WO2013118282A1 - 電力量計、電力量計の盗難検知方法、および電力供給システム - Google Patents

電力量計、電力量計の盗難検知方法、および電力供給システム Download PDF

Info

Publication number
WO2013118282A1
WO2013118282A1 PCT/JP2012/053022 JP2012053022W WO2013118282A1 WO 2013118282 A1 WO2013118282 A1 WO 2013118282A1 JP 2012053022 W JP2012053022 W JP 2012053022W WO 2013118282 A1 WO2013118282 A1 WO 2013118282A1
Authority
WO
WIPO (PCT)
Prior art keywords
watt
hour meter
data collection
collection device
hour
Prior art date
Application number
PCT/JP2012/053022
Other languages
English (en)
French (fr)
Inventor
憲一 高田
尚子 佐藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP12868269.7A priority Critical patent/EP2818878A4/en
Priority to CN201280069272.6A priority patent/CN104105973B/zh
Priority to PCT/JP2012/053022 priority patent/WO2013118282A1/ja
Priority to JP2012527124A priority patent/JP5068396B1/ja
Priority to TW101116809A priority patent/TWI458988B/zh
Publication of WO2013118282A1 publication Critical patent/WO2013118282A1/ja
Priority to HK14112546.8A priority patent/HK1199105A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/066Arrangements for avoiding or indicating fraudulent use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q9/00Arrangements in telecontrol or telemetry systems for selectively calling a substation from a main station, in which substation desired apparatus is selected for applying a control signal thereto or for obtaining measured values therefrom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D2204/00Indexing scheme relating to details of tariff-metering apparatus
    • G01D2204/20Monitoring; Controlling
    • G01D2204/22Arrangements for detecting or reporting faults, outages or leaks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D4/00Tariff metering apparatus
    • G01D4/002Remote reading of utility meters
    • G01D4/004Remote reading of utility meters to a fixed location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/20Arrangements in telecontrol or telemetry systems using a distributed architecture
    • H04Q2209/25Arrangements in telecontrol or telemetry systems using a distributed architecture using a mesh network, e.g. a public urban network such as public lighting, bus stops or traffic lights
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/60Arrangements in telecontrol or telemetry systems for transmitting utility meters data, i.e. transmission of data from the reader of the utility meter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/82Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data
    • H04Q2209/823Arrangements in the sub-station, i.e. sensing device where the sensing device takes the initiative of sending data where the data is sent when the measured values exceed a threshold, e.g. sending an alarm
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2209/00Arrangements in telecontrol or telemetry systems
    • H04Q2209/80Arrangements in the sub-station, i.e. sensing device
    • H04Q2209/86Performing a diagnostic of the sensing device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/30Smart metering, e.g. specially adapted for remote reading

Definitions

  • the present invention relates to a watt-hour meter that measures the amount of power.
  • An electricity meter is installed in a consumer's home or factory by a power company, and measures and measures the amount of electricity used, such as the amount of electricity and current.
  • electricity used such as the amount of electricity and current.
  • the conventional watt hour meter is replaced with a watt hour meter.
  • Currents on the upstream side and downstream side of the connected distribution lines are detected, and theft is detected based on the difference between them (for example, see Patent Document 1).
  • Overseas there may be a pre-payment method.
  • the information (fee information) is registered in the watt hour meter, and the watt hour meter starts supplying power. Thereafter, when power equivalent to the paid fee is consumed, the power supply is stopped.
  • a watt-hour meter with prepaid charge information registered can be stolen from the installation location and re-installed in another location, but theft can be detected. There was a problem that the power for the unused prepaid fee could not be used and was used (theft) by the theft.
  • the present invention has been made in view of the above, and even in a power supply system that adopts a prepaid fee system, a watt-hour meter that can prevent power theft, a watt-hour meter detection method, and a power supply system The purpose is to obtain.
  • the present invention is a power meter that forms a wireless mesh network with one or more data collection devices that collect power data, and is consumed by consumers.
  • Wireless communication means for transmitting the measured amount of electricity directly or via another adjacent energy meter to the data collection device selected as the data transmission destination, the number of fluctuations of the adjacent energy meter, and the adjacent power Based on the presence or absence of fluctuations in the reception level of the signal transmitted from each of the meter, the movement detection means for determining the presence / absence of movement of the device itself, and the demand when the movement detection means is determined to be “moving”
  • Power supply control means for stopping the operation of the power supply circuit to the house.
  • the watt-hour meter according to the present invention even when the fee prepayment method is adopted, it is possible to prevent the power corresponding to the unused prepayment fee from being stolen by the theft of the watt-hour meter. Play.
  • FIG. 1 is a diagram illustrating a configuration example of the wireless mesh system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of the data collection device.
  • FIG. 3 is a diagram illustrating a configuration example of a wireless processing unit included in the data collection device.
  • FIG. 4 is a diagram illustrating a configuration example of the watt-hour meter.
  • FIG. 5 is a diagram illustrating an example of a theft detection procedure by the watt-hour meter according to the first embodiment.
  • FIG. 6 is a diagram illustrating a movement example of the watt-hour meter according to the first embodiment.
  • FIG. 7 is a diagram showing an adjacency table corresponding to the movement example of FIG. FIG.
  • FIG. 8 is a diagram illustrating a movement example of the watt-hour meter according to the first embodiment.
  • FIG. 9 is a diagram illustrating an adjacent table corresponding to the movement example of FIG.
  • FIG. 10 is a diagram illustrating a movement example of the watt-hour meter according to the first embodiment.
  • FIG. 11 is a diagram illustrating an adjacent table corresponding to the movement example of FIG.
  • FIG. 12 is a diagram illustrating an example of a theft detection procedure by the watt-hour meter according to the second embodiment.
  • FIG. 13 is a diagram illustrating a movement example of the watt-hour meter according to the second embodiment.
  • FIG. 14 is a diagram illustrating a movement example of the watt-hour meter according to the second embodiment.
  • FIG. 14 is a diagram illustrating a movement example of the watt-hour meter according to the second embodiment.
  • FIG. 15 is a diagram illustrating a movement example of the watt-hour meter according to the second embodiment.
  • FIG. 16 is a diagram illustrating an example of a theft detection procedure by the watt-hour meter according to the third embodiment.
  • FIG. 17 is a diagram illustrating a movement example of the watt-hour meter according to the third embodiment.
  • Embodiment 1 FIG. First Embodiment A watt-hour meter according to the present invention will be described with reference to FIGS.
  • the watt-hour meter of the present embodiment is in addition to the function as an original watt-hour meter, that is, the function of measuring the power supply to the installed consumer (home, factory, etc.) and the amount of electricity consumed.
  • information such as the measured amount of electricity is transmitted to the data collection device via the wireless mesh network. Even when various types of information are transmitted / received to / from other devices having a communication function (data collection device, other watt-hour meter, etc.), this is performed via the wireless mesh network.
  • FIG. 1 is a diagram showing a configuration example of Embodiment 1 of a wireless mesh system including a wireless mesh network (hereinafter referred to as a wireless network) formed by a watt-hour meter according to the present invention.
  • a wireless network hereinafter referred to as a wireless network
  • the wireless mesh system of the present embodiment constitutes a power supply system, and as shown in FIG. 1, measures the amount of power and transmits the data obtained as a result wirelessly as necessary.
  • Management server 1 Although an example in which the management server 1 and the data collection device 2 are connected by wire is shown, wireless connection may be used as long as required communication quality can be realized.
  • Each data collection device 2 has the same function, and each watt-hour meter 5 has the same function. Further, in FIG. 1, each data collection device 2 and each watt-hour meter 5 are described together with the device ID.
  • the ID is used when it is necessary to distinguish the data collection device 2. Specifically, they are described as a data collection device 2AA and a data collection device 2BB. Similarly, when it is necessary to distinguish the watt-hour meter 5, the watt-hour meter 5A, the watt-hour meter 5B,.
  • the management server 1 includes a central control unit that controls system functions, a communication control unit that communicates with the data collection device 2 via the wide area network 3, and And a storage device that holds data such as the amount of power acquired from the watt-hour meter 5 via the data collection device 2.
  • FIG. 2 is a diagram illustrating a configuration example of the data collection device 2.
  • the data collection device 2 performs a data collection device central control unit 21 that performs data processing with the management server 1 or the watt hour meter 5 and wireless communication control for performing wireless network communication with the watt hour meter 5.
  • a wireless processing unit 22 is provided, and an optical input / output unit 24 and a communication processing unit 23 for connecting to the wide area network 3 through the optical cable 4 are provided.
  • FIG. 3 is a diagram illustrating a configuration example of the wireless processing unit 22 included in the data collection device 2.
  • the radio processing unit 22 measures the electric field strength level of the antenna switch 36 for switching the plurality of antennas 30 and the watt hour meter 5 shown in FIG.
  • a wireless network control unit that performs configuration management of a wireless network formed by a wireless unit 31 that performs wireless modulation / demodulation processing for communication with the wireless communication unit 5, a wireless I / F (Interface) unit 32, and the watt-hour meter 5 33, a routing table 34 for storing route information to each watt-hour meter 5 necessary for transmitting data to the watt-hour meter 5 based on the address, and all functions of the wireless processing unit 22 are controlled.
  • a wireless communication control unit 37 that performs data transmission / reception processing with the data collection device central control unit 21 and control of the antenna switch 36.
  • the radio network control unit 33 of the radio processing unit 22 communicates with the other watt-hour meters 5 forming the radio network via the antenna 30 and the radio unit 31, and assigns addresses of all the watt-hour meters 5. Register and manage.
  • the data collection device 2 When the data collection device 2 receives the request data from the management server 1, the data collection device 2 sends the received request data to the data collection device central control unit 21 via the optical input / output unit 24 and the communication processing unit 23.
  • the data is transferred and subjected to predetermined data processing in the data collection device central control unit 21, and further transferred to the wireless processing unit 22.
  • the wireless network control unit 33 In the wireless processing unit 22, the transferred request data is received by the wireless network control unit 33, and the wireless network control unit 33 follows the route information stored in the routing table 34 and the wireless I / F unit 32 and the wireless unit 31.
  • Request data is transmitted to the watt hour meter 5 designated by the management server 1 via the antenna switch 36 and the antenna 30.
  • FIG. 4 is a diagram illustrating a configuration example of the watt-hour meter 5.
  • the watt-hour meter 5 forms a wireless network with a plurality of antennas 50 used for wireless communication with the data collection device 2 and other watt-hour meters 5, an antenna switch 56 for switching the antenna to be used, and the like.
  • the wireless unit that measures the electric field strength level with the other devices (data collection device 2, other watt-hour meter 5), and performs wireless modulation / demodulation processing for communicating with the other devices.
  • the adjoining table 64 that holds information such as the number of hops from the dynamometer 5 to the data collection device 2 and various functions including a self-addressed data processing function, and controls the antenna switch 56 and the wireless I / F unit 52 Wireless communication control unit 57, communication timer unit 58 for periodically acquiring various information to be held in the adjacent table 64, and the amount of power used by consumers in an environment where the self (self-power meter) is installed ,
  • a metering unit 63 that measures an electric quantity related value such as current, voltage, frequency, etc.
  • a control storage unit 65 that stores an electric quantity related value, and an electric circuit built in the watt-hour meter.
  • Switch 62 as power supply control means for switching start / stop of power supply to the house (consumer), and each part for realizing the function as an original watt-hour meter, such as switch 62 and metering unit 63
  • Control A central control unit 61, and a communication processing unit 60 for realizing the communication between the wireless communication control section 57 and the central control unit 61, a.
  • the wireless communication control unit 57 performs processing as movement detection means.
  • the wireless unit 51 and the data relay processing unit 53 perform processing as wireless communication means.
  • the central control unit 61, the switch 62, the metering unit 63, and the control storage unit 65 function as the original watt-hour meter (power supply to consumers, Provide measurement functions).
  • the antenna 50, the antenna switch 56, the wireless unit 51, the wireless I / F unit 52, the data relay processing unit 53, the routing table 54, the wireless communication control unit 57, the adjacent table 64, the communication timer unit 58, and the communication storage unit 59 are wireless.
  • a wireless communication function including a function for forming a network and a function for communicating with other devices, and a device theft detection function.
  • the data relay processing unit 53 determines whether it is addressed to itself or other than itself. If it is addressed to itself, the received data is transferred to the wireless communication control unit 57, and the wireless communication control unit 57 executes a predetermined process. When it is necessary to transmit response data to the received data, the response data is transferred from the wireless communication control unit 57 to the data relay processing unit 53, and the wireless I / O is transmitted according to the route information stored in the routing table 54. It is transmitted via the F unit 52, the radio unit 51 and the antenna 50.
  • the data relay processing unit 53 transmits (transfers) the received data via the wireless I / F unit 52, the wireless unit 51, and the antenna 50 according to the route information.
  • the received data includes routing information indicating a communication path.
  • the data relay processing unit 53 performs relay processing (transfer) of the received data according to the routing information included in the received data.
  • the wireless communication control unit 57 When the wireless communication control unit 57 receives various data and information indicating the operation state of the watt hour meter from the central control unit 61 via the communication processing unit 60, the wireless communication control unit 57 stores them in the communication storage unit 59.
  • the “information indicating the operating state” is a maintenance mode in which the watt-hour meter 5 performs an operation during a maintenance check, or a monitor installed at a consumer to measure the amount of power and detect theft. This is information indicating whether the mode is selected.
  • the communication timer unit 58 notifies the wireless communication control unit 57 every time a predetermined time has elapsed when the operation starts, and the wireless communication control unit 57 receives the notification, An information data request is transmitted to the other watt-hour meter 5.
  • the electric field strength measuring unit 55 of the wireless unit 51 measures the reception level (electric field strength level) of the information data response.
  • the wireless communication control unit 57 receives the field strength level obtained by the measurement by the field strength measuring unit 55 and the number of hops to the data collection device 2 included in the received information data response, and stores them in the adjacent table 64. To do. Further, the wireless communication control unit 57 detects theft of the own device based on the information stored in the adjacent table 64.
  • FIG. 5 is a diagram illustrating an example of a theft detection procedure performed by the watt-hour meter 5 according to the first embodiment.
  • the watt-hour meter 5 checks whether there is a monitoring mode that requires a theft detection operation (step S11). If the mode is not the monitoring mode (step S11: No), the confirmation operation as to whether the mode is the monitoring mode is repeated at a predetermined timing. In the monitoring mode (step S11: Yes), a threshold value for movement determination calculation is set (step S12).
  • the watt-hour meter 5 sets a timer value as an execution cycle of the movement detection process (step S13).
  • the watt-hour meter 5 monitors whether or not the timer setting time has been reached, that is, whether or not the movement detection process has started (step S14), and detects the start timing (step S14). : Yes), a data request is transmitted by broadcast (step S15). In addition, the watt-hour meter 5 and the data collection device 2 that have received the data request return a data response. The watt-hour meter 5 that has received the data request does not transfer the data request.
  • the watt-hour meter 5 that has transmitted the data request monitors whether or not a data response has been received (step S16), and whether or not a predetermined time has passed (step S18), and if a data response has been received (step S16). : Yes), the electric field strength of the received signal (received data response) is measured (step S17).
  • the ID of the transmission source device other watt-hour meter 5, data collection device 2) and the other watt-hour meter 5 to the data collection device 2 Obtain the number of hops and hold it with the measured field strength.
  • the operation for measuring the electric field strength of the received signal and the operation for acquiring the device ID and the number of hops are performed until a certain time elapses.
  • the adjacent table 64 is updated (step S19). That is, the result of electric field strength measurement (field strength level, transmission source device ID, hop number) performed until a predetermined time elapses is registered and held in the adjacent table 64.
  • the operation which updates the adjacent table 64 after fixed time passed was demonstrated, you may make it update the adjacent table 64 whenever a data response is received.
  • the information before update is also retained as history information for a certain period.
  • the electric field intensity level is not the electric field intensity measurement result itself, but information obtained by converting the measurement results included in a certain range to be represented by the same numerical value.
  • a movement determination calculation of the own device is performed (step S20).
  • the movement determination calculation may be performed by the wireless communication control unit 57 or the central control unit 61, for example.
  • the central control unit 61 performs calculation, after the update of the adjacent table 64 is completed, the wireless communication control unit 57 notifies the central control unit 61 to that effect, and the central control unit 61 is registered in the adjacent table 64.
  • the movement determination calculation is performed based on the information. Details of the movement determination calculation will be described later.
  • step S21: No the process returns to step S11.
  • step S21: Yes the relay is opened (step S22). That is, if the calculated value is equal to or greater than the threshold value, it is determined that the theft has occurred, and the central control unit 61 controls the switch 62 to open the power supply circuit and stop the power supply to the consumer. Also, the theft occurrence is reported to the upper management server 1 (step S23).
  • the wireless communication control unit 57 transfers a movement notification (information indicating theft occurrence) to the data relay processing unit 53, and the data relay processing unit 53 collects the movement notification based on the routing table 54. This is done by sending it to the device 2.
  • the data collection device 2 receives the movement notification from the watt-hour meter, the data collection device 2 transfers it to the management server 1.
  • each watt-hour meter 5 is distinguished by combining the code and the ID of each watt-hour meter.
  • the watt hour meter 5A indicates the watt hour meter 5 whose ID is “A”.
  • watt hour meters 5B, 5C, and 5D are installed around the watt hour meter 5A, the electric field strength levels are 5, 4, and 4, and a certain time has passed.
  • the watt hour meters 5D, 5E, and 5F are installed around the watt hour meter 5A, and the electric field intensity levels are 2, 5, and 4, respectively.
  • the adjacent table 64 shown is the adjacent table 64 of the watt-hour meter 5A.
  • the movement of the watt-hour meter 5A is calculated by using the following formula (1) with the change rate of the other watt-hour meters 5 before and after the adjacent table update as a reference.
  • the change of the other watt hour meters 5 around the watt hour meter 5A is that the addition of the watt hour meter 5 is 2 (watt hour meters 5E and 5F) and the deletion of the watt hour meter 5 is 2.
  • the ratio of the calculation result is compared with a preset threshold value as shown in step S21 above, and if it is equal to or greater than the threshold value, the watt-hour meter 5A determines that movement has occurred (theft has occurred) (for example, the threshold value is 60%). In the example of FIG. 6, it is determined that movement has occurred). If it is determined that movement has occurred, the relay is further opened to notify the higher-level device (corresponding to the processing in steps S22 and S23 described above).
  • the threshold value of the movement determination calculation is 60%
  • the watt-hour meter 5 in which the addition of the watt-hour meter 5 is 1 (watt-hour meter 5F)
  • the deletion of the watt-hour meter 5 is 1 (watt-hour meter 5B)
  • the electric field strength level has changed.
  • ⁇ 100 50% ⁇ movement calculation determination threshold: 60%
  • the threshold value of the movement determination can be arbitrarily set by the electric power company that installs the watt-hour meter 5, and the theft determination can be performed by changing the level for determining the movement of the watt-hour meter 5 according to the installation environment and the use environment. Accurate implementation is possible.
  • the watt-hour meter 5 capable of direct communication with the data collection device 2 may measure the electric field strength of the signal received from the data collection device 2 and use it in the movement determination calculation.
  • the watt-hour meter includes the amount of fluctuation of the quantity of other watt-hour meters capable of direct communication and the received power of signals transmitted from surrounding watt-hour meters. Whether or not the theft has occurred is determined on the basis of the fluctuation amount, and when the theft is detected, the power supply operation to the consumer is stopped. Thereby, even if theft occurs, theft by the theft can be prevented.
  • FIG. A watt-hour meter according to the second embodiment will be described.
  • the configurations of the communication network, wireless mesh system, data collection device, and watt hour meter formed by the watt hour meter are the same as those in the first embodiment (see FIGS. 1 to 4).
  • FIG. 12 is a diagram illustrating an example of a theft detection procedure by the watt-hour meter 5 according to the second embodiment. Processes common to the theft detection operation (FIG. 5) described in the first embodiment are assigned the same step numbers as in FIG.
  • the theft detection operation by the watt-hour meter 5 of the present embodiment inserts step S31 between steps S12 and S13 of the theft detection operation described in the first embodiment, and further, step S32 between steps S19 and S20. Is inserted.
  • step S31 a threshold value for changing the number of hops is set.
  • step S32 the amount of change in the number of hops associated with the table update in step S19 is compared with the threshold set in step S31.
  • step S32: Yes the watt-hour meter 5 according to the present embodiment executes step S20 and subsequent processing. That is, in the theft detection operation of the first embodiment, when the adjacent table is updated in step S19, a change determination calculation is always executed, whereas in the theft detection operation of the present embodiment, the amount of change in the number of hops exceeds the threshold value. If it is smaller, the movement determination calculation is not executed.
  • the number of hops is the number of hops from the watt-hour meter 5 executing the theft detection operation to the data collection device 2 to which the watt-hour meter 5 is connected. According to the present embodiment, since the movement determination calculation is performed only when necessary, the processing load can be reduced.
  • the watt hour meters 5B and 5C are installed around the watt hour meter 5A, the electric field intensity levels are 2, 5, and the watt hour meter 5A has the number of hops. 5 is connected to the data collection device 2AA (the data collection device 2 whose ID is AA).
  • the state after the adjacent table of the watt hour meter 5A is updated is that the watt hour meters 5B and 5C are installed around the watt hour meter 5A, and the electric field strength levels of the respective watt hour meters
  • the adjacent table 64 shown is the adjacent table 64 of the watt-hour meter 5A.
  • the threshold value for movement determination calculation is 60% and the threshold value for changing the number of hops is 3, in the example shown in FIG. 14, the change in the other watt-hour meters 5 around the watt-hour meter 5A
  • the addition of 5 is 0, the deletion of the watt hour meter 5 is 0, and the electric field strength level between the watt hour meters 5 is 1.
  • the amount of change in the number of hops is 5, and the number of watt-hour meters 5 before updating the adjacent table is 2. Therefore, the amount of change in the number of hops is equal to or greater than a threshold value, and movement determination calculation is performed.
  • the threshold value for the movement determination calculation is 60% and the threshold value for the change in the number of hops is 3.
  • the addition of the watt hour meter 5 is 2 (watt hour meter 5E, 5F)
  • the deletion of the watt hour meter 5 is 2 (watt hour meter 5B, 5C)
  • the electric field strength level has changed.
  • the watt-hour meter performs the movement determination calculation when the number of hops to the data collection device is equal to or greater than the threshold value.
  • the threshold value for the movement determination calculation and the determination threshold value for the change in the number of hops can be arbitrarily set, compared to the first embodiment, a more accurate theft determination can be performed.
  • Embodiment 3 The watt-hour meter of Embodiment 3 will be described.
  • the configurations of the communication network, wireless mesh system, data collection device, and watt hour meter formed by the watt hour meter are the same as those in the first embodiment (see FIGS. 1 to 4).
  • FIG. 16 is a diagram illustrating an example of a theft detection procedure by the watt-hour meter 5 according to the third embodiment.
  • the same step numbers as those in FIGS. 5 and 12 are assigned to the processes common to the theft detection operation (FIGS. 5 and 12) described in the first and second embodiments, and the description thereof is omitted.
  • the theft detection operation by the watt-hour meter 5 of the present embodiment is such that step S41 is inserted between steps S19 and S32 of the theft detection operation described in the second embodiment.
  • step S41 it is confirmed whether or not the ID (concentrator ID) of the connected data collection device 2 has changed, that is, whether or not the connected data collection device 2 has been changed. If the ID has changed (step S41: Yes), step S32 is executed to compare the amount of change in the number of hops with a threshold value. If the ID has not changed (step S41: No), the movement value determination calculation of step S20 is performed without executing step S32.
  • the watt hour meters 5B and 5C are installed around the watt hour meter 5A, the electric field intensity levels are 2 and 5, and the watt hour meter 5A has the number of hops. 5 is connected to the data collection device 2AA.
  • the state after the adjacent table of the watt hour meter 5A has been updated is that the watt hour meters 5E and 5F are installed around the watt hour meter 5A, and the electric field strength level of each of them is 4 and 2 and the watt-hour meter 5A is considered to be connected to the data collection device 2BB with 10 hops.
  • the adjacent table 64 shown is the adjacent table 64 of the watt-hour meter 5A.
  • the threshold value for the movement calculation determination is set to 60% and the threshold value for the change in the number of hops is set to 3, in the example shown in FIG. 17, the change in the other watt-hour meters 5 around the watt-hour meter 5A Is added (2 watt-hour meters 5E, 5F), watt-hour meter 5 is deleted (2 watt-hour meters 5B, 5C), there is no watt-hour meter 5 whose electric field strength level has changed, and the amount of change in the number of hops is 5. Become. Therefore, the determination is as follows, and movement occurs.
  • the watt-hour meter determines whether or not to perform the movement determination calculation based on whether or not the data collection device at the connection destination has changed and the amount of change in the number of hops to the data collection device. It was decided.
  • the possibility of movement is low, it is possible to suppress the number of times of calculation execution by not performing the movement determination calculation, thereby reducing the processing load.
  • a more accurate theft determination is possible.
  • the watt-hour meter according to the present invention stops the power supply operation when the theft is detected. It cannot be used as an original watt-hour meter. Therefore, it can contribute to the prevention of theft of the watt-hour meter in a system that does not employ a pre-payment system.
  • the present invention is useful for a power supply system, and is particularly suitable for a watt-hour meter used in a power supply system adopting a pre-payment system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 本発明は、電力量データを収集する1台以上のデータ収集装置とともに無線メッシュネットワークを形成する電力量計であって、需用家で消費された電気量を直接、または隣接する他の電力量計経由で、データ送信先として選択されているデータ収集装置へ送信する無線通信手段(無線部51,データ中継処理部53)と、隣接する電力量計の変動数、および隣接する電力量計それぞれから送信された信号の受信レベルの変動の有無に基づいて、自装置の移動の有無を判定する無線通信制御部57と、「移動あり」と判定された場合には需用家への電力供給回路の動作を停止させる開閉器62と、を備える。

Description

電力量計、電力量計の盗難検知方法、および電力供給システム
 本発明は、電力量などを計量する電力量計に関するものである。
 電力量計は、電力会社が消費者の家庭や工場に設置し、使用された電力量や電流などの電気量を計量、計測するものである。設置後に電力量計に不正配線を実施することで、使用した電力量をごまかし、請求される電力料金を少なくする盗電がなされることがあるのに対し、従来の電力量計は電力量計に接続された配電線の上流側と下流側の電流を検知し、その差分によって盗電を検知していた(例えば、特許文献1参照)。
特開2004-340767号公報
 海外では料金前払い方式を採用している場合がある。この方式では、消費者(需用家)が一定の料金を電力会社に支払うとその情報(料金情報)が電力量計に登録され、電力量計は電力供給を開始する。その後、支払い済みの料金相当の電力が消費された場合には電力供給を停止する。この方式では、前払い済みの料金情報が登録されている電力量計が設置場所から盗難し、別の場所に再設置することによって盗電が可能であるが、上記従来の盗電検知方法では盗電を検知できず、未使用の前払い済み料金分の電力を盗難者によって使用(盗電)されてしまうという問題があった。
 本発明は、上記に鑑みてなされたものであって、料金前払い方式を採用している電力供給システムにおいても、盗電を防止可能な電力量計、電力量計の盗難検知方法、および電力供給システムを得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、電力量データを収集する1台以上のデータ収集装置とともに無線メッシュネットワークを形成する電力量計であって、需用家で消費された電気量を直接、または隣接する他の電力量計経由で、データ送信先として選択されているデータ収集装置へ送信する無線通信手段と、隣接する電力量計の変動数、および隣接する電力量計それぞれから送信された信号の受信レベルの変動の有無に基づいて、自装置の移動の有無を判定する移動検出手段と、前記移動検出手段に「移動あり」と判定された場合には需用家への電力供給回路の動作を停止させる電力供給制御手段と、を備えることを特徴とする。
 本発明にかかる電力量計によれば、料金前払い方式を採用している場合においても、未使用の前払い済み料金分の電力が電力量計の盗難者によって盗電されるのを防止できる、という効果を奏する。
図1は、無線メッシュシステムの実施の形態1の構成例を示す図である。 図2は、データ収集装置の構成例を示す図である。 図3は、データ収集装置が備えている無線処理部の構成例を示す図である。 図4は、電力量計の構成例を示す図である。 図5は、実施の形態1の電力量計による盗難検知手順の一例を示す図である。 図6は、実施の形態1の電力量計の移動例を示す図である。 図7は、図6の移動例に対応する隣接テーブルを示す図である。 図8は、実施の形態1の電力量計の移動例を示す図である。 図9は、図8の移動例に対応する隣接テーブルを示す図である。 図10は、実施の形態1の電力量計の移動例を示す図である。 図11は、図10の移動例に対応する隣接テーブルを示す図である。 図12は、実施の形態2の電力量計による盗難検知手順の一例を示す図である。 図13は、実施の形態2の電力量計の移動例を示す図である。 図14は、実施の形態2の電力量計の移動例を示す図である。 図15は、実施の形態2の電力量計の移動例を示す図である。 図16は、実施の形態3の電力量計による盗難検知手順の一例を示す図である。 図17は、実施の形態3の電力量計の移動例を示す図である。
 以下に、本発明にかかる電力量計、電力量計の盗難検知方法、および電力供給システムの実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 本発明にかかる電力量計の実施の形態1について図1~図11を参照しながら説明する。本実施の形態の電力量計は、本来の電力量計としての機能、すなわち、設置された需用家(家庭や工場など)への電力供給や消費電気量を計量・計測する機能などに加え、無線通信機能を有しており、この無線通信機能によって、無線メッシュネットワークの形成が可能となっている。また、計測した電気量などの情報を、無線メッシュネットワーク経由でデータ収集装置へ送信する。通信機能を有する他の装置(データ収集装置、他の電力量計、など)との間で各種情報を送受信する場合にも無線メッシュネットワーク経由で行う。
 図1は、本発明にかかる電力量計により形成された無線メッシュネットワーク(以下、無線ネットワークと呼称する)を含んだ無線メッシュシステムの実施の形態1の構成例を示す図である。
 本実施の形態の無線メッシュシステムは、電力供給システムを構成しており、図1に示したように、電力量の計量などを行い、その結果得られたデータを必要に応じて無線にて送信する電力量計5と、無線通信により電力量計5との間で各種データの送受信を行うデータ収集装置2と、通信事業者が提供する広域ネットワーク網3を介してデータ収集装置2と接続された管理サーバ1とから構成されている。管理サーバ1とデータ収集装置2が有線接続されている場合の例を示しているが、所要の通信品質が実現できるのであれば無線接続であっても構わない。なお、各データ収集装置2は同じ機能を有し、各電力量計5も同じ機能を有している。また、図1において、各データ収集装置2および各電力量計5には装置のIDを併せて記載している。以降の説明では、データ収集装置2を区別する必要がある場合には、IDを使用する。具体的には、データ収集装置2AA,データ収集装置2BBと記載する。電力量計5も同様に、区別する必要がある場合には、電力量計5A,電力量計5B,…と記載する。
 まず、図1に示した無線メッシュシステムを構成している各装置の内部構成と動作の概要について説明する。
 詳細な構成については図示を省略しているが、管理サーバ1は、システムの機能を制御する中央制御部と、データ収集装置2と広域ネットワーク網3を介して通信を行うための通信制御部と、データ収集装置2を介して電力量計5から取得した電力量などのデータを保持する記憶装置と、を備えている。
 図2は、データ収集装置2の構成例を示す図である。図示したように、データ収集装置2は、管理サーバ1または電力量計5とのデータ処理を行うデータ収集装置中央制御部21と、電力量計5と無線ネットワーク通信を行うための無線通信制御を行う無線処理部22と、光ケーブル4を介して広域ネットワーク網3へ接続するための光入出力部24および通信処理部23と、を備えている。
 図3は、データ収集装置2が備えている無線処理部22の構成例を示す図である。図示したように、無線処理部22は、複数のアンテナ30を切り替えるアンテナスイッチ36と、図1に示した電力量計5との電界強度レベルを電界強度測定部35で測定するとともに、電力量計5と通信するための無線変復調処理を行う無線部31と、無線I/F(インタフェース(Interface))部32と、電力量計5によって形成されている無線ネットワークの構成管理を行う無線ネットワーク制御部33と、データをアドレスに基づいて電力量計5へ送信するために必要な、各電力量計5への経路情報を記憶するルーティングテーブル34と、無線処理部22の全ての機能を制御し、データ収集装置中央制御部21との間のデータ送受信処理およびアンテナスイッチ36の制御などを行う無線通信制御部37と、を備えている。
 図2および図3に示した構成のデータ収集装置2では、無線処理部22のアンテナ30、無線部31および無線I/F部32を介して、電力量計5との通信(データ送受信)が行われる。
 無線処理部22の無線ネットワーク制御部33は、アンテナ30および無線部31を介して、無線ネットワークを形成している他の電力量計5と通信を行い、すべての電力量計5のアドレス割当、登録および管理を行う。
 データ収集装置2が管理サーバ1から要求データを受信した場合、データ収集装置2においては、受信した要求データが光入出力部24および通信処理部23を経由してデータ収集装置中央制御部21に転送され、データ収集装置中央制御部21で所定のデータ処理が行われた後、さらに無線処理部22へ転送される。無線処理部22では、転送されてきた要求データを無線ネットワーク制御部33が受け取り、無線ネットワーク制御部33は、ルーティングテーブル34で記憶されている経路情報に従い、無線I/F部32、無線部31、アンテナスイッチ36及びアンテナ30を介して、管理サーバ1から指定された電力量計5に向けて要求データを送信する。
 図4は、電力量計5の構成例を示す図である。図示したように、電力量計5は、データ収集装置2および他の電力量計5との無線通信で使用する複数のアンテナ50と、使用するアンテナを切り換えるアンテナスイッチ56と、無線ネットワークを形成している他の装置(データ収集装置2,他の電力量計5)との電界強度レベルを電界強度測定部55で測定するとともに、当該他の装置と通信するための無線変復調処理を行う無線部51と、無線I/F部52と、無線ネットワークを形成している他の装置への経路情報を記憶するルーティングテーブル54と、自装置での測定データ、他の装置から受信した測定データを含む各種情報を、経路情報に従って他の装置へ送信するデータ中継処理部53と、周辺のデータ収集装置2または他の電力量計5との間の電界強度レベル、周辺の各電力量計5からデータ収集装置2までのホップ数などの情報を保持する隣接テーブル64と、自己宛データの処理機能を含む各種機能を有し、アンテナスイッチ56や無線I/F部52などを制御する無線通信制御部57と、隣接テーブル64で保持させる各種情報を定期的に取得するための通信タイマ部58と、自己(自電力量計)が設置された環境で消費者が使用した電力量、電流や電圧や周波数などの電気量関連値を計量する計量部63と、電気量関連値を記憶する制御記憶部65と、電力量計に内蔵された電気回路の開閉を行うことにより需用家(消費者)への電力供給の開始/停止を切り換える、電力供給制御手段としての開閉器62と、開閉器62や計量部63など、本来の電力量計としての機能を実現するための各部を制御する中央制御部61と、無線通信制御部57と中央制御部61の間の通信を実現するための通信処理部60と、を備えている。また、無線通信制御部57は移動検出手段としての処理を行う。無線部51およびデータ中継処理部53は無線通信手段としての処理を行う。
 なお、電力量計5において、中央制御部61、開閉器62、計量部63および制御記憶部65が、本来の電力量計としての機能(需用家への電力供給、消費電気量の計量・計測機能など)を提供する。アンテナ50、アンテナスイッチ56、無線部51、無線I/F部52、データ中継処理部53、ルーティングテーブル54、無線通信制御部57、隣接テーブル64、通信タイマ部58および通信記憶部59が、無線ネットワークを形成するための機能や他の装置と通信するための機能を含む無線通信機能、および装置の盗難検知機能を提供する。
 図4に示した電力量計5では、アンテナ50、無線部51および無線I/F部52を介して、データ収集装置2または他の電力量計5との通信(データ送受信)が行われる。
 電力量計5では、管理サーバ1または他の電力量計5からデータを受信した場合、データ中継処理部53において自己宛あるいは自己以外宛かを判断する。自己宛であれば、無線通信制御部57へ受信データを転送し、無線通信制御部57が所定の処理を実行する。受信データに対して応答データを送信する必要がある場合には、応答データが無線通信制御部57からデータ中継処置部53へ転送され、ルーティングテーブル54で記憶されている経路情報に従い、無線I/F部52、無線部51およびアンテナ50を介して送信される。一方、受信データが自己以外宛であれば、データ中継処理部53は、経路情報に従い、無線I/F部52、無線部51およびアンテナ50を介して、受信データを送信(転送)する。なお、受信データに通信経路を示すルーティング情報が含まれている場合もある。この場合、データ中継処理部53は、受信データに含まれているルーティング情報に従って受信データの中継処理(転送)を行う。
 無線通信制御部57は、通信処理部60を介して、各種データ、および電力量計の動作状態を示す情報を中央制御部61から受信すると、通信記憶部59に格納する。「動作状態を示す情報」とは、電力量計5が保守点検中の動作を行っている保守モードか、需用家に設置されて電力量の計量を行っており、盗難を検知すべき監視モードであるかを示す情報である。
 通信タイマ部58は、動作を開始すると予め決定しておいた一定時間が経過するごとにその旨を無線通信制御部57へ通知し、無線通信制御部57は、この通知を受けると、周辺の他の電力量計5に対して情報データ要求を送信する。情報データ要求に対する応答として情報データ応答が送信されてくると、無線部51の電界強度測定部55が情報データ応答の受信レベル(電界強度レベル)を測定する。無線通信制御部57は、電界強度測定部55による測定で得られた電界強度レベル、および受信した情報データ応答に含まれている、データ収集装置2までのホップ数を受け取り、隣接テーブル64へ格納する。また、無線通信制御部57は、隣接テーブル64に格納されている情報に基づいて、自装置の盗難検知を行う。
 次に、電力量計5による盗難検知動作について、図5を用いて説明する。図5は、実施の形態1の電力量計5による盗難検知手順の一例を示す図である。
 図4に示した構成の電力量計5は、起動すると、盗難検知動作を必要とする監視モードがどうかを確認する(ステップS11)。監視モードでない場合(ステップS11:No)、監視モードかどうかの確認動作を所定のタイミングで繰り返す。監視モードの場合(ステップS11:Yes)、移動判定演算の閾値を設定する(ステップS12)。
 電力量計5は、移動判定閾値の設定が終了すると、移動検出処理の実行周期としてのタイマ値を設定する(ステップS13)。
 電力量計5は、タイマ値の設定が終了すると、タイマ設定時間となったかどうか、すなわち、移動検出処理の開始タイミングとなったかどうかを監視し(ステップS14)、開始タイミングを検出すると(ステップS14:Yes)、データ要求をブロードキャストにて送信する(ステップS15)。なお、データ要求を受信した電力量計5およびデータ収集装置2は、データ応答を返送する。データ要求を受信した電力量計5はデータ要求の転送を行わない。
 データ要求を送信した電力量計5は、データ応答を受信したかどうか(ステップS16)、および一定時間が経過したかどうか(ステップS18)を監視し、データ応答を受信した場合には(ステップS16:Yes)、受信信号(受信したデータ応答)の電界強度を測定する(ステップS17)。このとき、受信したデータ応答に含まれている情報のうち、送信元の装置(他の電力量計5,データ収集装置2)のIDと、他の電力量計5からデータ収集装置2までのホップ数を取得し、測定した電界強度とともに保持しておく。なお、一定時間が経過するまでの間はデータ応答を受信するごとに、受信信号の電界強度測定動作と装置IDおよびホップ数の取得動作とを行う。
 データ要求を送信してから一定時間が経過すると(ステップS18:Yes)、隣接テーブル64を更新する(ステップS19)。すなわち、一定時間が経過するまでに行った電界強度測定の結果(電界強度レベル,送信元装置のID,ホップ数)を隣接テーブル64に登録して保持しておく。なお、一定時間が経過してから隣接テーブル64を更新する動作を説明したが、データ応答を受信するごとに隣接テーブル64を更新するようにしても構わない。ただし、この場合には、更新前の情報も履歴情報として、一定期間保持しておく。電界強度レベルは、電界強度の測定結果そのものではなく、一定範囲に含まれている測定結果を一纏めにして同じ数値で示すように変換した情報とする。
 次に、隣接テーブル64に登録されている情報に基づいて、自装置の移動判定演算を行う(ステップS20)。移動判定演算は、例えば、無線通信制御部57が行ってもよいし中央制御部61が行ってもよい。中央制御部61が演算を行う場合には、隣接テーブル64の更新が終了後、その旨を無線通信制御部57が中央制御部61に通知し、中央制御部61は、隣接テーブル64に登録されている情報に基づいて移動判定演算を行う。移動判定演算の詳細については後述する。
 次に、移動判定演算で算出した値と上記のステップS12で設定した閾値を比較し、算出値が閾値未満の場合(ステップS21:No)、ステップS11に戻る。一方、算出値が閾値以上の場合には(ステップS21:Yes)、リレーをOPENする(ステップS22)。すなわち、算出値が閾値以上の場合には盗難が発生したと判断し、中央制御部61が開閉器62を制御して電力供給回路を開放させ、需用家への電力供給を停止する。また、盗難発生を上位の管理サーバ1に通報する(ステップS23)。管理サーバ1への通報は、無線通信制御部57が移動通知(盗難発生を示す情報)をデータ中継処理部53へ転送し、データ中継処理部53がルーティングテーブル54に基づき、移動通知をデータ収集装置2に向けて送信することによって行う。データ収集装置2は、電力量計から移動通知を受信すると、管理サーバ1へ転送する。
 上記ステップS20で実行する移動判定演算について、図6~図11を用いて説明する。ここでは、符号と各電力量計のIDを組み合わせて各電力量計5を区別する。例えば、電力量計5Aは、IDが“A”の電力量計5を示す。
 図6の例、すなわち、初期状態では電力量計5Aの周囲に電力量計5B,5C,5Dが設置されており、それぞれの電界強度レベルが5,4,4であり、一定時間が経過して電力量計5Aの隣接テーブルが更新された後の状態が、電力量計5Aの周囲に電力量計5D,5E,5Fが設置されており、それぞれの電界強度レベルが2,5,4である場合について考える。なお、図示している隣接テーブル64は電力量計5Aの隣接テーブル64である。
 この場合、電力量計5Aの移動は自己を基準として、隣接テーブル更新前後で周囲の他の電力量計5の変化の割合を以下の式(1)を用いて演算する。
  電力量計の変化の割合
  =(更新後に変化した電力量計の数÷更新前の電力量計の数)×100
                             …(1)
 ただし、
  更新後に変化した電力量計の数
   =電力量計の追加数+電力量計の削除数+電界強度レベルの変化した電力量計数
 図6に示した例では、電力量計5Aの周囲の他の電力量計5の変化は、電力量計5の追加が2(電力量計5E,5F)、電力量計5の削除が2(電力量計5B,5C)、電力量計5間の電界強度レベルが変化したものが1(電力量計5D)であり(図7参照)、隣接テーブル更新前の電力量計5の数は3であることから、上記の式(1)に当てはめると以下の通りとなる。
  電力量計の変化の割合=(5÷3)×100=167%
 この演算結果の割合は、上記のステップS21で示したとおり、あらかじめ設定した閾値と比較され、閾値以上であれば、電力量計5Aは移動発生(盗難発生)と判定する(例えば閾値を60%と設定していた場合、図6の例では、移動発生と判定する)。移動発生と判定した場合には、さらに、リレーをオープンして上位の装置へ通報する(上述したステップS22,S23の処理に相当)。
 また、移動判定演算の閾値を60%とした場合、図8に示した例では、電力量計5Aの周囲の他の電力量計5の変化は、電力量計5の追加が3(電力量計5F,5G,5H)、電力量計5の削除が4(電力量計5B,5C,5D,5E)、電力量計5間の電界強度レベルが変化したものが0であり(図9参照)、隣接テーブル更新前の電力量計5の数は4である。よって、上記の式(1)に当てはめると以下の通りであり、移動発生となる。
  電力量計の変化の割合=(7÷4)×100=175%
 また、移動判定演算の閾値を60%とした場合の別の例として、図10に示した場合を考える。図10に示した例では、電力量計5の追加が1(電力量計5F)、電力量計5の削除が1(電力量計5B)であり、電界強度レベルが変化した電力量計5はない(図11参照)。また、隣接テーブル更新前の電力量計5の数は4である。よって、以下に示す移動判定演算となり、移動なしとなる。
  電力量計の変化の割合=(2÷4)×100=50%<移動演算判定閾値:60%
 移動判定の閾値は、電力量計5を設置する電力会社が任意に設定可能であり、設置環境や使用環境に応じて電力量計5の移動を判定するレベルを変更することで、盗難判定を正確に実施可能となる。データ収集装置2との直接通信が可能な電力量計5は、データ収集装置2から受信した信号の電界強度を測定し、移動判定演算で用いるようにしてもよい。
 このように、本実施の形態の無線メッシュシステムにおいて、電力量計は、直接通信が可能な他の電力量計の数量の変動量、および周囲の各電力量計から送信された信号の受信電力の変動量に基づいて、盗難が発生したかどうかを判別し、盗難発生と検出した場合には、需用家への電力供給動作を停止することとした。これにより、盗難が発生した場合でも盗難者による盗電を防止できる。
実施の形態2.
 実施の形態2の電力量計について説明する。なお、電力量計が形成する通信ネットワーク、無線メッシュシステム、データ収集装置および電力量計の構成は実施の形態1と同様とする(図1~図4参照)。
 本実施の形態の電力量計5による盗難検知動作について、図12を用いて説明する。図12は、実施の形態2の電力量計5による盗難検知手順の一例を示す図である。実施の形態1で説明した盗難検知動作(図5)と共通の処理には図5と同じステップ番号を付して説明を省略する。
 本実施の形態の電力量計5による盗難検知動作は、実施の形態1で説明した盗難検知動作のステップS12とS13の間にステップS31を挿入し、さらに、ステップS19とS20の間にステップS32を挿入したものとなっている。
 ステップS31では、ホップ数変化の閾値を設定する。ステップS32では、ステップS19でのテーブルの更新に伴うホップ数の変化量とステップS31で設定した閾値を比較する。本実施の形態の電力量計5は、ホップ数の変化量が閾値以上の場合に(ステップS32:Yes)、ステップS20およびこれに続く処理を実行する。すなわち、実施の形態1の盗難検知動作ではステップS19で隣接テーブルを更新すると、必ず異動判定演算を実行するのに対し、本実施の形態の盗難検知動作では、ホップ数の変化量が閾値よりも小さい場合には移動判定演算を実行しない。ホップ数は、盗難検知動作を実行している電力量計5から、この電力量計5が接続しているデータ収集装置2までのホップ数である。本実施の形態によれば、必要な場合にのみ移動判定演算を行うので、処理負荷を軽減できる。
 ホップ数の変化量を考慮して移動判定演算を行う場合の具体例(ステップS32およびS20の具体例)について、図13~図15を用いて説明する。
 図13の例、すなわち、初期状態では電力量計5Aの周囲に電力量計5B,5Cが設置されており、それぞれの電界強度レベルが2,5であり、また、電力量計5Aはホップ数5でデータ収集装置2AA(IDがAAのデータ収集装置2)と接続している。この状態から一定時間が経過して電力量計5Aの隣接テーブルが更新された後の状態が、電力量計5Aの周囲に電力量計5B,5Cが設置されており、それぞれの電界強度レベルが2,4、電力量計5Aはホップ数4でデータ収集装置2AAと接続している場合について考える。なお、図示している隣接テーブル64は電力量計5Aの隣接テーブル64である。
 ここで移動演算判定の閾値を60%、ホップ数変化の閾値を3と設定すると、図13に示す例では、ホップ数の変化量が1であり閾値よりも小さいので、移動判定演算は実施しない。なお、仮にホップ数の変化量が閾値以上と判断し、移動判定演算を実施する場合には、以下に示す移動判定演算となる。
  電力量計の変化の割合=(1÷2)×100=50%<移動演算判定閾値:60%
 また、移動判定演算の閾値を60%,ホップ数変化の閾値を3とした場合、図14に示した例では、電力量計5Aの周囲の他の電力量計5の変化は、電力量計5の追加が0、電力量計5の削除が0、電力量計5間の電界強度レベルが変化したものが1である。ホップ数の変化量は5であり、隣接テーブル更新前の電力量計5の数は2である。よって、ホップ数の変化量が閾値以上であり、移動判定演算を行う。しかし、移動判定演算は以下の通りであり、移動なしとなる。
  電力量計の変化の割合=(1÷2)×100=50%<移動演算判定閾値:60%
 また、移動判定演算の閾値を60%、ホップ数変化の閾値を3とした場合の別の例として、図15に示した場合を考える。図15に示した例では、電力量計5の追加が2(電力量計5E,5F)、電力量計5の削除が2(電力量計5B,5C)であり、電界強度レベルが変化した電力量計5はない。また、ホップ数の変化量は5であり、隣接テーブル更新前の電力量計5の数は2である。よって、以下に示す移動判定演算となり、移動発生となる。
  電力量計の変化の割合=(4÷2)×100=200%>移動演算判定閾値:60%
 このように、本実施の形態の電力量計は、データ収集装置までのホップ数が閾値以上の場合に、移動判定演算を行うこととした。これにより、移動した可能性が低い場合には移動判定演算を行わないようにして演算実行回数を抑えることができ、処理負荷を軽減できる。また、移動判定演算の閾値およびホップ数変化の判定閾値を任意に設定できるので、実施の形態1と比較して、より正確な盗難判定が可能となる。
実施の形態3.
 実施の形態3の電力量計について説明する。なお、電力量計が形成する通信ネットワーク、無線メッシュシステム、データ収集装置および電力量計の構成は実施の形態1と同様とする(図1~図4参照)。
 本実施の形態の電力量計5による盗難検知動作について、図16を用いて説明する。図16は、実施の形態3の電力量計5による盗難検知手順の一例を示す図である。実施の形態1,2で説明した盗難検知動作(図5,図12)と共通の処理には図5,図12と同じステップ番号を付して説明を省略する。
 本実施の形態の電力量計5による盗難検知動作は、実施の形態2で説明した盗難検知動作のステップS19とS32の間にステップS41を挿入したものとなっている。
 ステップS41では、接続されているデータ収集装置2のID(コンセントレータID)が変化したかどうか、すなわち、接続先のデータ収集装置2が変更となったかどうかを確認する。そして、IDが変化している場合には(ステップS41:Yes)、ステップS32を実行してホップ数の変化量と閾値を比較する。IDが変化していない場合には(ステップS41:No)、ステップS32を実行せずに、ステップS20の移動値判定演算を行う。
 接続先のデータ収集装置2の変化、コンセントレータIDの変化、およびホップ数の変化量を考慮して移動判定演算を行う場合の具体例(ステップS32およびS20の具体例)について、図17を用いて説明する。
 図17の例、すなわち、初期状態では電力量計5Aの周囲に電力量計5B,5Cが設置されており、それぞれの電界強度レベルが2,5であり、また、電力量計5Aはホップ数5でデータ収集装置2AAと接続している。この状態から一定時間が経過して電力量計5Aの隣接テーブルが更新された後の状態が、電力量計5Aの周囲に電力量計5E,5Fが設置されており、それぞれの電界強度レベルが4,2、電力量計5Aはホップ数10でデータ収集装置2BBと接続している場合について考える。なお、図示している隣接テーブル64は電力量計5Aの隣接テーブル64である。
 ここで移動演算判定の閾値を60%、ホップ数変化の閾値を3と設定すると、図17に示す例では、電力量計5Aの周囲の他の電力量計5の変化は、電力量計5の追加が2(電力量計5E,5F)、電力量計5の削除が2(電力量計5B,5C)、電界強度レベルが変化した電力量計5はなし、ホップ数の変化量は5となる。よって、判定は以下の通りとなり、移動発生となる。
  接続されているデータ収集装置のID変化:あり(AA→BBへ変化)
  ホップ数変化:5>ホップ数変化閾値:3
  移動演算:(4÷2)×100=200%>移動演算判定閾値:60%
 このように、本実施の形態の電力量計は、接続先のデータ収集装置が変化したかどうか、およびデータ収集装置までのホップ数の変化量に基づいて、移動判定演算を行うかどうか決定することとした。これにより、実施の形態2と同様に、移動した可能性が低い場合には移動判定演算を行わないようにして演算実行回数を抑えることができ、処理負荷を軽減できる。また、実施の形態2と比較して、より正確な盗難判定が可能となる。
 各実施の形態では、料金前払い制を採用している場合の盗電防止を目的として説明を行ったが、上述したとおり、本発明にかかる電力量計は盗難を検知すると電力供給動作を停止して本来の電力量計として使用できなくなる。そのため、料金前払い制を採用していないシステムでの電力量計の盗難防止にも寄与しうる。
 以上のように、本発明は、電力供給システムに有用であり、特に、料金前払い制を採用している電力供給システムで使用する電力量計に適している。
 1 管理サーバ
 2 データ収集装置
 3 広域ネットワーク網
 4 光ケーブル
 5 電力量計
 21 データ収集装置中央制御部
 22 無線処理部
 23,60 通信処理部
 24 光入出力部
 30,50 アンテナ
 31,51 無線部
 32,52 無線I/F部
 33 無線ネットワーク制御部
 34,54 ルーティングテーブル
 35,55 電界強度測定部
 36,56 アンテナスイッチ
 37,57 無線通信制御部
 53 データ中継処理部
 58 通信タイマ部
 59 通信記憶部
 61 中央制御部
 62 開閉器
 63 計量部
 64 隣接テーブル
 65 制御記憶部

Claims (11)

  1.  電力量データを収集する1台以上のデータ収集装置とともに無線メッシュネットワークを形成する電力量計であって、
     需用家で消費された電気量を直接、または隣接する他の電力量計経由で、データ送信先として選択されているデータ収集装置へ送信する無線通信手段と、
     隣接する電力量計の変動数、および隣接する電力量計それぞれから送信された信号の受信レベルの変動の有無に基づいて、自装置の移動の有無を判定する移動検出手段と、
     前記移動検出手段に「移動あり」と判定された場合には需用家への電力供給回路の動作を停止させる電力供給制御手段と、
     を備えることを特徴とする電力量計。
  2.  前記移動検出手段は、データ送信先として選択されているデータ収集装置までのホップ数に変動が生じたかどうかを監視し、当該監視の結果に基づいて、前記移動有無の判定を行う必要があるかどうか判断することを特徴とする請求項1に記載の電力量計。
  3.  前記移動検出手段は、前記ホップ数の変動量が所定の閾値以上の場合に、前記移動有無の判定を行うことを特徴とする請求項2に記載の電力量計。
  4.  前記移動検出手段は、データ送信先として選択されているデータ収集装置までのホップ数に変動が生じたかどうか、およびデータ送信先として選択されているデータ収集装置が変更されたかどうかを監視し、当該監視の結果に基づいて、前記移動有無の判定を行う必要があるかどうか判断することを特徴とする請求項1に記載の電力量計。
  5.  前記移動検出手段は、データ送信先として選択されているデータ収集装置が変更されていない場合、およびデータ送信先として選択されているデータ収集装置が変更されており、かつ前記ホップ数の変動量が所定の閾値以上の場合に、前記移動有無の判定を行うことを特徴とする請求項4に記載の電力量計。
  6.  電力量データを収集する1台以上のデータ収集装置とともに無線メッシュネットワークを形成する電力量計が、自装置の盗難を検知する電力量計の盗難検知方法であって、
     他の電力量計との無線通信結果に基づいて、隣接する電力量計の変動数の算出、および隣接する電力量計それぞれから送信された信号の受信レベル変動の有無を判定する変動監視ステップと、
     隣接する電力量計の変動数、および隣接する電力量計それぞれから送信された信号の受信レベルの変動の有無に基づいて、自装置が盗難されたかどうかを判定する盗難判定ステップと、
     を含むことを特徴とする電力量計の盗難検知方法。
  7.  データ送信先として選択されているデータ収集装置までのホップ数に変動が生じたかどうかを監視するホップ数監視ステップと、
     前記ホップ数の監視結果に基づいて、前記盗難判定ステップを実行する必要があるかどうかを判定する必要性判定ステップと、
     をさらに含むことを特徴とする請求項6に記載の電力量計の盗難検知方法。
  8.  前記必要性判定ステップでは、前記ホップ数の変動量が所定の閾値以上の場合に、前記盗難判定ステップを実行する必要があると判断することを特徴とする請求項7に記載の電力量計の盗難検知方法。
  9.  データ送信先として選択されているデータ収集装置までのホップ数に変動が生じたかどうか、およびデータ送信先として選択されているデータ収集装置が変更されたかどうかを監視する監視ステップと、
     前記ホップ数の監視結果、および前記データ送信先として選択されているデータ収集装置が変更されたかどうかの監視結果に基づいて、前記盗難判定ステップを実行する必要があるかどうかを判定する必要性判定ステップと、
     をさらに含むことを特徴とする請求項6に記載の電力量計の盗難検知方法。
  10.  前記必要性判定ステップでは、データ送信先として選択されているデータ収集装置が変更されていない場合、およびデータ送信先として選択されているデータ収集装置が変更されており、かつ前記ホップ数の変動量が所定の閾値以上の場合に、前記盗難判定ステップを実行する必要があると判断することを特徴とする請求項9に記載の電力量計の盗難検知方法。
  11.  請求項1~5のいずれか一つに記載の電力量計、および電力量データを収集するデータ収集装置により形成された無線メッシュネットワークを備えることを特徴とする電力供給システム。
PCT/JP2012/053022 2012-02-09 2012-02-09 電力量計、電力量計の盗難検知方法、および電力供給システム WO2013118282A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP12868269.7A EP2818878A4 (en) 2012-02-09 2012-02-09 ELECTRICITY METER, METHOD FOR DETECTING THE THEFT OF AN ELECTRICITY COUNTER AND POWER SUPPLY SYSTEM
CN201280069272.6A CN104105973B (zh) 2012-02-09 2012-02-09 电能计量装置、电能计量装置的被盗检测方法、以及电力供应***
PCT/JP2012/053022 WO2013118282A1 (ja) 2012-02-09 2012-02-09 電力量計、電力量計の盗難検知方法、および電力供給システム
JP2012527124A JP5068396B1 (ja) 2012-02-09 2012-02-09 電力量計、電力量計の盗難検知方法、および電力供給システム
TW101116809A TWI458988B (zh) 2012-02-09 2012-05-11 電量表、電量表之盜竊檢測方法,及電力供應系統
HK14112546.8A HK1199105A1 (zh) 2012-02-09 2014-12-15 電能計量裝置、電能計量裝置的被盜檢測方法、以及電力供應系統

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/053022 WO2013118282A1 (ja) 2012-02-09 2012-02-09 電力量計、電力量計の盗難検知方法、および電力供給システム

Publications (1)

Publication Number Publication Date
WO2013118282A1 true WO2013118282A1 (ja) 2013-08-15

Family

ID=47277801

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053022 WO2013118282A1 (ja) 2012-02-09 2012-02-09 電力量計、電力量計の盗難検知方法、および電力供給システム

Country Status (6)

Country Link
EP (1) EP2818878A4 (ja)
JP (1) JP5068396B1 (ja)
CN (1) CN104105973B (ja)
HK (1) HK1199105A1 (ja)
TW (1) TWI458988B (ja)
WO (1) WO2013118282A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865272A (zh) * 2019-12-17 2020-03-06 国网河北省电力有限公司衡水市桃城区供电分公司 一种设备用电信息输出与采集的装置及方法
CN111935686A (zh) * 2020-07-21 2020-11-13 深圳市创鸿新智能科技有限公司 一种智能电能表***及其无线校表方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11172273B2 (en) 2015-08-10 2021-11-09 Delta Energy & Communications, Inc. Transformer monitor, communications and data collection device
WO2017027682A1 (en) 2015-08-11 2017-02-16 Delta Energy & Communications, Inc. Enhanced reality system for visualizing, evaluating, diagnosing, optimizing and servicing smart grids and incorporated components
US10055966B2 (en) 2015-09-03 2018-08-21 Delta Energy & Communications, Inc. System and method for determination and remediation of energy diversion in a smart grid network
MX2018004053A (es) 2015-10-02 2018-12-17 Delta Energy & Communications Inc Red de malla de entrega y recepcion de datosdigitales complementarios y alternativos realizada a traves de la colocacion de dispositivos de monitoreo montados en transformadores mejorados.
WO2017070646A1 (en) 2015-10-22 2017-04-27 Delta Energy & Communications, Inc. Data transfer facilitation across a distributed mesh network using light and optical based technology
WO2017070648A1 (en) 2015-10-22 2017-04-27 Delta Energy & Communications, Inc. Augmentation, expansion and self-healing of a geographically distributed mesh network using unmanned aerial vehicle technology
WO2017147476A1 (en) 2016-02-24 2017-08-31 Delta Energy & Communications, Inc. Distributed 802.11s mesh network using transformer module hardware for the capture and transmission of data
CN105911345A (zh) * 2016-04-26 2016-08-31 上海电机学院 一种防窃电的电表***
US10652633B2 (en) 2016-08-15 2020-05-12 Delta Energy & Communications, Inc. Integrated solutions of Internet of Things and smart grid network pertaining to communication, data and asset serialization, and data modeling algorithms
CN108226595B (zh) * 2018-01-03 2020-03-24 国网山东省电力公司平邑县供电公司 便携式电子智能电能表防窃电检测仪
CN109655664A (zh) * 2018-12-11 2019-04-19 全球能源互联网研究院有限公司 一种基于负荷特征模型库的窃电智能诊断方法和设备
CN110244099A (zh) * 2019-06-24 2019-09-17 河南工业大学 基于用户电压的窃电检测方法
KR102356176B1 (ko) * 2019-12-20 2022-01-27 가톨릭대학교 산학협력단 에너지 절도 검출 시스템 및 방법
CN113762332B (zh) * 2021-07-19 2024-03-19 深圳供电局有限公司 窃电检测方法、装置、计算机设备和存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028093A (ja) * 1999-07-15 2001-01-30 Shikoku Electric Power Co Inc 電力量計
JP2004340767A (ja) 2003-05-16 2004-12-02 Hitachi Ltd 盗電を防止する電力売買方法と電力売買システム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1438488A (zh) * 2003-01-04 2003-08-27 重庆龙源科技产业发展有限公司 智能网络化防窃电多功能全电子式电能表
MX2007011378A (es) * 2005-03-16 2008-03-18 Sensus Metering Systems Inc Metodo, sistema, aparato y producto de programa de computadora para determinar la ubicacion fisica de un sensor.
CN100596331C (zh) * 2007-01-26 2010-03-31 杨英熙 高压计量装置及其对高低压端电量计量对比的防窃电方法
US8207726B2 (en) * 2008-09-05 2012-06-26 Silver Spring Networks, Inc. Determining electric grid endpoint phase connectivity
US8242931B2 (en) * 2009-09-18 2012-08-14 Elster Electricity, Llc Mobile meter reading for locating stolen utility meters
CN102023246A (zh) * 2010-12-13 2011-04-20 中国电力科学研究院 一种智能防窃电***与用电信息采集***的一体化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001028093A (ja) * 1999-07-15 2001-01-30 Shikoku Electric Power Co Inc 電力量計
JP2004340767A (ja) 2003-05-16 2004-12-02 Hitachi Ltd 盗電を防止する電力売買方法と電力売買システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2818878A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110865272A (zh) * 2019-12-17 2020-03-06 国网河北省电力有限公司衡水市桃城区供电分公司 一种设备用电信息输出与采集的装置及方法
CN111935686A (zh) * 2020-07-21 2020-11-13 深圳市创鸿新智能科技有限公司 一种智能电能表***及其无线校表方法
CN111935686B (zh) * 2020-07-21 2023-09-15 深圳市创鸿新智能科技有限公司 一种智能电能表***及其无线校表方法

Also Published As

Publication number Publication date
TW201333480A (zh) 2013-08-16
HK1199105A1 (zh) 2015-06-19
JP5068396B1 (ja) 2012-11-07
CN104105973B (zh) 2016-06-29
EP2818878A4 (en) 2015-10-14
EP2818878A1 (en) 2014-12-31
JPWO2013118282A1 (ja) 2015-05-11
TWI458988B (zh) 2014-11-01
CN104105973A (zh) 2014-10-15

Similar Documents

Publication Publication Date Title
JP5068396B1 (ja) 電力量計、電力量計の盗難検知方法、および電力供給システム
EP2638704B1 (en) Resource metering system and method using such a system for smart energy consumption
JP5249647B2 (ja) 遠隔検針システム
US20150035682A1 (en) Slave suitable for energy management systems and energy management system
US20120268291A1 (en) Systems and method for transmitting data in an advanced metering infrastructure
JP5439233B2 (ja) 制御装置
JP2012120295A (ja) 住宅電気エネルギー管理装置、住宅電気エネルギー管理システム、住宅電気エネルギー管理方法、および、プログラム
EP2498448A1 (en) Systems, method, and apparatus for determining power usage with a meter
JP7142291B2 (ja) 充電方法、及び、充電システム
JP2013117484A (ja) 電力計測システム
JP2016143319A (ja) 管理装置、通信装置、管理方法、およびプログラム
KR20120000026A (ko) 네트워크 시스템
JP6238120B2 (ja) 分電盤及び通信システム
JP2018164245A (ja) ゲートウェイ装置、計測システムおよび計測方法
WO2014125812A1 (ja) 端末装置、計量装置、通信システム
KR20110138812A (ko) 네트워크 시스템 및 에너지 소비부
US20120310861A1 (en) Utility calculation and pricing system and method
JP7162819B2 (ja) 電力制御装置、電力制御システム及び電力制御方法
JP6512498B2 (ja) 遠隔監視方法、遠隔監視システム、第1通信装置、第2通信装置及びサーバ装置
KR101163316B1 (ko) 세탁처리장치 및 그의 제어방법
JP6968629B2 (ja) 分電盤
KR20120008379A (ko) 네트워크 시스템
KR20110138811A (ko) 네트워크 시스템
KR20120008377A (ko) 네트워크 시스템
KR20200011263A (ko) 효율적인 전력 소비 및 재난 예방을 실현하는 전력 관리 시스템

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012527124

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12868269

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012868269

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE