WO2013118822A1 - 炭素膜成膜装置および炭素膜成膜方法 - Google Patents

炭素膜成膜装置および炭素膜成膜方法 Download PDF

Info

Publication number
WO2013118822A1
WO2013118822A1 PCT/JP2013/052868 JP2013052868W WO2013118822A1 WO 2013118822 A1 WO2013118822 A1 WO 2013118822A1 JP 2013052868 W JP2013052868 W JP 2013052868W WO 2013118822 A1 WO2013118822 A1 WO 2013118822A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
processing chamber
carbon film
film forming
source gas
Prior art date
Application number
PCT/JP2013/052868
Other languages
English (en)
French (fr)
Inventor
雅裕 鈴木
和芳 山川
齊藤 利幸
Original Assignee
株式会社ジェイテクト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジェイテクト filed Critical 株式会社ジェイテクト
Priority to EP13746660.3A priority Critical patent/EP2813599A4/en
Priority to US14/377,806 priority patent/US20150056386A1/en
Priority to CN201380008717.4A priority patent/CN104105815A/zh
Publication of WO2013118822A1 publication Critical patent/WO2013118822A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45578Elongated nozzles, tubes with holes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/272Diamond only using DC, AC or RF discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45502Flow conditions in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45561Gas plumbing upstream of the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/503Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using dc or ac discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/515Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using pulsed discharges

Definitions

  • the present invention relates to a carbon film forming apparatus and a carbon film forming method for forming a carbon film such as a DLC (Diamond-Like Carbon) film on the surface of a base material.
  • a carbon film such as a DLC (Diamond-Like Carbon) film
  • a plasma CVD (plasma chemical vapor deposition) method such as a direct-current pulse plasma CVD method or a direct-current plasma CVD method is known (see, for example, Patent Document 1).
  • the plasma CVD method is performed by, for example, a plasma CVD film forming apparatus as described below.
  • the plasma CVD film forming apparatus for example, converts a processing chamber, a base housed in the processing chamber, source gas supply means for introducing source gas into the processing chamber, and source gas introduced into the processing chamber into plasma And a plasma power source for generating a DC voltage (DC pulse voltage).
  • the inventors of the present application are considering adopting a long gas introduction pipe extending from the upper side to the lower side in the processing chamber as a raw material gas supply means of such a plasma CVD film forming apparatus.
  • discharge ports for discharging the source gas into the processing chamber are arranged along the longitudinal direction of the gas introduction pipe.
  • the plurality of discharge ports are arranged with substantially equal density.
  • the film forming speed of the surface of the lower part of the substrate located in the lower part of the processing chamber is Although it was high, it was found that the film formation rate on the surface of the upper part of the substrate located in the upper part of the processing chamber was low. Therefore, when forming the film by arranging the surface of the base material sideways, the film thickness of the lower part of the base material may be thicker than the film thickness of the upper part of the base material. As a cause of this, the source gas concentration in the lower region in the processing chamber is high, and on the other hand, the source gas concentration in the upper region in the processing chamber may be low.
  • the discharge flow rate of the raw material gas from each discharge port on the downstream side of the gas introduction pipe is large, but on the other hand, the discharge flow rate of the raw material gas from each discharge port on the upstream side of the gas introduction pipe is small. It is thought that it has become.
  • an object of the present invention is to provide a carbon film forming apparatus and a carbon film forming method capable of making the raw material gas concentration uniform in various places in the processing chamber and thereby forming a carbon film having a uniform thickness. Is to provide.
  • a carbon film forming apparatus for forming a carbon film on a surface of a base material, comprising: a processing chamber; and a base for holding the base material that is accommodated in the processing chamber.
  • a material holding means for discharging a raw material gas into the processing chamber, and a nozzle having a gas introduction pipe for defining a gas flow passage communicating with each of the discharge ports, and the gas introduction pipe
  • a source gas supply means for supplying a source gas containing a carbon-based compound, and the pipe wall of the gas introduction pipe corresponding to the formation region of the plurality of discharge ports has a channel diameter of the pipe wall
  • a carbon film forming apparatus is provided, which is formed in a stepped shape so that the diameter decreases as the distance from the source gas supply side by the source gas supply means increases.
  • a carbon film forming method for forming a carbon film on a surface of a substrate, wherein the substrate is held by a substrate holding means accommodated in a processing chamber.
  • a carbon-based compound is included in the gas introduction pipe of the nozzle having a holding step, a plurality of discharge openings that open in the processing chamber, and a gas introduction pipe that defines a gas flow passage communicating with each of the discharge openings.
  • a source gas supply step for supplying source gas from a source gas supply means, and a pipe wall of the gas introduction pipe corresponding to a formation region of the plurality of discharge ports has a flow path diameter of the pipe wall
  • a carbon film forming method characterized by being formed in a stepped shape so that the diameter decreases as the distance from the source gas supply side by the gas supply means increases.
  • the carbon gas film forming apparatus and the carbon film film forming apparatus that can make the raw material gas concentration uniform in various places in the processing chamber and thereby form a carbon film having a uniform thickness.
  • a method can be provided.
  • FIG. 3 is a diagram viewed from a section line III-III shown in FIG.
  • FIG. 3 is a diagram viewed from a section line III-III shown in FIG.
  • FIG. 6 is a schematic diagram which shows the structure of the gas introduction nozzle shown in FIG.
  • FIG. 6 is a schematic diagram illustrating a configuration of a gas introduction nozzle of a plasma CVD film forming apparatus of Comparative Example 1.
  • FIG. It is a figure which shows the base material height direction distribution of the film thickness of the DLC film formed into a film by the plasma CVD film-forming apparatus of Example 1 and Comparative Example 1.
  • FIG. 1 is a diagram schematically showing a configuration of a plasma CVD film forming apparatus according to an embodiment of the present invention.
  • the covering member 20 (see FIG. 6) can be manufactured by forming a DLC film on the surface (circumferential surface) 201 of the substrate 200 by the direct-current pulse plasma CVD method using the plasma CVD film forming apparatus 1.
  • the plasma CVD film forming apparatus 1 includes a processing chamber 3 having a rectangular parallelepiped (or cubic) shape surrounded by a partition wall 2 and a base (base material holding means) 5 for contacting and supporting the base material 200 from below.
  • the gas introduction mechanism 6 for introducing the raw material gas as the component gas into the processing chamber 3, the exhaust system 7 for evacuating the inside of the processing chamber 3, and the gas introduced into the processing chamber 3 into plasma
  • a plasma power source 8 for generating a direct-current pulse voltage.
  • the plasma CVD film forming apparatus 1 is an apparatus for performing a direct current pulse plasma CVD (Direct-Current-Plasma-Chemical-Vapor-Deposition) method.
  • the base 5 includes a disk-shaped plate 9 (see also FIG. 2 and FIG. 3) having a horizontal mounting surface, and a support shaft 10 that extends vertically and supports the plate 9.
  • a single-stage plate 5 having only one plate 9 is adopted as the base 5, but a multiple-stage type (for example, a two-stage type) is arranged as a plurality of bases 5. It is also possible to adopt.
  • the base 5 is entirely formed using a conductive material such as steel.
  • a negative electrode of a plasma power source 8 is connected to the base 5.
  • the substrate 200 is placed on the plate 9.
  • the partition wall 2 of the processing chamber 3 is formed using a conductive material such as stainless steel.
  • a positive electrode of a plasma power source 8 is connected to the partition wall 2.
  • the partition wall 2 is grounded.
  • the partition wall 2 and the base 5 are insulated by an insulating member 11. Therefore, the partition wall 2 is kept at the ground potential.
  • the exhaust system 7 includes a first exhaust pipe 13 and a second exhaust pipe 14 that communicate with the inside of the processing chamber 3, a first on-off valve 15, a second on-off valve 16, a third on-off valve 19, and a first pump 17. And a second pump 18.
  • a first opening / closing valve 15 and a first pump 17 are interposed in this order from the processing chamber 3 side in the middle of the first exhaust pipe 13.
  • a low vacuum pump such as an oil rotary vacuum pump (rotary pump) or a diaphragm vacuum pump is employed.
  • the oil rotary vacuum pump is a positive displacement vacuum pump that reduces an airtight space and an ineffective space between components such as a rotor, a stator, and a sliding blade with oil.
  • Examples of the oil rotary vacuum pump adopted as the first pump 17 include a rotary blade type oil rotary vacuum pump and a swing piston type vacuum pump.
  • the tip of the second exhaust pipe 14 is connected between the first opening / closing valve 15 and the first pump 17 in the first exhaust pipe 13.
  • a second opening / closing valve 16, a second pump 18, and a third opening / closing valve 19 are interposed in this order from the processing chamber 3 side in the middle of the second exhaust pipe 14.
  • a high vacuum pump such as a turbo molecular pump or an oil diffusion pump is employed.
  • the gas introduction mechanism 6 includes a collective pipe 30, a plurality of component gas introduction pipes (not shown) connected to the upstream side of the collective pipe 30, and a plurality (in this embodiment) branch-connected to the downstream end of the collective pipe 30. 4) gas introduction nozzles (nozzles) 31 are provided.
  • the collective piping 30 is disposed on the central axis of the disk-shaped plate 9 along the central axis.
  • Each component gas introduction pipe is supplied with the component gas from a corresponding component gas supply source (such as a gas cylinder or a container containing a liquid).
  • One of the plurality of component gases is a gas containing a carbon-based compound, for example.
  • Each component gas introduction pipe is provided with a flow rate adjustment valve (not shown) for adjusting the flow rate of the component gas from each supply source.
  • the container which accommodates the liquid among supply sources is provided with the heating means (not shown) for heating a liquid as needed.
  • the collecting pipe 30, a plurality of component gas introduction pipes (not shown), the supply sources (not shown) of each component gas, and the like are included in an example of the “raw material gas supply means”.
  • FIG. 2 is a perspective view showing the configuration of the gas introduction mechanism 6 and the base 5.
  • FIG. 3 is a view taken along the section line III-III shown in FIG.
  • FIG. 4 is a schematic diagram showing the configuration of the gas introduction nozzle 31.
  • the plurality of gas introduction nozzles 31 are provided so as to be rotationally symmetric with respect to the collecting pipe 30 and are provided at equiangular intervals (for example, 90-intervals).
  • the plurality of gas introduction nozzles 31 have the same specifications.
  • Each gas introduction nozzle 31 includes each gas introduction pipe 32 connected to the downstream end of the collective pipe 30.
  • Each gas introduction pipe 32 is connected to the downstream end of the collective pipe 30, and extends horizontally from the downstream end toward the outside in the radial direction of the base 5 (in the direction away from the collective pipe 30).
  • a vertical portion 34 that is connected to the downstream end (side end) of the horizontal portion 33 and hangs vertically downward from the side end, and has an L shape that is 180-overturned as a whole.
  • the plurality of (for example, four) horizontal portions 33 are radially spread from the downstream end of the collecting pipe 30.
  • Each gas introduction pipe 32 (each vertical portion 34 and each horizontal portion 33) has a cylindrical shape.
  • a cylindrical gas flow passage 35 communicating with the inside of the collecting pipe 30 is defined in each gas introduction pipe 32.
  • Each gas flow passage 35 is closed at the downstream end of each vertical portion 34.
  • each horizontal portion 33 is not formed with a discharge port as described below.
  • each vertical portion 34 is disposed at each of four corners of the processing chamber 3 that are rectangular in plan view.
  • the downstream end of each gas introduction nozzle 31, that is, the downstream end of each vertical portion 34 is located on the side of the base 5.
  • the vertical portion 34 includes a first portion 36, a second portion 37, and a third portion 38 having different tube diameters in order from the collecting pipe 30 side (horizontal portion 33 side).
  • the tube diameter and the thickness of each tube wall of the first, second and third portions 36, 37, 38 are constant with respect to the tube axis direction.
  • the relationship between the outer diameter D1 of the first portion 36, the outer diameter D2 of the second portion 37, and the outer diameter D3 of the third portion 38 is D1> D2> D3.
  • the tube wall of the first portion 36, the tube wall of the second portion 37, and the tube wall of the third portion 38 are formed in a stepped shape so that the diameter decreases toward the downstream side.
  • the downstream end of the first portion 36 and the upstream end of the second portion 37 are connected by an annular first step portion (portion that forms a stepped shape of the tube wall) 39 having a horizontal posture. Further, the downstream end of the second portion 37 and the upstream end of the third portion 38 are connected by an annular second stepped portion (portion forming a stepped shape of the tube wall) 40 in a horizontal posture.
  • the tube-axis direction lengths L7, L8, and L9 of the first portion 36, the second portion 37, and the third portion 38 are set substantially equal.
  • a plurality of (for example, eight) discharge ports 42 for discharging the source gas are formed on the peripheral surface of each vertical portion 34.
  • the discharge ports 42 are arranged along the tube axis direction in each of the first, second and third portions 36, 37 and 38.
  • the plurality of discharge ports 42 are arranged with substantially equal density, and each discharge port 42 has substantially the same size as each other, and is open to the tube walls of the first, second and third portions 36, 37, 38. (It penetrates the inside and outside of the tube wall). In other words, the discharge port 42 communicates with the gas flow passage 35.
  • the discharge port 42 has a first discharge port 42A that discharges a source gas in a predetermined first lateral direction (first discharge direction), and a 90-phase in the circumferential direction of the first horizontal direction and the vertical portion 34 of the cylinder. And a second discharge port 42B that discharges the source gas toward the shifted second lateral direction (second discharge direction).
  • the first lateral direction is an inward lateral direction (horizontal direction) along one of the two side surfaces of the partition wall 2 constituting the corner portion in which the vertical portion 34 is accommodated
  • the second lateral direction is the vertical portion.
  • 34 is an inward lateral direction (horizontal direction) along the other of the two side surfaces of the partition wall 2 constituting the corner portion in which 34 is accommodated.
  • the first portion 36 is provided with discharge port pairs 42A and 42B including a first discharge port 42A and a second discharge port 42B at the same position in the tube axis direction.
  • two pairs of discharge port pairs 42 ⁇ / b> A and 42 ⁇ / b> B are arranged vertically with a gap L ⁇ b> 1.
  • the first discharge port 42A is disposed on the upstream side
  • the second discharge port 42B is disposed on the downstream side, with an interval L2 therebetween.
  • the first discharge port 42A is disposed on the upstream side
  • the second discharge port 42B is disposed on the downstream side, with an interval L3 therebetween.
  • the upstream discharge port pair 42A, 42B in the first portion 36 is disposed at a distance L4 from the downstream end of the horizontal portion 33, and the upstream discharge port 42 (first discharge port 42 in the second portion 37).
  • the outlet 42A) is disposed at a distance L5 from the downstream discharge port pair 42A, 42B in the first portion 36.
  • the upstream discharge port 42 (first discharge port 42A) in the third portion 38 is disposed at a distance L6 from the downstream discharge port 42 (second discharge port 42B) in the second portion 37.
  • the pipe wall of the vertical portion 34 is formed in a stepped shape so that the diameter of the flow path of the pipe wall decreases as the distance from the source gas supply side increases. Therefore, the first and second step portions 39 and 40 interfere with the raw material gas flowing through the gas flow passage 35. As a result, the gas can overflow to the upstream side of the gas flow passage 35 and the supply of the raw material gas to the downstream side of the gas flow passage 35 is suppressed. Thereby, the discharge flow rate of the raw material gas from each discharge port 42 can be made uniform, and as a result, the raw material gas concentration in each place in the processing chamber 3 can be made uniform. Therefore, the DLC film 21 having a uniform thickness can be formed on the surface 201 of the substrate 200.
  • no discharge port is formed in the horizontal portion 33, and a discharge port 42 is formed only in the vertical portion 34. Since no discharge port is formed in the horizontal portion 33, the pressure of the raw material gas at each position of the vertical portion 34 (particularly the upstream portion of the vertical portion 34) can be kept high, and the raw material gas is vigorously supplied from all the discharge ports 42. It can be discharged. Furthermore, since the first and second discharge ports 42A and 42B having different discharge directions are formed as the discharge ports 42, the processing can be performed even if the number of gas introduction nozzles 31 accommodated in the processing chamber 3 is small. The source gas can be distributed evenly throughout the room 3. Thereby, the raw material gas concentration in each place in the processing chamber 3 can be made more uniform.
  • the arrangement of the discharge ports 42 and the discharge direction thereof are merely examples, and can be changed as appropriate.
  • a DLC film 21 (see FIG. 6) as an example of a carbon film is formed on the surface 201 of the substrate 200 using the plasma CVD film forming apparatus 1 to form a covering member 20 (FIG. 6).
  • the process for manufacturing the reference will be described.
  • the base material 200 is carried into the processing chamber 3, and the base material 200 is placed on the plate 9 of the base 5 with the surface 201 (circumferential surface) facing sideways. It is made to support on an upper surface (base material holding process).
  • the first on-off valve 15 is opened to evacuate the inside of the processing chamber 3. Is done. After the processing chamber 3 is evacuated to a predetermined degree of vacuum by the first pump 17, the first opening / closing valve 15 is closed and the third opening / closing valve 19 is opened to drive the second pump 18. When the second opening / closing valve 16 is opened, the inside of the processing chamber 3 is further evacuated by the first and second pumps 17 and 18.
  • a raw material gas is supplied from a supply source (not shown) to the gas introduction nozzles 31 through the collecting pipe 30, and this raw material gas enters the processing chamber 3 through the discharge ports 42.
  • source gases introduced into the processing chamber 3 are, for example, hydrogen gas and argon gas. Hydrogen gas and argon gas each have an action of stabilizing the plasma.
  • the source gas is not limited to hydrogen gas and argon gas, but may be only argon gas.
  • the power supply 8 is turned on, and a negative DC pulse voltage (for example, ⁇ 1000 V) is applied to the base 5.
  • a potential difference is generated between the partition wall 2 and the base 5, and plasma is generated in the processing chamber 3.
  • ions and radicals are generated from the raw material gas in the processing chamber 3, and these ions and radicals are struck against the surface 201 of the base material 200 based on the potential difference.
  • Unevenness is formed (sputtering process).
  • ions and radicals are bombarded on the surface 201 of the substrate 200, so that different molecules adsorbed on the surface 201 of the substrate 200 are removed by sputtering, the surface 201 is activated, and the atomic arrangement is modified. (Ion bombarding).
  • the source gas (hydrogen gas and argon gas) to the processing chamber 3 is stopped.
  • a raw material gas is supplied from a supply source (not shown) to each gas introduction nozzle 31 through the collecting pipe 30, and this raw material gas passes through each discharge port 42 in the processing chamber 3.
  • the source gas introduced into the processing chamber 3 is, for example, a gas containing Si (for example, a mixture of H 2 , TMS (tetramethylsilane gas, (Si (CH 3 ) 4 )), and CH 4 (methane). Gas).
  • the supply of the raw material gas to the processing chamber 3 is stopped.
  • a raw material gas is supplied from a supply source (not shown) to each gas introduction nozzle 31 through the collecting pipe 30, and this raw material gas passes through each discharge port 42 in the processing chamber 3. (Raw material gas supply step).
  • the raw material gas introduced into the processing chamber 3 is, for example, a carbon-based compound added with hydrogen gas, argon gas, or the like.
  • carbon-based compound for example, one kind of hydrocarbon compound which is a gas or a low boiling point liquid under normal temperature and normal pressure, such as methane (CH 4 ), acetylene (C 2 H 2 ), benzene (C 6 H 6 ), etc. Or 2 or more types are mentioned.
  • plasma is generated in the processing chamber 3 by generating a potential difference between the partition wall 2 and the base 5. Due to the generation of the plasma, ions and radicals are generated from the source gas in the processing chamber 3, and the ions and radicals are attracted to the surface 201 of the substrate 200 based on the potential difference. Then, a chemical reaction occurs on the surface 201 of the substrate 200, and the DLC film 21 is deposited on the intermediate layer 22 (DLC film forming step). Thereby, the covering member 20 in which at least a part of the substrate 200 is covered with the DLC film 21 is formed.
  • FIG. 5 is a graph showing an example of a waveform of a direct-current pulse voltage applied to the substrate 200 from the plasma power supply 8.
  • the set voltage value of the DC pulse voltage is set to a value of about 1000V, for example. That is, when the plasma power supply 8 is turned on, a potential difference of 1000 V is generated between the partition wall 2 and the base 5.
  • a negative DC pulse voltage of 1000 V is applied to the substrate 200 set in the processing chamber 3 as described above. Since the waveform is pulse-like, abnormal discharge does not occur in the processing chamber 3 even when such a high voltage is applied, and the temperature rise of the substrate 200 is suppressed, and the processing temperature is suppressed to a low temperature of, for example, 300 ° C. or lower. be able to.
  • a value obtained by dividing the pulse width ⁇ by a pulse period represented by the reciprocal (1 / f) of the frequency f that is, a value obtained by multiplying the pulse width ⁇ by the frequency f as shown in Equation (1).
  • the frequency f is preferably set to 200 Hz or more and 2000 Hz or less, particularly about 1000 Hz.
  • Duty ratio ⁇ ⁇ f (1)
  • the plasma power source 8 is turned off and the introduction of the source gas is stopped. While continuing to exhaust by one pump 17, it is cooled to room temperature.
  • the first opening / closing valve 15 is closed, and instead, a leak valve (not shown) is opened to introduce outside air into the processing chamber 3 to return the processing chamber 3 to normal pressure. It is taken out. Thereby, the covering member 20 in which at least a part of the surface 201 of the substrate 200 is covered with the DLC film 21 is manufactured.
  • FIG. 6 is a cross-sectional view of the surface layer portion of the surface of the covering member 20.
  • the covering member 20 is used as, for example, a sliding member or a decorative article.
  • the sliding member include a clutch plate of a friction clutch, a worm of a steering device (a DLC film 21 is formed on a tooth surface), inner and outer rings of a bearing (a DLC film 21 is formed on a raceway surface) or a cage, and a propeller shaft.
  • DLC film 21 is formed on the drive shaft, male spline portion and / or female spline portion).
  • the covering member 20 includes a base material 200, an intermediate layer 22 that covers the surface 201 of the base material 200, and a DLC film 21 that covers the surface of the intermediate layer 22.
  • the intermediate layer 22 and the DLC film 21 are thin films each having a thickness of about several ⁇ m to several tens of ⁇ m.
  • the surface of the DLC film 21 forms at least a part of the outermost surface of the covering member 20.
  • the covering member 20 is used as a sliding member
  • the surface of the DLC film 21 functions as a sliding surface that slides on the counterpart member.
  • the material of the base material 200 is, for example, a steel material (tool steel, carbon steel, and stainless steel), an alloy, cemented carbide, or the like.
  • the intermediate layer 22 is, for example, a metal film such as CrN or TiN or a thin film containing Si.
  • Example 1 and Comparative Example 1 will be described.
  • the surface (circumferential surface) 201 of the base material 200 made of a steel material (for example, SCM415) is subjected to the ion bombardment treatment, and then The intermediate layer forming step and the DLC film forming step were executed in this order, and the intermediate film 22 and the DLC film 21 were formed.
  • the outer diameters D1, D2, and D3 (see FIG. 4) of the first, second, and third portions 36, 37, and 38 are set to, for example, 12.25 mm, 9.62 mm, and 6.35 mm, respectively. ing.
  • the thickness (refer FIG. 4) of the tube wall in the 1st, 2nd and 3rd part 36,37,38 is 0.8 mm, for example.
  • the interval L1 (see FIG. 4), the interval L2 (see FIG. 4), and the interval L3 (see FIG. 4) are set to 60 mm, 50 mm, and 50 mm, respectively, for example.
  • the tube axis direction lengths L7, L8, and L9 are set to 170 mm, 150 mm, and 150 mm, respectively.
  • Comparative Example 1 the surface (circumferential surface) 201 of the base material 200 made of a steel material (for example, SCM415) is subjected to the ion bombarding process using a plasma CVD film forming apparatus 101 described below, and thereafter, the intermediate The layer forming step and the DLC film forming step were executed in this order, and an intermediate film and a DLC film were formed.
  • a mixed gas of hydrogen gas and argon gas was used as the source gas in the ion bombardment process, and the flow ratio of the two components of hydrogen gas and argon gas was set to 1: 1, respectively.
  • Example 1 and Comparative Example 1 a mixed gas of methane, hydrogen gas, argon gas, and TMS as a gas containing Si was used as a raw material gas in the intermediate layer forming step, and methane, hydrogen gas, argon The flow ratio of the four components of gas and TMS was set to 0.5 to 1: 0.5 to 1: 0.5 to 1: 0.03 to 0.06, respectively.
  • Example 1 and Comparative Example 1 a mixed gas of methane as a carbon-based compound, hydrogen gas, argon gas, and TMS as a gas containing Si is used as a raw material gas in the DLC film forming step, and methane, hydrogen gas, argon
  • the flow ratio of the four components of gas and TMS was 0.6: 0.6: 1: 0.03, respectively.
  • FIG. 7 is a schematic diagram showing the configuration of the gas introduction nozzle 131 of the plasma CVD film forming apparatus 101 of the first comparative example.
  • the same reference numerals are given to portions common to the above-described plasma CVD film forming apparatus 1, and description thereof is omitted.
  • the plasma CVD film forming apparatus 101 of Comparative Example 1 includes four gas introduction nozzles 131 that are provided rotationally symmetrically with respect to the collecting pipe 30.
  • Each gas introduction nozzle 131 includes a horizontal portion 133 and a vertical portion 134 and includes a gas introduction pipe 132 connected to the downstream end of the collective pipe 30.
  • a cylindrical gas flow passage 135 communicating with the inside of the collecting pipe 30 is defined in each gas introduction pipe 132, and each gas flow path 135 is closed at the downstream end of the vertical portion 134.
  • Each vertical portion 134 is disposed at each of four corners of the processing chamber 3 in a rectangular shape in plan view.
  • the lower end of each gas introduction nozzle 131, that is, the lower end of each vertical portion 134 is located on the side of the base 5.
  • the tube diameter of the vertical portion 134 is constant with respect to the tube axis direction, and is 6.35 mm, for example.
  • a plurality of (for example, nine) discharge ports 142 for discharging the source gas are formed on the peripheral surface of each vertical portion 134.
  • a plurality of (for example, four) discharge ports 142 for discharging the source gas are formed on the peripheral surface of each horizontal portion 133.
  • These discharge ports 142 are arranged along the tube axis direction of each gas introduction pipe 132.
  • the discharge outlet 142 is arrange
  • Each discharge port 142 is formed on the circumferential surface of the horizontal portion 133 at the lowest position in the circumferential direction.
  • the interval L14 between the most upstream discharge port 142 in the horizontal portion 133 and the downstream end of the collecting pipe 30 and the most downstream discharge port 142 in the horizontal portion 133 and the downstream end of the horizontal portion 133 The distance L15 is, for example, 35 mm and 50 mm, respectively.
  • the discharge ports 142 are arranged at a predetermined interval (half of L12 shown in FIG. 7; for example, 50 mm).
  • the discharge port 142 formed in the vertical part 134 includes a first discharge port 142A that discharges a source gas in a predetermined first lateral direction, and a 90-phase in the circumferential direction of the first horizontal direction and the cylindrical vertical part 134. And a second discharge port 142B for discharging the source gas toward the second lateral direction.
  • the first lateral direction is an inward lateral direction (horizontal direction) along one of the two side surfaces of the partition wall 2 constituting the corner portion in which the vertical portion 134 is accommodated
  • the second lateral direction is the vertical portion.
  • 134 is an inward lateral direction (horizontal direction) along the other of the two side surfaces of the partition wall 2 constituting the corner portion in which 134 is accommodated.
  • each vertical portion 134 With respect to the tube axis direction of each vertical portion 134, the first discharge ports 142A and the second discharge ports 142B are alternately arranged.
  • 8 shows the DLC film thickness formed by the plasma CVD film forming apparatus 1 of Example 1 and the plasma CVD film forming apparatus 101 of Comparative Example 1 in the substrate height direction (see the plate 9 (see FIG. 1 etc.)). It is a figure which shows a distribution perpendicular
  • the horizontal axis of FIG. 8 is the base material height direction position (distance) from the lower end (that is, the upper surface of the plate 9) of the base material 200 (see FIG. 1 and the like).
  • Example 1 the thickness of the DLC film 21 (see FIG. 6 and the like) is substantially uniform in the substrate height direction.
  • Comparative Example 1 it is understood that the thickness of the DLC film decreases as the distance from the lower end of the substrate 200 increases.
  • the vertical portion 34 may have a two-stage shape, or may have a four-stage shape or more.
  • the discharge port 42 is not formed in the horizontal portion 33, but the discharge port 42 may be arranged in the horizontal portion 33.
  • the pressure of the raw material gas is maintained high at various locations of the vertical portion 34 (particularly the upstream portion of the vertical portion 34), and the raw material gas is discharged from the discharge ports 42 of the vertical portion 34 (particularly, the discharge ports 42 of the upstream portion of the vertical portion 34). It is desirable not to form the discharge port 42 in the horizontal portion 33 in order to discharge the water with vigor.
  • first discharge port 42A and the second discharge port 42B having different discharge directions are illustrated as the discharge ports 42 of the vertical portion 34.
  • the discharge directions of the discharge ports 42 are different from each other.
  • a common configuration may be used.
  • each discharge port 42 the one directly opening in the tube wall of the gas introduction pipe 32 is illustrated, but the discharge port is formed at the tip of a nozzle (cylindrical nozzle or the like) attached to the gas introduction pipe 32. Also good.
  • the DLC film 21 was mentioned as an example as an example of a carbon film, another carbon film can also be employ
  • the plasma CVD film forming apparatus 1 has been exemplified by a film forming apparatus for forming a carbon film by a DC pulse plasma CVD method, but is also applied to a film forming apparatus for forming a carbon film by a DC plasma CVD method.
  • the present invention can also be applied.
  • the present invention can also be applied to a film forming apparatus for forming a carbon film using a method other than those methods.
  • various design changes can be made within the scope of matters described in the claims.
  • a first aspect of an embodiment of the present invention is a carbon film forming apparatus (1) for forming a carbon film (21) on a surface (201) of a substrate (200), which is a processing chamber (3).
  • a base material holding means (5) for holding the base material accommodated in the processing chamber, a plurality of discharge ports (42) for discharging the source gas into the processing chamber, and communication with each discharge port
  • a nozzle (31) having a gas introduction pipe (32) for defining a gas flow passage (35) therein, and a raw material gas supply means for supplying a raw material gas containing a carbon-based compound to the gas introduction pipe
  • the pipe wall of the gas introduction pipe corresponding to the formation area of the plurality of discharge ports has a flow path diameter (D1, D2, D3) of the pipe wall of the source gas supply side by the source gas supply means It is formed in a step shape so that the diameter decreases as the distance from the And wherein a carbon film forming apparatus.
  • the gas introduction pipe is provided on the source gas supply side, and is provided on the opposite side of the horizontal portion (33) extending horizontally and the source gas supply side.
  • the plurality of discharge ports include a first discharge port (42A) for discharging the source gas in a predetermined first discharge direction perpendicular to a tube axis direction of the gas introduction pipe. And a second discharge port (42B) for discharging the source gas in a predetermined second discharge direction that is perpendicular to the tube axis direction and different from the first discharge direction.
  • the first and second discharge ports may be alternately arranged in the tube axis direction.
  • the processing chamber includes a partition wall (2) formed using a conductive material
  • the base material holding means is a base (5) for supporting the base material.
  • the carbon film forming apparatus includes a base formed using the raw material introduced into the processing chamber by generating a direct current voltage (including a direct current pulse voltage) between the partition and the base. 4.
  • the carbon film forming apparatus according to any one of the first to third aspects, further including a plasma power source (8) for converting the gas into plasma.
  • the fifth aspect is a carbon film forming method for forming a carbon film (21) on the surface (201) of the substrate (200), the substrate holding means accommodated in the processing chamber (3).
  • a base material holding step for holding the base material in (5), a plurality of discharge ports (42) opened in the processing chamber, and a gas flow passage (35) communicating with each of the discharge ports are partitioned and formed inside.
  • a raw material gas supply step for supplying a raw material gas containing a carbon-based compound from a raw material gas supply means to the gas introduction pipe of a nozzle (31) having a gas introduction pipe (32),
  • the pipe wall of the gas introduction pipe corresponding to the formation region is such that the flow path diameter (D1, D2, D3) of the pipe wall decreases as the distance from the source gas supply side by the source gas supply means increases.
  • a carbon film characterized by being formed in steps. Is a film forming method.
  • the pipe wall of the gas introduction pipe corresponding to the formation region of the discharge port has a reduced diameter as the flow path diameter of the pipe wall becomes farther from the source gas supply side. It is formed in steps. Therefore, the stepped portion of the tube wall interferes with the raw material gas flowing through the gas flow passage. As a result, the source gas can overflow into the gas flow passage on the source gas supply side, and the supply of the source gas to the gas flow passage on the side opposite to the source gas supply side is suppressed. Therefore, the discharge flow rate of the source gas from each discharge port can be made uniform, and as a result, the source gas concentration in each place in the processing chamber can be made uniform. Thereby, a carbon film having a uniform thickness can be formed on the surface of the substrate.
  • the discharge port is not formed in the horizontal part, but the discharge port is formed only in the vertical part. Since the discharge port is not formed in the horizontal portion, the pressure of the source gas at each portion of the vertical portion (particularly, the source gas supply side in the vertical portion) can be kept high, and the source gas is discharged from each discharge port vigorously. be able to.
  • the first discharge port that discharges the source gas in the first discharge direction and the second discharge port that discharges the source gas in the second discharge direction are gas introductions. They are arranged alternately in the pipe axis direction of the pipe. Therefore, even if the number of gas introduction pipes accommodated in the processing chamber is small, the raw material gas can be distributed evenly throughout the processing chamber. Thereby, the raw material gas concentration in each place in the processing chamber can be made more uniform.
  • the film-forming process with respect to the base material by plasma CVD method is implemented by making raw material gas into plasma in a process chamber. Since the concentration of the source gas at each location in the processing chamber is uniform, a carbon film having a uniform thickness can be formed on the surface of the substrate. According to the method of the said 5th aspect, there exists an effect equivalent to the effect demonstrated in relation to the said 1st aspect.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

 炭素膜成膜装置は、処理室内に原料ガスを吐出するための複数の吐出口、および各吐出口と連通するガス流通路を、内部に区画形成するガス導入配管を有するノズルを有する。複数の吐出口の形成領域に対応するガス導入配管の管壁は、当該管壁の流路径が、原料ガス供給手段による原料ガスの供給側から離れるほど縮径になるように、階段状に形成されている。

Description

炭素膜成膜装置および炭素膜成膜方法
 この発明は、基材の表面に、DLC(Diamond-Like Carbon)膜などの炭素膜を成膜するための炭素膜成膜装置および炭素膜成膜方法に関する。
 従来から、DLC膜などの炭素膜を成膜する方法として、直流パルスプラズマCVD法や直流プラズマCVD法などのプラズマCVD(Plasma Chemical Vapor Deposition)法が知られている(たとえば特許文献1参照)。
 プラズマCVD法は、たとえば、次に述べるようなプラズマCVD成膜装置によって実施される。プラズマCVD成膜装置は、たとえば、処理室と、処理室に収容された基台と、処理室内に原料ガスを導入するための原料ガス供給手段と、処理室内に導入された原料ガスをプラズマ化させるための直流電圧(直流パルス電圧)を発生させるプラズマ電源とを備えている。
日本国特開2011-252179号公報
 本願発明者らは、このようなプラズマCVD成膜装置の原料ガス供給手段として、処理室内を上方から下方に向けて延びる長尺のガス導入配管を採用することを検討している。ガス導入配管の周面には、処理室内に原料ガスを吐出させるための吐出口が、ガス導入配管の長手方向に沿って配列されている。これら複数の吐出口は、ほぼ等密度で配置されている。
 このようなガス導入配管が採用された前記のプラズマCVD成膜装置を用いて、本願発明者らが実験を行ったところ、処理室下部分に位置する基材下部分の表面の成膜速度は高いが、処理室上部分に位置する基材上部分の表面の成膜速度は低い、との知見を得た。そのため、基材の表面を、側方に向けて配置して成膜する場合には、基材下部分の膜厚が、基材上部分の膜厚よりも厚くなってしまうおそれがある。この原因として、処理室内の下部領域における原料ガス濃度は高濃度となっており、その半面、処理室内の上部領域の原料ガス濃度は低濃度となっていることが考えられる。換言すると、ガス導入配管の下流側の各吐出口からの原料ガスの吐出流量は多いが、その半面、ガス導入配管の上流側の各吐出口からの原料ガスの吐出流量が少ないことが原因になっていると考えられる。
 そこで、この発明の目的は、処理室内の各所における原料ガス濃度を均一にすることができ、これにより、均一厚みの炭素膜を成膜することができる炭素膜成膜装置および炭素膜成膜方法を提供することである。
 本発明の一つの態様によれば、基材の表面に炭素膜を形成するための炭素膜成膜装置であって、処理室と、前記処理室内に収容され、基材を保持するための基材保持手段と、前記処理室内に原料ガスを吐出するための複数の吐出口、および各吐出口と連通するガス流通路を、内部に区画形成するガス導入配管を有するノズルと、前記ガス導入配管に、炭素系化合物を含む原料ガスを供給するための原料ガス供給手段とを含み、前記複数の吐出口の形成領域に対応する前記ガス導入配管の管壁は、当該管壁の流路径が、前記原料ガス供給手段による原料ガスの供給側から離れるほど縮径になるように、階段状に形成されていることを特徴とする、炭素膜成膜装置が提供される。
 本発明の他の態様によれば、基材の表面に炭素膜を形成するための炭素膜成膜方法であって、処理室内に収容された基材保持手段に前記基材を保持させる基材保持工程と、前記処理室内で開口する複数の吐出口、および各吐出口と連通するガス流通路を、内部に区画形成するガス導入配管を有するノズルの前記ガス導入配管に、炭素系化合物を含む原料ガスを原料ガス供給手段から供給するための原料ガス供給工程とを含み、前記複数の吐出口の形成領域に対応する前記ガス導入配管の管壁は、当該管壁の流路径が、前記原料ガス供給手段による原料ガスの供給側から離れるほど縮径になるように、階段状に形成されていることを特徴とする、炭素膜成膜方法が提供される。
 上記本発明の態様によれば、処理室内の各所における原料ガス濃度を均一にすることができ、これにより、均一厚みの炭素膜を成膜することができる炭素膜成膜装置および炭素膜成膜方法を提供することができる。
本発明の実施の形態に係るプラズマCVD成膜装置の構成を模式的に示す図である。 図1にそれぞれ示すガス導入機構および基台の構成を示す斜視図である。 図1に示す切断面線III-IIIから見た図である。 図1に示すガス導入ノズルの構成を示す模式的な図である。 図1に示すプラズマCVD成膜装置のプラズマ電源から基材に印加される直流パルス電圧の波形の一例を示すグラフである。 被覆部材の表面の表層部分の断面図である。 比較例1のプラズマCVD成膜装置のガス導入ノズルの構成を示す模式的な図である。 実施例1および比較例1のプラズマCVD成膜装置で成膜したDLC膜の膜厚の基材高さ方向分布を示す図である。
 以下では、本発明の実施の形態を、添付図面を参照して説明する。
 図1は、本発明の実施の形態に係るプラズマCVD成膜装置の構成を模式的に示す図である。プラズマCVD成膜装置1を用いて、直流パルスプラズマCVD法により基材200の表面(周面)201にDLC膜を形成することにより、被覆部材20(図6参照)を製造することができる。
 プラズマCVD成膜装置1は、隔壁2で取り囲まれた直方体(または立方体)状をなす処理室3と、基材200を下方から当接して支持するための基台(基材保持手段)5と、処理室3内に成分ガスである原料ガスを導入するためのガス導入機構6と、処理室3内を真空排気するための排気系7と、処理室3内に導入されたガスをプラズマ化させるための直流パルス電圧を発生させるプラズマ電源8とを備えている。プラズマCVD成膜装置1は、直流パルスプラズマCVD(Direct Current Plasma Chemical Vapor Deposition)法を実施するための装置である。
 基台5は、水平の載置面を有する円盤状のプレート9(図2および図3を併せて参照)と、上下に延びてプレート9を支持する支持軸10とを備えている。図1では、基台5として、プレート9が1段だけの1段式のものが採用されているが、基台5として、上下に複数並んで配置された複数段式(たとえば2段式)のものを採用することもできる。基台5は、全体が鋼などの導電材料を用いて形成されている。基台5にはプラズマ電源8の負極が接続されている。基材200は、プレート9上に載置される。
 また、処理室3の隔壁2は、ステンレス鋼等の導電材料を用いて形成されている。隔壁2には、プラズマ電源8の正極が接続されている。また隔壁2はアース接続されている。また、隔壁2と基台5とは絶縁部材11によって絶縁されている。そのため隔壁2はアース電位に保たれている。プラズマ電源8がオンされて直流パルス電圧が発生されると、隔壁2と基台5との間に電位差が生じる。
 排気系7は、処理室3の内部にそれぞれ連通する第1排気管13および第2排気管14と、第1開閉バルブ15、第2開閉バルブ16および第3開閉バルブ19と、第1ポンプ17および第2ポンプ18とを備えている。
 第1排気管13の途中部には、第1開閉バルブ15および第1ポンプ17が、処理室3側からこの順で介装されている。第1ポンプ17としては、たとえば油回転真空ポンプ(ロータリポンプ)やダイヤフラム真空ポンプなどの低真空ポンプが採用される。油回転真空ポンプは、油によってロータ、ステータおよび摺動翼板などの部品の間の気密空間および無効空間の減少を図る容積移送式真空ポンプである。第1ポンプ17として採用される油回転真空ポンプとしては、回転翼型油回転真空ポンプや揺動ピストン型真空ポンプが挙げられる。
 また、第2排気管14の先端は、第1排気管13における第1開閉バルブ15と第1ポンプ17との間に接続されている。第2排気管14の途中部には、第2開閉バルブ16、第2ポンプ18および第3開閉バルブ19が、処理室3側からこの順で介装されている。第2ポンプ18としては、たとえばターボ分子ポンプ、油拡散ポンプなどの高真空ポンプが採用される。
 ガス導入機構6は、集合配管30と、集合配管30の上流側に接続された複数の成分ガス導入配管(図示しない)と、集合配管30の下流端に分岐接続された複数(この実施形態では4つ)のガス導入ノズル(ノズル)31とを備えている。集合配管30は、円盤状のプレート9の中心軸線上に、当該中心軸線に沿って配置されている。各成分ガス導入配管には、対応する成分ガスの供給源(ガスボンベや液体を収容する容器等)からの当該成分ガスが供給されるようになっている。複数の成分ガスのうちの1つは、たとえば炭素系化合物を含むガスである。各成分ガス導入配管には、各供給源からの成分ガスの流量を調節するための流量調節バルブ(図示しない)等が設けられている。また、供給源のうち液体を収容する容器には、必要に応じて、液体を加熱するための加熱手段(図示しない)が設けられている。集合配管30、複数の成分ガス導入配管(図示しない)、各成分ガスの供給源(図示しない)等が、「原料ガス供給手段」の一例に含まれる。
 図2は、ガス導入機構6および基台5の構成を示す斜視図である。図3は、図1に示す切断面線III-IIIから見た図である。図4は、ガス導入ノズル31の構成を示す模式的な図である。
 複数のガス導入ノズル31は、集合配管30を中心として、互いに回転対称に設けられており、等角度間隔(たとえば90ー間隔)に設けられている。複数のガス導入ノズル31は、同一の諸元を有している。
 各ガス導入ノズル31は、集合配管30の下流端に接続された各ガス導入配管32を備えている。各ガス導入配管32は、集合配管30の下流端に接続されて、当該下流端から基台5の径方向の外方(集合配管30に離反する方向)に向けて水平に延びる水平部33と、水平部33の下流端(側方端)に接続されて、当該側方端から鉛直下方に向けて垂れ下がる鉛直部34とを備え、全体として180ー横転したL字状をなしている。換言すると、複数(たとえば4つ)の水平部33は、集合配管30の下流端から放射状に広がっている。
 各ガス導入配管32(各鉛直部34および各水平部33)は円筒状をなしている。各ガス導入配管32の内部には、集合配管30の内部と連通する円筒状のガス流通路35が区画形成されている。各ガス流通路35は、各鉛直部34の下流端において閉塞されている。また、各水平部33には、次に述べるような吐出口は形成されていない。
 図3に示すように各鉛直部34は、処理室3における平面視矩形の4つの隅部にそれぞれ配置されている。各ガス導入ノズル31の下流端、すなわち各鉛直部34の下流端は、基台5の側方に位置している。
 鉛直部34は、集合配管30側(水平部33側)から順に、互いに管径の異なる第1部分36、第2部分37および第3部分38を備えている。第1、第2および第3部分36,37,38のそれぞれの管壁の管径およびその厚みは、その管軸方向に関して一定である。第1部分36の外径D1、第2部分37の外径D2、および第3部分38の外径D3の関係はD1>D2>D3である。換言すると、第1部分36の管壁、第2部分37の管壁、および第3部分38の管壁は、下流側に向かうほど縮径になるように、階段状に形成されている。第1部分36の下流端と第2部分37の上流端とは、水平姿勢をなす円環状の第1段部(管壁の階段状をなす部分)39によって接続されている。また、第2部分37の下流端と第3部分38の上流端とは、水平姿勢をなす円環状の第2段部(管壁の階段状をなす部分)40によって接続されている。なお、第1部分36、第2部分37および第3部分38のそれぞれの管軸方向長さL7,L8,L9は、ほぼ同等に設定されている。
 図4に示すように、各鉛直部34の周面には、原料ガスを吐出するための吐出口42が複数個(たとえば8個)形成されている。具体的には、第1、第2および第3部分36,37,38のそれぞれにおいて、管軸方向に沿って吐出口42が配列されている。これら複数の吐出口42はほぼ等密度で配置されており、各吐出口42は互いにほぼ同じ大きさを有し、第1、第2および第3部分36,37,38の管壁に開口している(管壁の内外を貫通している)。換言すると、吐出口42がガス流通路35と連通している。
 吐出口42は、所定の第1横方向(第1吐出方向)に向けて原料ガスを吐出する第1吐出口42Aと、第1横方向と円筒の鉛直部34の周方向に90ー位相のずれた第2横方向(第2吐出方向)に向けて原料ガスを吐出する第2吐出口42Bとを有している。第1横方向は、当該鉛直部34が収容される隅部を構成する隔壁2の2つの側面の一方に沿う内向きの横方向(水平方向)であり、第2横方向は、当該鉛直部34が収容される隅部を構成する隔壁2の2つの側面の他方に沿う内向きの横方向(水平方向)である。
 鉛直部34では、第1部分36には、管軸方向の同じ位置に、第1吐出口42Aおよび第2吐出口42Bからなる吐出口対42A,42Bが配置されている。第1部分36では、吐出口対42A,42Bが上下に間隔L1を空けて2対配置されている。また、第2部分37には、第1吐出口42Aが上流側に、第2吐出口42Bが下流側に、互いに間隔L2を空けて配置されている。第3部分38には、第1吐出口42Aが上流側に、第2吐出口42Bが下流側、互いに間隔L3を空けて配置されている。
 また、第1部分36における上流側の吐出口対42A,42Bは、水平部33の下流端から間隔L4を空けて配置されており、第2部分37における上流側の吐出口42(第1吐出口42A)は、第1部分36における下流側の吐出口対42A,42Bから間隔L5を空けて配置されている。第3部分38における上流側の吐出口42(第1吐出口42A)は、第2部分37における下流側の吐出口42(第2吐出口42B)から間隔L6を空けて配置されている。
 鉛直部34の管壁は、当該管壁の流路径が、原料ガスの供給側から離れるほど縮径になるように、階段状に形成されている。そのため、第1および第2段部39,40が、ガス流通路35を流通する原料ガスに干渉する。その結果、ガス流通路35の上流側にガスを溢れさせることができるとともに、ガス流通路35の下流側への原料ガスの供給が抑制される。これにより、各吐出口42からの原料ガスの吐出流量を均一にすることができ、その結果、処理室3内の各所における原料ガス濃度を均一にすることができる。ゆえに、基材200の表面201に均一厚みのDLC膜21を成膜することができる。
 また、水平部33には吐出口が形成されておらず、鉛直部34のみに吐出口42が形成されている。水平部33に吐出口が形成されていないので、鉛直部34の各所(とくに鉛直部34の上流部分)における原料ガスの圧力を高く保つことができ、全ての吐出口42から原料ガスを勢い良く吐出することができる。
 さらに、吐出口42として、吐出方向が互いに異なる第1および第2吐出口42A,42Bが形成されているので、処理室3内に収容配置されるガス導入ノズル31の数が少なくても、処理室3内の各所に原料ガスをまんべんなく行き渡らせることができる。これにより、処理室3内の各所における原料ガス濃度を、より一層均一化することができる。なお、このような吐出口42の配置およびその吐出方向は一例であり、適宜変更することが可能である。
 次に図1等を参照して、プラズマCVD成膜装置1を用いて基材200の表面201に炭素膜の一例としてのDLC膜21(図6参照)を形成して被覆部材20(図6参照)を製造する処理について説明する。
 まず、処理室3内に基材200を搬入し、基材200を、その表面201(周面)が側方を向いた姿勢で基台5のプレート9上に載置し、当該プレート9の上面上に支持させる(基材保持工程)。
 次いで第1、第2および第3開閉バルブ15,16,19が閉じられた状態で第1ポンプ17が駆動させられた後、第1開閉バルブ15が開かれることにより処理室3内が真空排気される。処理室3内が第1ポンプ17によって所定の真空度まで真空排気された時点で第1開閉バルブ15を閉じられるとともに第3開閉バルブ19が開かれて第2ポンプ18が駆動させられた後、第2開閉バルブ16が開かれることにより、第1および第2ポンプ17,18によって処理室3内がさらに真空排気される。
 処理室3内が所定の真空度に達した時点で第2開閉バルブ16が閉じられ、第2ポンプ18が停止させられ、第3開閉バルブ19が閉じられるとともに第1開閉バルブ15が開かれて第1ポンプ17だけで排気を続けながら、供給源(図示しない)から集合配管30を通して各ガス導入ノズル31に原料ガスが供給され、この原料ガスが各吐出口42を介して処理室3内に導入される。まず、処理室3内に導入される原料ガスは、たとえば、水素ガスおよびアルゴンガスである。水素ガスおよびアルゴンガスは、それぞれ、プラズマを安定化させる作用を有する。原料ガスは、水素ガスおよびアルゴンガスに限らず、アルゴンガスだけであってもよい。
 次いで電源8がオンされて、負の直流パルス電圧(たとえば、-1000V)が基台5に印加される。これにより、隔壁2と基台5との間に電位差が生じ、処理室3内にプラズマが発生する。このプラズマの発生により、処理室3内において原料ガスからイオンやラジカルが生成するとともに、このイオンやラジカルが電位差に基づいて基材200の表面201に打ち付けられて、基材200の表面201に微細な凹凸(原子レベルの凹凸)が形成される(スパッタ工程)。また、イオンやラジカルが基材200の表面201に打ち付けられることにより、基材200の表面201に吸着された異分子等をスパッタリング除去したり、表面201を活性化したり、原子配列等を改質したりできる(イオンボンバード処理)。
 電源8がオンにされてから予め定める処理時間が経過すると、処理室3への原料ガス(水素ガスおよびアルゴンガス)の供給が停止させられる。次いで処理室3内を真空排気した状態で、供給源(図示しない)から集合配管30を通して各ガス導入ノズル31に原料ガスが供給され、この原料ガスが各吐出口42を介して処理室3内に導入される。このとき処理室3内に導入される原料ガスは、たとえば、Siを含むガス(たとえば、H2、TMS(テトラメチルシランガス、(Si(CH34))、およびCH4(メタン)の混合ガス)である。そして、この原料ガスを処理室3内に導入しながら、基台5に負の直流パルス電圧を印加させる。これにより、処理室3内にプラズマが発生し、これによって、基材200の表面201を覆う中間層22が形成される(中間層形成工程)。
 電源8をオンにしてから予め定める処理時間が経過すると、処理室3への原料ガスの供給を停止する。次いで処理室3内を真空排気した状態で、供給源(図示しない)から集合配管30を通して各ガス導入ノズル31に原料ガスが供給され、この原料ガスが各吐出口42を介して処理室3内に導入される(原料ガス供給工程)。このとき処理室3内に導入される原料ガスは、たとえば、炭素系化合物に、さらに水素ガス、およびアルゴンガス等を加えたものである。炭素系化合物としては、たとえばメタン(CH4)、アセチレン(C22)、ベンゼン(C66)等の、常温、常圧下で気体ないし低沸点の液体である炭化水素化合物の1種または2種以上が挙げられる。
 次いで、隔壁2と基台5との間に電位差を生じさせることにより、処理室3内にプラズマが発生する。このプラズマの発生により、処理室3内において原料ガスからイオンやラジカルが生成されるとともに、このイオンやラジカルが電位差に基づいて基材200の表面201に引き付けられる。そして基材200の表面201で化学反応が生じ、中間層22の上にDLC膜21が堆積される(DLC膜形成工程)。これにより、基材200の少なくとも一部がDLC膜21で被覆された被覆部材20が形成される。
 図5は、プラズマ電源8から基材200に印加される直流パルス電圧の波形の一例を示すグラフである。直流パルス電圧の設定電圧値は、たとえば1000V程度の値に設定される。すなわちプラズマ電源8がオンされると、隔壁2と基台5との間に1000Vの電位差が生じる。言い換えれば1000Vの負極性の直流パルス電圧が、処理室3内に前述のようにセットされた基材200に印加されている。波形がパルス状であるので、かかる高電圧が印加されても処理室3内に異常放電は生じず、基材200の温度上昇を抑制して、処理温度をたとえば300℃以下の低温に抑制することができる。
 直流パルス電圧においては、そのパルス幅τを周波数fの逆数(1/f)で表されるパルス周期で除算した値、つまり式(1)に示すようにパルス幅τを周波数fで乗算した値として求められるデューティー比を5%以上、特に10%程度に設定するのが好ましい。また周波数fは200Hz以上、2000Hz以下、特に1000Hz程度に設定するのが好ましい。
 デューティー比=τ×f   ・・・(1)
 DLC膜形成工程を実施して、基材200上に所定の膜厚を有するDLC膜21が形成された時点で、プラズマ電源8がオフされるとともに、原料ガスの導入が停止された後、第1ポンプ17による排気を続けながら常温まで冷却させられる。次いで第1開閉バルブ15を閉じ、代わってリークバルブ(図示しない)を開いて処理室3内に外気を導入して処理室3内を常圧に戻した後、処理室3から基材200が取り出される。これにより、基材200の表面201の少なくとも一部がDLC膜21によって被覆された被覆部材20が製造される。
 図6は、被覆部材20の表面の表層部分の断面図である。
 被覆部材20は、たとえば、摺動部材や装飾品として用いられる。摺動部材としては、例えば、摩擦クラッチのクラッチプレート、ステアリング装置のウォーム(歯面にDLC膜21を形成)、軸受の内外輪(軌道面にDLC膜21を形成)または保持器、およびプロペラシャフト(駆動軸、雄スプライン部および/または雌スプライン部にDLC膜21を形成)が挙げられる。
 被覆部材20は、基材200と、基材200の表面201を覆う中間層22と、中間層22の表面を覆うDLC膜21とを含む。中間層22およびDLC膜21は、それぞれ、膜厚が数μm~数十μm程度の薄膜である。DLC膜21の表面は、被覆部材20の最表面の少なくとも一部を形成している。被覆部材20が摺動部材として用いられる場合、DLC膜21の表面は、相手部材に摺動する摺動面として機能する。また、被覆部材20が摺動部材として用いられる場合、基材200の材質は、たとえば、鉄鋼材(工具鋼、炭素鋼、およびステンレス鋼)、合金、超硬等である。
 また、中間層22は、たとえば、CrNやTiNなどの金属膜や、Siを含む薄膜である。
 次に、実施例1および比較例1について説明する。
 実施例1では、図1に示すプラズマCVD成膜装置1を用いて、鉄鋼材(たとえばSCM415)からなる基材200の表面(周面)201に、前記のイオンボンバード処理を施すとともに、その後、中間層形成工程およびDLC膜形成工程をこの順で実行し、中間膜22およびDLC膜21を形成した。
 実施例1では、第1、第2および第3部分36,37,38の外径D1,D2,D3(図4参照)、たとえばそれぞれ、12.25mm、9.62mmおよび6.35mmに設定されている。また、第1、第2および第3部分36,37,38における管壁の厚み(図4参照)は、たとえば0.8mmである。
 また、間隔L1(図4参照)、間隔L2(図4参照)および間隔L3(図4参照)は、たとえばそれぞれ60mm、50mmおよび50mmに設定されている。また、間隔L4(図4参照)、間隔L5(図4参照)および間隔L6(図4参照)は、たとえばそれぞれ60mm、25mmおよび25mmに設定されている。さらに、管軸方向長さL7,L8,L9(図4参照)は、それぞれ170mm、150mmおよび150mmに設定されている。
 比較例1では、次に述べるプラズマCVD成膜装置101を用いて、鉄鋼材(たとえばSCM415)からなる基材200の表面(周面)201に、前記のイオンボンバード処理を施すとともに、その後、中間層形成工程およびDLC膜形成工程をこの順で実行し、中間膜およびDLC膜を形成した。
 実施例1および比較例1では、イオンボンバード処理における原料ガスとして水素ガス、およびアルゴンガスの混合ガスを用い、水素ガスおよびアルゴンガスの2成分の流量比をそれぞれ1:1とした。
 実施例1および比較例1では、中間層形成工程における原料ガスとして炭素系化合物としてのメタン、水素ガス、アルゴンガス、およびSiを含むガスとしてのTMSの混合ガスを用い、メタン、水素ガス、アルゴンガスおよびTMSの4成分の流量比をそれぞれ0.5~1:0.5~1:0.5~1:0.03~0.06とした。
 実施例1および比較例1では、DLC膜形成工程における原料ガスとして炭素系化合物としてのメタン、水素ガス、アルゴンガス、およびSiを含むガスとしてのTMSの混合ガスを用い、メタン、水素ガス、アルゴンガスおよびTMSの4成分の流量比をそれぞれ0.6:0.6:1:0.03とした。
  実施例1および比較例1の各工程における原料ガスの流量比を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 直流パルス電圧の設定電圧値はたとえば-1000V、周波数fはたとえば1000Hz、デューティー比はたとえば10%にそれぞれ設定した。
 図7は、比較例1のプラズマCVD成膜装置101のガス導入ノズル131の構成を示す模式的な図である。図7において、前述のプラズマCVD成膜装置1と共通する部分には、同一の参照符号を付し、その説明を省略する。
 比較例1のプラズマCVD成膜装置101は、集合配管30を中心として、互いに回転対称に設けられた4つのガス導入ノズル131を備えている。各ガス導入ノズル131は、水平部133と鉛直部134とを有し、集合配管30の下流端に接続されたガス導入配管132を備えている。各ガス導入配管132の内部には、集合配管30の内部と連通する円筒状のガス流通路135が区画形成されており、各ガス流通路135は、鉛直部134の下流端において閉塞されている。各鉛直部134は、処理室3における平面視矩形の4つの隅部にそれぞれ配置されている。各ガス導入ノズル131の下端、すなわち、各鉛直部134の下端は、基台5の側方に位置している。鉛直部134の管径は、その管軸方向に関して一定であり、たとえば6.35mmである。
 図7に示すように、各鉛直部134の周面には、原料ガスを吐出するための吐出口142が複数個(たとえば9個)形成されている。各水平部133の周面には、原料ガスを吐出するための吐出口142が複数個(たとえば4個)形成されている。これらの吐出口142は、各ガス導入配管132の管軸方向に沿って配列されている。
 また、各水平部133では、吐出口142は所定間隔L11(たとえば50mm)を隔てて配置されている。各吐出口142は、水平部133の周面に、その周方向における最下位置に形成されている。水平部133における最も上流側の吐出口142と、集合配管30の下流端との間の間隔L14、および水平部133における最も下流側の吐出口142と、水平部133の下流端との間の間隔L15は、たとえばそれぞれ、35mmおよび50mmである。
 各鉛直部134では、吐出口142は所定間隔(図7に示すL12の半分。たとえば50mm)を隔てて配置されている。鉛直部134に形成される吐出口142は、所定の第1横方向に向けて原料ガスを吐出する第1吐出口142Aと、第1横方向と円筒の鉛直部134の周方向に90ー位相のずれた第2横方向に向けて原料ガスを吐出する第2吐出口142Bとを有している。第1横方向は、当該鉛直部134が収容される隅部を構成する隔壁2の2つの側面の一方に沿う内向きの横方向(水平方向)であり、第2横方向は、当該鉛直部134が収容される隅部を構成する隔壁2の2つの側面の他方に沿う内向きの横方向(水平方向)である。
 各鉛直部134の管軸方向に関して、第1吐出口142Aと第2吐出口142Bとが交互に配置されている。鉛直部134における最も上流側の吐出口142と、水平部133の下流端との間の間隔L16は、たとえば50mmである。
 図8は、実施例1のプラズマCVD成膜装置1および比較例1のプラズマCVD成膜装置101で成膜したDLC膜の膜厚の基材高さ方向(プレート9(図1等参照)の上面に垂直な方向)分布を示す図である。図8の横軸は、基材200(図1等参照)の下端(すなわち、プレート9の上面)からの基材高さ方向位置(距離)である。
 図8より、実施例1では、DLC膜21(図6等参照)の厚みが、基材高さ方向にほぼ均一であることが理解される。
 これに対し、比較例1では、基材200の下端から離れるほど、DLC膜の厚みが小さいことが理解される。
 この発明の実施の形態の説明は以上であるが、この発明は、前述の実施形態の内容に限定されるものではなく、請求項記載の範囲内において種々の変更が可能である。
 たとえば、鉛直部34が3段状をなしている場合を例に挙げたが、鉛直部34が2段状であってもよいし、4段状以上であってもよい。
 また、前述の説明では水平部33に吐出口42を形成しないとしたが、水平部33に吐出口42を配置した構成であってもよい。しかしながら、鉛直部34の各所(とくに鉛直部34の上流部分)における原料ガスの圧力を高く保ち、鉛直部34の各吐出口42(とくに鉛直部34の上流部分の各吐出口42)から原料ガスを勢い良く吐出するためには、水平部33に吐出口42を形成しないことが望ましい。
 また、前述の説明では、鉛直部34の吐出口42として、互いの吐出方向の異なる第1吐出口42Aおよび第2吐出口42Bを設けた構成を例示したが、各吐出口42の吐出方向が共通した構成であってもよい。しかしながら、処理室3内の各所に原料ガスをまんべんなく行き渡らせるためには、鉛直部34の吐出口42として第1および第2吐出口42A,42Bの2種を設けることが望ましい。
 また、各吐出口42として、ガス導入配管32の管壁に直接開口するものを例示したが、ガス導入配管32に取り付けられたノズル(円筒ノズル等)の先端部に吐出口が形成されていてもよい。
 また、炭素膜の一例としてDLC膜21を例に挙げたが、他の炭素膜を採用することもできる。
 プラズマCVD成膜装置1は、直流パルスプラズマCVD法により炭素膜を成膜するための成膜装置を例に挙げたが、直流プラズマCVD法により炭素膜を成膜するための成膜装置にも本発明を適用することもできる。さらに、それら以外の方法を用いて炭素膜を成膜するための成膜装置に本発明を適用することもできる。
 その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
 本発明の実施形態の第1の態様は、基材(200)の表面(201)に炭素膜(21)を形成するための炭素膜成膜装置(1)であって、処理室(3)と、前記処理室内に収容され、基材を保持するための基材保持手段(5)と、前記処理室内に原料ガスを吐出するための複数の吐出口(42)、および各吐出口と連通するガス流通路(35)を、内部に区画形成するガス導入配管(32)を有するノズル(31)と、前記ガス導入配管に、炭素系化合物を含む原料ガスを供給するための原料ガス供給手段とを含み、前記複数の吐出口の形成領域に対応する前記ガス導入配管の管壁は、当該管壁の流路径(D1,D2,D3)が、前記原料ガス供給手段による原料ガスの供給側から離れるほど縮径になるように、階段状に形成されていることを特徴とする、炭素膜成膜装置である。
 第2の態様は、前記ガス導入配管は、前記原料ガスの供給側に設けられて、水平に延びる水平部(33)と、前記原料ガスの供給側とは反対側に設けられて、鉛直に延びる鉛直部(34)とを含み、前記鉛直部は前記複数の吐出口を有し、前記水平部には、前記吐出口が形成されていないことを特徴とする、上記第1の態様に記載の炭素膜成膜装置である。
 第3の態様は、前記複数の吐出口は、前記ガス導入配管の管軸方向に垂直な所定の第1吐出方向に向けて、前記原料ガスを吐出するための第1吐出口(42A)と、前記管軸方向に垂直で、かつ前記第1吐出方向と異なる所定の第2吐出方向に向けて、前記原料ガスを吐出するための第2吐出口(42B)とを有している。なお、第1および第2吐出口は、前記管軸方向に交互に並置されていてもよい。
 第4の態様は、前記処理室は導電材料を用いて形成された隔壁(2)を含み、前記基材保持手段は基材を支持するための基台(5)であって、導電材料を用いて形成された基台を含み、前記炭素膜成膜装置は、前記隔壁と前記基台との間に直流電圧(直流パルス電圧を含む)を生じさせて、処理室内に導入された前記原料ガスをプラズマ化させるためのプラズマ電源(8)をさらに含む、上記第1~3の態様のいずれかに記載の炭素膜成膜装置である。
 第5の態様は、基材(200)の表面(201)に炭素膜(21)を形成するための炭素膜成膜方法であって、処理室(3)内に収容された基材保持手段(5)に前記基材を保持させる基材保持工程と、前記処理室内で開口する複数の吐出口(42)、および各吐出口と連通するガス流通路(35)を、内部に区画形成するガス導入配管(32)を有するノズル(31)の前記ガス導入配管に、炭素系化合物を含む原料ガスを原料ガス供給手段から供給するための原料ガス供給工程とを含み、前記複数の吐出口の形成領域に対応する前記ガス導入配管の管壁は、当該管壁の流路径(D1,D2,D3)が、前記原料ガス供給手段による原料ガスの供給側から離れるほど縮径になるように、階段状に形成されていることを特徴とする、炭素膜成膜方法である。
 上記第1の態様の構成によれば、吐出口の形成領域に対応するガス導入配管の管壁は、当該管壁の流路径が、原料ガスの供給側から離れるほど縮径になるように、階段状に形成されている。そのため、管壁の階段状をなす部分が、ガス流通路を流通する原料ガスに干渉する。その結果、原料ガスの供給側のガス流通路に原料ガスを溢れさせることができるとともに、原料ガスの供給側と反対側のガス流通路への原料ガスの供給が抑制される。したがってこれにより、各吐出口からの原料ガスの吐出流量を均一にすることができ、その結果、処理室内の各所における原料ガス濃度を均一にすることができる。これにより、基材の表面に均一厚みの炭素膜を成膜することができる。
 上記第2の態様の構成によれば、水平部には吐出口が形成されておらず、垂直部のみに吐出口が形成されている。水平部に吐出口が形成されていないので、垂直部の各所(とくに垂直部における原料ガスの供給側)における原料ガスの圧力を高く保つことができ、各吐出口から原料ガスを勢い良く吐出することができる。
 上記第3の態様の構成によれば、第1吐出方向に向けて原料ガスを吐出する第1吐出口と、第2吐出方向に向けて原料ガスを吐出する第2吐出口とが、ガス導入配管の管軸方向に交互に並んで配置されている。そのため、処理室内に収容配置されるガス導入配管の数が少なくても、処理室内の各所に原料ガスをまんべんなく行き渡らせることができる。これにより、処理室内の各所における原料ガス濃度をより一層均一化することができる。
 上記第4の態様の構成によれば、処理室内において原料ガスがプラズマ化させられることにより、プラズマCVD法による基材に対する成膜処理が実施される。処理室内の各所における原料ガス濃度が均一であるので、基材の表面に均一厚みの炭素膜を成膜することができる。
 上記第5の態様の方法によれば、上記第1の態様に関連して説明した作用効果と同等の作用効果を奏する。
1…プラズマCVD成膜装置、2…隔壁、3…処理室、5…基台(基材保持手段)、8…プラズマ電源、21…DLC膜(炭素膜)、31…ガス導入ノズル(ノズル)、32…ガス導入配管、33…水平部、34…鉛直部、35…ガス流通路、42…吐出口、42A…第1吐出口、42B…第2吐出口、200…基材、201…表面、D1,D2,D3…流路径

Claims (5)

  1.  基材の表面に炭素膜を形成するための炭素膜成膜装置であって、
     処理室と、
     前記処理室内に収容され、基材を保持するための基材保持手段と、
     前記処理室内に原料ガスを吐出するための複数の吐出口、および各吐出口と連通するガス流通路を、内部に区画形成するガス導入配管を有するノズルと、
     前記ガス導入配管に、炭素系化合物を含む原料ガスを供給するための原料ガス供給手段とを含み、
     前記複数の吐出口の形成領域に対応する前記ガス導入配管の管壁は、当該管壁の流路径が、前記原料ガス供給手段による原料ガスの供給側から離れるほど縮径になるように、階段状に形成されていることを特徴とする、炭素膜成膜装置。
  2.  前記ガス導入配管は、前記原料ガスの供給側に設けられて、水平に延びる水平部と、前記原料ガスの供給側とは反対側に設けられて、鉛直に延びる鉛直部とを含み、
     前記鉛直部は前記複数の吐出口を有し、
     前記水平部には、前記吐出口が形成されていないことを特徴とする、請求項1記載の炭素膜成膜装置。
  3.  前記複数の吐出口は、前記ガス導入配管の管軸方向に垂直な所定の第1吐出方向に向けて、前記原料ガスを吐出するための第1吐出口と、前記管軸方向に垂直で、かつ前記第1吐出方向と異なる所定の第2吐出方向に向けて、前記原料ガスを吐出するための第2吐出口と有している、請求項1または2記載の炭素膜成膜装置。
  4.  前記処理室は導電材料を用いて形成された隔壁を含み、
     前記基材保持手段は基材を支持するための基台であって、導電材料を用いて形成された基台を含み、
     前記炭素膜成膜装置は、前記隔壁と前記基台との間に直流電圧を生じさせて、処理室内に導入された前記原料ガスをプラズマ化させるためのプラズマ電源をさらに含む、請求項1~3のいずれか一項に記載の炭素膜成膜装置。
  5.  基材の表面に炭素膜を形成するための炭素膜成膜方法であって、
     処理室内に収容された基材保持手段に前記基材を保持させる基材保持工程と、
     前記処理室内で開口する複数の吐出口、および各吐出口と連通するガス流通路を、内部に区画形成するガス導入配管を有するノズルの前記ガス導入配管に、炭素系化合物を含む原料ガスを原料ガス供給手段から供給するための原料ガス供給工程とを含み、
     前記複数の吐出口の形成領域に対応する前記ガス導入配管の管壁は、当該管壁の流路径が、前記原料ガス供給手段による原料ガスの供給側から離れるほど縮径になるように、階段状に形成されていることを特徴とする、炭素膜成膜方法。
PCT/JP2013/052868 2012-02-10 2013-02-07 炭素膜成膜装置および炭素膜成膜方法 WO2013118822A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13746660.3A EP2813599A4 (en) 2012-02-10 2013-02-07 DEVICE AND METHOD FOR FORMING CARBON FILM
US14/377,806 US20150056386A1 (en) 2012-02-10 2013-02-07 Device for depositing carbon film and method for depositing carbon film
CN201380008717.4A CN104105815A (zh) 2012-02-10 2013-02-07 用于沉积碳膜的设备以及用于沉积碳膜的方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012027080A JP2013163841A (ja) 2012-02-10 2012-02-10 炭素膜成膜装置および炭素膜成膜方法
JP2012-027080 2012-02-10

Publications (1)

Publication Number Publication Date
WO2013118822A1 true WO2013118822A1 (ja) 2013-08-15

Family

ID=48947579

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/052868 WO2013118822A1 (ja) 2012-02-10 2013-02-07 炭素膜成膜装置および炭素膜成膜方法

Country Status (5)

Country Link
US (1) US20150056386A1 (ja)
EP (1) EP2813599A4 (ja)
JP (1) JP2013163841A (ja)
CN (1) CN104105815A (ja)
WO (1) WO2013118822A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6549903B2 (ja) * 2015-05-27 2019-07-24 Dowaサーモテック株式会社 Si含有DLC膜の成膜装置
KR102477302B1 (ko) 2015-10-05 2022-12-13 주성엔지니어링(주) 배기가스 분해기를 가지는 기판처리장치 및 그 배기가스 처리방법
KR102432915B1 (ko) * 2020-05-22 2022-08-17 내일테크놀로지 주식회사 붕소 전구체의 열처리를 통한 질화붕소나노튜브의 제조방법 및 장치
US20210404059A1 (en) * 2020-06-26 2021-12-30 Applied Materials, Inc. Processing system and method of controlling conductance in a processing system
CN112195451A (zh) * 2020-11-11 2021-01-08 北航(四川)西部国际创新港科技有限公司 一种用于在大长径比金属管内沉积硬质涂层的装置
CN113445013B (zh) * 2021-06-28 2022-06-03 哈尔滨工业大学 旋翼轴承内圈内壁高功率磁控溅射薄膜沉积装置及方法
CN113683436B (zh) * 2021-08-27 2022-09-16 清华大学 一种进气组件、气相沉积装置及其复合材料制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294511A (ja) * 1999-04-09 2000-10-20 Ftl:Kk 半導体装置の製造装置
JP2003017422A (ja) * 2002-04-01 2003-01-17 Ftl:Kk 半導体装置の製造方法及び半導体装置の製造装置
JP2003045864A (ja) * 2001-08-02 2003-02-14 Hitachi Kokusai Electric Inc 基板処理装置
WO2005015619A1 (ja) * 2003-08-07 2005-02-17 Hitachi Kokusai Electric Inc. 基板処理装置および半導体装置の製造方法
JP2005142448A (ja) * 2003-11-07 2005-06-02 Shimadzu Corp 表面波励起プラズマcvd装置
JP2011252179A (ja) 2010-05-31 2011-12-15 Jtekt Corp 被覆部材の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189625A (ja) * 1985-02-18 1986-08-23 Canon Inc 堆積膜形成法
FR2592874B1 (fr) * 1986-01-14 1990-08-03 Centre Nat Rech Scient Procede pour tremper un objet en verre ou vitreux et objet ainsi trempe
JP3034263B2 (ja) * 1989-11-30 2000-04-17 株式会社東芝 薄膜形成装置
JPH05311425A (ja) * 1992-05-12 1993-11-22 Sumitomo Electric Ind Ltd 半導体装置の製造装置
JPH11106931A (ja) * 1997-10-06 1999-04-20 Canon Inc プラズマcvd法による堆積膜形成装置及び方法
JPH11323563A (ja) * 1998-05-12 1999-11-26 Canon Inc プラズマcvd法による堆積膜形成装置及び形成方法
US20010052556A1 (en) * 1998-12-14 2001-12-20 Weichi Ting Injector
JP2001274107A (ja) * 2000-03-28 2001-10-05 Nec Kyushu Ltd 拡散炉
JP2002097575A (ja) * 2000-09-19 2002-04-02 Canon Inc 堆積膜形成方法および堆積膜形成装置
JP2002363747A (ja) * 2001-06-12 2002-12-18 Matsushita Electric Ind Co Ltd 硬質炭素膜形成装置および方法
US7541069B2 (en) * 2005-03-07 2009-06-02 Sub-One Technology, Inc. Method and system for coating internal surfaces using reverse-flow cycling
JP5055834B2 (ja) * 2006-05-17 2012-10-24 東洋製罐株式会社 プラズマ処理用ガス供給管
JP5157100B2 (ja) * 2006-08-04 2013-03-06 東京エレクトロン株式会社 成膜装置及び成膜方法
US8298338B2 (en) * 2007-12-26 2012-10-30 Samsung Electronics Co., Ltd. Chemical vapor deposition apparatus
JP5757710B2 (ja) * 2009-10-27 2015-07-29 東京エレクトロン株式会社 プラズマ処理装置及びプラズマ処理方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294511A (ja) * 1999-04-09 2000-10-20 Ftl:Kk 半導体装置の製造装置
JP2003045864A (ja) * 2001-08-02 2003-02-14 Hitachi Kokusai Electric Inc 基板処理装置
JP2003017422A (ja) * 2002-04-01 2003-01-17 Ftl:Kk 半導体装置の製造方法及び半導体装置の製造装置
WO2005015619A1 (ja) * 2003-08-07 2005-02-17 Hitachi Kokusai Electric Inc. 基板処理装置および半導体装置の製造方法
JP2005142448A (ja) * 2003-11-07 2005-06-02 Shimadzu Corp 表面波励起プラズマcvd装置
JP2011252179A (ja) 2010-05-31 2011-12-15 Jtekt Corp 被覆部材の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2813599A4

Also Published As

Publication number Publication date
JP2013163841A (ja) 2013-08-22
EP2813599A4 (en) 2015-12-02
CN104105815A (zh) 2014-10-15
US20150056386A1 (en) 2015-02-26
EP2813599A1 (en) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2013118822A1 (ja) 炭素膜成膜装置および炭素膜成膜方法
US11390945B2 (en) Temperature control assembly for substrate processing apparatus and method of using same
JP6071020B2 (ja) 被覆部材の製造方法
EP1398820A2 (en) Plasma treatment apparatus
US20090008239A1 (en) Remote inductively coupled plasma source for cvd chamber cleaning
CN1910739A (zh) 处理装置
JP2016519213A (ja) フレキシブル基板のための堆積プラットフォーム及びその操作方法
CN110885970B (zh) 固体前驱体蒸汽的稳压和纯化装置以及ald沉积设备
US20200216952A1 (en) Pumping apparatus and method for substrate processing chambers
JP2014089983A (ja) 膨張熱プラズマ装置
JPWO2011152122A1 (ja) 被覆部材およびその製造方法
US10508338B2 (en) Device for atomic layer deposition
TW201512447A (zh) 成膜裝置、成膜方法及非暫時性記憶媒體
JP6238053B2 (ja) 摺動部材
JP5718767B2 (ja) スパッタリング装置
TW202200817A (zh) 高溫化學氣相沉積蓋
US20210130956A1 (en) High temperature dual chamber showerhead
BR102014026134A2 (pt) processo e reator de plasma para tratamento termoquímico de superfície de peças metálicas
US20220122821A1 (en) Methods of seasoning process chambers
US5665165A (en) Seal and a chamber having a seal
JP5696889B2 (ja) 被覆部材の製造方法
JP2017218624A (ja) 硬質膜の成膜方法
KR101503255B1 (ko) 기판 처리 장치 및 방법
CN115838918A (zh) 气相反应器***及其清洁方法
JP2014228026A (ja) 軸受用ころ、ころ軸受、および軸受用ころの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746660

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013746660

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013746660

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE