WO2013114854A1 - Organic thermoelectric power generating element and production method therefor - Google Patents

Organic thermoelectric power generating element and production method therefor Download PDF

Info

Publication number
WO2013114854A1
WO2013114854A1 PCT/JP2013/000450 JP2013000450W WO2013114854A1 WO 2013114854 A1 WO2013114854 A1 WO 2013114854A1 JP 2013000450 W JP2013000450 W JP 2013000450W WO 2013114854 A1 WO2013114854 A1 WO 2013114854A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
thermoelectric
conversion layer
power generation
generation element
Prior art date
Application number
PCT/JP2013/000450
Other languages
French (fr)
Japanese (ja)
Inventor
久保 雅洋
俊亘 小勝
雅芳 角野
渋谷 明信
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013114854A1 publication Critical patent/WO2013114854A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to an organic thermoelectric power generation element using an organic conductive polymer material and a method for manufacturing the same.
  • thermoelectric power generation elements are elements that can convert heat energy and electrical energy to each other. By installing the thermoelectric generator in an environment where a temperature difference occurs between both ends of the thermoelectric generator, electric power can be taken out. By applying this phenomenon, waste heat generated from factories and automobiles is expected to be applied to power generation. In recent years, it is expected that power generated by thermoelectric power generation elements is generated using heat generated from office electronic devices such as servers and PCs, and that power is used as a power source for electronic devices such as sensors.
  • Waste heat generated by electronic devices or the like is often scattered not only on a flat surface but also on a surface including a curved surface portion and an uneven portion.
  • the thermoelectric power generation element be flexible as well as improving the power generation efficiency of the thermoelectric power generation element.
  • Patent Document 1 uses a thin film of a thermoelectric conversion material made of an organic conductive polymer (hereinafter referred to as a conductive polymer) formed on a flexible substrate.
  • a thermoelectric conversion material made of an organic conductive polymer (hereinafter referred to as a conductive polymer) formed on a flexible substrate.
  • a conductive polymer organic conductive polymer
  • Patent Document 2 has a corrugated shape in which peaks and troughs are alternately repeated, thereby increasing the arrangement ratio of thermoelectric conversion element pairs per unit area as compared to a planar shape.
  • a thermoelectric conversion module with improved power generation efficiency is disclosed.
  • thermoelectric power generation elements In order to generate power by thermoelectric power generation elements using waste heat generated by equipment such as air conditioners, lighting equipment, PCs, servers, etc., or human body temperature, the temperature difference within the surface scattered on curved surfaces and irregularities In addition, it is necessary to efficiently recover the temperature difference in the direction perpendicular to the installation surface as heat. For this purpose, thermoelectric conversion elements are required to have flexibility, reliability associated therewith, high power generation efficiency, and ease of manufacture that enables product variations that are expected to be used in many situations.
  • Patent Document 1 discloses a flexible thermoelectric element using a flexible substrate and a thin film of a thermoelectric conversion material made of a conductive polymer.
  • the conductive polymer thin film has an elongated shape.
  • the temperature difference is increased by ensuring a large distance between the hot junction and the cold junction, and the power generation efficiency is improved. Therefore, this thermoelectric element requires a large area and restricts the installation location.
  • thermoelectric elements In order to improve the degree of freedom of installation of thermoelectric elements, elements that can utilize the temperature difference in the vertical direction of the installation surface are effective.
  • the conductive polymer of Patent Document 1 is a thin film formed by vapor deposition and the substrate is flat, it is difficult to obtain a temperature difference in the direction perpendicular to the installation surface.
  • the linear expansion coefficient of the organic film as the substrate material is 10 times or more larger than the linear expansion coefficient of the inorganic material such as metal. Therefore, a structure in which a metal wiring or the like is formed on an organic film having a large linear expansion causes peeling due to mismatch of the linear expansion coefficient in view of the fact that thermoelectric elements are repeatedly used at high temperatures, and has a high reliability. There was a problem of causing a drop.
  • Patent Document 2 has a corrugated shape in which peaks and troughs are alternately repeated, thereby increasing the arrangement ratio of thermoelectric conversion element pairs per unit area as compared with a planar shape.
  • a thermoelectric conversion module with improved power generation efficiency is disclosed.
  • This thermoelectric conversion module is a rigid module using copper or constantan metal as a thermoelectric conversion material and ceramic such as alumina as an insulating material. Therefore, the degree of freedom of installation of the thermoelectric conversion module is greatly limited, and is limited to a flat heat source. Furthermore, since a plurality of materials are used for the thermoelectric conversion material, the manufacturing process is complicated, resulting in a decrease in manufacturing yield.
  • the present invention has been made in view of the above problems, has a flexible element structure, is excellent in reliability and manufacturability, and sufficiently secures the temperature difference between the heat absorbing portion and the heat radiating portion.
  • an organic thermoelectric power generation device capable of The thermoelectric power generation element of the present invention is suitable for generating power by efficiently recovering a temperature difference scattered over a wide range including a curved surface and a concavo-convex surface, eliminating restrictions on the installation of a conventional thermoelectric power generation element, A new thermoelectric generator is provided.
  • thermoelectric power generation element in which a plurality of thermoelectric conversion layers are connected in series, wherein the thermoelectric power generation element includes a base material having a wave shape structure in which a bottom portion and a top portion are alternately repeated, and the thermoelectric conversion layer includes the top portion and the top portion A first thermoelectric conversion layer along a first slope between the first bottom connected to the top and the second between the top and the second bottom connected to the top.
  • the first thermoelectric conversion layer and the second thermoelectric conversion layer have the same type, and the first thermoelectric conversion layer has the top side and On the first bottom side, the second thermoelectric conversion layer has connection points with wirings on the top side and the second bottom side, respectively.
  • connection between the first thermoelectric conversion layers is connected at the connection point on the top side of the first thermoelectric conversion layer, along the second slope, at the second bottom, It is a connection to be connected at a connection point on the bottom side of the first thermoelectric conversion layer adjacent to the first thermoelectric conversion layer, and the connection between the second thermoelectric conversion layers is the top of the second thermoelectric conversion layer.
  • the wiring connected at the connection point on the side is connected at the connection point on the bottom side of the second thermoelectric conversion layer adjacent to the second thermoelectric conversion layer at the first bottom along the first slope. It is a connection.
  • connection between the first thermoelectric conversion layer and the second thermoelectric conversion layer is connected at the connection point on the top side of the first thermoelectric conversion layer, along the second slope, Connection connected at the connection point on the bottom side of the second thermoelectric conversion layer, or wiring connected at the connection point on the top side of the second thermoelectric conversion layer, along the first slope,
  • the connection is made at a connection point on the bottom side of the first thermoelectric conversion layer, and both ends of the series connection are open electrodes.
  • thermoelectric power generation element having flexibility, excellent reliability and manufacturability, and capable of sufficiently ensuring a temperature difference between a heat absorption part and a heat dissipation part by the thermoelectric power generation element and the manufacturing method thereof according to the present invention.
  • Can do. Eliminates installation restrictions that were problems with conventional thermoelectric generators, and realizes thermoelectric generators suitable for generating power by efficiently recovering the temperature difference due to waste heat scattered widely in electronic equipment as heat To do.
  • thermoelectric power generation element of 1st embodiment of this invention It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the planar structure of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the planar structure of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the planar structure of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention.
  • thermoelectric power generation element of 1st embodiment of this invention It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the planar structure of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention.
  • thermoelectric power generation element of 1st embodiment of this invention It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. It is a figure which shows the cross-section of a well-known thermoelectric power generation element. It is a figure which shows the cross-section of the thermoelectric power generation element of 2nd embodiment of this invention.
  • thermoelectric power generation element of 2nd embodiment of this invention It is a figure which shows the planar structure of the thermoelectric power generation element of 2nd embodiment of this invention. It is a figure which shows the cross-section of the thermoelectric power generation element of 2nd embodiment of this invention. It is a figure which shows the planar structure of the thermoelectric power generation element of 2nd embodiment of this invention. It is a 1st figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention. It is a 2nd figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention. It is a 3rd figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention. It is a 4th figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention.
  • thermoelectric power generation element of 2nd embodiment of this invention It is a 5th figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention. It is a schematic diagram of the cross section of the thermoelectric power generation element of 2nd embodiment of this invention. It is a schematic diagram of the cross section in which the bending of the cross section of the thermoelectric power generation element of 2nd embodiment of this invention eased. It is a figure which shows the pad electrode thickness d dependence of the yield Y1 and relative power generation efficiency (eta) of the thermoelectric power generation element of 2nd embodiment of this invention. It is a figure which shows the occupancy ratio X dependency of the pad electrode of the yield Y2 of the waveform of the thermoelectric power generation element of 2nd embodiment of this invention, and the yield Y3 of adhesive protrusion.
  • thermoelectric power generation element of 2nd embodiment of this invention It is a figure which shows the L1 / L2 ratio dependence of the wiring contact yield Y4 of the thermoelectric power generation element of 2nd embodiment of this invention, and the electric power generation amount per unit area. It is a figure which shows the cross-section of the thermoelectric power generation element of 2nd embodiment of this invention. It is a figure which shows the planar structure of the thermoelectric power generation element of 2nd embodiment of this invention. It is a plane structure figure of the thermoelectric power generation element of 2nd embodiment of this invention. It is a structural diagram of the pad electrode and wiring of the thermoelectric power generation element of the second embodiment of the present invention. It is an external view of the thermoelectric power generation element of 2nd embodiment of this invention.
  • thermoelectric power generation element according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2.
  • FIG. 1 shows a cross-sectional view of a thermoelectric generator according to a first embodiment of the present invention.
  • FIG. 2 shows a plan view of the thermoelectric generator of the first embodiment of the present invention.
  • a cross section taken along line AA 'in FIG. 2 corresponds to FIG.
  • the wiring 11 is not limited to this, and is described in FIG. 1 as necessary to explain the structure of the element.
  • thermoelectric power generation element 1 in which a plurality of thermoelectric conversion layers are connected in series.
  • the base material 2 of the thermoelectric generator 1 has a corrugated structure composed of a bottom and a top.
  • the thermoelectric conversion layer has a first thermoelectric conversion layer 8 along a first slope 6 between the top 3 and the first bottom 4 connected to the top 3, and further includes a first thermoelectric conversion layer 8 connected to the top 3 and the top 3.
  • 2 has a second thermoelectric conversion layer 9 along the second slope 7 between the bottom 5 of the two.
  • the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 have the same type. That is, if the first thermoelectric conversion layer 8 is P-type, the second thermoelectric conversion layer 9 is also P-type.
  • thermoelectric conversion layer of the present embodiment A conductive polymer material can be used for the thermoelectric conversion layer of the present embodiment.
  • a conductive polymer having P-type semiconductor characteristics can be used.
  • the first thermoelectric conversion layer 8 is provided on the top 3 side and the first bottom 4 side
  • the second thermoelectric conversion layer 9 is provided on the top 3 side and the second bottom 5 side.
  • the connection between the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 is along the second inclined surface 7.
  • the connection is made at the connection portion 10 on the bottom 5 side of the second thermoelectric conversion layer 9. Furthermore, both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
  • the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 is along the first slope 6.
  • the connection may be made at the connection portion 10 on the bottom 4 side of the first thermoelectric conversion layer 8. Also at this time, both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
  • thermoelectric generator 1 the bottom is the heat absorption side and the top is the heat dissipation side. Power generation is performed by the temperature difference between the bottom side and the top side, and power can be taken out by the open electrode.
  • the base material has a wave shape, it is possible to secure the distance from the heat source to the bottom part that is the heat absorption side that is in contact with the heating element that is the heat source and the top part that is the heat radiation side. A sufficient temperature difference can be secured.
  • thermoelectric conversion layer can be comprised with the same type of single material, manufacture is made easy.
  • FIG. 3 shows a cross-sectional view of the thermoelectric generator of this embodiment.
  • FIG. 4 shows a plan view of the thermoelectric generator of the present embodiment.
  • a cross section taken along line B-B 'of FIG. 4 corresponds to FIG.
  • the wiring 11 is not limited to this, and is illustrated in FIG. 3 as necessary to explain the configuration of the element.
  • thermoelectric power generation element 30 in which a plurality of thermoelectric conversion layers are connected in series.
  • the base material 2 of the thermoelectric power generation element 30 has a wave shape structure in which a bottom portion and a top portion are alternately repeated.
  • the thermoelectric conversion layer has a first thermoelectric conversion layer 8 along a first slope 6 between the top 3 and the first bottom 4 connected to the top 3, and further includes a first thermoelectric conversion layer 8 connected to the top 3 and the top 3.
  • 2 has a second thermoelectric conversion layer 9 along the second slope 7 between the bottom 5 of the two.
  • the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 have the same type. That is, if the first thermoelectric conversion layer 8 is P-type, the second thermoelectric conversion layer 9 is also P-type.
  • thermoelectric conversion layer of the present embodiment A conductive polymer material can be used for the thermoelectric conversion layer of the present embodiment.
  • a conductive polymer having P-type semiconductor characteristics can be used.
  • the first thermoelectric conversion layer 8 is provided on the top 3 side and the first bottom 4 side
  • the second thermoelectric conversion layer 9 is provided on the top 3 side and the second bottom 5 side. Have.
  • connection between the first thermoelectric conversion layers 8 is such that the wiring 11 connected at the connection portion 10 on the top 3 side of the first thermoelectric conversion layer 8 is along the second inclined surface 7 and at the second bottom portion 5.
  • the connection is made at the connection portion 10 on the first bottom portion 4 side of the first thermoelectric conversion layer 8 adjacent to the one thermoelectric conversion layer 8.
  • the connection between the second thermoelectric conversion layers 9 is such that the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 is along the first inclined surface 6 and at the second bottom portion 5.
  • the connection is made at the connection portion 10 on the first bottom portion 4 side of the second thermoelectric conversion layer 9 adjacent to the second thermoelectric conversion layer 9.
  • the wiring 11 connected at the connection portion 10 on the top 3 side of the first thermoelectric conversion layer 8 is along the second inclined surface 7.
  • the connection is made at the connection portion 10 on the bottom 5 side of the second thermoelectric conversion layer 9. Furthermore, both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
  • the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 is along the first slope 6.
  • the connection may be made at the connection portion 10 on the bottom 4 side of the first thermoelectric conversion layer 8. Also at this time, both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
  • thermoelectric generator 30 the bottom is the heat absorption side and the top is the heat dissipation side. Power generation is performed by the temperature difference between the bottom side and the top side, and power can be taken out by the open electrode.
  • the base material has a wave shape, it is possible to secure the distance from the heat source to the bottom part that is the heat absorption side that is in contact with the heating element that is the heat source and the top part that is the heat radiation side. A sufficient temperature difference can be secured.
  • thermoelectric conversion layer can be comprised with the same type of single material, manufacture is made easy.
  • thermoelectric generator of this embodiment will be described with reference to FIGS.
  • FIG. 5 shows a cross-sectional view of the thermoelectric generator of this embodiment.
  • FIG. 6 shows a plan view of the thermoelectric generator of the present embodiment.
  • a cross section taken along line C-C 'in FIG. 6 corresponds to FIG.
  • the wiring 11 is not limited to this, and is described in FIG. 5 as necessary to explain the configuration of the element.
  • 5 and 6 is a thermoelectric power generation element 50 in which more thermoelectric conversion layers are connected in series than the thermoelectric power generation elements 30 in FIGS. 3 and 4.
  • the base material 2 of the thermoelectric power generation element 50 has a wave shape structure in which a bottom portion and a top portion are alternately repeated.
  • the thermoelectric conversion layer has a first thermoelectric conversion layer 8 along a first slope 6 between the top 3 and the first bottom 4 connected to the top 3, and further includes a first thermoelectric conversion layer 8 connected to the top 3 and the top 3.
  • 2 has a second thermoelectric conversion layer 9 along the second slope 7 between the bottom 5 of the two.
  • the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 have the same type. That is, if the first thermoelectric conversion layer 8 is P-type, the second thermoelectric conversion layer 9 is also P-type.
  • thermoelectric conversion layer of the present embodiment A conductive polymer material can be used for the thermoelectric conversion layer of the present embodiment.
  • a conductive polymer having P-type semiconductor characteristics can be used.
  • the first thermoelectric conversion layer 8 is provided on the top 3 side and the first bottom 4 side
  • the second thermoelectric conversion layer 9 is provided on the top 3 side and the second bottom 5 side. Have.
  • connection between the first thermoelectric conversion layers 8 is such that the wiring 11 connected at the connection portion 10 on the top 3 side of the first thermoelectric conversion layer 8 is along the second inclined surface 7 and at the second bottom portion 5.
  • the connection is made at the connection portion 10 on the first bottom portion 4 side of the first thermoelectric conversion layer 8 adjacent to the one thermoelectric conversion layer 8.
  • the connection between the second thermoelectric conversion layers 9 is such that the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 is along the first inclined surface 6 and at the second bottom portion 5.
  • the connection is made at the connection portion 10 on the first bottom portion 4 side of the second thermoelectric conversion layer 9 adjacent to the second thermoelectric conversion layer 9.
  • the wiring 11 connected at the connection portion 10 on the top 3 side of the first thermoelectric conversion layer 8 is along the second inclined surface 7.
  • the connection is made at the connection portion 10 on the bottom 5 side of the second thermoelectric conversion layer 9.
  • the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 is performed by connecting the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 to the first slope 6.
  • both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
  • thermoelectric generator 50 the bottom is the heat absorption side and the top is the heat dissipation side. Power generation is performed by the temperature difference between the bottom side and the top side, and power can be taken out by the open electrode.
  • the base material has a wave shape, it is possible to secure the distance from the heat source to the bottom part that is the heat absorption side that is in contact with the heating element that is the heat source and the top part that is the heat radiation side. A sufficient temperature difference can be secured.
  • thermoelectric conversion layer can be comprised with the same type of single material, manufacture is made easy.
  • thermoelectric generator of this embodiment will be described with reference to FIG. FIG. 7 shows a cross-sectional view of the thermoelectric generator 70 of the present embodiment.
  • the feature of the thermoelectric power generation element 70 is that the base material 2 has the reinforcing material 12.
  • the structure of the thermoelectric power generation element 70 is the same as that of the thermoelectric power generation element 50 except for the reinforcing material 12.
  • thermoelectric generator of this embodiment will be described with reference to FIG. FIG. 8 shows a cross-sectional view of the thermoelectric generator 80 of the present embodiment.
  • a feature of the thermoelectric power generation element 80 is that it includes the protective layer 13.
  • the structure of the thermoelectric generation element 80 is the same as that of the thermoelectric generation element 50 except for the protective layer 13.
  • thermoelectric generator of this embodiment will be described with reference to FIG. FIG. 9 shows a cross-sectional view of the thermoelectric generator 90 of this embodiment.
  • a feature of the thermoelectric power generation element 90 is a thermoelectric power generation element 90 in which a plurality of stacked thermoelectric power generation elements are connected in series.
  • a protective layer 13 may be inserted between the stacked thermoelectric generators.
  • the structure of the thermoelectric power generation element 90 is the same as that of the thermoelectric power generation element 50 except that the thermoelectric power generation element 90 includes a plurality of stacked thermoelectric power generation elements.
  • thermoelectric generator of this embodiment will be described with reference to FIG. FIG. 10 shows a cross-sectional view of the thermoelectric generator 100 of this embodiment.
  • the feature of the thermoelectric power generation element 100 is that it has a thermoelectric conversion layer and wiring on both surfaces of the substrate 2 and is connected in series.
  • the structure of the thermoelectric power generation element 100 is the same as that of the thermoelectric power generation element 50 except that the thermoelectric conversion layer and the wiring are provided on both surfaces of the substrate 2.
  • FIG. 14 shows a cross-sectional structure of a thermoelectric conversion element using a conventional inorganic material.
  • a P-type semiconductor material 16 and an N-type semiconductor material 17 made of an inorganic crystal such as bismuth tellurium are mounted on a ceramic substrate 20 through an electrode 18 and a wiring 19 so as to correspond to the heat absorption 21 side and the heat dissipation 22 side. Yes.
  • Power generation is performed by the temperature difference 23 generated between the heat absorption 21 side and the heat dissipation 22 side. Since conventional inorganic thermoelectric power generation elements are not flexible, they cannot cope with curved shapes. Further, the use of a plurality of thermoelectric conversion materials of the P-type semiconductor material 16 and the N-type semiconductor material 17 causes a decrease in manufacturability.
  • the base material 2 used for the thermoelectric generator of this embodiment is made of a flexible material. This material is required to have electrical insulation and not deteriorate due to the manufacturing process of the thermoelectric power generation element, the environmental temperature during use, the humidity, or the like.
  • the required heat resistance varies depending on the application. For example, when the thermoelectric power generation element of the present embodiment is used for power generation using the waste heat of lighting equipment as a heat source, it is exposed to a temperature of about 100 ° C. Heat resistance against this temperature is required.
  • the corrugated structure base material 2 used in the present embodiment has a sufficient temperature difference in a substantially vertical direction with respect to the installation surface of the thermoelectric power generation element generated between the heat absorption side at the bottom and the heat dissipation side at the top. It must be low in thermal conductivity so that it can be increased. Furthermore, it is necessary that the material is easy to mold into a wave-shaped structure.
  • resins such as polyimide, polyethylene naphthalate, polyethylene terephthalate, polycarbonate, epoxy resin, aramid resin, silicone resin, ABS resin, and various rubber elastic resins such as silicone rubber and polybutadiene rubber Can be used.
  • the substrate has a thickness of 10 microns or more.
  • the thickness is 2 mm or less as a thickness for facilitating the transfer of the temperature of the heat source to the thermoelectric generator element part without impairing flexibility. If it is 2 mm or less, it can follow also when the installation surface of a thermoelectric power generation element has a fixed curvature.
  • the layer for reducing the thermal resistance with a heat source part may be apply
  • the flexibility of the base material can contribute to increasing the efficiency at the time of heat recovery from the heat source part, and is effective in improving the thermoelectric power generation performance.
  • the base material used here needs to have electrical insulation, it does not necessarily need to be formed with a single organic material.
  • the organic material may contain an inorganic filler or an inorganic fiber. Silicon filler or glass fiber can be used to reduce the linear expansion coefficient.
  • thermoelectric generator of this embodiment can use a conductive polymer material.
  • conductive polymer materials having P-type semiconductor characteristics applicable to this embodiment include polymers having thiophene and its derivatives as a skeleton, polymers having phenylene vinylene and its derivatives as a skeleton, and polymers having aniline and its derivatives as a skeleton.
  • Oligomers and polymers having pyrrole and its derivatives in the backbone Oligomers and polymers having acetylene and its derivatives in the backbone, polymers having heptadiene and its derivatives in the backbone, phthalocyanines and their derivatives, diamines, phenyldiamines and their Derivatives, pentacene and its derivatives, porphyrin and its derivatives, cyanine, quinone, naphthoquinone, and other small molecules.
  • Polythiophene and its derivatives can be used particularly advantageously from the standpoints of manufacturability, stability in the atmosphere, charge mobility and the like.
  • the thermal conductivity of the conductive polymer is about 1/10 to 1/100 that of the inorganic thermoelectric material, the heat conducted from the heat absorbing portion to the heat radiating portion can be greatly reduced. That is, the temperature difference between the heat absorption part and the heat radiation part can be maintained sufficiently large.
  • the film thickness of the conductive polymer used in this embodiment can be 0.01 mm or more and 2 mm or less.
  • the required flexibility can be imparted to the thermoelectric element by setting the film thickness of the conductive polymer to 2 mm or less.
  • the current amount required in order to take out a voltage as a thermoelectric power generation element can be ensured by setting it as 0.01 mm or more.
  • a conductive polymer having P-type semiconductor characteristics can be used.
  • the cross-sectional area perpendicular to the heat flow direction of the wiring straddling the heat absorption side at the bottom and the heat dissipation side at the top is the cross-sectional area perpendicular to the heat flow direction of the conductive polymer. It is desirable that it is small compared. This is because, when the cross-sectional area of the wiring part is large, heat is easily conducted through the wiring part in the direction of reducing the temperature difference between the heat absorbing part and the heat radiating part, so that it is difficult to ensure the temperature difference.
  • the cross-sectional area of the wiring part is small, sufficient current cannot be taken out, and reliability may be impaired due to insufficient physical strength.
  • polyaniline thermal conductivity 0.2 W / mK
  • copper thermal conductivity 372 W / mK
  • the wiring is maintained while maintaining the temperature difference between the heat absorption side and the heat dissipation side.
  • the ratio of the cross-sectional area of the copper wiring to the cross-sectional area of the polyaniline element needs to be 1/10 or less. More preferably, 1/30 or less is desirable.
  • the linear expansion coefficient of the conductive polymer is about 10 times larger than that of the conductive material used for the wiring part. Therefore, the reliability is lowered due to the mismatch of the linear expansion coefficients.
  • the temperature of the heat source varies depending on the operation status of the CPU of the PC or server. In such applications, cracks occur in the wiring portion or the contact portion between the conductive polymer and the wiring, and the reliability of the element is impaired.
  • a large-area thermoelectric conversion element is required. At this time, for example, when a square thermoelectric conversion element is used, the influence of the mismatch of the linear expansion coefficient is particularly noticeable particularly at the outer corner.
  • the metal material has high thermal conductivity. Therefore, in the wiring portion extending between the heat absorbing portion and the heat radiating portion, heat is generated in a direction that reduces the temperature difference. Flow and power generation performance will be reduced. Therefore, in order to maintain the temperature difference, it is necessary to reduce the cross-sectional area of the wiring part as much as possible. On the other hand, by reducing the cross-sectional area, the physical strength is lowered and the reliability is lowered when a thermal load is generated.
  • the thermoelectric conversion element of this embodiment can use a structure having elasticity in the wiring portion.
  • the wiring portion 11 is formed when expansion / contraction occurs such as a loop-like slack shape, a bellows shape (FIG. 9), a lattice shape (FIG. 10), or the like. Can relieve stress and make it hard to break. In this way, even when using a base material that reversibly expands and contracts by 10% or more, it is possible to use it while ensuring reliability.
  • FIG. 11 shows a plan view of the thermoelectric generator 110 of the present embodiment.
  • a feature of the thermoelectric generator 110 is that the wiring has a bellows structure wiring 14.
  • Other elements constituting the thermoelectric power generation element 110 are the same as those of the thermoelectric power generation element 30.
  • FIG. 12 is a plan view of the thermoelectric generator 120 of the present embodiment.
  • a feature of the thermoelectric power generation element 120 is that the wiring has a lattice structure wiring 15.
  • Other elements constituting the thermoelectric power generation element 120 are the same as those of the thermoelectric power generation element 30.
  • the material of the wiring part having elasticity is not only a metal such as a gold wire or an aluminum wire, but also a rubber material kneaded with a conductive fiber such as a carbon nanotube, or a liquid metal in the channel structure. It is possible to fill it with a conductor.
  • the liquid metal include a gallium indium alloy (for example, Ga75.5In24.5 has a melting point of about 15 ° C.).
  • thermoelectric conversion layer and the wiring with the conductive polymer of this embodiment an electrode made of a metal thin film layer having good conductivity is provided, and the thermoelectric conversion layer and the wiring are connected via this electrode. Can do. Thereby, the contact resistance between a thermoelectric conversion layer and wiring can be reduced, and the performance enhancement of an element can be achieved.
  • a suitable ratio of the wiring cross-sectional area of the wiring part having elasticity of the present embodiment and the cross-sectional area perpendicular to the heat flow direction of the thermoelectric conversion layer by the conductive polymer is the conductivity or thermal conductivity of the material used for the wiring part. by.
  • the ratio of the cross-sectional area of the wiring to the cross-sectional area of the conductive polymer element is 1 / 30 or less. More preferably, 1/100 or less is desirable. This is because if the ratio of the cross-sectional area exceeds 1/30, the wiring structure relaxes the temperature difference between the heat absorbing portion and the heat radiating portion.
  • the length in the heat flow direction of the thermoelectric conversion layer by the conductive polymer of the present embodiment can be 0.5 mm or more and 10 mm or less. By setting it as the range of this length, it is excellent in a softness
  • the element can be covered with a material having high thermal conductivity as a protective layer for protecting the thermoelectric conversion layer and wiring.
  • This protective layer is effective for mechanical protection of the thermoelectric conversion layer surface, improvement of moisture resistance, ensuring insulation, and the like. This also makes it possible to reduce contact resistance with the heat source and improve heat dissipation.
  • thermoelectric generator of this embodiment is a method for manufacturing a thermoelectric generator of the present invention.
  • a moldable and flexible base material to be the base material 2 of the thermoelectric power generation element is prepared, and after cleaning with a solvent such as alcohol, surface treatment such as plasma treatment is performed.
  • thermoelectric conversion layer 8 is formed.
  • the thermoelectric conversion layer is a method of printing and pasting a paste in which a conductive polymer is dissolved in a solvent, drying it into a film, and pasting it on a substrate, cutting a bulk material of a conductive polymer into a film, and pasting it. Is possible.
  • thermoelectric conversion material As a printing method of the paste-like thermoelectric conversion material, methods such as bar coating, screen printing, and spin coating are possible after performing masking as necessary. Or the method of apply
  • a paste of a thermoelectric conversion material can be applied and dried to form a conductive polymer film. In order to obtain a conductive polymer film having a high electron mobility, it is effective to print while orienting the conductive polymer monomer dispersed in the ink.
  • thermoelectric conversion layer can be formed by attaching a conductive polymer film to the adhesive and curing the adhesive.
  • connection portions 10 for fixing the wiring are provided at both ends of the obtained thermoelectric conversion layer.
  • an electrode can be formed by providing a metal layer in a connection part.
  • a surface treatment such as plasma treatment may be performed on the surface of the thermoelectric conversion layer in advance.
  • the electrode As a means for forming the electrode, a method such as a method of printing a conductive paste using a mask or a gas layer growth method such as vapor deposition or sputtering is possible.
  • the electrode material can be gold, silver, platinum, copper, aluminum, rhodium, or the like. Gold can be suitably used in that it is less affected by oxidation and improves the production yield and can easily reduce the contact resistance with the organic conductive polymer. In order to reduce the contact resistance between the thermoelectric conversion layer and the wiring, it is effective to form a fine unevenness on the surface of the connection part or the electrode by a nanoimprint method or the like to increase the surface area.
  • the wiring 11 is formed in the connection portion. It is desirable that the wiring has a structure that is not easily stressed in order to prevent breakage caused by mismatching of the linear expansion coefficients of the base material and the thermoelectric conversion layer due to a rise and fall in temperature when the thermoelectric power generation element is used.
  • a wire such as gold or copper is connected to the connecting portion, or, when an electrode is formed, the wire and the electrode are connected by a conductive paste. At this time, the wire is allowed to have slack.
  • the wire can also have a bellows structure or a lattice structure.
  • Wiring can also be formed by a printing method. For example, by applying a paste in which carbon nanotubes are dispersed in silicone rubber, it is possible to form a wiring corresponding to a stress when the heat load is high. Also, when gold or copper is used, wiring corresponding to stress can be formed by using a bellows structure or a lattice structure.
  • the base material on which the thermoelectric conversion layer and the wiring are formed is formed into a corrugated structure.
  • a hot embossing method can be used. That is, two molds having a wave shape are prepared, and the bent portion and the wave shape of the mold are aligned. Thereafter, the substrate on which the thermoelectric conversion layer and the wiring are formed is sandwiched between heated molds and held for an appropriate time, whereby the wave shape can be transferred to the substrate and molded.
  • the reinforcing material 12 is formed on the base material in the step of FIG. 13F.
  • the reinforcing material 12 can be obtained by applying and embedding a flexible resin material on the back surface of the substrate 2.
  • the protective layer 13 is formed in the process of FIG. 13G as needed.
  • the protective layer is formed by attaching a film-like sheet having insulating properties.
  • the electrode and the like can be exposed by a photolithography method after the protective layer is formed.
  • a thermoelectric power generation element can be electrically connected with an external circuit.
  • the electrode can be exposed by laser processing and desmear processing after laser processing, and can be electrically connected to an external circuit.
  • Example 1 A PET (polyethylene terephthalate) base material having a thickness of 0.1 mm was prepared, degreased and washed with ethanol, and subjected to surface treatment with oxygen plasma for 1 minute. Subsequently, in order to fix the film-like conductive polymer to the substrate, a silicone resin adhesive was applied to the substrate surface by a screen printing method.
  • thermoelectric conversion layer was formed on the PET substrate.
  • connection terminal portion with the external circuit was formed by etching the electrode pad portion with a UV-YAG laser, performing plasma treatment at 150 ° C. to remove the residue after laser processing, and exposing the electrode pad.
  • thermoelectric conversion layers were connected in series in an array on a 200 mm square PET substrate.
  • a fluorescent lamp with a temperature of about 65 ° C. was used on the heat absorption side of the obtained element and the atmosphere at 24 ° C. was used on the heat dissipation side, a power generation amount of about 0.1 mW was obtained.
  • thermoelectric power generation elements Two types were produced in which the length of the wiring connecting the thermoelectric conversion layers made of the conductive polymer in series was 8 mm and 5 mm.
  • the obtained thermoelectric power generation element was subjected to a thermal shock test in which a cycle of holding at ⁇ 40 ° C. for 15 minutes, holding at 25 ° C. for 5 minutes, and holding at 125 ° C. for 15 minutes was one cycle.
  • the thermoelectric power generation element with a wiring length of 8 mm has a long number of cycles and has a long-term reliability as compared with a thermoelectric power generation element with a wiring length of 5 mm.
  • the length of the wiring is 10% or more longer than the length between adjacent thermoelectric conversion layers, long-term reliability can be secured.
  • thermoelectric generator with high long-term reliability can be realized.
  • a PEN (polyethylene naphthalate) substrate having a thickness of 0.1 mm was prepared and subjected to oxygen plasma treatment for 1 minute. Subsequently, in order to fix the film-like conductive polymer to the substrate, a silicone resin adhesive was applied to the substrate surface by a screen printing method.
  • a PEN semiconductor material (trade name: PH1000) monomer aqueous solution is applied onto a PDMS substrate and dried under reduced pressure overnight at 10 mbar at room temperature.
  • a conductive polymer film was produced on the substrate.
  • the obtained substrate was stretched while being heated to 70 ° C., cut out into dimensions of 5 mm in length ⁇ 2 mm in width ⁇ 0.05 mm in thickness, and then bonded to the aforementioned silicone resin adhesive, and 2 at 70 ° C.
  • the silicone resin adhesive was cured by heat treatment for a period of time.
  • a thermoelectric conversion layer was formed on the PEN substrate.
  • the obtained base material with the conductive polymer layer is subjected to oxygen plasma treatment for 1 minute, and a metal mask patterned so that the end of the conductive polymer layer is opened is placed on the base material.
  • An electrode having a thickness of about 100 nm was formed by sputtering.
  • a conductive paste is printed and heat-treated using a screen printing method so that a bellows structure is formed. did. (See Figure 11)
  • molding and protective layer formation were performed in the same process as in Example 1 to obtain a thermoelectric power generation element.
  • thermoelectric conversion layers were connected in series in an array on a 200 mm square PEN substrate.
  • a fluorescent lamp with a temperature of about 65 ° C. was used on the heat absorption side of the obtained element and the atmosphere at 24 ° C. was used on the heat dissipation side, a power generation amount of about 0.1 mW was obtained.
  • thermoelectric power generation elements were produced by the above process, when the wiring connecting the conductive polymer layers in series had a bellows structure and a straight structure.
  • the obtained thermoelectric power generation element was subjected to a thermal shock test in which a cycle of holding at ⁇ 40 ° C. for 15 minutes, holding at 25 ° C. for 5 minutes, and holding at 125 ° C. for 15 minutes was one cycle.
  • a thermal shock test in which a cycle of holding at ⁇ 40 ° C. for 15 minutes, holding at 25 ° C. for 5 minutes, and holding at 125 ° C. for 15 minutes was one cycle.
  • the thermoelectric power generation element with the bellows-structured wiring has a longer number of cycles and the long-term reliability than the thermoelectric power generation element with the linear structure wiring.
  • thermoelectric generator with high long-term reliability can be realized.
  • Example 3 A polyimide base material having a thickness of 0.1 mm was prepared, and oxygen plasma treatment was performed for 1 minute. Subsequently, in order to fix the thermoelectric conversion film, a silicone resin adhesive was applied by a screen printing method. The above process was performed on both sides of the substrate.
  • the obtained base material with a conductive polymer layer is subjected to oxygen plasma treatment for 1 minute, and a metal mask patterned so as to open the ends of the conductive polymer layer is placed on the substrate. Electrodes having a thickness of about 100 nm were formed on the front and back surfaces of the substrate by sputtering, and electrodes were formed at the ends of the conductive polymer layer formed on both sides of the substrate. Thereafter, molding and protective layer formation were performed by the same process as in Example 1 to obtain a thermoelectric power generation element (see FIG. 10).
  • thermoelectric conversion layers were connected in series in an array on a 200 mm square polyimide substrate.
  • a fluorescent lamp with a temperature of about 65 ° C. was used on the heat absorption side of the obtained element and the atmosphere at 24 ° C. was used on the heat radiation side, a power generation amount of about 0.2 mW was obtained.
  • thermoelectric conversion elements Two types were manufactured by the above process, in which the wiring connecting the conductive polymer layers in series had a bellows structure and a linear structure.
  • the obtained thermoelectric power generation element was subjected to a thermal shock test in which a cycle of holding at ⁇ 40 ° C. for 15 minutes, holding at 25 ° C. for 5 minutes, and holding at 125 ° C. for 15 minutes was one cycle.
  • a thermal shock test in which a cycle of holding at ⁇ 40 ° C. for 15 minutes, holding at 25 ° C. for 5 minutes, and holding at 125 ° C. for 15 minutes was one cycle.
  • the thermoelectric power generation element with the bellows-structured wiring has a longer number of cycles and the long-term reliability than the thermoelectric power generation element with the linear structure wiring.
  • FIG. 15 is a diagram showing a cross-sectional structure of a thermoelectric power generation element representing the second embodiment of the present invention.
  • FIG. 16 is a diagram showing a planar structure of a thermoelectric power generation element representing the embodiment of the present invention.
  • FIG. 15 shows a cross-sectional structure taken along line AA ′ of FIG.
  • the thermoelectric power generating element includes a base material 32, a top portion 33, a first bottom portion 34, a second bottom portion 35, a first slope 36, a second slope 37, a first thermoelectric conversion layer 38, and a second thermoelectric conversion.
  • the layer 39, the pad electrode part 40, the fine wiring part 41, the first electrode 42, and the second electrode 43 are included.
  • an output is obtained from the first electrode 42 and the second electrode 43 by providing a temperature difference between the bottom 34 and the top 33.
  • thermoelectric power generation element has a pad electrode portion 40 for connecting the first thermoelectric conversion layer 38 or the second thermoelectric conversion layer 39 and the fine wiring portion 41.
  • the pad electrode and the fine wiring are made of rolled copper, and the surface of the rolled copper is silver-plated to prevent oxidation.
  • Silver plating has the advantage of lowering the electrical contact resistance when the thermoelectric conversion layer 38 is bonded to the pad electrode portion 40 with a silver paste.
  • the substrate 32 is a polyimide film having a thickness of 50 ⁇ m.
  • a substrate having heat resistance at 150 ° C. such as a polyimide film is suitable for this embodiment.
  • the pad electrode and the fine wiring were formed by adhering a rolled copper thin film on the substrate 32 and then removing unnecessary copper by etching using a photolithography method.
  • the present embodiment is characterized in that the pad electrode portion 40 and the fine wiring portion 41 are in contact with the base material 32.
  • the fine wiring portion 41 has a thickness of 18 ⁇ m and a line width of 50 ⁇ m. In order to maintain the temperature difference between the top 33 and the bottom 34, it is desirable that the width of the fine wiring is narrow. On the other hand, if the width of the fine wiring is narrowed, the yield of the element is lowered. Therefore, the width of the fine wiring is suitably 15 ⁇ m to 60 ⁇ m.
  • the thickness of the pad electrode part 40 is 18 ⁇ m, the dimension of the pad electrode part 40 is 3 mm ⁇ 4 mm, and the width of the gap between adjacent pad electrodes 40 in the plan view is 2 mm.
  • the ratio of the two electrode pads having a width of 4 mm in the length 12 mm of the top broken line (B-B ′ in FIG. 16) is 66%.
  • the interval between the bottoms of the corrugated base material is 3 mm.
  • the first thermoelectric conversion layer 38 and the second thermoelectric conversion layer 39 are made of poly 3,4-ethylenedioxythiophene / polystyrene sulfonate (poly (3,4-ethylenedioxythiophene) / poly (styreneenesulfonate) as a conductive polymer material film. ), Hereinafter referred to as PEDOT / PSS.)
  • the film has a width of 4 mm, a length of 15 mm, and a thickness of 40 ⁇ m.
  • both ends of the conductive organic film were bonded to the two pad electrodes. After bonding, the bonded portion was cured by heating at 150 ° C. for 30 minutes. The electrical resistance between the pad electrodes connected by one thermoelectric conversion layer after curing was 1 ⁇ . When gold plating was applied to the pad electrode surface, the electrical resistance was 0.8 ⁇ . This is because the contact resistance is reduced because gold is equal to the work function of PEDOT / PSS.
  • thermoelectric power generation element avoids bending at the fine wiring portion and bends at the pad electrode portion 40 to form the top portion and the bottom portion.
  • the first advantage of the present embodiment is that the fine metal wiring portion does not break during bending because the pad electrodes are formed on the folded top and bottom. As a result, the yield is improved and the reliability is improved. Wiring using rolled copper is resistant to breakage.
  • the second advantage is that since the folded top and bottom are pad electrodes having a certain thickness, a high-density corrugated structure folded at an acute angle can be stably maintained. Thereby, it can prevent that a bending angle increases by the elasticity of a base film, and a wiring part and a thermoelectric conversion layer contact-short-circuit.
  • the third advantage is that since both ends of the thermoelectric conversion part connect the top and bottom of the wave-shaped structure, a large temperature difference is created between both ends of the thermoelectric conversion layer, and a high power generation amount is obtained.
  • thermoelectric power generation element has higher reliability and mass productivity than wiring formed of bonding wires because the wiring is formed of rolled copper.
  • the base film does not deteriorate due to bonding, and the connection strength is not lowered due to a low bonding temperature, so that there is no disconnection. Further, there is an advantage that it does not take time and effort to form a great number of bonding wires.
  • FIG. 17 is a diagram showing a cross-sectional structure of a thermoelectric power generation element representing this embodiment.
  • FIG. 18 is a diagram showing a planar structure of a thermoelectric power generation element representing this embodiment.
  • FIG. 17 shows a cross-sectional structure taken along CC ′ in FIG.
  • This thermoelectric power generation element is a thermoelectric power generation element in which the number of thermoelectric conversion parts of the thermoelectric power generation elements in FIGS. 15 and 16 is quadrupled.
  • the support base material 31 the base material 32, the top 33, the first bottom 34, the second bottom 35, the first slope 36, the second slope 37, the first thermoelectric conversion layer 38, the first 2 thermoelectric conversion layers 39, pad electrode portions 40, fine wiring portions 41, first electrodes 42, and second electrodes 43.
  • the base material 32 is a polyimide film, and the thickness of the base material 32 is 40 ⁇ m to 80 ⁇ m, which is suitable for keeping the folded and corrugated shape.
  • thermoelectric power generation element has a structure in which eight thermoelectric conversion layers are wired in series using pad electrodes and fine wiring, bent into a wave shape, and bonded to the support substrate 31.
  • the dimensions of the thermoelectric conversion layer 38, the pad electrode portion 44, and the fine wiring portion 41 are the same as those in FIGS.
  • the ratio of the four electrode pads on the broken line to the length of the broken line is 70%.
  • the length between the top and the bottom is 15 mm and the gap between the bottoms of the corrugated structure is 3 mm.
  • the dimensions of the outer shape after bending are 26 mm in length, 14 mm in width, and 14 mm in height.
  • thermoelectric power generation element an output is obtained from the first electrode 42 and the second electrode 43 by providing a temperature difference between the bottom portions 34 and 35 and the top portion 33. 17 and 18, an output four times that of the thermoelectric generators shown in FIGS. 15 and 16 can be obtained.
  • FIG. 19 shows a first diagram showing a method for manufacturing the thermoelectric generator of this embodiment.
  • a rectangular pad electrode portion 40, a fine wiring portion 41 connecting the pad electrode portion 40, a first electrode 42, and a second electrode 43 are formed on the base material 32 using rolled copper by photolithography and etching.
  • FIG. 20 shows a second diagram illustrating the method for manufacturing the thermoelectric generator of this embodiment.
  • a conductive adhesive 81 such as silver paste is applied to the end of the opposing pad electrode.
  • the conductive adhesive 81 is dropped onto the end of the pad electrode using a dispenser or the like, and an amount necessary for adhesion is applied.
  • FIG. 21 shows a third diagram showing the method for manufacturing the thermoelectric generator of this embodiment. Eight strips with a width of 4 mm and a length of 15 mm are cut out from a PEDOT / PSS film having a thickness of 40 ⁇ m, and 8 places are pasted so as to connect the pad electrodes. Pad electrode part 40, first thermoelectric conversion layer 38, pad electrode part 40, fine wiring 41, pad electrode part 40, first thermoelectric conversion layer 38, fine wiring 41 and the like from first electrode 42 through fine wiring Connect in series. Further, the fine wiring 41 is folded back in the opposite direction at the right end of FIG. 21, and the pad electrode portion 40, the second thermoelectric conversion layer 39, the pad electrode portion 40, the fine wiring 41, the pad electrode portion 40, and the second thermoelectric conversion layer 39.
  • the pad electrode part 40 and the fine wiring 41 are connected in series and folded at the left end. In this manner, the eight thermoelectric conversion layers from the first electrode 42 are connected in series with the pad electrode portion and the fine wiring to be connected to the second electrode 43.
  • the film to which the thermoelectric conversion layer was connected was sintered in an oven at 150 ° C. for 15 minutes, and the pad electrode portion 40 and the thermoelectric conversion layers 38 and 39 were electrically connected.
  • FIG. 22 shows a fourth diagram illustrating the method for manufacturing the thermoelectric generator of this embodiment.
  • the base material 32 is bent by alternately repeating a mountain fold and a valley fold along a line passing through the pad electrode. When folding in a straight line, it is effective to attach a straight mold. It is also effective to raise the temperature of the substrate when bending.
  • FIG. 23 shows a fifth diagram illustrating the method of manufacturing the thermoelectric generator of this embodiment.
  • FIG. 23 shows a cross-sectional structure taken along the line C-C ′ of FIG.
  • the first bottom portion 34 and the second bottom portion 35 are bent into a periodic corrugated shape so that the distance between them is constant.
  • the support base 31 is fixed with an adhesive.
  • the support base 31 is a resin such as polyethylene, an adhesive containing a silylated urethane resin is used and fixed and bonded for at least 30 minutes.
  • thermoelectric power generation element of this embodiment is shown.
  • the interval between the bottoms is referred to as a pitch length L1
  • the slope length is referred to as a slope length L2.
  • FIG. 25 shows a schematic diagram of a cross section of a thermoelectric power generation element in which the bending of the top and bottom is relaxed. This is a case where the bending is insufficient or the base material is relaxed after the bending, and the acute angle bending is changed to an obtuse angle bending.
  • the first cause of bending is when the pad electrode is thin.
  • the second cause of bending is when the occupancy of the pad electrode portion is small.
  • the occupation rate of the pad electrode portion is the length of the pad electrode portion in the length of the bent portion.
  • thermoelectric power generation elements decreases. Even if the bending is somewhat relaxed, it does not come into contact when the pitch length L1 is sufficiently larger than the slope length L2, but comes into contact when the pitch length L1 is smaller than the slope length L2. That is, when L1 / L2, which is the ratio between L1 and L2, is small, the yield decreases.
  • FIG. 26 shows the pad electrode thickness d dependency of the yield Y1 and the relative power generation efficiency ⁇ in the present embodiment.
  • the yield was obtained by producing 100 thermoelectric generators. The same tendency was shown when the thickness of the substrate was 40 ⁇ m to 80 ⁇ m.
  • Yield Y1 decreases due to bending relaxation. That is, when the pad electrode is thinned, bending becomes easy to relax, thereby reducing the output and reducing the yield.
  • the thickness d of the pad electrode is preferably 10 ⁇ m or more, and in order to obtain a yield of 90% or more, the thickness d of the pad electrode is preferably 15 ⁇ m or more.
  • the thickness of the fine wiring is the same as the thickness of the pad electrode. Since the fine wiring easily conducts heat, when the thickness of the fine wiring is increased, the temperature difference between the bottom and the top of the base material is reduced, and the relative power generation efficiency is lowered. Considering relative power generation efficiency, the thickness d of the pad electrode is preferably 40 ⁇ m or less, and more preferably 35 ⁇ m or less.
  • the thickness d of the pad electrode is desirably 10 ⁇ m to 40 ⁇ m, and more desirably 15 ⁇ m to 35 ⁇ m.
  • the thickness d of the pad electrode was set to 18 ⁇ m in order to increase the power generation efficiency. As a result, a yield of 92% and a relatively high power generation efficiency were obtained.
  • FIG. 27 shows the pad electrode occupancy ratio X dependency of the corrugated yield Y2 and the adhesive protrusion yield Y3 in the thermoelectric generator of this embodiment.
  • the pad electrode occupation ratio X is the ratio of the width of the pad electrode section 40 to the width in the direction of the top D-D 'in FIG. Y2 is 70% or more because the pad electrode occupation ratio X is 52% or more.
  • the reason why the waveform yield Y2 is 90% or more is that the pad electrode occupation ratio X in the broken line portion is 65% or more.
  • Silver paste adhesive protrudes from the pad electrode when a thermoelectric conversion sheet is applied.
  • the pad electrode occupation ratio X is high, the space between the pad electrodes becomes small.
  • the gap between the pad electrodes is reduced, the probability that the protruding silver paste short-circuits adjacent pad electrodes increases, and the yield decreases.
  • the adhesive yield Y3 was 70% or more, and the pad electrode occupation ratio X was 90% or less.
  • the adhesive yield Y3 was 90% or more, and the pad electrode occupation ratio X was 85% or less.
  • the pad electrode occupation ratio X is desirably 52% to 90%, and more desirably 65% to 85%.
  • the pad electrode occupation ratio X was set to 66%, and a yield of 90% was obtained.
  • the occupation ratio X was set to 80%, and a yield of 99.5% was obtained for the occupation ratio X.
  • FIG. 28 shows the L1 / L2 ratio dependency of the wiring contact yield Y4 and the power generation amount per unit area in the thermoelectric power generation element of this embodiment.
  • the L1 / L2 ratio is desirably 50% or less. Since the power generation amount per unit area increases in inverse proportion to L1, it is more preferably 37% or less. After all, the L1 / L2 ratio is desirably 7% to 50%, and more desirably 13% to 37%. In the thermoelectric power generation element of this embodiment, the L1 / L2 ratio was set to 20%, and both a 98% wiring contact yield and a high power generation amount per unit area were achieved.
  • FIG. 29 is a diagram showing a cross-sectional structure of the thermoelectric generator of this embodiment.
  • FIG. 30 is a diagram illustrating a planar structure of the thermoelectric generator of the present embodiment.
  • the configuration of this thermoelectric power generation element is the same as that of the thermoelectric power generation elements of FIGS. 17 and 18, but was manufactured by a different method.
  • the basic configuration of the thermoelectric power generation element includes a support base 51, a base 52, a top 53, a first bottom 54, a second bottom 55, a first slope 56, a second slope 57,
  • the first thermoelectric conversion layer 58, the second thermoelectric conversion layer 59, the fine wiring portion 61, the first electrode 62, the second electrode 63, and the pad electrode portion 64 are included.
  • the pad electrode and the fine wiring are formed by screen-printing a conductive paste, which is a mixture of silver particles and a resin, on the substrate 52 using a printing mask, and then sintering. Is formed.
  • the thickness of the pad electrode and the fine wiring is 15 ⁇ m, and the width of the fine wiring is 40 ⁇ m. Since the cross-sectional area of the fine wiring is small, the effect of maintaining the temperature difference between the bottom and the top is high.
  • the thermoelectric conversion layer was formed by forming a PEDOT / PSS in ink form on a base material on which pad electrodes and fine wiring were formed by screen printing, heating at 80 ° C. and drying. The thickness of the thermoelectric conversion layer is 30 ⁇ m. The thermoelectric conversion layer was bonded to the pad electrode and the substrate. Since the electrical resistance of the conductive paste is high, the output power is halved. Since all the thermoelectric generators can be formed by printing, a low-cost thermoelectric generator can be realized.
  • FIG. 31 is a plan structural view of the thermoelectric generator of this embodiment. The bottom is formed by folding at the valley fold line 75, and the top is formed by folding at the mountain fold line 76.
  • FIG. 32 is a structural diagram of pad electrodes and wirings of the thermoelectric generator of this embodiment. FIG. 32 shows an example of dimensions of the extraction electrode 71, the copper electrode 72, the fine copper wiring 74, and the like.
  • FIG. 33 is an external view of the thermoelectric generator of this embodiment.
  • the thermoelectric power generation element includes a corrugated substrate film 82, a thermoelectric conversion layer film 73, a copper electrode 72, a fine copper wiring 74, a folded wiring 77, a lead electrode 71, a lead electrode 78, a lead wire 79, and a lower support.
  • a base film 81 and an upper support base film 83 are included.
  • the basic configuration is the same as that in the case of using rolled copper, and here has 240 thermoelectric conversion layers.
  • thermoelectric power generation element The dimensions at the time of assembly were 60 mm ⁇ 60 mm ⁇ 14 mm. Since the height is relatively high at 14 mm, the temperature difference in the direction perpendicular to the installation surface is large. A temperature difference of 10 ° C. was given to this thermoelectric power generation element, an external resistance of about 240 ⁇ was connected, and the voltage was measured, and an output of 60 ⁇ W was obtained.
  • thermoelectric generator When PEDOT / PSS was used, the Seebeck coefficient was 100 ( ⁇ V / K). The output of 60 ⁇ W is an output capable of wireless communication. When this thermoelectric generator is combined with a sensor, it can be used in a sensor network that collects information obtained by the sensor by wireless communication.
  • a structure in which the base material 2 is reinforced with the reinforcing material 12 shown in FIG. 7 of the first embodiment is also possible.
  • the structure which protects the thermoelectric power generation element shown in FIG. 8 with the protective layer 13 is possible.
  • stacked the thermoelectric power generation element shown in FIG. 9 is possible.
  • the structure which forms a thermoelectric conversion layer and wiring in both surfaces of the surface of the base material 2 and a back surface shown in FIG. 10 is possible.
  • thermoelectric power generation element that connects a plurality of thermoelectric conversion layers in series
  • the thermoelectric generator has a corrugated base material composed of a bottom and a top
  • the thermoelectric conversion layer has a first thermoelectric conversion layer along a first slope between the top and a first bottom connected to the top;
  • the thermoelectric conversion layer has a second thermoelectric conversion layer along a second slope between the top and a second bottom connected to the top;
  • the first thermoelectric conversion layer and the second thermoelectric conversion layer have the same type,
  • the first thermoelectric conversion layer is on the top side and the first bottom side
  • the second thermoelectric conversion layer has connection points with wirings on the top side and the second bottom side, respectively.
  • connection between the first thermoelectric conversion layer and the second thermoelectric conversion layer is The wiring connected at the connection point on the top side of the first thermoelectric conversion layer is connected along the second slope, and connected at the connection point on the bottom side of the second thermoelectric conversion layer, Alternatively, the wiring connected at the connection point on the top side of the second thermoelectric conversion layer is a connection connected at the connection point on the bottom side of the first thermoelectric conversion layer along the first slope.
  • a thermoelectric power generation element, wherein both ends of the series connection are open electrodes.
  • thermoelectric power generation element that connects a plurality of thermoelectric conversion layers in series
  • the thermoelectric power generation element has a substrate having a wave shape structure in which a bottom portion and a top portion are alternately repeated,
  • the thermoelectric conversion layer has a first thermoelectric conversion layer along a first slope between the top and a first bottom connected to the top;
  • the thermoelectric conversion layer has a second thermoelectric conversion layer along a second slope between the top and a second bottom connected to the top;
  • the first thermoelectric conversion layer and the second thermoelectric conversion layer have the same type,
  • the first thermoelectric conversion layer is on the top side and the first bottom side
  • the second thermoelectric conversion layer has connection points with wirings on the top side and the second bottom side, respectively.
  • thermoelectric conversion layer Connection between the first thermoelectric conversion layers, The first thermoelectric conversion line adjacent to the first thermoelectric conversion layer is connected to the connection point on the top side of the first thermoelectric conversion layer along the second slope and at the second bottom part.
  • a connection that connects at the connection point on the bottom side of the layer, Connection between the second thermoelectric conversion layers, The wiring connected at the connection point on the top side of the second thermoelectric conversion layer is along the first slope, the second thermoelectric conversion next to the second thermoelectric conversion layer at the first bottom portion.
  • thermoelectric power generation element wherein both ends of the series connection are open electrodes. (Appendix 3) The thermoelectric power generation element according to any one of appendices 1 to 2, wherein the thermoelectric conversion layer is a P-type semiconductor.
  • thermoelectric power generation element The thermoelectric power generation element according to any one of appendices 1 to 3, wherein the thermoelectric conversion layer is a conductive polymer layer.
  • Appendix 5 The thermoelectric power generation element according to appendix 4, wherein the conductive polymer has at least one selected from polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, and derivatives thereof.
  • Appendix 6) The thermoelectric power generation element according to any one of appendices 4 to 5, wherein the conductive polymer has a thickness of 0.01 mm or more and 2 mm or less.
  • Appendix 7) The thermoelectric power generation element according to any one of appendices 1 to 6, wherein the base material has flexibility.
  • thermoelectric power generation element according to any one of appendices 1 to 7, wherein the base material is formed of a material that reversibly expands and contracts by 10% or more.
  • Appendix 9 Appendix 1 characterized in that the substrate has at least one selected from polyimide, polyethylene naphthalate, polyethylene terephthalate, polycarbonate, epoxy resin, aramid resin, silicone resin, ABS resin, silicone rubber, polybutadiene rubber.
  • the thermoelectric power generation element according to any one of 1 to 8. (Appendix 10) The thermoelectric power generation element according to any one of appendices 1 to 9, wherein the base material has at least one selected from a silicon filler and a glass fiber.
  • thermoelectric power generation element according to any one of appendices 1 to 10, wherein the base material has a thickness of 0.01 mm or more and 2 mm or less.
  • Appendix 12 The length of the wiring connecting the first thermoelectric conversion layer and the first thermoelectric conversion layer adjacent to the first thermoelectric conversion layer is adjacent to the first thermoelectric conversion layer and the first thermoelectric conversion layer.
  • the length of the wiring connecting the second thermoelectric conversion layer and the second thermoelectric conversion layer adjacent to the second thermoelectric conversion layer is adjacent to the second thermoelectric conversion layer and the second thermoelectric conversion layer.
  • thermoelectric power generation element according to any one of appendices 1 to 12, wherein the thermoelectric power generation element is longer by 10% or more than a length between matching second thermoelectric conversion layers.
  • Appendix 14 14. The thermoelectric power generation element according to any one of appendices 1 to 13, wherein a length of the thermoelectric conversion layer along the inclined direction of the slope is not less than 0.5 mm and not more than 10 mm.
  • Appendix 15 The thermoelectric power generation element according to any one of appendices 1 to 14, wherein the wiring has a loop shape, a bellows shape, or a lattice shape.
  • thermoelectric power generation element The thermoelectric power generation element according to any one of appendices 1 to 15, wherein a heat conduction amount of the wiring is smaller than a heat conduction amount of the thermoelectric conversion layer.
  • thermoelectric generator according to any one of appendices 1 to 16, wherein the wiring includes at least one selected from gold, silver, aluminum, copper, gallium, indium, and conductive nanofibers.
  • the wiring is copper, and the cross-sectional area perpendicular to the direction along the slope of the wiring with respect to the cross-sectional area perpendicular to the direction along the slope of the thermoelectric conversion layer is 1/10 or less.
  • the thermoelectric power generation element according to any one of appendices 1 to 17.
  • the wiring is copper, and the cross-sectional area perpendicular to the direction along the slope of the wiring with respect to the cross-sectional area perpendicular to the direction along the slope of the thermoelectric conversion layer is 1/30 or less.
  • the thermoelectric power generation element according to any one of claims 1 to 17. (Appendix 20) The wiring is gold, and the cross-sectional area perpendicular to the direction along the slope of the wiring with respect to the cross-sectional area perpendicular to the direction along the slope of the thermoelectric conversion layer is 1/30 or less.
  • thermoelectric power generation element according to any one of appendices 1 to 17.
  • Appendix 22 The thermoelectric power generation element according to any one of appendices 1 to 21, wherein an electrode is provided in the connection portion.
  • Appendix 23 The thermoelectric power generation element according to any one of appendices 1 to 22, wherein the thermoelectric conversion layer and the wiring are formed on both surfaces of the base material.
  • thermoelectric power generation element The thermoelectric power generation element according to any one of appendices 1 to 23, wherein the thermoelectric power generation element is covered with a protective layer.
  • a thermoelectric power generation element comprising a plurality of layers of the thermoelectric power generation elements according to any one of appendices 1 to 24.
  • thermoelectric power generation element according to appendix 26, wherein the substrate has a thickness of 0.01 mm or more and 2 mm or less.
  • Appendix 28 28.
  • the step of forming the thermoelectric conversion layer is a method of printing and drying a paste in which a thermoelectric conversion material is dissolved in a solvent, or a method of cutting and pasting a bulk material of a conductive polymer that is a thermoelectric conversion material, or 29.
  • thermoelectric power generation element The method for manufacturing a thermoelectric power generation element according to any one of appendices 26 to 28, comprising a method of printing while dispersing and orienting a conductive polymer monomer in ink.
  • Appendix 30 30.
  • Appendix 31 The method for producing a thermoelectric power generation element according to appendix 30, wherein the step of forming the electrode includes a method of printing a conductive paste, or a gas phase growth method such as vapor deposition or sputtering.
  • Appendix 32 32.
  • thermoelectric power generation element The method of manufacturing a thermoelectric power generation element according to any one of appendices 30 to 31, wherein the step of forming the electrode includes a step of processing the surface of the electrode into irregularities.
  • step of processing the surface of the electrode into irregularities is a nanoimprint method.
  • step of connecting the wiring includes a method of printing a paste-like wiring material, or a method of adhering or welding a bulk-like wiring material.
  • a method for manufacturing a thermoelectric generator. Appendix 35.
  • thermoelectric power generation element according to any one of appendices 26 to 34, wherein the step of forming the corrugated structure includes a hot embossing method.
  • Appendix 36 It has a pad electrode which connects the said thermoelectric conversion layer and the said wiring, The said pad electrode is provided in contact with the surface of the said base material, The appendix 1 thru
  • thermoelectric generator according to any one of appendices 36 to 37, wherein the pad electrode and the wiring are rolled copper or rolled copper having a surface plated with gold or silver.
  • Appendix 39 38.
  • Appendix 40 40.
  • the thermoelectric generator according to any one of appendices 36 to 39, wherein the thickness of the substrate is 40 ⁇ m to 80 ⁇ m.
  • Appendix 41 41.
  • the thermoelectric power generation element according to any one of appendices 36 to 40 wherein the thickness of the pad electrode is 10 ⁇ m or more and 40 ⁇ m or less.
  • thermoelectric generator according to any one of appendices 36 to 40, wherein the pad electrode has a thickness of 15 ⁇ m or more and 35 ⁇ m or less.
  • Appendix 43 43.
  • Power generation element 43.
  • thermoelectric power generation elements of Claim 1 The ratio L1 / L2 between the distance L1 between the adjacent bottoms and the length L2 from the bottom to the top of the base material is 7% or more and 50% or less, Additional Notes 36 to 44 Any one of the thermoelectric power generation elements of Claim 1.
  • Appendix 46 The ratio L1 / L2 of the distance L1 between the adjacent bottoms and the length L2 from the bottom to the top of the base material is 13% or more and 37% or less, Additional Notes 36 to 44 Any one of the thermoelectric power generation elements of Claim 1.
  • thermoelectric power generation element A step of pretreating the base material, a step of forming a pad electrode and wiring on the base material, a step of forming a thermoelectric conversion layer in contact with the pad electrode, and a step of molding the base material into a corrugated structure
  • a method for manufacturing a thermoelectric power generation element comprising: (Appendix 48) 48.
  • the thermoelectric power generation element according to appendix 47, wherein the step of forming the pad electrode and the wiring is performed by photolithography and etching.
  • (Appendix 49) The thermoelectric power generation element according to appendix 47, wherein the step of forming the pad electrode and the wiring is performed by screen printing.
  • the present invention relates to an organic thermoelectric power generation element using an organic conductive polymer material and a method for manufacturing the same.
  • Thermoelectric power generation element 2 Base material 3 Top part 4 1st bottom part 5 2nd bottom part 6 1st slope 7 2nd slope 8 1st thermoelectric conversion layer 9 2nd thermoelectric conversion layer 10 Connection part 11 Wiring 12 Reinforcement Material 13 Protective layer 14 Bellows structure wiring 15 Grid structure wiring 16 P-type semiconductor material 17 N-type semiconductor material 18 Electrode 19 Wiring 20 Ceramic substrate 21 Heat absorption 22 Heat dissipation 23 Temperature difference 30, 50, 70, 80, 90, 100, 110, 120, 140 Thermoelectric power generation element 32, 52 Base material 33, 53 Top 34, 54 First bottom 35, 55 Second bottom 36, 56 First slope 37, 57 Second slope 38, 58 First thermoelectric Conversion layer 39, 59 Second thermoelectric conversion layer 40, 64 Pad electrode part 41, 61 Fine wiring part 42, 62 First electrode 43, 63 Second electrode 71 78 extraction electrode 72 copper electrodes 73 thermoelectric conversion layer film 74 fine copper wiring 75 inward fold lines 76 mountain fold lines 77 folded lines

Abstract

A thermoelectric power generating element having a plurality of thermoelectric conversion layers connected in series, said thermoelectric power generating element having a base material having a waveform structure wherein bottom sections and peak sections are alternately repeated. The thermoelectric conversion layers have: a first thermoelectric conversion layer along a first sloped surface between a peak section and a first bottom section connected to the peak section; and a second thermoelectric conversion layer along a second sloped surface between a peak section and a second bottom section connected to the peak section. The first thermoelectric conversion layer and the second thermoelectric conversion layer have the same shape. The first thermoelectric conversion layer and the second thermoelectric conversion layer have connection points to wiring, at the peak side and the first bottom section side, and at the peak side and the second bottom section side, respectively.

Description

有機熱電発電素子およびその製造方法Organic thermoelectric generator and method for producing the same
 本発明は有機導電性高分子材料を用いた有機熱電発電素子およびその製造方法に関する。 The present invention relates to an organic thermoelectric power generation element using an organic conductive polymer material and a method for manufacturing the same.
 熱電発電素子は、熱エネルギーと電気エネルギーとを相互に変換できる素子である。熱電発電素子の両端に温度差が生じる環境に熱電発電素子を設置することによって、電力を取り出すことができる。この現象を応用し、工場や自動車から発生する廃熱を発電に応用することが期待されている。近年では、サーバーやPCなどのオフィスの電子機器から発生する熱を利用して熱電発電素子による発電を行い、その電力をセンサなどの電子機器の電源として活用することが期待されている。 Thermoelectric power generation elements are elements that can convert heat energy and electrical energy to each other. By installing the thermoelectric generator in an environment where a temperature difference occurs between both ends of the thermoelectric generator, electric power can be taken out. By applying this phenomenon, waste heat generated from factories and automobiles is expected to be applied to power generation. In recent years, it is expected that power generated by thermoelectric power generation elements is generated using heat generated from office electronic devices such as servers and PCs, and that power is used as a power source for electronic devices such as sensors.
 電子機器などにより発生する廃熱は、平坦面に生じる場合のみではなく、曲面部や凹凸部を含む面内に点在していることが多い。また、人の体温と周囲の環境温度との差を利用して発電を行う場合は、人の日常の動きを妨げないことが必要となる。こうした熱源に対応して発電を行うためには、熱電発電素子の発電効率の向上とともに、熱電発電素子が柔軟性を有することが求められている。 廃 Waste heat generated by electronic devices or the like is often scattered not only on a flat surface but also on a surface including a curved surface portion and an uneven portion. In addition, when power generation is performed using the difference between the human body temperature and the ambient environmental temperature, it is necessary not to disturb the daily movement of the person. In order to generate power in response to such a heat source, it is required that the thermoelectric power generation element be flexible as well as improving the power generation efficiency of the thermoelectric power generation element.
 柔軟性を有する熱電素子として、特許文献1には、柔軟性のある基板上に形成した、有機導電性高分子(以下、導電性高分子と云う)からなる熱電変換材料の薄膜を用いた、柔軟性のある熱電素子が開示されている。 As a thermoelectric element having flexibility, Patent Document 1 uses a thin film of a thermoelectric conversion material made of an organic conductive polymer (hereinafter referred to as a conductive polymer) formed on a flexible substrate. A flexible thermoelectric element is disclosed.
 また、特許文献2には、山部と谷部とが交互に繰り返される波板状の形状を有することで、平面形状の場合に比べて単位面積あたりの熱電変換素子対の配設割合を高くして、発電効率を向上させた熱電変換モジュールが開示されている。 Further, Patent Document 2 has a corrugated shape in which peaks and troughs are alternately repeated, thereby increasing the arrangement ratio of thermoelectric conversion element pairs per unit area as compared to a planar shape. Thus, a thermoelectric conversion module with improved power generation efficiency is disclosed.
特開2010-95688JP 2010-95688 特開2009-289860JP2009-289860
 空調機、照明器具、PC、サーバーなどの機器により発生する廃熱や、人の体温を利用して、熱電発電素子による発電を行うためには、曲面や凹凸に点在する面内の温度差や、設置面に垂直方向の温度差を、熱として効率よく回収することが必要となる。そのための熱電変換素子には、柔軟性とそれに伴う信頼性、高い発電効率、さらには、多くの場面に使用されることを想定した製品のバリエーションを可能とする製造のし易さが求められる。 In order to generate power by thermoelectric power generation elements using waste heat generated by equipment such as air conditioners, lighting equipment, PCs, servers, etc., or human body temperature, the temperature difference within the surface scattered on curved surfaces and irregularities In addition, it is necessary to efficiently recover the temperature difference in the direction perpendicular to the installation surface as heat. For this purpose, thermoelectric conversion elements are required to have flexibility, reliability associated therewith, high power generation efficiency, and ease of manufacture that enables product variations that are expected to be used in many situations.
 特許文献1は、柔軟性のある基板と、導電性高分子からなる熱電変換材料の薄膜を用いた、柔軟性ある熱電素子を開示している。ここで導電性高分子薄膜は細長い形状を有する。これにより、温接点と冷接点との間の距離を大きく確保することで温度差を大きくし、発電効率を向上させている。そのため、この熱電素子は広い面積を必要とし、設置場所を制限していた。 Patent Document 1 discloses a flexible thermoelectric element using a flexible substrate and a thin film of a thermoelectric conversion material made of a conductive polymer. Here, the conductive polymer thin film has an elongated shape. As a result, the temperature difference is increased by ensuring a large distance between the hot junction and the cold junction, and the power generation efficiency is improved. Therefore, this thermoelectric element requires a large area and restricts the installation location.
 熱電素子の設置の自由度を向上させるためには、設置面の垂直方向の温度差を利用できる素子が有効である。しかしながら、特許文献1の導電性高分子は蒸着法による薄膜であり、基板も平坦であるため、設置面に対して垂直方向の温度差を得ることは困難であった。 In order to improve the degree of freedom of installation of thermoelectric elements, elements that can utilize the temperature difference in the vertical direction of the installation surface are effective. However, since the conductive polymer of Patent Document 1 is a thin film formed by vapor deposition and the substrate is flat, it is difficult to obtain a temperature difference in the direction perpendicular to the installation surface.
 また、基板材料である有機フィルムの線膨張係数は、金属などの無機材料の線膨張係数と比較して10倍以上大きい。従って、線膨張の大きい有機フィルム上に金属の配線などを薄膜形成した構造は、熱電素子が高温下で繰り返し使用されることを鑑みると、線膨張係数の不整合により剥離を生じ、信頼性の低下をもたらすという問題があった。 In addition, the linear expansion coefficient of the organic film as the substrate material is 10 times or more larger than the linear expansion coefficient of the inorganic material such as metal. Therefore, a structure in which a metal wiring or the like is formed on an organic film having a large linear expansion causes peeling due to mismatch of the linear expansion coefficient in view of the fact that thermoelectric elements are repeatedly used at high temperatures, and has a high reliability. There was a problem of causing a drop.
 一方、特許文献2は、山部と谷部とが交互に繰り返される波板状の形状を有することで、平面形状の場合に比べて単位面積あたりの熱電変換素子対の配設割合を高くして、発電効率を向上させた熱電変換モジュールを開示している。この熱電変換モジュールは、熱電変換材料として銅やコンスタンタンの金属を、絶縁材料としてアルミナなどのセラミックを使用した剛直なものである。よって、この熱電変換モジュールの設置の自由度は大幅に制限され、平坦な熱源に限定されていた。さらに、熱電変換材料に複数の材料を使用するため、製造工程が複雑化し、製造歩留まりの低下を招いていた。 On the other hand, Patent Document 2 has a corrugated shape in which peaks and troughs are alternately repeated, thereby increasing the arrangement ratio of thermoelectric conversion element pairs per unit area as compared with a planar shape. A thermoelectric conversion module with improved power generation efficiency is disclosed. This thermoelectric conversion module is a rigid module using copper or constantan metal as a thermoelectric conversion material and ceramic such as alumina as an insulating material. Therefore, the degree of freedom of installation of the thermoelectric conversion module is greatly limited, and is limited to a flat heat source. Furthermore, since a plurality of materials are used for the thermoelectric conversion material, the manufacturing process is complicated, resulting in a decrease in manufacturing yield.
 本発明は、上記の問題を鑑みてなされたものであり、柔軟性のある素子構造を有し、信頼性や製造性に優れ、吸熱部と放熱部の間の温度差を十分に確保することが可能な有機熱電発電素子を提供する。本発明の熱電発電素子は、従来の熱電発電素子の設置の制約を解消し、曲面や凹凸面を含め広い範囲に点在する温度差を熱として効率良く回収して発電することに適した、新しい熱電発電素子を提供する。 The present invention has been made in view of the above problems, has a flexible element structure, is excellent in reliability and manufacturability, and sufficiently secures the temperature difference between the heat absorbing portion and the heat radiating portion. Provided is an organic thermoelectric power generation device capable of The thermoelectric power generation element of the present invention is suitable for generating power by efficiently recovering a temperature difference scattered over a wide range including a curved surface and a concavo-convex surface, eliminating restrictions on the installation of a conventional thermoelectric power generation element, A new thermoelectric generator is provided.
 複数の熱電変換層を直列接続する熱電発電素子であって、前記熱電発電素子が、底部と頂部とが交互に繰り返される波形状構造の基材を有し、前記熱電変換層が前記頂部と前記頂部につながる第一の底部との間の第一の斜面に沿った第一の熱電変換層を有し、前記熱電変換層が前記頂部と前記頂部につながる第二の底部との間の第二の斜面に沿った第二の熱電変換層を有し、前記第一の熱電変換層と前記第二の熱電変換層とが同じ型を有し、前記第一の熱電変換層は前記頂部側と前記第一の底部側に、前記第二の熱電変換層は前記頂部側と前記第二の底部側に、各々、配線との接続点を有する。 A thermoelectric power generation element in which a plurality of thermoelectric conversion layers are connected in series, wherein the thermoelectric power generation element includes a base material having a wave shape structure in which a bottom portion and a top portion are alternately repeated, and the thermoelectric conversion layer includes the top portion and the top portion A first thermoelectric conversion layer along a first slope between the first bottom connected to the top and the second between the top and the second bottom connected to the top. The first thermoelectric conversion layer and the second thermoelectric conversion layer have the same type, and the first thermoelectric conversion layer has the top side and On the first bottom side, the second thermoelectric conversion layer has connection points with wirings on the top side and the second bottom side, respectively.
 さらに、前記第一の熱電変換層同士の接続が、前記第一の熱電変換層の前記頂部側の接続点で接続する配線が、前記第二の斜面に沿い、前記第二の底部で、前記第一の熱電変換層の隣の第一の熱電変換層の底部側の接続点で接続する接続であり、前記第二の熱電変換層同士の接続が、前記第二の熱電変換層の前記頂部側の接続点で接続する配線が、前記第一の斜面に沿い、前記第一の底部で、前記第二の熱電変換層の隣の第二の熱電変換層の底部側の接続点で接続する接続である。 Further, the connection between the first thermoelectric conversion layers is connected at the connection point on the top side of the first thermoelectric conversion layer, along the second slope, at the second bottom, It is a connection to be connected at a connection point on the bottom side of the first thermoelectric conversion layer adjacent to the first thermoelectric conversion layer, and the connection between the second thermoelectric conversion layers is the top of the second thermoelectric conversion layer. The wiring connected at the connection point on the side is connected at the connection point on the bottom side of the second thermoelectric conversion layer adjacent to the second thermoelectric conversion layer at the first bottom along the first slope. It is a connection.
 さらに、前記第一の熱電変換層と前記第二の熱電変換層との接続が、前記第一の熱電変換層の前記頂部側の接続点で接続する配線が、前記第二の斜面に沿い、前記第二の熱電変換層の前記底部側の接続点で接続する接続、あるいは、前記第二の熱電変換層の前記頂部側の接続点で接続する配線が、前記第一の斜面に沿い、前記第一の熱電変換層の前記底部側の接続点で接続する接続であり、前記直列接続の両端が開放電極であることを特徴とする。 Furthermore, the connection between the first thermoelectric conversion layer and the second thermoelectric conversion layer is connected at the connection point on the top side of the first thermoelectric conversion layer, along the second slope, Connection connected at the connection point on the bottom side of the second thermoelectric conversion layer, or wiring connected at the connection point on the top side of the second thermoelectric conversion layer, along the first slope, The connection is made at a connection point on the bottom side of the first thermoelectric conversion layer, and both ends of the series connection are open electrodes.
 本発明の熱電発電素子およびその製造方法により、柔軟性を有し、信頼性や製造性に優れ、吸熱部と放熱部の温度差を十分に確保することが可能な熱電発電素子を提供することができる。従来の熱電発電素子の課題であった設置の制約を解消し、電子機器などに広く点在する廃熱による温度差を、熱として効率よく回収して発電することに適した熱電発電素子を実現する。 Provided is a thermoelectric power generation element having flexibility, excellent reliability and manufacturability, and capable of sufficiently ensuring a temperature difference between a heat absorption part and a heat dissipation part by the thermoelectric power generation element and the manufacturing method thereof according to the present invention. Can do. Eliminates installation restrictions that were problems with conventional thermoelectric generators, and realizes thermoelectric generators suitable for generating power by efficiently recovering the temperature difference due to waste heat scattered widely in electronic equipment as heat To do.
本発明の第一の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の平面構造を示す図である。It is a figure which shows the planar structure of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の平面構造を示す図である。It is a figure which shows the planar structure of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の平面構造を示す図である。It is a figure which shows the planar structure of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の平面構造を示す図である。It is a figure which shows the planar structure of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の平面構造を示す図である。It is a figure which shows the planar structure of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. 本発明の第一の実施形態の熱電発電素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the thermoelectric power generation element of 1st embodiment of this invention. 公知の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of a well-known thermoelectric power generation element. 本発明の第二の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の平面構造を示す図である。It is a figure which shows the planar structure of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の平面構造を示す図である。It is a figure which shows the planar structure of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の製造方法を示す第一の図である。It is a 1st figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の製造方法を示す第二の図である。It is a 2nd figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の製造方法を示す第三の図である。It is a 3rd figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の製造方法を示す第四の図である。It is a 4th figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の製造方法を示す第五の図である。It is a 5th figure which shows the manufacturing method of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の断面の模式図である。It is a schematic diagram of the cross section of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の断面の折り曲げが緩和した断面の模式図である。It is a schematic diagram of the cross section in which the bending of the cross section of the thermoelectric power generation element of 2nd embodiment of this invention eased. 本発明の第二の実施形態の熱電発電素子の歩留まりY1および相対発電効率ηのパッド電極厚さd依存性を示す図である。It is a figure which shows the pad electrode thickness d dependence of the yield Y1 and relative power generation efficiency (eta) of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の波型形状の歩留まりY2、接着剤はみ出しの歩留まりY3の、パッド電極の占有率X依存性を示す図である。It is a figure which shows the occupancy ratio X dependency of the pad electrode of the yield Y2 of the waveform of the thermoelectric power generation element of 2nd embodiment of this invention, and the yield Y3 of adhesive protrusion. 本発明の第二の実施形態の熱電発電素子の配線接触歩留まりY4と単位面積当たりの発電量の、L1/L2比依存性を示す図である。It is a figure which shows the L1 / L2 ratio dependence of the wiring contact yield Y4 of the thermoelectric power generation element of 2nd embodiment of this invention, and the electric power generation amount per unit area. 本発明の第二の実施形態の熱電発電素子の断面構造を示す図である。It is a figure which shows the cross-section of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の平面構造を示す図である。It is a figure which shows the planar structure of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子の平面構造図である。It is a plane structure figure of the thermoelectric power generation element of 2nd embodiment of this invention. 本発明の第二の実施形態の熱電発電素子のパッド電極と配線の構造図である。It is a structural diagram of the pad electrode and wiring of the thermoelectric power generation element of the second embodiment of the present invention. 本発明の第二の実施形態の熱電発電素子の外観図である。It is an external view of the thermoelectric power generation element of 2nd embodiment of this invention.
 以下、図を参照しながら、本発明の実施形態を詳細に説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい限定がされているが、発明の範囲を以下に限定するものではない。
(第一の実施の形態)
 本発明の第一の実施形態の熱電発電素子について、図1および図2を参照して説明する。図1は、本発明の第一の実施形態の熱電発電素子の断面図を示す。図2は、本発明の第一の実施形態の熱電発電素子の平面図を示す。図2のA-A’の断面が図1に対応する。但し、配線11はこの限りではなく、素子の構成を説明するために、必要に応じて、図1に記載されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the preferred embodiments described below are technically preferable for carrying out the present invention, but the scope of the invention is not limited to the following.
(First embodiment)
A thermoelectric power generation element according to a first embodiment of the present invention will be described with reference to FIGS. 1 and 2. FIG. 1 shows a cross-sectional view of a thermoelectric generator according to a first embodiment of the present invention. FIG. 2 shows a plan view of the thermoelectric generator of the first embodiment of the present invention. A cross section taken along line AA 'in FIG. 2 corresponds to FIG. However, the wiring 11 is not limited to this, and is described in FIG. 1 as necessary to explain the structure of the element.
 図1および図2の熱電発電素子は、複数の熱電変換層を直列接続した熱電発電素子1である。熱電発電素子1の基材2は、底部と頂部とからなる波形状構造を有する。熱電変換層は、頂部3と頂部3につながる第1の底部4との間の第1の斜面6に沿った第1の熱電変換層8を有し、さらに、頂部3と頂部3につながる第2の底部5との間の第2の斜面7に沿った第2の熱電変換層9を有する。第1の熱電変換層8と第2の熱電変換層9とは同じ型を有する。すなわち、第1の熱電変換層8がP型であれば、第2の熱電変換層9もP型である。 1 and 2 is a thermoelectric power generation element 1 in which a plurality of thermoelectric conversion layers are connected in series. The base material 2 of the thermoelectric generator 1 has a corrugated structure composed of a bottom and a top. The thermoelectric conversion layer has a first thermoelectric conversion layer 8 along a first slope 6 between the top 3 and the first bottom 4 connected to the top 3, and further includes a first thermoelectric conversion layer 8 connected to the top 3 and the top 3. 2 has a second thermoelectric conversion layer 9 along the second slope 7 between the bottom 5 of the two. The first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 have the same type. That is, if the first thermoelectric conversion layer 8 is P-type, the second thermoelectric conversion layer 9 is also P-type.
 本実施形態の熱電変換層には、導電性高分子材料を用いることができる。導電性高分子材料で半導体特性を有する材料においては、現状、移動度が大きく、かつ、大気中で安定に存在するN型半導体特性を有する材料が存在していない。そのため、本発明の実施形態においては、P型半導体特性を有する導電性高分子を使用することができる。 A conductive polymer material can be used for the thermoelectric conversion layer of the present embodiment. Currently, there is no material having N-type semiconductor characteristics that has high mobility and is stable in the atmosphere among conductive polymer materials having semiconductor characteristics. Therefore, in the embodiment of the present invention, a conductive polymer having P-type semiconductor characteristics can be used.
 第1の熱電変換層8は頂部3側と第1の底部4側に、第2の熱電変換層9は頂部3側と第2の底部5側に、各々、配線11との接続部10を有する。第1の熱電変換層8と第2の熱電変換層9との接続は、第1の熱電変換層8の頂部3側の接続部10で接続する配線11が、第2の斜面7に沿い、第2の熱電変換層9の底部5側の接続部10で接続する。さらに、第1の熱電変換層8と第2の熱電変換層9との上記の直列接続の両端は開放電極である。 The first thermoelectric conversion layer 8 is provided on the top 3 side and the first bottom 4 side, and the second thermoelectric conversion layer 9 is provided on the top 3 side and the second bottom 5 side. Have. As for the connection between the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9, the wiring 11 connected at the connection portion 10 on the top 3 side of the first thermoelectric conversion layer 8 is along the second inclined surface 7. The connection is made at the connection portion 10 on the bottom 5 side of the second thermoelectric conversion layer 9. Furthermore, both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
 第1の熱電変換層8と第2の熱電変換層9との直列接続は、第2の熱電変換層9の頂部3側の接続部10で接続する配線11が、第1の斜面6に沿い、第1の熱電変換層8の底部4側の接続部10で接続する接続であっても良い。このときも、第1の熱電変換層8と第2の熱電変換層9との上記の直列接続の両端は開放電極である。 In the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9, the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 is along the first slope 6. The connection may be made at the connection portion 10 on the bottom 4 side of the first thermoelectric conversion layer 8. Also at this time, both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
 熱電発電素子1では、底部が吸熱側、頂部が放熱側となる。底部側と頂部側の温度差により発電が行われ、開放電極により電力を取り出すことができる。特に、基材が波形状であることから、熱源である発熱体と接する吸熱側となる底部と、放熱側となる頂部の、熱源からの距離を確保することができるため、吸熱側と放熱側との温度差を十分に確保することができる。さらに、熱電変換層を同じ型の単一の材料で構成できるため、製造を容易にしている。 In the thermoelectric generator 1, the bottom is the heat absorption side and the top is the heat dissipation side. Power generation is performed by the temperature difference between the bottom side and the top side, and power can be taken out by the open electrode. In particular, since the base material has a wave shape, it is possible to secure the distance from the heat source to the bottom part that is the heat absorption side that is in contact with the heating element that is the heat source and the top part that is the heat radiation side. A sufficient temperature difference can be secured. Furthermore, since the thermoelectric conversion layer can be comprised with the same type of single material, manufacture is made easy.
 さらに、本実施形態の熱電発電素子について、図3および図4を参照して説明する。図3は、本実施形態の熱電発電素子の断面図を示す。図4は、本実施形態の熱電発電素子の平面図を示す。図4のB-B’の断面が図3に対応する。但し、配線11はこの限りではなく、素子の構成を説明するために、必要に応じて、図3に記載されている。 Furthermore, the thermoelectric generator of this embodiment will be described with reference to FIGS. FIG. 3 shows a cross-sectional view of the thermoelectric generator of this embodiment. FIG. 4 shows a plan view of the thermoelectric generator of the present embodiment. A cross section taken along line B-B 'of FIG. 4 corresponds to FIG. However, the wiring 11 is not limited to this, and is illustrated in FIG. 3 as necessary to explain the configuration of the element.
 図3および図4の熱電発電素子は、複数の熱電変換層を直列接続した熱電発電素子30である。熱電発電素子30の基材2は、底部と頂部とが交互に繰り返される波形状構造を有する。熱電変換層は、頂部3と頂部3につながる第1の底部4との間の第1の斜面6に沿った第1の熱電変換層8を有し、さらに、頂部3と頂部3につながる第2の底部5との間の第2の斜面7に沿った第2の熱電変換層9を有する。第1の熱電変換層8と第2の熱電変換層9とは同じ型を有する。すなわち、第1の熱電変換層8がP型であれば、第2の熱電変換層9もP型である。 3 and 4 is a thermoelectric power generation element 30 in which a plurality of thermoelectric conversion layers are connected in series. The base material 2 of the thermoelectric power generation element 30 has a wave shape structure in which a bottom portion and a top portion are alternately repeated. The thermoelectric conversion layer has a first thermoelectric conversion layer 8 along a first slope 6 between the top 3 and the first bottom 4 connected to the top 3, and further includes a first thermoelectric conversion layer 8 connected to the top 3 and the top 3. 2 has a second thermoelectric conversion layer 9 along the second slope 7 between the bottom 5 of the two. The first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 have the same type. That is, if the first thermoelectric conversion layer 8 is P-type, the second thermoelectric conversion layer 9 is also P-type.
 本実施形態の熱電変換層には、導電性高分子材料を用いることができる。導電性高分子材料で半導体特性を有する材料においては、現状、移動度が大きく、かつ、大気中で安定に存在するN型半導体特性を有する材料が存在していない。そのため、本発明の実施形態においては、P型半導体特性を有する導電性高分子を使用することができる。 A conductive polymer material can be used for the thermoelectric conversion layer of the present embodiment. Currently, there is no material having N-type semiconductor characteristics that has high mobility and is stable in the atmosphere among conductive polymer materials having semiconductor characteristics. Therefore, in the embodiment of the present invention, a conductive polymer having P-type semiconductor characteristics can be used.
 第1の熱電変換層8は頂部3側と第1の底部4側に、第2の熱電変換層9は頂部3側と第2の底部5側に、各々、配線11との接続部10を有する。 The first thermoelectric conversion layer 8 is provided on the top 3 side and the first bottom 4 side, and the second thermoelectric conversion layer 9 is provided on the top 3 side and the second bottom 5 side. Have.
 第1の熱電変換層8同士の接続は、第1の熱電変換層8の頂部3側の接続部10で接続する配線11が、第2の斜面7に沿い、第2の底部5で、第1の熱電変換層8の隣の第1の熱電変換層8の第1の底部4側の接続部10で接続する接続である。第2の熱電変換層9同士の接続は、第2の熱電変換層9の頂部3側の接続部10で接続する配線11が、第1の斜面6に沿い、第2の底部5で、第2の熱電変換層9の隣の第二の熱電変換層9の第1の底部4側の接続部10で接続する接続である。 The connection between the first thermoelectric conversion layers 8 is such that the wiring 11 connected at the connection portion 10 on the top 3 side of the first thermoelectric conversion layer 8 is along the second inclined surface 7 and at the second bottom portion 5. The connection is made at the connection portion 10 on the first bottom portion 4 side of the first thermoelectric conversion layer 8 adjacent to the one thermoelectric conversion layer 8. The connection between the second thermoelectric conversion layers 9 is such that the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 is along the first inclined surface 6 and at the second bottom portion 5. The connection is made at the connection portion 10 on the first bottom portion 4 side of the second thermoelectric conversion layer 9 adjacent to the second thermoelectric conversion layer 9.
 第1の熱電変換層8と第2の熱電変換層9との接続は、第1の熱電変換層8の頂部3側の接続部10で接続する配線11が、第2の斜面7に沿い、第2の熱電変換層9の底部5側の接続部10で接続する。さらに、第1の熱電変換層8と第2の熱電変換層9との上記の直列接続の両端は開放電極である。 As for the connection between the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9, the wiring 11 connected at the connection portion 10 on the top 3 side of the first thermoelectric conversion layer 8 is along the second inclined surface 7. The connection is made at the connection portion 10 on the bottom 5 side of the second thermoelectric conversion layer 9. Furthermore, both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
 第1の熱電変換層8と第2の熱電変換層9との直列接続は、第2の熱電変換層9の頂部3側の接続部10で接続する配線11が、第1の斜面6に沿い、第1の熱電変換層8の底部4側の接続部10で接続する接続であっても良い。このときも、第1の熱電変換層8と第2の熱電変換層9との上記の直列接続の両端は開放電極である。 In the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9, the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 is along the first slope 6. The connection may be made at the connection portion 10 on the bottom 4 side of the first thermoelectric conversion layer 8. Also at this time, both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
 熱電発電素子30では、底部が吸熱側、頂部が放熱側となる。底部側と頂部側の温度差により発電が行われ、開放電極により電力を取り出すことができる。特に、基材が波形状であることから、熱源である発熱体と接する吸熱側となる底部と、放熱側となる頂部の、熱源からの距離を確保することができるため、吸熱側と放熱側との温度差を十分に確保することができる。さらに、熱電変換層を同じ型の単一の材料で構成できるため、製造を容易にしている。 In the thermoelectric generator 30, the bottom is the heat absorption side and the top is the heat dissipation side. Power generation is performed by the temperature difference between the bottom side and the top side, and power can be taken out by the open electrode. In particular, since the base material has a wave shape, it is possible to secure the distance from the heat source to the bottom part that is the heat absorption side that is in contact with the heating element that is the heat source and the top part that is the heat radiation side. A sufficient temperature difference can be secured. Furthermore, since the thermoelectric conversion layer can be comprised with the same type of single material, manufacture is made easy.
 さらに、本実施形態の熱電発電素子について、図5および図6を参照して説明する。図5は、本実施形態の熱電発電素子の断面図を示す。図6は、本実施形態の熱電発電素子の平面図を示す。図6のC-C’の断面が図5に対応する。但し、配線11はこの限りではなく、素子の構成を説明するために、必要に応じて、図5に記載されている。図5および図6の熱電発電素子は、図3および図4の熱電発電素子30よりも、さらに多くの熱電変換層を直列接続した熱電発電素子50である。 Furthermore, the thermoelectric generator of this embodiment will be described with reference to FIGS. FIG. 5 shows a cross-sectional view of the thermoelectric generator of this embodiment. FIG. 6 shows a plan view of the thermoelectric generator of the present embodiment. A cross section taken along line C-C 'in FIG. 6 corresponds to FIG. However, the wiring 11 is not limited to this, and is described in FIG. 5 as necessary to explain the configuration of the element. 5 and 6 is a thermoelectric power generation element 50 in which more thermoelectric conversion layers are connected in series than the thermoelectric power generation elements 30 in FIGS. 3 and 4.
 熱電発電素子50の基材2は、底部と頂部とが交互に繰り返される波形状構造を有する。熱電変換層は、頂部3と頂部3につながる第1の底部4との間の第1の斜面6に沿った第1の熱電変換層8を有し、さらに、頂部3と頂部3につながる第2の底部5との間の第2の斜面7に沿った第2の熱電変換層9を有する。第1の熱電変換層8と第2の熱電変換層9とは同じ型を有する。すなわち、第1の熱電変換層8がP型であれば、第2の熱電変換層9もP型である。 The base material 2 of the thermoelectric power generation element 50 has a wave shape structure in which a bottom portion and a top portion are alternately repeated. The thermoelectric conversion layer has a first thermoelectric conversion layer 8 along a first slope 6 between the top 3 and the first bottom 4 connected to the top 3, and further includes a first thermoelectric conversion layer 8 connected to the top 3 and the top 3. 2 has a second thermoelectric conversion layer 9 along the second slope 7 between the bottom 5 of the two. The first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 have the same type. That is, if the first thermoelectric conversion layer 8 is P-type, the second thermoelectric conversion layer 9 is also P-type.
 本実施形態の熱電変換層には、導電性高分子材料を用いることができる。導電性高分子材料で半導体特性を有する材料においては、現状、移動度が大きく、かつ、大気中で安定に存在するN型半導体特性を有する材料が存在していない。そのため、本発明の実施形態においては、P型半導体特性を有する導電性高分子を使用することができる。 A conductive polymer material can be used for the thermoelectric conversion layer of the present embodiment. Currently, there is no material having N-type semiconductor characteristics that has high mobility and is stable in the atmosphere among conductive polymer materials having semiconductor characteristics. Therefore, in the embodiment of the present invention, a conductive polymer having P-type semiconductor characteristics can be used.
 第1の熱電変換層8は頂部3側と第1の底部4側に、第2の熱電変換層9は頂部3側と第2の底部5側に、各々、配線11との接続部10を有する。 The first thermoelectric conversion layer 8 is provided on the top 3 side and the first bottom 4 side, and the second thermoelectric conversion layer 9 is provided on the top 3 side and the second bottom 5 side. Have.
 第1の熱電変換層8同士の接続は、第1の熱電変換層8の頂部3側の接続部10で接続する配線11が、第2の斜面7に沿い、第2の底部5で、第1の熱電変換層8の隣の第1の熱電変換層8の第1の底部4側の接続部10で接続する接続である。第2の熱電変換層9同士の接続は、第2の熱電変換層9の頂部3側の接続部10で接続する配線11が、第1の斜面6に沿い、第2の底部5で、第2の熱電変換層9の隣の第二の熱電変換層9の第1の底部4側の接続部10で接続する接続である。 The connection between the first thermoelectric conversion layers 8 is such that the wiring 11 connected at the connection portion 10 on the top 3 side of the first thermoelectric conversion layer 8 is along the second inclined surface 7 and at the second bottom portion 5. The connection is made at the connection portion 10 on the first bottom portion 4 side of the first thermoelectric conversion layer 8 adjacent to the one thermoelectric conversion layer 8. The connection between the second thermoelectric conversion layers 9 is such that the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 is along the first inclined surface 6 and at the second bottom portion 5. The connection is made at the connection portion 10 on the first bottom portion 4 side of the second thermoelectric conversion layer 9 adjacent to the second thermoelectric conversion layer 9.
 第1の熱電変換層8と第2の熱電変換層9との接続は、第1の熱電変換層8の頂部3側の接続部10で接続する配線11が、第2の斜面7に沿い、第2の熱電変換層9の底部5側の接続部10で接続する。また、第1の熱電変換層8と第2の熱電変換層9との直列接続は、第2の熱電変換層9の頂部3側の接続部10で接続する配線11が、第1の斜面6に沿い、第1の熱電変換層8の底部4側の接続部10で接続する。さらに、第1の熱電変換層8と第2の熱電変換層9との上記の直列接続の両端は開放電極である。 As for the connection between the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9, the wiring 11 connected at the connection portion 10 on the top 3 side of the first thermoelectric conversion layer 8 is along the second inclined surface 7. The connection is made at the connection portion 10 on the bottom 5 side of the second thermoelectric conversion layer 9. In addition, the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 is performed by connecting the wiring 11 connected at the connection portion 10 on the top 3 side of the second thermoelectric conversion layer 9 to the first slope 6. Are connected at the connecting portion 10 on the bottom 4 side of the first thermoelectric conversion layer 8. Furthermore, both ends of the series connection of the first thermoelectric conversion layer 8 and the second thermoelectric conversion layer 9 are open electrodes.
 熱電発電素子50では、底部が吸熱側、頂部が放熱側となる。底部側と頂部側の温度差により発電が行われ、開放電極により電力を取り出すことができる。特に、基材が波形状であることから、熱源である発熱体と接する吸熱側となる底部と、放熱側となる頂部の、熱源からの距離を確保することができるため、吸熱側と放熱側との温度差を十分に確保することができる。さらに、熱電変換層を同じ型の単一の材料で構成できるため、製造を容易にしている。 In the thermoelectric generator 50, the bottom is the heat absorption side and the top is the heat dissipation side. Power generation is performed by the temperature difference between the bottom side and the top side, and power can be taken out by the open electrode. In particular, since the base material has a wave shape, it is possible to secure the distance from the heat source to the bottom part that is the heat absorption side that is in contact with the heating element that is the heat source and the top part that is the heat radiation side. A sufficient temperature difference can be secured. Furthermore, since the thermoelectric conversion layer can be comprised with the same type of single material, manufacture is made easy.
 さらに、本実施形態の熱電発電素子について、図7を参照して説明する。図7は、本実施形態の熱電発電素子70の断面図を示す。熱電発電素子70の特徴は、基材2が補強材12を有することである。熱電発電素子70の構造は、補強材12以外については、熱電発電素子50と同様である。 Furthermore, the thermoelectric generator of this embodiment will be described with reference to FIG. FIG. 7 shows a cross-sectional view of the thermoelectric generator 70 of the present embodiment. The feature of the thermoelectric power generation element 70 is that the base material 2 has the reinforcing material 12. The structure of the thermoelectric power generation element 70 is the same as that of the thermoelectric power generation element 50 except for the reinforcing material 12.
 さらに、本実施形態の熱電発電素子について、図8を参照して説明する。図8は、本実施形態の熱電発電素子80の断面図を示す。熱電発電素子80の特徴は、保護層13を有することである。熱電発電素子80の構造は、保護層13以外については、熱電発電素子50と同様である。 Furthermore, the thermoelectric generator of this embodiment will be described with reference to FIG. FIG. 8 shows a cross-sectional view of the thermoelectric generator 80 of the present embodiment. A feature of the thermoelectric power generation element 80 is that it includes the protective layer 13. The structure of the thermoelectric generation element 80 is the same as that of the thermoelectric generation element 50 except for the protective layer 13.
 さらに、本実施形態の熱電発電素子について、図9を参照して説明する。図9は、本実施形態の熱電発電素子90の断面図を示す。熱電発電素子90の特徴は、複数個の積層された熱電発電素子が、各々、直列接続された熱電発電素子90である。積層された各々の熱電発電素子の間には、保護層13が挿入されていてもよい。熱電発電素子90の構造は、複数個の積層された熱電発電素子からなること以外については、熱電発電素子50と同様である。 Furthermore, the thermoelectric generator of this embodiment will be described with reference to FIG. FIG. 9 shows a cross-sectional view of the thermoelectric generator 90 of this embodiment. A feature of the thermoelectric power generation element 90 is a thermoelectric power generation element 90 in which a plurality of stacked thermoelectric power generation elements are connected in series. A protective layer 13 may be inserted between the stacked thermoelectric generators. The structure of the thermoelectric power generation element 90 is the same as that of the thermoelectric power generation element 50 except that the thermoelectric power generation element 90 includes a plurality of stacked thermoelectric power generation elements.
 さらに、本実施形態の熱電発電素子について、図10を参照して説明する。図10は、本実施形態の熱電発電素100の断面図を示す。熱電発電素子100の特徴は、基材2の両面に熱電変換層および配線を有し、直列接続していることである。熱電発電素子100の構造は、基材2の両面に熱電変換層および配線を有すること以外については、熱電発電素子50と同様である。 Furthermore, the thermoelectric generator of this embodiment will be described with reference to FIG. FIG. 10 shows a cross-sectional view of the thermoelectric generator 100 of this embodiment. The feature of the thermoelectric power generation element 100 is that it has a thermoelectric conversion layer and wiring on both surfaces of the substrate 2 and is connected in series. The structure of the thermoelectric power generation element 100 is the same as that of the thermoelectric power generation element 50 except that the thermoelectric conversion layer and the wiring are provided on both surfaces of the substrate 2.
 図14に、従来の無機材料を用いた熱電変換素子の断面構造を示す。セラミック基板20に、ビスマステルルなどの無機結晶からなるP型半導体材料16とN型半導体材料17を、電極18と配線19とを介して、吸熱21側と放熱22側に対応させて実装している。吸熱21側と放熱22側の間に生じる温度差23によって、発電が行われる。従来の無機熱電発電素子には柔軟性がないために、曲面形状への対応ができなかった。また、P型半導体材料16とN型半導体材料17の複数の熱電変換材料を用いることでの製造性の低下を招いていた。 FIG. 14 shows a cross-sectional structure of a thermoelectric conversion element using a conventional inorganic material. A P-type semiconductor material 16 and an N-type semiconductor material 17 made of an inorganic crystal such as bismuth tellurium are mounted on a ceramic substrate 20 through an electrode 18 and a wiring 19 so as to correspond to the heat absorption 21 side and the heat dissipation 22 side. Yes. Power generation is performed by the temperature difference 23 generated between the heat absorption 21 side and the heat dissipation 22 side. Since conventional inorganic thermoelectric power generation elements are not flexible, they cannot cope with curved shapes. Further, the use of a plurality of thermoelectric conversion materials of the P-type semiconductor material 16 and the N-type semiconductor material 17 causes a decrease in manufacturability.
 本実施形態の熱電発電素子に用いられる基材2は、柔軟性を有する材料からなる。この材料は、電気的な絶縁性を有し、かつ、熱電発電素子の製造プロセスや使用時の環境温度、湿度などで劣化しないことが求められる。求められる耐熱性は用途により異なる。例えば、本実施形態の熱電発電素子を、照明機器の廃熱を熱源とする発電に用いる場合は、約100℃程度の温度に晒されることとなる。この温度に対する耐熱性が求められることとなる。 The base material 2 used for the thermoelectric generator of this embodiment is made of a flexible material. This material is required to have electrical insulation and not deteriorate due to the manufacturing process of the thermoelectric power generation element, the environmental temperature during use, the humidity, or the like. The required heat resistance varies depending on the application. For example, when the thermoelectric power generation element of the present embodiment is used for power generation using the waste heat of lighting equipment as a heat source, it is exposed to a temperature of about 100 ° C. Heat resistance against this temperature is required.
 更に、本実施形態に用いる波形状構造部の基材2は、底部の吸熱側と頂部の放熱側との間に生じる、熱電発電素子の設置面に対しては略垂直方向の温度差を十分に大きくすることができるよう、熱伝導性が低いことが必要である。さらにまた、波形状構造に成型しやすい材料であることが必要である。 In addition, the corrugated structure base material 2 used in the present embodiment has a sufficient temperature difference in a substantially vertical direction with respect to the installation surface of the thermoelectric power generation element generated between the heat absorption side at the bottom and the heat dissipation side at the top. It must be low in thermal conductivity so that it can be increased. Furthermore, it is necessary that the material is easy to mold into a wave-shaped structure.
 こうした条件を満足する基材材料として、ポリイミド、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリカーボネート、エポキシ樹脂、アラミド樹脂、シリコーン樹脂、ABS樹脂などの樹脂や、シリコーンゴム、ポリブタジエンゴムなどの各種ゴム弾性を有する樹脂が使用できる。 As base materials that satisfy these conditions, resins such as polyimide, polyethylene naphthalate, polyethylene terephthalate, polycarbonate, epoxy resin, aramid resin, silicone resin, ABS resin, and various rubber elastic resins such as silicone rubber and polybutadiene rubber Can be used.
 熱電発電素子の製造性ならびに耐久性から、基材は10ミクロン以上の厚みがあることが望ましい。一方、柔軟性を損なわず、かつ、熱電発電素子部に熱源の温度を伝えやすくするための厚みとして、2mm以下であることが望ましい。2mm以下の厚みであれば、熱電発電素子の設置面が一定の曲率を有する場合も追従することができる。 In view of manufacturability and durability of thermoelectric power generation elements, it is desirable that the substrate has a thickness of 10 microns or more. On the other hand, it is desirable that the thickness is 2 mm or less as a thickness for facilitating the transfer of the temperature of the heat source to the thermoelectric generator element part without impairing flexibility. If it is 2 mm or less, it can follow also when the installation surface of a thermoelectric power generation element has a fixed curvature.
 なお、基材の表面には、熱源部との熱抵抗を低下させるための層が塗布されていても良い。基材の柔軟性は、熱源部からの熱回収の際の効率を高めることにも貢献することができ、熱電発電性能を高める上で有効である。なお、ここで用いられる基材は、電気的な絶縁性を有することが必要であるものの、必ずしも単一の有機材料で形成されている必要はない。例えば、基材の線膨張係数を低減し、吸熱部からの熱伝導や放熱部での熱流を最適化するため、有機材料に無機フィラーや無機ファイバーが含まれていても良い。線膨張係数の低減のためにはシリコンフィラーやガラスファイバーを用いることができる。 In addition, the layer for reducing the thermal resistance with a heat source part may be apply | coated to the surface of a base material. The flexibility of the base material can contribute to increasing the efficiency at the time of heat recovery from the heat source part, and is effective in improving the thermoelectric power generation performance. In addition, although the base material used here needs to have electrical insulation, it does not necessarily need to be formed with a single organic material. For example, in order to reduce the linear expansion coefficient of the base material and optimize the heat conduction from the heat absorbing part and the heat flow in the heat radiating part, the organic material may contain an inorganic filler or an inorganic fiber. Silicon filler or glass fiber can be used to reduce the linear expansion coefficient.
 本実施形態の熱電発電素子は、導電性高分子材料を用いることができる。本実施形態に適用できるP型半導体特性を有する導電性高分子材料としては、チオフェンおよびその誘導体を骨格にもつポリマー、フェニレンビニレンおよびその誘導体を骨格にもつポリマー、アニリンおよびその誘導体を骨格にもつポリマー、ピロールおよびその誘導体を骨格にもつオリゴマーやポリマー、アセチレンおよびその誘導体を骨格にもつオリゴマーやポリマー、ヘプタジエンおよびその誘導体を骨格にもつポリマー、フタロシアニン類およびそれらの誘導体、ジアミン類、フェニルジアミン類およびそれらの誘導体、ペンタセンおよびその誘導体、ポルフィリンおよびその誘導体、シアニン、キノン、ナフトキノンなどの低分子が使用できる。製造性、大気下での安定性、電荷移動度などから、ポリチオフェンおよびその誘導体が特に有利に使用できる。導電性高分子の熱伝導率は、無機熱電材料のおよそ1/10~1/100であるため、吸熱部から放熱部へ伝導する熱を大幅に減らすことができる。すなわち、吸熱部と放熱部の間の温度差を十分に大きく維持することができる。 The thermoelectric generator of this embodiment can use a conductive polymer material. Examples of conductive polymer materials having P-type semiconductor characteristics applicable to this embodiment include polymers having thiophene and its derivatives as a skeleton, polymers having phenylene vinylene and its derivatives as a skeleton, and polymers having aniline and its derivatives as a skeleton. , Oligomers and polymers having pyrrole and its derivatives in the backbone, oligomers and polymers having acetylene and its derivatives in the backbone, polymers having heptadiene and its derivatives in the backbone, phthalocyanines and their derivatives, diamines, phenyldiamines and their Derivatives, pentacene and its derivatives, porphyrin and its derivatives, cyanine, quinone, naphthoquinone, and other small molecules. Polythiophene and its derivatives can be used particularly advantageously from the standpoints of manufacturability, stability in the atmosphere, charge mobility and the like. Since the thermal conductivity of the conductive polymer is about 1/10 to 1/100 that of the inorganic thermoelectric material, the heat conducted from the heat absorbing portion to the heat radiating portion can be greatly reduced. That is, the temperature difference between the heat absorption part and the heat radiation part can be maintained sufficiently large.
 本実施形態に用いる導電性高分子の膜厚は0.01mm以上、2mm以下とすることができる。導電性高分子の膜厚を2mm以下とすることで必要な可撓性を熱電素子に付与できる。また、0.01mm以上とすることで、熱電発電素子として電圧を取り出すために必要な電流量を確保することができる。 The film thickness of the conductive polymer used in this embodiment can be 0.01 mm or more and 2 mm or less. The required flexibility can be imparted to the thermoelectric element by setting the film thickness of the conductive polymer to 2 mm or less. Moreover, the current amount required in order to take out a voltage as a thermoelectric power generation element can be ensured by setting it as 0.01 mm or more.
 現状、導電性高分子材料で半導体特性を有する材料においては、移動度が大きく、かつ、大気中で安定に存在するN型半導体特性を有する材料が存在していない。そのため、本実施形態においては、P型半導体特性を有する導電性高分子を使用することができる。 Currently, there are no materials having N-type semiconductor characteristics that have high mobility and are stable in the atmosphere among conductive polymer materials having semiconductor characteristics. Therefore, in this embodiment, a conductive polymer having P-type semiconductor characteristics can be used.
 導電性高分子層を直列接続する配線構造において、底部の吸熱側と頂部の放熱側とに跨る配線の、熱流方向に垂直な断面積は、導電性高分子の熱流方向に垂直の断面積と比較して小さいことが望ましい。これは配線部の断面積が大きい場合、配線部を通して吸熱部と放熱部の温度差を小さくする方向に熱が伝導しやすくなるために、温度差の確保が困難となるからである。 In the wiring structure in which the conductive polymer layers are connected in series, the cross-sectional area perpendicular to the heat flow direction of the wiring straddling the heat absorption side at the bottom and the heat dissipation side at the top is the cross-sectional area perpendicular to the heat flow direction of the conductive polymer. It is desirable that it is small compared. This is because, when the cross-sectional area of the wiring part is large, heat is easily conducted through the wiring part in the direction of reducing the temperature difference between the heat absorbing part and the heat radiating part, so that it is difficult to ensure the temperature difference.
 配線部の断面積が小さい場合、十分な電流が取り出せず、また物理的強度の不足から信頼性を損なう可能性がある。例えば、導電性高分子としてポリアニリン(熱伝導率0.2W/mK)を用い、配線として銅(熱伝導率372W/mK)を用いた場合、吸熱側と放熱側の温度差を維持しながら配線部の抵抗を低減するためには、ポリアニリン素子の断面積に対し、銅配線の断面積の比率を1/10以下とすることが必要である。より好適には、1/30以下とすることが望ましい。 If the cross-sectional area of the wiring part is small, sufficient current cannot be taken out, and reliability may be impaired due to insufficient physical strength. For example, when polyaniline (thermal conductivity 0.2 W / mK) is used as the conductive polymer and copper (thermal conductivity 372 W / mK) is used as the wiring, the wiring is maintained while maintaining the temperature difference between the heat absorption side and the heat dissipation side. In order to reduce the resistance of the part, the ratio of the cross-sectional area of the copper wiring to the cross-sectional area of the polyaniline element needs to be 1/10 or less. More preferably, 1/30 or less is desirable.
 また、導電性高分子の線膨張係数は、配線部に用いられる導電材料と比較して、線膨張係数が約10倍程度大きい。そのため、線膨張係数の不整合による信頼性の低下を生じることとなる。熱源としてPCやサーバーなどの廃熱を利用する場合、PCやサーバーのCPUの動作状況によって、熱源の温度が変化する。こうした用途においては、配線部あるいは導電性高分子と配線の接点部にクラックが発生し、素子の信頼性が損なわれる。特に、面内に点在する熱源から吸熱して発電する際には、大面積の熱電変換素子が必要となる。このとき、例えば、角形の熱電変換素子を使用する場合、特に外周の角部では線膨張係数の不整合の影響が顕著に現れることとなる。 Also, the linear expansion coefficient of the conductive polymer is about 10 times larger than that of the conductive material used for the wiring part. Therefore, the reliability is lowered due to the mismatch of the linear expansion coefficients. When waste heat from a PC or server is used as a heat source, the temperature of the heat source varies depending on the operation status of the CPU of the PC or server. In such applications, cracks occur in the wiring portion or the contact portion between the conductive polymer and the wiring, and the reliability of the element is impaired. In particular, when generating heat by absorbing heat from heat sources scattered in the plane, a large-area thermoelectric conversion element is required. At this time, for example, when a square thermoelectric conversion element is used, the influence of the mismatch of the linear expansion coefficient is particularly noticeable particularly at the outer corner.
 前述したように、配線部に導電性を有する金属材料を用いた場合、金属材料は高い熱伝導性を有するため、吸熱部と放熱部にまたがる配線部では、温度差を緩和する方向に熱が流れ、発電性能を低下させることとなる。そのため、温度差を維持するためには、配線部の断面積を極力小さくすることが必要である。一方で、断面積を小さくすることにより、物理的強度は低下し、熱負荷が生じた際に信頼性を低下させることになる。 As described above, when a conductive metal material is used for the wiring portion, the metal material has high thermal conductivity. Therefore, in the wiring portion extending between the heat absorbing portion and the heat radiating portion, heat is generated in a direction that reduces the temperature difference. Flow and power generation performance will be reduced. Therefore, in order to maintain the temperature difference, it is necessary to reduce the cross-sectional area of the wiring part as much as possible. On the other hand, by reducing the cross-sectional area, the physical strength is lowered and the reliability is lowered when a thermal load is generated.
 こうした不具合を解消するため、本実施形態の熱電変換素子では、配線部に伸縮性を有する構造を用いることができる。例えば、図3等に示すように、配線11にはループ状の弛みを持たせる形状や、蛇腹形状(図9)、格子形状(図10)などのように、伸縮が発生した際に配線部が応力を緩和し、断線しにくい構造とすることができる。こうすることで、10%以上可逆的に伸縮する基材の使用に際しても、信頼性を確保した上での使用が可能となる。 In order to solve such a problem, the thermoelectric conversion element of this embodiment can use a structure having elasticity in the wiring portion. For example, as shown in FIG. 3 and the like, the wiring portion 11 is formed when expansion / contraction occurs such as a loop-like slack shape, a bellows shape (FIG. 9), a lattice shape (FIG. 10), or the like. Can relieve stress and make it hard to break. In this way, even when using a base material that reversibly expands and contracts by 10% or more, it is possible to use it while ensuring reliability.
 図11は、本実施形態の熱電発電素子110の平面図を示す。熱電発電素子110の特徴は、配線が蛇腹構造配線14を有することである。熱電発電素子110を構成するその他の要素は、熱電発電素子30と同様である。 FIG. 11 shows a plan view of the thermoelectric generator 110 of the present embodiment. A feature of the thermoelectric generator 110 is that the wiring has a bellows structure wiring 14. Other elements constituting the thermoelectric power generation element 110 are the same as those of the thermoelectric power generation element 30.
 図12は、本実施形態の熱電発電素子120の平面図を示す。熱電発電素子120の特徴は、配線が格子構造配線15を有することである。熱電発電素子120を構成するその他の要素は、熱電発電素子30と同様である。 FIG. 12 is a plan view of the thermoelectric generator 120 of the present embodiment. A feature of the thermoelectric power generation element 120 is that the wiring has a lattice structure wiring 15. Other elements constituting the thermoelectric power generation element 120 are the same as those of the thermoelectric power generation element 30.
 この伸縮性を有する配線部の材料は、金ワイヤやアルミワイヤなどの金属の他に、カーボンナノチューブなどの導電性ファイバーを混錬したゴム材料を用いた場合や、流路構造に液体状の金属を充填し導電体とする場合などが可能である。前記液体状の金属の例としてはガリウムインジウム合金(例えば、Ga75.5In24.5では融点が約15℃)などが挙げられる。 The material of the wiring part having elasticity is not only a metal such as a gold wire or an aluminum wire, but also a rubber material kneaded with a conductive fiber such as a carbon nanotube, or a liquid metal in the channel structure. It is possible to fill it with a conductor. Examples of the liquid metal include a gallium indium alloy (for example, Ga75.5In24.5 has a melting point of about 15 ° C.).
 本実施形態の導電性高分子による熱電変換層と配線との接続部には、導電性の良い金属薄膜層などからなる電極を設け、この電極を介して熱電変換層と配線とを接続することができる。これにより、熱電変換層と配線との間の接触抵抗を低減することができ、素子の高性能化を図ることができる。 In the connection part between the thermoelectric conversion layer and the wiring with the conductive polymer of this embodiment, an electrode made of a metal thin film layer having good conductivity is provided, and the thermoelectric conversion layer and the wiring are connected via this electrode. Can do. Thereby, the contact resistance between a thermoelectric conversion layer and wiring can be reduced, and the performance enhancement of an element can be achieved.
 本実施形態の伸縮性を有する配線部の配線断面積と、導電性高分子による熱電変換層の熱流方向に垂直な断面積の好適な割合は、配線部に用いる材料の導電率や熱伝導率による。例えば、導電性高分子としてポリアニリン(熱伝導率0.2W/mK)を用い、配線材料として金のワイヤを用いた場合、導電性高分子素子の断面積に対し配線の断面積の比率を1/30以下とすることが必要である。より好適には、1/100以下とすることが望ましい。断面積の比率が1/30を超えると、配線構造が吸熱部と放熱部の温度差を緩和してしまうからである。 A suitable ratio of the wiring cross-sectional area of the wiring part having elasticity of the present embodiment and the cross-sectional area perpendicular to the heat flow direction of the thermoelectric conversion layer by the conductive polymer is the conductivity or thermal conductivity of the material used for the wiring part. by. For example, when polyaniline (thermal conductivity 0.2 W / mK) is used as the conductive polymer and a gold wire is used as the wiring material, the ratio of the cross-sectional area of the wiring to the cross-sectional area of the conductive polymer element is 1 / 30 or less. More preferably, 1/100 or less is desirable. This is because if the ratio of the cross-sectional area exceeds 1/30, the wiring structure relaxes the temperature difference between the heat absorbing portion and the heat radiating portion.
 本実施形態の導電性高分子による熱電変換層の熱流方向の長さは0.5mm以上、10mm以下とすることができる。この長さの範囲とすることで、柔軟性に優れ、かつ吸熱部と放熱部の温度差を十分に確保し、良好な発電性能を得ることができる。なお、熱源の温度が十分に高く、吸熱部と放熱部との温度差を十分に確保することが容易な場合、本実施形態の熱電発電素子を積層して使用することができる。 The length in the heat flow direction of the thermoelectric conversion layer by the conductive polymer of the present embodiment can be 0.5 mm or more and 10 mm or less. By setting it as the range of this length, it is excellent in a softness | flexibility, and can fully ensure the temperature difference of a heat absorption part and a thermal radiation part, and can obtain favorable electric power generation performance. If the temperature of the heat source is sufficiently high and it is easy to ensure a sufficient temperature difference between the heat absorbing part and the heat radiating part, the thermoelectric generator of this embodiment can be used in a stacked manner.
 必要に応じて、熱電変換層や配線の保護を目的とした保護層として、熱伝導率の高い材料で素子を被覆することができる。この保護層は、熱電変換層表面の機械的な保護、耐湿性の向上、絶縁性の確保などに有効である。また、これにより、熱源との接触抵抗の低減や、放熱性の向上を図ることも可能である。 If necessary, the element can be covered with a material having high thermal conductivity as a protective layer for protecting the thermoelectric conversion layer and wiring. This protective layer is effective for mechanical protection of the thermoelectric conversion layer surface, improvement of moisture resistance, ensuring insulation, and the like. This also makes it possible to reduce contact resistance with the heat source and improve heat dissipation.
 次に本実施形態の熱電発電素子の製造方法について述べる。図13A~13Gは、本発明の熱電発電素子の製造方法を示す図である。まず、図13A工程では、熱電発電素子の基材2となる成型可能で柔軟な基材を用意し、アルコールなどの溶剤で洗浄した後、プラズマ処理などによる表面処理を行う。 Next, a method for manufacturing the thermoelectric generator of this embodiment will be described. 13A to 13G are diagrams showing a method for manufacturing a thermoelectric generator of the present invention. First, in the step of FIG. 13A, a moldable and flexible base material to be the base material 2 of the thermoelectric power generation element is prepared, and after cleaning with a solvent such as alcohol, surface treatment such as plasma treatment is performed.
 続いて図13B工程では、熱電変換層8(9)を形成する。熱電変換層は、導電性高分子を溶剤に溶かしたペースト状のものを印刷して乾燥しフィルム化し基材に貼り付ける方法や、導電性高分子のバルク材料を切断してフィルム化し貼り付けるなどの方法が可能である。 Subsequently, in the step of FIG. 13B, the thermoelectric conversion layer 8 (9) is formed. The thermoelectric conversion layer is a method of printing and pasting a paste in which a conductive polymer is dissolved in a solvent, drying it into a film, and pasting it on a substrate, cutting a bulk material of a conductive polymer into a film, and pasting it. Is possible.
 ペースト状の熱電変換材料の印刷方法としては、必要に応じてマスキングを行った上で、バーコート、スクリーン印刷、スピンコートなどの方法が可能である。あるいは、ディスペンサ、インクジェットなどのマスクレスで塗布する方法、あるいは、インプリントなどスタンプを用いて転写する方法が可能である。これらの方法により、熱電変換材料のペーストを塗布乾燥して導電性高分子のフィルムとすることができる。また、電子移動度の高い導電性高分子フィルムとするためには、インクに分散した導電性高分子モノマーを配向させながら印刷することが有効である。 As a printing method of the paste-like thermoelectric conversion material, methods such as bar coating, screen printing, and spin coating are possible after performing masking as necessary. Or the method of apply | coating without masks, such as a dispenser and an inkjet, or the method of transferring using stamps, such as an imprint, is possible. By these methods, a paste of a thermoelectric conversion material can be applied and dried to form a conductive polymer film. In order to obtain a conductive polymer film having a high electron mobility, it is effective to print while orienting the conductive polymer monomer dispersed in the ink.
 導電性高分子フィルムを貼り付ける際は、導電性高分子を固定するための接着剤を前述の印刷法で基材に塗布する。続いて導電性高分子のフィルムを接着剤に貼り付け、接着剤を硬化させることで、熱電変換層の形成ができる。 When attaching the conductive polymer film, an adhesive for fixing the conductive polymer is applied to the substrate by the printing method described above. Subsequently, a thermoelectric conversion layer can be formed by attaching a conductive polymer film to the adhesive and curing the adhesive.
 続いて図13C工程では、得られた熱電変換層の両端に、配線を固定するための接続部10を設ける。このとき、接続部に金属層を設けるなどにより電極を形成することができる。電極を形成するために、予め熱電変換層の表面に、プラズマ処理などによる表面処理を行っても良い。 Subsequently, in the step of FIG. 13C, connection portions 10 for fixing the wiring are provided at both ends of the obtained thermoelectric conversion layer. At this time, an electrode can be formed by providing a metal layer in a connection part. In order to form an electrode, a surface treatment such as plasma treatment may be performed on the surface of the thermoelectric conversion layer in advance.
 電極形成の手段としては、マスクを用いて導電ペーストを印刷する方法や、蒸着、スパッタリングなどの気層成長法などの方法が可能である。電極材料としては、金、銀、白金、銅、アルミニウム、ロジウムなどが可能である。酸化の影響が少なく製造歩留まりを向上させ、また有機導電性高分子との接触抵抗を小さくしやすいという点で、金を好適に用いることができる。また、熱電変換層と配線との接触抵抗を低減させるために、接続部や電極の表面に微細な凹凸を、ナノインプリント法などにより形成し、表面積を増加させる方法が有効である。 As a means for forming the electrode, a method such as a method of printing a conductive paste using a mask or a gas layer growth method such as vapor deposition or sputtering is possible. The electrode material can be gold, silver, platinum, copper, aluminum, rhodium, or the like. Gold can be suitably used in that it is less affected by oxidation and improves the production yield and can easily reduce the contact resistance with the organic conductive polymer. In order to reduce the contact resistance between the thermoelectric conversion layer and the wiring, it is effective to form a fine unevenness on the surface of the connection part or the electrode by a nanoimprint method or the like to increase the surface area.
 続いて図13D工程では、接続部に配線11を形成する。この配線は、熱電発電素子を使用する際の温度の昇降で、基材や熱電変換層の線膨張係数の不整合により生じる破壊を防ぐため、応力のかかりにくい構造とすることが望ましい。金や銅などの線材と接続部とを、あるいは、電極を形成している場合は前記線材と電極とを、導電性ペーストにより接続する。このとき、線材には弛みを持たせておく。この線材は、また、蛇腹構造や格子構造とすることができる。 Subsequently, in the step of FIG. 13D, the wiring 11 is formed in the connection portion. It is desirable that the wiring has a structure that is not easily stressed in order to prevent breakage caused by mismatching of the linear expansion coefficients of the base material and the thermoelectric conversion layer due to a rise and fall in temperature when the thermoelectric power generation element is used. A wire such as gold or copper is connected to the connecting portion, or, when an electrode is formed, the wire and the electrode are connected by a conductive paste. At this time, the wire is allowed to have slack. The wire can also have a bellows structure or a lattice structure.
 配線はまた、印刷工法で形成することができる。例えば、カーボンナノチューブをシリコーンゴムに分散させたペーストを塗布することで、熱負荷の高い時の応力に対応した配線を形成することが可能である。また、金や銅を用いる場合も、蛇腹構造や格子構造とすることで、応力に対応した配線を形成することができる。 Wiring can also be formed by a printing method. For example, by applying a paste in which carbon nanotubes are dispersed in silicone rubber, it is possible to form a wiring corresponding to a stress when the heat load is high. Also, when gold or copper is used, wiring corresponding to stress can be formed by using a bellows structure or a lattice structure.
 続いて図13E工程では、熱電変換層や配線を形成した基材を、波形状構造に成形する。このときの成形方法として、ホットエンボス法を用いることができる。すなわち、波形状を有する金型を2枚準備し、折り曲げ部と金型の波形状を位置あわせする。その後、熱電変換層や配線を形成した基材を加熱した金型で挟み込み、適切な時間、保持することで波形状を基材に転写し成型することができる。 Subsequently, in the step of FIG. 13E, the base material on which the thermoelectric conversion layer and the wiring are formed is formed into a corrugated structure. As a molding method at this time, a hot embossing method can be used. That is, two molds having a wave shape are prepared, and the bent portion and the wave shape of the mold are aligned. Thereafter, the substrate on which the thermoelectric conversion layer and the wiring are formed is sandwiched between heated molds and held for an appropriate time, whereby the wave shape can be transferred to the substrate and molded.
 その後、必要に応じて、図13F工程にて、基材に補強材12を形成する。基材2の裏面に、柔軟性のある樹脂材料を塗布し、埋め込むことによって、補強材12とすることができる。 Then, if necessary, the reinforcing material 12 is formed on the base material in the step of FIG. 13F. The reinforcing material 12 can be obtained by applying and embedding a flexible resin material on the back surface of the substrate 2.
 さらに、必要に応じて、図13G工程にて、保護層13を形成する。保護層は、絶縁性を有するフィルム状のシートを貼り付けるなどにより形成する。保護層を感光性のある絶縁材料で形成することによって、保護層を形成した後、フォトリソグラフィ法で電極などを露出させることができる。これにより、熱電発電素子を外部回路と電気的に接続することができる。感光性のない絶縁材料を用いた場合は、例えば、レーザ加工とレーザ加工後のデスミア処理により電極を露出させ、外部回路と電気的に接続することができる。
(実施例)
 以下、代表的な実施例を記載する。但し、以下に述べる実施例には、本発明の第一の実施の形態を実施するために技術的に好ましい限定がされているが、本発明の範囲を以下に限定するものではない。
(実施例1)
 厚さ0.1mmのPET(ポリエチレンテレフタレート)基材を準備し、エタノールで脱脂洗浄し、酸素プラズマによる表面処理を1分間行った。続いて、この基材にフィルム状の導電性高分子を固定するため、基材表面にシリコーン樹脂接着剤をスクリーン印刷法で塗布した。
Furthermore, the protective layer 13 is formed in the process of FIG. 13G as needed. The protective layer is formed by attaching a film-like sheet having insulating properties. By forming the protective layer with a photosensitive insulating material, the electrode and the like can be exposed by a photolithography method after the protective layer is formed. Thereby, a thermoelectric power generation element can be electrically connected with an external circuit. In the case of using a non-photosensitive insulating material, for example, the electrode can be exposed by laser processing and desmear processing after laser processing, and can be electrically connected to an external circuit.
(Example)
Hereinafter, representative examples will be described. However, in the examples described below, there are technically preferable limitations for carrying out the first embodiment of the present invention, but the scope of the present invention is not limited to the following.
(Example 1)
A PET (polyethylene terephthalate) base material having a thickness of 0.1 mm was prepared, degreased and washed with ethanol, and subjected to surface treatment with oxygen plasma for 1 minute. Subsequently, in order to fix the film-like conductive polymer to the substrate, a silicone resin adhesive was applied to the substrate surface by a screen printing method.
 一方、ポリチオフェン系のP型半導体材料(商品名:PH1000)のモノマー水溶液を、ガラス基板上にバーコータで塗布し、常温下、10 mbarの気圧で一昼夜減圧乾燥することで水を気化させる作業を繰り返し、導電性高分子フィルムを製造した。得られた導電性高分子フィルムを水に浸すことでガラス基板から剥離した。導電性高分子フィルムを 長さ5mm×幅2mm×厚さ0.05mmの寸法に切り出し、前述のシリコーン樹脂接着剤に貼り合せ、70℃で2時間の熱処理を行うことでシリコーン樹脂接着剤を硬化させた。以上により、PET基材上に熱電変換層を形成した。 On the other hand, an aqueous solution of a polythiophene-based P-type semiconductor material (trade name: PH1000) is applied on a glass substrate with a bar coater, and the process of evaporating water by drying under reduced pressure overnight at 10 mbar at room temperature is repeated. A conductive polymer film was produced. The obtained conductive polymer film was immersed in water and peeled from the glass substrate. The conductive polymer film is cut into dimensions of 5 mm in length x 2 mm in width x 0.05 mm in thickness, bonded to the aforementioned silicone resin adhesive, and cured at 70 ° C for 2 hours to cure the silicone resin adhesive. I let you. Thus, a thermoelectric conversion layer was formed on the PET substrate.
 続いて、得られた導電性高分子層付き基材に酸素プラズマ処理を1分間行った後、導電性高分子層の端部が開放されるようにパターニングされたメタルマスクを基板上に載せ、金のスパッタリングにより厚さ約100nmの電極を形成した。続いて、得られた導電性高分子層とこれに隣り合う導電性高分子層の電極間を、太さ18ミクロンの金配線をボンディングすることで接続した。この際、接続した電極間の距離は約5mmであるのに対し接続に使用した配線長は約8mmとし、接続した配線がループ形状となるようにした。 Subsequently, after performing oxygen plasma treatment for 1 minute on the obtained base material with a conductive polymer layer, a metal mask patterned so that the end of the conductive polymer layer is opened is placed on the substrate, An electrode having a thickness of about 100 nm was formed by gold sputtering. Subsequently, the obtained conductive polymer layer and the electrode of the adjacent conductive polymer layer were connected by bonding a gold wiring having a thickness of 18 microns. At this time, while the distance between the connected electrodes was about 5 mm, the length of the wiring used for the connection was about 8 mm so that the connected wiring had a loop shape.
 続いて、金型を準備し、得られた導電性高分子層付き基材を150℃に加温しながらホットエンボス法で波形状構造に成型した。さらに、この形状を保持するために、屈曲部にエポキシ接着剤を補強材として流し込み乾燥させた。 Subsequently, a mold was prepared, and the obtained base material with a conductive polymer layer was molded into a corrugated structure by hot embossing while heating to 150 ° C. Further, in order to maintain this shape, an epoxy adhesive was poured into the bent portion as a reinforcing material and dried.
 最後に、熱電発電素子の表層に、絶縁層となる封止樹脂を塗布し保護層を形成した。外部回路との接続端子部は、UV-YAGレーザで電極パット部にエッチング加工を行い、レーザ加工後の残渣を除去するため150℃でプラズマ処理を行い、電極パッドを露出させることで形成した。 Finally, a sealing resin serving as an insulating layer was applied to the surface layer of the thermoelectric generator to form a protective layer. The connection terminal portion with the external circuit was formed by etching the electrode pad portion with a UV-YAG laser, performing plasma treatment at 150 ° C. to remove the residue after laser processing, and exposing the electrode pad.
 以上の工程により、200mm角のPET基板上に熱電変換層をアレイ状に直列接続した素子(図6参照)を作製した。得られた素子の吸熱側に約65℃の蛍光灯を用い、放熱側として24℃の大気を用いて発電させたところ、約0.1mWの発電量を得た。 Through the above steps, an element (see FIG. 6) in which thermoelectric conversion layers were connected in series in an array on a 200 mm square PET substrate was produced. When a fluorescent lamp with a temperature of about 65 ° C. was used on the heat absorption side of the obtained element and the atmosphere at 24 ° C. was used on the heat dissipation side, a power generation amount of about 0.1 mW was obtained.
 さらに、以上の工法により、導電性高分子による熱電変換層同士を直列に接続する配線の長さを、8mmとした場合と5mmとした場合の2種の熱電発電素子を作製した。得られた熱電発電素子で、-40℃15分保持、25℃5分保持、125℃15分保持を1サイクルとする冷熱衝撃試験を行った。その結果、配線長を8mmとした熱電発電素子は、配線長を5mmとした熱電発電素子と比較して、発電量の劣化が起こるサイクル数が多く、長期信頼性を有することを確認した。また、配線の長さは、隣り合う熱電変換層の間の長さよりも、10%以上長ければ、長期信頼性を確保可能であった。 Furthermore, by the above method, two types of thermoelectric power generation elements were produced in which the length of the wiring connecting the thermoelectric conversion layers made of the conductive polymer in series was 8 mm and 5 mm. The obtained thermoelectric power generation element was subjected to a thermal shock test in which a cycle of holding at −40 ° C. for 15 minutes, holding at 25 ° C. for 5 minutes, and holding at 125 ° C. for 15 minutes was one cycle. As a result, it was confirmed that the thermoelectric power generation element with a wiring length of 8 mm has a long number of cycles and has a long-term reliability as compared with a thermoelectric power generation element with a wiring length of 5 mm. Further, if the length of the wiring is 10% or more longer than the length between adjacent thermoelectric conversion layers, long-term reliability can be secured.
 なお、PET基材厚さとして、0.01mm以上、2mm以下とすることで、PET基材厚さ0.1mmの場合と同様の結果を得た。また、導電性高分子層の厚さが0.01mm以上、2mm以下であれば、長期信頼性の高い熱電発電素子を実現可能であった。
(実施例2)
 厚さ0.1mmのPEN(ポリエチレンナフタレート)基材を準備し、酸素プラズマ処理を1分間行った。続いて、この基材にフィルム状の導電性高分子を固定するため、基材表面にシリコーン樹脂接着剤をスクリーン印刷法で塗布した。
In addition, the result similar to the case of PET base material thickness 0.1mm was obtained by setting it as 0.01 mm or more and 2 mm or less as PET base material thickness. In addition, when the thickness of the conductive polymer layer is 0.01 mm or more and 2 mm or less, a thermoelectric generator with high long-term reliability can be realized.
(Example 2)
A PEN (polyethylene naphthalate) substrate having a thickness of 0.1 mm was prepared and subjected to oxygen plasma treatment for 1 minute. Subsequently, in order to fix the film-like conductive polymer to the substrate, a silicone resin adhesive was applied to the substrate surface by a screen printing method.
 ポリチオフェン系のP型半導体材料(商品名:PH1000)のモノマー水溶液をPDMS基材上に塗布し、常温下、10 mbarの気圧で一昼夜減圧乾燥することで水を気化させる作業を2回繰り返し、PEN基板上に導電性高分子フィルムを製造した。得られた基板を70℃に加温しながら延伸処理を行い、長さ5mm×幅2mm×厚さ0.05mmの寸法に切り出した後、前述のシリコーン樹脂接着剤に貼り合せ、70℃で2時間の熱処理を行うことでシリコーン樹脂接着剤を硬化させた。以上により、PEN基材上に熱電変換層を形成した。 A PEN semiconductor material (trade name: PH1000) monomer aqueous solution is applied onto a PDMS substrate and dried under reduced pressure overnight at 10 mbar at room temperature. A conductive polymer film was produced on the substrate. The obtained substrate was stretched while being heated to 70 ° C., cut out into dimensions of 5 mm in length × 2 mm in width × 0.05 mm in thickness, and then bonded to the aforementioned silicone resin adhesive, and 2 at 70 ° C. The silicone resin adhesive was cured by heat treatment for a period of time. Thus, a thermoelectric conversion layer was formed on the PEN substrate.
 続いて、得られた導電性高分子層付き基材に酸素プラズマ処理を1分間行い、導電性高分子層の端部が開放されるようにパターニングされたメタルマスクを基材上に載せ、金のスパッタリングにより約100nm厚みの電極を形成した。得られた導電性高分子層の端部電極と、これに隣り合う導電性高分子層の端部電極の間を、スクリーン印刷法を用いて蛇腹構造となるように導電性ペーストを印刷し熱処理した。(図11参照)
 以後は実施例1と同様のプロセスで成型、保護層形成を行い熱電発電素子とした。
Subsequently, the obtained base material with the conductive polymer layer is subjected to oxygen plasma treatment for 1 minute, and a metal mask patterned so that the end of the conductive polymer layer is opened is placed on the base material. An electrode having a thickness of about 100 nm was formed by sputtering. Between the end electrode of the obtained conductive polymer layer and the end electrode of the adjacent conductive polymer layer, a conductive paste is printed and heat-treated using a screen printing method so that a bellows structure is formed. did. (See Figure 11)
Thereafter, molding and protective layer formation were performed in the same process as in Example 1 to obtain a thermoelectric power generation element.
 以上の工程により、200mm角のPEN基板上に熱電変換層をアレイ状に直列接続した素子(図6参照)を作製した。得られた素子の吸熱側に約65℃の蛍光灯を用い、放熱側として24℃の大気を用いて発電させたところ、約0.1mWの発電量を得た。 Through the above steps, an element (see FIG. 6) in which thermoelectric conversion layers were connected in series in an array on a 200 mm square PEN substrate was produced. When a fluorescent lamp with a temperature of about 65 ° C. was used on the heat absorption side of the obtained element and the atmosphere at 24 ° C. was used on the heat dissipation side, a power generation amount of about 0.1 mW was obtained.
 さらに、以上の工程により、導電性高分子層同士を直列に接続する配線を、蛇腹構造とした場合と直線構造とした場合の2種の熱電発電素子を作製した。得られた熱電発電素子で、-40℃15分保持、25℃5分保持、125℃15分保持を1サイクルとする冷熱衝撃試験を行った。その結果、蛇腹構造の配線の熱電発電素子は、直線構造の配線の熱電発電素子と比較して、発電量の劣化が起こるサイクル数が多く、長期信頼性を有することを確認した。 Furthermore, two types of thermoelectric power generation elements were produced by the above process, when the wiring connecting the conductive polymer layers in series had a bellows structure and a straight structure. The obtained thermoelectric power generation element was subjected to a thermal shock test in which a cycle of holding at −40 ° C. for 15 minutes, holding at 25 ° C. for 5 minutes, and holding at 125 ° C. for 15 minutes was one cycle. As a result, it was confirmed that the thermoelectric power generation element with the bellows-structured wiring has a longer number of cycles and the long-term reliability than the thermoelectric power generation element with the linear structure wiring.
 なお、PEN基材厚さとして、0.01mm以上、2mm以下とすることで、PDMS基材厚さ0.1mmの場合と同様の結果を得た。また、導電性高分子層の厚さが0.01mm以上、2mm以下であれば、長期信頼性の高い熱電発電素子を実現可能であった。
(実施例3)
 厚さ0.1mmのポリイミド基材を準備し、酸素プラズマ処理を1分間行った。続いて、熱電変換フィルムを固定するため、シリコーン樹脂接着剤をスクリーン印刷法で塗布した。以上の工程を基材の裏表の両面に行った。
In addition, the result similar to the case of PDMS base material thickness 0.1mm was obtained by setting it as 0.01 mm or more and 2 mm or less as PEN base material thickness. In addition, when the thickness of the conductive polymer layer is 0.01 mm or more and 2 mm or less, a thermoelectric generator with high long-term reliability can be realized.
(Example 3)
A polyimide base material having a thickness of 0.1 mm was prepared, and oxygen plasma treatment was performed for 1 minute. Subsequently, in order to fix the thermoelectric conversion film, a silicone resin adhesive was applied by a screen printing method. The above process was performed on both sides of the substrate.
 ポリチオフェン系のP型半導体材料(商品名:PH1000)のモノマー水溶液をポリイミド基材上に塗布し、常温下、10 mbarの気圧で一昼夜減圧乾燥することで水を気化させる作業を2回繰り返し、導電性高分子フィルムを製造した。得られたフィルムを長さ5mm×幅2mm×厚さ0.05mmの寸法に切り出した後、前述のシリコーン樹脂接着剤に貼り合せ、70℃で2時間の熱処理を行うことでシリコーン樹脂接着剤を硬化させた。以上により、ポリイミド基材上に熱電変換層を形成した。以上の工程を基材の裏表の両面に行った。 Applying an aqueous monomer solution of a polythiophene-based P-type semiconductor material (trade name: PH1000) on a polyimide substrate and drying it under reduced pressure overnight at 10 mbar at room temperature, the process of evaporating water is repeated twice. A conductive polymer film was produced. The obtained film was cut into dimensions of 5 mm long × 2 mm wide × 0.05 mm thick, and then bonded to the above-mentioned silicone resin adhesive, followed by heat treatment at 70 ° C. for 2 hours to obtain the silicone resin adhesive. Cured. Thus, a thermoelectric conversion layer was formed on the polyimide base material. The above process was performed on both sides of the substrate.
 続いて、得られた導電性高分子層付き基材に、酸素プラズマ処理を1分間行い、導電性高分子層の端部が開放されるようにパターニングされたメタルマスクを基板上に載せ、金のスパッタリングにより約100nm厚みの電極を形成することを基板の表裏に行い、基材の両面に形成された導電性高分子層の端部に電極を形成した。以後は実施例1と同様のプロセスで成型、保護層形成を行い熱電発電素子とした(図10参照)。 Subsequently, the obtained base material with a conductive polymer layer is subjected to oxygen plasma treatment for 1 minute, and a metal mask patterned so as to open the ends of the conductive polymer layer is placed on the substrate. Electrodes having a thickness of about 100 nm were formed on the front and back surfaces of the substrate by sputtering, and electrodes were formed at the ends of the conductive polymer layer formed on both sides of the substrate. Thereafter, molding and protective layer formation were performed by the same process as in Example 1 to obtain a thermoelectric power generation element (see FIG. 10).
 以上の工程により、200mm角のポリイミド基板上に熱電変換層をアレイ状に直列接続した素子(図6参照)を作製した。得られた素子の吸熱側に約65℃の蛍光灯を用い、放熱側として24℃の大気を用いて発電させたところ、約0.2mWの発電量を得た。 Through the above steps, an element (see FIG. 6) in which thermoelectric conversion layers were connected in series in an array on a 200 mm square polyimide substrate was produced. When a fluorescent lamp with a temperature of about 65 ° C. was used on the heat absorption side of the obtained element and the atmosphere at 24 ° C. was used on the heat radiation side, a power generation amount of about 0.2 mW was obtained.
 さらに、以上の工程により、導電性高分子層同士を直列に接続する配線を、蛇腹構造とした場合と直線構造とした場合の2種の熱電変換素子を製造した。得られた熱電発電素子で、-40℃15分保持、25℃5分保持、125℃15分保持を1サイクルとする冷熱衝撃試験を行った。その結果、蛇腹構造の配線の熱電発電素子は、直線構造の配線の熱電発電素子と比較して、発電量の劣化が起こるサイクル数が多く、長期信頼性を有することを確認できた。 Furthermore, two types of thermoelectric conversion elements were manufactured by the above process, in which the wiring connecting the conductive polymer layers in series had a bellows structure and a linear structure. The obtained thermoelectric power generation element was subjected to a thermal shock test in which a cycle of holding at −40 ° C. for 15 minutes, holding at 25 ° C. for 5 minutes, and holding at 125 ° C. for 15 minutes was one cycle. As a result, it was confirmed that the thermoelectric power generation element with the bellows-structured wiring has a longer number of cycles and the long-term reliability than the thermoelectric power generation element with the linear structure wiring.
 なお、ポリイミド基材厚さとして、0.01mm以上、2mm以下とすることで、ポリイミド基材厚さ0.1mmの場合と同様の結果を得た。また、導電性高分子層の厚さが0.01mm以上、2mm以下であれば、長期信頼性の高い熱電発電素子を実現可能であった。
(第二の実施の形態)
 図15は、本発明の第二の実施の形態を表す熱電発電素子の断面構造を示す図である。図16は、本発明の実施の形態を表す熱電発電素子の平面構造を示す図である。図15は、図18のA-A’での断面構造を示す。本熱電発電素子は、基材32、頂部33、第1の底部34、第2の底部35、第1の斜面36、第2の斜面37、第1の熱電変換層38、第2の熱電変換層39、パッド電極部40、微細配線部41、第1の電極42、第2の電極43、からなる。本実施例の熱電発電素子では底部34と頂部33に温度差を設けることにより、第1の電極42と第2の電極43から出力が得られる。
In addition, the result similar to the case of polyimide base material thickness 0.1mm was obtained by setting it as 0.01 mm or more and 2 mm or less as polyimide base material thickness. In addition, when the thickness of the conductive polymer layer is 0.01 mm or more and 2 mm or less, a thermoelectric generator with high long-term reliability can be realized.
(Second embodiment)
FIG. 15 is a diagram showing a cross-sectional structure of a thermoelectric power generation element representing the second embodiment of the present invention. FIG. 16 is a diagram showing a planar structure of a thermoelectric power generation element representing the embodiment of the present invention. FIG. 15 shows a cross-sectional structure taken along line AA ′ of FIG. The thermoelectric power generating element includes a base material 32, a top portion 33, a first bottom portion 34, a second bottom portion 35, a first slope 36, a second slope 37, a first thermoelectric conversion layer 38, and a second thermoelectric conversion. The layer 39, the pad electrode part 40, the fine wiring part 41, the first electrode 42, and the second electrode 43 are included. In the thermoelectric generator of this embodiment, an output is obtained from the first electrode 42 and the second electrode 43 by providing a temperature difference between the bottom 34 and the top 33.
 本熱電発電素子は、第1の熱電変換層38あるいは第2の熱電変換層39と微細配線部41を接続するためのパッド電極部40を有している。パッド電極と微細配線は圧延銅で形成されており、圧延銅の表面には酸化防止のために銀メッキを施してある。また銀メッキは、銀ペーストで熱電変換層38をパッド電極部40に接着する場合に、電気的接触抵抗を下げる利点がある。 This thermoelectric power generation element has a pad electrode portion 40 for connecting the first thermoelectric conversion layer 38 or the second thermoelectric conversion layer 39 and the fine wiring portion 41. The pad electrode and the fine wiring are made of rolled copper, and the surface of the rolled copper is silver-plated to prevent oxidation. Silver plating has the advantage of lowering the electrical contact resistance when the thermoelectric conversion layer 38 is bonded to the pad electrode portion 40 with a silver paste.
 基材32には50μm厚のポリイミドフィルムを用いている。ポリイミドフィルムのように150℃での耐熱性がある基材が本実施形態に適している。パッド電極と微細配線の形成は基材32上に圧延銅薄膜を接着した後に、フォトリソグラフィ法を用いて不要な銅をエッチングで除去して形成した。本実施形態はパッド電極部40と微細配線部41が基材32に接していることを特徴とする。微細配線部41の厚さは18μm、線幅は50μmである。頂部33と底部34の温度差を維持するためには微細配線の幅は狭い方が望ましい。一方で、微細配線の幅が狭くなると素子の歩留まりが低下するので、微細配線の幅は15μm~60μmが適している。 The substrate 32 is a polyimide film having a thickness of 50 μm. A substrate having heat resistance at 150 ° C. such as a polyimide film is suitable for this embodiment. The pad electrode and the fine wiring were formed by adhering a rolled copper thin film on the substrate 32 and then removing unnecessary copper by etching using a photolithography method. The present embodiment is characterized in that the pad electrode portion 40 and the fine wiring portion 41 are in contact with the base material 32. The fine wiring portion 41 has a thickness of 18 μm and a line width of 50 μm. In order to maintain the temperature difference between the top 33 and the bottom 34, it is desirable that the width of the fine wiring is narrow. On the other hand, if the width of the fine wiring is narrowed, the yield of the element is lowered. Therefore, the width of the fine wiring is suitably 15 μm to 60 μm.
 パッド電極部40の厚さは18μm、パッド電極部40の寸法は3mm×4mm、平面図で隣接するパッド電極40同士の隙間の幅は2mmである。頂部の折れ線(図16中のB-B’)の長さ12mmにおいて4mm幅の電極パッド2個が占める割合は66%である。波形状構造の基材の底部同士の間隔は3mmである。 The thickness of the pad electrode part 40 is 18 μm, the dimension of the pad electrode part 40 is 3 mm × 4 mm, and the width of the gap between adjacent pad electrodes 40 in the plan view is 2 mm. The ratio of the two electrode pads having a width of 4 mm in the length 12 mm of the top broken line (B-B ′ in FIG. 16) is 66%. The interval between the bottoms of the corrugated base material is 3 mm.
 第1の熱電変換層38および第2の熱電変換層39は導電性高分子材料フィルムとしてポリ3,4-エチレンジオキシチオフェン/ポリスチレンサルフォネイト(Poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)、以下、PEDOT/PSSと称す。)からなり、フィルムの寸法は幅4mm、長さ15mmで、厚さは40μmである。 The first thermoelectric conversion layer 38 and the second thermoelectric conversion layer 39 are made of poly 3,4-ethylenedioxythiophene / polystyrene sulfonate (poly (3,4-ethylenedioxythiophene) / poly (styreneenesulfonate) as a conductive polymer material film. ), Hereinafter referred to as PEDOT / PSS.) The film has a width of 4 mm, a length of 15 mm, and a thickness of 40 μm.
 銀粒子を樹脂に分散させた導電性の銀ペーストを用いて、伝導性有機フィルムの両端を2つのパッド電極に接着した。接着後に150℃で30分間加熱して、接着部を硬化させた。硬化後の1つの熱電変換層で接続されたパッド電極間の電気抵抗は1Ωであった。パッド電極表面に金メッキを施した場合、電気抵抗は0.8Ωであった。これは金がPEDOT/PSSの仕事関数に等しいために、接触抵抗が減少したためである。 Using conductive silver paste in which silver particles are dispersed in a resin, both ends of the conductive organic film were bonded to the two pad electrodes. After bonding, the bonded portion was cured by heating at 150 ° C. for 30 minutes. The electrical resistance between the pad electrodes connected by one thermoelectric conversion layer after curing was 1Ω. When gold plating was applied to the pad electrode surface, the electrical resistance was 0.8Ω. This is because the contact resistance is reduced because gold is equal to the work function of PEDOT / PSS.
 本熱電発電素子の特徴は、微細配線部での折り曲げを避け、パッド電極部40で折り曲げて頂部や底部を形成することにある。本実施形態の第一の利点は、折り曲げた頂部と底部にパッド電極が形成されているために、折り曲げ加工時に微細金属配線部が破断しないことである。これにより歩留まりが向上し、信頼性が向上する。圧延銅を用いた配線は破断に強い。第二の利点は、折り曲げた頂部と底部がある程度厚みのあるパッド電極であるために、鋭角で折り曲げた高密度の波形状構造が安定に維持できることである。これにより基材フィルムの弾力性により折り曲げ角度が増大して配線部と熱電変換層が接触短絡することを防止できる。第三の利点は、熱電変換部の両端が波形状構造の頂部と底部を接続しているので、熱電変換層の両端により大きな温度差をつくり、高い発電量が得られることである。 The feature of this thermoelectric power generation element is that it avoids bending at the fine wiring portion and bends at the pad electrode portion 40 to form the top portion and the bottom portion. The first advantage of the present embodiment is that the fine metal wiring portion does not break during bending because the pad electrodes are formed on the folded top and bottom. As a result, the yield is improved and the reliability is improved. Wiring using rolled copper is resistant to breakage. The second advantage is that since the folded top and bottom are pad electrodes having a certain thickness, a high-density corrugated structure folded at an acute angle can be stably maintained. Thereby, it can prevent that a bending angle increases by the elasticity of a base film, and a wiring part and a thermoelectric conversion layer contact-short-circuit. The third advantage is that since both ends of the thermoelectric conversion part connect the top and bottom of the wave-shaped structure, a large temperature difference is created between both ends of the thermoelectric conversion layer, and a high power generation amount is obtained.
 本熱電発電素子は、配線が圧延銅で形成されているために、ボンディングワイヤで形成された配線より信頼性や量産性が高い。本実施形態は、ボンディングによる基材フィルムの劣化や、ボンディング温度が低いことにより接続強度が低下して断線することがない。また非常の多くのボンディングワイヤを形成するための手間がかからないといった利点がある。 This thermoelectric power generation element has higher reliability and mass productivity than wiring formed of bonding wires because the wiring is formed of rolled copper. In the present embodiment, the base film does not deteriorate due to bonding, and the connection strength is not lowered due to a low bonding temperature, so that there is no disconnection. Further, there is an advantage that it does not take time and effort to form a great number of bonding wires.
 図17は、本実施形態を表す熱電発電素子の断面構造を示す図である。図18は、本実施形態を表す熱電発電素子の平面構造を示す図である。図17は、図18のCC’での断面構造を示す。本熱電発電素子は、図15、図16の熱電発電素子の熱電変換部の数を4倍にした熱電発電素子である。本実施形態は、支持基材31、基材32、頂部33、第1の底部34、第2の底部35、第1の斜面36、第2の斜面37、第1の熱電変換層38、第2の熱電変換層39、パッド電極部40、微細配線部41、第1の電極42、第2の電極43からなる。基材32はポリイミドフィルムであり、基材32の厚さは40μm~80μmが折り曲げと波形形状を保つのに適している。 FIG. 17 is a diagram showing a cross-sectional structure of a thermoelectric power generation element representing this embodiment. FIG. 18 is a diagram showing a planar structure of a thermoelectric power generation element representing this embodiment. FIG. 17 shows a cross-sectional structure taken along CC ′ in FIG. This thermoelectric power generation element is a thermoelectric power generation element in which the number of thermoelectric conversion parts of the thermoelectric power generation elements in FIGS. 15 and 16 is quadrupled. In the present embodiment, the support base material 31, the base material 32, the top 33, the first bottom 34, the second bottom 35, the first slope 36, the second slope 37, the first thermoelectric conversion layer 38, the first 2 thermoelectric conversion layers 39, pad electrode portions 40, fine wiring portions 41, first electrodes 42, and second electrodes 43. The base material 32 is a polyimide film, and the thickness of the base material 32 is 40 μm to 80 μm, which is suitable for keeping the folded and corrugated shape.
 本熱電発電素子は8枚の熱電変換層をパッド電極と微細配線を用いて直列に配線し、波形状に折り曲げて支持基材31に接着した構造を有する。熱電変換層38とパッド電極部44と微細配線部41の寸法は図15、図16と同様である。折れ線上の電極パッド4個が折れ線の長さに対して占める割合は70%である。頂部と底部の間の長さは15mmmであり、波形構造の底部の間隔は3mmである。折り曲げ後の外形の寸法は長さ26mm、幅14mm、高さ14mmである。 This thermoelectric power generation element has a structure in which eight thermoelectric conversion layers are wired in series using pad electrodes and fine wiring, bent into a wave shape, and bonded to the support substrate 31. The dimensions of the thermoelectric conversion layer 38, the pad electrode portion 44, and the fine wiring portion 41 are the same as those in FIGS. The ratio of the four electrode pads on the broken line to the length of the broken line is 70%. The length between the top and the bottom is 15 mm and the gap between the bottoms of the corrugated structure is 3 mm. The dimensions of the outer shape after bending are 26 mm in length, 14 mm in width, and 14 mm in height.
 本熱電発電素子は、底部34、35と頂部33との間に温度差を設けることにより、第1の電極42と第2の電極43から出力が得られる。図17、図18の熱電発電素子では、図15、図16の熱電発電素子の4倍の出力が得られる。 In this thermoelectric power generation element, an output is obtained from the first electrode 42 and the second electrode 43 by providing a temperature difference between the bottom portions 34 and 35 and the top portion 33. 17 and 18, an output four times that of the thermoelectric generators shown in FIGS. 15 and 16 can be obtained.
 図19に、本実施形態の熱電発電素子の製造方法を示す第一の図を示す。基材32上に長方形形状のパッド電極部40とそれを結ぶ微細配線部41と第1の電極42と第2の電極43を圧延銅でフォトリソグラフィとエッチングを用いて形成する。 FIG. 19 shows a first diagram showing a method for manufacturing the thermoelectric generator of this embodiment. A rectangular pad electrode portion 40, a fine wiring portion 41 connecting the pad electrode portion 40, a first electrode 42, and a second electrode 43 are formed on the base material 32 using rolled copper by photolithography and etching.
 図20に、本実施形態の熱電発電素子の製造方法を示す第二の図を示す。銀ペーストなどの導電性接着剤81を、対向するパッド電極の端部に塗布する。塗布時には、導電性接着剤81をパッド電極の端部にディスペンサなどを用いて滴下し、接着に必要な量を塗布する。 FIG. 20 shows a second diagram illustrating the method for manufacturing the thermoelectric generator of this embodiment. A conductive adhesive 81 such as silver paste is applied to the end of the opposing pad electrode. At the time of application, the conductive adhesive 81 is dropped onto the end of the pad electrode using a dispenser or the like, and an amount necessary for adhesion is applied.
 図21に、本実施形態の熱電発電素子の製造方法を示す第三の図を示す。厚さ40μmのPEDOT/PSS膜から、幅4mm、長さ15mmの短冊を8枚切り取り、パッド電極同士をつなげるように8箇所貼り付ける。第1の電極42から微細配線を介してパッド電極部40、第1の熱電変換層38、パッド電極部40、微細配線41、パッド電極部40、第1の熱電変換層38、微細配線41と直列に接続する。さらに図21の右端で微細配線41を反対向きに折り返して、パッド電極部40、第2の熱電変換層39、パッド電極部40、微細配線41、パッド電極部40、第2の熱電変換層39、パッド電極部40、微細配線41と直列に接続し、左端で折り返す。このようにして、第1の電極42から8枚の熱電変換層をパッド電極部と微細配線で直列に接続して第2の電極43に接続する。熱電変換層を接続したフィルムをオーブン中で150℃、15分間焼結し、パッド電極部40と熱電変換層38、39を電気的に接続した。 FIG. 21 shows a third diagram showing the method for manufacturing the thermoelectric generator of this embodiment. Eight strips with a width of 4 mm and a length of 15 mm are cut out from a PEDOT / PSS film having a thickness of 40 μm, and 8 places are pasted so as to connect the pad electrodes. Pad electrode part 40, first thermoelectric conversion layer 38, pad electrode part 40, fine wiring 41, pad electrode part 40, first thermoelectric conversion layer 38, fine wiring 41 and the like from first electrode 42 through fine wiring Connect in series. Further, the fine wiring 41 is folded back in the opposite direction at the right end of FIG. 21, and the pad electrode portion 40, the second thermoelectric conversion layer 39, the pad electrode portion 40, the fine wiring 41, the pad electrode portion 40, and the second thermoelectric conversion layer 39. The pad electrode part 40 and the fine wiring 41 are connected in series and folded at the left end. In this manner, the eight thermoelectric conversion layers from the first electrode 42 are connected in series with the pad electrode portion and the fine wiring to be connected to the second electrode 43. The film to which the thermoelectric conversion layer was connected was sintered in an oven at 150 ° C. for 15 minutes, and the pad electrode portion 40 and the thermoelectric conversion layers 38 and 39 were electrically connected.
 図22に、本実施形態の熱電発電素子の製造方法を示す第四の図を示す。基材32を、パッド電極を通る線で山折と谷折を交互に繰り返して折り曲げる。直線に折る際には直線状の型などを添えることが効果的である。また、折り曲げる際に基材の温度を上げることも効果的である。 FIG. 22 shows a fourth diagram illustrating the method for manufacturing the thermoelectric generator of this embodiment. The base material 32 is bent by alternately repeating a mountain fold and a valley fold along a line passing through the pad electrode. When folding in a straight line, it is effective to attach a straight mold. It is also effective to raise the temperature of the substrate when bending.
 図23に、本実施態の熱電発電素子の製造方法を示す第五の図を示す。図23は、図22のC-C’での断面構造を示す。第1の底部34と第2の底部35の間隔が一定になるように周期的な波型形状に折り曲げる。その状態で支持基材31に接着剤で固定する。支持基材31がポリエチレンなどの樹脂の場合は、接着剤はシリル化ウレタン樹脂を含むものを用い、少なくとも30分間固定して接着する。 FIG. 23 shows a fifth diagram illustrating the method of manufacturing the thermoelectric generator of this embodiment. FIG. 23 shows a cross-sectional structure taken along the line C-C ′ of FIG. The first bottom portion 34 and the second bottom portion 35 are bent into a periodic corrugated shape so that the distance between them is constant. In this state, the support base 31 is fixed with an adhesive. When the support base 31 is a resin such as polyethylene, an adhesive containing a silylated urethane resin is used and fixed and bonded for at least 30 minutes.
 次に、最良の効果を得るための本実施形態について説明を行う。図24に、本発実施形態の熱電発電素子の断面の模式図を示す。波形形状に折り曲げられた熱電発電素子において、底部の間隔をピッチ長L1、斜面の長さをスロ-プ長L2と呼ぶ。 Next, this embodiment for obtaining the best effect will be described. In FIG. 24, the schematic diagram of the cross section of the thermoelectric power generation element of this embodiment is shown. In a thermoelectric power generation element bent into a corrugated shape, the interval between the bottoms is referred to as a pitch length L1, and the slope length is referred to as a slope length L2.
 図25に、頂部や底部の折り曲げが緩和した状態の熱電発電素子の断面の模式図を示す。これは折り曲げが不十分な場合や、折り曲げた後に基材が緩和して、鋭角な折り曲げが鈍角な折り曲げに変化した場合である。折り曲げが緩和する第一の原因は、パッド電極の厚みが薄い場合である。折り曲げが緩和する第二の原因は、パッド電極部の占有率が小さい場合である。パッド電極部の占有率は折り曲げ部分の長さに占めるパッド電極部の長さである。 FIG. 25 shows a schematic diagram of a cross section of a thermoelectric power generation element in which the bending of the top and bottom is relaxed. This is a case where the bending is insufficient or the base material is relaxed after the bending, and the acute angle bending is changed to an obtuse angle bending. The first cause of bending is when the pad electrode is thin. The second cause of bending is when the occupancy of the pad electrode portion is small. The occupation rate of the pad electrode portion is the length of the pad electrode portion in the length of the bent portion.
 図25に示すように、折り曲げが緩和すると、配線と熱電変換部が接触してしまう。これらが接触すると電圧を生み出さなくなり、熱電発電素子の歩留まりが低下する。折り曲げの緩和が多少起きても、ピッチ長L1がスロ-プ長L2に較べて十分に大きいと接触しないが、ピッチ長L1がスロ-プ長L2に較べて小さいと接触する。すなわち、L1とL2の比であるL1/L2が小さいと歩留まりが低下する。 As shown in FIG. 25, when the bending is relaxed, the wiring and the thermoelectric conversion portion come into contact with each other. When they come into contact with each other, no voltage is generated, and the yield of thermoelectric power generation elements decreases. Even if the bending is somewhat relaxed, it does not come into contact when the pitch length L1 is sufficiently larger than the slope length L2, but comes into contact when the pitch length L1 is smaller than the slope length L2. That is, when L1 / L2, which is the ratio between L1 and L2, is small, the yield decreases.
 図26に、本実施形態における歩留まりY1および相対発電効率ηのパッド電極厚さd依存性を示す。歩留まりは100個の熱電発電素子を作製して求めた。基材の厚さが40μm~80μmでほぼ同じ傾向を示した。歩留まりY1は、折り曲げ緩和によって低下する。すなわち、パッド電極の厚さが薄くなると、折り曲げが緩和しやすくなり、これにより出力が低下することで歩留まりが低下する。80%以上の歩留まりを得るには、パッド電極の厚さdは10μm以上、90%以上の歩留まりを得るには、パッド電極の厚さdは15μm以上が望ましいことが分かった。 FIG. 26 shows the pad electrode thickness d dependency of the yield Y1 and the relative power generation efficiency η in the present embodiment. The yield was obtained by producing 100 thermoelectric generators. The same tendency was shown when the thickness of the substrate was 40 μm to 80 μm. Yield Y1 decreases due to bending relaxation. That is, when the pad electrode is thinned, bending becomes easy to relax, thereby reducing the output and reducing the yield. In order to obtain a yield of 80% or more, it was found that the thickness d of the pad electrode is preferably 10 μm or more, and in order to obtain a yield of 90% or more, the thickness d of the pad electrode is preferably 15 μm or more.
 圧延銅を用いる製造方法から、微細配線の厚さはパッド電極の厚さと同じになる。微細配線は熱を伝えやすいので、微細配線の厚さが大きくなると、基材の底部と頂部の温度差が低減して、相対的な発電効率が低下する。相対的な発電効率を考え合わせると、パッド電極の厚さdは40μm以下が望ましく、35μm以下がより望ましい。 From the manufacturing method using rolled copper, the thickness of the fine wiring is the same as the thickness of the pad electrode. Since the fine wiring easily conducts heat, when the thickness of the fine wiring is increased, the temperature difference between the bottom and the top of the base material is reduced, and the relative power generation efficiency is lowered. Considering relative power generation efficiency, the thickness d of the pad electrode is preferably 40 μm or less, and more preferably 35 μm or less.
 結局、パッド電極の厚さdは、10μm~40μmが望ましく、15μm~35μmがより望ましい。本実施例では発電効率を高めるために、パッド電極の厚さdは18μmに設定した。これにより、92%の歩留まりと、比較的高い発電効率を得た。 After all, the thickness d of the pad electrode is desirably 10 μm to 40 μm, and more desirably 15 μm to 35 μm. In this embodiment, the thickness d of the pad electrode was set to 18 μm in order to increase the power generation efficiency. As a result, a yield of 92% and a relatively high power generation efficiency were obtained.
 図27に、本実施形態の熱電発電素子における波型形状の歩留まりY2、接着剤はみ出しの歩留まりY3の、パッド電極の占有率X依存性を示す。パッド電極の占有率Xとは、図18の頂部D-D’方向の幅でパッド電極部40の幅が占める割合である。Y2が70%以上になるのは、パッド電極の占有率Xが52%以上であった。波形形状の歩留まりY2が90%以上になるのは、折れ線部におけるパッド電極の占有率Xが65%以上であった。 FIG. 27 shows the pad electrode occupancy ratio X dependency of the corrugated yield Y2 and the adhesive protrusion yield Y3 in the thermoelectric generator of this embodiment. The pad electrode occupation ratio X is the ratio of the width of the pad electrode section 40 to the width in the direction of the top D-D 'in FIG. Y2 is 70% or more because the pad electrode occupation ratio X is 52% or more. The reason why the waveform yield Y2 is 90% or more is that the pad electrode occupation ratio X in the broken line portion is 65% or more.
 銀ペースト接着剤は熱電変換シ-トを貼り付けるときにパッド電極の外に少量はみ出してしまう。パッド電極の占有率Xが高いとパッド電極の間が小さくなる。パッド電極同士の隙間が小さくなると、はみ出した銀ペーストが隣接するパッド電極同士を短絡させてしまう確率が増えて、歩留まりが低下する。これが接着剤のはみ出しの歩留まりY3である。接着剤のはみ出しの歩留まりY3が70%以上であるのは、パッド電極の占有率Xが90%以下であった。接着剤のはみ出しの歩留まりY3が90%以上であるのは、パッド電極の占有率Xが85%以下であった。 Silver paste adhesive protrudes from the pad electrode when a thermoelectric conversion sheet is applied. When the pad electrode occupation ratio X is high, the space between the pad electrodes becomes small. When the gap between the pad electrodes is reduced, the probability that the protruding silver paste short-circuits adjacent pad electrodes increases, and the yield decreases. This is the adhesive yield Y3. The adhesive yield Y3 was 70% or more, and the pad electrode occupation ratio X was 90% or less. The adhesive yield Y3 was 90% or more, and the pad electrode occupation ratio X was 85% or less.
 結局、パッド電極の占有率Xは、52%~90%が望ましく、65%~85%がより望ましい。本熱電発電素子ではパッド電極の占有率Xを66%に設定し、90%の歩留まりを得た。別の熱電発電素子では占有率Xを80%に設定し、占有率Xに関しては99.5%の歩留まりを得た。 After all, the pad electrode occupation ratio X is desirably 52% to 90%, and more desirably 65% to 85%. In this thermoelectric power generation element, the pad electrode occupation ratio X was set to 66%, and a yield of 90% was obtained. In another thermoelectric power generation element, the occupation ratio X was set to 80%, and a yield of 99.5% was obtained for the occupation ratio X.
 図28に、本実施形態の熱電発電素子における配線接触歩留まりY4と単位面積当たりの発電量の、L1/L2比依存性を示す。L1/L2比が小さくなると配線と、熱電変換層との接触が生じ易くなり歩留まりが低下する。L1/L2比は7%以上で、70%以上の配線接触の歩留まりY4が得られた。L1/L2比が13%以上で、90%以上の配線接触の歩留まりY4が得られた。 FIG. 28 shows the L1 / L2 ratio dependency of the wiring contact yield Y4 and the power generation amount per unit area in the thermoelectric power generation element of this embodiment. When the L1 / L2 ratio becomes small, the contact between the wiring and the thermoelectric conversion layer is likely to occur, and the yield decreases. The L1 / L2 ratio was 7% or more, and a wiring contact yield Y4 of 70% or more was obtained. The L1 / L2 ratio was 13% or more, and a wiring contact yield Y4 of 90% or more was obtained.
 L1/L2比が50%以上になると、熱電発電素子の高さが顕著に小さくなり、底部と頂部の温度差が低下する。このことから、L1/L2比は50%以下が望ましい。単位面積当たりの発電量はL1に反比例して増大するので、より望ましくは37%以下である。結局、L1/L2比は、7%~50%が望ましく、13%~37%がより望ましい。本実施形態の熱電発電素子では、L1/L2比は20%に設定し、98%の配線接触歩留まりと単位面積当たりの高い発電量を両立した。 When the L1 / L2 ratio is 50% or more, the height of the thermoelectric generator is significantly reduced, and the temperature difference between the bottom and the top is lowered. Therefore, the L1 / L2 ratio is desirably 50% or less. Since the power generation amount per unit area increases in inverse proportion to L1, it is more preferably 37% or less. After all, the L1 / L2 ratio is desirably 7% to 50%, and more desirably 13% to 37%. In the thermoelectric power generation element of this embodiment, the L1 / L2 ratio was set to 20%, and both a 98% wiring contact yield and a high power generation amount per unit area were achieved.
 図29は、本実施形態の熱電発電素子の断面構造を示す図である。図30は、本実施形態の熱電発電素子の平面構造を示す図である。本熱電発電素子の構成は、図17、図18の熱電発電素子と同様の構成であるが、異なる方法で製造した。本熱電発電素子の基本的な構成は、同様に、支持基材51、基材52、頂部53、第1の底部54、第2の底部55、第1の斜面56、第2の斜面57、第1の熱電変換層58、第2の熱電変換層59、微細配線部61、第1の電極62、第2の電極63、パッド電極部64、からなる。 FIG. 29 is a diagram showing a cross-sectional structure of the thermoelectric generator of this embodiment. FIG. 30 is a diagram illustrating a planar structure of the thermoelectric generator of the present embodiment. The configuration of this thermoelectric power generation element is the same as that of the thermoelectric power generation elements of FIGS. 17 and 18, but was manufactured by a different method. Similarly, the basic configuration of the thermoelectric power generation element includes a support base 51, a base 52, a top 53, a first bottom 54, a second bottom 55, a first slope 56, a second slope 57, The first thermoelectric conversion layer 58, the second thermoelectric conversion layer 59, the fine wiring portion 61, the first electrode 62, the second electrode 63, and the pad electrode portion 64 are included.
 図29、図30の熱電発電素子では、パッド電極と微細配線が、銀粒子と樹脂の混合物である導電性ペーストを印刷用のマスクを用いて基材52にスクリーン印刷した後、焼結して形成されている。パッド電極と微細配線の厚みは15μm、微細配線の幅は40μmである。微細配線の断面積が小さいので、底部と頂部の温度差を維持する効果が高い。熱電変換層はPEDOT/PSSをインク状にしたものを、パッド電極と微細配線が形成された基材上に、スクリ-ン印刷で形成し、80℃で加熱して乾燥させて形成した。熱電変換層の厚さは30μmである。熱電変換層はパッド電極と基材に接着した。導電性ペーストの電気抵抗が高い分、出力電力は半減した。本熱電発電素子は全て印刷で形成できるため、低コストの熱電発電素子が実現する。 29 and 30, the pad electrode and the fine wiring are formed by screen-printing a conductive paste, which is a mixture of silver particles and a resin, on the substrate 52 using a printing mask, and then sintering. Is formed. The thickness of the pad electrode and the fine wiring is 15 μm, and the width of the fine wiring is 40 μm. Since the cross-sectional area of the fine wiring is small, the effect of maintaining the temperature difference between the bottom and the top is high. The thermoelectric conversion layer was formed by forming a PEDOT / PSS in ink form on a base material on which pad electrodes and fine wiring were formed by screen printing, heating at 80 ° C. and drying. The thickness of the thermoelectric conversion layer is 30 μm. The thermoelectric conversion layer was bonded to the pad electrode and the substrate. Since the electrical resistance of the conductive paste is high, the output power is halved. Since all the thermoelectric generators can be formed by printing, a low-cost thermoelectric generator can be realized.
 図31は、本実施形態の熱電発電素子の平面構造図である。谷折線75で折り曲げることで底部が、山折線76で折り曲げることで頂部が形成される。図32は、本実施形態の熱電発電素子のパッド電極と配線の構造図である。図32には引き出し電極71、銅電極72、微細銅配線74などの寸法の例が示されている。 FIG. 31 is a plan structural view of the thermoelectric generator of this embodiment. The bottom is formed by folding at the valley fold line 75, and the top is formed by folding at the mountain fold line 76. FIG. 32 is a structural diagram of pad electrodes and wirings of the thermoelectric generator of this embodiment. FIG. 32 shows an example of dimensions of the extraction electrode 71, the copper electrode 72, the fine copper wiring 74, and the like.
 図33は、本実施形態の熱電発電素子の外観図である。本熱電発電素子は、波形状基材フィルム82に、熱電変換層フィルム73、銅電極72、微細銅配線74、折り返し配線77、引き出し電極71、引き出し電極78、引き出し線79、さらに、下側支持基材フィルム81、上側支持基材フィルム83を有する。基本的な構成は、圧延銅を使った場合と同様の構成であり、ここでは240個の熱電変換層を有する。 FIG. 33 is an external view of the thermoelectric generator of this embodiment. The thermoelectric power generation element includes a corrugated substrate film 82, a thermoelectric conversion layer film 73, a copper electrode 72, a fine copper wiring 74, a folded wiring 77, a lead electrode 71, a lead electrode 78, a lead wire 79, and a lower support. A base film 81 and an upper support base film 83 are included. The basic configuration is the same as that in the case of using rolled copper, and here has 240 thermoelectric conversion layers.
 組み立て時の寸法は60mm×60mm×14mmであった。高さが14mmと比較的高いため設置面に垂直方向の温度差が大きい。この熱電発電素子に10℃の温度差を与え、約240Ωの外部抵抗を接続して、その電圧を測ったところ、60μWの出力を得た。
Figure JPOXMLDOC01-appb-I000001
The dimensions at the time of assembly were 60 mm × 60 mm × 14 mm. Since the height is relatively high at 14 mm, the temperature difference in the direction perpendicular to the installation surface is large. A temperature difference of 10 ° C. was given to this thermoelectric power generation element, an external resistance of about 240Ω was connected, and the voltage was measured, and an output of 60 μW was obtained.
Figure JPOXMLDOC01-appb-I000001
                                                       (数式1)
を用いたときのPEDOT/PSSのゼーベック係数は100(μV/K)であった。60μWの出力は無線通信が可能な出力である。この熱電発電素子をセンサ-に組み合わせると、センサ-が得た情報を無線通信で集めるセンサーネットワークに用いることができる。
(Formula 1)
When PEDOT / PSS was used, the Seebeck coefficient was 100 (μV / K). The output of 60 μW is an output capable of wireless communication. When this thermoelectric generator is combined with a sensor, it can be used in a sensor network that collects information obtained by the sensor by wireless communication.
 なお、本実施の形態においても、第一の実施の形態の図7に示す、基材2を補強材12で補強する構造が可能である。また、図8に示す、熱電発電素子を保護層13で保護する構造が可能である。また、図9に示す、熱電発電素子を積層した構造が可能である。また、図10に示す、基材2の表面と裏面の両面に熱電変換層および配線を形成する構造が可能である。 In this embodiment, a structure in which the base material 2 is reinforced with the reinforcing material 12 shown in FIG. 7 of the first embodiment is also possible. Moreover, the structure which protects the thermoelectric power generation element shown in FIG. 8 with the protective layer 13 is possible. Moreover, the structure which laminated | stacked the thermoelectric power generation element shown in FIG. 9 is possible. Moreover, the structure which forms a thermoelectric conversion layer and wiring in both surfaces of the surface of the base material 2 and a back surface shown in FIG. 10 is possible.
 また、上記の第一および第二の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記)
(付記1)
 複数の熱電変換層を直列接続する熱電発電素子であって、
 前記熱電発電素子が、底部と頂部とからなる波形状構造の基材を有し、
 前記熱電変換層が、前記頂部と前記頂部につながる第一の底部との間の第一の斜面に沿った第一の熱電変換層を有し、
 前記熱電変換層が、前記頂部と前記頂部につながる第二の底部との間の第二の斜面に沿った第二の熱電変換層を有し、
 前記第一の熱電変換層と前記第二の熱電変換層とが同じ型を有し、
 前記第一の熱電変換層は前記頂部側と前記第一の底部側に、
前記第二の熱電変換層は前記頂部側と前記第二の底部側に、各々、配線との接続点を有し、
 前記第一の熱電変換層と前記第二の熱電変換層との接続が、
前記第一の熱電変換層の前記頂部側の接続点で接続する配線が、前記第二の斜面に沿い、前記第二の熱電変換層の前記底部側の接続点で接続する接続、
あるいは、前記第二の熱電変換層の前記頂部側の接続点で接続する配線が、前記第一の斜面に沿い、前記第一の熱電変換層の前記底部側の接続点で接続する接続であり、
 前記直列接続の両端が開放電極であることを特徴とする、熱電発電素子。
(付記2)
 複数の熱電変換層を直列接続する熱電発電素子であって、
 前記熱電発電素子が、底部と頂部とが交互に繰り返される波形状構造の基材を有し、
 前記熱電変換層が、前記頂部と前記頂部につながる第一の底部との間の第一の斜面に沿った第一の熱電変換層を有し、
 前記熱電変換層が、前記頂部と前記頂部につながる第二の底部との間の第二の斜面に沿った第二の熱電変換層を有し、
 前記第一の熱電変換層と前記第二の熱電変換層とが同じ型を有し、
 前記第一の熱電変換層は前記頂部側と前記第一の底部側に、
前記第二の熱電変換層は前記頂部側と前記第二の底部側に、各々、配線との接続点を有し、
 前記第一の熱電変換層同士の接続が、
前記第一の熱電変換層の前記頂部側の接続点で接続する配線が、前記第二の斜面に沿い、前記第二の底部で、前記第一の熱電変換層の隣の第一の熱電変換層の底部側の接続点で接続する接続であり、
 前記第二の熱電変換層同士の接続が、
前記第二の熱電変換層の前記頂部側の接続点で接続する配線が、前記第一の斜面に沿い、前記第一の底部で、前記第二の熱電変換層の隣の第二の熱電変換層の底部側の接続点で接続する接続であり、
 前記第一の熱電変換層と前記第二の熱電変換層との接続が、
前記第一の熱電変換層の前記頂部側の接続点で接続する配線が、前記第二の斜面に沿い、前記第二の熱電変換層の前記底部側の接続点で接続する接続、
あるいは、前記第二の熱電変換層の前記頂部側の接続点で接続する配線が、前記第一の斜面に沿い、前記第一の熱電変換層の前記底部側の接続点で接続する接続であり、
 前記直列接続の両端が開放電極であることを特徴とする、熱電発電素子。
(付記3)
 前記熱電変換層が、P型半導体であることを特徴とする、付記1乃至2の何れか1項記載の熱電発電素子。
(付記4)
 前記熱電変換層が、導電性高分子層であることを特徴とする、付記1乃至3の何れか1項記載の熱電発電素子。
(付記5)
 前記導電性高分子が、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、及びこれらの誘導体から選択される少なくとも一つを有することを特徴とする、付記4記載の熱電発電素子。
(付記6)
 前記導電性高分子が、0.01mm以上、2mm以下の厚さであることを特徴とする、付記4乃至5の何れか1項記載の熱電発電素子。
(付記7)
 前記基材が、柔軟性を有することを特徴とする、付記1乃至6の何れか1項記載の熱電発電素子。
(付記8)
 前記基材が、10%以上可逆的に伸縮する材料から形成されていることを特徴とする、付記1乃至7の何れか1項記載の熱電発電素子。
(付記9)
 前記基材が、ポリイミド、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリカーボネート、エポキシ樹脂、アラミド樹脂、シリコーン樹脂、ABS樹脂、シリコーンゴム、ポリブタジエンゴムから選択される少なくとも一つを有することを特徴とする、付記1乃至8の何れか1項記載の熱電発電素子。
(付記10)
 前記基材が、シリコンフィラー、ガラスファイバーから選択される少なくとも一つを有することを特徴とする、付記1乃至9の何れか1項記載の熱電発電素子。
(付記11)
 前記基材が、0.01mm以上、2mm以下の厚さであることを特徴とする、付記1乃至10の何れか1項記載の熱電発電素子。
(付記12)
 前記第一の熱電変換層と前記第一の熱電変換層と隣り合う第一の熱電変換層を結ぶ前記配線の長さが、前記第一の熱電変換層と前記第一の熱電変換層と隣り合う第一の熱電変換層の間の長さに比べて、10%以上長いことを特徴とする、付記1乃至11の何れか1項記載の熱電発電素子。
(付記13)
 前記第二の熱電変換層と前記第二の熱電変換層と隣り合う第二の熱電変換層を結ぶ前記配線の長さが、前記第二の熱電変換層と前記第二の熱電変換層と隣り合う第二の熱電変換層の間の長さに比べて、10%以上長いことを特徴とする、付記1乃至12の何れか1項記載の熱電発電素子。
(付記14)
 前記熱電変換層の前記斜面の傾斜方向に沿った長さが0.5mm以上、10mm以下であることを特徴とする、付記1乃至13の何れか1項記載の熱電発電素子。
(付記15)
 前記配線が、ループ形状、あるいは、蛇腹形状、あるいは、格子形状を有することを特徴とする、付記1乃至14の何れか1項記載の熱電発電素子。
(付記16)
 前記熱電変換層の熱伝導量よりも前記配線の熱伝導量が小さいことを特徴とする、付記1乃至15の何れか1項記載の熱電発電素子。
(付記17)
 前記配線が金、銀、アルミニウム、銅、ガリウム、インジウム、導電性ナノファイバーから選択される少なくとも一つを含むことを特徴とする、付記1乃至16の何れか1項記載の熱電発電素子。
(付記18)
 前記配線が銅であって、前記熱電変換層の前記斜面に沿う方向に垂直方向の断面積に対する前記配線の前記斜面に沿う方向に垂直方向の断面積が1/10以下であることを特徴とする、付記1乃至17の何れか1項記載の熱電発電素子。
(付記19)
 前記配線が銅であって、前記熱電変換層の前記斜面に沿う方向に垂直方向の断面積に対する前記配線の前記斜面に沿う方向に垂直方向の断面積が1/30以下であることを特徴とする、請求項1乃至17の何れか1項記載の熱電発電素子。
(付記20)
 前記配線が金であって、前記熱電変換層の前記斜面に沿う方向に垂直方向の断面積に対する前記配線の前記斜面に沿う方向に垂直方向の断面積が1/30以下であることを特徴とする、請求項1乃至17の何れか1項記載の熱電発電素子。
(付記21)
 前記配線が金であって、前記熱電変換層の前記斜面に沿う方向に垂直方向の断面積に対する前記配線の前記斜面に沿う方向に垂直方向の断面積が1/100以下であることを特徴とする、付記1乃至17の何れか1項記載の熱電発電素子。
(付記22)
 前記接続部に電極を設けたことを特徴とする、付記1乃至21の何れか1項記載の熱電発電素子。
(付記23)
 前記基材の両面に前記熱電変換層および前記配線が形成されていることを特徴とする、付記1乃至22の何れか1項記載の熱電発電素子。
(付記24)
 前記熱電発電素子が保護層で覆われていることを特徴とする、付記1乃至23の何れか1項記載の熱電発電素子。
(付記25)
 付記1乃至24の何れか1項記載の熱電発電素子を複数層重ねたことを特徴とする、熱電発電素子。
(付記26)
 基材を前処理する工程と、前記基材上に熱電変換層を形成する工程と、前記熱電変換層に配線を接続する工程と、前記基材を波形状構造に成型する工程とを有することを特徴とする、熱電発電素子の製造方法。
(付記27)
 前記基材が、0.01mm以上、2mm以下の厚さであることを特徴とする、付記26記載の熱電発電素子の製造方法。
(付記28)
 前記前処理工程が、洗浄工程あるいはプラズマ処理工程を有することを特徴とする、付記26乃至27の何れか1項記載の熱電発電素子の製造方法。
(付記29)
 前記熱電変換層を形成する工程が、熱電変換材料を溶剤に溶解させたペーストを印刷し乾燥させる方法、あるいは、熱電変換材料である導電性高分子のバルク材料を切断し貼り付ける方法、あるいは、導電性高分子モノマーをインクに分散し配向させながら印刷する方法を有することを特徴とする、付記26乃至28の何れか1項記載の熱電発電素子の製造方法。
(付記30)
 前記熱電変換層と前記配線を接続する位置に電極を形成する工程を有することを特徴とする、付記26乃至29の何れか1項記載の熱電発電素子の製造方法。
(付記31)
 前記電極を形成する工程が、導電ペーストを印刷する方法、あるいは、蒸着やスパッタリングなどの気層成長法を有することを特徴とする、付記30記載の熱電発電素子の製造方法。
(付記32)
 前記電極を形成する工程が、前記電極の表面を凹凸に加工する工程を有することを特徴とする、付記30乃至31の何れか1項記載の熱電発電素子の製造方法。
(付記33)
 前記電極の表面を凹凸に加工する工程が、ナノインプリント法であることを特徴とする、請求項32記載の熱電発電素子の製造方法。
(付記34)
 前記配線を接続する工程が、ペースト状の配線材を印刷する方法、あるいは、バルク状の配線材を接着あるいは溶着する方法を有することを特徴とする、付記26乃至33の何れか1項記載の熱電発電素子の製造方法。
(付記35)
 前記波形状構造に成型する工程が、ホットエンボス法を有することを特徴とする、付記26乃至34の何れか1項記載の熱電発電素子の製造方法。
(付記36)
 前記熱電変換層と前記配線とを接続するパッド電極を有し、前記パッド電極が前記基材の表面に接して設けられていることを特徴とする、付記1乃至11の何れか1項記載の熱電発電素子。
(付記37)
 前記配線が前記基材の表面に接して設けられていることを特徴とする、付記36記載の熱電発電素子。
(付記38)
 前記パッド電極と前記配線が、圧延銅、あるいは、表面に金メッキあるいは銀メッキを施した圧延銅であることを特徴とする、付記36乃至37の何れか1項記載の熱電発電素子。
(付記39)
 前記パッド電極と前記配線が、銀粒子と樹脂の混合物からなることを特徴とする、付記36乃至37の何れか1項記載の熱電発電素子。
(付記40)
 前記基材の厚さが40μm~80μmであることを特徴とする、付記36乃至39の何れか1項記載の熱電発電素子。
(付記41)
 前記パッド電極の厚さが10μm以上、40μm以下であることを特徴とする、付記36乃至40の何れか1項記載の熱電発電素子。
(付記42)
 前記パッド電極の厚さが15μm以上、35μm以下であることを特徴とする、付記36乃至40の何れか1項記載の熱電発電素子。
(付記43)
 前記基材の底部あるいは頂部の折り曲げ部の幅に対して、パッド電極部分が占める割合が40%以上、90%以下であることを特徴とする、付記36乃至42の何れか1項記載の熱電発電素子。
(付記44)
 前記基材の底部あるいは頂部の折り曲げ部の幅に対して、パッド電極部分が占める割合が65%以上、85%以下であることを特徴とする、付記36乃至42の何れか1項記載の熱電発電素子。
(付記45)
 隣接する前記底部同士の間隔L1と、前記基材の底部から頂部までの長さL2との比L1/L2が、7%以上、50%以下であることを特徴とする、付記36乃至44の何れか1項記載の熱電発電素子。
(付記46)
 隣接する前記底部同士の間隔L1と、前記基材の底部から頂部までの長さL2との比L1/L2が、13%以上、37%以下であることを特徴とする、付記36乃至44の何れか1項記載の熱電発電素子。
(付記47)
 基材を前処理する工程と、前記基材上にパッド電極および配線を形成する工程と、前記パッド電極に接して熱電変換層を形成する工程と、前記基材を波形状構造に成型する工程とを有することを特徴とする、熱電発電素子の製造方法。
(付記48)
 前記パッド電極および配線を形成する工程が、フォトリソグラフィとエッチングによることを特徴とする、付記47記載の熱電発電素子。
(付記49)
 前記パッド電極および配線を形成する工程が、スクリーン印刷によることを特徴とする、付記47記載の熱電発電素子。
Moreover, although one part or all part of said 1st and 2nd embodiment can also be described like the following additional remarks, it is not restricted to the following.
(Appendix)
(Appendix 1)
A thermoelectric power generation element that connects a plurality of thermoelectric conversion layers in series,
The thermoelectric generator has a corrugated base material composed of a bottom and a top,
The thermoelectric conversion layer has a first thermoelectric conversion layer along a first slope between the top and a first bottom connected to the top;
The thermoelectric conversion layer has a second thermoelectric conversion layer along a second slope between the top and a second bottom connected to the top;
The first thermoelectric conversion layer and the second thermoelectric conversion layer have the same type,
The first thermoelectric conversion layer is on the top side and the first bottom side,
The second thermoelectric conversion layer has connection points with wirings on the top side and the second bottom side, respectively.
The connection between the first thermoelectric conversion layer and the second thermoelectric conversion layer is
The wiring connected at the connection point on the top side of the first thermoelectric conversion layer is connected along the second slope, and connected at the connection point on the bottom side of the second thermoelectric conversion layer,
Alternatively, the wiring connected at the connection point on the top side of the second thermoelectric conversion layer is a connection connected at the connection point on the bottom side of the first thermoelectric conversion layer along the first slope. ,
A thermoelectric power generation element, wherein both ends of the series connection are open electrodes.
(Appendix 2)
A thermoelectric power generation element that connects a plurality of thermoelectric conversion layers in series,
The thermoelectric power generation element has a substrate having a wave shape structure in which a bottom portion and a top portion are alternately repeated,
The thermoelectric conversion layer has a first thermoelectric conversion layer along a first slope between the top and a first bottom connected to the top;
The thermoelectric conversion layer has a second thermoelectric conversion layer along a second slope between the top and a second bottom connected to the top;
The first thermoelectric conversion layer and the second thermoelectric conversion layer have the same type,
The first thermoelectric conversion layer is on the top side and the first bottom side,
The second thermoelectric conversion layer has connection points with wirings on the top side and the second bottom side, respectively.
Connection between the first thermoelectric conversion layers,
The first thermoelectric conversion line adjacent to the first thermoelectric conversion layer is connected to the connection point on the top side of the first thermoelectric conversion layer along the second slope and at the second bottom part. A connection that connects at the connection point on the bottom side of the layer,
Connection between the second thermoelectric conversion layers,
The wiring connected at the connection point on the top side of the second thermoelectric conversion layer is along the first slope, the second thermoelectric conversion next to the second thermoelectric conversion layer at the first bottom portion. A connection that connects at the connection point on the bottom side of the layer,
The connection between the first thermoelectric conversion layer and the second thermoelectric conversion layer is
The wiring connected at the connection point on the top side of the first thermoelectric conversion layer is connected along the second slope, and connected at the connection point on the bottom side of the second thermoelectric conversion layer,
Alternatively, the wiring connected at the connection point on the top side of the second thermoelectric conversion layer is a connection connected at the connection point on the bottom side of the first thermoelectric conversion layer along the first slope. ,
A thermoelectric power generation element, wherein both ends of the series connection are open electrodes.
(Appendix 3)
The thermoelectric power generation element according to any one of appendices 1 to 2, wherein the thermoelectric conversion layer is a P-type semiconductor.
(Appendix 4)
The thermoelectric power generation element according to any one of appendices 1 to 3, wherein the thermoelectric conversion layer is a conductive polymer layer.
(Appendix 5)
The thermoelectric power generation element according to appendix 4, wherein the conductive polymer has at least one selected from polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, and derivatives thereof.
(Appendix 6)
The thermoelectric power generation element according to any one of appendices 4 to 5, wherein the conductive polymer has a thickness of 0.01 mm or more and 2 mm or less.
(Appendix 7)
The thermoelectric power generation element according to any one of appendices 1 to 6, wherein the base material has flexibility.
(Appendix 8)
The thermoelectric power generation element according to any one of appendices 1 to 7, wherein the base material is formed of a material that reversibly expands and contracts by 10% or more.
(Appendix 9)
Appendix 1 characterized in that the substrate has at least one selected from polyimide, polyethylene naphthalate, polyethylene terephthalate, polycarbonate, epoxy resin, aramid resin, silicone resin, ABS resin, silicone rubber, polybutadiene rubber. The thermoelectric power generation element according to any one of 1 to 8.
(Appendix 10)
The thermoelectric power generation element according to any one of appendices 1 to 9, wherein the base material has at least one selected from a silicon filler and a glass fiber.
(Appendix 11)
The thermoelectric power generation element according to any one of appendices 1 to 10, wherein the base material has a thickness of 0.01 mm or more and 2 mm or less.
(Appendix 12)
The length of the wiring connecting the first thermoelectric conversion layer and the first thermoelectric conversion layer adjacent to the first thermoelectric conversion layer is adjacent to the first thermoelectric conversion layer and the first thermoelectric conversion layer. The thermoelectric power generation element according to any one of appendices 1 to 11, wherein the thermoelectric power generation element is longer by 10% or more than a length between the matching first thermoelectric conversion layers.
(Appendix 13)
The length of the wiring connecting the second thermoelectric conversion layer and the second thermoelectric conversion layer adjacent to the second thermoelectric conversion layer is adjacent to the second thermoelectric conversion layer and the second thermoelectric conversion layer. The thermoelectric power generation element according to any one of appendices 1 to 12, wherein the thermoelectric power generation element is longer by 10% or more than a length between matching second thermoelectric conversion layers.
(Appendix 14)
14. The thermoelectric power generation element according to any one of appendices 1 to 13, wherein a length of the thermoelectric conversion layer along the inclined direction of the slope is not less than 0.5 mm and not more than 10 mm.
(Appendix 15)
The thermoelectric power generation element according to any one of appendices 1 to 14, wherein the wiring has a loop shape, a bellows shape, or a lattice shape.
(Appendix 16)
The thermoelectric power generation element according to any one of appendices 1 to 15, wherein a heat conduction amount of the wiring is smaller than a heat conduction amount of the thermoelectric conversion layer.
(Appendix 17)
The thermoelectric generator according to any one of appendices 1 to 16, wherein the wiring includes at least one selected from gold, silver, aluminum, copper, gallium, indium, and conductive nanofibers.
(Appendix 18)
The wiring is copper, and the cross-sectional area perpendicular to the direction along the slope of the wiring with respect to the cross-sectional area perpendicular to the direction along the slope of the thermoelectric conversion layer is 1/10 or less. The thermoelectric power generation element according to any one of appendices 1 to 17.
(Appendix 19)
The wiring is copper, and the cross-sectional area perpendicular to the direction along the slope of the wiring with respect to the cross-sectional area perpendicular to the direction along the slope of the thermoelectric conversion layer is 1/30 or less. The thermoelectric power generation element according to any one of claims 1 to 17.
(Appendix 20)
The wiring is gold, and the cross-sectional area perpendicular to the direction along the slope of the wiring with respect to the cross-sectional area perpendicular to the direction along the slope of the thermoelectric conversion layer is 1/30 or less. The thermoelectric power generation element according to any one of claims 1 to 17.
(Appendix 21)
The wiring is gold, and the cross-sectional area perpendicular to the direction along the slope of the wiring is 1/100 or less with respect to the cross-sectional area perpendicular to the direction along the slope of the thermoelectric conversion layer. The thermoelectric power generation element according to any one of appendices 1 to 17.
(Appendix 22)
The thermoelectric power generation element according to any one of appendices 1 to 21, wherein an electrode is provided in the connection portion.
(Appendix 23)
The thermoelectric power generation element according to any one of appendices 1 to 22, wherein the thermoelectric conversion layer and the wiring are formed on both surfaces of the base material.
(Appendix 24)
The thermoelectric power generation element according to any one of appendices 1 to 23, wherein the thermoelectric power generation element is covered with a protective layer.
(Appendix 25)
25. A thermoelectric power generation element comprising a plurality of layers of the thermoelectric power generation elements according to any one of appendices 1 to 24.
(Appendix 26)
Pretreatment of the substrate, forming a thermoelectric conversion layer on the substrate, connecting a wire to the thermoelectric conversion layer, and forming the substrate into a corrugated structure A method for manufacturing a thermoelectric power generation element, characterized in that:
(Appendix 27)
27. The method for manufacturing a thermoelectric power generation element according to appendix 26, wherein the substrate has a thickness of 0.01 mm or more and 2 mm or less.
(Appendix 28)
28. The method of manufacturing a thermoelectric generator according to any one of appendices 26 to 27, wherein the pretreatment step includes a cleaning step or a plasma treatment step.
(Appendix 29)
The step of forming the thermoelectric conversion layer is a method of printing and drying a paste in which a thermoelectric conversion material is dissolved in a solvent, or a method of cutting and pasting a bulk material of a conductive polymer that is a thermoelectric conversion material, or 29. The method for manufacturing a thermoelectric power generation element according to any one of appendices 26 to 28, comprising a method of printing while dispersing and orienting a conductive polymer monomer in ink.
(Appendix 30)
30. The method of manufacturing a thermoelectric power generation element according to any one of appendices 26 to 29, further comprising a step of forming an electrode at a position where the thermoelectric conversion layer and the wiring are connected.
(Appendix 31)
The method for producing a thermoelectric power generation element according to appendix 30, wherein the step of forming the electrode includes a method of printing a conductive paste, or a gas phase growth method such as vapor deposition or sputtering.
(Appendix 32)
32. The method of manufacturing a thermoelectric power generation element according to any one of appendices 30 to 31, wherein the step of forming the electrode includes a step of processing the surface of the electrode into irregularities.
(Appendix 33)
The method of manufacturing a thermoelectric power generation element according to claim 32, wherein the step of processing the surface of the electrode into irregularities is a nanoimprint method.
(Appendix 34)
34. The method according to any one of appendices 26 to 33, wherein the step of connecting the wiring includes a method of printing a paste-like wiring material, or a method of adhering or welding a bulk-like wiring material. A method for manufacturing a thermoelectric generator.
(Appendix 35)
35. The method of manufacturing a thermoelectric power generation element according to any one of appendices 26 to 34, wherein the step of forming the corrugated structure includes a hot embossing method.
(Appendix 36)
It has a pad electrode which connects the said thermoelectric conversion layer and the said wiring, The said pad electrode is provided in contact with the surface of the said base material, The appendix 1 thru | or 11 characterized by the above-mentioned. Thermoelectric generator.
(Appendix 37)
37. The thermoelectric power generation element according to appendix 36, wherein the wiring is provided in contact with the surface of the base material.
(Appendix 38)
38. The thermoelectric generator according to any one of appendices 36 to 37, wherein the pad electrode and the wiring are rolled copper or rolled copper having a surface plated with gold or silver.
(Appendix 39)
38. The thermoelectric power generation element according to any one of appendices 36 to 37, wherein the pad electrode and the wiring are made of a mixture of silver particles and a resin.
(Appendix 40)
40. The thermoelectric generator according to any one of appendices 36 to 39, wherein the thickness of the substrate is 40 μm to 80 μm.
(Appendix 41)
41. The thermoelectric power generation element according to any one of appendices 36 to 40, wherein the thickness of the pad electrode is 10 μm or more and 40 μm or less.
(Appendix 42)
41. The thermoelectric generator according to any one of appendices 36 to 40, wherein the pad electrode has a thickness of 15 μm or more and 35 μm or less.
(Appendix 43)
43. The thermoelectric device according to any one of appendices 36 to 42, wherein a ratio of the pad electrode portion to the width of the bottom portion or the bent portion of the top portion is 40% or more and 90% or less. Power generation element.
(Appendix 44)
43. The thermoelectric device according to any one of appendices 36 to 42, wherein a ratio of the pad electrode portion to the width of the bottom portion or the bent portion of the top portion is 65% or more and 85% or less. Power generation element.
(Appendix 45)
The ratio L1 / L2 between the distance L1 between the adjacent bottoms and the length L2 from the bottom to the top of the base material is 7% or more and 50% or less, Additional Notes 36 to 44 Any one of the thermoelectric power generation elements of Claim 1.
(Appendix 46)
The ratio L1 / L2 of the distance L1 between the adjacent bottoms and the length L2 from the bottom to the top of the base material is 13% or more and 37% or less, Additional Notes 36 to 44 Any one of the thermoelectric power generation elements of Claim 1.
(Appendix 47)
A step of pretreating the base material, a step of forming a pad electrode and wiring on the base material, a step of forming a thermoelectric conversion layer in contact with the pad electrode, and a step of molding the base material into a corrugated structure A method for manufacturing a thermoelectric power generation element, comprising:
(Appendix 48)
48. The thermoelectric power generation element according to appendix 47, wherein the step of forming the pad electrode and the wiring is performed by photolithography and etching.
(Appendix 49)
The thermoelectric power generation element according to appendix 47, wherein the step of forming the pad electrode and the wiring is performed by screen printing.
 この出願は、2012年2月3日に出願された日本出願特願2012-021817、および、2012年5月16日に出願された日本出願特願2012-112655を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2012-021817 filed on February 3, 2012 and Japanese Patent Application No. 2012-112655 filed on May 16, 2012. , The entire disclosure of which is incorporated herein.
 本発明は有機導電性高分子材料を用いた有機熱電発電素子およびその製造方法に関する。 The present invention relates to an organic thermoelectric power generation element using an organic conductive polymer material and a method for manufacturing the same.
 1  熱電発電素子
 2  基材
 3  頂部
 4  第1の底部
 5  第2の底部
 6  第1の斜面
 7  第2の斜面
 8  第1の熱電変換層
 9  第2の熱電変換層
 10  接続部
 11  配線
 12  補強材
 13  保護層
 14  蛇腹構造配線
 15  格子構造配線
 16  P型半導体材料
 17  N型半導体材料
 18  電極
 19  配線
 20  セラミック基板
 21  吸熱
 22  放熱
 23  温度差
 30、50、70、80、90、100、110、120、140  熱電発電素子
 32、52  基材
 33、53  頂部
 34、54  第1の底部
 35、55  第2の底部
 36、56  第1の斜面
 37、57  第2の斜面
 38、58  第1の熱電変換層
 39、59  第2の熱電変換層
 40、64  パッド電極部
 41、61  微細配線部
 42、62  第1の電極
 43、63  第2の電極
 71、78  引き出し電極
 72  銅電極
 73  熱電変換層フィルム
 74  微細銅配線
 75  谷折線
 76  山折線
 77  折り返し配線
 79  引き出し線
 81  下側支持基材フィルム
 82  波形状基材フィルム
 83  上側支持基材フィルム
DESCRIPTION OF SYMBOLS 1 Thermoelectric power generation element 2 Base material 3 Top part 4 1st bottom part 5 2nd bottom part 6 1st slope 7 2nd slope 8 1st thermoelectric conversion layer 9 2nd thermoelectric conversion layer 10 Connection part 11 Wiring 12 Reinforcement Material 13 Protective layer 14 Bellows structure wiring 15 Grid structure wiring 16 P-type semiconductor material 17 N-type semiconductor material 18 Electrode 19 Wiring 20 Ceramic substrate 21 Heat absorption 22 Heat dissipation 23 Temperature difference 30, 50, 70, 80, 90, 100, 110, 120, 140 Thermoelectric power generation element 32, 52 Base material 33, 53 Top 34, 54 First bottom 35, 55 Second bottom 36, 56 First slope 37, 57 Second slope 38, 58 First thermoelectric Conversion layer 39, 59 Second thermoelectric conversion layer 40, 64 Pad electrode part 41, 61 Fine wiring part 42, 62 First electrode 43, 63 Second electrode 71 78 extraction electrode 72 copper electrodes 73 thermoelectric conversion layer film 74 fine copper wiring 75 inward fold lines 76 mountain fold lines 77 folded lines 79 lead line 81 the lower support base film 82 corrugated base film 83 upper support base film

Claims (15)

  1.  複数の熱電変換層を直列接続する熱電発電素子であって、
     前記熱電発電素子が、底部と頂部とが交互に繰り返される波形状構造の基材を有し、
     前記熱電変換層が、前記頂部と前記頂部につながる第一の底部との間の第一の斜面に沿った第一の熱電変換層を有し、
     前記熱電変換層が、前記頂部と前記頂部につながる第二の底部との間の第二の斜面に沿った第二の熱電変換層を有し、
     前記第一の熱電変換層と前記第二の熱電変換層とが同じ型を有し、
     前記第一の熱電変換層は前記頂部側と前記第一の底部側に、
    前記第二の熱電変換層は前記頂部側と前記第二の底部側に、各々、配線との接続点を有し、
     前記第一の熱電変換層同士の接続が、
    前記第一の熱電変換層の前記頂部側の接続点で接続する配線が、前記第二の斜面に沿い、前記第二の底部で、前記第一の熱電変換層の隣の第一の熱電変換層の底部側の接続点で接続する接続であり、
     前記第二の熱電変換層同士の接続が、
    前記第二の熱電変換層の前記頂部側の接続点で接続する配線が、前記第一の斜面に沿い、前記第一の底部で、前記第二の熱電変換層の隣の第二の熱電変換層の底部側の接続点で接続する接続であり、
     前記第一の熱電変換層と前記第二の熱電変換層との接続が、
    前記第一の熱電変換層の前記頂部側の接続点で接続する配線が、前記第二の斜面に沿い、前記第二の熱電変換層の前記底部側の接続点で接続する接続、
    あるいは、前記第二の熱電変換層の前記頂部側の接続点で接続する配線が、前記第一の斜面に沿い、前記第一の熱電変換層の前記底部側の接続点で接続する接続であり、
     前記直列接続の両端が開放電極であることを特徴とする、熱電発電素子。
    A thermoelectric power generation element that connects a plurality of thermoelectric conversion layers in series,
    The thermoelectric power generation element has a substrate having a wave shape structure in which a bottom portion and a top portion are alternately repeated,
    The thermoelectric conversion layer has a first thermoelectric conversion layer along a first slope between the top and a first bottom connected to the top;
    The thermoelectric conversion layer has a second thermoelectric conversion layer along a second slope between the top and a second bottom connected to the top;
    The first thermoelectric conversion layer and the second thermoelectric conversion layer have the same type,
    The first thermoelectric conversion layer is on the top side and the first bottom side,
    The second thermoelectric conversion layer has connection points with wirings on the top side and the second bottom side, respectively.
    Connection between the first thermoelectric conversion layers,
    The first thermoelectric conversion line adjacent to the first thermoelectric conversion layer is connected to the connection point on the top side of the first thermoelectric conversion layer along the second slope and at the second bottom part. A connection that connects at the connection point on the bottom side of the layer,
    Connection between the second thermoelectric conversion layers,
    The wiring connected at the connection point on the top side of the second thermoelectric conversion layer is along the first slope, the second thermoelectric conversion next to the second thermoelectric conversion layer at the first bottom portion. A connection that connects at the connection point on the bottom side of the layer,
    The connection between the first thermoelectric conversion layer and the second thermoelectric conversion layer is
    The wiring connected at the connection point on the top side of the first thermoelectric conversion layer is connected along the second slope, and connected at the connection point on the bottom side of the second thermoelectric conversion layer,
    Alternatively, the wiring connected at the connection point on the top side of the second thermoelectric conversion layer is a connection connected at the connection point on the bottom side of the first thermoelectric conversion layer along the first slope. ,
    A thermoelectric power generation element, wherein both ends of the series connection are open electrodes.
  2.  前記基材が、柔軟性を有することを特徴とする、請求項1記載の熱電発電素子。 The thermoelectric power generation element according to claim 1, wherein the base material has flexibility.
  3.  前記熱電変換層が、導電性高分子層であることを特徴とする、請求項1乃至2の何れか1項記載の熱電発電素子。 The thermoelectric power generation element according to claim 1, wherein the thermoelectric conversion layer is a conductive polymer layer.
  4.  前記導電性高分子が、ポリアニリン、ポリチオフェン、ポリピロール、ポリフェニレンビニレン、ポリチエニレンビニレン、及びこれらの誘導体から選択される少なくとも一つを有することを特徴とする、請求項3記載の熱電発電素子。 The thermoelectric power generation element according to claim 3, wherein the conductive polymer has at least one selected from polyaniline, polythiophene, polypyrrole, polyphenylene vinylene, polythienylene vinylene, and derivatives thereof.
  5.  前記熱電変換層が、P型半導体であることを特徴とする、請求項1乃至4の何れか1項記載の熱電発電素子。 The thermoelectric power generation element according to any one of claims 1 to 4, wherein the thermoelectric conversion layer is a P-type semiconductor.
  6.  前記基材が、ポリイミド、ポリエチレンナフタレート、ポリエチレンテレフタレート、ポリカーボネート、エポキシ樹脂、アラミド樹脂、シリコーン樹脂、ABS樹脂、シリコーンゴム、ポリブタジエンゴムから選択される少なくとも一つを有することを特徴とする、請求項1乃至5の何れか1項記載の熱電発電素子。 The base material has at least one selected from polyimide, polyethylene naphthalate, polyethylene terephthalate, polycarbonate, epoxy resin, aramid resin, silicone resin, ABS resin, silicone rubber, and polybutadiene rubber. The thermoelectric power generation element according to any one of 1 to 5.
  7.  前記基材の両面に前記熱電変換層および前記配線が形成されていることを特徴とする、請求項1乃至6の何れか1項記載の熱電発電素子。 The thermoelectric power generation element according to any one of claims 1 to 6, wherein the thermoelectric conversion layer and the wiring are formed on both surfaces of the base material.
  8.  前記熱電発電素子が保護層で覆われていることを特徴とする、請求項1乃至7の何れか1項記載の熱電発電素子。 The thermoelectric power generation element according to any one of claims 1 to 7, wherein the thermoelectric power generation element is covered with a protective layer.
  9. 前記配線が、ループ形状、あるいは、蛇腹形状、あるいは、格子形状を有することを特徴とする、請求項1乃至8の何れか1項記載の熱電発電素子。 9. The thermoelectric power generation element according to claim 1, wherein the wiring has a loop shape, a bellows shape, or a lattice shape.
  10.  基材を前処理する工程と、前記基材上に熱電変換層を形成する工程と、前記熱電変換層に配線を接続する工程と、前記基材を波形状構造に成型する工程とを有することを特徴とする、熱電発電素子の製造方法。 Pretreatment of the substrate, forming a thermoelectric conversion layer on the substrate, connecting a wire to the thermoelectric conversion layer, and forming the substrate into a corrugated structure A method for manufacturing a thermoelectric power generation element, characterized in that:
  11.  前記熱電変換層と前記配線とを接続するパッド電極を有し、前記パッド電極が前記基材の表面に接して設けられていることを特徴とする、請求項1乃至8の何れか1項記載の熱電発電素子。 The pad electrode for connecting the thermoelectric conversion layer and the wiring is provided, and the pad electrode is provided in contact with the surface of the base material. Thermoelectric power generation element.
  12.  前記配線が前記基材の表面に接して設けられていることを特徴とする、請求項11記載の熱電発電素子。 The thermoelectric generator according to claim 11, wherein the wiring is provided in contact with the surface of the base material.
  13.  前記パッド電極と前記配線が、圧延銅、あるいは、表面に金メッキあるいは銀メッキを施した圧延銅であることを特徴とする、請求項11乃至12の何れか1項記載の熱電発電素子。 The thermoelectric power generation element according to any one of claims 11 to 12, wherein the pad electrode and the wiring are rolled copper or rolled copper having a surface plated with gold or silver.
  14.  前記パッド電極と前記配線が、銀粒子と樹脂の混合物からなることを特徴とする、請求項11乃至12の何れか1項記載の熱電発電素子。 The thermoelectric power generation element according to any one of claims 11 to 12, wherein the pad electrode and the wiring are made of a mixture of silver particles and a resin.
  15.  基材を前処理する工程と、前記基材上にパッド電極および配線を形成する工程と、前記パッド電極に接して熱電変換層を形成する工程と、前記基材を波形状構造に成型する工程とを有することを特徴とする、熱電発電素子の製造方法。 A step of pretreating the base material, a step of forming a pad electrode and wiring on the base material, a step of forming a thermoelectric conversion layer in contact with the pad electrode, and a step of molding the base material into a corrugated structure A method for manufacturing a thermoelectric power generation element, comprising:
PCT/JP2013/000450 2012-02-03 2013-01-29 Organic thermoelectric power generating element and production method therefor WO2013114854A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012021817 2012-02-03
JP2012112655 2012-05-16
JP2012-112655 2012-05-16
JP2012-021817 2012-09-10

Publications (1)

Publication Number Publication Date
WO2013114854A1 true WO2013114854A1 (en) 2013-08-08

Family

ID=48904901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000450 WO2013114854A1 (en) 2012-02-03 2013-01-29 Organic thermoelectric power generating element and production method therefor

Country Status (1)

Country Link
WO (1) WO2013114854A1 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146640A (en) * 2013-01-28 2014-08-14 Kri Inc Thermoelectric conversion component
WO2014176084A1 (en) * 2013-04-26 2014-10-30 Eastman Chemical Company Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom
JP2015195643A (en) * 2014-03-31 2015-11-05 Jfeスチール株式会社 Thermoelectric power generation device and thermoelectric power generation method
JP2016207933A (en) * 2015-04-27 2016-12-08 日本精工株式会社 Thermoelectric transducer and manufacturing method thereof
WO2017038553A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Thermoelectric conversion module
JPWO2015046254A1 (en) * 2013-09-25 2017-03-09 リンテック株式会社 Thermally conductive adhesive sheet, method for producing the same, and electronic device using the same
WO2017038717A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Thermoelectric conversion module
JPWO2015046253A1 (en) * 2013-09-25 2017-03-09 リンテック株式会社 Thermally conductive adhesive sheet, method for producing the same, and electronic device using the same
JP2017073490A (en) * 2015-10-08 2017-04-13 大日本印刷株式会社 Method for manufacturing thermoelectric conversion module, and thermoelectric conversion module
WO2017110589A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Thermoelectric conversion device
WO2017130751A1 (en) * 2016-01-25 2017-08-03 ポリマテック・ジャパン株式会社 Thermoelectric conversion element and thermoelectric conversion element mounting structure
JP2017188574A (en) * 2016-04-06 2017-10-12 積水化学工業株式会社 Thermoelectric conversion device
JP2018088445A (en) * 2016-11-28 2018-06-07 積水化学工業株式会社 Thermoelectric conversion device, laminate thermoelectric conversion device, and heat radiation structure
JPWO2017038525A1 (en) * 2015-08-31 2018-08-02 富士フイルム株式会社 Thermoelectric conversion device
CN108574036A (en) * 2017-03-10 2018-09-25 纳米基盘柔软电子素子研究团 Thermo-electric device and its manufacturing method
JPWO2017208929A1 (en) * 2016-05-31 2019-04-04 富士フイルム株式会社 Thermoelectric conversion module
US10347811B2 (en) 2015-12-21 2019-07-09 Fujifilm Corporation Thermoelectric conversion module
JP2019525454A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Thermoelectric tape
US10439124B2 (en) 2015-12-25 2019-10-08 Fujifilm Corporation Thermoelectric conversion module, heat conductive laminate, and method of producing thermoelectric conversion module
CN112368851A (en) * 2018-06-19 2021-02-12 三菱综合材料株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
CN112542541A (en) * 2020-11-27 2021-03-23 上海应用技术大学 Thermal power generation device and preparation method thereof
US20210313503A1 (en) * 2020-04-01 2021-10-07 The University Of Chicago Functionally graded organic thermoelectric materials and uses thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366182A (en) * 1989-08-04 1991-03-20 Hitachi Ltd Thermoelectric conversion device
JP2007511893A (en) * 2003-05-23 2007-05-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thermoelectric device manufacturing method and thermoelectric device obtained by such method
JP2008130813A (en) * 2006-11-21 2008-06-05 Tokai Rika Co Ltd Thermal power generating device
JP2009526401A (en) * 2006-02-10 2009-07-16 デストロン フィアリング コーポレイション Improved low-power thermoelectric generator
JP2010095688A (en) * 2008-10-20 2010-04-30 Three M Innovative Properties Co Electroconductive polymer composite and thermoelectric element using electroconductive polymer material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0366182A (en) * 1989-08-04 1991-03-20 Hitachi Ltd Thermoelectric conversion device
JP2007511893A (en) * 2003-05-23 2007-05-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Thermoelectric device manufacturing method and thermoelectric device obtained by such method
JP2009526401A (en) * 2006-02-10 2009-07-16 デストロン フィアリング コーポレイション Improved low-power thermoelectric generator
JP2008130813A (en) * 2006-11-21 2008-06-05 Tokai Rika Co Ltd Thermal power generating device
JP2010095688A (en) * 2008-10-20 2010-04-30 Three M Innovative Properties Co Electroconductive polymer composite and thermoelectric element using electroconductive polymer material

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014146640A (en) * 2013-01-28 2014-08-14 Kri Inc Thermoelectric conversion component
WO2014176084A1 (en) * 2013-04-26 2014-10-30 Eastman Chemical Company Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom
US9064994B2 (en) 2013-04-26 2015-06-23 Eastman Chemical Company Self-corrugating laminates useful in the manufacture of thermoelectric devices and corrugated structures therefrom
JPWO2015046254A1 (en) * 2013-09-25 2017-03-09 リンテック株式会社 Thermally conductive adhesive sheet, method for producing the same, and electronic device using the same
JPWO2015046253A1 (en) * 2013-09-25 2017-03-09 リンテック株式会社 Thermally conductive adhesive sheet, method for producing the same, and electronic device using the same
JP2015195643A (en) * 2014-03-31 2015-11-05 Jfeスチール株式会社 Thermoelectric power generation device and thermoelectric power generation method
JP2016207933A (en) * 2015-04-27 2016-12-08 日本精工株式会社 Thermoelectric transducer and manufacturing method thereof
WO2017038553A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Thermoelectric conversion module
WO2017038717A1 (en) * 2015-08-31 2017-03-09 富士フイルム株式会社 Thermoelectric conversion module
JPWO2017038525A1 (en) * 2015-08-31 2018-08-02 富士フイルム株式会社 Thermoelectric conversion device
JPWO2017038717A1 (en) * 2015-08-31 2018-08-16 富士フイルム株式会社 Thermoelectric conversion module
JP2017073490A (en) * 2015-10-08 2017-04-13 大日本印刷株式会社 Method for manufacturing thermoelectric conversion module, and thermoelectric conversion module
US10347811B2 (en) 2015-12-21 2019-07-09 Fujifilm Corporation Thermoelectric conversion module
JPWO2017110589A1 (en) * 2015-12-25 2018-11-22 富士フイルム株式会社 Thermoelectric conversion device
US10439124B2 (en) 2015-12-25 2019-10-08 Fujifilm Corporation Thermoelectric conversion module, heat conductive laminate, and method of producing thermoelectric conversion module
WO2017110589A1 (en) * 2015-12-25 2017-06-29 富士フイルム株式会社 Thermoelectric conversion device
WO2017130751A1 (en) * 2016-01-25 2017-08-03 ポリマテック・ジャパン株式会社 Thermoelectric conversion element and thermoelectric conversion element mounting structure
JP2017188574A (en) * 2016-04-06 2017-10-12 積水化学工業株式会社 Thermoelectric conversion device
JPWO2017208929A1 (en) * 2016-05-31 2019-04-04 富士フイルム株式会社 Thermoelectric conversion module
JP2019525454A (en) * 2016-06-23 2019-09-05 スリーエム イノベイティブ プロパティズ カンパニー Thermoelectric tape
JP2018088445A (en) * 2016-11-28 2018-06-07 積水化学工業株式会社 Thermoelectric conversion device, laminate thermoelectric conversion device, and heat radiation structure
EP3373335A3 (en) * 2017-03-10 2018-10-24 Center For Advanced Soft Electronics Thermoelectric device and method of manufacturing the same
CN108574036A (en) * 2017-03-10 2018-09-25 纳米基盘柔软电子素子研究团 Thermo-electric device and its manufacturing method
CN112368851A (en) * 2018-06-19 2021-02-12 三菱综合材料株式会社 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
US20210265552A1 (en) * 2018-06-19 2021-08-26 Mitsubishi Materials Corporation Thermoelectric conversion module and method for producing thermoelectric conversion module
US20210313503A1 (en) * 2020-04-01 2021-10-07 The University Of Chicago Functionally graded organic thermoelectric materials and uses thereof
CN112542541A (en) * 2020-11-27 2021-03-23 上海应用技术大学 Thermal power generation device and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2013114854A1 (en) Organic thermoelectric power generating element and production method therefor
WO2013121486A1 (en) Thermoelectric conversion module unit, and electronic device
JP5626830B2 (en) Thermoelectric conversion module and thermoelectric conversion module manufacturing method
JP2015144212A (en) thermoelectric conversion module
US20180175272A1 (en) Thermoelectric conversion module
JP2014146640A (en) Thermoelectric conversion component
KR20130033865A (en) Thermoelectric module and manufacturing method for theremoelectric module
JP2013539908A (en) Discrete electronic component assembly and packaging method
JP5343620B2 (en) Heat dissipation material and method for manufacturing the same, electronic device and method for manufacturing the same
US10236431B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP6510045B2 (en) Thermoelectric conversion element and thermoelectric conversion module
US10347811B2 (en) Thermoelectric conversion module
JP6505585B2 (en) Thermoelectric conversion element
US20220293843A1 (en) Thermoelectric conversion element
US20220302365A1 (en) Thermoelectric conversion element
JP2016225346A (en) Thermoelectric conversion module and exhaust pipe for vehicle
CN111048608B (en) Flexible malleable solar cell and method of manufacturing the same
CN105762270B (en) Thermoelectric generator and method of assembling thermoelectric generator
JP6405446B2 (en) Thermoelectric conversion element and thermoelectric conversion module
JP2016192424A (en) Thermoelectric conversion element and thermoelectric conversion module
WO2021124867A1 (en) Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
JP3177870U (en) Flat heater using carbon nanotube sheet
JPWO2017168969A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2021100100A (en) Thermoelectric conversion element and method for manufacturing thermoelectric conversion element
JP2018060822A (en) Thermoelectric conversion module and mounting method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13743949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13743949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP