は、階調信号取込処理ルーチンを示すフローチャートである。
 階調信号を取り込む際には、まずステップ500において所定の値より電荷が低いと予想される場合の撮影であるか否か判定される。該判定では、例えば、指示された撮影が動画撮影、ポジショニング動画撮影、幼児の撮影などであるか否かを判定する。該判定が肯定された場合にはステップ502へ移行し、否定された場合にはステップ504へ移行する。なお、動画撮影でも静止画を切り出す動画連写撮影が指示された場合には、判定が否定されるものとする。すなわち、動画撮影から静止画を切り出す場合には、以下の処理のようにリセット時間を短縮してしまうと、電荷が残留して高精細が必要な静止画に悪影響を与える可能性があるため、静止画を切り出す動画連写撮影の場合には静止画の対象となる撮影に対してリセット時間の短縮を行わないようにする。例えば、動画撮影の途中の任意のフレームで静止画撮影を実施する場合は、当該静止画撮影のフレームに対してはリセット時間の短縮を行わないように制御する。なお、ここで「動画撮影から静止画を切り出す」とは、動画撮影時に電荷量の多くなる静止画撮影(静止画撮影条件での静止画撮影)を挿入した動画撮影を行って静止画を切り出すことを表す。
 ステップ502では、チャージアンプ75のアンプリセット時間が予め定めた規定値より短縮した値に設定されてステップ506へ移行する。なお、アンプリセット時間の短縮量については、例えば、実験等によって予め定めるものとする。
 一方、ステップ504では、チャージアンプ75のアンプリセット時間が予め定めた規定値に設定されてステップ506へ移行する。
 ステップ506では、1フレーム分の階調信号が順次読み込まれてステップ508へ移行する。すなわち、所定の値より電荷が低いと予想される場合の撮影以外の撮影の場合には、図8Bに示すように、規定値のアンプリセット時間とされ、所定の値より電荷が低いと予想される場合の撮影の場合には、図8Cに示すように、1ライン毎のリセットスイッチ79オンのアンプリセット時間が規定値よりも短縮されて階調信号が順次読み出される。これによって所定の値より電荷が低いと予想される場合の撮影の場合には、撮影時間が短縮され、被験者の負担も軽減することができる。
 そして、ステップ508では、撮影終了か否か判定され、該判定が否定された場合にはステップ500に戻って上述の処理が繰り返され、判定が肯定されたところで一連の処理を終了する。
 このように、本実施の形態では、動画撮影、ポジショニング動画撮影、幼児の撮影等の所定の値より電荷が低いと予想される場合には、チャージアンプ75のアンプリセット時間を他の撮影のアンプリセット時間よりも短縮して、撮影によってコンデンサ70に蓄積された電荷を読み出すことにより、アンプリセット時間の短縮分の撮影時間を短縮することができる。
 また、撮影時間が短縮されることによって、被験者に曝射される放射線量も低減され、被験者の負担も軽減することができる。
 なお、上記の実施の形態では、チャージアンプ75のリセット時間を短縮する、すなわち、所定の値より電荷が低いと予想される場合の撮影として、動画撮影、ポジショニング動画撮影、幼児の撮影などを一例としてあげたが、これに限るものではなく、静止画撮影でも通常よりも電荷が低いことが予想される撮影の場合(例えば、撮影前に予め撮影するプレ曝射など)に、チャージアンプ75のリセット時間を短縮するようにしてもよい。また、撮影によって発生する電荷が少ない程、リセット時間を短くするようにしてもよい。さらには、連続撮影の種類に応じてリセット時間を短縮するようにしてもよい。
 また、上記の実施の形態では、静止画撮影より相対的に電荷が少ない動画撮影の場合に、リセット時間を短縮するように制御する例を説明したが、これに限るものではなく、例えば、撮影オーダから推測される電荷量が予め定めた電荷量より少ない場合にリセット時間を短縮するようにしてもよい。或いは、電子カセッテ20は、放射線検出器26に対する放射線Xの照射量を検出して累積照射量に基づいて放射線画像の撮影を終了させる等、放射線画像の撮影動作を制御するAEC(Automatic Exposure Control)制御処理(上述した照射制御処理)を行うので、AEC制御処理の結果に基づいて、撮影によって発生する電荷量が予め定めた値より小さい場合にリセット時間を短縮するなどのようにリセット時間を制御するようにしてもよい。
 また、上記の実施の形態では、所定の値より電荷が低いと予想される場合、リセット時間を短縮するようにしたが、リセット時間を短縮する、すなわち、所定の値より電荷が低いと予想される場合の撮影としては、上記に限るものではなく、例えば、特定の画素で発生する電荷が他の画素に比べて或いは所定値と比べて低い電荷の撮影を適用するようにしてもよいし、特定領域(全体を含んでもよい)の平均電荷や最大電荷などが予め定めた電荷或いは特定領域以外の平均電荷や最大電荷などより低い撮影を適用するようにしてもよいし、特定の画素や特定領域の電荷が静止画撮影に比べて低い撮影を適用するようにしてもよい。或いは、動画撮影時の予め定めた特定領域(例えば、関心領域(ROI:Region Of Interest)や予め定めた画素等)で想定される代表値(例えば、特定領域の平均値、重心値、最大値など)が予め定めた値より低い又は低いと推定されるときにリセット時間を短縮するようにしてもよい。
 また、上記の実施の形態における各フローチャートで示した処理は、プログラムとして各種記憶媒体に記憶して流通するようにしてもよい。
(変形例1)
 (a)照射された放射線に応じた電荷を発生するセンサ部及び当該センサ部で発生された電荷を読み出すためのスイッチング素子を含んで構成された画素が複数配列された放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段における前記リセット手段によって撮影前に残存した電荷をリセットし、
 (b)前記放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、(a)におけるリセット手段によるリセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する、
 処理をコンピュータに実行させるための放射線画像撮影制御プログラムを記憶した非一時的コンピュータ可読記憶媒体。
(変形例2)
 (b)において、前記撮影によって発生する電荷が少ない程、前記リセット時間が短くなるように、前記スイッチ手段を制御する変形例1に記載のコンピュータ可読記憶媒体。
(変形例3)
 (b)において、動画撮影の場合に、静止画撮影に比較して前記リセット手段によるリセット時間が短くなるように、前記スイッチ手段を制御する変形例1又は変形例2に記載のコンピュータ可読記憶媒体。
(変形例4)
 (b)において、撮影位置及び撮影タイミングの少なくとも一方を調整するためのポジショニング動画撮影の場合に、前記リセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する変形例1~3の何れかに記載のコンピュータ可読記憶媒体。
(変形例5)
 (b)において、連続撮影の種類に応じて前記リセット時間が短くなるように、前記スイッチ手段を制御する変形例1~4の何れかに記載のコンピュータ可読記憶媒体。
(変形例6)
 (b)において、動画像から静止画を切り出す動画連写撮影の場合は、静止画の対象となる撮影に対して前記リセット時間を短くせずに前記予め定めた時間でリセットするように、前記リセット手段を制御する変形例1~5の何れかに記載のコンピュータ可読記憶媒体。
 なお、日本国特許出願2012-036716号の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (19)

  1.  照射された放射線に応じた電荷を発生するセンサ部及び当該センサ部で発生された電荷を読み出すためのスイッチング素子を含んで構成された画素が複数配列された放射線検出器と、
     前記放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段と、
     前記放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、前記リセット手段によるリセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する制御手段と、
     を備えた放射線画像撮影制御装置。
  2.  前記制御手段は、前記撮影によって発生する電荷が少ない程、前記リセット時間が短くなるように、前記スイッチ手段を制御する請求項1に記載の放射線画像撮影制御装置。
  3.  前記制御手段は、動画撮影の場合に、静止画撮影に比較して前記リセット手段によるリセット時間が短くなるように、前記スイッチ手段を制御する請求項1又は請求項2に記載の放射線画像撮影制御装置。
  4.  前記制御手段は、撮影位置及び撮影タイミングの少なくとも一方を調整するためのポジショニング動画撮影の場合に、前記リセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する請求項1~3の何れか1項に記載の放射線画像撮影制御装置。
  5.  前記制御手段は、連続撮影の種類に応じて前記リセット時間が短くなるように、前記スイッチ手段を制御する請求項1~4の何れか1項に記載の放射線画像撮影制御装置。
  6.  前記制御手段は、動画像から静止画を切り出す動画連写撮影の場合は、静止画の対象となる撮影に対して前記リセット時間を短くせずに前記予め定めた時間でリセットするように、前記リセット手段を制御する請求項1~5の何れか1項に記載の放射線画像撮影制御装置。
  7.  請求項1~6の何れか1項に記載の放射線画像撮影制御装置と、
     被検体を介して前記放射線検出器に放射線を照射する放射線照射手段と、
     を備えた放射線画像撮影システム。
  8.  (a)照射された放射線に応じた電荷を発生するセンサ部及び当該センサ部で発生された電荷を読み出すためのスイッチング素子を含んで構成された画素が複数配列された放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段における前記リセット手段によって撮影前に残存した電荷をリセットし、
     (b)前記放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、(a)におけるリセット手段によるリセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する、
     放射線画像撮影装置の制御方法。
  9.  (b)において、前記撮影によって発生する電荷が少ない程、前記リセット時間が短くなるように、前記スイッチ手段を制御する請求項8に記載の放射線画像撮影装置の制御方法。
  10.  (b)において、動画撮影の場合に、静止画撮影に比較して前記リセット手段によるリセット時間が短くなるように、前記スイッチ手段を制御する請求項8又は請求項9に記載の放射線画像撮影装置の制御方法。
  11.  (b)において、撮影位置及び撮影タイミングの少なくとも一方を調整するためのポジショニング動画撮影の場合に、前記リセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する請求項8~10の何れか1項に記載の放射線画像撮影装置の制御方法。
  12.  (b)において、連続撮影の種類に応じて前記リセット時間が短くなるように、前記スイッチ手段を制御する請求項8~11の何れか1項に記載の放射線画像撮影装置の制御方法。
  13.  (b)において、動画像から静止画を切り出す動画連写撮影の場合は、静止画の対象となる撮影に対して前記リセット時間を短くせずに前記予め定めた時間でリセットするように、前記リセット手段を制御する請求項8~12の何れか1項に記載の放射線画像撮影装置の制御方法。
  14.  (a)照射された放射線に応じた電荷を発生するセンサ部及び当該センサ部で発生された電荷を読み出すためのスイッチング素子を含んで構成された画素が複数配列された放射線検出器の各画素に対応して設けられ、前記電荷を積分するための積分コンデンサの電荷をリセットするリセット手段が設けられると共に、対応する画素から前記スイッチング素子によって読み出された電荷による電気信号を予め定めた増幅率で増幅する増幅手段における前記リセット手段によって撮影前に残存した電荷をリセットし、
     (b)前記放射線検出器を用いた撮影によって発生する電荷が所定の値より低いと予想される場合、(a)におけるリセット手段によるリセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する、
     処理をコンピュータに実行させるための放射線画像撮影制御プログラム。
  15.  (b)において、前記撮影によって発生する電荷が少ない程、前記リセット時間が短くなるように、前記スイッチ手段を制御する請求項14に記載の放射線画像撮影制御プログラム。
  16.  (b)において、動画撮影の場合に、静止画撮影に比較して前記リセット手段によるリセット時間が短くなるように、前記スイッチ手段を制御する請求項14又は請求項15に記載の放射線画像撮影制御プログラム。
  17.  (b)において、撮影位置及び撮影タイミングの少なくとも一方を調整するためのポジショニング動画撮影の場合に、前記リセット時間が予め定めた時間よりも短くなるように、前記スイッチ手段を制御する請求項14~16の何れか1項に記載の放射線画像撮影制御プログラム。
  18.  (b)において、連続撮影の種類に応じて前記リセット時間が短くなるように、前記スイッチ手段を制御する請求項14~17の何れか1項に記載の放射線画像撮影制御プログラム。
  19.  (b)において、動画像から静止画を切り出す動画連写撮影の場合は、静止画の対象となる撮影に対して前記リセット時間を短くせずに前記予め定めた時間でリセットするように、前記リセット手段を制御する請求項14~18の何れか1項に記載の放射線画像撮影制御プログラム。
PCT/JP2012/079825 2012-02-22 2012-11-16 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム WO2013125111A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012036716 2012-02-22
JP2012-036716 2012-02-22

Publications (1)

Publication Number Publication Date
WO2013125111A1 true WO2013125111A1 (ja) 2013-08-29

Family

ID=49005311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079825 WO2013125111A1 (ja) 2012-02-22 2012-11-16 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム

Country Status (1)

Country Link
WO (1) WO2013125111A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855271A (zh) * 2023-02-22 2023-03-28 昆明钍晶科技有限公司 一种具有大电荷处理能力的读出电路及红外热成像仪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307698A (ja) * 1996-03-13 1997-11-28 Canon Inc 光電変換装置及び該装置を有する光電変換システム
JP2002199292A (ja) * 2000-09-07 2002-07-12 Canon Inc 信号処理装置及びそれを用いた撮像装置並びに放射線撮像システム
JP2008099824A (ja) * 2006-10-18 2008-05-01 Canon Inc 放射線画像処理装置及びその方法
JP2009233039A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp 放射線画像検出装置
JP2011115368A (ja) * 2009-12-03 2011-06-16 Konica Minolta Medical & Graphic Inc 放射線撮影装置
WO2011092981A1 (ja) * 2010-01-27 2011-08-04 コニカミノルタエムジー株式会社 放射線画像撮影装置および放射線画像撮影システム
JP2011167381A (ja) * 2010-02-19 2011-09-01 Shimadzu Corp 放射線撮影装置
JP2011235006A (ja) * 2010-05-13 2011-11-24 Fujifilm Corp 放射線撮影装置及び方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09307698A (ja) * 1996-03-13 1997-11-28 Canon Inc 光電変換装置及び該装置を有する光電変換システム
JP2002199292A (ja) * 2000-09-07 2002-07-12 Canon Inc 信号処理装置及びそれを用いた撮像装置並びに放射線撮像システム
JP2008099824A (ja) * 2006-10-18 2008-05-01 Canon Inc 放射線画像処理装置及びその方法
JP2009233039A (ja) * 2008-03-26 2009-10-15 Fujifilm Corp 放射線画像検出装置
JP2011115368A (ja) * 2009-12-03 2011-06-16 Konica Minolta Medical & Graphic Inc 放射線撮影装置
WO2011092981A1 (ja) * 2010-01-27 2011-08-04 コニカミノルタエムジー株式会社 放射線画像撮影装置および放射線画像撮影システム
JP2011167381A (ja) * 2010-02-19 2011-09-01 Shimadzu Corp 放射線撮影装置
JP2011235006A (ja) * 2010-05-13 2011-11-24 Fujifilm Corp 放射線撮影装置及び方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115855271A (zh) * 2023-02-22 2023-03-28 昆明钍晶科技有限公司 一种具有大电荷处理能力的读出电路及红外热成像仪

Similar Documents

Publication Publication Date Title
JP5840588B2 (ja) 放射線画像撮影装置、補正用データ取得方法およびプログラム
JP5544383B2 (ja) 放射線画像検出装置および放射線撮影システム
JP5666716B2 (ja) 放射線動画処理装置、放射線動画撮影装置、放射線動画撮影システム、放射線動画処理方法、放射線動画処理プログラム、及び記憶媒体
JP5587356B2 (ja) 放射線撮影システム、放射線撮影システムの駆動制御方法および駆動制御プログラム、並びに放射線画像検出装置
US9833214B2 (en) Radiographic image capturing device, method for detecting radiation doses, and computer readable storage medium
WO2013125113A1 (ja) 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム
JP5797630B2 (ja) 放射線画像撮影装置、画素値取得方法およびプログラム
JP5620249B2 (ja) 放射線画像撮影システム
JP5595876B2 (ja) 放射線撮影装置、及び放射線撮影システム
US20130193339A1 (en) Radiation irradiation initiation determination apparatus, radiation image capturing device, radiation image capture control apparatus, radiation irradiation initiation determination method, and computer readable medium
US20120201351A1 (en) Radiographic imaging system
JP2012032645A (ja) 放射線撮影装置及び放射線撮影システム
JP2012125409A (ja) 放射線撮影装置
JP2011212427A (ja) 放射線画像撮影システム
WO2013136597A1 (ja) 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム
WO2014050531A1 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影プログラム
JP5634894B2 (ja) 放射線画像撮影装置およびプログラム
WO2013125111A1 (ja) 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム
JP2013130539A (ja) 放射線画撮影装置、放射線画撮影システム、放射線画撮影方法、及び放射線画撮影プログラム
WO2014050532A1 (ja) 放射線画像撮影装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影プログラム
JP2011115566A (ja) 撮影領域特定装置、放射線画像撮影システム、及び撮影領域特定方法
JP2012040053A (ja) 放射線撮影装置及び放射線撮影システム
WO2013042514A1 (ja) 放射線動画像撮影装置、放射線動画像撮影装置用関心領域設定方法、放射線画像撮影システム、放射線動画像撮影制御プログラム
JP2014090863A (ja) 放射線画像撮影システムおよび自動露出制御方法
JP2013180050A (ja) 放射線画像撮影制御装置、放射線画像撮影システム、放射線画像撮影装置の制御方法、及び放射線画像撮影制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12869345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12869345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP