WO2013121708A1 - 発光装置およびその製造方法 - Google Patents

発光装置およびその製造方法 Download PDF

Info

Publication number
WO2013121708A1
WO2013121708A1 PCT/JP2013/000432 JP2013000432W WO2013121708A1 WO 2013121708 A1 WO2013121708 A1 WO 2013121708A1 JP 2013000432 W JP2013000432 W JP 2013000432W WO 2013121708 A1 WO2013121708 A1 WO 2013121708A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting element
electrode
layer
emitting device
Prior art date
Application number
PCT/JP2013/000432
Other languages
English (en)
French (fr)
Inventor
享 澤田
中谷 誠一
川北 晃司
山下 嘉久
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US14/377,965 priority Critical patent/US9627583B2/en
Priority to EP13749394.6A priority patent/EP2816621A4/en
Priority to CN201380007170.6A priority patent/CN104081547A/zh
Publication of WO2013121708A1 publication Critical patent/WO2013121708A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/17Structure, shape, material or disposition of the bump connectors after the connecting process of a plurality of bump connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • H01L33/486Containers adapted for surface mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/49105Connecting at different heights
    • H01L2224/49107Connecting at different heights on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/647Heat extraction or cooling elements the elements conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to a light emitting device and a method for manufacturing the same. More specifically, the present invention relates to a light emitting device including a light emitting diode (hereinafter also referred to as “LED”) and a method for manufacturing the light emitting device.
  • a light emitting device including a light emitting diode (hereinafter also referred to as “LED”) and a method for manufacturing the light emitting device.
  • LED light emitting diode
  • LEDs as light sources have been used for various applications because of their energy saving and long life.
  • LEDs are used for applications such as a display device (liquid crystal screen) backlight light source, a camera flash application, and an in-vehicle application, and also for various illumination applications.
  • the current LED chip mounting form can be roughly divided into two types, “wire bonding type (W / B type)” and “flip chip type (F / C type)”.
  • wire bonding type (W / B type) as shown in FIG. 23A, the electrode of the LED chip faces upward, and the electrical connection is made by the gold wire connected to the upward electrode. It has been.
  • flip chip type (F / C type) as shown in FIG. 23B, the electrode of the LED chip faces downward, and electricity is supplied through gold bumps connected to the downward electrode. Connections are made.
  • the “flip chip type (F / C type)” is preferable in terms of light extraction because there is no light blocking material on the upper side of the LED chip, but the gold bump becomes a thermal resistance, and in terms of heat dissipation characteristics. It is not necessarily preferable. Specifically, the area occupied by the gold bumps in the LED chip is only small (the occupied area is only about 25% with respect to the LED chip surface even if it is estimated to be large). The heat dissipation is not good. In other words, it can be said that heat can be generated at the location (mounting portion) where the gold bump is placed.
  • the “wire bonding type (W / B type)” can be provided with a thermal via or the like directly under the LED chip.
  • These electrodes (bumps) block light, which is not preferable in terms of light extraction. Specifically, the presence of the electrode portion provided on the upper side surface of the LED chip limits the LED area from which light can be extracted, thereby reducing the light extraction amount. In addition, since the wire itself blocks light, it is also a factor that reduces light extraction in that respect.
  • a main object of the present invention is to provide a light emitting device that satisfies both heat dissipation characteristics and light extraction characteristics.
  • Electrode members for light-emitting elements A reflection layer provided on the electrode member; and a light emitting element provided on the reflection layer so as to be in contact with at least a part of the reflection layer.
  • the light emitting element and the electrode member are electrically connected to each other through surface contact (or direct bonding or surface bonding) with each other via the at least part of the reflective layer, and the electrode
  • the member forms a support layer for supporting the light emitting element,
  • the light-emitting device is provided.
  • the light emitting element and the “electrode member for the light emitting element are in surface contact with each other, whereby the light emitting element and the light emitting element
  • the electrode member is electrically connected, and the light emitting element electrode member forms a support layer for supporting the light emitting element.
  • the electrode portion is provided substantially directly on the light-emitting element, and such a “direct electrode portion” forms a support layer in the light-emitting device (that is, The electrode part is formed by subjecting the light emitting element to direct metallization, and the “electrode part” as the direct metallization layer forms the support layer as it is).
  • the “light emitting element” is an element that emits light, and substantially means, for example, a light emitting diode (LED) and an electronic component including them. Accordingly, the “light emitting element” in the present invention is used to represent an aspect including not only “LED bare chip (ie, LED chip)” but also “discrete type in which the LED chip is molded”. Note that not only the LED chip but also a semiconductor laser chip can be used.
  • the term “light emitting device” used in the present invention is essentially intended to be a “light emitting element package (especially an LED package)”, and further, “a product in which a plurality of LEDs are arranged in an array”. Is also intended. That is, the light-emitting device of the present invention includes not only a so-called “single chip” but also a “multi-chip” mode unless otherwise specified. Similarly, the light-emitting device of the present invention includes not only “a device having light directivity” but also a “device having no light directivity” unless otherwise specified. ing.
  • electrode member for a light emitting element that is, “light emitting element electrode member” used in the present specification is different from an electrode (P-type electrode / N-type electrode) provided in advance in the light-emitting element.
  • the electrode is substantially meant.
  • the light emitting element electrode member is provided so as to protrude outward from the light emitting element. That is, the light emitting element electrode member (and the reflective layer provided thereon) is provided not only in the lower region of the light emitting element but also in the outer region thereof so as to extend in the lateral direction.
  • the present invention also provides a method for manufacturing the light emitting device. That is, “the light emitting element and the light emitting element electrode member are electrically connected to each other by the surface contact of the light emitting element and the light emitting element electrode member, and the light emitting element electrode member includes a support layer for supporting the light emitting element.
  • a method of manufacturing a “light emitting device” is provided.
  • Such a production method of the present invention comprises: (I) preparing a light emitting element, and (ii) forming a light emitting element electrode member on the light emitting element, In the step (ii), a light emitting element is formed so that a base layer for forming a light emitting element electrode member is formed on the light emitting element, and then is in surface contact (or direct bonding or surface bonding) with the light emitting element through the base layer. Forming an electrode member, and The underlayer is finally used as a reflective layer in the light emitting device.
  • One of the features of the manufacturing method of the present invention is that the electrode member is directly formed on the light emitting element, and the electrode base layer used for the direct formation is finally used as a reflective layer of the light emitting device.
  • both “heat dissipation characteristics” and “light extraction characteristics” are preferably achieved (see FIG. 1).
  • the area occupied by the light-emitting element electrode member in the light-emitting element is large due to the “surface contact between the light-emitting element and the light-emitting element electrode member”, and therefore “high heat dissipation” is suitably realized.
  • the light-emitting element is provided on the light-emitting element electrode member, that is, the face-down structure in which the electrode of the light-emitting element faces downward, “the upper electrode (bump) of the light-emitting element emits light. Inconveniences such as “blocking” are avoided, and the amount of light extraction is also increased.
  • the light emitting element electrode member can be formed of a material such as copper having high thermal conductivity, and can be provided as a “thick electrode part” and / or “a large electrode part in the width direction”. The heat of the light emitting element can be efficiently released to the outside through the electrode portion.
  • the reflective layer itself is made of a material that exhibits at least thermal conductivity such as a metal material and is very thin, so that the thermal resistance is negligibly small.
  • the light-emitting device of the present invention has a desirable structure not only from the upper surface side of the light-emitting element but also from the viewpoint of light extraction from the lower surface side.
  • the light-emitting device of the present invention has a “substrate-less structure” because the electrode member forms a support layer that supports the light-emitting element. Because of this “substrate-less”, a small device is realized and also contributes to low-cost manufacturing. In addition, because of such a configuration, the device can be more flexible than a device using a high heat dissipation substrate such as a ceramic substrate as a support.
  • the device of the present invention since the device of the present invention has a structure in which wiring can be formed directly from a light emitting element and has a structure that can be arrayed, the degree of freedom in design is relatively high. Furthermore, connection stability is also good because of "mountless bumpless".
  • the electrode member is directly formed on the light emitting element, and the electrode base layer used for forming the direct electrode member is finally used as a reflective layer of the light emitting device. It is a relatively simple process such as “Use as it is”. A light emitting device satisfying both the “heat dissipation characteristics” and the “light extraction characteristics” is obtained by such a simple manufacturing process.
  • the “underlayer” it not only contributes to the formation of the light emitting element electrode member (particularly, the formation of the “thick electrode member”), but also finally to the “reflective layer that contributes to the extraction of light”. Therefore, the formation of the underlayer contributes to the optimization of the process aspect and also the optimization of the final product.
  • the manufacturing method of the present invention has the effect that “a rewiring can be directly formed from a light emitting element such as an LED chip”, the chip can be arbitrarily arranged according to the wafer size, and the LED is based on the carrier layer.
  • a rewiring can be directly formed from a light emitting element such as an LED chip
  • the chip can be arbitrarily arranged according to the wafer size, and the LED is based on the carrier layer.
  • Various advantageous effects such as being sealable (and hence the light emitting surface is smooth) can be obtained.
  • FIG. 2A is a cross-sectional view schematically showing the structure of a light-emitting device of the present invention
  • FIG. 2A light emission device of chip size or wafer size (that is, light emission in which the width size of the entire device is equal to the width size of a light-emitting element) Device)
  • FIG. 2B light emitting device having a substantially chip size or wafer size (that is, a light emitting device in which the width of the entire device is approximately equal to the width of the light emitting element)
  • FIG. 2A light emission device of chip size or wafer size (that is, light emission in which the width size of the entire device is equal to the width size of a light-emitting element) Device)
  • FIG. 2B light emitting device having a substantially chip size or wafer size (that is, a light emitting device in which the width of the entire device is approximately equal to the width of the light emitting element)
  • FIG. 2A light emission device of chip size or wafer size (that is, light emission in which
  • the light emitting device 100 of the present invention includes a light emitting element electrode member 10, a reflective layer 30, and a light emitting element 50.
  • the light emitting element 50 has a form installed on the light emitting element electrode member 10 and is provided in contact with at least a part of the reflective layer 30 on the electrode member.
  • the light emitting element 50 and the light emitting element electrode member 10 are in surface contact (or directly bonded or surface bonded) to each other through the reflective layer 30, thereby The light emitting element 50 and the light emitting element electrode member 10 are electrically connected to each other.
  • surface contact or direct bonding or surface bonding
  • surface bonding refers to an aspect in which the principal surfaces of each element are in contact with each other or in particular, in particular, in the range where the principal surfaces of each element overlap each other or All the aspects of joining are substantially meant.
  • the main surface of the light-emitting element (lower main surface)” and “the main surface of the light-emitting element electrode member (upper main surface)” are all contacted or bonded together within a range where they overlap each other.
  • the “surface contact” used in the present specification means an aspect in which, in the main surface regions of the light emitting element and the light emitting element electrode member, the mutually overlapping regions are in full contact or all joined (see FIG. 3 corresponds to a mode in which “main surface region A” and “main surface region B” in FIG.
  • the reflective layer 30 positioned between the light emitting element 50 and the light emitting element electrode member 10 is a layer that is so thin that thermal resistance or electrical resistance can be ignored. Therefore, in the present invention, the light emitting element 50 and the light emitting element electrode member 10 can be considered to be in direct surface contact with each other directly (directly).
  • the reflective layer 30 is very thin, while the light emitting element electrode member 10 is thick.
  • the thick light-emitting element electrode member 10 substantially suitably functions as a support layer for supporting the light-emitting element 50 substantially. That is, the light emitting element electrode member 10 positioned on the lower side of the light emitting element 50 is relatively thick and is in contact with the entire surface of the light emitting element 50 in a range where it overlaps with the light emitting element 50. It functions as a foundation.
  • the light-emitting element electrode member 10 includes a positive electrode portion 10a (an electrode portion connected to a P-type electrode of the light-emitting element) and a negative electrode portion 10b (an electrode portion connected to an N-type electrode of the light-emitting element). However, the positive electrode portion 10a and the negative electrode portion 10b are in surface contact with the light emitting element 50 in a range where they overlap with the light emitting element 50, respectively, and suitably function as a support layer for supporting the light emitting element 50. .
  • the light emitting element electrode member 10 in the present invention is in “surface contact” with the light emitting element 50, the heat of the light emitting element can be efficiently released to the outside through the electrode member. That is, the light emitting element electrode member 10 not only functions as a support layer of the light emitting device but also functions as a heat sink, and contributes particularly effectively to the high heat dissipation characteristics of the light emitting device.
  • a light-emitting element for example, LED
  • a low luminous efficiency that is, a rate at which driving current is converted into light
  • the light-emitting device of the present invention Since it has excellent heat dissipation characteristics, a device with high luminous efficiency and higher brightness has been realized. In addition, because of such excellent heat dissipation characteristics, an effect of improving the operating life of the light emitting element and an effect of effectively preventing the denaturation and discoloration of the sealing resin due to heat can be exhibited.
  • the light emitting element electrode member 10 and the light emitting element 50 are in “surface contact”, the electrical resistance is excellent as compared with the case where they are electrically connected via wires or bumps. Therefore, an effect of allowing a larger current to flow can be achieved. Since a large current can be passed through the light emitting element electrode member and the light emitting element, the light emitting element can be reduced in size, and at the same time, a device with higher luminance can be realized.
  • the material of the light-emitting element electrode member 10 is not particularly limited, and may be a common material for conventional LED electrodes.
  • at least one metal material selected from the group consisting of copper (Cu), silver (Ag), palladium (Pd), platinum (Pt), and nickel (Ni) can be used as the main material of the electrode member.
  • the material of the light emitting element electrode member 10 is preferably one that has high thermal conductivity and effectively contributes to the heat dissipation characteristic, and therefore copper (Cu) is particularly preferable.
  • the light emitting element electrode member 10 may be formed of, for example, a wet plating layer (preferably an electroplating layer).
  • the light-emitting element electrode member 10 in the present invention is relatively thick and therefore contributes effectively to the support function and the heat sink function.
  • the light emitting element electrode member 10 is thicker than the reflective layer 30.
  • the light emitting element electrode member 10 is thicker than the light emitting element 50.
  • the thickness of the light emitting element electrode member 10 (for example, the maximum thickness portion of the electrode member) is larger than the thickness of the light emitting element 50 (for example, the maximum thickness portion of the light emitting element).
  • the thickness of the light-emitting element electrode member 10 is preferably about 30 to 500 ⁇ m, more preferably about 35 to 250 ⁇ m, and still more preferably about 100 to 200 ⁇ m.
  • the reflective layer 30 in the surface region of the light emitting element electrode member 10 is positioned immediately below the light emitting element 50. Therefore, the downward light emitted from the light emitting element 50 can be efficiently reflected by the reflective layer 30. In other words, “light emitted downward” can be directed upward. This means that the light emission efficiency is improved by the presence of the reflective layer 30 directly under the light emitting element, and as a result, the light emitting device has higher luminance. As described above, in the light emitting device of the present invention, not only the heat sink function of the light emitting element electrode member 10 but also the reflective layer 30 provides high luminance.
  • the material of the reflective layer 30 may be any material that can reflect light.
  • Ag silver
  • Al aluminum
  • Al alloy Au
  • Cr chromium
  • Ni nickel
  • the reflective layer 30 has a function as a base layer (electrode base layer) for forming the light-emitting element electrode member 10. It preferably comprises a metal selected from the group consisting of (copper) and Ni (nickel).
  • the reflective layer 30 preferably includes a metal selected from the group consisting of Ag (silver) and Al (aluminum).
  • the reflective layer 30 made of a metal material has electrical conductivity and thermal conductivity, and can be said to constitute a part of the electrode. (In the first place, the reflective layer forms an electrode base layer as described later.) Is). That is, the reflective layer 30 can be regarded as a part of the light emitting element electrode member 10, and in particular, can be regarded as a “electrode portion exhibiting high reflectivity” located immediately below the light emitting element. Note that the reflective layer 30 is not limited to a single layer, and may be a plurality of layers.
  • the reflective layer 30 may be formed of a Ti thin film layer and a Cu thin film layer.
  • the Ti thin film layer in the drawing (for example, based on the vertical direction shown in FIG. 2) is “ The Cu thin film layer corresponds to the “lower layer” while it corresponds to the “upper layer”.
  • the reflective layer itself may be composed of, for example, a dry plating layer (preferably a sputter layer).
  • the reflective layer 30 is very thin such that the thermal resistance and the electric resistance can be substantially ignored. Can have. This is merely an example, but the thickness of the reflective layer 30 is as thin as about 100 to 500 nm (depending on the type of the material of the reflective layer, about 100 nm to 300 nm). Therefore, the reflective layer 30 forms a thin film layer. .
  • the light emitting element 50 in the present invention may be an LED bare chip, that is, an LED chip, or may be a discrete type in which the LED chip is molded. What is used for the general LED package can be used for an LED chip etc., What is necessary is just to select the specific kind etc. suitably according to the use of the LED package which is a light-emitting device. If necessary, a so-called “nonpolar LED (nonpolar LED chip)” may be used as the light emitting element 50.
  • the number of light emitting elements 50 (for example, LED chips) is not limited to “single”, and may be “plural”. That is, the light emitting device of the present invention can be realized not only in the form of “single chip” as shown in FIG. 2, but also in the form of “multi chip”.
  • the light emitting device 100 of the present invention is “the mutual surface contact between the light emitting element 50 and the light emitting element electrode member 10”, the heat from the light emitting element 50 is suitably dissipated. That is, because of the surface contact, the area occupied by the light emitting element electrode member 10 on the main surface of the light emitting element 50 is large, and the heat dissipation characteristics are excellent.
  • the ratio of the area occupied by the light emitting element electrode member 10 (“light emitting element electrode member formed of the positive electrode portion 10a and the negative electrode portion 10b”) on the lower main surface of the light emitting element 50 is 40% or more. , Preferably 50 to 90%, more preferably 70 to 90%.
  • the thermal resistance of the “connection portion between the light emitting element and the electrode member” in the present invention does not become the rate limiting of the thermal resistance of the entire apparatus.
  • the heat dissipation becomes good.
  • the light emitting element electrode member has a large thickness, the heat dissipation can be improved also in this respect.
  • the mounting of the light emitting element via the bump is not performed, and since the thick electrode configuration is direct to the light emitting element, high heat dissipation characteristics are realized. I can say that.
  • the light emitting element electrode member 10 has a large size in the width direction in order to realize higher heat dissipation characteristics and / or higher support function.
  • the light emitting optical element electrode members (10 a, 10 b) are provided so as to protrude outward from the light emitting element 50.
  • the positive electrode portion 10a and the negative electrode portion 10b of the light emitting element electrode member 10 respectively extend in the lateral direction and the width direction not only to the lower region of the light emitting element 50 but also to the outer region thereof. Is preferred.
  • the support function for supporting the light emitting element 50 is further improved.
  • the reflective layer 30 provided thereon similarly extends in the lateral direction / width direction to the outer region. Can do. That is, the reflective layer 30 can extend not only in the lower region of the light emitting element 50 but also in the lateral direction and the width direction to the outer region. In such an embodiment, since “downward light” emitted from the light emitting element can be reflected by the reflection layer more widely, more efficient light extraction is possible.
  • the dimensions of the protruding part are “support function / heat dissipation characteristics”, “miniaturization” and “light extraction characteristics”. It may be determined as appropriate in consideration of the above. Although only an example, to give one example, when viewed in terms of the width dimension of the light emitting element electrode member, more than half of the light emitting element may be in the form of “extinguish” from the light emitting element. In the element electrode member, “the width dimension W1 of the portion protruding outward from the light emitting element” may be greater than or equal to “the width dimension W2 of the portion positioned below the light emitting element”.
  • an “insulating portion” is provided. Specifically, as shown in FIGS. 5A to 5C, a first insulating part 70 is provided around the light emitting element electrode member 10, while a second insulating part is provided around the light emitting element 50. 72 is preferably provided. As can be seen from the illustrated embodiment, when the first insulating portion 70 is provided, the light emitting element electrode member 10 forms a support layer together with the first insulating portion 70. The first insulating portion 70 is also provided between the positive electrode portion 10a and the negative electrode portion 10b of the light emitting element electrode member 10, and as a result, between the positive electrode portion 10a and the negative electrode portion 10b. It may also have a function of insulating. On the other hand, as can be seen from the illustrated embodiment, the second insulating portion 72 can function as a sealing layer / sealing member and a support layer for blocking or protecting the light emitting element 50 from the external environment (particularly FIG. 5 ( b)).
  • the material of the first insulating part 70 and the second insulating part 72 may be any kind of material as long as it provides insulation, and may be a resin, for example.
  • a resin for example.
  • an epoxy resin or a silicone resin may be used.
  • the second insulating portion 72 is preferably made of a transparent resin in view of light extraction. Therefore, the second insulating portion 72 is preferably made of, for example, a transparent epoxy resin or a transparent silicone resin.
  • an organic-inorganic hybrid material or an inorganic material may be used.
  • the material of the first insulating part 70 and the second insulating part 72 may be an inorganic glass sealing material.
  • the first insulating portion 70 is formed in a region between the positive electrode portion 10a and the negative electrode portion 10b of the light emitting element electrode member 10 and around these electrode members.
  • the electrode member is preferably provided so as to be in contact with the electrode member, and the thickness may be approximately the same as the electrode member thickness.
  • the first insulating portion 70 is provided in such a form that the upper surface thereof is flush with the upper surface of the reflective layer 30. It may be done. As shown in FIGS.
  • the second insulating portion 72 is preferably provided so as to be in contact with the light emitting element 50 so as to surround the periphery of the light emitting element 50. It may be about the same as the light emitting element 50. In the case where a phosphor layer 80 and the like to be described later are separately provided, the second insulating portion 72 may be provided in such a form that the upper surface thereof is flush with the upper surface of the light emitting element 30 (see FIG. 5A). ). When the second insulating portion 72 also functions as a phosphor layer (that is, when the second insulating portion 72 includes, for example, a resin component and / or an inorganic material component and a phosphor component), the second insulation is performed. The portion 72 may be formed thick so as to wrap around the light emitting element 30 (see FIG. 5B).
  • the light-emitting device of the present invention can also be characterized in terms of “fine insulating film”. Specifically, the “local first insulating portion 70A” provided between the positive electrode portion 10a and the negative electrode portion 10b is replaced with a “narrow portion 70A1” as shown in FIG. It consists of two region portions, “wide portion 70A2”. Accordingly, the electrode member can have a large thickness while preventing a short circuit between the positive electrode portion 10a and the negative electrode portion 10b, which contributes to realization of high heat dissipation.
  • a “wide portion 70A2” is provided. That is, the “wide portion 70A2” in the first insulating portion 70A increases the distance between the positive electrode portion 10a and the negative electrode portion 10b, thereby preventing a short circuit.
  • the width dimension ⁇ of the “narrow portion 70A1” (see FIG. 5C) is about 20 ⁇ m to 70 ⁇ m, whereas the width dimension ⁇ of the wide portion 70A2 (FIG. 5C). ))
  • a phosphor layer may be provided as necessary.
  • the phosphor layer 80 may be provided on the second insulating portion 72. More specifically, as illustrated, the phosphor layer 80 may be provided on the second insulating portion 72 so as to cover the upper main surface of the light emitting element 50.
  • the material of the phosphor layer 80 is not particularly limited as long as it receives light from the light emitting element 50 and develops desired light. That is, the phosphor type of the phosphor layer 80 may be determined in consideration of light and electromagnetic waves from the light emitting element 50.
  • the light emitting device when used as a white LED package such as an illumination, a bright white color can be obtained if the phosphor layer 80 includes a phosphor that develops a yellow color by blue light emitted from the LED 50.
  • the electromagnetic waves emitted from the LED 50 are ultraviolet rays, a phosphor that emits white color directly by the ultraviolet rays may be used.
  • the second insulating portion 72 includes, for example, an insulating component such as a resin component and / or an inorganic material component and a phosphor component, the second insulating portion 72 has not only a sealing function of the light emitting element but also a fluorescent component. Since it also has a layer function, it is not particularly necessary to separately provide the phosphor layer 80.
  • the light emitting device 100 of the present invention can be realized as a “device having light directivity”, or can be realized as a “device having no light directivity”.
  • a lens member 90 As an apparatus having directivity, it is preferable to have a lens member 90 as shown in FIGS. 7A and 7B, for example.
  • the lens shape portion is not limited to “single” (the mode of FIG. 7A), but may be “plural” (the mode of FIG. 7B).
  • the second insulating portion 72 and the phosphor layer 80 may have a lens shape.
  • the light emitting device 100 of the present invention is not limited to the “single chip” mode in which the light emitting element 50 is single as shown in FIGS. 1 to 6 and the like, for example, as shown in FIGS. 8A and 8B.
  • it can be realized as a “multi-chip” mode including a plurality of light emitting elements 50. That is, the light emitting device 100 in the “multi-chip” mode can be realized by arraying.
  • FIGS. 9 (a) to 9 (d) “Bending mode of electrode member / reflection layer” is shown in FIGS. 9 (a) to 9 (d).
  • the electrode member 10 particularly, the upper surface thereof
  • the reflective layer 30 are bent.
  • the electrode member 10 and the reflective layer 30 are bent so that the central portion A1 (light emitting element region) is slightly raised.
  • the electrode member 10 and the reflective layer 30 are bent so that the central portion A2 (light emitting element region) slightly protrudes while the majority is depressed.
  • the mode of FIG. 9B is a mode in which the thickness of the electrode member 10 located on the outer side is increased.
  • FIG. 9B is a mode in which the thickness of the electrode member 10 located on the outer side is increased.
  • FIG. 9C shows a form in which the electrode member 10 and the reflective layer 30 are bent so that the central portion A3 (light emitting element region and its vicinity region) is slightly recessed. It can be said that this aspect is also an aspect in which the thickness of the electrode member located on the outer side is increased.
  • FIG. 9D shows a form in which the P-layer insulating layer is removed from the embodiment shown in FIG. Both the “heat radiation characteristics” and the “light extraction characteristics” are preferably achieved even with the configuration shown in FIGS.
  • the reflector mode may correspond to a change mode of the bending mode of the electrode member / reflective layer, and the electrode member 10 (particularly, “electrode portion 10 ′” corresponding to a part of the electrode member) and the reflective layer 30 are greatly depressed.
  • the light emitting element 50 is positioned in the bent region. Even in such a reflector mode, both “heat dissipation characteristics” and “light extraction characteristics” are preferably achieved.
  • the light from the light emitting element 50 is efficiently used by the reflective layer 30 around the light emitting element 50 (particularly because the reflective layer 30 is present even at a higher level than the light emitting surface).
  • the light extraction characteristic can be particularly improved in that respect.
  • effects such as “further high density (small device)”, “further high heat conduction”, and “further simple manufacturing process” can be achieved.
  • FIGS. 11A to 11D schematically show processes related to the manufacturing method of the present invention.
  • a light emitting element 50 is prepared as shown in FIG. It is preferable that the prepared light emitting element 50 is desirable for reflection layer formation and electrode member formation performed in the next step.
  • a “light emitting element in which an insulating layer is provided on at least the main surface side of the light emitting element” is prepared as the light emitting element 50.
  • the light emitting element 50 is prepared as a form embedded in an insulating layer as shown in FIG.
  • step (ii) the light emitting element electrode member 10 is formed on the light emitting element 50 (more specifically, direct metallization is performed on the light emitting element 50 (for example, Cu direct metallization is performed)).
  • step (ii) first, as shown in FIG. 11B, a base layer 30 for forming a light emitting element electrode member is formed on the light emitting element 50 (particularly, a part of the main surface of the light emitting element is formed).
  • FIG. 11C the light emitting element electrode member 10 that is in surface contact with the light emitting element 50 is formed through the base layer 30.
  • the base layer 30 used for forming the electrode member is used as a reflective layer in the light emitting device 100.
  • a relatively simple process such as “directly forming an electrode member on a light emitting element and finally using the electrode base layer used for forming the direct as it is as a reflective layer of the light emitting device”.
  • a light-emitting device satisfying both the “heat dissipation characteristics” and the “light extraction characteristics” can be obtained by such a simple manufacturing process.
  • the light emitting element electrode member 10 can be formed thick and with good adhesion because the electrode base layer 30 is provided.
  • the formation of the underlayer 30 is performed by a dry plating method, while the formation of the light emitting element electrode member 10 is preferably performed by a wet plating method (therefore, the underlayer 30 is used as a dry plating layer, while the light emitting element electrode member 10 is It is preferable to use a wet plating layer).
  • the dry plating method includes a vacuum plating method (PVD method) and a chemical vapor deposition method (CVD method), and the vacuum plating method (PVD method) further includes vacuum deposition, sputtering, ion plating, and the like.
  • the wet plating method includes an electroplating method, a chemical plating method, a hot dipping method, and the like.
  • the base layer 30 may be formed by sputtering and the light emitting element electrode member 10 may be formed by electroplating (for example, electroplating).
  • the base layer 30 may be formed not only as a single layer but as a several layer.
  • a Ti thin film layer and a Cu thin film layer may be formed by sputtering (more specifically, the Cu thin film layer may be formed after the Ti thin film layer is formed).
  • the manufacturing method of the present invention can be carried out in various process modes. This will be described below.
  • FIGS. 12A and 12B schematically show process cross-sectional views of “Process Mode 1”.
  • Such an embodiment is a process for manufacturing a light emitting device based on an LED wafer.
  • a sealing layer 72 ′ is formed on the main surface of the LED wafer 50 ′.
  • the sealing layer 72 ′ can be provided by applying a sealing raw material to the main surface of the LED wafer by a spin coating method, a doctor blade method, or the like and then subjecting it to a heat treatment, or a sealing film or the like on the LED wafer. It can also be provided by bonding.
  • FIG. 12A to 12G schematically show process cross-sectional views of “Process Mode 1”.
  • FIGS. 12A and 12B a sealing layer 72 ′ is formed on the main surface of the LED wafer 50 ′.
  • the sealing layer 72 ′ can be provided by applying a sealing raw material to the main surface of the LED wafer by a spin coating method, a doctor blade method, or the like and then
  • the electrode base layer 30 is formed by a dry plating method such as sputtering.
  • the sub-electrode portion pattern 10 ′ is formed directly on the LED wafer 50 ′ via the electrode base layer 30.
  • the formation of the sub-electrode portion pattern 10 ′ can be performed by “a method of patterning by etching after plating” as shown in FIG. Specifically, as shown in the figure, after a metal layer (for example, a copper layer) is formed on the entire surface of the electrode base layer by electroplating (for example, electrolytic Cu plating), a resist is formed by liquid resist spin coating or dry film resist lamination. Form.
  • the sub-electrode portion pattern 10 ′ may be formed by “a method of pattern plating after forming a resist pattern”. Specifically, as illustrated, after forming a resist by liquid resist spin coating or dry film resist lamination, mask exposure and resist development are performed, and then pattern plating (for example, electrolytic Cu pattern plating) is performed. Next, the resist is peeled off, and finally the electrode base layer is etched using the metal pattern as a mask.
  • an insulating layer pattern 70' is formed as shown in FIG.
  • the insulating layer 70 ′ is formed across the two adjacent sub-electrode portions 10 ′ so that the space between the two adjacent sub-electrode portions 10 ′ is filled with the insulating layer 70 ′. It is preferable to do.
  • the insulating layer raw material is made of a photosensitive material, as shown in FIG. 15A, after the insulating layer raw material is applied over the entire surface by spin coating or a doctor blade, or after being provided by bonding an insulating layer film or the like, The insulating layer pattern 70 ′ can be formed by performing mask exposure / development.
  • the photosensitivity may be a negative type or a positive type.
  • the insulating layer material is made of a material other than the photosensitive material, as shown in FIG. 15B, the insulating layer pattern 70 ′ can be formed by direct pattern printing using a printing method or the like.
  • the second sub-electrode portion pattern 10 ′′ is formed so as to be integrally joined with the sub-electrode portion pattern 10 ′.
  • the sub-electrode portion pattern 10 ′′ can be formed by the “method of patterning by etching after plating” or the “method of pattern plating after forming a resist pattern” as described above.
  • the light emitting element electrode member 10 is formed in two stages, ie, the formation of the first sub-electrode portion 10 ′ and the formation of the second sub-electrode portion 10 ′′.
  • the insulating layer 70 ′ is formed between “formation” and “formation of the second sub-electrode portion 10 ′′” (FIGS. 12D to 12F).
  • the “local region of the insulating portion” provided between the positive electrode portion and the negative electrode portion of the LED is preferably composed of two region portions, a “narrow portion” and a “wide portion”. (See FIG. 12 (f)).
  • the thickness of the first sub-electrode portion 10 ′ formed first is larger than the thickness of the second sub-electrode portion 10 ′′ formed thereafter. Such a mode may be sufficient.
  • each electrode member 10 composed of the first sub-electrode portion 10 ′ and the second sub-electrode portion 10 ′′ (the electrode portions located at both ends and the outermost side are 12 is divided into two parts, whereby a light emitting device 100 as shown in the lowermost part of Fig. 12 can be finally obtained (in such a light emitting device 100,
  • the electrode underlayer 30 is used as a reflective layer, and in the case of manufacturing using an LED wafer as in this process, the individual electrodes are caused by cutting as shown in FIG. In this process, various elements are formed from the LED wafer, so that the clean surface ( ⁇ flat surface) of the wafer can be used as a starting point.
  • the preferred process is Has characteristics such may revealed.
  • FIG. 16A to 16H schematically show process cross-sectional views of “Process Mode 2”.
  • Such an embodiment is a process for manufacturing a light emitting device based on an LED chip.
  • the several LED chip 50 is arrange
  • a sealing layer 72 ′ (particularly a light-transmitting sealing layer) is formed on the carrier film 85 so as to cover the LED chip 50.
  • the LED chip 50 embedded in the sealing layer 72 ′ can be obtained as shown in FIG.
  • a light emitting element provided with a sealing layer on the main surface side can be prepared).
  • the light emitting device 50 embedded in the sealing layer 72 ′ so as to be “flat” with each other is obtained.
  • the electrode underlayer 30 is formed by a dry plating method such as sputtering (for example, because of the above-mentioned "uniformity", the underlayer 30 as a sputter layer is uniform with a constant thickness. Can be suitably formed).
  • the sub-electrode portion pattern 10 ′ is formed directly on the LED chip 50 via the electrode base layer 30.
  • the sub electrode portion pattern 10 ′ can be formed by the “method of patterning by etching after plating” or the “method of pattern plating after forming a resist pattern” as described above in the process mode 1.
  • an insulating layer pattern 70' is formed as shown in FIG.
  • the insulating layer 70 ′ is formed across the two adjacent sub-electrode portions 10 ′ so that the space between the two adjacent sub-electrode portions 10 ′ is filled with the insulating layer 70 ′. It is preferable to do.
  • the formation of the insulating layer pattern 70 ′ can be performed by the method described with reference to FIG. 15A or FIG. 15B in the process mode 1.
  • a second sub electrode portion pattern 10 ′′ is formed so as to be integrally joined with the sub electrode portion pattern 10 ′.
  • the sub electrode portion pattern 10 ′′ can also be formed by the “method of patterning by etching after plating” or the “method of pattern plating after forming a resist pattern” as described above.
  • the light emitting element electrode member is formed in two steps, that is, the formation of the first sub-electrode portion 10 ′ and the formation of the second sub-electrode portion 10 ′′ as described above.
  • An insulating layer is formed between “formation of the first sub-electrode part 10 ′” and “formation of the second sub-electrode part 10” (see FIGS. 16E to 16G). ).
  • the “local region of the insulating portion” provided between the positive electrode portion and the negative electrode portion can be preferably configured from two region portions of a “narrow portion” and a “wide portion”. (See FIG. 16 (g)).
  • each electrode member 10 including the first sub-electrode portion 10 ′ and the second sub-electrode portion 10 ′′ protrudes from the LED chip 50 to the outside as illustrated. It is preferable to form in such a form.
  • FIG. 16 (h) a cutting operation is performed in which the LED chip 50 is divided. Thereby, the light emitting device 100 as shown in the lowermost part of FIG. 16 can be obtained (the electrode base layer 30 is used as a reflective layer of the light emitting device).
  • FIG.17 (Process aspect 3) 17A to 17G schematically show process cross-sectional views of “Process Mode 3”.
  • Such an aspect corresponds to a modified aspect of the process aspect 2 described above.
  • the several LED chip 50 is arrange
  • an insulating film 72 ′ (for example, an inorganic insulating film) is formed between adjacent LED chips 50. As illustrated, it is preferable to form the insulating film 72 ′ so as to be flush with the LED chip 50.
  • the insulating layer pattern 72 ′ can be formed by the method described in the process mode 1 with reference to FIG. 15A or FIG. 15B.
  • the carrier film 85 is peeled off to emit light in the form shown in FIG. 17C.
  • An element 50 can be prepared.
  • the electrode base layer 30, the sub-electrode part pattern 10 ′, the insulating layer 70 ′, and the second sub-electrode part pattern 10 ′′ are formed and subjected to a cutting process (FIG. 17D).
  • a cutting process FIG. 17D
  • the light emitting device 100 as shown in the lowermost part of Fig. 17.
  • the insulating film 72 ' is formed between the adjacent LED chips 50.
  • the light emitting device 100 having the form as shown in the lower right part of the bottom of FIG. (That is, the “light emitting device in which the second insulating portion includes a phosphor component” described in the above “light emitting device of the present invention” can be obtained).
  • FIG. 18A schematically show process cross-sectional views of “Process Mode 4”.
  • Such an aspect also corresponds to a modified aspect of the process aspect 2 described above.
  • a plurality of LED chips 50 are arranged on the phosphor layer 80 with a space therebetween (see FIG. 18A).
  • an insulating layer 72 ′ (particularly a photosensitive material layer) is formed on the phosphor layer 80 so as to cover the LED chip 50.
  • FIG. 18C a pattern forming process is performed on the insulating layer 72 ′.
  • Such pattern processing can be performed by the method described with reference to FIG.
  • the electrode base layer 30, the sub-electrode part pattern 10 ′, the insulating layer 70 ′, and the second sub-electrode part pattern 10 ′′ are formed and cut (FIG. 18D).
  • this process mode is achieved by applying or pasting on the surface of the carrier film. Since the phosphor layer is formed, the phosphor layer can be suitably provided in a “planar” (in the conventional LED package, the phosphor layer is generally provided after being separated into individual pieces.
  • the carrier film 85 is finally used as an element of the light emitting device without being peeled off, for example, as shown in FIGS. b
  • the carrier film 85 can be used as a lens element, more specifically, in this process mode, by appropriately devising the formation of the insulating layer 72 ′, the patterning process thereof, and the like (see, for example, FIG. 19), A light-emitting device as shown in FIGS. 9C to 9D described in the above [Light-emitting device of the present invention] can be obtained.
  • Process aspect 5 20A to 20G schematically show process cross-sectional views of “Process Aspect 5”. Such an aspect corresponds to a manufacturing process aspect of the light emitting device 100 having a reflector structure.
  • a plurality of sub-phosphor layers 80 ′ are formed on the carrier film 85, and one light emitting element chip 50 is disposed on each of the sub-phosphor layers 80 ′ (see FIG. 20A).
  • FIG. 20B after the insulating layer material is applied over the entire surface by spin coating or a doctor blade, or after being provided by bonding an insulating layer film or the like, a pattern forming process is performed.
  • a local insulating layer 72 ′ that exposes a part of the surface of the light emitting element chip 50 is formed for each of the light emitting element chips 50 (see FIG. 20C).
  • two first sub power station portions 10 ′ are formed for each of the light emitting element chips (see FIG. 20D).
  • the “reflector” as shown in FIG. 20D, “light emission composed of the sub-phosphor layer 80 ′ provided on the carrier film 85, the light emitting element chip 50, and the local insulating layer 72 ′.
  • the base layer 30 and the first sub-electrode portion 10 ′ are formed in a bent shape so as to follow the contour shape of the device precursor 100 ′ ”.
  • the insulating portion 70 ′ after forming the insulating portion 70 ′ so as to straddle at least two first sub-electrode portions 10 ′ (similar to the formation of the insulating layer 72 ′, an insulating material)
  • the pattern of the insulating portion 70 ′ can be formed by performing a patterning process after the entire surface is applied or pasted), and the second sub-electrode portion 10 ′′ is formed on the first sub-electrode portion 10 ′′ as shown in FIG. 20 is formed so as to be in contact with the sub-electrode portion 10 ′, and finally, a cutting operation is performed in which the LED chip 50 is divided as shown in FIG.
  • 1st aspect It is a light-emitting device which has a light emitting element, Comprising : Electrode members for light-emitting elements, A reflective layer provided on the electrode member; and a light emitting element provided on the reflective layer so as to be in contact with at least a part of the reflective layer, The light emitting element and the electrode member are in surface contact with each other through at least part of the reflective layer, whereby the light emitting element and the electrode member are electrically connected, The electrode member forms a support layer for supporting the light emitting element, and the electrode member (and the reflective layer provided thereon) is provided so as to protrude outward from the light emitting element. Light emitting device.
  • Second aspect The light emitting device according to the first aspect, wherein the electrode member is made of a wet plating layer and the reflection layer is made of a dry plating layer.
  • Third aspect The light emitting device according to the first aspect or the second aspect, wherein the electrode member is thicker than the light emitting element.
  • Fourth aspect In any one of the first to third aspects, the first insulating portion is provided around the electrode member, and the second insulating portion is provided around the light emitting element. A light emitting device.
  • Fifth aspect The light emitting device according to the fourth aspect, wherein the electrode member and the first insulating portion form a support layer.
  • the light emitting element electrode member forms a support layer together with the first insulating portion.
  • Sixth aspect The light-emitting device according to the fourth or fifth aspect, wherein the second insulating portion forms a sealing layer for sealing the light-emitting element. That is, in the light emitting device of the present invention, when the second insulating portion is provided, it is preferable that the second insulating portion forms a sealing layer for sealing the light emitting element (for example, the second insulating portion). However, it may comprise a resin component and / or an inorganic material component and form a sealing layer for sealing the light emitting element).
  • Seventh aspect The light-emitting device according to any one of the fourth to sixth aspects, wherein the second insulating portion is light transmissive.
  • Eighth aspect The light-emitting device according to any one of the fourth to seventh aspects, wherein a phosphor layer is provided on the second insulating portion. In such an embodiment, for example, the phosphor layer may be provided on the second insulating portion.
  • the second insulating portion includes a phosphor component, whereby the second insulating portion forms both the sealing layer and the phosphor layer.
  • a light emitting device characterized by comprising: That is, in the light emitting device of the present invention, when the second insulating portion includes a phosphor component, it is preferable that the second insulating portion also serves as both the sealing layer and the phosphor layer (for example, the second insulating portion).
  • the insulating part includes a resin component and / or an inorganic material component and a phosphor component, whereby the second insulating part may serve as both the sealing layer and the phosphor layer).
  • the electrode member is composed of a positive electrode part and a negative electrode part, A light-emitting device, wherein a first insulating portion is provided at least between a positive electrode portion and a negative electrode portion.
  • the local region of the first insulating portion provided between the positive electrode portion and the negative electrode portion is composed of two region portions, a narrow portion and a wide portion.
  • a light emitting device characterized by comprising: Twelfth aspect In any one of the first to eleventh aspects, a part of the electrode member and the reflective layer have a bent shape, and the light emitting element is disposed in a depression formed by the bending.
  • a light emitting device having a light emitting element, Electrode members for light-emitting elements, A reflective layer provided on the electrode member; and a light emitting element provided on the reflective layer so as to be in contact with at least a part of the reflective layer, The light emitting element and the electrode member are in surface contact with each other through at least a part of the reflective layer, whereby the light emitting element and the electrode member are electrically connected, and the electrode member supports the light emitting element. Consists of A light-emitting device.
  • a method of manufacturing a light emitting device having a light emitting element (I) preparing a light emitting element, and (ii) forming an electrode member for the light emitting element on the light emitting element, In the step (ii), after forming a base layer for forming the electrode member on the light emitting element, the electrode member is formed so as to be in surface contact with the light emitting element through the base layer, A method for manufacturing a light emitting device, wherein the underlayer is finally used as a reflective layer in the light emitting device.
  • Fifteenth aspect A method for manufacturing a light-emitting device according to the fourteenth aspect, wherein the underlayer is formed by a dry plating method and the electrode member is formed by a wet plating method.
  • Sixteenth aspect A method for manufacturing a light-emitting device according to the fifteenth aspect, wherein sputtering is performed as a dry plating method, and electroplating is performed as a wet plating method.
  • Seventeenth aspect A method for manufacturing a light-emitting device according to any one of the fourteenth to sixteenth aspects, wherein the light-emitting element of step (i) is prepared in combination with an insulating layer.
  • the light emitting element in the step (i) is prepared as “a light emitting element in which an insulating layer is provided on at least the main surface side of the light emitting element”.
  • Eighteenth aspect A method for manufacturing a light-emitting device according to the seventeenth aspect, wherein a light-transmissive insulating layer is used as the insulating layer.
  • the light-emitting element has a form of a light-emitting element chip.
  • a light emitting device manufacturing method comprising: preparing a light emitting element chip embedded in an insulating layer in a form. That is, in the manufacturing method of the present invention, when the light-emitting element has the form of a light-emitting element chip, it is preferable to prepare a light-emitting element chip embedded in the insulating layer in a “flat form”.
  • the method includes a step of forming a phosphor layer after forming the insulating layer and before peeling the carrier film, In the step (i), after arranging a plurality of light emitting element chips on the carrier film, an insulating layer is provided flush with the light emitting element chips so as to fill between adjacent light emitting element chips.
  • a method for manufacturing a light-emitting device characterized in that a phosphor layer is formed on a plane composed of Twenty-first aspect :
  • the light-emitting element in step (i) has a form of a light-emitting element chip.
  • the electrode member is formed such that a part of the electrode member protrudes laterally outward from the light emitting element chip (that is, in a direction perpendicular to the thickness direction of the light emitting element).
  • Manufacturing method of light-emitting device That is, in the manufacturing method of the present invention, it is preferable to devise the form and treatment of the light emitting element electrode member as in this aspect or the following twenty-second aspect.
  • the light-emitting element in step (i) has a form of a light-emitting element wafer
  • a plurality of electrode members are formed on the light emitting element wafer
  • a cutting operation is performed in which at least one of the plurality of electrode members is divided into two parts (this makes it possible to obtain a form in which a part of the light emitting element electrode member protrudes outward from the light emitting element chip).
  • Twenty-third aspect In any one of the fourteenth to twenty-second aspects, further comprising the step of forming an insulating portion around the electrode member, The formation of the electrode member is performed in two stages, that is, the formation of the first sub-electrode part and the formation of the second sub-electrode part, and between the formation of the first sub-electrode part and the formation of the second sub-electrode part.
  • a method for manufacturing a light-emitting device comprising forming an insulating portion.
  • a plurality of electrode members are formed in step (ii), In forming the insulating portion, the insulating portion is formed across two adjacent light emitting element electrode members (particularly, adjacent to each other so that the space between the two adjacent electrode members is filled with the insulating portion). And forming an insulating portion across the two electrode members).
  • the light-emitting element has a form of a light-emitting element chip.
  • step (i) after arranging the light emitting element chip on the phosphor layer formed on the carrier film, an insulating layer is formed on the phosphor layer so as to cover the light emitting element chip, A carrier film is used as a lens element of a light emitting device without being finally peeled off. That is, in the manufacturing method of the present invention, the carrier film may be used as a component of the light emitting device.
  • the insulating layer has photosensitivity (for example, the insulating layer is a photosensitive resin layer), and the insulating layer is subjected to exposure / development processing, so that the insulating layer is provided at least at a part between adjacent light emitting element chips.
  • a method for manufacturing a light-emitting device characterized by performing a patterning process that leaves a film. That is, in the manufacturing method of the present invention, it is preferable to perform an appropriate patterning process on the insulating layer.
  • the light-emitting element has a form constituted by a plurality of light-emitting element chips.
  • step (i) a plurality of sub-phosphor layers are formed on a carrier film, and one light-emitting element chip is disposed on each of the sub-phosphor layers. This corresponds to a method for manufacturing a so-called “reflector structure” light-emitting device).
  • the formation of the electrode member is performed in two stages of formation of the first sub-electrode part and formation of the second sub-electrode part, After forming a local insulating layer that exposes a part of the surface of the light emitting element chip for each of the light emitting element chips, a base layer is formed to cover the insulating layer, and then After forming two first sub-electrode portions for each light emitting element chip, an insulating portion is formed so as to straddle the two first sub-electrode portions, and then the second sub-electrode portion is in contact with the first sub-electrode portion And then A method for manufacturing a light-emitting device, characterized by performing a cutting operation to divide the light-emitting element chip into units (this mode also corresponds to a method for manufacturing a light-emitting device having a so-called “reflector structure”).
  • the base layer and the second layer are arranged so as to follow the contour shape of “a light emitting device precursor composed of a subphosphor layer provided on a carrier film, a light emitting element chip and an insulating layer”.
  • a light emitting device precursor composed of a subphosphor layer provided on a carrier film, a light emitting element chip and an insulating layer.
  • the positive electrode part (electrode part connected to the P-type electrode of the light-emitting element) and the negative electrode part (electrode part connected to the N-type electrode of the light-emitting element) of the light-emitting element electrode member The “local region 70A of the first insulating portion” provided therebetween is positioned below the central portion of the light emitting element (see, for example, FIG. 5), but the present invention is not limited to such an embodiment.
  • the positive electrode portion can be generally larger than the negative electrode portion as shown in FIG. 21, so that the local region 70A of the first insulating portion is shown in the cross-sectional view of FIG. As shown in the schematic cross-sectional views of FIG. 22 and FIG.
  • the light-emitting device of the present invention can be suitably used for various lighting applications, and can also be suitably used for a wide range of applications such as a display device (liquid crystal screen) backlight source, a camera flash application, and an in-vehicle application.
  • Electrode member for light emitting elements 10 'Sub electrode part pattern (1st sub electrode part pattern) 10 "second sub-electrode part pattern (second sub-electrode part pattern) 10a Positive electrode part (electrode part connected with the P-type electrode of a light emitting element) 10b Negative electrode part (electrode part connected with the N-type electrode of a light emitting element) 30 Reflective layer 50 Light emitting element 50 ′ LED wafer 70 First insulating portion 70A Local first insulating portion 70A1 provided in a region between the positive electrode portion and the negative electrode portion The width of the local first insulating portion is narrow Part 70A2 Local wide part of first insulating part 70 'Insulating layer pattern (for example, resin layer pattern or inorganic material layer pattern) 72 Second insulating part (insulating layer) 72 'sealing layer (for example, sealing resin layer or sealing inorganic material layer) 80 phosphor layer 85 carrier film 90 lens member 100 light emitting device

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

 本発明は、発光素子を有して成る発光装置である。本発明の発光装置は、発光素子のための電極部材、かかる電極部材上に設けられた反射層、および、かかる反射層の少なくとも一部と接するように反射層上に設けられた発光素子を有して成り、反射層の少なくとも一部を介して発光素子と電極部材とが相互に面接触することによって、発光素子と電極部材とが電気的に接続されており、電極部材が発光素子を支持する支持層を成しており、また、発光素子から外側へとはみ出すように電極部材が設けられている。

Description

発光装置およびその製造方法
 本発明は、発光装置およびその製造方法に関する。より詳細には、本発明は発光ダイオード(以下「LED」とも称する)を備えた発光装置およびその発光装置の製造方法に関する。
 近年、光源としてのLEDは、省エネルギーかつ長寿命であることから、種々の用途に用いられている。例えば、表示装置(液晶画面)バックライト光源、カメラフラッシュ用途、車載用途などの用途にLEDが用いられている他、各種の照明用途にもLEDが用いられている。
 高輝度のLEDを達成するためには、LEDに印加する電流を大きくし、光量を増大させることが考えられる。しかしながら、このような大電流を印加する過酷な使用条件ではLEDの特性劣化が生じることがあり、LEDパッケージやモジュールの長寿命・高信頼性の確保が困難となり得る。例えば、LEDに流す電流を増加させると、LEDからの発熱が増大し、それによって、照明用LEDモジュールやシステムの内部の温度が上昇して劣化を引き起こしかねない。例えば白色LEDは消費する電力のうち可視光へと変更されるのは25%程度といわれており、他は直接熱となってしまう。したがって、LEDパッケージに対しては放熱対策を行うことが必要であり、各種のヒートシンクが使用されている。
特開2009-129928号公報 国際公開(WO)第08/088165号公報
 現在のLEDチップの実装形態は大きく2つに分離することができ、「ワイヤーボンディング型(W/B型)」と「フリップチップ型(F/C型)」とが存在する。「ワイヤーボンディング型(W/B型)」は、図23(a)に示すように、LEDチップの電極が上側に向いており、かかる上向き電極に接続された金ワイヤによって電気的な接続が図られている。一方、「フリップチップ型(F/C型)」は、図23(b)に示すように、LEDチップの電極が下側に向いており、かかる下向き電極に接続された金バンプを介して電気的な接続が図られている。
 本願発明者らが鋭意検討した結果、これらの実装形態には以下の課題があることを見出した。まず、「フリップチップ型(F/C型)」は、LEDチップの上側に光を遮るものが存在しないので光取り出しの点で好ましいものの、金バンプが熱抵抗となってしまい放熱特性の点で必ずしも好ましいといえない。具体的には、LEDチップにおいて金バンプが占有している面積は僅かにすぎず(占有面積は大きく見積もってもLEDチップ面に対して約25%程度しかならず)、それゆえ、金バンプが律速となり、放熱性は良くない。換言すれば、金バンプの設置箇所(実装部分)において発熱が生じ得るといえる。このような「フリップチップ型(F/C型)」では、たとえ放熱性の高い基板が用いられていたとしても、基板へと熱が伝わりにくく、高い放熱特性は達成され得ない(図23(b)参照)。
 一方、「ワイヤーボンディング型(W/B型)」は、図23(a)に示すように、LEDチップの直下にサーマルビアなどを設けることができるので、放熱特性の点で好ましいものの、LED上側の電極(バンプ)が光を遮ってしまい、光取り出しの点では好ましくない。具体的には、LEDチップの上側面に設けられた電極部の存在によって光取り出しできるLED領域が制限されてしまい、光取り出し量が減じられる。また、ワイヤ自体も光を遮ってしまうので、その点でも光取り出しを低下させる要因となる。
 本発明はかかる事情に鑑みて為されたものである。即ち、本発明の主たる目的は、放熱特性および光取出し特性の双方を満足させる発光装置を提供することである。
 本願発明者らは、従来技術の延長線上で対応するのではなく、新たな方向で対処することによって上記目的の達成を試みた。その結果、上記目的が達成された発光装置の発明に至った。具体的には、本発明においては、
 発光素子のための電極部材、
 電極部材上に設けられた反射層、および
 反射層の少なくとも一部と接するように当該反射層上に設けられた発光素子
を有して成り、
 反射層の前記少なくとも一部を介して発光素子と電極部材とが相互に面接触(又は直接接合または面接合)することによって、発光素子と電極部材とが電気的に接続されており、また
 電極部材が発光素子を支持する支持層を成している、
ことを特徴とする、発光装置が提供される。
 本発明の発光装置の特徴の1つは、発光素子と「発光素子のための電極部材(以降、「発光素子電極部材」とも称す)」とが相互に面接触することにより発光素子と発光素子電極部材とが電気的に接続されていると共に、発光素子電極部材が発光素子を支持する支持層を成していることである。換言すれば、本発明の発光装置では、実質的にダイレクトに発光素子に対して電極部が設けられていると共に、かかる“ダイレクトな電極部”が発光装置における支持層を成している(即ち、発光素子に対してダイレクトメタライズを施して電極部が形成されており、そのダイレクトメタライズ層たる“電極部”がそのまま支持層を成している)。
 本明細書において『発光素子』とは、光を発する素子であって、例えば発光ダイオード(LED)およびそれらを含む電子部品のことを実質的に意味している。従って、本発明における『発光素子』は、「LEDのベアチップ(即ちLEDチップ)」のみならず、「LEDチップがモールドされたディスクリート・タイプ」をも包含した態様を表すものとして用いている。尚、LEDチップに限らず、半導体レーザーチップなども用いることができる。
 また、本発明で用いる『発光装置』という用語は、「発光素子パッケージ(特にLEDパッケージ)」なるものを本質的に意図しており、更には「LEDがアレイ状に複数配列してなる製品」をも意図している。つまり、本発明の発光装置は、特段の説明を付さない限り、いわゆる“シングルチップ”のみならず、“マルチチップ”の態様をも包含している。同様にして、本発明の発光装置は、特段の説明を付さない限り、“光の指向性を有する装置”のみならず、“光の指向性を有さない装置”の態様をも包含している。
 更に、本明細書で用いる『発光素子のための電極部材』(即ち“発光素子電極部材”)とは、発光素子に予め備えられている電極(P型電極・N型電極)とは異なる別の電極のことを実質的に意味している。
 ある好適な態様では、発光素子電極部材が発光素子から外側へとはみ出すように設けられている。つまり、発光素子の下方領域のみならず、その外側領域にも横方向へと延在するように発光素子電極部材(及びその上に設けられた反射層)が設けられている。
 また、本発明では、上記発光装置を製造するための方法も提供される。つまり、「発光素子と発光素子電極部材とが相互に面接触することによって発光素子と発光素子電極部材とが電気的に接続されていると共に、発光素子電極部材が発光素子を支持する支持層を成している発光装置」の製造方法が提供される。かかる本発明の製造方法は、
 (i)発光素子を用意する工程、および
 (ii)発光素子上に発光素子電極部材を形成する工程
を含んで成り、
 工程(ii)では、発光素子電極部材を形成するための下地層を発光素子上に形成した後、その下地層を介して発光素子と面接触(又は直接接合または面接合)するように発光素子電極部材を形成しており、また、
 下地層は最終的に発光装置における反射層として用いる。
 本発明の製造方法の特徴の1つは、発光素子上にダイレクトに電極部材を形成すると共に、かかるダイレクト形成に用いた電極下地層を最終的には発光装置の反射層として用いることである。
 本発明の発光装置では、“放熱特性”と“光取出し特性”との双方が好適に達成されている(図1参照)。具体的には、「発光素子と発光素子電極部材との面接触」に起因して発光素子における発光素子電極部材の占有面積が大きく、それゆえに“高放熱”が好適に実現されている。また、発光素子電極部材上に発光素子が設けられた構造、即ち、発光素子の電極が下側に向いたフェースダウン構造となっているので、「発光素子の上側の電極(バンプ)が光を遮る」などといった不都合が回避されており、光取り出し量も多くなっている。
 “放熱特性”についていえば、本発明ではバンプを介した実装が行われておらず(即ち、実装レス・バンプレスとなっており)、発光素子からの熱が“発光素子電極部材との面接触部”を介して効率良く放熱されるようになっている。特に、発光素子電極部材を熱伝導性の高い銅などの材質から形成でき、また、“厚みの大きい電極部”および/または“幅方向にサイズの大きい電極部”として設けることができるので、かかる電極部を介して発光素子の熱を効率よく外部へと逃がすことができる。尚、反射層自体は、そもそも金属材質などの熱伝導性を少なくとも呈するものから成るものであり、かつ、非常に薄く設けられているので、熱抵抗は無視できる程度に小さい。
 “光取り出し”についていえば、フェースダウン構造ゆえに発光素子の上面側からの光を効率良く取り出せるだけでなく、反射層に起因して発光素子の下面側からの光も効率良く取り出すことができる。この点、発光素子の直下に“高反射率を呈する反射層”が設けられているので、発光素子から発された下向きの光を効率良く反射層で反射させることができ、その結果、“下向きに発された光”を有効利用することができる。つまり、本発明の発光装置は、発光素子の上面側からだけでなく、下面側からの光の取り出しの点でも望ましい構造となっている。
 更に、本発明の発光装置は、電極部材が発光素子を支持する支持層を成しているので、“基板レス構造”となっている。この“基板レス”ゆえに小型装置が実現されており、また、低コスト製造にも寄与する。また、そのような形態であるがゆえに、セラミック基板などの高放熱基板を支持体として用いた装置と比較して装置にフレキシブル性を持たすこともできる。
 また、本発明の装置は、発光素子から直接配線形成が可能な構造となっており、また、アレイ化可能な構造にもなっているので、設計自由度は比較的高い。更には“実装レス・バンプレス”ゆえに接続安定性なども良好である。
 本発明の製造方法に特に着目してみると、「発光素子上にダイレクトに電極部材を形成すると共に、そのダイレクトな電極部材形成に用いた電極下地層を最終的には発光装置の反射層としてそのまま使用する」といった比較的簡易なプロセスとなっている。そして、かかる簡易な製造プロセスによって“放熱特性”と“光取出し特性”との双方を満たす発光装置を得ている。また、“下地層”についていえば、発光素子電極部材の形成(特に“厚みの大きい電極部材”の形成)に寄与するだけでなく、最終的には“光の取り出しに寄与する反射層”として用いるので、下地層の形成は、プロセス態様の好適化に寄与すると同時に、最終的な製品の好適化にも寄与する。この他、本発明の製造方法は、“LEDチップなどの発光素子から直接再配線形成が可能である”といった効果や、ウエハサイズでチップは任意配置可能であったり、また、キャリア層ベースでLED封止可能(それゆえ発光面が平滑)であったりなどの種々の有利な効果をも奏し得る。
本発明の発光装置の機能および効果を説明するための模式的断面図 本発明の発光装置の構成を模式的に表した断面図(図2(A):チップ・サイズ又はウエハ・サイズの発光装置(即ち、装置全体の幅サイズが、発光素子の幅サイズに等しい発光装置)、図2(B):略チップ・サイズまたは略ウエハ・サイズの発光装置(即ち、装置全体の幅サイズが、発光素子の幅サイズにおよそ等しい発光装置)、図2(C):発光素子から外側へとはみ出すように電極部材が設けられた発光装置) 本発明における「面接触」を説明するための模式図 本発明における“発光光素子電極部材”の態様(外側へとはみ出すように幅方向へと延在する態様)を説明するための模式的断面図 本発明における“絶縁部” を説明するための模式的断面図 本発明において“蛍光体層が設けられる態様”を説明するための模式的断面図 本発明において“レンズ部材が設けられる態様”を説明するための模式的断面図 本発明において“マルチチップの態様”を説明するための模式的断面図 本発明において“電極部材・反射層の屈曲態様”を説明するための模式的断面図 本発明の発光装置のリフレクタ構造の形態・構成を模式的に表した断面図 本発明の製造方法を模式的に示した工程断面図 「プロセス態様1」における本発明の製造方法を模式的に示した工程断面図 「めっき後にエッチングによりパターン化する手法」によってサブ電極部パターンを形成する態様を模式的に示した工程断面図 「レジストパターン形成後にパターンめっきする手法」によってサブ電極部パターンを形成する態様を模式的に示した工程断面図 絶縁層原料が感光性材料である場合における絶縁層パターンの形成態様を模式的に示した工程断面図 絶縁層原料が感光性材料以外である場合における絶縁層パターンの形成態様を模式的に示した工程断面図 「プロセス態様2」における本発明の製造方法を模式的に示した工程断面図 「プロセス態様3」における本発明の製造方法を模式的に示した工程断面図 「プロセス態様4」における本発明の製造方法を模式的に示した工程断面図 絶縁層の形成およびそのパターニング処理などの変更態様を説明するための模式的断面図 「プロセス態様5」における本発明の製造方法を模式的に示した工程断面図 第1絶縁部の局所的領域70Aの位置を説明するための模式図(発光素子の下側主面からみた図) “第1絶縁部の局所的領域70Aの位置についての変更態様”を説明するための模式的断面図 従来技術のLEDパッケージの構成態様を模式的に示した断面図
 以下にて、本発明の発光装置およびその製造方法を詳細に説明する。尚、図面に示す各種の要素は、本発明の理解のために模式的に示したにすぎず、寸法比や外観などは実物と異なり得ることに留意されたい。
[本発明の発光装置]
 図2(A)~図2(C)に、本発明の発光装置の構成を模式的に示す。図示されるように、本発明の発光装置100は、発光素子電極部材10、反射層30および発光素子50を有して成る。発光素子50は、発光素子電極部材10上に設置された形態を有しており、電極部材上の反射層30の少なくとも一部と接して設けられている。
 本発明の発光装置100では、図示されるように、反射層30を介して発光素子50と発光素子電極部材10とが相互に面接触(又は直接接合または面接合)しており、それによって、発光素子50と発光素子電極部材10とが電気的に相互接続されている。ここでいう「面接触(又は直接接合または面接合)」とは、各要素の主面同士が相互に接触又は接合する態様、特に、各要素の主面同士が相互に重なり合う範囲で全て接触または全て接合する態様を実質的に意味している。具体的には、“発光素子の主面(下側主面)”と“発光素子電極部材の主面(上側主面)”とが相互に重なり合う範囲で全て接触または全て接合する態様を意味している。換言すれば、本明細書で用いる「面接触」とは、発光素子および発光素子電極部材の主面領域のうち、相互に重なる領域同士が全接触または全接合する態様を意味している(図3における“主面領域A”と“主面領域B”とが全て接触または全て接合する態様に相当する)。
 発光素子50と発光素子電極部材10との間に位置する反射層30は、熱抵抗ないしは電気抵抗が無視できるほどに薄い層である。それゆえに、本発明においては、発光素子50と発光素子電極部材10とはダイレクトに(直接的に)相互に面接触しているとみなすことができる。
 反射層30は非常に薄いのに対して、発光素子電極部材10は厚く設けられている。このように厚い発光素子電極部材10は、実質的に、発光素子50を支持する支持層として特に好適に機能する。つまり、発光素子50の下側に位置している発光素子電極部材10は、相対的に厚く、かつ、発光素子50と重なり合う範囲で発光素子50と全面接触しているので、発光素子50を支える土台として機能している。発光素子電極部材10は、正電極部10a(発光素子のP型電極と接続される電極部)と負電極部10b(発光素子のN型電極と接続される電極部)とから構成されているが、かかる正電極部10aおよび負電極部10bが、それぞれ、発光素子50と重な合う範囲で発光素子50と面接触しており、発光素子50を支持する支持層として好適に機能している。
 本発明における発光素子電極部材10は、発光素子50と“面接触”しているので、かかる電極部材を介して発光素子の熱を効率よく外部へと逃がすことができる。つまり、発光素子電極部材10は、発光装置の支持層として機能するだけでなく、ヒートシンクとしても機能しており、発光装置の高放熱特性に対して特に効果的に寄与する。ここで、発光素子(例えばLED)というものは、一般に高温になると発光効率(即ち、駆動電流が光に変換される割合)が低くなり輝度が低下してしまうところ、本発明の発光装置では、放熱特性に優れているので、発光効率が高く、より高輝度な装置が実現されている。また、そのように優れた放熱特性であるがゆえ、発光素子の動作寿命が向上する効果や、封止樹脂の熱による変性・変色なども効果的に防止できる効果なども奏され得る。また、発光素子電極部材10と発光素子50とは“面接触”しているため、ワイヤやバンプを介して電気的に接続される場合と比較して電気抵抗に優れている。そのため、より大きな電流を流すことができる効果などもなされ得る。発光素子電極部材および発光素子に大電流を流すことができるので、発光素子を小型化することが可能となると同時に、より高輝度な装置が実現される。
 発光素子電極部材10の材質は、特に制限なく、常套のLEDの電極材質として一般的なものであってよい。例えば、銅(Cu)、銀(Ag)、パラジウム(Pd)、白金(Pt)およびニッケル(Ni)から成る群から選択される少なくとも1種の金属材料を電極部材の主たる材質として用いることができる。しかしながら“放熱特性”を特に重視すると、発光素子電極部材10の材質は熱伝導性が高く放熱特性に効果的に寄与するものが好ましく、それゆえ銅(Cu)が特に好ましい。尚、後述でも触れるが、発光素子電極部材10は、例えば湿式めっき層(好ましくは電気めっき層)から成るものであってよい。
 本発明における発光素子電極部材10は比較的厚く、それゆえに、支持機能およびヒートシンク機能に有効に寄与する。例えば、発光素子電極部材10は、反射層30よりも厚くなっている。更にいえば本発明の好適な態様の1つとして、発光素子電極部材10は発光素子50よりも厚くなっている。具体的には、発光素子電極部材10の厚さ(例えば電極部材の最大厚さ部分)が発光素子50の厚さ(例えば発光素子の最大厚さ部分)よりも大きくなっている。発光素子電極部材10の具体的な厚さにつき例示すると、発光素子電極部材10の厚さは、好ましくは30~500μm程度、より好ましくは35~250μm程度、更に好ましくは100~200μm程度である。
 発光素子電極部材10の表面領域の反射層30は、発光素子50の直下に位置付けられている。それゆえに、発光素子50から発された下向きの光を反射層30で効率的に反射させることができる。つまり、“下向きに発された光”を上方へと向けることができる。これは、発光素子直下の反射層30の存在によって発光効率が向上し、その結果、発光装置がより高輝度になることを意味している。このように、本発明の発光装置では、発光素子電極部材10のヒートシンク機能のみならず、反射層30によっても高輝度がもたらされている。
 反射層30の材質は、光を反射できる材質のものであればよく、例えば、Ag(銀)、Al(アルミニウム)、Al合金や、Au(金)、Cr(クロム)、Ni(ニッケル)、Pt(白金)、Sn(スズ)、Cu(銅)、W(タングステン)およびTi(チタン)などから成る群から選択される少なくとも1種の金属材質であってよい。後述するように、反射層30は、発光素子電極部材10の形成のための下地層(電極下地層)としての機能を有するものであり、その点を特に重視すれば、Ti(チタン)、Cu(銅)およびNi(ニッケル)などから成る群から選択される金属を含んで成ることが好ましい。一方、高反射特性を特に重視するならば、反射層30は、Ag(銀)およびAl(アルミニウム)などから成る群から選択される金属を含んで成ることが好ましい。金属材質から成る反射層30は、電導性・熱伝導性を有するものであり、電極の一部を構成し得るといえる(また、そもそも反射層は、後述するように、電極下地層を成すものである)。つまり、反射層30は発光素子電極部材10の一部とみなすことができ、特に、発光素子直下に位置する“高反射率を呈する電極部分”とみなすことができる。尚、反射層30は、単一層から成る形態に限らず、複数の層から構成された形態であってもよい。例えば、反射層30がTi薄膜層とCu薄膜層とから構成された形態であってもよく、かかる場合、図面中にて(例えば図2に示す上下方向を基準にすると)Ti薄膜層が“上側層”に相当する一方、Cu薄膜層が“下側層”に相当する。尚、後述でも触れるが、反射層自体は、例えば乾式めっき層(好ましくはスパッタ層)から成るものであってよい。
 “発光素子と発光素子電極部材とのダイレクトな面接触”に関連する事項であるが、反射層30は、熱抵抗・電気抵抗が実質的に無視できるほど非常に薄く、例えばナノオーダーの厚さを有し得る。あくまでも例示にすぎないが、反射層30の厚さは、100~500nm程度(反射層材質の種類によっては100nm~300nm程度)と非常に薄く、それゆえ反射層30は薄膜層を成している。
 本発明における発光素子50は、LEDのベアチップ、即ちLEDチップであってよく、あるいは、LEDチップがモールドされたディスクリート・タイプであってもよい。LEDチップなどは、一般的なLEDパッケージに用いられているものを使用することができ、その具体的な種類などは発光装置たるLEDパッケージの用途に応じて適宜選択すればよい。必要に応じて、いわゆる“無極性LED(ノンポーラ型のLEDチップ)”を発光素子50として用いてもよい。発光素子50(例えばLEDチップ)の個数についていえば、“単一”に限定されず、“複数”であってよい。つまり、本発明の発光装置は100、図2で示されるような“シングルチップ”の形態のみならず、“マルチチップ”の形態でも実現される。
 本発明の発光装置100は、“発光素子50と発光素子電極部材10との相互の面接触”ゆえに、発光素子50からの熱が好適に放熱される。つまり、面接触ゆえに、発光素子50の主面において発光素子電極部材10が占める面積は大きく、放熱特性が優れている。例えば、発光素子50の下側主面において発光素子電極部材10(「正電極部10aおよび負電極部10bとから構成される発光素子電極部材」)が占める面積の割合は、40%以上であり、好ましくは50~90%、より好ましくは70~90%である。このように “面接触”に起因して発光素子電極部材の占有面積が大きいので、本発明では「発光素子と電極部材との接続部」の熱抵抗が装置全体の熱抵抗の律速とならず、放熱性は良好となる。また、発光素子電極部材は、厚みが大きいので、その点でも放熱性が向上し得る。換言すれば、本発明においては、バンプを介した発光素子の実装などは行われておらず、発光素子に対してダイレクトな厚電極構成となっているので、高い放熱特性が実現されているといえる。
 より高い放熱特性および/又はより高い支持機能などが実現されるべく、発光素子電極部材10は、幅方向サイズが大きくなっていることが好ましい。特に、図4に示すように、発光光素子電極部材(10a,10b)が発光素子50から外側へとはみ出すように設けられていることが好ましい。換言すれば、発光素子電極部材10の正電極部10aおよび負電極部10bは、それぞれ、発光素子50の下方領域のみならず、その外側領域へと横方向・幅方向に延在していることが好ましい。このような形態を有する発光素子電極部材10では、発光素子50を支える支持機能が更に向上することになる。また、そのように横方向・幅方向に延在する電極部材10では、発光素子50からの熱を下方向のみならず、横方向にも逃がすことができるため、装置全面としてみたときの熱抵抗が更に減じられることになる。更にいえば、発光素子電極部材10が外側領域へと横方向・幅方向に延在する場合、その上に設けられている反射層30も同様に外側領域へと横方向・幅方向に延在し得る。つまり、反射層30が発光素子50の下方領域のみならず、その外側領域へと横方向・幅方向にも延在し得る。このような態様では、発光素子から発された“下向きの光”をより広範に反射層で反射させることができるので、より効率的な光の取出しが可能となる。つまり、発光素子電極部材10および反射層30が外側領域へと横方向・幅方向に延在する態様では、“放熱特性”と“光取出し特性”との双方が更に向上した発光装置が実現され得る。
 尚、発光素子電極部材が必要以上に“はみ出す”と、装置の小型化が阻害され得るので、はみ出し部分の寸法は、「支持機能・放熱特性」と「小型化」と「光取出し特性」との兼ね合いなどで適宜決定され得る。あくまでも例示にすぎないが、1つの例を挙げると、発光素子電極部材の幅寸法でみた場合にその半分以上が発光素子から“はみ出している”形態であってよい(図4で例示すると、発光素子電極部材にて「発光素子から外側へとはみ出した部分の幅寸法W1」が「発光素子の下方に位置する部分の幅寸法W2」以上の大きさであってよい)。
 本発明の発光装置では“絶縁部”が設けられていることが好ましい。具体的には、図5(a)~5(c)に示すように、発光素子電極部材10の周囲に第1絶縁部70が設けられている一方、発光素子50の周囲に第2絶縁部72が設けられていることが好ましい。図示する態様から分かるように、第1絶縁部70が設けられている場合、発光素子電極部材10は、第1絶縁部70と共に支持層を成している。また、第1絶縁部70は、発光素子電極部材10の正電極部10aと負電極部10bとの間にも設けられており、その結果、かかる正電極部10aと負電極部10bとの間を絶縁する機能をも有し得る。一方、第2絶縁部72は、図示する態様から分かるように、発光素子50を外部環境から遮断または保護するための封止層・封止部材、および支持層として機能し得る(特に図5(b)参照)。
 第1絶縁部70および第2絶縁部72の材質は、絶縁性を供するものであればいずれの種類の材質であってもよく、例えば樹脂であってよい。例えば、エポキシ系樹脂やシリコーン系樹脂であってよい。特に第2絶縁部72についていえば、光の取出しに鑑みて透明樹脂から成ることが好ましく、それゆえに、第2絶縁部72は例えば透明エポキシ樹脂や透明シリコーン樹脂から成ることが好ましい。また、耐光性や耐熱性を鑑みて、例えば有機無機のハイブリッド材料や無機材料であってよい。例えば、第1絶縁部70および第2絶縁部72の材質は、無機ガラス封止材料などであってよい。
 第1絶縁部70は、図5(a)および5(b)に示すように、発光素子電極部材10の正電極部10aと負電極部10bとの間の領域や、それら電極部材の周囲にて電極部材と接するように設けられていることが好ましく、厚さは電極部材厚さと同程度であってよい。ある1つの好適な態様としては、図5(a)および5(b)に示すように、第1絶縁部70は、その上面が反射層30の上面と面一状態となるような形態で設けられていてよい。第2絶縁部72は、同じく図5(a)および5(b)に示すように、発光素子50の周囲を囲むように発光素子50と接するように設けられていることが好ましく、厚さは発光素子50と同程度であってよい。後述する蛍光体層80などを別途設ける場合では、第2絶縁部72は、その上面が発光素子30の上面と面一状態となるような形態で設けられていてよい(図5(a)参照)。尚、第2絶縁部72が蛍光体層としても機能する場合では(即ち、第2絶縁部72が例えば樹脂成分および/または無機材料成分と蛍光体成分とを含んで成る場合)、第2絶縁部72が発光素子30を包み込むように厚く形成されていてもよい(図5(b)参照)。
 本発明の発光装置は“微細絶縁膜”といった点でも特徴を有し得る。具体的には、正電極部10aと負電極部10bとの間に設けられた“局所的な第1絶縁部70A”は、図5(c)に示すように、“幅狭部分70A1”と“幅広部分70A2”との2つの領域部分から構成されている。これによって、正電極部10aと負電極部10bとの間のショートを防止しつつも、電極部材に大きな厚みを持たすことができ、ひいては、高放熱性の実現に寄与する。つまり、本発明では“面接触”に起因して発光素子電極部材の占有面積が大きいので、正電極部10aと負電極部10bとの間の距離が狭まってショートを引き起こし易い構造といえるものの、それを好適に回避すべく、“幅広部分70A2”が設けられている。つまり、第1絶縁部70Aにおける“幅広部分70A2”によって正電極部10aと負電極部10bとの間の距離を離し、ショートを防止している。あくまでも、一例であるが、“幅狭部分70A1”の幅寸法α(図5(c)参照)が、20μm~70μm程度であるのに対して、幅広部分70A2の幅寸法β(図5(c)参照)は、100μm以上であってよい(尚、幅広部分の幅寸法の上限値は、特に制限されないものの、500μm程度であってよい)。
 本発明の発光装置では、必要に応じて蛍光体層が設けられていてもよい。例えば、図6(a)および6(b)に示すように、第2絶縁部72の上に蛍光体層80が設けられていてよい。より具体的には、図示するように、発光素子50の上側主面を覆うように蛍光体層80が第2絶縁部72に設けられていてよい。蛍光体層80の材質は、発光素子50からの光を受けて所望の光を発色するものであれば、特に制限はない。つまり、発光素子50からの光・電磁波との兼ね合いで蛍光体層80の蛍光体種類を決定すればよい。例えば、発光装置を照明などの白色LEDパッケージとして用いる場合、LED50から発せられる青色発光によって黄色系に発色する蛍光体を蛍光体層80が含んでいれば、明るい白色を得ることができる。また、LED50から発せられる電磁波が紫外線である場合には、その紫外線によって直接的に白色を発する蛍光体を用いてもよい。尚、第2絶縁部72が例えば樹脂成分および/または無機材料成分などの絶縁成分と蛍光体成分とを含んで成る場合では、第2絶縁部72が発光素子の封止機能のみならず、蛍光層機能をも兼ね備えるので、別途で蛍光体層80を設ける必要は特にない。
 本発明の発光装置100は、“光の指向性を有する装置”として実現することできるし、あるいは、“光の指向性を有さない装置”としても実現することもできる。指向性を有する装置としては、例えば、図7(a)および(b)に示すようにレンズ部材90を有していることが好ましい。図示するように、レンズ形状部が“単一”であること(図7(a)の態様)に限定されず、“複数”であってもよい(図7(b)の態様)。尚、第2絶縁部72や蛍光体層80がレンズ形状を有する態様であってもよい。
 本発明の発光装置100は、図1~6などで示されるような発光素子50が単一となった“シングルチップ”の態様のみならず、例えば図8(a)および(b)に示すように、発光素子50を複数備えた“マルチチップ”の態様としても実現することもできる。つまり、アレイ化によって“マルチチップ”の態様の発光装置100を実現することができる。
 更には、本発明の発光装置100では以下のような態様も可能である。
(電極部材・反射層の屈曲態様)
 「電極部材・反射層の屈曲態様」を図9(a)~(d)に示す。図示するように、かかる態様では、電極部材10(特にその上面)および反射層30が屈曲した形態を有している。図9(a)では、中央部分A1(発光素子領域)が僅かに***するように電極部材10および反射層30が屈曲している。図9(b)は、大部分が窪みつつも中央部分A2(発光素子領域)が僅かに***するように電極部材10および反射層30が屈曲している。別の観点で見れば、図9(b)の態様は、より外側に位置する電極部材10の厚さが大きくなった態様であるともいえる。図9(c)は、中央部分A3(発光素子領域およびその近傍領域)が僅かに凹むように電極部材10および反射層30が屈曲している。かかる態様も同様に、より外側に位置する電極部材の厚さが大きくなった態様であるともいえる。そして、図9(d)は、図9(c)の態様からP部分の絶縁層が除かれたような形態を有している。このような図9(a)~(d)に示す形態であっても“放熱特性”と“光取出し特性”との双方が好適に達成されている。
(リフレクタ構造の態様)
 リフレクタ構造を有する本発明の発光装置100の態様を図10に示す。リフレクタ態様は、上記電極部材・反射層の屈曲態様の変更態様に相当し得、電極部材10(特にその電極部材の一部に相当する「電極部10’」)および反射層30が大きく窪むように屈曲しており、その窪んだ領域に発光素子50が位置付けられている。かかるリフレクタ態様であっても“放熱特性”と“光取出し特性”との双方が好適に達成されている。特筆すれば、“リフレクタ”ゆえに、発光素子50の周囲の反射層30によって(特に反射層30が発光面より高いレベルにおいても存在する形態となっているので)、発光素子50からの光を効率的に反射させることができ、その点で“光取出し特性”が特に向上し得る。更には、リフレクタ構造の発光装置では、“更なる高密度(小型装置)”、“更なる高熱伝導”および“更に簡易な製造プロセス”などといった効果も奏され得る。
[本発明の発光装置の製造方法]
 次に、本発明の発光装置の製造方法について説明する。図11(a)~(d)に本発明の製造方法に関連したプロセスを模式的に示している。本発明の製造方法は、まず、工程(i)として、図11(a)に示すように発光素子50を用意する。用意される発光素子50は、次工程で行う反射層形成・電極部材形成にとって望ましいものとなっていることが好ましい。例えば、工程(i)では、発光素子50として「発光素子の少なくとも主面側に絶縁層が設けられた発光素子」を用意する。あくまでも一例であるが、発光素子50を、図11(a)で示すように絶縁層に埋設された形態として用意する。次いで、工程(ii)として、発光素子50上に発光素子電極部材10を形成する(より具体的にいえば、発光素子50に対してダイレクトメタライズを施す(例えばCuダイレクトメタライズを施す))。かかる工程(ii)においては、まず、図11(b)に示すように発光素子電極部材を形成するための下地層30を発光素子50上に形成し(特に発光素子の主面の一部を覆うように形成し)、次いで、図11(c)に示すように、下地層30を介して発光素子50と面接触する発光素子電極部材10を形成する。最終的には、図11(d)に示すように、電極部材形成に用いた下地層30については発光装置100における反射層として利用する。
 本発明の製造方法では、「発光素子上にダイレクトに電極部材を形成すると共に、かかるダイクレクト形成に用いた電極下地層を最終的には発光装置の反射層としてそのまま用いる」といった比較的簡易なプロセスとなっており、そのような簡易な製造プロセスによって“放熱特性”と“光取出し特性”との双方を満たす発光装置を得ることができる。特に製造プロセスの点に着目してみると、電極下地層30を設けるからこそ、発光素子電極部材10を厚くかつ密着力良く形成することができるといえる。
 下地層30の形成は乾式めっき法で行う一方、発光素子電極部材10の形成は湿式めっき法で行うことが好ましい(それゆえ、下地層30を乾式めっき層とする一方、発光素子電極部材10を湿式めっき層とすることが好ましい)。乾式めっき法は、真空めっき法(PVD法)と化学気相めっき法(CVD法)とを含んでおり、真空めっき法(PVD法)が更に真空蒸着、スパッタリングおよびイオンプレーディングなどを含んで成る。一方、湿式めっき法は、電気めっき法、化学めっき法および溶融めっき法などを含んで成る。ある好適な一態様として、本発明の製造方法では、下地層30をスパッタリングで形成し、発光素子電極部材10を電気めっき法(例えば電解めっき)で形成してよい。尚、あくまでも一例にすぎないが、下地層30は、単一層として形成することに限らず、複数の層として形成してもよい。例えば、下地層30としては、スパッタリングによりTi薄膜層とCu薄膜層とを形成してよい(より具体的にはTi薄膜層を形成した後にCu薄膜層を形成してよい)。この場合、かかる2層構造のスパッタ層上に発光素子電極部材10をCu電解めっきにより形成することが好ましい。
 本発明の製造方法は、種々のプロセス態様で実施することができる。以下それについて説明する。
(プロセス態様1)
 図12(a)~(g)に「プロセス態様1」の工程断面図を模式的に示す。かかる態様は、LEDウエハをベースに発光装置の製造を実施するプロセスである。まず、図12(a)および(b)に示すように、LEDウエハ50’の主面に封止層72’を形成する。封止層72’は、封止原料をスピンコート法やドクターブレード法などによりLEDウエハの主面に塗布した後で熱処理に付すことによって設けることができ、あるいは、LEDウエハに封止フィルムなどを貼り合わせることによっても設けることができる。次いで、図12(c)に示すように、例えばスパッタリングなどの乾式めっき法によって電極下地層30を形成する。次いで、図12(d)に示すように、電極下地層30を介してLEDウエハ50’上に直接的にサブ電極部パターン10’を形成する。かかるサブ電極部パターン10’の形成は、図13に示すように、「めっき後にエッチングによりパターン化する手法」によって行うことができる。具体的には、図示するように、電気めっき(例えば電解Cuめっき)によって、電極下地層の全面に金属層(例えば銅層)を形成した後、液状レジストスピンコートまたはドライフィルムレジストラミネートなどによってレジストを形成する。次いで、マスク露光・現像を行い、次いで、レジスト現像、金属層のエッチング処理、そしてレジスト剥離を実施して、最終的に金属パターンをマスクとして電極下地層をエッチング処理する。別法にて、図14に示すように、「レジストパターン形成後にパターンめっきする手法」によってサブ電極部パターン10’を形成してもよい。具体的には、図示するように、液状レジストスピンコートまたはドライフィルムレジストラミネートなどによってレジストを形成した後、マスク露光・レジスト現像を施し、次いで、パターンめっき(例えば電解Cuパターンめっき)を行う。次いで、レジストを剥離して、最終的には金属パターンをマスクとして電極下地層をエッチングする。
 サブ電極部パターン10’の形成後においては、図12(e)に示すように、絶縁層パターン70’を形成する。図示するように、隣接する2つのサブ電極部10’の間の空間が絶縁層70’によって満たされることになるように、隣接する2つのサブ電極部10’にまたがって絶縁層70’を形成することが好ましい。絶縁層原料が感光性材料から成る場合では、図15Aに示すように、絶縁層原料をスピンコートまたはドクターブレードなどによって全面塗布した後、あるいは、絶縁層フィルムなどを貼り合わせることによって設けた後、マスク露光・現像を行うことによって、絶縁層パターン70’を形成することができる。このとき、感光性はネガタイプでもポジタイプでもよい。一方、絶縁層原料が感光性材料以外から成る場合では、図15Bに示すように、印刷法などを用いて直接的にパターン印刷することによって絶縁層パターン70’を形成することができる。
 絶縁層パターン70’の形成後には、図12(f)に示すように、サブ電極部パターン10’と一体的に接合するように第2のサブ電極部パターン10”を形成する。かかる第2のサブ電極部パターン10”の形成は、上述したような「めっき後にエッチングによりパターン化する手法」あるいは「レジストパターン形成後にパターンめっきする手法」によって形成することができる。
 このように、発光素子電極部材10の形成を第1サブ電極部10’の形成と第2サブ電極部10”の形成との2段階に分けて実施しており、「第1サブ電極部10’の形成」と「第2サブ電極部10”の形成」との間において絶縁層70’の形成を実施している(図12(d)~(f))。これによって、LEDの正電極部と負電極部との間に設けられた「絶縁部の局所的な領域」を“幅狭部分”と“幅広部分”との2つの領域部分から好適に構成することができる(図12(f)参照)。尚、2段階に分けた電極部材10の形成についていえば、最初に形成される第1サブ電極部10’の厚みが、その後に形成される第2サブ電極部10”の厚さよりも大きくなるような態様であってもよい。
 最終的には、図12(g)に示すように、第1のサブ電極部10’と第2のサブ電極部10”とから成る各電極部材10(両端・最外側に位置する電極部は除く)がそれぞれ2つへと分割されるように切断操作を行う。これによって、最終的には、図12の最下部に示すような発光装置100を得ることができる(かかる発光装置100では、電極下地層30は反射層として利用される。また、本プロセスのようにLEDウエハを用いて製造する場合では、図12(g)に示すような切断を行うことに起因して、個々の電極部材がLEDから外側へとはみ出すような形態を有することになる)。本プロセスは、LEDウエハから各種要素を形成していくので、ウエハのきれいな面(≒平坦な面)を起点にでき、その点で好ましいプロセスが実現され得るといった特徴を有している。
(プロセス態様2)
 図16(a)~(h)に「プロセス態様2」の工程断面図を模式的に示す。かかる態様は、LEDチップをベースに発光装置の製造を行うプロセスである。まず、図16(a)に示すように、キャリアフィルム85上に複数のLEDチップ50を相互の間隔を空けて配置する。次いで、図16(b)に示すように、LEDチップ50を覆うようにキャリアフィルム85上に封止層72’(特に光透過性封止層)を形成する。そして、封止層72’の形成後にキャリアフィルム85を剥離すると、図16(c)に示すように、封止層72’内に埋設されたLEDチップ50を得ることができる(即ち、「少なくとも主面側に封止層が設けられた発光素子」を用意することができる)。特に、相互に“面一”となるような形態で封止層72’内に埋設された発光素子50が得られる。
 引き続いて、図16(d)に示すように、例えばスパッタリングなどの乾式めっき法によって電極下地層30を形成する(尚、上記“面一”ゆえに、スパッタ層たる下地層30は一定の厚みで均一に好適に形成することができる)。次いで、図16(e)に示すように、電極下地層30を介してLEDチップ50上に直接的にサブ電極部パターン10’を形成する。かかるサブ電極部パターン10’の形成は、プロセス態様1にて上述したような「めっき後にエッチングによりパターン化する手法」あるいは「レジストパターン形成後にパターンめっきする手法」によって形成することができる。サブ電極部パターン10’の形成後においては、図16(f)に示すように、絶縁層パターン70’を形成する。図示するように、隣接する2つのサブ電極部10’の間の空間が絶縁層70’によって満たされることになるように、隣接する2つのサブ電極部10’にまたがって絶縁層70’を形成することが好ましい。かかる絶縁層パターン70’の形成は、プロセス態様1にて図15Aまたは図15Bを参照して説明したような手法で行うことができる。絶縁層パターン70’の形成後、図16(g)に示すように、サブ電極部パターン10’と一体的に接合するように第2のサブ電極部パターン10”を形成する。かかる第2のサブ電極部パターン10”の形成も、上述したような「めっき後にエッチングによりパターン化する手法」あるいは「レジストパターン形成後にパターンめっきする手法」によって形成することができる。
 このようなプロセス態様2であっても、上記のように発光素子電極部材の形成を第1サブ電極部10’の形成と第2サブ電極部10”の形成との2段階に分けて実施しており、「第1サブ電極部10’の形成」と「第2サブ電極部10”の形成」との間において絶縁層の形成を実施している(図16(e)~(g)参照)。これによって、正電極部と負電極部との間に設けられた「絶縁部の局所的な領域」を“幅狭部分”と“幅広部分”との2つの領域部分から好適に構成することができる(図16(g)参照)。尚、プロセス態様2においては、第1のサブ電極部10’と第2のサブ電極部10”とから成る各電極部材10は、図示されるように、各LEDチップ50からその外側へとはみ出すような形態で形成することが好ましい。
 最終的には、図16(h)に示すように、LEDチップ50の単位で分割される切断操作を行う。これによって、図16の最下部に示すような発光装置100を得ることができる(電極下地層30は発光装置の反射層として利用される)。
(プロセス態様3)
 図17(a)~(g)に「プロセス態様3」の工程断面図を模式的に示す。かかる態様は、上記のプロセス態様2の変更態様に相当する。まず、図17(a)に示すように、キャリアフィルム85上に複数のLEDチップ50を相互の間隔を空けて配置する。次いで、隣接するLEDチップ50の間に絶縁膜72’(例えば無機絶縁膜)を形成する。図示するように、LEDチップ50と面一になるように絶縁膜72’を形成することが好ましい。かかる絶縁層パターン72’の形成は、プロセス態様1にて図15Aまたは図15Bを参照して説明したような手法で行うことができる。引き続いて、LEDチップ50および絶縁層パターン72’上に蛍光体層80を形成した後(図17(b)参照)、キャリアフィルム85を剥離すると、図17(c)に示すような形態で発光素子50を用意することができる。
 以降、上記のプロセス態様2と同様に、電極下地層30、サブ電極部パターン10’、絶縁層70’および第2のサブ電極部パターン10”を形成して切断処理を施す(図17(d)~(g)参照)。これによって、図17の最下部に示すような発光装置100を最終的に得ることができる。尚、「隣接するLEDチップ50の間に絶縁膜72’を形成する」ことに代えて、蛍光体成分を含んで成る絶縁層を、LEDチップ50を覆うようにキャリアフィルム85上に形成する場合では、図17の最下部右下のような形態を有する発光装置100を得ることができる(つまり、上記[本発明の発光装置]にて説明した「第2絶縁部が蛍光体成分を含んで成る発光装置」を得ることができる)。
(プロセス態様4)
 図18(a)~(g)に「プロセス態様4」の工程断面図を模式的に示す。かかる態様も、上記のプロセス態様2の変更態様に相当する。まず、キャリアフィルム85上に蛍光体層80を形成した後、かかる蛍光体層80上に複数のLEDチップ50を相互の間隔を空けて配置する(図18(a)参照)。次いで、図18(b)に示すように、LEDチップ50を覆うように蛍光体層80上に絶縁層72’(特に感光性材料層)を形成する。引き続いて、図18(c)に示すように、絶縁層72’に対してパターン形成処理を施す。図示するように、隣接するLEDチップ50の間に絶縁層72’を残すようなパターン形成処理を行うことが好ましい。このようなパターン処理は、プロセス態様1にて図15Aを参照して説明したような手法で行うことができる。
 以降、上記のプロセス態様2と同様に、電極下地層30、サブ電極部パターン10’、絶縁層70’および第2のサブ電極部パターン10”を形成して切断処理を施す(図18(d)~(g)参照)。これによって、図18の最下部に示すような発光装置100を最終的に得ることができる。尚、かかるプロセス態様は、キャリアフィルム面上への塗布または貼り付けにより蛍光体層を形成するので蛍光体層を“平面”にて好適に設けることができる(従来技術のLEDパッケージでは、個片化してから蛍光体層を設けることが一般的であるので、その点で特に相違点があるといえる)。また、本プロセス態様では、キャリアフィルム85は、最終的には剥離せずに発光装置の要素として用いている。この点、例えば図7(a)および(b)に示すように、キャリアフィルム85はレンズ要素として用いることができる。更にいえば、本プロセス態様では、絶縁層72’の形成やそのパターニング処理などを適宜工夫することによって(例えば図19参照)、上記[本発明の発光装置]にて説明した図9(c)~(d)に示すような発光装置を得ることができる)。
(プロセス態様5)
 図20(a)~(g)に「プロセス態様5」の工程断面図を模式的に示す。かかる態様は、リフレクタ構造を有する発光装置100の製造プロセス態様に相当する。まず、キャリアフィルム85上にサブ蛍光体層80’を複数形成し、サブ蛍光体層80’の各々に発光素子チップ50を1つずつ配置する(図20(a)参照)。次いで、図20(b)に示すように、絶縁層原料をスピンコートまたはドクターブレードなどによって全面塗布した後、あるいは、絶縁層フィルムなどを貼り合わせることによって設けた後、パターン形成処理をすることによって、発光素子チップ50の各々に対して発光素子チップ50の表面の一部を露出させる局所的な絶縁層72’を形成する(図20(c)参照)。引き続いて、電極下地層30を形成した後、発光素子チップの各々につき2つの第1のサブ電局部10’を形成する(図20(d)参照)。尚、“リフレクタ”ゆえ、図20(d)に示すように、「キャリアフィルム85上に設けられたサブ蛍光体層80’、発光素子チップ50および局所的な絶縁層72’から構成された発光装置前駆体100’」の輪郭形状に沿うように、下地層30および第1のサブ電極部10’は屈曲した形態で形成される。
 引き続いて、図20(e)に示すように、少なくとも2つの第1のサブ電極部10’にまたがるように絶縁部70’を形成した後(絶縁層72’の形成と同様に、絶縁性原料の全面塗布あるいは張り付けの後でパターニング形成処理を施すことによって絶縁部70’のパターンを形成することができる)、図20(f)に示すように第2のサブ電極部10”を第1のサブ電極部10’と接するように形成する。そして最終的には、図20(g)に示すように、LEDチップ50の単位で分割される切断操作を行う。これによって、図20の最下部に示すような「リフレクタ構造を有する発光装置100」を得ることができる。
 本発明は下記の態様を有するものであることを確認的に付言しておく。
第1態様:発光素子を有して成る発光装置であって、
 発光素子のための電極部材、
 電極部材上に設けられた反射層、および
 反射層の少なくとも一部と接するように反射層上に設けられた発光素子
を有して成り、
 反射層の上記少なくとも一部を介して発光素子と電極部材とが相互に面接触することによって、発光素子と電極部材とが電気的に接続されており、
 電極部材が発光素子を支持する支持層を成しており、また
 発光素子から外側へとはみ出すように電極部材(およびその上に設けられた反射層)が設けられていることを特徴とする、発光装置。
第2態様:上記第1態様において、電極部材が湿式めっき層から成る一方、反射層が乾式めっき層から成ることを特徴とする発光装置。
第3態様:上記第1態様または第2態様において、電極部材が発光素子よりも厚いことを特徴とする発光装置。
第4態様:上記第1態様~第3態様のいずれかにおいて、電極部材の周囲に第1絶縁部が設けられている一方、発光素子の周囲に第2絶縁部が設けられていることを特徴とする発光装置。
第5態様:上記第4態様において、電極部材および第1絶縁部が支持層を成していることを特徴とする発光装置。つまり、本発明の発光装置においては、第1絶縁部が設けられる場合、発光素子電極部材がかかる第1絶縁部と共に支持層を成していることが好ましい。
第6態様:上記第4態様または第5態様において、第2絶縁部が、発光素子を封止するための封止層を成していることを特徴とする発光装置。つまり、本発明の発光装置においては、第2絶縁部が設けられる場合、第2絶縁部が発光素子を封止するための封止層を成していることが好ましい(例えば、第2絶縁部が、樹脂成分および/または無機材料成分を含んでなり、発光素子を封止するための封止層を成していてよい)。
第7態様:上記第4態様~第6態様のいずれかにおいて、第2絶縁部が光透過性を有していることを特徴とする発光装置。
第8態様:上記第4態様~第7態様のいずれかにおいて、第2絶縁部上に蛍光体層が設けられていることを特徴とする発光装置。かかる態様では、例えば、蛍光体層は第2絶縁部上に設けられていてよい。
第9態様:上記第4態様~第7態様のいずれかにおいて、第2絶縁部が蛍光体成分を含んでなり、それによって、第2絶縁部が封止層および蛍光体層の双方を成していることを特徴とする発光装置。つまり、本発明の発光装置においては、第2絶縁部が蛍光体成分を含んで成る場合、第2絶縁部が封止層および蛍光体層の双方を兼ねていることが好ましい(例えば、第2絶縁部が、樹脂成分および/または無機材料成分と、蛍光体成分とを含んでなり、それによって、第2絶縁部が封止層および蛍光体層の双方を兼ねていてよい)。
第10態様:上記第4態様~第9態様のいずれかにおいて、電極部材が正電極部と負電極部とから構成されており、
 少なくとも正電極部と負電極部との間に第1絶縁部が設けられていることを特徴とする発光装置。
第11態様:上記第10態様において、正電極部と負電極部との間に設けられた第1絶縁部の局所的な領域が幅狭部分と幅広部分との2つの領域部分から構成されていることを特徴とする発光装置。
第12態様:上記第1態様~第11態様のいずれかにおいて、電極部材の一部および反射層が屈曲した形態を有しており、屈曲により形成される窪みに発光素子が配置されていることを特徴とする発光装置。つまり、かかる態様の本発明の発光装置は、いわゆる“リフレクタ構造”を有している。
第13態様:発光素子を有して成る発光装置であって、
 発光素子のための電極部材、
 電極部材上に設けられた反射層、および
 反射層の少なくとも一部と接するように反射層上に設けられた発光素子
を有して成り、
 反射層の少なくとも一部を介して発光素子と電極部材とが相互に面接触することによって、発光素子と電極部材とが電気的に接続されており、また
 電極部材が発光素子を支持する支持層を成している、
ことを特徴とする、発光装置。
第14態様:発光素子を有して成る発光装置の製造方法であって、
 (i)発光素子を用意する工程、および
 (ii)発光素子上に発光素子のための電極部材を形成する工程
を含んで成り、
 工程(ii)では、電極部材を形成するための下地層を発光素子上に形成した後、下地層を介して発光素子と面接触するように電極部材を形成しており、また、
 下地層は最終的に発光装置における反射層として用いることを特徴とする、発光装置の製造方法。
第15態様:上記第14態様において、下地層を乾式めっき法で形成する一方、電極部材を湿式めっき法で形成することを特徴とする発光装置の製造方法。
第16態様:上記第15態様において、乾式めっき法としてスパッタリングを実施する一方、湿式めっき法として電気めっきを実施することを特徴とする発光装置の製造方法。
第17態様:上記第14態様~第16態様のいずれかにおいて、工程(i)の発光素子を絶縁層と組み合わせて用意することを特徴とする発光装置の製造方法。例えば、工程(i)の発光素子を「発光素子の少なくとも主面側に絶縁層が設けられた発光素子」として用意する。
第18態様:上記第17態様において、絶縁層として光透過性絶縁層を用いることを特徴とする発光装置の製造方法。
第19態様:上記第17態様または第18態様において、発光素子が発光素子チップの形態を有しており、
 工程(i)では、キャリアフィルムに発光素子チップを配置した後、発光素子チップを覆うようにキャリアフィルム上に絶縁層を形成し、次いで、キャリアフィルムを剥離することによって、「絶縁層と面一形態で絶縁層内に埋設された発光素子チップ」を用意することを特徴とする発光装置の製造方法。つまり、本発明の製造方法においては、発光素子が発光素子チップの形態を有する場合、“面一形態”で絶縁層内に埋設された発光素子チップを用意することが好ましい。
第20態様:上記第19態様において、絶縁層の形成後、かつ、キャリアフィルムの剥離前にて蛍光体層を形成する工程を含んで成り、
 工程(i)では、キャリアフィルムに発光素子チップを複数配置した後、隣接する発光素子チップ間が満たされるように絶縁層を発光素子チップと面一に設け、次いで、「発光素子チップと絶縁層とから成る平面」に対して蛍光体層を形成することを特徴とする発光装置の製造方法。
第21態様:上記第14態様~第16態様のいずれかにおいて、工程(i)の発光素子が発光素子チップの形態を有しており、
 工程(ii)では、電極部材の一部が発光素子チップから外側へと横方向に(即ち、発光素子の厚み方向と直交する方向へと)はみ出すように電極部材を形成することを特徴とする発光装置の製造方法。つまり、本発明の製造方法においては、かかる態様または以下の第22態様のように発光素子電極部材の形態・処理に対して工夫を施すことが好ましい。
第22態様:上記第14態様~第18態様のいずれかにおいて、工程(i)の発光素子が発光素子ウエハの形態を有しており、
 工程(ii)においては発光素子ウエハ上に複数の電極部材を形成し、
 最終的に複数の電極部材の少なくとも1つが2つへと分割される切断操作を行うこと(これにより、発光素子電極部材の一部が発光素子チップから外側へとはみ出す形態を得ることができること)を特徴とする発光装置の製造方法。
第23態様:上記第14態様~第22態様のいずれかにおいて、電極部材の周囲に絶縁部を形成する工程を更に含んで成り、
 電極部材の形成が第1サブ電極部の形成と第2サブ電極部の形成との2段階に分けて実施され、第1サブ電極部の形成と第2サブ電極部の形成との間にて絶縁部の形成を実施することを特徴とする発光装置の製造方法。
第24態様:上記第23態様において、工程(ii)では電極部材を複数形成しており、
 絶縁部の形成に際しては、隣接する2つの発光素子電極部材にまたがって絶縁部を形成する(特に、隣接する2つの電極部材の間の空間が絶縁部で満たされることになるように、その隣接する2つの電極部材にまたがって絶縁部を形成する)ことを特徴とする発光装置の製造方法。
第25態様:上記第17態様または第18態様において、発光素子が発光素子チップの形態を有しており、
 工程(i)では、キャリアフィルム上に形成された蛍光体層に発光素子チップを配置した後、発光素子チップを覆うように蛍光体層上に絶縁層を形成し、
 キャリアフィルムは、最終的には剥離せずに発光装置のレンズ要素として用いることを特徴とする発光装置の製造方法。つまり、本発明の製造方法では、キャリアフィルムを発光装置の構成要素として用いてもよい。
第26態様:上記第25態様において、発光素子チップを複数個用いており、
絶縁層が感光性を有し(例えば、絶縁層が感光性樹脂層などであり)、絶縁層に対して露光・現像処理を施して、隣接する発光素子チップの間の少なくとも一部に絶縁層を残すパターニング処理を施すことを特徴とする発光装置の製造方法。つまり、本発明の製造方法においては、絶縁層に適当なパターニング処理を施すことが好ましい。
第27態様:上記第14態様~第18態様のいずれかにおいて、発光素子が複数の発光素子チップから構成された形態を有しており、
 工程(i)では、キャリアフィルム上にサブ蛍光体層を複数形成し、サブ蛍光体層の各々に発光素子チップを1つずつ配置することを特徴とする発光装置の製造方法(かかる態様は、いわゆる“リフレクタ構造”の発光装置の製造方法に相当する)。
第28態様:上記第27態様において、電極部材の形成が、第1サブ電極部の形成と第2サブ電極部の形成との2段階に分けて実施されており、
 発光素子チップの各々に対して発光素子チップの表面の一部を露出させる局所的な絶縁層を形成した後で絶縁層を覆うように下地層を形成し、次いで、
 発光素子チップの各々につき2つの第1サブ電極部を形成した後で、2つの第1サブ電極部にまたがるように絶縁部を形成し、次いで
 第2サブ電極部を第1サブ電極部と接するように形成し、次いで、
 発光素子チップの単位で分割する切断操作を行うことを特徴とする発光装置の製造方法(かかる態様も、いわゆる“リフレクタ構造”の発光装置の製造方法に相当する)。
第29態様:上記第28態様において、「キャリアフィルム上に設けられたサブ蛍光体層、発光素子チップおよび絶縁層から構成された発光装置前駆体」の輪郭形状に沿うように、下地層および第1サブ電極部が屈曲した形態で形成されることを特徴とする発光装置の製造方法(かかる態様も、いわゆる“リフレクタ構造”の発光装置の製造方法に相当する)。
 以上、本発明の実施形態について説明してきたが、あくまでも典型例を例示したに過ぎない。従って、本発明はこれに限定されず、種々の態様が考えられる。
 例えば、上述した態様においては、発光素子電極部材の正電極部(発光素子のP型電極と接続される電極部)と負電極部(発光素子のN型電極と接続される電極部)との間に設けられた「第1絶縁部の局所的領域70A」は、発光素子の中央部下方に位置付けられていたが(例えば図5参照)、本発明はかかる態様に限定されない。実際の態様に鑑みると、図21に示すように正電極部が負電極部よりも一般に大きくなり得るので、第1絶縁部の局所的領域70Aは、図21の断面図(A-A’断面図)および図22の模式的断面図に示すように、発光素子の中央部下方からずれた位置となり得る。
 本発明の発光装置は、各種の照明用途に好適に用いることができる他、表示装置(液晶画面)バックライト光源、カメラフラッシュ用途、車載用途などの幅広い用途にも好適に用いることができる。
関連出願の相互参照
 本出願は、日本国特許出願第2012-30739号(出願日:2012年2月15日、発明の名称「発光装置およびその製造方法」)に基づくパリ条約上の優先権を主張する。当該出願に開示された内容は全て、この引用により、本明細書に含まれるとする。
  10 発光素子のための電極部材
  10’ サブ電極部パターン(第1サブ電極部パターン)
  10” 第2のサブ電極部パターン(第2サブ電極部パターン)
  10a 正電極部(発光素子のP型電極と接続される電極部)
  10b 負電極部(発光素子のN型電極と接続される電極部)
  30 反射層
  50 発光素子
  50’ LEDウエハ
  70 第1絶縁部
  70A 正電極部と負電極部との間の領域に設けられた局所的な第1絶縁部
  70A1 局所的な第1絶縁部の幅狭部分
  70A2 局所的な第1絶縁部の幅広部分
  70’ 絶縁層パターン(例えば樹脂層パターンまたは無機材層パターン)
  72 第2絶縁部(絶縁層)
  72’ 封止層(例えば封止樹脂層または封止無機材層)
  80 蛍光体層
  85 キャリアフィルム
  90 レンズ部材
 100 発光装置
 100’ 発光装置前駆体

Claims (29)

  1. 発光素子を有して成る発光装置であって、
     前記発光素子のための電極部材、
     前記電極部材上に設けられた反射層、および
     前記反射層の少なくとも一部と接するように該反射層上に設けられた前記発光素子
    を有して成り、
     前記反射層の前記少なくとも一部を介して前記発光素子と前記電極部材とが相互に面接触することによって、該発光素子と該電極部材とが電気的に接続されており、
     前記電極部材が前記発光素子を支持する支持層を成しており、また
     前記発光素子から外側へとはみ出すように前記電極部材が設けられていることを特徴とする、発光装置。
  2. 前記電極部材が湿式めっき層から成る一方、前記反射層が乾式めっき層から成ることを特徴とする、請求項1に記載の発光装置。
  3. 前記電極部材が前記発光素子よりも厚いことを特徴とする、請求項1に記載の発光装置。
  4. 前記電極部材の周囲に第1絶縁部が設けられている一方、前記発光素子の周囲に第2絶縁部が設けられていることを特徴とする、請求項1に記載の発光装置。
  5. 前記電極部材および前記第1絶縁部が前記支持層を成していることを特徴とする、請求項4に記載の発光装置。
  6. 前記第2絶縁部が、前記発光素子を封止するための封止層を成していることを特徴とする、請求項4に記載の発光装置。
  7. 前記第2絶縁部が、光透過性を有していることを特徴とする、請求項4に記載の発光装置。
  8. 前記第2絶縁部上に蛍光体層が設けられていることを特徴とする、請求項4に記載の発光装置。
  9. 前記第2絶縁部が蛍光体成分を含んでなり、それによって、前記第2絶縁部が封止層および蛍光体層の双方を成していることを特徴とする、請求項4に記載の発光装置。
  10. 前記電極部材が正電極部と負電極部とから構成されており、
     少なくとも前記正電極部と前記負電極部との間に前記第1絶縁部が設けられていることを特徴とする、請求項4に記載の発光装置。
  11. 前記正電極部と前記負電極部との間に設けられた前記第1絶縁部の局所的な領域が、幅狭部分と幅広部分との2つの領域部分から構成されていることを特徴とする、請求項10に記載の発光装置。
  12. 前記電極部材の一部および前記反射層が屈曲した形態を有しており、該屈曲により形成される窪みに前記発光素子が配置されていることを特徴とする、請求項1に記載の発光装置。
  13. 発光素子を有して成る発光装置であって、
     前記発光素子のための電極部材、
     前記電極部材上に設けられた反射層、および
     前記反射層の少なくとも一部と接するように該反射層上に設けられた前記発光素子
    を有して成り、
     前記反射層の前記少なくとも一部を介して前記発光素子と前記電極部材とが相互に面接触することによって、該発光素子と該電極部材とが電気的に接続されており、また
     前記電極部材が前記発光素子を支持する支持層を成している、
    ことを特徴とする、発光装置。
  14. 発光素子を有して成る発光装置の製造方法であって、
     (i)発光素子を用意する工程、および
     (ii)前記発光素子上に該発光素子のための電極部材を形成する工程
    を含んで成り、
     前記工程(ii)では、前記電極部材を形成するための下地層を前記発光素子上に形成した後、該下地層を介して前記発光素子と面接触するように前記電極部材を形成しており、また、
     前記下地層は最終的に前記発光装置における反射層として用いることを特徴とする、発光装置の製造方法。
  15. 前記下地層を乾式めっき法で形成する一方、前記電極部材を湿式めっき法で形成することを特徴とする、請求項14に記載の発光装置の製造方法。
  16. 前記乾式めっき法としてスパッタリングを実施する一方、前記湿式めっき法として電気めっきを実施することを特徴とする、請求項15に記載の発光装置の製造方法。
  17. 前記工程(i)の前記発光素子を、該発光素子の少なくとも主面側に絶縁層が設けられた発光素子として用意することを特徴とする、請求項14に記載の発光装置の製造方法。
  18. 前記絶縁層として光透過性絶縁層を用いることを特徴とする、請求項17に記載の発光装置の製造方法。
  19. 前記発光素子が発光素子チップの形態を有しており、
     前記工程(i)では、キャリアフィルムに前記発光素子チップを配置した後、該発光素子チップを覆うように該キャリアフィルム上に前記絶縁層を形成し、次いで、該キャリアフィルムを剥離することによって、該絶縁層と面一形態で該絶縁層内に埋設された前記発光素子チップを用意することを特徴とする、請求項17に記載の発光装置の製造方法。
  20. 前記絶縁層の形成後、かつ、前記キャリアフィルムの剥離前にて蛍光体層を形成する工程を含んで成り、
     前記工程(i)では、前記キャリアフィルムに前記発光素子チップを複数配置した後、隣接する該発光素子チップ間が満たされるように前記絶縁層を該発光素子チップと面一に設け、次いで、該発光素子チップと前記絶縁層とから成る平面上に前記蛍光体層を形成することを特徴とする、請求項19に記載の発光装置の製造方法。
  21. 前記工程(i)の前記発光素子が発光素子チップの形態を有しており、
     前記工程(ii)では、前記電極部材の一部が前記発光素子チップから外側へとはみ出すように該電極部材を形成することを特徴とする、請求項14に記載の発光装置の製造方法。
  22. 前記工程(i)の前記発光素子が発光素子ウエハの形態を有しており、
     前記工程(ii)においては前記発光素子ウエハ上に複数の前記電極部材を形成し、
     最終的に前記複数の前記電極部材の少なくとも1つが2つへと分割される切断操作を行うことを特徴とする、請求項14に記載の発光装置の製造方法。
  23. 前記電極部材の周囲に絶縁部を形成する工程を更に含んで成り、
     前記電極部材の形成が第1サブ電極部の形成と第2サブ電極部の形成との2段階に分けて実施され、該第1サブ電極部の形成と該第2サブ電極部の形成との間にて前記絶縁部の形成を実施することを特徴とする、請求項14に記載の発光装置の製造方法。
  24. 前記工程(ii)では前記電極部材を複数形成しており、
     前記絶縁部の形成に際しては、隣接する2つの前記電極部材の間の空間が該絶縁部で満たされることになるように、該隣接する2つの該電極部材にまたがって前記絶縁部を形成することを特徴とする、請求項23に記載の発光装置の製造方法。
  25. 前記発光素子が発光素子チップの形態を有しており、
     前記工程(i)では、キャリアフィルム上に形成された蛍光体層に前記発光素子チップを配置した後、該発光素子チップを覆うように該蛍光体層上に絶縁層を形成し、
     前記キャリアフィルムは、最終的には剥離せずに前記発光装置のレンズ要素として用いることを特徴とする、請求項17に記載の発光装置の製造方法。
  26. 前記発光素子チップを複数個用いており、
    前記絶縁層が感光性を有し、該絶縁層に対して露光・現像処理を施して、隣接する前記発光素子チップの間の少なくとも一部に該絶縁層を残すパターニング処理を施すことを特徴とする、請求項25に記載の発光装置の製造方法。
  27. 前記発光素子が複数の発光素子チップから構成された形態を有しており、
     前記工程(i)では、キャリアフィルム上にサブ蛍光体層を複数形成し、該サブ蛍光体層の各々に前記発光素子チップを1つずつ配置することを特徴とする、請求項14に記載の発光装置の製造方法。
  28. 前記電極部材の形成が、第1サブ電極部の形成と第2サブ電極部の形成との2段階に分けて実施されており、
     前記発光素子チップの各々に対して該発光素子チップの表面の一部を露出させる局所的な絶縁層を形成した後で該絶縁層を覆うように前記下地層を形成し、次いで、
     前記発光素子チップの各々につき2つの前記第1サブ電極部を形成した後で、該2つの該第1サブ電極部にまたがるように絶縁部を形成し、次いで
     前記第2サブ電極部を前記第1サブ電極部と接するように形成し、次いで、
     前記発光素子チップの単位で分割する切断操作を行う、
    ことを特徴とする、請求項27に記載の発光装置の製造方法。
  29. 前記キャリアフィルム上に設けられた前記サブ蛍光体層、前記発光素子チップおよび前記絶縁層から構成された発光装置前駆体の輪郭形状に沿うように、前記下地層および前記第1サブ電極部が屈曲した形態で形成されることを特徴とする、請求項28に記載の発光装置の製造方法。
PCT/JP2013/000432 2012-02-15 2013-01-28 発光装置およびその製造方法 WO2013121708A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/377,965 US9627583B2 (en) 2012-02-15 2013-01-28 Light-emitting device and method for manufacturing the same
EP13749394.6A EP2816621A4 (en) 2012-02-15 2013-01-28 LIGHT-EMITTING DEVICE AND METHOD OF MANUFACTURING THEREOF
CN201380007170.6A CN104081547A (zh) 2012-02-15 2013-01-28 发光装置以及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012030739 2012-02-15
JP2012-030739 2012-02-15

Publications (1)

Publication Number Publication Date
WO2013121708A1 true WO2013121708A1 (ja) 2013-08-22

Family

ID=48983850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000432 WO2013121708A1 (ja) 2012-02-15 2013-01-28 発光装置およびその製造方法

Country Status (5)

Country Link
US (1) US9627583B2 (ja)
EP (1) EP2816621A4 (ja)
JP (1) JPWO2013121708A1 (ja)
CN (1) CN104081547A (ja)
WO (1) WO2013121708A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018107285A (ja) * 2016-12-27 2018-07-05 日亜化学工業株式会社 発光装置及びその製造方法
JP2019516248A (ja) * 2016-05-02 2019-06-13 ルミレッズ ホールディング ベーフェー 熱ブロックアセンブリ、それを有するled装置、及び熱ブロックアセンブリを製造する方法
JP2020005004A (ja) * 2014-01-08 2020-01-09 ルミレッズ ホールディング ベーフェー 波長変換式半導体発光デバイス

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104756267A (zh) * 2012-10-25 2015-07-01 松下知识产权经营株式会社 发光装置及其制造方法以及发光装置安装体
JP6217705B2 (ja) * 2015-07-28 2017-10-25 日亜化学工業株式会社 発光装置及びその製造方法
US10825970B2 (en) * 2016-02-26 2020-11-03 Epistar Corporation Light-emitting device with wavelength conversion structure
US11081629B2 (en) * 2017-09-08 2021-08-03 Osram Opto Semiconductors Gmbh Light-emitting component and method for producing a light-emitting component
CN108365071A (zh) * 2018-01-04 2018-08-03 海迪科(南通)光电科技有限公司 一种具有扩展电极的芯片级封装结构
CN113113394A (zh) * 2021-03-22 2021-07-13 江西展耀微电子有限公司 透明灯膜及其制备方法、显示屏

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168828A (ja) * 2001-12-04 2003-06-13 Citizen Electronics Co Ltd 表面実装型発光ダイオード及びその製造方法
JP2006093672A (ja) * 2004-08-26 2006-04-06 Toshiba Corp 半導体発光装置
WO2008088165A1 (en) 2007-01-16 2008-07-24 Korea Photonics Technology Institute Light emitting diode with high electrostatic discharge and fabrication method thereof
JP2009129928A (ja) 2007-11-19 2009-06-11 Toyoda Gosei Co Ltd Ledランプ
JP2010287837A (ja) * 2009-06-15 2010-12-24 Hitachi Chem Co Ltd 光半導体素子搭載用部材及び光半導体装置
JP2011108911A (ja) * 2009-11-19 2011-06-02 Toshiba Corp 半導体発光装置及びその製造方法
WO2011093454A1 (ja) * 2010-01-29 2011-08-04 シチズン電子株式会社 発光装置の製造方法及び発光装置
WO2011122665A1 (ja) * 2010-03-30 2011-10-06 大日本印刷株式会社 Led用リードフレームまたは基板、半導体装置、およびled用リードフレームまたは基板の製造方法
JP2011258675A (ja) * 2010-06-07 2011-12-22 Toshiba Corp 光半導体装置

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004363279A (ja) 2003-06-04 2004-12-24 Sony Corp 光電変換装置の製造方法、並びにその製造に用いる疑似ウェーハの製造方法
WO2005043631A2 (en) * 2003-11-04 2005-05-12 Matsushita Electric Industrial Co.,Ltd. Semiconductor light emitting device, lighting module, lighting apparatus, and manufacturing method of semiconductor light emitting device
US7417220B2 (en) 2004-09-09 2008-08-26 Toyoda Gosei Co., Ltd. Solid state device and light-emitting element
TWI394300B (zh) * 2007-10-24 2013-04-21 Advanced Optoelectronic Tech 光電元件之封裝結構及其製造方法
JP2008053685A (ja) * 2006-08-23 2008-03-06 Samsung Electro Mech Co Ltd 垂直構造窒化ガリウム系発光ダイオード素子及びその製造方法
JP2008189917A (ja) * 2007-01-11 2008-08-21 Sekisui Chem Co Ltd 光半導体用熱硬化性組成物、光半導体素子用ダイボンド材、光半導体素子用アンダーフィル材、光半導体素子用封止剤及び光半導体素子
JP4809308B2 (ja) * 2007-09-21 2011-11-09 新光電気工業株式会社 基板の製造方法
US8368100B2 (en) * 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
KR101497953B1 (ko) * 2008-10-01 2015-03-05 삼성전자 주식회사 광추출 효율이 향상된 발광 소자, 이를 포함하는 발광 장치, 상기 발광 소자 및 발광 장치의 제조 방법
KR100962899B1 (ko) * 2008-10-27 2010-06-10 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP4799606B2 (ja) * 2008-12-08 2011-10-26 株式会社東芝 光半導体装置及び光半導体装置の製造方法
JP4724222B2 (ja) 2008-12-12 2011-07-13 株式会社東芝 発光装置の製造方法
CN101587933B (zh) * 2009-07-07 2010-12-08 苏州晶方半导体科技股份有限公司 发光二极管的晶圆级封装结构及其制造方法
KR101258586B1 (ko) * 2009-12-21 2013-05-02 엘지디스플레이 주식회사 발광다이오드 패키지 및 이의 제조방법
JP5587625B2 (ja) 2010-02-01 2014-09-10 アピックヤマダ株式会社 リードフレーム及びledパッケージ用基板
JP5834174B2 (ja) * 2010-03-01 2015-12-16 パナソニックIpマネジメント株式会社 発光素子用基板及びその製造方法ならびに発光装置
JP5101650B2 (ja) * 2010-03-25 2012-12-19 株式会社東芝 半導体発光装置及びその製造方法
JP5533203B2 (ja) 2010-04-30 2014-06-25 日亜化学工業株式会社 発光装置および発光装置の製造方法
JP5693375B2 (ja) * 2010-05-28 2015-04-01 シチズンホールディングス株式会社 半導体発光素子
JP5390472B2 (ja) * 2010-06-03 2014-01-15 株式会社東芝 半導体発光装置及びその製造方法
JP5462078B2 (ja) 2010-06-07 2014-04-02 株式会社東芝 半導体発光装置及びその製造方法
JP5414627B2 (ja) * 2010-06-07 2014-02-12 株式会社東芝 半導体発光装置及びその製造方法
KR102146595B1 (ko) * 2013-01-10 2020-08-31 루미리즈 홀딩 비.브이. 측면 방출을 위한 형상의 성장 기판을 가지는 led
KR101504331B1 (ko) * 2013-03-04 2015-03-19 삼성전자주식회사 발광소자 패키지
KR102199991B1 (ko) * 2014-05-28 2021-01-11 엘지이노텍 주식회사 발광 소자 및 이를 구비한 라이트 유닛
EP3975272A1 (en) * 2014-05-29 2022-03-30 Suzhou Lekin Semiconductor Co., Ltd. Light emitting device package

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168828A (ja) * 2001-12-04 2003-06-13 Citizen Electronics Co Ltd 表面実装型発光ダイオード及びその製造方法
JP2006093672A (ja) * 2004-08-26 2006-04-06 Toshiba Corp 半導体発光装置
WO2008088165A1 (en) 2007-01-16 2008-07-24 Korea Photonics Technology Institute Light emitting diode with high electrostatic discharge and fabrication method thereof
JP2009129928A (ja) 2007-11-19 2009-06-11 Toyoda Gosei Co Ltd Ledランプ
JP2010287837A (ja) * 2009-06-15 2010-12-24 Hitachi Chem Co Ltd 光半導体素子搭載用部材及び光半導体装置
JP2011108911A (ja) * 2009-11-19 2011-06-02 Toshiba Corp 半導体発光装置及びその製造方法
WO2011093454A1 (ja) * 2010-01-29 2011-08-04 シチズン電子株式会社 発光装置の製造方法及び発光装置
WO2011122665A1 (ja) * 2010-03-30 2011-10-06 大日本印刷株式会社 Led用リードフレームまたは基板、半導体装置、およびled用リードフレームまたは基板の製造方法
JP2011258675A (ja) * 2010-06-07 2011-12-22 Toshiba Corp 光半導体装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2816621A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020005004A (ja) * 2014-01-08 2020-01-09 ルミレッズ ホールディング ベーフェー 波長変換式半導体発光デバイス
JP7089499B2 (ja) 2014-01-08 2022-06-22 ルミレッズ ホールディング ベーフェー 波長変換式半導体発光デバイス
JP2019516248A (ja) * 2016-05-02 2019-06-13 ルミレッズ ホールディング ベーフェー 熱ブロックアセンブリ、それを有するled装置、及び熱ブロックアセンブリを製造する方法
JP2018107285A (ja) * 2016-12-27 2018-07-05 日亜化学工業株式会社 発光装置及びその製造方法
US11114583B2 (en) 2016-12-27 2021-09-07 Nichia Corporation Light emitting device encapsulated above electrodes

Also Published As

Publication number Publication date
CN104081547A (zh) 2014-10-01
US20150008467A1 (en) 2015-01-08
EP2816621A4 (en) 2015-10-21
US9627583B2 (en) 2017-04-18
JPWO2013121708A1 (ja) 2015-05-11
EP2816621A1 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
WO2013121708A1 (ja) 発光装置およびその製造方法
US10998479B2 (en) Light emitting diode
JP5869080B2 (ja) 発光素子
JP5782332B2 (ja) 発光素子
EP2897182B1 (en) Light emitting device
US9165977B2 (en) Light emitting device and light emitting device package including series of light emitting regions
JP4751897B2 (ja) 放熱基板を具えた発光ダイオード装置及びその製造方法
JP5651807B2 (ja) 半導体装置およびその製造方法
US20150280093A1 (en) Light emitting device, method for manufacturing same, and body having light emitting device mounted thereon
KR101163901B1 (ko) 발광 소자 및 이를 구비한 조명 시스템
KR101125437B1 (ko) 발광 소자 및 이를 구비한 조명 시스템
KR101172177B1 (ko) 발광 소자 및 이를 구비한 조명 시스템
TWI542031B (zh) 光學封裝及其製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13749394

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014500074

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14377965

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2013749394

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE