WO2013111791A1 - X線ct装置、x線ctシステム - Google Patents

X線ct装置、x線ctシステム Download PDF

Info

Publication number
WO2013111791A1
WO2013111791A1 PCT/JP2013/051356 JP2013051356W WO2013111791A1 WO 2013111791 A1 WO2013111791 A1 WO 2013111791A1 JP 2013051356 W JP2013051356 W JP 2013051356W WO 2013111791 A1 WO2013111791 A1 WO 2013111791A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
volume data
setting
unit
ray
Prior art date
Application number
PCT/JP2013/051356
Other languages
English (en)
French (fr)
Inventor
豪 椋本
平岡 学
Original Assignee
株式会社 東芝
東芝メディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012015084A external-priority patent/JP2013153823A/ja
Application filed by 株式会社 東芝, 東芝メディカルシステムズ株式会社 filed Critical 株式会社 東芝
Priority to US14/111,965 priority Critical patent/US20140072099A1/en
Priority to CN201380002341.6A priority patent/CN103702614A/zh
Publication of WO2013111791A1 publication Critical patent/WO2013111791A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/12Arrangements for detecting or locating foreign bodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/46Arrangements for interfacing with the operator or the patient
    • A61B6/461Displaying means of special interest
    • A61B6/466Displaying means of special interest adapted to display 3D data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • A61B6/487Diagnostic techniques involving generating temporal series of image data involving fluoroscopy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/10Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis
    • A61B90/11Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges for stereotaxic surgery, e.g. frame-based stereotaxis with guides for needles or instruments, e.g. arcuate slides or ball joints

Definitions

  • Embodiments of the present invention relate to an X-ray CT apparatus and an X-ray CT system.
  • An X-ray CT (Computed Tomography) apparatus is an apparatus that images an inside of a subject by scanning the subject using X-rays and processing collected data by a computer.
  • the X-ray CT apparatus emits X-rays to the subject a plurality of times from different directions along a circular orbit centered on the subject.
  • the X-ray CT apparatus collects a plurality of detection data by detecting X-rays transmitted through a subject with an X-ray detector.
  • the collected detection data is A / D converted by the data collection unit and then transmitted to the console device.
  • the console device pre-processes the detection data and creates projection data.
  • the console device performs reconstruction processing based on the projection data, and creates tomographic image data or volume data based on a plurality of tomographic image data.
  • Volume data is a data set representing a three-dimensional distribution of CT values corresponding to a three-dimensional region of a subject.
  • the X-ray CT apparatus can perform MPR (Multi Planar Reconstruction) display by rendering the volume data in an arbitrary direction.
  • MPR Multi Planar Reconstruction
  • a cross-sectional image displayed in MPR by rendering volume data may be referred to as an “MPR image”.
  • the MPR image includes, for example, an axial image showing a cross section orthogonal to the body axis, a sagittal image showing a cross section of the subject along the body axis, and a coronal image showing a cross section of the subject along the body axis.
  • an arbitrary cross-sectional image (oblique image) in the volume data is also included in the MPR image.
  • the plurality of created MPR images can be simultaneously displayed on a display unit or the like.
  • CT fluoroscopy is an imaging method in which an image relating to a region of interest of a subject is obtained in real time by continuously irradiating the subject with X-rays.
  • images are created in real time by reducing the detection data collection rate and reducing the time required for reconstruction processing.
  • CT fluoroscopy is used, for example, for confirming the positional relationship between the tip of a puncture needle and a part from which a specimen is collected during a biopsy, or for confirming the position of a tube when performing a drainage method.
  • the drainage method is a method of draining the body fluid accumulated in the body cavity with a tube or the like.
  • scanning and puncturing may be performed alternately. Specifically, first, an MPR image of the subject is acquired by CT fluoroscopy. A doctor or the like performs puncturing while referring to the MPR image. At this time, for example, in order to confirm the positional relationship between the tip of the puncture needle and the part from which the specimen is collected, CT fluoroscopy is performed again at a stage where puncture is performed to some extent. While referring to the MPR image obtained by another CT fluoroscopy, the doctor or the like further advances the puncture. By repeatedly performing this operation until the biopsy is completed, the biopsy can be reliably performed.
  • a puncture plan may be created in advance.
  • the puncture plan is information including a preset insertion path of the puncture needle to the subject (hereinafter sometimes referred to as “planned path”).
  • the puncture plan is set, for example, by drawing a planned route by inputting an instruction from a mouse or the like in a CT image acquired in advance before performing CT fluoroscopy.
  • a doctor or the like punctures a subject while referring to a CT image showing a planned route and an MPR image based on volume data obtained by X-ray scanning each time.
  • an image (for example, a planned route) set in a CT image acquired in advance is not displayed on an image based on volume data obtained each time by X-ray scanning.
  • the embodiment has been made to solve the above-described problems, and an object thereof is to provide a technique capable of easily recognizing a preset image on an image obtained at the present time. .
  • the X-ray CT apparatus of the embodiment creates the first volume data and the second volume data based on the results of scanning the subject with X-rays at different timings.
  • the X-ray CT apparatus includes a setting unit, a storage unit, and a display control unit.
  • the setting unit sets a predetermined setting image for the image based on the first volume data.
  • the storage unit stores a setting image and a setting position of the setting image.
  • the display control unit displays an image based on the second volume data on the display unit, and displays the setting image at a position corresponding to the setting position in the image based on the second volume data.
  • the X-ray CT system of the embodiment includes an X-ray CT apparatus that creates volume data based on the result of scanning a subject with X-rays.
  • the X-ray CT system includes a setting unit, a storage unit, and a display control unit.
  • the setting unit sets a predetermined setting image for an image based on the first volume data created in advance.
  • the storage unit stores a setting image and a setting position of the setting image.
  • the display control unit causes the display unit to display an image based on the newly created second volume data, and causes the setting image to be displayed at a position corresponding to the setting position in the image based on the second volume data.
  • FIG. 1 is a block diagram of an X-ray CT apparatus according to a first embodiment. It is a figure which supplements description of the setting part which concerns on 1st Embodiment. It is a figure which supplements description of the setting part which concerns on 1st Embodiment. It is a flowchart which shows the outline
  • the X-ray CT apparatus 1 includes a gantry device 10, a bed device 30, and a console device 40.
  • the gantry device 10 is an apparatus that irradiates the subject E with X-rays and collects detection data of the X-rays transmitted through the subject E.
  • the gantry device 10 includes an X-ray generator 11, an X-ray detector 12, a rotating body 13, a high voltage generator 14, a gantry driver 15, an X-ray diaphragm 16, a diaphragm driver 17, And a data collection unit 18.
  • the X-ray generation unit 11 is configured to include an X-ray tube (for example, a vacuum tube that generates a cone-shaped or pyramid-shaped X-ray beam, not shown) that generates X-rays.
  • the X-ray generator 11 exposes the generated X-rays to the subject E.
  • the X-ray detection unit 12 includes a plurality of X-ray detection elements (not shown).
  • the X-ray detection unit 12 detects X-rays that have passed through the subject E.
  • the X-ray detection unit 12 detects X-ray intensity distribution data (hereinafter sometimes referred to as “detection data”) indicating the intensity distribution of X-rays transmitted through the subject E with an X-ray detection element.
  • the detection data is output as a current signal.
  • a two-dimensional X-ray detector plane detector in which a plurality of detection elements are arranged in two directions (slice direction and channel direction) orthogonal to each other is used.
  • the plurality of X-ray detection elements are provided, for example, in 320 rows along the slice direction.
  • a multi-row X-ray detector in this way, it is possible to image a three-dimensional imaging region having a width in the slice direction by one rotation scan (volume scan).
  • the slice direction corresponds to the body axis direction of the subject E, and the channel direction corresponds to the rotation direction of the X-ray generation unit 11.
  • the rotating body 13 is a member that supports the X-ray generation unit 11 and the X-ray detection unit 12 so as to face each other with the subject E interposed therebetween.
  • the rotating body 13 has an opening 13a penetrating in the slice direction.
  • the rotating body 13 is arranged so as to rotate in a circular orbit around the subject E. That is, the X-ray generation unit 11 and the X-ray detection unit 12 are provided so as to be rotatable along a circular orbit centered on the subject E.
  • the high voltage generator 14 applies a high voltage to the X-ray generator 11 (hereinafter, “voltage” means the voltage between the anode and the cathode in the X-ray tube).
  • the X-ray generator 11 generates X-rays based on the high voltage.
  • the gantry driving unit 15 drives the rotating body 13 to rotate.
  • the X-ray diaphragm section 16 has a slit (opening) having a predetermined width, and by changing the width of the slit, the fan angle (expansion angle in the channel direction) of X-rays exposed from the X-ray generation section 11 and X Adjust the cone angle of the line (the spread angle in the slice direction).
  • the diaphragm drive unit 17 drives the X-ray diaphragm unit 16 so that the X-rays generated by the X-ray generation unit 11 have a predetermined shape.
  • the data collection unit 18 collects detection data from the X-ray detection unit 12 (each X-ray detection element).
  • the data collection unit 18 converts the collected detection data (current signal) into a voltage signal, periodically integrates and amplifies the voltage signal, and converts the voltage signal into a digital signal. Then, the data collecting unit 18 transmits the detection data converted into the digital signal to the console device 40.
  • the data collection part 18 shortens the collection rate of detection data.
  • the couch device 30 is a device for placing and moving the subject E to be imaged.
  • the couch device 30 includes a couch 31 and a couch driving unit 32.
  • the couch 31 includes a couch top 33 for placing the subject E and a base 34 that supports the couch top 33.
  • the couch top 33 can be moved by the couch driving unit 32 in the body axis direction of the subject E and in the direction perpendicular to the body axis direction. That is, the bed driving unit 32 can insert and remove the bed top plate 33 on which the subject E is placed with respect to the opening 13 a of the rotating body 13.
  • the base 34 can move the bed top 33 in the vertical direction (a direction perpendicular to the body axis direction of the subject E) by the bed driving unit 32.
  • the console device 40 is used for operation input to the X-ray CT apparatus 1.
  • the console device 40 has a function of reconstructing CT image data (tomographic image data and volume data) representing the internal form of the subject E from the detection data collected by the gantry device 10.
  • the console device 40 includes a processing unit 41, a setting unit 42, a storage unit 43, a display control unit 44, a display unit 45, a scan control unit 46, and a control unit 47.
  • the processing unit 41 performs various processes on the detection data transmitted from the gantry device 10 (data collection unit 18).
  • the processing unit 41 includes a preprocessing unit 41a, a reconstruction processing unit 41b, and a rendering processing unit 41c.
  • the pre-processing unit 41a performs pre-processing such as logarithmic conversion processing, offset correction, sensitivity correction, and beam hardening correction on detection data detected by the gantry device 10 (X-ray detection unit 12) to create projection data. To do.
  • the reconstruction processing unit 41b creates CT image data (tomographic image data and volume data) based on the projection data created by the preprocessing unit 41a.
  • any method such as a two-dimensional Fourier transform method, a convolution / back projection method, or the like can be employed.
  • Volume data is created by interpolating a plurality of reconstructed tomographic image data.
  • an arbitrary method such as a cone beam reconstruction method, a multi-slice reconstruction method, an enlargement reconstruction method, or the like can be adopted.
  • a wide range of volume data can be reconstructed by volume scanning using a multi-row X-ray detector.
  • the reconstruction time by the reconstruction processing unit 41b is shortened. Therefore, real-time CT image data corresponding to scanning can be created.
  • the rendering processing unit 41c performs rendering processing on the volume data created by the reconstruction processing unit 41b.
  • the rendering processing unit 41c includes a first image processing unit 411c and a second image processing unit 412c.
  • the first image processing unit 411c creates a pseudo three-dimensional image (image data) based on the volume data.
  • the “pseudo three-dimensional image” is an image for displaying the three-dimensional structure of the subject E two-dimensionally.
  • the first image processing unit 411c creates a pseudo three-dimensional image that is a display image (image data) by performing volume rendering processing on the volume data created by the reconstruction processing unit 41b. To do.
  • the second image processing unit 412c creates an MPR image (image data) based on the volume data.
  • the “MPR image” is an image showing a desired cross section of the subject E.
  • the MPR image includes an axial image, a sagittal image, and a coronal image that are three orthogonal cross sections.
  • the second image processing unit 412c may create an oblique image indicating an arbitrary cross section as an MPR image.
  • the second image processing unit 412c creates an MPR image by performing rendering processing in a desired direction on the volume data created by the reconstruction processing unit 41b.
  • the setting unit 42 sets a predetermined setting image for the image based on the volume data.
  • a “setting image” is a desired image drawn on an image based on volume data. For example, when a biopsy is performed on the subject E, the plan of the insertion path of the puncture needle (which route is used to insert the puncture needle, that is, the planned path) may be drawn on the image in advance. .
  • the drawn image (plan route image) is an example of a setting image.
  • a marking image in which the position of an attention site (lesioned part or the like) in the image is surrounded by a circle or an ellipse can be used as the setting image.
  • the display control unit 44 displays the set setting image on an image based on the volume data.
  • the image based on the volume data on which the setting image is displayed can be used as a reference image when puncturing the subject E or the like.
  • the setting unit 42 an image (setting image) indicating a planned path with respect to a pseudo three-dimensional image based on volume data (first volume data) obtained by scanning (first scanning) performed at a certain timing.
  • first volume data first volume data obtained by scanning (first scanning) performed at a certain timing.
  • the cube shown in FIGS. 2A and 2B schematically shows a pseudo three-dimensional image D based on volume data.
  • each surface of the cube indicates the body surface of the subject E.
  • the display control unit 44 causes the display unit 45 to display the pseudo 3D image D.
  • the surgeon uses the input device provided in the X-ray CT apparatus 1 or the like for the pseudo three-dimensional image D displayed on the display unit 45 to perform the position S of the target site (lesion site or the like). And two points of the insertion position P of the puncture needle on the body surface are designated (see FIG. 2A).
  • the setting unit 42 calculates the shortest distance L connecting the two points, and sets a line segment connecting the shortest distances L as the setting image I.
  • the display control unit 44 displays the set image I that has been set on the pseudo three-dimensional image (see FIG. 2B). Further, the setting unit 42 obtains the position of the setting image I in the volume data (coordinate values; hereinafter, sometimes referred to as “setting position”).
  • the setting image I and the setting position are stored in the storage unit 43.
  • the surgeon can directly draw a line segment indicating the planned route on the pseudo three-dimensional image using an input device or the like.
  • the setting unit 42 sets the drawn line segment as the setting image I.
  • the setting unit 42 calculates the position of the lesioned part and the position of the body surface closest to the lesioned part by performing image analysis processing such as a region growing method on the volume data.
  • the setting part 42 can also calculate the line segment which connects them, and can also set the said line segment as the setting image I.
  • the storage unit 43 is configured by a semiconductor storage device such as a RAM or a ROM.
  • the storage unit 43 stores detection data, projection data, CT image data after reconstruction processing, and the like in addition to the setting image and the setting position of the setting image.
  • the display control unit 44 performs various controls related to image display. For example, a pseudo three-dimensional image created by the first image processing unit 411c, an MPR image (axial image, sagittal image, coronal image, oblique image) created by the second image processing unit 412c, etc. are displayed on the display unit 45. To control.
  • the display control unit 44 displays the setting image at a position corresponding to the setting position in the image based on the volume data displayed on the display unit 45.
  • a pseudo three-dimensional image based on volume data (second volume data) obtained by a scan (second scan) performed at a timing different from the first scan is displayed on the display unit 45.
  • the first volume data and the second volume data are assumed to have the same number of tomographic image data and the number of pixels of the image.
  • the imaging conditions of the first scan and the second scan are also assumed to be equal. That is, it is assumed that the first volume data and the second volume data are in the same coordinate system.
  • the display control unit 44 displays the same image as the setting image at a position corresponding to the setting position stored in the storage unit 43.
  • the display control unit 44 can replace the pixel (pixel value) in the pseudo three-dimensional image based on the second volume data with the pixel (pixel value) of the setting image.
  • the display control unit 44 can superimpose the setting image on the pseudo three-dimensional image based on the second volume data. An image based on the second volume data on which the setting image is displayed can be used as a new reference image.
  • the display unit 45 includes an arbitrary display device such as an LCD (Liquid Crystal Display) or a CRT (Cathode Ray Tube) display.
  • the display unit 45 displays an MPR image obtained by rendering volume data.
  • the scan control unit 46 controls various operations related to the X-ray scan. For example, the scan control unit 46 controls the high voltage generation unit 14 to apply a high voltage to the X-ray generation unit 11. The scan control unit 46 controls the gantry driving unit 15 to rotationally drive the rotating body 13. The scan control unit 46 controls the aperture driving unit 17 to operate the X-ray aperture unit 16. The scan control unit 46 controls the bed driving unit 32 to move the bed 31.
  • the control unit 47 performs overall control of the X-ray CT apparatus 1 by controlling the operations of the gantry device 10, the couch device 30 and the console device 40.
  • the control unit 47 controls the scan control unit 46 to cause the gantry device 10 to perform a preliminary scan and a main scan and collect detection data.
  • the control unit 47 controls the processing unit 41 to perform various types of processing (preprocessing, reconstruction processing, etc.) on the detected data.
  • the control unit 47 controls the display control unit 44 to display an image based on the CT image data stored in the storage unit 43 on the display unit 45.
  • the X-ray CT apparatus 1 Before starting the biopsy, the X-ray CT apparatus 1 first performs X-ray scan (first scan) on the subject E to create volume data (first volume data).
  • the X-ray generator 11 exposes the subject E with X-rays.
  • the X-ray detection unit 12 detects X-rays that have passed through the subject E, and acquires the detection data (S10). Detection data detected by the X-ray detection unit 12 is collected by the data collection unit 18 and sent to the processing unit 41 (pre-processing unit 41a).
  • the pre-processing unit 41a performs pre-processing such as logarithmic conversion processing, offset correction, sensitivity correction, and beam hardening correction on the detection data acquired in S10, and creates projection data (S11).
  • the created projection data is sent to the reconstruction processing unit 41b based on the control of the control unit 47.
  • the reconstruction processing unit 41b creates a plurality of tomographic image data based on the projection data created in S11.
  • the reconstruction processing unit 41b creates first volume data by performing interpolation processing on a plurality of tomographic image data (S12).
  • the first image processing unit 411c creates a pseudo three-dimensional image by rendering the first volume data created in S12.
  • the display control unit 44 displays the created pseudo 3D image on the display unit 45 (S13).
  • the surgeon makes a plan for the insertion path of the puncture needle (planned path).
  • the operator designates the position of the lesion in the pseudo three-dimensional image and the insertion position of the puncture needle using an input device or the like.
  • the setting unit 42 sets a line segment connecting the designated positions as a setting image (S14).
  • the display control unit 44 displays the set setting image on the pseudo three-dimensional image.
  • the setting unit 42 sends the setting image and the coordinate value (setting position) of the setting image to the storage unit 43.
  • the storage unit 43 stores the setting image and the coordinate value (setting position) (S15).
  • the X-ray CT apparatus 1 After a certain amount of biopsy (after inserting the puncture needle into the subject E), the X-ray CT apparatus 1 is used to confirm the puncture state (whether the puncture needle is traveling along the planned path, etc.). Performs an X-ray scan (second scan) on the subject E again to create volume data (second volume data).
  • the X-ray generator 11 exposes the subject E with X-rays.
  • the X-ray detection unit 12 detects X-rays that have passed through the subject E and acquires the detection data (S16). As described above, the imaging conditions for the first scan and the second scan are the same.
  • the pre-processing unit 41a performs pre-processing on the detection data acquired in S16 and creates projection data (S17).
  • the reconstruction processing unit 41b creates second volume data by interpolating a plurality of tomographic image data created based on the projection data created in S17 (S18).
  • the first image processing unit 411c creates a pseudo three-dimensional image by rendering the second volume data created in S18 (S19).
  • the display control unit 44 causes the display unit 45 to display the pseudo 3D image created in S19, and sets the position corresponding to the setting position stored in S15 in the pseudo 3D image based on the second volume data in S14. The same image as the set image is displayed (S20).
  • the volume data (first volume) in which the setting image is set The setting image can be easily grasped even in an image based on volume data (second volume data) different from (data).
  • the puncture needle is displaced from the planned route as a result of the biopsy, the position of the puncture needle displayed in the image based on the volume data and the setting image displayed in the image are displayed in a shifted state. Is done.
  • the puncture needle when the puncture needle is inserted along the planned route, the position of the puncture needle displayed in the image based on the volume data is displayed in a state where the setting image displayed in the image overlaps. . That is, by referring to the image on which the setting image is displayed, the surgeon can easily grasp the puncture needle displacement (deviation from the planned route).
  • the processing unit 41, the setting unit 42, the display control unit 44, the scan control unit 46, and the control unit 47 are, for example, a CPU (Central Processing Unit), a GPU (Graphic Processing Unit), or an ASIC (Application Specific Integrated Circuit). And a storage device (not shown) such as a ROM (Read Only Memory), a RAM (Random Access Memory), or an HDD (Hard Disc Drive).
  • the storage device stores a processing program for executing the function of the processing unit 41.
  • the storage device also stores a setting unit processing program for executing the function of the setting unit 42.
  • the storage device stores a display control program for executing the function of the display control unit 44.
  • the storage device stores a scan control program for executing the function of the scan control unit 46.
  • the storage device stores a control program for executing the function of the control unit 47.
  • a processing device such as a CPU executes the functions of each unit by executing each program stored in the storage device.
  • the configuration and operation of the single X-ray CT apparatus 1 have been described so far.
  • the configuration of the present embodiment can be realized as an X-ray CT system including the X-ray CT apparatus 1.
  • a setting image is set for an image based on previously created volume data, and the setting image and the setting position of the setting image are stored. Then, a biopsy using CT fluoroscopy is performed with another X-ray CT apparatus. In this case, another X-ray CT apparatus displays an image based on the second volume data obtained by CT fluoroscopy on the display unit. Further, the other X-ray CT apparatus reads the stored setting image and the setting position of the setting image from the X-ray CT apparatus 1, and sets the setting image at a position corresponding to the setting position of the setting image in the image based on the second volume data. Display an image.
  • the X-ray CT apparatus 1 creates an image based on the first volume data.
  • a computer provided separately from the X-ray CT apparatus 1 sets a setting image for an image based on the first volume data, and stores the setting image and the setting position of the setting image.
  • the X-ray CT apparatus 1 displays an image based on the second volume data obtained by CT fluoroscopy on the display unit.
  • the X-ray CT apparatus 1 reads the stored setting image and the setting position of the setting image from the computer, and displays the setting image at a position corresponding to the setting position of the setting image in the image based on the second volume data. Is also possible.
  • the X-ray CT apparatus 1 of the present embodiment creates first volume data and second volume data based on the results of scanning the subject with X-rays at different timings.
  • the X-ray CT apparatus 1 includes a setting unit 42, a storage unit 43, and a display control unit 44.
  • the setting unit 42 sets a predetermined setting image for the image based on the first volume data.
  • the storage unit 43 stores the setting image and the setting position of the setting image.
  • the display control unit 44 causes the display unit 45 to display an image based on the second volume data, and causes the setting image to be displayed at a position corresponding to the setting position in the image based on the second volume data.
  • the X-ray CT apparatus 1 includes a first image processing unit 411c.
  • the first image processing unit 411c creates a pseudo three-dimensional image that two-dimensionally shows the three-dimensional structure of the subject E based on the volume data.
  • the setting unit 42 sets a setting image for the pseudo three-dimensional image based on the first volume data.
  • the display control unit 44 causes the display unit 45 to display the pseudo three-dimensional image based on the second volume data, and displays the setting image at a position corresponding to the setting position in the pseudo three-dimensional image based on the second volume data.
  • the configuration of this embodiment can be realized as an X-ray CT system.
  • the X-ray CT system includes at least one X-ray CT apparatus, a setting unit 42, a storage unit 43, and a display control unit 44.
  • the X-ray CT apparatus creates volume data based on the result of scanning the subject E with X-rays.
  • the setting unit 42 sets a predetermined setting image for an image based on first volume data created in advance.
  • the storage unit 43 stores the setting image and the setting position of the setting image.
  • the display control unit 44 causes the display unit 45 to display an image based on the newly created second volume data, and causes the setting image to be displayed at a position corresponding to the setting position in the image based on the second volume data.
  • the display control unit 44 causes the setting image set for the pseudo three-dimensional image based on the first volume data to be displayed at a position corresponding to the setting position in the pseudo three-dimensional image based on the second volume data.
  • the display control unit 44 also displays an image showing a preset planned route in a pseudo three-dimensional image based on volume data (second volume data) obtained each time by X-ray scanning. Can be displayed at the same position. Therefore, by referring to the pseudo three-dimensional image, the operator can confirm the planned route in the current image.
  • the puncture needle when the puncture needle is displayed in the image based on the second volume data, the puncture needle Therefore, it is possible to easily grasp whether the puncture needle is moving along the planned route. That is, according to the present embodiment, it is possible to easily recognize a preset image (set image) on the image obtained at the current time.
  • the setting unit 42 sets a setting image for the MPR image based on the first volume data.
  • a configuration in which the display control unit 44 displays the setting image on the MPR image based on the second volume data will be described. Detailed description of the same configuration as that of the first embodiment will be omitted.
  • an axial image is used as an example of an MPR image, but the configuration of the present embodiment can be similarly applied to a sagittal image or a coronal image.
  • the setting unit 42 in the present embodiment sets a predetermined setting image for the MPR image based on the volume data.
  • the MPR image is created by the second image processing unit 412c.
  • first volume data obtained by scanning (first scanning) performed at a certain timing.
  • 4A and 4B show an axial image AI based on volume data.
  • the display control unit 44 displays the axial image AI on the display unit 45.
  • the surgeon selects 2 of the position S of the target site (lesion site or the like) where biopsy is performed using an input device or the like, and the insertion position P of the puncture needle on the body surface.
  • a point is designated (see FIG. 4A).
  • the setting unit 42 calculates the shortest distance L connecting the two points, and sets a line segment connecting the shortest distances L as the setting image I.
  • the display control unit 44 displays the set setting image I on the axial image AI (see FIG. 4B).
  • the setting unit 42 obtains a set position (coordinate value) in the axial image AI.
  • the setting image I and the setting position are stored in the storage unit 43.
  • the axial image AI is an image based on three-dimensional volume data. Therefore, the position of the setting image set in the axial image AI can be specified by a three-dimensional coordinate value.
  • the display control unit 44 displays the setting image at a position corresponding to the setting position in the MPR image based on the volume data displayed on the display unit 45.
  • an axial image based on volume data (second volume data) obtained by a scan (second scan) performed at a timing different from the first scan is displayed on the display unit 45.
  • second volume data volume data obtained by a scan (second scan) performed at a timing different from the first scan
  • the axial image based on the first volume data and the axial image based on the second volume data show cross sections at the same position in the body axis direction.
  • the display control unit 44 displays the same image as the set image at a position in the axial image corresponding to the set position stored in the storage unit 43.
  • the same image as the setting image may be displayed at a position corresponding to the setting position in the pseudo three-dimensional image based on the second volume data.
  • the setting position set for the MPR image (axial image) based on the first volume data has a three-dimensional coordinate value. Therefore, even if the image based on the second volume data is a pseudo three-dimensional image, the position corresponding to the set position can be specified.
  • the X-ray CT apparatus 1 Before starting the biopsy, the X-ray CT apparatus 1 first performs X-ray scan (first scan) on the subject E to create volume data (first volume data).
  • the X-ray generator 11 exposes the subject E with X-rays.
  • the X-ray detection unit 12 detects X-rays that have passed through the subject E and acquires the detection data (S30).
  • the preprocessing unit 41a performs preprocessing such as logarithmic conversion processing, offset correction, sensitivity correction, and beam hardening correction on the detection data acquired in S30, and creates projection data (S31).
  • the reconstruction processing unit 41b creates a plurality of tomographic image data based on the projection data created in S31. Further, the reconstruction processing unit 41b creates first volume data by interpolating a plurality of tomographic image data (S32).
  • the second image processing unit 412c creates an axial image by rendering the first volume data created in S32.
  • the display control unit 44 displays the created axial image on the display unit 45 (S33).
  • the surgeon makes a plan for the insertion path of the puncture needle (planned path).
  • the operator designates the position of the lesion in the axial image and the insertion position of the puncture needle using an input device or the like.
  • the setting unit 42 sets a line segment connecting the designated positions as a setting image (S34).
  • the display control unit 44 displays the set setting image on the axial image.
  • the setting unit 42 sends the coordinate value (setting position) of the setting image to the storage unit 43.
  • the storage unit 43 stores the setting image and the coordinate value (setting position) of the setting image (S35).
  • surgeon advances the puncture to the subject E while referring to the axial image showing the setting image.
  • the X-ray CT apparatus 1 After a certain amount of biopsy (after inserting the puncture needle into the subject E), the X-ray CT apparatus 1 is used to confirm the puncture state (whether the puncture needle is traveling along the planned path, etc.). Performs an X-ray scan (second scan) on the subject E again to create volume data (second volume data).
  • the X-ray generator 11 exposes the subject E with X-rays.
  • the X-ray detection unit 12 detects X-rays that have passed through the subject E, and acquires the detection data (S36).
  • the imaging conditions for the first scan and the second scan are the same.
  • the pre-processing unit 41a pre-processes the detection data acquired in S36 and creates projection data (S37).
  • the reconstruction processing unit 41b creates second volume data by interpolating a plurality of tomographic image data created based on the projection data created in S37 (S38).
  • the second image processing unit 412c creates an axial image by rendering the second volume data (S39).
  • the display control unit 44 causes the display unit 45 to display the axial image created in S39 and sets the setting image set in S34 at a position corresponding to the setting position stored in S35 in the axial image based on the second volume data. The same image is displayed (S40).
  • the X-ray CT apparatus 1 of the present embodiment includes a second image processing unit 412c.
  • the second image processing unit 412c creates an MPR image showing a cross section of the subject E based on the volume data.
  • the setting unit 42 sets a setting image for the MPR image based on the first volume data.
  • the display control unit 44 displays the MPR image based on the second volume data on the display unit 45 and displays the setting image at a position corresponding to the setting position in the MPR image based on the second volume data.
  • the X-ray CT apparatus 1 of the present embodiment includes a first image processing unit 411c and a second image processing unit 412c.
  • the first image processing unit 411c creates a pseudo three-dimensional image that two-dimensionally shows the three-dimensional structure of the subject E based on the volume data.
  • the second image processing unit 412c creates an MPR image showing a cross section of the subject E based on the volume data.
  • the setting unit 42 sets a setting image for the MPR image based on the first volume data.
  • the display control unit 44 causes the display unit 45 to display the pseudo three-dimensional image based on the second volume data, and displays the setting image at a position corresponding to the setting position in the pseudo three-dimensional image based on the second volume data.
  • the second image processing unit 412c in the X-ray CT apparatus 1 of the present embodiment creates at least one of an axial image, a sagittal image, a coronal image, and an oblique image of the subject E as an MPR image.
  • the display control unit 44 sets the setting image set for the MPR image based on the first volume data to a position corresponding to the setting position in the image (pseudo three-dimensional image or MPR image) based on the second volume data.
  • Can be displayed For example, in a biopsy using CT fluoroscopy, the display control unit 44 displays an image showing a preset planned route at the same position in an image based on volume data (second volume data) obtained each time by X-ray scanning. Can be displayed. Therefore, by referring to this image, the operator can confirm the planned route in the current image. Furthermore, when the puncture needle is displayed in the image based on the second volume data, the puncture needle and the planned route are displayed.
  • the puncture needle is moving along the planned route. That is, according to the present embodiment, it is possible to easily recognize a preset image (set image) on the image obtained at the current time. Further, the setting image can be easily set with an MPR image which is a two-dimensional image.
  • a setting image is set for an axial image.
  • the setting image since the setting image is set from an image based on volume data, it has a three-dimensional coordinate value. Therefore, the setting unit 42 can automatically set a setting image at a position corresponding to the three-dimensional coordinate value in a coronal image or a sagittal image created from volume data that is a source of an axial image.
  • the setting unit 42 may set a setting image for an MPR image showing a certain cross section, and set a setting image for an MPR image showing another cross section based on the setting position of the setting image. it can.
  • the display control unit 44 displays the set setting image on each MPR image.
  • Modification 2 By observing a cross-sectional image along the image (setting image) indicating the planned path of the puncture needle set by the setting unit 42, the operator can grasp the entire planned path on a two-dimensional image. Become. In this case, the second image processing unit 412c creates an oblique image of a cross section along the setting image based on the first volume data.
  • the second image processing unit 412c stores the cross-sectional position of the oblique image along the set image, and can also create the oblique image of the same cross-section in the second volume data. That is, the second image processing unit 412c always creates an oblique image at the same cross-sectional position in each of the volume data (first to nth volume data) obtained at different timings. Each oblique image created is displayed on the display unit 45 by the display control unit 44.
  • the puncture needle when the puncture needle does not travel along the planned route, the puncture needle is not displayed in the oblique image based on the second volume data. Therefore, the surgeon can easily grasp the puncture needle displacement (deviation from the planned route).
  • the image created by the second image processing unit 412c is not limited to the oblique image, but may be an image of a cross section along the setting image.
  • the image created by the second image processing unit 412c is preferably an axial image.
  • the processing unit 41 specifies the position of the puncture needle for each of the plurality of volume data.
  • the processing unit 41 calculates a difference between tomographic image data constituting volume data for each of a plurality of volume data, and identifies tomographic image data having a large difference. Then, the processing unit 41 performs image processing such as edge detection on the specified tomographic image data, and specifies the position of the puncture needle.
  • the method of specifying the position of the puncture needle in the volume data is not limited to the above method, and a known method can be used.
  • the second image processing unit 412c creates an oblique image that is a cross section including the puncture needle by rendering the volume data in a predetermined direction with the specified position of the puncture needle as a reference.
  • the second image processing unit 412c performs this process for each of the plurality of volume data. Therefore, the puncture needle is always displayed on the oblique image created by the second image processing unit 412c.
  • the oblique image created by the second image processing unit 412 c is stored in the storage unit 43. Therefore, after the biopsy is completed, the surgeon observes a plurality of oblique images stored in the storage unit 43, so that the path along which the puncture needle has advanced (how the puncture needle has been inserted) It can be confirmed again.
  • the display control unit displays the setting image set for the image based on the first volume data.
  • Two-volume data can be displayed at a position corresponding to the set position in the image. That is, according to the present embodiment, it is possible to easily recognize a preset image (set image) on the image obtained at the current time.
  • Embodiment is made in order to solve the above-mentioned problem, and it aims at providing the technique which can display the image reflecting the shift
  • the X-ray CT apparatus 1 includes a gantry device 100, a couch device 300, and a console device 400.
  • the gantry device 100 is an apparatus that emits X-rays to the subject E and collects detection data of the X-rays that have passed through the subject E.
  • the gantry device 100 includes an X-ray generation unit 110, an X-ray detection unit 120, a rotating body 130, a high voltage generation unit 140, a gantry drive unit 150, an X-ray diaphragm unit 160, a diaphragm driver unit 170, A data collection unit 180.
  • the X-ray generator 110 includes an X-ray tube that generates X-rays (for example, a vacuum tube that generates a conical or pyramidal X-ray beam; not shown).
  • the X-ray generator 110 exposes the generated X-rays to the subject E.
  • the X-ray detection unit 120 includes a plurality of X-ray detection elements (not shown).
  • the X-ray detection unit 120 detects X-rays that have passed through the subject E. Specifically, the X-ray detection unit 120 detects X-ray intensity distribution data (detection data) indicating the intensity distribution of X-rays transmitted through the subject E with an X-ray detection element, and uses the detection data as a current signal. Output.
  • X-ray detection unit 120 for example, a two-dimensional X-ray detector (plane detector) in which a plurality of detection elements are arranged in two directions (slice direction and channel direction) orthogonal to each other is used.
  • the plurality of X-ray detection elements are provided, for example, in 320 rows along the slice direction.
  • a multi-row X-ray detector in this way, it is possible to image a three-dimensional imaging region having a width in the slice direction by one rotation scan (volume scan).
  • the slice direction corresponds to the body axis direction of the subject E, and the channel direction corresponds to the rotation direction of the X-ray generation unit 110.
  • the rotating body 130 is a member that supports the X-ray generation unit 110 and the X-ray detection unit 120 so as to face each other with the subject E interposed therebetween.
  • the rotating body 130 has an opening 130a penetrating in the slice direction.
  • the rotator 130 is arranged to rotate in a circular orbit around the subject E. That is, the X-ray generation unit 110 and the X-ray detection unit 120 are provided so as to be rotatable along a circular orbit around the subject E.
  • the high voltage generator 140 applies a high voltage to the X-ray generator 110.
  • the X-ray generation unit 110 generates X-rays based on the high voltage.
  • the gantry driving unit 150 drives the rotating body 130 to rotate.
  • the X-ray diaphragm 160 has a slit (opening) with a predetermined width, and by changing the width of the slit, the fan angle (expansion angle in the channel direction) of X-rays exposed from the X-ray generator 110 and the X-ray Adjust the cone angle of the line (the spread angle in the slice direction).
  • the diaphragm drive unit 170 drives the X-ray diaphragm unit 160 so that the X-rays generated by the X-ray generation unit 110 have a predetermined shape.
  • the data collection unit 180 collects detection data from the X-ray detection unit 120 (each X-ray detection element).
  • the data collection unit 180 converts the collected detection data (current signal) into a voltage signal, periodically integrates and amplifies the voltage signal, and converts it into a digital signal. Then, the data collection unit 180 transmits the detection data converted into the digital signal to the console device 400.
  • the data collection part 180 shortens the collection rate of detection data.
  • the bed apparatus 300 is an apparatus for placing and moving the subject E to be imaged.
  • the bed apparatus 300 includes a bed 310 and a bed driving unit 320.
  • the bed 310 includes a bed top plate 330 on which the subject E is placed and a base 340 that supports the bed top plate 330.
  • the couch top 330 can be moved by the couch driving unit 320 in the body axis direction of the subject E and in the direction orthogonal to the body axis direction. That is, the bed driving unit 320 can insert and remove the bed top plate 330 on which the subject E is placed with respect to the opening 130 a of the rotating body 130.
  • the base 340 can move the bed top plate 330 in the vertical direction (direction perpendicular to the body axis direction of the subject E) by the bed driving unit 320.
  • the console device 400 is used for operation input to the X-ray CT apparatus 1. Further, the console device 400 has a function of reconstructing CT image data (tomographic image data and volume data) representing the internal form of the subject E from the detection data collected by the gantry device 100.
  • the console device 400 includes a processing unit 410, a first setting unit 420, a determination unit 430, a second setting unit 440, a display control unit 450, a storage unit 460, a display unit 470, and a scan control unit 480. , And a control unit 490.
  • the processing unit 410 performs various processes on the detection data transmitted from the gantry device 100 (data collection unit 180).
  • the processing unit 410 includes a preprocessing unit 410a, a reconstruction processing unit 410b, and a rendering processing unit 410c.
  • the preprocessing unit 410a performs preprocessing such as logarithmic conversion processing, offset correction, sensitivity correction, and beam hardening correction on detection data detected by the gantry device 100 (X-ray detection unit 120) to create projection data. To do.
  • the reconstruction processing unit 410b creates CT image data (tomographic image data or volume data) based on the projection data created by the preprocessing unit 410a.
  • CT image data any method such as a two-dimensional Fourier transform method, a convolution / back projection method, or the like can be employed.
  • Volume data is created by interpolating a plurality of reconstructed tomographic image data.
  • an arbitrary method such as a cone beam reconstruction method, a multi-slice reconstruction method, an enlargement reconstruction method, or the like can be adopted.
  • a wide range of volume data can be reconstructed by volume scanning using a multi-row X-ray detector.
  • the reconstruction time by the reconstruction processing unit 410b is shortened. Therefore, real-time CT image data corresponding to scanning can be created.
  • the rendering processing unit 410c performs a rendering process on the volume data created by the reconstruction processing unit 410b.
  • the rendering processing unit 410c creates a pseudo three-dimensional image (image data) by performing volume rendering processing on the volume data.
  • the “pseudo three-dimensional image” is an image for displaying the three-dimensional structure of the subject E two-dimensionally.
  • the rendering processing unit 410c creates an MPR image (image data) by performing rendering processing on the volume data in a desired direction.
  • the “MPR image” is an image showing a desired cross section of the subject E.
  • the MPR image includes an axial image, a sagittal image, and a coronal image that are three orthogonal cross sections.
  • the rendering processing unit 410c may create an oblique image indicating an arbitrary cross section as an MPR image.
  • the first setting unit 420 is used to set the insertion path of the puncture needle with respect to the subject E for the image based on the volume data created in advance.
  • the volume data created in advance is volume data obtained by an X-ray scan performed at a stage before performing a biopsy.
  • the insertion path set by the first setting unit 420 is a path (planned path) indicating the route through which the puncture needle is inserted into the subject E.
  • the insertion path corresponds to the image of the insertion path displayed on the display unit 470 on a one-to-one basis.
  • 7A and 7B show an axial image AI based on volume data.
  • the display control unit 450 causes the display unit 470 to display the axial image AI.
  • the operator uses the input device or the like provided in the X-ray CT apparatus 1 or the like for the axial image AI displayed on the display unit 470, the position S of the site (lesioned part or the like), and the puncture needle Two points of the insertion position P are designated (see FIG. 7A).
  • the first setting unit 420 calculates the shortest distance connecting the two points on the axial image AI, and sets the line segment connecting the shortest distances as the insertion path I.
  • the display control unit 450 displays the set insertion path I on the axial image AI (see FIG. 7B).
  • the first setting unit 420 obtains the position (coordinate value) of the insertion path I in the axial image AI.
  • the image of the insertion path I and the position of the insertion path I are stored in the storage unit 460.
  • the axial image AI is an image based on three-dimensional volume data. Therefore, the position of the insertion path I set in the axial image AI can be specified by a three-dimensional coordinate value.
  • the surgeon can directly draw a line segment indicating the insertion path I on the axial image AI using an input device or the like (manual).
  • the first setting unit 420 sets the drawn line segment as the insertion path I.
  • the first setting unit 420 calculates the position S of the lesioned part and the position of the body surface closest to the lesioned part by performing image analysis processing such as edge detection on the axial image AI.
  • the 1st setting part 420 can also calculate the line segment which connects them, and can also set the said line segment as the insertion path
  • the image for which the insertion path I is set is not limited to the axial image AI.
  • the first setting unit 420 can set the insertion path I for a sagittal image or a coronal image by a similar method.
  • the first setting unit 420 can set the insertion path I for a pseudo three-dimensional image (an image showing the three-dimensional structure of the subject E two-dimensionally) based on the volume data. .
  • the determination unit 430 determines whether or not there is a deviation between the puncture needle and the insertion path in the image based on the volume data created based on the result of the scan performed with the puncture needle inserted into the subject E.
  • the “deviation” is a difference between the set position of the insertion path and the position of the puncture needle inserted into the subject E.
  • the deviation is, for example, the distance of the tip position of the puncture needle with respect to the set insertion path. That is, when there is no deviation (when puncturing is performed along the insertion path), the distance is zero.
  • the angle formed by the set insertion path and the puncture needle may be “deviation” (when there is no deviation, the angle becomes 0).
  • the determination unit 430 As a specific example of the determination unit 430, a case where the first setting unit 420 sets the insertion path I for the axial image AI based on the first volume data will be described.
  • the rendering processing unit 410c is based on volume data (second volume data) obtained by a scan (second scan) performed at a timing different from the first scan (a state where the puncture needle is inserted into the subject E).
  • An axial image AI ′ is created.
  • the determination unit 430 reads the position (coordinate value) of the insertion path I set by the first setting unit 420 from the storage unit 460. Further, the determination unit 430 detects the tip position h (coordinate value) of the puncture needle PN inserted into the subject E by image processing such as edge detection in the axial image AI ′. Then, the determination unit 430 determines whether or not the tip position h of the puncture needle PN is on the set insertion path I.
  • the determination unit 430 determines that there is no deviation.
  • the determination unit 430 determines that there is a deviation. to decide. Note that the determination unit 430 can also detect the difference between the insertion path I and the tip position h of the puncture needle PN as a deviation amount.
  • the first volume data and the second volume data have the same number of tomographic image data and the number of pixels of the image.
  • the imaging conditions of the first scan and the second scan (imaging position, rotation speed of the rotating body 13, etc.) are also assumed to be equal. That is, it is assumed that the first volume data and the second volume data are in the same coordinate system.
  • the axial image AI based on the first volume data and the axial image AI ′ based on the second volume data are images showing cross sections at the same position in the body axis direction.
  • the second setting unit 440 is used to set a new insertion path for an image based on the second volume data when it is determined that there is a shift.
  • the new insertion path is a path obtained by correcting the planned path (insertion path I) according to the deviation.
  • the second setting unit 440 As a specific example of the second setting unit 440, a case where the tip position h of the puncture needle PN deviates from the preset insertion path I (see FIG. 7C) will be described.
  • 7C and 7D show an axial image AI ′ based on the second volume data.
  • 7C and 7D show an example in which the puncture needle PN has been inserted from the designated insertion position P, but the tip position h has shifted from the insertion path I during puncturing.
  • the second setting unit 440 sets a line segment connecting the coordinate value of the tip position h of the puncture needle PN and the coordinate value of one end of the insertion path I (lesion site position S) as a new insertion path I ′. (See FIG. 7D).
  • the insertion path I ′ is preferably the shortest path connecting the tip position h of the puncture needle PN and one end of the insertion path I.
  • the surgeon can directly draw a line segment connecting the tip position h of the puncture needle PN and one end of the insertion path I shown on the axial image AI ′ based on the second volume data using an input device or the like.
  • the second setting unit 440 sets the drawn line segment as a new insertion path I ′.
  • the second setting unit 440 sets a new insertion path I ′ for the coronal image, sagittal image, oblique image, and pseudo three-dimensional image based on the second volume data. Is also possible.
  • the insertion path I has a three-dimensional coordinate value because it is set on an image based on volume data. Therefore, the image in which the insertion path I is set may be different from the image in which the new insertion path I ′ is set.
  • the first setting unit 420 sets the insertion path I on the axial image AI.
  • the second setting unit 440 can also set a new insertion path I ′ on the coronal image.
  • the second setting unit 440 may set a new insertion path I ′ only when the amount of deviation detected by the determination unit 430 is equal to or greater than a threshold value.
  • the threshold value is a value set based on the distance between the insertion path I and the tip position h of the puncture needle PN.
  • the threshold value can be set to an arbitrary value every time CT fluoroscopy is performed using an input device or the like.
  • the second setting unit 440 performs the same process as described above even when the puncture needle PN is punctured in a state of being largely deviated from the designated insertion position P.
  • a new insertion path I ′ can be set.
  • 8A and 8B show an axial image AI ′ based on the second volume data.
  • the display control unit 450 performs various controls related to image display. For example, control is performed to display the pseudo three-dimensional image or MPR image (axial image, sagittal image, coronal image, oblique image) or the like created by the rendering processing unit 410c on the display unit 470.
  • pseudo three-dimensional image or MPR image axial image, sagittal image, coronal image, oblique image
  • the display control unit 450 causes the display unit 470 to display an image based on the volume data, and displays the set new insertion path I ′ on the image based on the volume data.
  • the display control unit 450 displays the new insertion path I ′ set by the second setting unit 440 in the axial image AI ′ (see FIG. 7D).
  • the display control unit 450 can replace a pixel (pixel value) in the axial image AI ′ with a pixel (pixel value) of the new insertion path I ′.
  • the display control unit 450 can superimpose a new insertion path I ′ on the axial image AI ′.
  • the display control unit 450 can also display both the original insertion path I and the new insertion path I ′ on the axial image AI ′ (see FIG. 7D). Alternatively, the display control unit 450 can display only the new insertion path I ′ on the axial image AI ′.
  • the display control unit 450 can display the original insertion path I and the new insertion path I ′ in different display modes. For example, the display control unit 450 can change the color in which the original insertion path I is displayed and the color in which the new insertion path I ′ is displayed. The display control unit 450 can blink the original insertion path I and light the new insertion path I ′. The display control unit 450 can display the original insertion path I with a broken line and can display a new insertion path I ′ with a solid line (see FIG. 7D).
  • the display control unit 450 displays information indicating a shift (for example, a shift amount such as a distance or an angle between the distal end position h of the puncture needle PN and the insertion path I) at a predetermined position on the display screen of the display unit 470. Can be displayed (including the case where the image is superimposed on the axial image AI ′).
  • a shift for example, a shift amount such as a distance or an angle between the distal end position h of the puncture needle PN and the insertion path I
  • the storage unit 460 includes a semiconductor storage device such as a RAM or a ROM. In addition to the position of the insertion path I, the storage unit 460 stores detection data, projection data, or CT image data after reconstruction processing.
  • the display unit 470 is configured by an arbitrary display device such as an LCD or a CRT display.
  • the display unit 47 displays an MPR image obtained by rendering volume data.
  • the scan control unit 480 controls various operations related to X-ray scanning. For example, the scan control unit 480 controls the high voltage generation unit 140 to apply a high voltage to the X-ray generation unit 110. The scan control unit 480 controls the gantry driving unit 150 so as to rotationally drive the rotating body 130. The scan control unit 480 controls the aperture driving unit 170 to operate the X-ray aperture unit 160. The scan control unit 480 controls the bed driving unit 320 to move the bed 310.
  • the control unit 490 performs overall control of the X-ray CT apparatus 1 by controlling operations of the gantry apparatus 100, the couch apparatus 300, and the console apparatus 400.
  • the control unit 490 controls the scan control unit 480 to cause the gantry device 100 to perform a preliminary scan and a main scan and collect detection data.
  • the control unit 490 controls the processing unit 410 to perform various processing (preprocessing, reconstruction processing, etc.) on the detection data.
  • the control unit 490 controls the display control unit 450 to display an image based on CT image data stored in the storage unit 460 on the display unit 470.
  • the X-ray CT apparatus 1 Before starting the biopsy, the X-ray CT apparatus 1 first performs X-ray scan (first scan) on the subject E to create volume data (first volume data).
  • the X-ray generation unit 110 exposes the subject E with X-rays.
  • the X-ray detection unit 120 detects X-rays that have passed through the subject E and acquires the detection data (S50).
  • the detection data detected by the X-ray detection unit 120 is collected by the data collection unit 180 and sent to the processing unit 410 (pre-processing unit 410a).
  • the pre-processing unit 410a performs pre-processing such as logarithmic conversion processing, offset correction, sensitivity correction, and beam hardening correction on the detection data acquired in S50, and creates projection data (S51).
  • the created projection data is sent to the reconstruction processing unit 410b based on the control of the control unit 490.
  • the reconstruction processing unit 410b creates a plurality of tomographic image data based on the projection data created in S51.
  • the reconstruction processing unit 410b creates first volume data by performing interpolation processing on a plurality of tomographic image data (S52).
  • the rendering processing unit 410c creates an axial image AI by rendering the first volume data created in S52.
  • the display control unit 450 causes the display unit 470 to display the created axial image AI (S53).
  • the surgeon designates the position S of the lesioned part in the axial image AI and the insertion position P of the puncture needle PN with an input device or the like while referring to the axial image AI displayed on the display unit 470.
  • the first setting unit 420 sets a line segment connecting the designated positions as the insertion path I (S54, see FIG. 7B).
  • the display control unit 450 displays the set insertion path I (planned path) on the axial image AI.
  • the first setting unit 420 sends the image of the insertion path I and the coordinate value of the insertion path I to the storage unit 460.
  • the storage unit 460 stores the image and the coordinate value.
  • the apparatus 1 again performs an X-ray scan (second scan) on the subject E to create volume data (second volume data).
  • the X-ray generator 110 exposes the subject E with X-rays.
  • the X-ray detection unit 120 detects X-rays that have passed through the subject E, and acquires the detection data (S55). As described above, the imaging conditions for the first scan and the second scan are the same.
  • the pre-processing unit 410a performs pre-processing on the detection data acquired in S55 and creates projection data (S56).
  • the reconstruction processing unit 410b creates second volume data by interpolating a plurality of tomographic image data created based on the projection data created in S56 (S57).
  • the rendering processing unit 410c creates the axial image AI ′ by rendering the second volume data created in S57.
  • the axial image AI ′ shows a cross section at the same position in the body axis direction as the axial image AI displayed in S53.
  • the determination unit 430 determines whether or not there is a deviation between the distal end position h of the puncture needle PN and the insertion path I in the axial image AI ′ (S58).
  • the second setting unit 440 sets a new insertion path I ′ for the axial image AI ′ (S59).
  • the puncture proceeds as planned, and the X-ray CT apparatus 1 does not perform the processing after S59.
  • the display control unit 450 displays the axial image AI ′ on the display unit 470, and displays the new insertion path I ′ set in S59 on the axial image AI ′ (S60).
  • the processing unit 410, the first setting unit 420, the determination unit 430, the second setting unit 440, the display control unit 450, the scan control unit 480, and the control unit 490 are, for example, processes such as a CPU, GPU, or ASIC (not shown).
  • the apparatus may be configured by a storage device (not shown) such as a ROM, a RAM, or an HDD.
  • the storage device stores a processing program for executing the function of the processing unit 410.
  • the storage device also stores a setting unit processing program for executing the functions of the first setting unit 420 and the second setting unit 440. Further, the storage device stores a determination unit processing program for executing the function of the determination unit 430.
  • the storage device stores a display control program for executing the function of the display control unit 450. Further, the storage device stores a scan control program for executing the functions of the scan control unit 480. Further, the storage device stores a control program for executing the function of the control unit 490.
  • a processing device such as a CPU executes the functions of each unit by executing each program stored in the storage device.
  • the first setting unit 420 and the second setting unit 440 have been functionally described.
  • the configuration and operation of the single X-ray CT apparatus 1 have been described so far.
  • the configuration of the present embodiment can be realized as an X-ray CT system including the X-ray CT apparatus 1.
  • the insertion path I is set for an image based on previously created volume data, and the image of the insertion path I and the position of the insertion path I are stored. Then, a biopsy using CT fluoroscopy is performed with another X-ray CT apparatus.
  • the other X-ray CT apparatus reads the stored insertion path I from the X-ray CT apparatus 1 and the puncture needle PN in the image based on the new volume data (second volume data) obtained by CT fluoroscopy. It is determined whether or not there is a deviation from the insertion path I. When there is a deviation, the other X-ray CT apparatus sets a new insertion path I ′ for the image based on the second volume data. Then, the other X-ray CT apparatus displays an image based on the second volume data on the display unit, and displays a new insertion path I ′ on the image.
  • the X-ray CT apparatus 1 creates an image based on the first volume data.
  • a computer provided separately from the X-ray CT apparatus 1 sets the insertion path I for the image based on the first volume data, and stores the image of the insertion path I and the position of the insertion path I. Then, when performing CT fluoroscopy with the X-ray CT apparatus 1 (or another X-ray CT apparatus), the X-ray CT apparatus 1 reads the stored insertion path I from the computer and obtains the first obtained by CT fluoroscopy. 2) It is determined whether or not there is a deviation between the puncture needle PN and the insertion path I in the image based on the volume data.
  • the X-ray CT apparatus 1 sets a new insertion path I ′ for the image based on the second volume data. Then, the X-ray CT apparatus 1 can display an image based on the second volume data on the display unit, and can display a new insertion path I ′ on the image.
  • the X-ray CT apparatus 1 of the present embodiment creates volume data based on the result of scanning the subject E with X-rays.
  • the X-ray CT apparatus 1 includes a first setting unit 420, a determination unit 430, a second setting unit 440, and a display control unit 450.
  • the first setting unit 420 is used to set the insertion path I of the puncture needle PN for the subject E with respect to an image based on first volume data created in advance.
  • the determination unit 430 determines whether or not there is a deviation between the puncture needle PN and the insertion path I in the image based on the second volume data created based on the result of the scan performed with the puncture needle PN inserted into the subject E. to decide.
  • the second setting unit 440 is used to set a new insertion path I ′ for the image based on the second volume data.
  • the display control unit 450 displays an image based on the second volume data on the display unit 470, and displays the set new insertion path I ′ on the image based on the second volume data.
  • the configuration of this embodiment can be realized as an X-ray CT system.
  • the X-ray CT system includes an X-ray CT apparatus 1 that creates volume data based on the result of scanning the subject E with X-rays.
  • the X-ray CT system includes a first setting unit 420, a determination unit 430, a second setting unit 440, and a display control unit 450.
  • the first setting unit 420 is used to set the insertion path I of the puncture needle PN for the subject E with respect to an image based on first volume data created in advance.
  • the determination unit 430 determines whether or not there is a deviation between the puncture needle PN and the insertion path I in the image based on the second volume data created based on the result of the scan performed with the puncture needle PN inserted into the subject E. to decide.
  • the second setting unit 440 is used to set a new insertion path I ′ for the image based on the second volume data.
  • the display control unit 450 displays an image based on the second volume data on the display unit 470, and displays the set new insertion path I ′ on the image based on the second volume data.
  • the second setting unit 440 sets a new insertion path I ′.
  • the display control unit 450 displays a new insertion path I ′ on the image based on the volume data.
  • the surgeon can easily grasp how to insert the puncture needle into the site where biopsy is performed. That is, according to the X-ray CT apparatus (X-ray CT system) in the present embodiment, it is possible to display an image reflecting the deviation between the planned route and the puncture needle.
  • the display control unit 450 of the X-ray CT apparatus 1 in the present embodiment displays the insertion path I set by the first setting unit 420 on an image based on the second volume data.
  • the display control unit 450 of the X-ray CT apparatus 1 in the present embodiment causes the display unit 470 to display information indicating the deviation.
  • the surgeon can specifically grasp the deviation as information such as numerical values.
  • the display control unit 450 of the X-ray CT apparatus 1 in the present embodiment displays the insertion path I and the new insertion path I ′ in different display modes.
  • the console device 400 includes a processing unit 410, a first setting unit 420, a determination unit 430, a second setting unit 440, a display control unit 450, a storage unit 460, a display unit 470, and a scan.
  • a control unit 480, a control unit 490, and a detection unit 500 are included.
  • the detecting unit 500 detects a predetermined target part from the volume data.
  • the “predetermined target site” indicates a specific site in the subject E included in the volume data such as blood vessels.
  • the target site is a site where puncture with a puncture needle should be avoided (that is, the insertion path is preferably set so as to avoid the target site).
  • a preset site may be stored in the storage unit 46 or the like, or an arbitrary site can be set using an input device or the like each time a biopsy is performed.
  • the target part may be a region or a point that is the minimum unit of the region (for example, a voxel (pixel) having the highest CT value in the volume data).
  • the detection unit 500 compares the CT value of each pixel of the MPR image with the threshold value of the target part to be detected. Then, the detection unit 500 detects a pixel (pixel coordinate value) having a CT value equal to or higher than the threshold (or lower than the threshold) as a target part (coordinate value of the target part).
  • the threshold value is a value (for example, a CT value of a blood vessel) determined corresponding to the target site, and is a value for determining whether or not the target site is included in the pixel.
  • the threshold may have a predetermined width. When the threshold value has a width, the detection unit 500 detects a pixel having a CT value included in the threshold value as a target part.
  • the detection unit 500 can also directly detect the target part from the volume data. In this case, the detection unit 500 compares the CT value of each voxel constituting the volume data with the threshold value of the target part to be detected. Then, the detection unit 500 detects a voxel (coordinate value of the voxel) having a CT value equal to or higher than the threshold (or lower than the threshold) as a target part (coordinate value of the target part).
  • the insertion path is set avoiding the target portion detected from the first volume data.
  • FIG. 11A shows an axial image AI based on the first volume data.
  • the insertion path (see the broken line in FIG. 11A) is set with the shortest distance between the insertion position P to which the puncture needle is to be inserted and the position S of the lesioned part, the blood vessel B exists on the insertion path. (See FIG. 11A). Therefore, when puncturing is performed along the insertion path, the blood vessel B is punctured.
  • the first setting unit 420 obtains the position S of the lesioned part in the axial image AI and the contour O of the body surface by image analysis processing such as edge detection. Then, the first setting unit 420 specifies the point P ′ that is closest to the position S on the contour O (that is, the distance between the position S and the point P ′ is the shortest distance between the position S and the contour O). ). Here, the first setting unit 420 determines whether or not there is a blood vessel B on the line segment connecting the position S and the point P ′. That is, the first setting unit 420 determines whether the coordinate value of the blood vessel B detected by the detection unit 500 is included in the coordinate value of the line segment.
  • the first setting unit 420 When it is determined that there is no blood vessel B on the line segment connecting the position S and the point P ′ (when the coordinate value of the blood vessel B is not included in the coordinate value of the line segment), the first setting unit 420 The insertion path I is set along the minutes (see FIG. 11B). On the other hand, when it is determined that the blood vessel B is on the line segment connecting the position S and the point P ′ (when the coordinate value of the blood vessel B is included in the coordinate value of the line segment), the first setting unit 420 A new point is specified on O, and it is determined again whether or not there is a blood vessel B on the line segment connecting the point and the position S.
  • the insertion path I only needs to be set avoiding the blood vessel B, and does not need to be the shortest distance between the position S and the contour O. That is, it is only necessary that the coordinate value of the insertion path I and the coordinate value of the blood vessel B are different.
  • the X-ray CT apparatus 1 can issue a warning that the set insertion path I is not desirable.
  • the display control unit 450 gives a warning by displaying on the display unit 470 that “the insertion path should be changed”.
  • the control unit 490 can drive a warning means (not shown) to give a warning by voice.
  • a new insertion path is set avoiding the target portion detected from the first volume data or the second volume data.
  • 11C and 11D show an axial image AI ′ based on the second volume data.
  • 11C and 11D show an example in which the puncture needle PN has been inserted from the designated insertion position P, but the tip position h has shifted from the insertion path I during puncturing.
  • the second setting unit 440 sets a new insertion path I ′ so as to avoid the blood vessel B.
  • the second setting unit 440 specifies the shortest path connecting the tip position h of the puncture needle PN and the position S of the lesioned part, and determines whether or not there is a blood vessel B on the shortest path. If it is determined that there is no blood vessel B, the second setting unit 440 sets a new insertion path I ′ along the identified shortest path (see FIG. 11D).
  • the second setting unit 440 performs the same process as described above even when the puncture needle PN is punctured in a state of being largely deviated from the designated insertion position P.
  • a new insertion path I ′ can be set.
  • 12A and 12B show an axial image AI ′ based on the second volume data.
  • the detection unit 500 may detect the target part each time an X-ray scan is performed. For example, there is a possibility that the position of the target region or the like is changed between the timing at which the first volume data is acquired and the timing at which the second volume data is acquired due to the influence of respiration and heart beat.
  • the detection unit 500 detects a predetermined target portion again. Then, the second setting unit 440 specifies a line segment that connects the tip position h of the puncture needle PN and the position S of the lesioned part avoiding the target site detected by the second volume data, and along the line segment A new insertion path I ′ is set. In this way, the second setting unit 440 sets a new insertion path I ′ while avoiding the target part detected from the image based on the second volume data. Therefore, the X-ray CT apparatus 1 can set a new insertion path I ′ in a state where the influence of a change in the position of the blood vessel B is reduced.
  • the X-ray CT apparatus 1 Before starting the biopsy, the X-ray CT apparatus 1 first performs X-ray scan (first scan) on the subject E to create volume data (first volume data).
  • the X-ray generation unit 110 exposes the subject E with X-rays.
  • the X-ray detection unit 120 detects X-rays that have passed through the subject E and acquires the detection data (S70).
  • the preprocessing unit 410a performs preprocessing such as logarithmic conversion processing, offset correction, sensitivity correction, and beam hardening correction on the detection data acquired in S70, and creates projection data (S71).
  • the reconstruction processing unit 410b creates a plurality of tomographic image data based on the projection data created in S71. Further, the reconstruction processing unit 410b creates first volume data by interpolating a plurality of tomographic image data (S72).
  • the rendering processing unit 410c creates an axial image AI by rendering the first volume data created in S72.
  • the display control unit 450 causes the display unit 470 to display the created axial image AI (S73).
  • the detection unit 500 detects the blood vessel B in the axial image AI by comparing the CT value of each pixel of the axial image AI with the threshold value of the blood vessel B (S74).
  • the first setting unit 420 obtains the position S of the lesioned part in the axial image AI and the contour O of the body surface by edge detection or the like. Then, the first setting unit 420 specifies the point P ′ that is closest to the position S on the contour O. The first setting unit 420 determines whether or not there is a blood vessel B on the line segment connecting the position S and the point P ′. When determining that there is no blood vessel B on the line segment connecting the position S and the point P ′, the first setting unit 420 sets the insertion path I along the line segment. That is, the first setting unit 420 sets the insertion path I while avoiding the blood vessel B detected in S74 (S75). The display control unit 450 displays the set insertion path I on the axial image AI. The first setting unit 420 sends the image of the insertion path I and the coordinate value of the insertion path I to the storage unit 460. The storage unit 460 stores the image and coordinate values.
  • the apparatus 1 again performs an X-ray scan (second scan) on the subject E to create volume data (second volume data).
  • the X-ray generator 110 exposes the subject E with X-rays.
  • the X-ray detection unit 120 detects X-rays that have passed through the subject E and acquires the detection data (S76). As described above, the imaging conditions for the first scan and the second scan are the same.
  • the pre-processing unit 410a performs pre-processing on the detection data acquired in S76 and creates projection data (S77).
  • the reconstruction processing unit 410b creates second volume data by interpolating a plurality of tomographic image data created based on the projection data created in S77 (S78).
  • the rendering processing unit 410c creates the axial image AI ′ by rendering the second volume data created in S78.
  • This axial image AI ′ shows a cross-section at the same position in the body axis direction as the axial image AI displayed in S73.
  • the determination unit 430 determines whether or not there is a deviation between the distal end position h of the puncture needle PN and the insertion path I in the axial image AI ′ (S79).
  • the second setting unit 440 sets a new insertion path I ′ while avoiding the blood vessel B detected in S74 for the axial image AI ′ (S80).
  • the puncture proceeds as planned, and therefore the X-ray CT apparatus 1 does not perform the processes after S80.
  • the display control unit 450 displays the axial image AI ′ on the display unit 470 and displays the new insertion path I ′ set in S80 on the axial image AI ′ (S81).
  • the X-ray CT apparatus 1 of the present embodiment includes a detection unit 500.
  • the detection unit 500 detects a predetermined target part (for example, a blood vessel) from the volume data.
  • the first setting unit 420 sets the insertion path I while avoiding the target part detected from the first volume data.
  • the second setting unit 440 sets a new insertion path I ′ while avoiding the target portion detected from the first volume data or the second volume data.
  • the first setting unit 420 sets the insertion path I while avoiding the blood vessel or the like (target site where puncture should be avoided) detected by the detection unit 500.
  • the second setting unit 440 sets a new insertion path I ′ while avoiding blood vessels and the like. That is, according to the X-ray CT apparatus (X-ray CT system) in the present embodiment, it is possible to display an image reflecting the deviation between the planned route and the puncture needle. Further, the image is an image set avoiding blood vessels and the like. By performing puncturing with reference to this image, the operator is less likely to puncture blood vessels or the like. That is, according to the X-ray CT apparatus (X-ray system) in the present embodiment, it is possible to provide an image serving as a reference when performing puncture while avoiding blood vessels and the like.
  • the second setting unit is updated when there is a deviation between the puncture needle and the insertion path.
  • the display control unit displays a new insertion path on the image based on the volume data. That is, according to the X-ray CT apparatus in the present embodiment, it is possible to display an image reflecting the deviation between the planned route and the puncture needle.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

 予め設定された画像を現時点で得られた画像上で容易に認識することが可能な技術を提供する。X線CT装置は、異なるタイミングで被検体をX線でスキャンした結果に基づき、第1ボリュームデータ及び第2ボリュームデータを作成する。X線CT装置は、設定部と、記憶部と、表示制御部とを有する。設定部は、第1ボリュームデータに基づく画像に対して所定の設定画像を設定する。記憶部は、設定画像及び設定画像の設定位置を記憶する。表示制御部は、第2ボリュームデータに基づく画像を表示部に表示させ、且つ第2ボリュームデータに基づく画像における設定位置に対応する位置に設定画像を表示させる。

Description

X線CT装置、X線CTシステム
 本発明の実施形態は、X線CT装置及びX線CTシステムに関する。
 X線CT(Computed Tomography)装置は、X線を利用して被検体をスキャンし、収集されたデータをコンピュータにより処理することで、被検体の内部を画像化する装置である。
 具体的には、X線CT装置は、被検体を中心とする円軌道に沿って、当該被検体に対しX線を異なる方向から複数回曝射する。X線CT装置は、被検体を透過したX線をX線検出器にて検出して複数の検出データを収集する。収集された検出データはデータ収集部によりA/D変換された後、コンソール装置に送信される。コンソール装置は、当該検出データに前処理等を施し投影データを作成する。そして、コンソール装置は、投影データに基づく再構成処理を行い、断層画像データ、或いは複数の断層画像データに基づくボリュームデータを作成する。ボリュームデータは、被検体の三次元領域に対応するCT値の三次元分布を表すデータセットである。
 X線CT装置は、上記ボリュームデータを任意の方向にレンダリングすることによりMPR(Multi Planar Reconstruction)表示を行うことができる。以下、ボリュームデータをレンダリングすることによりMPR表示された断面画像を「MPR画像」という場合がある。MPR画像には、たとえば、体軸に対する直交断面を示すアキシャル像、体軸に沿って被検体を縦切りした断面を示すサジタル像、及び体軸に沿って被検体を横切りした断面を示すコロナル像がある。更には、ボリュームデータにおける任意断面の画像(オブリーク像)もMPR画像に含まれる。作成された複数のMPR画像は、表示部等に同時に表示することができる。
 X線CT装置を用いて行うCT透視(CTF:Computed Tomography Fluoroscopy)という撮影方法がある。CT透視とは、被検体にX線を連続的に照射することにより、被検体の関心部位に関する画像をリアルタイムに得る撮影方法である。CT透視では、検出データの収集レートを短くし、再構成処理に要する時間を短縮することで、画像をリアルタイムに作成している。CT透視は、たとえば、生検中に穿刺針の先端と検体を採取する部位との位置関係を確認する場合や、ドレナージ法を行うときのチューブの位置確認等に用いられる。なお、ドレナージ法とは、体腔内に貯まった体液をチューブ等により廃出する方法である。
 CT透視で得られたボリュームデータに基づくMPR画像を参照しながら被検体に対して生検を行う場合、たとえば、スキャンと穿刺とを交互に行うことがある。具体的には、まず、CT透視により被検体のMPR画像を取得する。医師等は、MPR画像を参照しながら穿刺を行う。この際、たとえば、穿刺針の先端と検体を採取する部位との位置関係を確認するため、ある程度、穿刺を行った段階で再度のCT透視を行う。再度のCT透視で得られたMPR画像を参照しながら、医師等は更に穿刺を進める。この動作を生検が完了するまで繰り返し行うことで、確実に生検を行うことが可能となる。
 また、CT透視により生検を行う場合、予め穿刺計画を作成する場合がある。穿刺計画は、予め設定された被検体に対する穿刺針の挿入経路(以下、「計画経路」という場合がある)を含む情報である。穿刺計画は、たとえば、CT透視を行う前に予め取得されたCT画像において、マウス等の指示入力により計画経路を描くことにより設定される。医師等は、計画経路が示されたCT画像と、X線スキャンにより都度得られるボリュームデータに基づくMPR画像とを参照しながら被検体に対して穿刺を行う。
特開2002-112998号公報
 ところで、予め取得されたCT画像において設定された画像(たとえば、計画経路)は、X線スキャンにより都度得られるボリュームデータに基づく画像には表示されない。
 実施形態は、前述の問題点を解決するためになされたものであり、予め設定された画像を現時点で得られた画像上で容易に認識することが可能な技術を提供することを目的とする。
 実施形態のX線CT装置は、異なるタイミングで被検体をX線でスキャンした結果に基づき、第1ボリュームデータ及び第2ボリュームデータを作成する。X線CT装置は、設定部と、記憶部と、表示制御部とを有する。設定部は、第1ボリュームデータに基づく画像に対して所定の設定画像を設定する。記憶部は、設定画像及び設定画像の設定位置を記憶する。表示制御部は、第2ボリュームデータに基づく画像を表示部に表示させ、且つ第2ボリュームデータに基づく画像における設定位置に対応する位置に設定画像を表示させる。
 また、実施形態のX線CTシステムは、被検体をX線でスキャンした結果に基づき、ボリュームデータを作成するX線CT装置を含む。X線CTシステムは、設定部と、記憶部と、表示制御部とを有する。設定部は、予め作成された第1ボリュームデータに基づく画像に対して所定の設定画像を設定する。記憶部は、設定画像及び設定画像の設定位置を記憶する。表示制御部は、新たに作成された第2ボリュームデータに基づく画像を表示部に表示させ、且つ第2ボリュームデータに基づく画像における設定位置に対応する位置に設定画像を表示させる。
第1実施形態に係るX線CT装置のブロック図である。 第1実施形態に係る設定部の説明を補足する図である。 第1実施形態に係る設定部の説明を補足する図である。 第1実施形態に係るX線CT装置の動作の概要を示すフローチャートである。 第2実施形態に係る設定部の説明を補足する図である。 第2実施形態に係る設定部の説明を補足する図である。 第2実施形態に係るX線CT装置の動作の概要を示すフローチャートである。 第3実施形態に係るX線CT装置のブロック図である。 第3実施形態に係る第1設定部の説明を補足する図である。 第3実施形態に係る第1設定部の説明を補足する図である。 第3実施形態に係る第2設定部の説明を補足する図である。 第3実施形態に係る第2設定部の説明を補足する図である。 第3実施形態に係る第2設定部の説明を補足する図である。 第3実施形態に係る第2設定部の説明を補足する図である。 第3実施形態に係るX線CT装置の動作の概要を示すフローチャートである。 第4実施形態に係るX線CT装置のブロック図である。 第4実施形態に係る第1設定部の説明を補足する図である。 第4実施形態に係る第1設定部の説明を補足する図である。 第4実施形態に係る第2設定部の説明を補足する図である。 第4実施形態に係る第2設定部の説明を補足する図である。 第4実施形態に係る第2設定部の説明を補足する図である。 第4実施形態に係る第2設定部の説明を補足する図である。 第4実施形態に係るX線CT装置の動作の概要を示すフローチャートである。
(第1実施形態)
 図1から図3を参照して、第1実施形態に係るX線CT装置1の構成について説明する。なお、「画像」と「画像データ」は一対一に対応するので、本実施形態においては、これらを同一視する場合がある。
<装置構成>
 図1に示すように、X線CT装置1は、架台装置10と、寝台装置30と、コンソール装置40とを含んで構成されている。
[架台装置]
 架台装置10は、被検体Eに対してX線を曝射し、被検体Eを透過した当該X線の検出データを収集する装置である。架台装置10は、X線発生部11と、X線検出部12と、回転体13と、高電圧発生部14と、架台駆動部15と、X線絞り部16と、絞り駆動部17と、データ収集部18とを有する。
 X線発生部11は、X線を発生させるX線管球(たとえば、円錐状や角錐状のX線ビームを発生する真空管。図示なし)を含んで構成されている。X線発生部11は、発生したX線を被検体Eに対して曝射する。
 X線検出部12は、複数のX線検出素子(図示なし)を含んで構成されている。X線検出部12は、被検体Eを透過したX線を検出する。具体的には、X線検出部12は、被検体Eを透過したX線の強度分布を示すX線強度分布データ(以下、「検出データ」という場合がある)をX線検出素子で検出し、その検出データを電流信号として出力する。X線検出部12は、たとえば、検出素子が互いに直交する2方向(スライス方向とチャンネル方向)にそれぞれ複数配置された2次元のX線検出器(面検出器)が用いられる。複数のX線検出素子は、たとえば、スライス方向に沿って320列設けられている。このように多列のX線検出器を用いることにより、1回転のスキャンでスライス方向に幅を有する3次元の撮影領域を撮影することができる(ボリュームスキャン)。なお、スライス方向は被検体Eの体軸方向に相当し、チャンネル方向はX線発生部11の回転方向に相当する。
 回転体13は、X線発生部11とX線検出部12とを被検体Eを挟んで対向するよう支持する部材である。回転体13は、スライス方向に貫通した開口部13aを有する。架台装置10内において、回転体13は、被検体Eを中心とした円軌道で回転するよう配置されている。すなわち、X線発生部11及びX線検出部12は、被検体Eを中心とする円軌道に沿って回転可能に設けられている。
 高電圧発生部14は、X線発生部11に対して高電圧を印加する(以下、「電圧」とは、X線管球におけるアノード-カソード間の電圧を意味する)。X線発生部11は、当該高電圧に基づいてX線を発生させる。
 架台駆動部15は、回転体13を回転駆動させる。X線絞り部16は、所定幅のスリット(開口)を有し、スリットの幅を変えることで、X線発生部11から曝射されたX線のファン角(チャンネル方向の広がり角)とX線のコーン角(スライス方向の広がり角)とを調整する。絞り駆動部17は、X線発生部11で発生したX線が所定の形状となるようX線絞り部16を駆動させる。
 データ収集部18(DAS:Data Acquisition System)は、X線検出部12(各X線検出素子)からの検出データを収集する。また、データ収集部18は、収集した検出データ(電流信号)を電圧信号に変換し、この電圧信号を周期的に積分して増幅し、デジタル信号に変換する。そして、データ収集部18は、デジタル信号に変換された検出データをコンソール装置40に送信する。なお、CT透視を行う場合、データ収集部18は、検出データの収集レートを短くする。
[寝台装置]
 寝台装置30は、撮影対象の被検体Eを載置・移動させる装置である。寝台装置30は、寝台31と寝台駆動部32とを備えている。寝台31は、被検体Eを載置するための寝台天板33と、寝台天板33を支持する基台34とを備えている。寝台天板33は、寝台駆動部32によって被検体Eの体軸方向及び体軸方向に直交する方向に移動することが可能となっている。すなわち、寝台駆動部32は、被検体Eが載置された寝台天板33を、回転体13の開口部13aに対して挿抜させることができる。基台34は、寝台駆動部32によって寝台天板33を上下方向(被検体Eの体軸方向と直交する方向)に移動させることが可能となっている。
[コンソール装置]
 コンソール装置40は、X線CT装置1に対する操作入力に用いられる。また、コンソール装置40は、架台装置10によって収集された検出データから被検体Eの内部形態を表すCT画像データ(断層画像データやボリュームデータ)を再構成する機能等を有している。コンソール装置40は、処理部41と、設定部42と、記憶部43と、表示制御部44と、表示部45と、スキャン制御部46と、制御部47とを含んで構成されている。
 処理部41は、架台装置10(データ収集部18)から送信された検出データに対して各種処理を実行する。処理部41は、前処理部41aと、再構成処理部41bと、レンダリング処理部41cとを含んで構成されている。
 前処理部41aは、架台装置10(X線検出部12)で検出された検出データに対して対数変換処理、オフセット補正、感度補正、ビームハードニング補正等の前処理を行い、投影データを作成する。
 再構成処理部41bは、前処理部41aで作成された投影データに基づいて、CT画像データ(断層画像データやボリュームデータ)を作成する。断層画像データの再構成には、たとえば、2次元フーリエ変換法、コンボリューション・バックプロジェクション法等、任意の方法を採用することができる。ボリュームデータは、再構成された複数の断層画像データを補間処理することにより作成される。ボリュームデータの再構成には、たとえば、コーンビーム再構成法、マルチスライス再構成法、拡大再構成法等、任意の方法を採用することができる。上述のように多列のX線検出器を用いたボリュームスキャンにより、広範囲のボリュームデータを再構成することができる。また、CT透視を行う場合には、検出データの収集レートを短くしているため、再構成処理部41bによる再構成時間が短縮される。従って、スキャンに対応したリアルタイムのCT画像データを作成することができる。
 レンダリング処理部41cは、再構成処理部41bで作成されたボリュームデータに対するレンダリング処理を行う。レンダリング処理部41cは、第1画像処理部411cと、第2画像処理部412cとを含む。
 第1画像処理部411cは、ボリュームデータに基づいて、疑似三次元画像(画像データ)を作成する。「疑似三次元画像」とは、被検体Eの三次元的な構造を二次元的に表示させるための画像である。具体例として、第1画像処理部411cは、再構成処理部41bで作成されたボリュームデータに対してボリュームレンダリング処理を施すことにより、表示用の画像(画像データ)である疑似三次元画像を作成する。
 第2画像処理部412cは、ボリュームデータに基づいて、MPR画像(画像データ)を作成する。「MPR画像」とは、被検体Eの所望の断面を示す画像である。MPR画像としては、直交三断面であるアキシャル像、サジタル像、コロナル像がある。或いは、第2画像処理部412cは、任意断面を示すオブリーク像をMPR画像として作成してもよい。具体例として、第2画像処理部412cは、再構成処理部41bで作成されたボリュームデータに対して所望の方向にレンダリング処理を施すことにより、MPR画像を作成する。
 設定部42は、ボリュームデータに基づく画像に対して所定の設定画像を設定する。「設定画像」は、ボリュームデータに基づく画像上で描かれる所望の画像である。たとえば、被検体Eに対して生検を行う場合、穿刺針の挿入経路の計画(どのようなルートで穿刺針を挿入していくか。すなわち、計画経路)を予め画像上で描くことがある。その描かれた画像(計画経路の画像)が、設定画像の一例である。或いは、画像中の注目部位(病変部等)の位置を円や楕円で囲ったマーキング画像を設定画像とすることもできる。表示制御部44は、設定された設定画像をボリュームデータに基づく画像上に表示させる。設定画像が表示されたボリュームデータに基づく画像は、被検体Eに対して穿刺等を行う場合の参照画像として用いることができる。
 設定部42の具体例として、あるタイミングで行われたスキャン(第1スキャン)により得られたボリュームデータ(第1ボリュームデータ)に基づく疑似三次元画像に対して計画経路を示す画像(設定画像)を設定する場合について述べる。図2A及び図2Bに示す立方体は、ボリュームデータに基づく疑似三次元画像Dを模式的に示したものである。ここでは、立方体の各面が被検体Eの体表面を示しているものとする。表示制御部44は、疑似三次元画像Dを表示部45に表示させる。
 術者は、表示部45に表示された疑似三次元画像Dに対し、X線CT装置1等に設けられた入力デバイス等を用いて生検を行う対象部位(病変部等)の位置S、及び体表面における穿刺針の挿入位置Pの2点を指定する(図2A参照)。設定部42は、その2点を結ぶ最短距離Lを算出し、その最短距離Lを結ぶ線分を設定画像Iとして設定する。表示制御部44は、設定された設定画像Iを疑似三次元画像上に表示させる(図2B参照)。また、設定部42は、ボリュームデータにおける設定画像Iの位置(座標値。以下、「設定位置」という場合がある)を求める。設定画像I及び設定位置は、記憶部43に記憶される。
 なお、術者は、入力デバイス等を用いて疑似三次元画像上に計画経路を示す線分等を直接描くことも可能である。この場合、設定部42は、当該描かれた線分を設定画像Iとして設定する。或いは、設定部42は、ボリュームデータに対してリージョングローイング法等の画像解析処理を施すことにより、病変部の位置と病変部から最も近い体表面の位置を算出する。そして、設定部42は、それらを結ぶ線分を算出し、当該線分を設定画像Iとして設定することも可能である。
 記憶部43は、RAMやROM等の半導体記憶装置によって構成される。記憶部43は、設定画像及び設定画像の設定位置の他、検出データや投影データ、或いは再構成処理後のCT画像データ等を記憶する。
 表示制御部44は、画像表示に関する各種制御を行う。たとえば、第1画像処理部411cにより作成された疑似三次元画像や、第2画像処理部412cにより作成されたMPR画像(アキシャル像、サジタル像、コロナル像、オブリーク像)等を表示部45に表示させる制御を行う。
 また、本実施形態において、表示制御部44は、表示部45に表示されたボリュームデータに基づく画像における設定位置に対応する位置に設定画像を表示させる。
 表示制御部44の具体例として、第1スキャンとは異なるタイミングで行われたスキャン(第2スキャン)により得られたボリュームデータ(第2ボリュームデータ)に基づく疑似三次元画像を表示部45に表示させる場合について述べる。なお、本実施形態において、第1ボリュームデータと第2ボリュームデータは、その元となる断層画像データの枚数や画像のピクセル数は等しいものとする。また、第1スキャンと第2スキャンの撮影条件(撮影位置、回転体13のローテーションスピード等)も等しいものとする。つまり、第1ボリュームデータと第2ボリュームデータは、同じ座標体系にあるものとする。
 この場合、表示制御部44は、記憶部43に記憶された設定位置に対応する位置に設定画像と同じ画像を表示させる。設定画像の表示態様として、表示制御部44は、第2ボリュームデータに基づく疑似三次元画像中の画素(画素値)を設定画像の画素(画素値)で置き換えることができる。或いは、表示制御部44は、第2ボリュームデータに基づく疑似三次元画像に対して設定画像を重畳させることも可能である。なお、設定画像が表示された第2ボリュームデータに基づく画像を新たな参照画像として用いることも可能である。
 表示部45は、LCD(Liquid Crystal Display)やCRT(Cathode Ray Tube)ディスプレイ等の任意の表示デバイスによって構成される。たとえば、表示部45には、ボリュームデータをレンダリング処理して得られるMPR画像が表示される。
 スキャン制御部46は、X線スキャンに関する各種動作を制御する。たとえば、スキャン制御部46は、X線発生部11に対して高電圧を印加させるよう高電圧発生部14を制御する。スキャン制御部46は、回転体13を回転駆動させるよう架台駆動部15を制御する。スキャン制御部46は、X線絞り部16を動作させるよう絞り駆動部17を制御する。スキャン制御部46は、寝台31を移動させるよう寝台駆動部32を制御する。
 制御部47は、架台装置10、寝台装置30およびコンソール装置40の動作を制御することによって、X線CT装置1の全体制御を行う。たとえば、制御部47は、スキャン制御部46を制御することで、架台装置10に対して予備スキャン及びメインスキャンを実行させ、検出データを収集させる。また、制御部47は、処理部41を制御することで、検出データに対する各種処理(前処理、再構成処理等)を行わせる。或いは、制御部47は、表示制御部44を制御することで、記憶部43に記憶されたCT画像データ等に基づく画像を表示部45に表示させる。
<動作>
 次に、図3を参照して、本実施形態に係るX線CT装置1の動作について説明する。ここでは、穿刺針の計画経路を作成した後、CT透視を用いて生検を行う場合の動作について述べる。
 生検を開始する前に、まずX線CT装置1は、被検体Eに対してX線スキャン(第1スキャン)を行い、ボリュームデータ(第1ボリュームデータ)を作成する。
 具体的には、X線発生部11は、被検体Eに対してX線を曝射する。X線検出部12は、被検体Eを透過したX線を検出し、その検出データを取得する(S10)。X線検出部12で検出された検出データは、データ収集部18で収集され、処理部41(前処理部41a)に送られる。
 前処理部41aは、S10で取得された検出データに対して、対数変換処理、オフセット補正、感度補正、ビームハードニング補正等の前処理を行い、投影データを作成する(S11)。作成された投影データは、制御部47の制御に基づき、再構成処理部41bに送られる。
 再構成処理部41bは、S11で作成された投影データに基づいて、複数の断層画像データを作成する。また、再構成処理部41bは、複数の断層画像データを補間処理することにより第1ボリュームデータを作成する(S12)。
 第1画像処理部411cは、S12で作成された第1ボリュームデータをレンダリング処理することにより疑似三次元画像を作成する。表示制御部44は、作成された疑似三次元画像を表示部45に表示させる(S13)。
 表示部45に表示された疑似三次元画像を参照しながら、術者は穿刺針の挿入経路の計画(計画経路)を立てる。術者は、入力デバイス等によって疑似三次元画像における病変部の位置、及び穿刺針の挿入位置を指定する。設定部42は、指定された位置を結ぶ線分を設定画像として設定する(S14)。表示制御部44は、設定された設定画像を疑似三次元画像上に表示させる。設定部42は、設定画像及び設定画像の座標値(設定位置)を記憶部43に送る。記憶部43は、設定画像及び当該座標値(設定位置)を記憶する(S15)。
 その後、設定画像が示された疑似三次元画像を参照しながら、術者は被検体Eに対して生検を開始する。
 ある程度、生検を進めた後(被検体Eに対して穿刺針を挿入した後)、穿刺の状態(穿刺針が計画経路に沿って進んでいるか等)を確認するため、X線CT装置1は、再度、被検体Eに対してX線スキャン(第2スキャン)を行い、ボリュームデータ(第2ボリュームデータ)を作成する。
 すなわち、第1スキャンと同様、X線発生部11は、被検体Eに対してX線を曝射する。X線検出部12は、被検体Eを透過したX線を検出し、その検出データを取得する(S16)。なお、上述の通り、第1スキャンと第2スキャンの撮影条件等は等しいものとする。
 前処理部41aは、S16で取得された検出データに対して、前処理を行い、投影データを作成する(S17)。再構成処理部41bは、S17で作成された投影データに基づいて作成された複数の断層画像データを補間処理することにより、第2ボリュームデータを作成する(S18)。第1画像処理部411cは、S18で作成された第2ボリュームデータをレンダリングすることにより疑似三次元画像を作成する(S19)。
 表示制御部44は、S19で作成された疑似三次元画像を表示部45に表示させ、且つ第2ボリュームデータに基づく疑似三次元画像におけるS15で記憶された設定位置に対応する位置にS14で設定された設定画像と同じ画像を表示させる(S20)。
 このように、第2ボリュームデータに基づく画像に対し、生検の開始前に予め描かれた設定画像(計画経路を示す画像)を表示させることで、設定画像を設定したボリュームデータ(第1ボリュームデータ)と異なるボリュームデータ(第2ボリュームデータ)に基づく画像においても設定画像を容易に把握することができる。また、生検を進めた結果、計画経路から穿刺針がずれた場合には、ボリュームデータに基づく画像に表示される穿刺針の位置と当該画像に表示される設定画像とがずれた状態で表示される。逆に、計画経路に沿って穿刺針が挿入されている場合には、ボリュームデータに基づく画像に表示される穿刺針の位置と当該画像に表示される設定画像とが重なった状態で表示される。すなわち、設定画像が表示された画像を参照することにより、術者は、穿刺針のずれ(計画経路からのずれ)を容易に把握することができる。
 なお、処理部41、設定部42、表示制御部44、スキャン制御部46及び制御部47は、たとえば、CPU(Central Processing Unit)、GPU(Graphic Processing Unit)、又はASIC(Application Specific Integrated Circuit)などの図示しない処理装置と、ROM(Read Only Memory)、RAM(Random Access Memory)や、又はHDD(Hard Disc Drive)などの図示しない記憶装置とによって構成されていてもよい。記憶装置には、処理部41の機能を実行するための処理プログラムが記憶されている。また、記憶装置には、設定部42の機能を実行するための設定部処理用プログラムが記憶されている。また、記憶装置には、表示制御部44の機能を実行するための表示制御プログラムが記憶されている。また、記憶装置には、スキャン制御部46の機能を実行するためのスキャン制御プログラムが記憶されている。また、記憶装置には、制御部47の機能を実行するための制御プログラムが記憶されている。CPUなどの処理装置が、記憶装置に記憶されている各プログラムを実行することで各部の機能を実行する。
 また、これまでは単独のX線CT装置1における構成・動作について述べた。一方、本実施形態の構成を、X線CT装置1を含むX線CTシステムとして実現することも可能である。
 たとえば、X線CT装置1において、予め作成されたボリュームデータに基づく画像に対して設定画像の設定を行い、且つ設定画像及び設定画像の設定位置の記憶を行う。そして、CT透視を用いた生検を他のX線CT装置で行う。この場合、他のX線CT装置は、CT透視で得られた第2ボリュームデータに基づく画像を表示部に表示させる。更に、他のX線CT装置は、記憶された設定画像及び設定画像の設定位置をX線CT装置1から読み出し、第2ボリュームデータに基づく画像における当該設定画像の設定位置に対応する位置に設定画像を表示させる。
 或いは、X線CT装置1では、第1ボリュームデータに基づく画像の作成を行う。X線CT装置1とは別に設けられたコンピュータは、第1ボリュームデータに基づく画像に対して設定画像を設定し、設定画像及び設定画像の設定位置を記憶する。そして、X線CT装置1(或いは、他のX線CT装置)でCT透視を行う場合に、X線CT装置1は、CT透視で得られた第2ボリュームデータに基づく画像を表示部に表示させる。更に、X線CT装置1は、記憶された設定画像及び設定画像の設定位置をコンピュータから読み出し、第2ボリュームデータに基づく画像における当該設定画像の設定位置に対応する位置に設定画像を表示させることも可能である。
<作用・効果>
 本実施形態の作用及び効果について説明する。
 本実施形態のX線CT装置1は、異なるタイミングで被検体をX線でスキャンした結果に基づき、第1ボリュームデータ及び第2ボリュームデータを作成する。X線CT装置1は、設定部42と、記憶部43と、表示制御部44とを含む。設定部42は、第1ボリュームデータに基づく画像に対して所定の設定画像を設定する。記憶部43は、設定画像及び設定画像の設定位置を記憶する。表示制御部44は、第2ボリュームデータに基づく画像を表示部45に表示させ、且つ第2ボリュームデータに基づく画像における設定位置に対応する位置に設定画像を表示させる。
 具体的には、X線CT装置1は、第1画像処理部411cを有する。第1画像処理部411cは、ボリュームデータに基づいて、被検体Eの三次元的な構造を二次元的に示した疑似三次元画像を作成する。設定部42は、第1ボリュームデータに基づく疑似三次元画像に対して設定画像を設定する。表示制御部44は、第2ボリュームデータに基づく疑似三次元画像を表示部45に表示させ、且つ第2ボリュームデータに基づく疑似三次元画像における設定位置に対応する位置に設定画像を表示させる。
 また、本実施形態の構成をX線CTシステムとして実現することも可能である。X線CTシステムは、少なくとも一つのX線CT装置と、設定部42と、記憶部43と、表示制御部44とを含んでいる。X線CT装置は、被検体EをX線でスキャンした結果に基づき、ボリュームデータを作成する。設定部42は、予め作成された第1ボリュームデータに基づく画像に対して所定の設定画像を設定する。記憶部43は、設定画像及び設定画像の設定位置を記憶する。表示制御部44は、新たに作成された第2ボリュームデータに基づく画像を表示部45に表示させ、且つ第2ボリュームデータに基づく画像における設定位置に対応する位置に設定画像を表示させる。
 このように、表示制御部44は、第1ボリュームデータに基づく疑似三次元画像に対して設定した設定画像を、第2ボリュームデータに基づく疑似三次元画像における設定位置に対応する位置に表示させることができる。たとえば、CT透視を用いた生検において、表示制御部44は、予め設定した計画経路を示す画像を、X線スキャンにより都度得られるボリュームデータ(第2ボリュームデータ)に基づく疑似三次元画像においても同じ位置で表示することができる。よって、この疑似三次元画像を参照することで、術者は計画経路を現在の画像において確認することができる、更に、第2ボリュームデータに基づく画像に穿刺針が表示されている場合、穿刺針と計画経路とのずれが分かるので、穿刺針が計画経路に沿って進んでいるかを容易に把握することができる。すなわち、本実施形態によれば、予め設定された画像(設定画像)を現時点で得られた画像上で容易に認識することが可能となる。
(第2実施形態)
 図4Aから図5を参照して、第2実施形態に係るX線CT装置1の構成について説明する。本実施形態では、設定部42が、第1ボリュームデータに基づくMPR画像に対して設定画像を設定する。そして、表示制御部44が、第2ボリュームデータに基づくMPR画像に当該設定画像を表示させる構成について述べる。第1実施形態と同様の構成については詳細な説明を省略する。なお、以下では、MPR画像の例としてアキシャル像を用いて説明を行うが、本実施形態の構成はサジタル像やコロナル像であっても同様に適用することが可能である。
 本実施形態における設定部42は、ボリュームデータに基づくMPR画像に対して所定の設定画像を設定する。MPR画像は、第2画像処理部412cにより作成される。
 設定部42の具体例として、あるタイミングで行われたスキャン(第1スキャン)により得られたボリュームデータ(第1ボリュームデータ)に基づくアキシャル像に対して穿刺針の計画経路を示す画像(設定画像)を設定する場合について述べる。図4A及び図4Bは、ボリュームデータに基づくアキシャル像AIを示している。表示制御部44は、アキシャル像AIを表示部45に表示させる。
 術者は、表示部45に表示されたアキシャル像AIに対し、入力デバイス等を用いて生検を行う対象部位(病変部等)の位置S、及び体表面における穿刺針の挿入位置Pの2点を指定する(図4A参照)。設定部42は、その2点を結ぶ最短距離Lを算出し、その最短距離Lを結ぶ線分を設定画像Iとして設定する。表示制御部44は、設定された設定画像Iをアキシャル像AI上に表示させる(図4B参照)。また、設定部42は、アキシャル像AIにおける設定位置(座標値)を求める。設定画像I及び設定位置は、記憶部43に記憶される。なお、アキシャル像AIは三次元のボリュームデータに基づく画像である。従って、アキシャル像AIにおいて設定された設定画像の位置は、三次元の座標値で特定することができる。
 本実施形態において、表示制御部44は、表示部45に表示されたボリュームデータに基づくMPR画像における設定位置に対応する位置に設定画像を表示させる。
 表示制御部44の具体例として、第1スキャンとは異なるタイミングで行われたスキャン(第2スキャン)により得られたボリュームデータ(第2ボリュームデータ)に基づくアキシャル像を表示部45に表示させる場合について述べる。なお、第1ボリュームデータに基づくアキシャル像と第2ボリュームデータに基づくアキシャル像とは、体軸方向において同じ位置の断面を示すものとする。
 この場合、表示制御部44は、記憶部43に記憶された設定位置に対応するアキシャル像中の位置に設定画像と同じ画像を表示させる。
 或いは、表示制御部44の処理として、第1実施形態と同様、第2ボリュームデータに基づく疑似三次元画像における設定位置に対応する位置に設定画像と同じ画像を表示することでもよい。上述の通り、第1ボリュームデータに基づくMPR画像(アキシャル像)に対して設定された設定位置は、三次元の座標値を有している。従って、第2ボリュームデータに基づく画像が疑似三次元画像であっても、設定位置に対応する位置を特定することができる。
<動作>
 次に、図5を参照して、本実施形態に係るX線CT装置1の動作について説明する。ここでは、アキシャル像において穿刺針の計画経路を作成した後、CT透視を用いて生検を行う場合の動作について述べる。
 生検を開始する前に、まずX線CT装置1は、被検体Eに対してX線スキャン(第1スキャン)を行い、ボリュームデータ(第1ボリュームデータ)を作成する。
 具体的には、X線発生部11は、被検体Eに対してX線を曝射する。X線検出部12は、被検体Eを透過したX線を検出し、その検出データを取得する(S30)。前処理部41aは、S30で取得された検出データに対して、対数変換処理、オフセット補正、感度補正、ビームハードニング補正等の前処理を行い、投影データを作成する(S31)。再構成処理部41bは、S31で作成された投影データに基づいて、複数の断層画像データを作成する。また、再構成処理部41bは、複数の断層画像データを補間処理することにより第1ボリュームデータを作成する(S32)。
 第2画像処理部412cは、S32で作成された第1ボリュームデータをレンダリングすることによりアキシャル像を作成する。表示制御部44は、作成されたアキシャル像を表示部45に表示させる(S33)。
 表示部45に表示されたアキシャル像を参照しながら、術者は穿刺針の挿入経路の計画(計画経路)を立てる。術者は、入力デバイス等によってアキシャル像における病変部の位置、及び穿刺針の挿入位置を指定する。設定部42は、指定された位置を結ぶ線分を設定画像として設定する(S34)。表示制御部44は、設定された設定画像をアキシャル像上に表示させる。設定部42は、設定画像の座標値(設定位置)を記憶部43に送る。記憶部43は、設定画像及び設定画像の座標値(設定位置)を記憶する(S35)。
 その後、設定画像が示されたアキシャル像を参照しながら、術者は被検体Eに対して穿刺を進める。
 ある程度、生検を進めた後(被検体Eに対して穿刺針を挿入した後)、穿刺の状態(穿刺針が計画経路に沿って進んでいるか等)を確認するため、X線CT装置1は、再度、被検体Eに対してX線スキャン(第2スキャン)を行い、ボリュームデータ(第2ボリュームデータ)を作成する。
 すなわち、第1スキャンと同様、X線発生部11は、被検体Eに対してX線を曝射する。X線検出部12は、被検体Eを透過したX線を検出し、その検出データを取得する(S36)。なお、第1実施形態と同様、第1スキャンと第2スキャンの撮影条件等は等しいものとする。
 前処理部41aは、S36で取得された検出データに対して、前処理を行い、投影データを作成する(S37)。再構成処理部41bは、S37で作成された投影データに基づいて作成された複数の断層画像データを補間処理することにより、第2ボリュームデータを作成する(S38)。第2画像処理部412cは、当該第2ボリュームデータをレンダリングすることによりアキシャル像を作成する(S39)。
 表示制御部44は、S39で作成されたアキシャル像を表示部45に表示させ、且つ第2ボリュームデータに基づくアキシャル像におけるS35で記憶された設定位置に対応する位置にS34で設定された設定画像と同じ画像を表示させる(S40)。
<作用・効果>
 本実施形態の作用及び効果について説明する。
 本実施形態のX線CT装置1は、第2画像処理部412cを有する。第2画像処理部412cは、ボリュームデータに基づいて、被検体Eの断面を示すMPR画像を作成する。設定部42は、第1ボリュームデータに基づくMPR画像に対して設定画像を設定する。表示制御部44は、第2ボリュームデータに基づくMPR画像を表示部45に表示させ、且つ第2ボリュームデータに基づくMPR画像における設定位置に対応する位置に設定画像を表示させる。
 また、本実施形態のX線CT装置1は、第1画像処理部411cと、第2画像処理部412cとを有する。第1画像処理部411cは、ボリュームデータに基づいて、被検体Eの三次元的な構造を二次元的に示した疑似三次元画像を作成する。第2画像処理部412cは、ボリュームデータに基づいて、被検体Eの断面を示すMPR画像を作成する。設定部42は、第1ボリュームデータに基づくMPR画像に対して設定画像を設定する。表示制御部44は、第2ボリュームデータに基づく疑似三次元画像を表示部45に表示させ、且つ第2ボリュームデータに基づく疑似三次元画像における設定位置に対応する位置に設定画像を表示させる。
 また、本実施形態のX線CT装置1における第2画像処理部412cは、MPR画像として被検体Eのアキシャル像、サジタル像、コロナル像及びオブリーク像のうちの少なくとも一つを作成する。
 このように、表示制御部44は、第1ボリュームデータに基づくMPR画像に対して設定した設定画像を、第2ボリュームデータに基づく画像(疑似三次元画像又はMPR画像)における設定位置に対応する位置に表示させることができる。たとえば、CT透視を用いた生検において、表示制御部44は、予め設定した計画経路を示す画像を、X線スキャンにより都度得られるボリュームデータ(第2ボリュームデータ)に基づく画像においても同じ位置で表示することができる。よって、この画像を参照することで、術者は計画経路を現在の画像において確認することができる、更に、第2ボリュームデータに基づく画像に穿刺針が表示されている場合、穿刺針と計画経路とのずれが分かるので、穿刺針が計画経路に沿って進んでいるかを容易に把握することができる。すなわち、本実施形態によれば、予め設定された画像(設定画像)を現時点で得られた画像上で容易に認識することが可能となる。また、設定画像を二次元画像であるMPR画像で容易に設定することができる。
(変形例1)
 第2実施形態においては、アキシャル像に対して設定画像を設定した。ここで、設定画像は、ボリュームデータに基づく画像から設定されるため、三次元の座標値を有する。従って、設定部42は、アキシャル像の元となるボリュームデータから作成したコロナル像やサジタル像において、当該三次元の座標値に対応する位置に設定画像を自動で設定することも可能である。
 すなわち、設定部42は、ある断面を示すMPR画像に対して設定画像を設定し、且つ当該設定画像の設定位置に基づいて、他の断面を示すMPR画像に対して設定画像を設定することができる。表示制御部44は、設定された設定画像を各MPR画像上に表示させる。
(変形例2)
 設定部42で設定された穿刺針の計画経路を示す画像(設定画像)に沿った断面の画像を観察することにより、術者は、計画経路全体を二次元画像上で把握することが可能となる。この場合、第2画像処理部412cは、第1ボリュームデータに基づいて、設定画像に沿った断面のオブリーク像を作成する。
 また、第2画像処理部412cは、設定画像に沿った断面のオブリーク像の断面位置を記憶しておき、第2ボリュームデータにおいても同じ断面のオブリーク像を作成することができる。すなわち、第2画像処理部412cは、異なるタイミングで得られたボリュームデータ(第1~第nボリュームデータ)それぞれにおいて、常に同じ断面位置でオブリーク像を作成する。なお、作成された各オブリーク像は、表示制御部44により表示部45に表示される。
 ここで、たとえば、穿刺針が計画経路に沿って進んでいない場合、第2ボリュームデータに基づくオブリーク像には、穿刺針が表示されない。従って、術者は穿刺針のずれ(計画経路からのずれ)を容易に把握することができる。なお、第2画像処理部412cが作成する画像は、オブリーク像に限らず、設定画像に沿った断面の画像であればよい。たとえば、被検体Eの体軸方向と垂直に挿入経路が計画されている場合、第2画像処理部412cが作成する画像は、アキシャル像が望ましい。
(変形例3)
 また、被検体Eに対する生検を行った後に、穿刺針が実際に進んだ経路(穿刺針がどのような経路で挿入されたか)を確認したい場合がある。この場合、異なるタイミングで得られたボリュームデータ(第1~第nボリュームデータ)それぞれにおいて、穿刺針を含む断面を作成し、記憶しておくことが望ましい。
 そこで、本変形例では、各ボリュームデータにおいて穿刺針の位置を検出し、穿刺針を含む断面で新たな画像を作る構成について述べる。以下、新たな画像としてオブリーク像を作成する例について述べる。
 たとえば、処理部41は、複数のボリュームデータそれぞれに対して、穿刺針の位置を特定する。具体例として、処理部41は、複数のボリュームデータそれぞれに対して、ボリュームデータを構成する断層画像データ間の差分を取り、差分の大きい断層画像データを特定する。そして、処理部41は、特定された断層画像データに対してエッジ検出等の画像処理を行い、穿刺針の位置を特定する。なお、ボリュームデータにおける穿刺針の位置の特定には、上記手法に限らず公知の手法を用いることができる。
 第2画像処理部412cは、特定された穿刺針の位置を基準として所定の方向にボリュームデータをレンダリングすることで、穿刺針を含む断面であるオブリーク像を作成する。第2画像処理部412cは、複数のボリュームデータそれぞれに対してこの処理を行う。従って、第2画像処理部412cで作成されたオブリーク像には、常に穿刺針が表示されることになる。第2画像処理部412cで作成されたオブリーク像は、記憶部43に記憶される。よって、術者は、生検が完了した後、記憶部43に記憶された複数のオブリーク像を観察することにより、穿刺針が進んだ経路(穿刺針がどのような経路で挿入されたか)を改めて確認することができる。
<第1実施形態及び第2実施形態に共通の効果>
 以上述べた第1実施形態及び第2実施形態のうち、少なくともひとつの実施形態のX線CT装置によれば、表示制御部は、第1ボリュームデータに基づく画像に対して設定した設定画像を第2ボリュームデータに基づく画像における設定位置に対応する位置に表示させることができる。すなわち、本実施形態によれば、予め設定された画像(設定画像)を現時点で得られた画像上で容易に認識することが可能となる。
(第3実施形態)
 たとえば、被検体の動きによる影響や穿刺に対する医師の熟練度によっては、計画経路に沿って穿刺針を挿入することが困難な場合がある。すなわち、計画経路と実際の穿刺針の位置(進路)にずれが生じる可能性があり、確実な生検の妨げになる。一方、計画経路からの穿刺針のずれに対して、穿刺針の挿入位置や方向をどのように修正すればよいかは、医師等の経験によるところが大きい。
 実施形態は、前述の問題点を解決するためになされたものであり、計画経路と穿刺針とのずれを反映した画像を表示することが可能な技術を提供することを目的とする。
 図6から図9を参照して、第3実施形態に係るX線CT装置1の構成について説明する。
<装置構成>
 図6に示すように、X線CT装置1は、架台装置100と、寝台装置300と、コンソール装置400とを含んで構成されている。
[架台装置]
 架台装置100は、被検体Eに対してX線を曝射し、被検体Eを透過した当該X線の検出データを収集する装置である。架台装置100は、X線発生部110と、X線検出部120と、回転体130と、高電圧発生部140と、架台駆動部150と、X線絞り部160と、絞り駆動部170と、データ収集部180とを有する。
 X線発生部110は、X線を発生させるX線管球(たとえば、円錐状や角錐状のX線ビームを発生する真空管。図示なし)を含んで構成されている。X線発生部110は、発生したX線を被検体Eに対して曝射する。
 X線検出部120は、複数のX線検出素子(図示なし)を含んで構成されている。X線検出部120は、被検体Eを透過したX線を検出する。具体的には、X線検出部120は、被検体Eを透過したX線の強度分布を示すX線強度分布データ(検出データ)をX線検出素子で検出し、その検出データを電流信号として出力する。X線検出部120は、たとえば、検出素子が互いに直交する2方向(スライス方向とチャンネル方向)にそれぞれ複数配置された2次元のX線検出器(面検出器)が用いられる。複数のX線検出素子は、たとえば、スライス方向に沿って320列設けられている。このように多列のX線検出器を用いることにより、1回転のスキャンでスライス方向に幅を有する3次元の撮影領域を撮影することができる(ボリュームスキャン)。なお、スライス方向は被検体Eの体軸方向に相当し、チャンネル方向はX線発生部110の回転方向に相当する。
 回転体130は、X線発生部110とX線検出部120とを被検体Eを挟んで対向するよう支持する部材である。回転体130は、スライス方向に貫通した開口部130aを有する。架台装置100内において、回転体130は、被検体Eを中心とした円軌道で回転するよう配置されている。すなわち、X線発生部110及びX線検出部120は、被検体Eを中心とする円軌道に沿って回転可能に設けられている。
 高電圧発生部140は、X線発生部110に対して高電圧を印加する。X線発生部110は、当該高電圧に基づいてX線を発生させる。
 架台駆動部150は、回転体130を回転駆動させる。X線絞り部160は、所定幅のスリット(開口)を有し、スリットの幅を変えることで、X線発生部110から曝射されたX線のファン角(チャンネル方向の広がり角)とX線のコーン角(スライス方向の広がり角)とを調整する。絞り駆動部170は、X線発生部110で発生したX線が所定の形状となるようX線絞り部160を駆動させる。
 データ収集部180(DAS)は、X線検出部120(各X線検出素子)からの検出データを収集する。また、データ収集部180は、収集した検出データ(電流信号)を電圧信号に変換し、この電圧信号を周期的に積分して増幅し、デジタル信号に変換する。そして、データ収集部180は、デジタル信号に変換された検出データをコンソール装置400に送信する。なお、CT透視を行う場合、データ収集部180は、検出データの収集レートを短くする。
[寝台装置]
 寝台装置300は、撮影対象の被検体Eを載置・移動させる装置である。寝台装置300は、寝台310と寝台駆動部320とを備えている。寝台310は、被検体Eを載置するための寝台天板330と、寝台天板330を支持する基台340とを備えている。寝台天板330は、寝台駆動部320によって被検体Eの体軸方向及び体軸方向に直交する方向に移動することが可能となっている。すなわち、寝台駆動部320は、被検体Eが載置された寝台天板330を、回転体130の開口部130aに対して挿抜させることができる。基台340は、寝台駆動部320によって寝台天板330を上下方向(被検体Eの体軸方向と直交する方向)に移動させることが可能となっている。
[コンソール装置]
 コンソール装置400は、X線CT装置1に対する操作入力に用いられる。また、コンソール装置400は、架台装置100によって収集された検出データから被検体Eの内部形態を表すCT画像データ(断層画像データやボリュームデータ)を再構成する機能等を有している。コンソール装置400は、処理部410と、第1設定部420と、判断部430と、第2設定部440と、表示制御部450と、記憶部460と、表示部470と、スキャン制御部480と、制御部490とを含んで構成されている。
 処理部410は、架台装置100(データ収集部180)から送信された検出データに対して各種処理を実行する。処理部410は、前処理部410aと、再構成処理部410bと、レンダリング処理部410cとを含んで構成されている。
 前処理部410aは、架台装置100(X線検出部120)で検出された検出データに対して対数変換処理、オフセット補正、感度補正、ビームハードニング補正等の前処理を行い、投影データを作成する。
 再構成処理部410bは、前処理部410aで作成された投影データに基づいて、CT画像データ(断層画像データやボリュームデータ)を作成する。断層画像データの再構成には、たとえば、2次元フーリエ変換法、コンボリューション・バックプロジェクション法等、任意の方法を採用することができる。ボリュームデータは、再構成された複数の断層画像データを補間処理することにより作成される。ボリュームデータの再構成には、たとえば、コーンビーム再構成法、マルチスライス再構成法、拡大再構成法等、任意の方法を採用することができる。上述のように多列のX線検出器を用いたボリュームスキャンにより、広範囲のボリュームデータを再構成することができる。また、CT透視を行う場合には、検出データの収集レートを短くしているため、再構成処理部410bによる再構成時間が短縮される。従って、スキャンに対応したリアルタイムのCT画像データを作成することができる。
 レンダリング処理部410cは、再構成処理部410bで作成されたボリュームデータに対するレンダリング処理を行う。
 たとえば、レンダリング処理部410cは、ボリュームデータに対してボリュームレンダリング処理を施すことにより、疑似三次元画像(画像データ)を作成する。「疑似三次元画像」とは、被検体Eの三次元的な構造を二次元的に表示させるための画像である。
 また、レンダリング処理部410cは、ボリュームデータに対して所望の方向にレンダリング処理を施すことにより、MPR画像(画像データ)を作成する。「MPR画像」とは、被検体Eの所望の断面を示す画像である。MPR画像としては、直交三断面であるアキシャル像、サジタル像、コロナル像がある。或いは、レンダリング処理部410cは、任意断面を示すオブリーク像をMPR画像として作成してもよい。
 第1設定部420は、予め作成されたボリュームデータに基づく画像に対し、被検体Eに対する穿刺針の挿入経路を設定するために用いられる。予め作成されたボリュームデータとは、生検を実施する前の段階で行われたX線スキャンにより得られたボリュームデータである。
 第1設定部420により設定される挿入経路は、被検体Eに対してどのようなルートで穿刺針を挿入していくかを示す経路(計画経路)である。なお、挿入経路は、表示部470に表示される挿入経路の画像と一対一に対応するので、以下、これらを同一視する場合がある。
 第1設定部420の具体例として、あるタイミングで行われたスキャン(第1スキャン)により得られたボリュームデータ(第1ボリュームデータ)に基づくアキシャル像AIに対して穿刺針の挿入経路(計画経路)を設定する場合について述べる。図7A及び図7Bは、ボリュームデータに基づくアキシャル像AIを示している。表示制御部450は、アキシャル像AIを表示部470に表示させる。
 術者は、表示部470に表示されたアキシャル像AIに対し、X線CT装置1等に設けられた入力デバイス等を用いて生検を行う部位(病変部等)の位置S、及び穿刺針の挿入位置Pの2点を指定する(図7A参照)。第1設定部420は、アキシャル像AI上でその2点を結ぶ最短距離を算出し、その最短距離を結ぶ線分を挿入経路Iとして設定する。表示制御部450は、設定された挿入経路Iをアキシャル像AI上に表示させる(図7B参照)。また、第1設定部420は、アキシャル像AIにおける挿入経路Iの位置(座標値)を求める。挿入経路Iの画像及び挿入経路Iの位置は、記憶部460に記憶される。なお、アキシャル像AIは三次元のボリュームデータに基づく画像である。従って、アキシャル像AIにおいて設定された挿入経路Iの位置は、三次元の座標値で特定することができる。
 なお、術者は、入力デバイス等を用いてアキシャル像AI上に挿入経路Iを示す線分を直接描くことも可能である(手動)。この場合、第1設定部420は、当該描かれた線分を挿入経路Iとして設定する。或いは、第1設定部420は、アキシャル像AIに対してエッジ検出等の画像解析処理を施すことにより、病変部の位置Sと病変部から最も近い体表面の位置を算出する。そして、第1設定部420は、それらを結ぶ線分を算出し、当該線分を挿入経路Iとして設定することも可能である(自動)。
 また、挿入経路Iが設定される画像は、アキシャル像AIに限られない。第1設定部420は、同様の手法により、サジタル像やコロナル像に対しても挿入経路Iを設定することが可能である。或いは、第1設定部420は、ボリュームデータに基づく疑似三次元画像(被検体Eの三次元的な構造を二次元的に示した画像)に対して挿入経路Iを設定することも可能である。
 判断部430は、穿刺針が被検体Eに挿入された状態で行われたスキャンの結果に基づき作成されたボリュームデータに基づく画像における穿刺針と挿入経路とのずれの有無を判断する。「ずれ」は、設定された挿入経路の位置と被検体Eに挿入された穿刺針の位置との差である。ずれは、たとえば、設定された挿入経路に対する穿刺針の先端位置の距離である。すなわち、ずれが無い場合(挿入経路に沿って穿刺が行われている場合)には、当該距離は0となる。或いは、設定された挿入経路と穿刺針とがなす角度を「ずれ」としてもよい(ずれが無い場合には、当該角度は0になる)。
 判断部430の具体例として、第1ボリュームデータに基づくアキシャル像AIに対して、第1設定部420が挿入経路Iを設定した場合について述べる。
 レンダリング処理部410cは、第1スキャンとは異なるタイミング(穿刺針が被検体Eに挿入された状態)で行われたスキャン(第2スキャン)により得られたボリュームデータ(第2ボリュームデータ)に基づきアキシャル像AI´を作成する。判断部430は、第1設定部420により設定された挿入経路Iの位置(座標値)を記憶部460から読み出す。また、判断部430は、アキシャル像AI´において、エッジ検出等の画像処理により、被検体Eに挿入された穿刺針PNの先端位置h(座標値)を検出する。そして、判断部430は、穿刺針PNの先端位置hが設定された挿入経路I上にあるかないかを判断する。
 穿刺針PNの先端位置hが設定された挿入経路I上にある場合(挿入経路Iの座標値に先端位置hの座標値が含まれる場合)、判断部430は、ずれはないと判断する。一方、穿刺針PNの先端位置hが設定された挿入経路I上にない場合(挿入経路Iの座標値に先端位置hの座標値が含まれない場合)、判断部430は、ずれがあると判断する。なお、判断部430は、挿入経路Iと穿刺針PNの先端位置hとの差をずれ量として検出することも可能である。
 本実施形態において、第1ボリュームデータと第2ボリュームデータは、その元となる断層画像データの枚数や画像のピクセル数は等しいものとする。また、第1スキャンと第2スキャンの撮影条件(撮影位置、回転体13のローテーションスピード等)も等しいものとする。つまり、第1ボリュームデータと第2ボリュームデータは、同じ座標体系にあるものとする。また、本実施形態において、第1ボリュームデータに基づくアキシャル像AI、及び第2ボリュームデータに基づくアキシャル像AI´は、体軸方向における同じ位置の断面を示す画像である。
 第2設定部440は、ずれがあると判断された場合、第2ボリュームデータに基づく画像に対し、新たな挿入経路を設定するために用いられる。新たな挿入経路は、ずれに応じて計画経路(挿入経路I)を修正して得られる経路である。
 第2設定部440の具体例として、予め設定された挿入経路Iから穿刺針PNの先端位置hがずれている場合(図7C参照)について述べる。図7C及び図7Dは、第2ボリュームデータに基づくアキシャル像AI´を示している。なお、図7C及び図7Dでは、穿刺針PNが指定された挿入位置Pから挿入されたが、穿刺を行ううちに先端位置hが挿入経路Iからずれてしまった例を示している。
 この場合、第2設定部440は、穿刺針PNの先端位置hの座標値と挿入経路Iの一端(病変部の位置S)の座標値を結ぶ線分を新たな挿入経路I´として設定する(図7D参照)。挿入経路I´は、穿刺針PNの先端位置hと挿入経路Iの一端を結ぶ最短経路であることが望ましい。
 術者は、入力デバイス等を用いて第2ボリュームデータに基づくアキシャル像AI´上に示された穿刺針PNの先端位置hと挿入経路Iの一端を結ぶ線分を直接描くことも可能である。この場合、第2設定部440は、当該描かれた線分を新たな挿入経路I´として設定する。また、第1設定部420と同様、第2設定部440は、第2ボリュームデータに基づくコロナル像、サジタル像、オブリーク像、及び疑似三次元画像に対して新たな挿入経路I´を設定することも可能である。
 なお、挿入経路Iは、ボリュームデータに基づく画像上で設定されるため、三次元の座標値を有している。従って、挿入経路Iが設定される画像と新たな挿入経路I´が設定される画像が異なっていてもよい。たとえば、第1設定部420は、アキシャル像AI上で挿入経路Iを設定する。そして、第2設定部440は、コロナル像上で新たな挿入経路I´を設定することも可能である。
 また、ずれが小さい場合には、新たな挿入経路I´を設定しなくとも穿刺に影響を与えない可能性もある。この場合、第2設定部440は、判断部430により検出されたずれ量が閾値以上の場合のみ、新たな挿入経路I´を設定することでもよい。閾値は、挿入経路Iと穿刺針PNの先端位置hとの距離に基づいて設定される値である。或いは、閾値は、入力デバイス等を用いて、CT透視の都度、任意の値を設定することも可能である。
 また、図8A及び図8Bに示すように、第2設定部440は、穿刺針PNが指定された挿入位置Pから大きくずれた状態で穿刺された場合であっても、上記と同様の処理により、新たな挿入経路I´を設定することが可能である。図8A及び図8Bは、第2ボリュームデータに基づくアキシャル像AI´を示している。
 表示制御部450は、画像表示に関する各種制御を行う。たとえば、レンダリング処理部410cにより作成された疑似三次元画像やMPR画像(アキシャル像、サジタル像、コロナル像、オブリーク像)等を表示部470に表示させる制御を行う。
 また、本実施形態において、表示制御部450は、ボリュームデータに基づく画像を表示部470に表示させ、且つ設定された新たな挿入経路I´をボリュームデータに基づく画像に表示させる。
 表示制御部450の具体例として、第2ボリュームデータに基づくアキシャル像AI´を表示部470に表示させる場合について述べる。この場合、表示制御部450は、第2設定部440により設定された新たな挿入経路I´をアキシャル像AI´中に表示させる(図7D参照)。新たな挿入経路I´の表示態様として、表示制御部450は、アキシャル像AI´中の画素(画素値)を新たな挿入経路I´の画素(画素値)で置き換えることができる。或いは、表示制御部450は、アキシャル像AI´に対して新たな挿入経路I´を重畳させることも可能である。また、表示制御部450は、元の挿入経路Iと新たな挿入経路I´の双方をアキシャル像AI´に表示させることもできる(図7D参照)。或いは、表示制御部450は、新たな挿入経路I´のみをアキシャル像AI´に表示させることもできる。
 また、表示制御部450は、元の挿入経路Iと新たな挿入経路I´とを異なる表示態様で表示させることもできる。たとえば、表示制御部450は、元の挿入経路Iが表示される色と新たな挿入経路I´が表示される色とを異ならせることができる。表示制御部450は、元の挿入経路Iを点滅表示させ、新たな挿入経路I´を点灯表示させることができる。表示制御部450は、元の挿入経路Iを破線で表示させ、新たな挿入経路I´を実線で表示させることができる(図7D参照)。
 更に、表示制御部450は、ずれを示す情報(たとえば、穿刺針PNの先端位置hと挿入経路Iとの距離や角度等のずれ量)を表示部470の表示画面における所定の位置に数値等で表示させることもできる(アキシャル像AI´上に重ねて表示させる場合も含む)。
 記憶部460は、RAMやROM等の半導体記憶装置によって構成される。記憶部460は、挿入経路Iの位置の他、検出データや投影データ、或いは再構成処理後のCT画像データ等を記憶する。
 表示部470は、LCDやCRTディスプレイ等の任意の表示デバイスによって構成される。たとえば、表示部47には、ボリュームデータをレンダリング処理して得られるMPR画像が表示される。
 スキャン制御部480は、X線スキャンに関する各種動作を制御する。たとえば、スキャン制御部480は、X線発生部110に対して高電圧を印加させるよう高電圧発生部140を制御する。スキャン制御部480は、回転体130を回転駆動させるよう架台駆動部150を制御する。スキャン制御部480は、X線絞り部160を動作させるよう絞り駆動部170を制御する。スキャン制御部480は、寝台310を移動させるよう寝台駆動部320を制御する。
 制御部490は、架台装置100、寝台装置300およびコンソール装置400の動作を制御することによって、X線CT装置1の全体制御を行う。たとえば、制御部490は、スキャン制御部480を制御することで、架台装置100に対して予備スキャン及びメインスキャンを実行させ、検出データを収集させる。また、制御部490は、処理部410を制御することで、検出データに対する各種処理(前処理、再構成処理等)を行わせる。或いは、制御部490は、表示制御部450を制御することで、記憶部460に記憶されたCT画像データ等に基づく画像を表示部470に表示させる。
<動作>
 次に、図9を参照して、本実施形態に係るX線CT装置1の動作について説明する。ここでは、穿刺針の挿入経路(計画経路)を設定した後、CT透視を用いて生検を行う場合の動作について述べる。
 生検を開始する前に、まずX線CT装置1は、被検体Eに対してX線スキャン(第1スキャン)を行い、ボリュームデータ(第1ボリュームデータ)を作成する。
 具体的には、X線発生部110は、被検体Eに対してX線を曝射する。X線検出部120は、被検体Eを透過したX線を検出し、その検出データを取得する(S50)。X線検出部120で検出された検出データは、データ収集部180で収集され、処理部410(前処理部410a)に送られる。
 前処理部410aは、S50で取得された検出データに対して、対数変換処理、オフセット補正、感度補正、ビームハードニング補正等の前処理を行い、投影データを作成する(S51)。作成された投影データは、制御部490の制御に基づき、再構成処理部410bに送られる。
 再構成処理部410bは、S51で作成された投影データに基づいて、複数の断層画像データを作成する。また、再構成処理部410bは、複数の断層画像データを補間処理することにより第1ボリュームデータを作成する(S52)。レンダリング処理部410cは、S52で作成された第1ボリュームデータをレンダリング処理することによりアキシャル像AIを作成する。表示制御部450は、作成されたアキシャル像AIを表示部470に表示させる(S53)。
 術者は、表示部470に表示されたアキシャル像AIを参照しながら、入力デバイス等によってアキシャル像AIにおける病変部の位置S、及び穿刺針PNの挿入位置Pを指定する。第1設定部420は、指定された位置を結ぶ線分を挿入経路Iとして設定する(S54。図7B参照)。表示制御部450は、設定された挿入経路I(計画経路)をアキシャル像AI上に表示させる。第1設定部420は、挿入経路Iの画像及び挿入経路Iの座標値を記憶部460に送る。記憶部460は、当該画像及び当該座標値を記憶する。
 その後、挿入経路Iが示されたアキシャル像AIを参照しながら、術者は被検体Eに対して生検を開始する。
 ある程度、生検を進めた後(被検体Eに対して穿刺針PNを挿入した後)、穿刺の状態(穿刺針PNが計画経路に沿って進んでいるか等)を確認するため、X線CT装置1は、再度、被検体Eに対してX線スキャン(第2スキャン)を行い、ボリュームデータ(第2ボリュームデータ)を作成する。
 すなわち、第1スキャンと同様、X線発生部110は、被検体Eに対してX線を曝射する。X線検出部120は、被検体Eを透過したX線を検出し、その検出データを取得する(S55)。なお、上述の通り、第1スキャンと第2スキャンの撮影条件等は等しいものとする。
 前処理部410aは、S55で取得された検出データに対して、前処理を行い、投影データを作成する(S56)。再構成処理部410bは、S56で作成された投影データに基づいて作成された複数の断層画像データを補間処理することにより、第2ボリュームデータを作成する(S57)。レンダリング処理部410cは、S57で作成された第2ボリュームデータをレンダリングすることによりアキシャル像AI´を作成する。アキシャル像AI´は、S53で表示されたアキシャル像AIと体軸方向における同じ位置の断面を示す。
 ここで、判断部430は、アキシャル像AI´における穿刺針PNの先端位置hと挿入経路Iとのずれの有無を判断する(S58)。
 S58でずれがあると判断された場合、第2設定部440は、アキシャル像AI´に対し、新たな挿入経路I´を設定する(S59)。一方、ずれがないと判断された場合、穿刺は計画通りに進んでいるため、X線CT装置1はS59以降の処理を行わない。
 表示制御部450は、アキシャル像AI´を表示部470に表示させ、且つS59で設定された新たな挿入経路I´をアキシャル像AI´に表示させる(S60)。
 なお、処理部410、第1設定部420、判断部430、第2設定部440、表示制御部450、スキャン制御部480及び制御部490は、たとえば、CPU、GPU、又はASICなどの図示しない処理装置と、ROM、RAMや、又はHDDなどの図示しない記憶装置とによって構成されていてもよい。記憶装置には、処理部410の機能を実行するための処理プログラムが記憶されている。また、記憶装置には、第1設定部420及び第2設定部440の機能を実行するための設定部処理用プログラムが記憶されている。また、記憶装置には、判断部430の機能を実行するための判断部処理用プログラムが記憶されている。また、記憶装置には、表示制御部450の機能を実行するための表示制御プログラムが記憶されている。また、記憶装置には、スキャン制御部480の機能を実行するためのスキャン制御プログラムが記憶されている。また、記憶装置には、制御部490の機能を実行するための制御プログラムが記憶されている。CPUなどの処理装置が、記憶装置に記憶されている各プログラムを実行することで各部の機能を実行する。
 また、本実施形態では、第1設定部420と第2設定部440とを機能的に分けて説明した。一方、単一の設定部を設け、当該設定部においてそれぞれの機能(第1設定部420の動作、及び第2設定部440の動作)を実行することも可能である。
 また、これまでは単独のX線CT装置1における構成・動作について述べた。一方、本実施形態の構成を、X線CT装置1を含むX線CTシステムとして実現することも可能である。
 たとえば、X線CT装置1において、予め作成されたボリュームデータに基づく画像に対して挿入経路Iの設定を行い、且つ挿入経路Iの画像及び挿入経路Iの位置を記憶する。そして、CT透視を用いた生検を他のX線CT装置で行う。この場合、他のX線CT装置は、記憶された挿入経路IをX線CT装置1から読み出し、CT透視で得られた新たなボリュームデータ(第2ボリュームデータ)に基づく画像における穿刺針PNと挿入経路Iとのずれの有無を判断する。ずれがある場合、他のX線CT装置は、第2ボリュームデータに基づく画像に対し、新たな挿入経路I´を設定する。そして、他のX線CT装置は、第2ボリュームデータに基づく画像を表示部に表示させ、且つ当該画像に新たな挿入経路I´を表示させる。
 或いは、X線CT装置1では、第1ボリュームデータに基づく画像の作成を行う。X線CT装置1とは別に設けられたコンピュータは、第1ボリュームデータに基づく画像に対して挿入経路Iの設定を行い、挿入経路Iの画像及び挿入経路Iの位置を記憶する。そして、X線CT装置1(或いは、他のX線CT装置)でCT透視を行う場合に、X線CT装置1は、記憶された挿入経路Iをコンピュータから読み出し、CT透視で得られた第2ボリュームデータに基づく画像における穿刺針PNと挿入経路Iとのずれの有無を判断する。ずれがある場合、X線CT装置1は、第2ボリュームデータに基づく画像に対し、新たな挿入経路I´を設定する。そして、X線CT装置1は、第2ボリュームデータに基づく画像を表示部に表示させ、且つ当該画像に新たな挿入経路I´を表示させることも可能である。
<作用・効果>
 本実施形態の作用及び効果について説明する。
 本実施形態のX線CT装置1は、被検体EをX線でスキャンした結果に基づき、ボリュームデータを作成する。X線CT装置1は、第1設定部420と、判断部430と、第2設定部440と、表示制御部450とを有する。第1設定部420は、予め作成された第1ボリュームデータに基づく画像に対し、被検体Eに対する穿刺針PNの挿入経路Iを設定するために用いられる。判断部430は、穿刺針PNが被検体Eに挿入された状態で行われたスキャンの結果に基づき作成された第2ボリュームデータに基づく画像における穿刺針PNと挿入経路Iとのずれの有無を判断する。第2設定部440は、ずれがあると判断された場合、第2ボリュームデータに基づく画像に対し、新たな挿入経路I´を設定するために用いられる。表示制御部450は、第2ボリュームデータに基づく画像を表示部470に表示させ、且つ設定された新たな挿入経路I´を第2ボリュームデータに基づく画像に表示させる。
 また、本実施形態の構成をX線CTシステムとして実現することも可能である。X線CTシステムは、被検体EをX線でスキャンした結果に基づき、ボリュームデータを作成するX線CT装置1を含む。X線CTシステムは、第1設定部420と、判断部430と、第2設定部440と、表示制御部450とを有する。第1設定部420は、予め作成された第1ボリュームデータに基づく画像に対し、被検体Eに対する穿刺針PNの挿入経路Iを設定するために用いられる。判断部430は、穿刺針PNが被検体Eに挿入された状態で行われたスキャンの結果に基づき作成された第2ボリュームデータに基づく画像における穿刺針PNと挿入経路Iとのずれの有無を判断する。第2設定部440は、ずれがあると判断された場合、第2ボリュームデータに基づく画像に対し、新たな挿入経路I´を設定するために用いられる。表示制御部450は、第2ボリュームデータに基づく画像を表示部470に表示させ、且つ設定された新たな挿入経路I´を第2ボリュームデータに基づく画像に表示させる。
 このように、第2設定部440は、穿刺針PNと挿入経路Iとのずれがある場合に、新たな挿入経路I´を設定する。表示制御部450は、新たな挿入経路I´をボリュームデータに基づく画像に表示させる。術者は、この画像を参照することで、生検を行う部位に対して穿刺針をどのように挿入すればよいかを容易に把握することができる。すなわち、本実施形態におけるX線CT装置(X線CTシステム)によれば、計画経路と穿刺針とのずれを反映した画像を表示することが可能となる。
 また、本実施形態におけるX線CT装置1の表示制御部450は、第1設定部420で設定された挿入経路Iを第2ボリュームデータに基づく画像に表示させる。
 このように、第2ボリュームデータに基づく画像に新たな挿入経路I´及び予め設定された挿入経路Iを併せて表示させることにより、予め設定された挿入経路Iに対する新たな挿入経路I´のずれを容易に把握することができる。
 また、本実施形態におけるX線CT装置1の表示制御部450は、ずれを示す情報を表示部470に表示させる。
 このように、ずれを示す情報を表示部470に表示させることにより、術者はずれを数値等の情報として具体的に把握することが可能となる。
 また、本実施形態におけるX線CT装置1の表示制御部450は、挿入経路Iと新たな挿入経路I´とを異なる表示態様で表示させる。
 このように、挿入経路Iと新たな挿入経路I´とを異なる表示態様で表示させることにより、それぞれの経路を区別し易くなる。よって、術者は、いずれの経路に沿って穿刺針PNを挿入すればよいかを容易に判断することが可能となる。
(第4実施形態)
 図10から図13を参照して、第4実施形態に係るX線CT装置1の構成について説明する。たとえば、被検体Eに対して生検を行う場合、血管等を避けて穿刺針を挿入していくことが望ましい。本実施形態では、血管等を避けて穿刺針の挿入経路及び新たな挿入経路を設定する構成について述べる。第3実施形態と同様の構成については詳細な説明を省略する。
 本実施形態におけるコンソール装置400は、処理部410と、第1設定部420と、判断部430と、第2設定部440と、表示制御部450と、記憶部460と、表示部470と、スキャン制御部480と、制御部490と、検出部500とを含んで構成されている。
 検出部500は、ボリュームデータから所定の対象部位を検出する。「所定の対象部位」とは、血管等のボリュームデータに含まれる被検体E内の特定の部位を示す。対象部位は、穿刺針による穿刺を避けるべき部位である(すなわち、挿入経路は、対象部位を避けて設定されることが望ましい)。検出される対象部位は、予め設定されたものが記憶部46等に記憶されていてもよいし、生検の都度、入力デバイス等を用いて任意の部位を設定することも可能である。また、対象部位は、領域であってもよいし、領域の最小単位である点(たとえば、ボリュームデータにおいて最もCT値が高いボクセル(ピクセル))であってもよい。
 検出部500の具体例として、第1ボリュームデータに基づいて作成されるMPR画像から対象部位を検出する構成について述べる。検出部500は、MPR画像の各ピクセルのCT値と検出する対象部位の閾値とを比較する。そして、検出部500は、閾値以上(或いは、閾値以下)のCT値を有するピクセル(ピクセルの座標値)を対象部位(対象部位の座標値)として検出する。閾値は、対象部位に対応して定まる値(たとえば、血管のCT値)であって、ピクセル内に対象部位が含まれているか否かを判断するための値である。閾値は、所定の幅を有していてもよい。閾値が幅を有する場合、検出部500は、閾値に含まれるCT値を有するピクセルを対象部位として検出する。
 なお、検出部500は、ボリュームデータから直接、対象部位を検出することも可能である。この場合、検出部500は、ボリュームデータを構成する各ボクセルのCT値と検出する対象部位の閾値とを比較する。そして、検出部500は、閾値以上(或いは、閾値以下)のCT値を有するボクセル(ボクセルの座標値)を対象部位(対象部位の座標値)として検出する。
 本実施形態における第1設定部420によれば、第1ボリュームデータから検出された対象部位を避けて挿入経路が設定される。
 図11Aは、第1ボリュームデータに基づくアキシャル像AIを示している。ここで、穿刺針を挿入しようとする挿入位置Pと病変部の位置Sとの最短距離で挿入経路(図11Aの破線参照)を設定した場合、その挿入経路上に血管Bが存在することになる(図11A参照)。従って、その挿入経路に沿って穿刺を行った場合には、血管Bを穿刺してしまうことになる。
 そこで、第1設定部420は、エッジ検出等の画像解析処理により、アキシャル像AI中における病変部の位置S、及び体表面の輪郭Oを求める。そして、第1設定部420は、輪郭O上で位置Sが最も近くなる点P´を特定する(すなわち、位置Sと点P´との距離は、位置Sと輪郭Oとの最短距離になる)。ここで、第1設定部420は、位置Sと点P´とを結ぶ線分上に血管Bが無いかどうかを判断する。すなわち、第1設定部420は、当該線分の座標値に検出部500で検出された血管Bの座標値が含まれるかを判断する。位置Sと点P´とを結ぶ線分上に血管Bが無いと判断した場合(当該線分の座標値に血管Bの座標値が含まれない場合)、第1設定部420は、当該線分に沿って挿入経路Iを設定する(図11B参照)。一方、位置Sと点P´とを結ぶ線分上に血管Bがあると判断した場合(当該線分の座標値に血管Bの座標値が含まれる場合)、第1設定部420は、輪郭O上で新たな点を特定し、その点と位置Sとを結ぶ線分上に血管Bが無いかどうかを改めて判断する。
 なお、挿入経路Iは、血管Bを避けて設定されればよく、位置Sと輪郭Oとの最短距離である必要はない。すなわち、挿入経路Iの座標値と血管Bの座標値とが異なっていればよい。
 また、入力デバイス等を用いてアキシャル像AI上に挿入経路Iを示す線分を直接描く場合等には、挿入経路Iと検出された対象部位(血管B等)とが重なる可能性がある。この場合、X線CT装置1は、設定された挿入経路Iが望ましくない旨の警告を発することが可能である。たとえば、表示制御部450は、表示部470に「挿入経路を変更すべき」との表示を出すことにより警告を行う。或いは、制御部490は、警告手段(図示なし)を駆動させ、音声により警告を行うことも可能である。
 本実施形態における第2設定部440によれば、第1ボリュームデータ又は第2ボリュームデータから検出された対象部位を避けて新たな挿入経路が設定される。図11C及び図11Dは、第2ボリュームデータに基づくアキシャル像AI´を示している。なお、図11C及び図11Dでは、穿刺針PNが指定された挿入位置Pから挿入されたが、穿刺を行ううちに先端位置hが挿入経路Iからずれてしまった例を示している。
 たとえば、図11Cに示すように、挿入経路Iから穿刺針PNがずれた場合、そのまま穿刺を進めると血管Bを穿刺してしまう可能性がある。そこで、第2設定部440は、血管Bを避けるよう新たな挿入経路I´を設定する。具体的には、第2設定部440は、穿刺針PNの先端位置hと病変部の位置Sとを結ぶ最短経路を特定し、その最短経路上に血管Bが無いかどうかを判断する。血管Bが無いと判断した場合、第2設定部440は、特定された最短経路に沿って新たな挿入経路I´を設定する(図11D参照)。
 また、図12A及び図12Bに示すように、第2設定部440は、穿刺針PNが指定された挿入位置Pから大きくずれた状態で穿刺された場合であっても、上記と同様の処理により、新たな挿入経路I´を設定することが可能である。図12A及び図12Bは、第2ボリュームデータに基づくアキシャル像AI´を示している。
 なお、検出部500は、X線スキャンの都度、対象部位を検出してもよい。たとえば、呼吸や心臓の拍動の影響により、第1ボリュームデータを取得したタイミングと、第2ボリュームデータを取得したタイミングとで対象部位等の位置が変化している可能性がある。   
 そこで、第1ボリュームデータと異なるタイミングで得られた第2ボリュームデータに基づき、検出部500は、所定の対象部位を改めて検出する。そして、第2設定部440は、第2ボリュームデータで検出された対象部位を避けて穿刺針PNの先端位置hと病変部の位置Sとを結ぶ線分を特定し、当該線分に沿って新たな挿入経路I´を設定する。このように、第2設定部440は、第2ボリュームデータに基づく画像から検出された対象部位を避けて新たな挿入経路I´を設定する。従って、X線CT装置1は、血管Bの位置の変化等の影響を低減させた状態で、新たな挿入経路I´を設定することができる。
<動作>
 次に、図13を参照して、本実施形態に係るX線CT装置1の動作について説明する。ここでは、穿刺針の挿入経路(計画経路)を設定した後、CT透視を用いて生検を行う場合の動作について述べる。
 生検を開始する前に、まずX線CT装置1は、被検体Eに対してX線スキャン(第1スキャン)を行い、ボリュームデータ(第1ボリュームデータ)を作成する。
 具体的には、X線発生部110は、被検体Eに対してX線を曝射する。X線検出部120は、被検体Eを透過したX線を検出し、その検出データを取得する(S70)。前処理部410aは、S70で取得された検出データに対して、対数変換処理、オフセット補正、感度補正、ビームハードニング補正等の前処理を行い、投影データを作成する(S71)。再構成処理部410bは、S71で作成された投影データに基づいて、複数の断層画像データを作成する。また、再構成処理部410bは、複数の断層画像データを補間処理することにより第1ボリュームデータを作成する(S72)。レンダリング処理部410cは、S72で作成された第1ボリュームデータをレンダリング処理することによりアキシャル像AIを作成する。表示制御部450は、作成されたアキシャル像AIを表示部470に表示させる(S73)。
 ここで、検出部500は、アキシャル像AIの各ピクセルのCT値を血管Bの閾値と比較することにより、アキシャル像AIにおける血管Bを検出する(S74)。
 第1設定部420は、エッジ検出等により、アキシャル像AI中における病変部の位置S、及び体表面の輪郭Oを求める。そして、第1設定部420は、輪郭O上で位置Sが最も近くなる点P´を特定する。第1設定部420は、位置Sと点P´とを結ぶ線分上に血管Bが無いかどうかを判断する。位置Sと点P´とを結ぶ線分上に血管Bが無いと判断した場合、第1設定部420は、当該線分に沿って挿入経路Iを設定する。すなわち、第1設定部420は、S74で検出された血管Bを避けて、挿入経路Iとして設定する(S75)。表示制御部450は、設定された挿入経路Iをアキシャル像AI上に表示させる。第1設定部420は、挿入経路Iの画像及び挿入経路Iの座標値を記憶部460に送る。記憶部460は、当該画像及び座標値を記憶する。
 その後、挿入経路Iが示されたアキシャル像AIを参照しながら、術者は被検体Eに対して生検を開始する。
 ある程度、生検を進めた後(被検体Eに対して穿刺針PNを挿入した後)、穿刺の状態(穿刺針PNが計画経路に沿って進んでいるか等)を確認するため、X線CT装置1は、再度、被検体Eに対してX線スキャン(第2スキャン)を行い、ボリュームデータ(第2ボリュームデータ)を作成する。
 すなわち、第1スキャンと同様、X線発生部110は、被検体Eに対してX線を曝射する。X線検出部120は、被検体Eを透過したX線を検出し、その検出データを取得する(S76)。なお、上述の通り、第1スキャンと第2スキャンの撮影条件等は等しいものとする。
 前処理部410aは、S76で取得された検出データに対して、前処理を行い、投影データを作成する(S77)。再構成処理部410bは、S77で作成された投影データに基づいて作成された複数の断層画像データを補間処理することにより、第2ボリュームデータを作成する(S78)。レンダリング処理部410cは、S78で作成された第2ボリュームデータをレンダリングすることによりアキシャル像AI´を作成する。このアキシャル像AI´は、S73で表示されたアキシャル像AIと体軸方向における同じ位置の断面を示す。
 ここで、判断部430は、アキシャル像AI´における穿刺針PNの先端位置hと挿入経路Iとのずれの有無を判断する(S79)。
 S79でずれがあると判断された場合、第2設定部440は、アキシャル像AI´に対し、S74で検出された血管Bを避けて新たな挿入経路I´を設定する(S80)。一方、ずれがないと判断された場合、穿刺は計画通りに進んでいるため、X線CT装置1はS80以降の処理を行わない。
 表示制御部450は、アキシャル像AI´を表示部470に表示させ、且つS80で設定された新たな挿入経路I´をアキシャル像AI´に表示させる(S81)。
<作用・効果>
 本実施形態の作用及び効果について説明する。
 本実施形態のX線CT装置1は、検出部500を有する。検出部500は、ボリュームデータから所定の対象部位(たとえば、血管)を検出する。第1設定部420により、第1ボリュームデータから検出された対象部位を避けて挿入経路Iが設定される。第2設定部440により、第1ボリュームデータ又は第2ボリュームデータから検出された対象部位を避けて新たな挿入経路I´が設定される。
 このように、第1設定部420は、検出部500により検出された血管等(穿刺を避けるべき対象部位)を回避して挿入経路Iを設定する。また、穿刺針PNと挿入経路Iとのずれがある場合に、第2設定部440は、血管等を回避して新たな挿入経路I´を設定する。すなわち、本実施形態におけるX線CT装置(X線CTシステム)によれば、計画経路と穿刺針とのずれを反映した画像を表示することが可能となる。更に、その画像は、血管等を回避して設定された画像である。この画像を参照して穿刺を行うことにより、術者は、血管等を穿刺する可能性が低くなる。すなわち、本実施形態におけるX線CT装置(X線システム)によれば、血管等を避けて穿刺を行うときの参照となる画像を提供することができる。
<第3実施形態及び第4実施形態に共通の効果>
 以上述べた第3実施形態及び第4実施形態のうち、少なくともひとつの実施形態のX線CT装置によれば、第2設定部は、穿刺針と挿入経路とのずれがある場合に、新たな挿入経路を設定する。表示制御部は、新たな挿入経路をボリュームデータに基づく画像に表示させる。すなわち、本実施形態におけるX線CT装置によれば、計画経路と穿刺針とのずれを反映した画像を表示することが可能となる。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
 1 X線CT装置
 10 架台装置
 11 X線発生部
 12 X線検出部
 13 回転体
 13a 開口部
 14 高電圧発生部
 15 架台駆動部
 16 X線絞り部
 17 絞り駆動部
 18 データ収集部
 30 寝台装置
 32 寝台駆動部
 33 寝台天板
 34 基台
 40 コンソール装置
 41 処理部
 41a 前処理部
 41b 再構成処理部
 41c レンダリング処理部
 411c 第1画像処理部
 412c 第2画像処理部
 42 設定部
 43 記憶部
 44 表示制御部
 45 表示部
 46 スキャン制御部
 47 制御部
 E 被検体

Claims (14)

  1.  異なるタイミングで被検体をX線でスキャンした結果に基づき、第1ボリュームデータ及び第2ボリュームデータを作成するX線CT装置であって、
     前記第1ボリュームデータに基づく画像に対して所定の設定画像を設定するための設定部と、
     前記設定画像及び前記設定画像の設定位置を記憶する記憶部と、
     前記第2ボリュームデータに基づく画像を表示部に表示させ、且つ前記第2ボリュームデータに基づく画像における前記設定位置に対応する位置に前記設定画像を表示させる表示制御部と、
     を有することを特徴とするX線CT装置。
  2.  ボリュームデータに基づいて、前記被検体の三次元的な構造を二次元的に示した疑似三次元画像を作成する第1画像処理部を有し、
     前記設定部は、前記第1ボリュームデータに基づく疑似三次元画像に対して前記設定画像を設定し、
     前記表示制御部は、前記第2ボリュームデータに基づく疑似三次元画像を表示部に表示させ、且つ前記第2ボリュームデータに基づく疑似三次元画像における前記設定位置に対応する位置に前記設定画像を表示させることを特徴とする請求項1記載のX線CT装置。
  3.  ボリュームデータに基づいて、前記被検体の断面を示すMPR画像を作成する第2画像処理部を有し、
     前記設定部は、前記第1ボリュームデータに基づくMPR画像に対して前記設定画像を設定し、
     前記表示制御部は、前記第2ボリュームデータに基づくMPR画像を表示部に表示させ、且つ前記第2ボリュームデータに基づくMPR画像における前記設定位置に対応する位置に前記設定画像を表示させることを特徴とする請求項1記載のX線CT装置。
  4.  ボリュームデータに基づいて、前記被検体の三次元的な構造を二次元的に示した疑似三次元画像を作成する第1画像処理部と、
     ボリュームデータに基づいて、前記被検体の断面を示すMPR画像を作成する第2画像処理部と、
     を有し、
     前記設定部は、前記第1ボリュームデータに基づくMPR画像に対して前記設定画像を設定し、
     前記表示制御部は、前記第2ボリュームデータに基づく疑似三次元画像を表示部に表示させ、且つ前記第2ボリュームデータに基づく疑似三次元画像における前記設定位置に対応する位置に前記設定画像を表示させることを特徴とする請求項1記載のX線CT装置。
  5.  前記第2画像処理部は、前記MPR画像として前記被検体のアキシャル像、サジタル像、コロナル像及びオブリーク像のうちの少なくとも一つを作成することを特徴とする請求項3記載のX線CT装置。
  6.  前記設定画像は、前記被検体に対する穿刺針の挿入経路を示す画像であることを特徴とする請求項1記載のX線CT装置。
  7.  被検体をX線でスキャンした結果に基づき、ボリュームデータを作成するX線CT装置を含むX線CTシステムであって、
     予め作成された第1ボリュームデータに基づく画像に対して所定の設定画像を設定するための設定部と、
     前記設定画像及び前記設定画像の設定位置を記憶する記憶部と、
     新たに作成された第2ボリュームデータに基づく画像を表示部に表示させ、且つ前記第2ボリュームデータに基づく画像における前記設定位置に対応する位置に前記設定画像を表示させる表示制御部と、
     を有することを特徴とするX線CTシステム。
  8.  被検体をX線でスキャンした結果に基づき、ボリュームデータを作成するX線CT装置であって、
     予め作成された第1ボリュームデータに基づく画像に対し、前記被検体に対する穿刺針の挿入経路を設定するための第1設定部と、
     前記穿刺針が前記被検体に挿入された状態で行われたスキャンの結果に基づき作成された第2ボリュームデータに基づく画像における前記穿刺針と前記挿入経路とのずれの有無を判断する判断部と、
     前記ずれがあると判断された場合、前記第2ボリュームデータに基づく画像に対し、新たな挿入経路を設定するための第2設定部と、
     前記第2ボリュームデータに基づく画像を表示部に表示させ、且つ設定された前記新たな挿入経路を前記第2ボリュームデータに基づく画像に表示させる表示制御部と、
     を有することを特徴とするX線CT装置。
  9.  ボリュームデータから所定の対象部位を検出する検出部を有し、
     前記第1設定部により、前記第1ボリュームデータから検出された前記対象部位を避けて前記挿入経路が設定され、
     前記第2設定部により、前記第1ボリュームデータ又は前記第2ボリュームデータから検出された前記対象部位を避けて前記新たな挿入経路が設定されることを特徴とする請求項8記載のX線CT装置。
  10.  前記表示制御部は、前記挿入経路を前記第2ボリュームデータに基づく画像に表示させることを特徴とする請求項8記載のX線CT装置。
  11.  前記表示制御部は、前記ずれを示す情報を前記表示部に表示させることを特徴とする請求項8記載のX線CT装置。
  12.  前記表示制御部は、前記挿入経路と前記新たな挿入経路とを異なる表示態様で表示させることを特徴とする請求項8記載のX線CT装置。
  13.  前記表示制御部は、前記第1ボリュームデータに基づく画像又は前記第2ボリュームデータに基づく画像として、前記被検体のアキシャル像、サジタル像、コロナル像及びオブリーク像の少なくとも一つを前記表示部に表示させることを特徴とする請求項8記載のX線CT装置。
  14.  被検体をX線でスキャンした結果に基づき、ボリュームデータを作成するX線CT装置を含むX線CTシステムであって、
     予め作成された第1ボリュームデータに基づく画像に対し、前記被検体に対する穿刺針の挿入経路を設定するための第1設定部と、
     前記穿刺針が前記被検体に挿入された状態で行われたスキャンの結果に基づき作成された第2ボリュームデータに基づく画像における前記穿刺針と前記挿入経路とのずれの有無を判断する判断部と、
     前記ずれがあると判断された場合、前記第2ボリュームデータに基づく画像に対し、新たな挿入経路を設定するための第2設定部と、
     前記第2ボリュームデータに基づく画像を表示部に表示させ、且つ設定された前記新たな挿入経路を前記第2ボリュームデータに基づく画像に表示させる表示制御部と、
     を有することを特徴とするX線CTシステム。
PCT/JP2013/051356 2012-01-27 2013-01-23 X線ct装置、x線ctシステム WO2013111791A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/111,965 US20140072099A1 (en) 2012-01-27 2013-01-23 X-ray ct apparatus, x-ray ct system
CN201380002341.6A CN103702614A (zh) 2012-01-27 2013-01-23 X射线ct装置、x射线ct***

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012015078 2012-01-27
JP2012-015084 2012-01-27
JP2012015084A JP2013153823A (ja) 2012-01-27 2012-01-27 X線ct装置、x線ctシステム
JP2012-015078 2012-06-26

Publications (1)

Publication Number Publication Date
WO2013111791A1 true WO2013111791A1 (ja) 2013-08-01

Family

ID=48873506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051356 WO2013111791A1 (ja) 2012-01-27 2013-01-23 X線ct装置、x線ctシステム

Country Status (3)

Country Link
US (1) US20140072099A1 (ja)
CN (2) CN103702614A (ja)
WO (1) WO2013111791A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503134A (ja) * 2017-01-03 2020-01-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 形状検知デバイスを使用した医療ナビゲーションシステム及びその動作方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6436141B2 (ja) * 2016-09-20 2018-12-12 オムロン株式会社 X線検査装置およびその制御方法
JP7421488B2 (ja) 2017-12-04 2024-01-24 コヴィディエン リミテッド パートナーシップ Ct画像からの自動切除アンテナセグメンテーション
DE102020216524A1 (de) 2020-12-22 2022-06-23 Siemens Healthcare Gmbh Verfahren zur Ansteuerung eines medizinischen Bildgebungsgeräts und medizinisches Bildgebungsgerät
CN117017494B (zh) * 2023-08-29 2024-06-11 哈尔滨海鸿基业科技发展有限公司 一种淋巴静脉吻合术的成像导航***

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194616A (ja) * 1993-11-26 1995-08-01 Toshiba Medical Eng Co Ltd 手術支援システム
JP2000197630A (ja) * 1998-10-27 2000-07-18 Shimadzu Corp 断層撮影装置
JP2000509316A (ja) * 1997-02-14 2000-07-25 バイオセンス・インコーポレイテッド 拡張マッピング空間を用いるx線案内式外科手術位置決めシステム
JP2002058658A (ja) * 2000-06-05 2002-02-26 Toshiba Corp インターベンショナルmri用の磁気共鳴イメージング装置及びその準備方法
JP2005169070A (ja) * 2003-06-27 2005-06-30 Toshiba Corp 画像処理表示装置及びその制御方法
JP2006149560A (ja) * 2004-11-26 2006-06-15 Hitachi Medical Corp 核磁気共鳴撮像装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5748696A (en) * 1993-11-26 1998-05-05 Kabushiki Kaisha Toshiba Radiation computed tomography apparatus
US6314310B1 (en) * 1997-02-14 2001-11-06 Biosense, Inc. X-ray guided surgical location system with extended mapping volume
US6850588B2 (en) * 2002-07-25 2005-02-01 Ge Medical Systems Global Technology Company, Llc Radiation exposure limiting scheme
US8102392B2 (en) * 2003-06-27 2012-01-24 Kabushiki Kaisha Toshiba Image processing/displaying apparatus having free moving control unit and limited moving control unit and method of controlling the same
DE602005026950D1 (de) * 2004-07-21 2011-04-28 Hitachi Medical Corp Tomographiesystem
DE102005013835A1 (de) * 2005-03-24 2006-09-28 Siemens Ag Verfahren zum Unterstützen einer minimalinvasiven Intervention an einem Organ
US8190238B2 (en) * 2005-12-09 2012-05-29 Hansen Medical, Inc. Robotic catheter system and methods
JP2007190199A (ja) * 2006-01-19 2007-08-02 Toshiba Corp X線ct装置
JP2007301228A (ja) * 2006-05-12 2007-11-22 Toshiba Corp X線ct装置とその制御方法
DE102007013407B4 (de) * 2007-03-20 2014-12-04 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Bereitstellung einer Korrekturinformation
US20090082660A1 (en) * 2007-09-20 2009-03-26 Norbert Rahn Clinical workflow for treatment of atrial fibrulation by ablation using 3d visualization of pulmonary vein antrum in 2d fluoroscopic images

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07194616A (ja) * 1993-11-26 1995-08-01 Toshiba Medical Eng Co Ltd 手術支援システム
JP2000509316A (ja) * 1997-02-14 2000-07-25 バイオセンス・インコーポレイテッド 拡張マッピング空間を用いるx線案内式外科手術位置決めシステム
JP2000197630A (ja) * 1998-10-27 2000-07-18 Shimadzu Corp 断層撮影装置
JP2002058658A (ja) * 2000-06-05 2002-02-26 Toshiba Corp インターベンショナルmri用の磁気共鳴イメージング装置及びその準備方法
JP2005169070A (ja) * 2003-06-27 2005-06-30 Toshiba Corp 画像処理表示装置及びその制御方法
JP2006149560A (ja) * 2004-11-26 2006-06-15 Hitachi Medical Corp 核磁気共鳴撮像装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020503134A (ja) * 2017-01-03 2020-01-30 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 形状検知デバイスを使用した医療ナビゲーションシステム及びその動作方法
JP7167030B2 (ja) 2017-01-03 2022-11-08 コーニンクレッカ フィリップス エヌ ヴェ 形状検知デバイスを使用した医療ナビゲーションシステム及びその動作方法

Also Published As

Publication number Publication date
CN103702614A (zh) 2014-04-02
US20140072099A1 (en) 2014-03-13
CN109984766A (zh) 2019-07-09

Similar Documents

Publication Publication Date Title
JP6283872B2 (ja) X線ct装置、x線ctシステム
WO2013125276A1 (ja) X線ct装置、画像表示装置、画像表示方法
WO2013111791A1 (ja) X線ct装置、x線ctシステム
JP2013169392A (ja) X線ct装置、画像表示方法
WO2013114994A1 (ja) X線ct装置
JP6109479B2 (ja) X線ct装置
JP6165438B2 (ja) X線ct装置
JP6634381B2 (ja) 画像処理装置、x線ct装置、及び画像処理方法
JP5238893B1 (ja) X線ct装置、画像表示装置、画像表示方法
JP2013153824A (ja) X線ct装置
JP6416172B2 (ja) X線ct装置、x線ctシステム
JP6017146B2 (ja) X線ct装置
JP6226639B2 (ja) X線ct装置、表示装置
US10255672B2 (en) Medical apparatus and X-ray CT system
JP5970705B2 (ja) X線ct装置
JP5981166B2 (ja) X線ct装置
JP6552782B2 (ja) X線ct装置
JP5984249B2 (ja) 医療装置
JP2013153823A (ja) X線ct装置、x線ctシステム
JP2017086819A (ja) 医用画像診断装置
JP2013169360A (ja) X線ct装置
JP2013176540A (ja) X線ct装置
JP6158365B2 (ja) X線ct装置
JP5238894B1 (ja) X線ct装置
JP6073607B2 (ja) X線ct装置、x線ct装置の画像表示プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741113

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14111965

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741113

Country of ref document: EP

Kind code of ref document: A1