WO2013108817A1 - 植物由来プラスチックブレンド物およびその製造方法 - Google Patents

植物由来プラスチックブレンド物およびその製造方法 Download PDF

Info

Publication number
WO2013108817A1
WO2013108817A1 PCT/JP2013/050757 JP2013050757W WO2013108817A1 WO 2013108817 A1 WO2013108817 A1 WO 2013108817A1 JP 2013050757 W JP2013050757 W JP 2013050757W WO 2013108817 A1 WO2013108817 A1 WO 2013108817A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
derived
plastic blend
weight
less
Prior art date
Application number
PCT/JP2013/050757
Other languages
English (en)
French (fr)
Inventor
博 清水
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2013554325A priority Critical patent/JP6340196B2/ja
Priority to CN201380005661.7A priority patent/CN104053718A/zh
Priority to EP13738399.8A priority patent/EP2805993A4/en
Priority to KR1020147018996A priority patent/KR20140112019A/ko
Publication of WO2013108817A1 publication Critical patent/WO2013108817A1/ja
Priority to US14/332,570 priority patent/US9546265B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/005Processes for mixing polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/16Biodegradable polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE

Definitions

  • the present invention relates to a plastic blend and a method for producing the same.
  • the present invention relates to a plant-derived plastic blend using plant-derived raw materials and a method for producing the same.
  • PLLA polylactic acid
  • PE polyethylene
  • HDPE high-density PE
  • LDPE low-density PE
  • HDPE high-density PE
  • PLLA high elastic modulus plastic
  • An object of the present invention is to provide a plant-derived plastic blend in which HDPE and PLLA are microscopically mixed to improve mechanical performance and a method for producing the same.
  • a plant-derived plastic blend further comprising 1% by weight or more and 20% by weight or less of a compatibilizer is provided.
  • the ratio of the domain size of the plant-derived polylactic acid is 1 ⁇ m or less is 60% or more, and the plant-derived polylactic acid is a matrix
  • the ratio of the domain size of the plant-derived polyethylene of 1 ⁇ m or less may be 40% or more.
  • the compatibilizer is an epoxy group-containing resin, is a copolymer having an epoxy group and containing a structure of an olefin compound, and (a) 60% by weight of ethylene units 99 wt% or less, (b) 0.1 to 30 wt% of unsaturated carboxylic acid glycidyl ester unit and / or unsaturated glycidyl ether unit, and (c) 0 wt% or more of ethylenically unsaturated ester compound
  • An epoxy group-containing ethylene copolymer comprising 40% by weight or less may be used.
  • the epoxy group-containing resin may be an ethylene-glycidyl methacrylate-methyl acrylate copolymer having a glycidyl methacrylate content of 0.1 wt% to 30 wt%.
  • the plant-derived plastic blend may have a tensile modulus of 950 MPa or more and a breaking elongation of 4% or more.
  • a raw material containing plant-derived high-density polyethylene, plant-derived polylactic acid, and a compatibilizer is melt-kneaded with the raw material sent in the screw tip direction.
  • the product is supplied again to a melt-kneading apparatus equipped with an internal feedback screw that can move to the rear end direction.
  • the rotational speed of the screw is 200 rpm to 3000 rpm, and the shear rate is 300 sec ⁇ 1.
  • a method for producing a plant-derived plastic blend in which melt kneading is performed by circulating for a certain time under the condition of 4500 sec ⁇ 1 or less.
  • the raw material may be transferred in the rear end direction through a hole provided in the screw.
  • the total of 50% to 90% by weight of plant-derived high-density polyethylene and 10% to 50% by weight of plant-derived polylactic acid is 100% by weight.
  • a compatibilizer of 1 to 10% by weight may be further added and kneaded.
  • the container containing the plant-derived plastic blend as described in any one of the above is provided.
  • the container for cosmetics containing the plant-derived plastic blend as described in any one of the above is provided.
  • the packaging container containing the plant-derived plastic blend as described in any one of the above is provided.
  • the automotive component containing the plant-derived plastic blend as described in any one of the above is provided.
  • a plant-derived plastic blend in which HDPE and PLLA both derived from plants are microscopically mixed to improve mechanical performance, and a method for producing the same.
  • the present invention examined a method of microscopically mixing plant-derived high-density PE and PLLA.
  • the present inventors have found that not only adding a compatibilizing agent but also applying high shear molding to microscopically mix high-density PE and PLLA, the mechanical performance is greatly improved. It was.
  • the plant-derived plastic blend according to an embodiment of the present invention includes plant-derived high-density PE, plant-derived PLLA, and a compatibilizer.
  • the plant-derived plastic blend according to this embodiment is a plastic blend obtained by microscopically mixing high-density PE and PLLA by subjecting these raw materials to high shear molding.
  • the plant-derived high-density polyethylene (plant-derived HDPE) according to this embodiment is a component that imparts high mechanical performance to the plant-derived plastic blend.
  • the plant-derived HDPE according to the present embodiment can be a known plant-derived HDPE, and is commercially available.
  • the plant-derived plastic blend according to this embodiment preferably contains 10% to 90% by weight of plant-derived HDPE.
  • the plant-derived polylactic acid (plant-derived PLLA) according to this embodiment is a component that imparts a high elastic modulus, particularly a tensile elastic modulus, to a plant-derived plastic blend.
  • the plant-derived PLLA according to the present embodiment can use a known plant-derived PLLA and is commercially available.
  • the plant-derived plastic blend according to this embodiment preferably contains 10% by weight or more and 90% by weight or less of plant-derived PLLA.
  • the compatibilizer according to the present embodiment is a component that compatibilizes plant-derived HDPE and plant-derived PLLA in a plant-derived plastic blend.
  • the compatibilizer according to the present embodiment is an epoxy group-containing resin, a copolymer having an epoxy group and containing a structure of an olefinic compound, and (a) 60 wt% or more and 99 wt% of ethylene units.
  • E-GMA-MA ethylene-glycidyl methacrylate-methyl acrylate copolymer
  • E-GMA-MA ethylene-glycidyl methacrylate-methyl acrylate copolymer
  • the E-GMA-MA according to this embodiment preferably has a glycidyl methacrylate content of 0.1 wt% or more and 30 wt% or less.
  • the plant-derived plastic blend according to the present embodiment preferably contains 1 to 20% by weight of E-GMA-MA, with the total of plant-derived HDPE and plant-derived PLLA being 100 masses. By containing E-GMA-MA within this range, plant-derived HDPE and plant-derived PLLA can be suitably dispersed in the plant-derived plastic blend, and excellent mechanical performance can be exhibited.
  • the plant-derived plastic blend according to this embodiment has a structure in which plant-derived HDPE and plant-derived PLLA are microscopically mixed, it has a tensile elastic modulus of 950 MPa or more and a breaking elongation of 4% or more.
  • the plant-derived plastic blend according to this embodiment when the plant-derived polyethylene is a matrix, the ratio of the domain size of the plant-derived polylactic acid is 1 ⁇ m or less is 60% or more, and the plant-derived polylactic acid is a matrix. In this case, the proportion of the plant-derived polyethylene domain size of 1 ⁇ m or less is 40% or more.
  • the plant-derived plastic blend according to this embodiment with improved mechanical performance can be used for containers such as cosmetic containers and packaging containers, and automobile parts.
  • the cosmetic container, the packaging container, and the automobile part according to the present embodiment can be replaced with plant-derived materials by including the plant-derived plastic blend according to the present embodiment, and have excellent mechanical performance. it can.
  • the plant-derived plastic blend according to the present invention is realized by microscopic mixing of HDPE and PLLA, which has conventionally been difficult. Such microscopic mixing requires not only the addition of a compatibilizer but also a high shear molding process. The high shear molding process according to the present embodiment will be described below.
  • the screw rotation speed is 200 rpm to 3000 rpm
  • the plant-derived HDPE the plant-derived PLLA
  • melt-kneading agent and melt-kneading an extrudate of a plant-derived plastic blend in which one polymer component is used as a matrix and the dispersed phase size of the other polymer component is microscopically controlled is produced.
  • the “extruded product” produced in the present invention is simply called an extrudate “kneaded product” in a kneaded state. Or an extrudate “molded product” formed into a sheet-like shape by molding. ).
  • plant-derived high-density PE In order to knead a mixture of plant-derived high-density PE, plant-derived PLLA, and a compatibilizer, a method by dry blending in which the mixture is mixed in a granular state in advance can be used.
  • plant-derived PLLA Prior to dry blending, for example, plant-derived PLLA may be dried in vacuum at 80 ° C. for 24 hours, and plant-derived HDPE and compatibilizer may be dried in vacuum at 45 ° C. for 24 hours.
  • plant-derived PLLA and plant-derived HDPE are incompatible, and in order to obtain a blended product thereof, it is usual to use a biaxial melt kneader or the like at 170 ° C. to 250 ° C. near the melting point. Mix.
  • the internal structure of those extrudates has a dispersed phase size of several microns when one component is a matrix. Since the so-called phase-separated structure is coarsened to a level of several tens of micrometers, the resulting melt-kneaded material cannot exhibit good mechanical performance.
  • the apparatus used in the melt-kneading step for producing the plant-derived plastic blend of the present invention is not limited to the application of the shear flow field, and any apparatus that can also provide an extension field is suitable.
  • a shear flow field is applied between the screw and the cylinder, and an extension field is applied when passing through the screw return hole 44. Any device that can provide such a field may be used.
  • the inventors of the present invention have developed a blend comprising a plant-derived PLLA and a plant-derived HDPE, and a system to which a compatibilizer is added, in place of a conventional twin screw kneader.
  • the screw rotation speed is 200 rpm to 3000 rpm
  • the shear rate is 300 sec -1 or more 4500Sec -1 or less, under the following conditions heating temperature 250 ° C. 180 ° C. or higher, by melt kneading, novel never conventionally obtained, by uniformly and intimately finely plant derived HDPE matrix phase
  • a plant-derived plastic blend in which a plant-derived PLLA phase is dispersed can be obtained.
  • an object to be melt kneaded such as a plant-derived PLLA, a plant-derived HDPE, or a system to which a compatibilizing agent is added is used.
  • Thorough blending is required before feeding to a high shear molding machine. This means that the insoluble resin is adjusted in advance to the respective weight composition and then dry blended so that it is not unevenly distributed and is made as uniform as possible.
  • the scale of the apparatus does not use a large-scale apparatus that can be industrialized, but the amount of incompatible resin that is used when the scale is actually scaled for industrialization also increases. In this case, it is necessary to dry-blend the insoluble resin in advance after adjusting the weight composition in advance, and supply it without causing uneven distribution. In this embodiment, dry blending is adopted, but it is also necessary to adopt a more advanced blending method.
  • FIG. A micro high-shear molding machine equipped with an internal feedback screw produced by the present inventors is shown in FIG. This trace type high shear molding machine itself is the same as the trace type high shear molding machine introduced in JP-A-2005-313608.
  • a micro high shear molding machine 10 includes a melt-kneading unit 12 and a molding unit 14.
  • the molding part 14 has an extrusion molding part or an injection molding part.
  • the melt-kneading unit 12 includes a material charging unit 16, a cylinder 18, a feedback screw 20 mounted in the cylinder 18, and a shaft 24 connected to the cylinder 18 via a bearing 22.
  • the cylinder 18 includes a heater 26 for melting the resin in the cylinder 18.
  • the cylinder 18 includes a seal member 28 for sealing between the molding portion 14 and the shaft 24 of the cylinder 18 at the opposite end. As shown in FIGS. 2 and 3, the cylinder 18 includes a front end surface 29 of the screw 20 and a seal surface of the seal member 28 facing the front end surface 29 (hereinafter referred to as “seal surface 28”). Adjustment means for adjusting the gap (gap) 32 is provided on the screw rear side. The spacing 32 is adjusted within the range of about 0.5 to about 5 mm.
  • the extrusion molding unit that is the molding unit 14 includes an extrusion unit heater 35 and a T-die 34 for film creation.
  • the T die 34 includes a T die front end heater 36 and a T die rear end heater 38.
  • the extruded film passes through the discharge port 40 between the heaters 36 and 38 at both ends.
  • a thermocouple 42 is attached to the extrusion part and the T-die tip heater 36 to measure the temperature. The measurement result is sent to a control device (not shown) to adjust the temperature of the melt-kneading unit 12 and the temperature of the T die.
  • Screw 20 has an inner diameter 1mm or 5mm or less, preferably has the following pore 44 about 2mm above 3 mm, the rotational speed of the screw is at 200rpm or 3000rpm less, shear rate, 300 sec -1 or more 4500Sec -1 below is there.
  • the temperature in the cylinder 18 varies depending on the melt-kneaded resin, but for room temperature or amorphous resin, a temperature higher than the glass transition point is used as a guide, and for a crystalline resin, a temperature higher than its melting point is used as a guide. Set under conditions. The raw material passes through the holes 44 provided in the screw 20 and is moved toward the screw rear end.
  • the screw 20 has a structure in which at least two types of incompatible blended resins are sufficiently melt-kneaded inside the screw 20.
  • FIG. 3 shows a resin internal feedback structure 46 in the feedback screw 20.
  • the internal feedback type structure 46 sufficiently kneads the mixed resin introduced from the screw rear stage 48 while feeding it to the screw front stage 50 by the screw 20, and opposes the kneaded resin to the most distal surface 29 of the screw 20 and the front end surface thereof.
  • the resin confined in the space 32 with the seal surface 28 and further kneaded is put into a hole 44 provided in the longitudinal direction at substantially the center of the screw 20, and returned to the subsequent stage of the screw 20 again.
  • the kneading time in the internal feedback type structure 46 can be arbitrarily changed depending on the time for circulating through the internal feedback type structure 46.
  • the degree of kneading is adjusted by varying the distance 32 between the tip surface of the screw 20 and the seal surface 28 facing the tip surface and the inner diameter of the hole 44 of the screw 20.
  • the degree of kneading increases as the interval 32 is narrowed and the inner diameter of the hole 44 of the screw 20 is decreased.
  • the interval 32 and the inner diameter of the hole 44 of the screw 20 are optimized in consideration of the viscosity of the resin. There is a need.
  • the mixing time of the resin in the cylinder 18 is 1 minute or more and 10 minutes or less.
  • a compatibilizing agent is added to the plant-derived high-density PE and plant-derived PLLA to react at the interface between the blends.
  • a high shear field can be applied and melt kneading can be performed.
  • the molding process conditions include not only the setting of the specific temperature described above, but also the screw rotation speed and kneading time of the molding machine. Setting is important.
  • the screw rotation speed can be set between 100 rpm and 3000 rpm
  • the kneading time can be set between 0.5 minutes and 60 minutes, but the rotation speed and kneading time are 200 rpm and 3000 rpm, 1 minute and 10 respectively. Optimal results could be obtained by setting it to less than a minute.
  • the production method according to the present invention is characterized in that high shear molding is performed under the specific temperature conditions described above, with the screw rotation speed and the kneading time being the optimum numerical conditions.
  • good results can be obtained only by combining specific conditions. Even if one of the setting conditions such as the temperature setting or the screw rotation speed and the kneading time is not satisfied, a satisfactory result cannot be obtained.
  • the tip 20 is opposed to the tip surface 29 of the screw 20.
  • the strength of the shear flow field or the degree of kneading can be adjusted.
  • the interval 32 can be set to an arbitrary value of 0.5 mm between 1 mm and 5 mm, and the inner diameter of the hole 44 of the screw 20 is similarly set to an arbitrary value of 0.5 ⁇ between 1 ⁇ and 5 ⁇ .
  • the interval can be set, an optimum result can be obtained by setting the interval 32 and the inner diameter of the hole 44 of the screw 20 to 2 mm and 2.5 ⁇ , respectively.
  • plant-derived high-density PE (bio-HDPE) (manufactured by Toyota Tsusho, SGE7252) was used.
  • Plant-derived PLLA has a weight average molecular weight (Mw) of 1.7 ⁇ 10 5 g / mol and a D-form content of 1.2% (PLLA-1) and a weight average molecular weight (Mw) of 1.3.
  • the one having ⁇ 10 5 g / mol and a D-form content of 1.2% (PLLA-2) was used.
  • E-GMA-MA (Sumitomo Chemical, BF2C) was used as a compatibilizer.
  • plant-derived HDPE: plant-derived PLLA-2: E-GMA-MA 75: 25: 10 were used in Examples 13 and 14, 50:50:10 were used in Examples 15 and 16, and 25:75:10 were used as examples. 17 and 18.
  • the plant-derived PE is not limited to a high density (0.948 to 0.962 g / cm 3 ), but is almost the same even if a low density (0.916 to 0.920 g / cm 3 ) is used. Results were obtained. Further, the compatibilizer E-GMA-MA (manufactured by Sumitomo Chemical Co., Ltd.) gave almost the same results even when BF7L or BF20C was used.
  • the plant-derived PLLA Prior to kneading, the plant-derived PLLA was dried in vacuum at 80 ° C. for 24 hours, and the plant-derived HDPE and the compatibilizer were dried in vacuum at 45 ° C. for 24 hours.
  • the above-mentioned plant-derived HDPE, plant-derived PLLA, and E-GMA-MA were dry blended at a ratio of 5 wt% or 10 wt% with respect to 100 wt% of these blends at room temperature. About 5 g of this dry blend was put into a micro-type high shear molding machine (HSE3000mini manufactured by Imoto Seisakusho Co., Ltd.), and the gap (interval 32 in FIG. 3) and the inner diameter of the internal feedback screw hole (hole in FIG. 3).
  • the inner diameter of 44 is set to 2 mm and 2.5 ⁇ , respectively, is heated and melted at 190 to 200 ° C., and the screw speed is 300 rpm (Examples 1, 3, 5, 7, 9, 11, 13, 15 and 17) and 600 rpm (Examples 2, 4, 6, 8, 10, 12, 14, 16 and 18), kneaded for 2 minutes, extruded from a T-die, and cooled and solidified by passing through a cooling water bath.
  • NHSS2-28 fully automatic high shear molding apparatus manufactured by Niigata Machine Techno Co., Ltd. was used as the melt kneading apparatus.
  • the temperature was controlled by using a cooling means for cooling the cylinder so that the resin temperature did not exceed 220 ° C.
  • Comparative Example 1 is an extrudate of plant-derived high-density polyethylene (bio-HDPE) alone
  • Comparative Example 2 is an extrudate of plant-derived polylactic acid (PLLA-1)
  • Comparative Example 3 is plant-derived polylactic acid (PLLA-2). The extrudate is shown.
  • FIG. 4 is a scanning electron microscope (SEM image) showing the microscopic structure of the extrudate of Comparative Example 4
  • FIG. 5 is an SEM image showing the microscopic structure of the extrudate obtained in Example 7.
  • the microscopic structure in this example was measured using an SEM (field emission type SEM XL-20 manufactured by Philips) at an acceleration voltage of 10 kV.
  • the PLLA domain dispersed in the matrix (bio-HDPE phase) is coarsened to 20 to 30 ⁇ m, and it is clear that the phases are separated.
  • Example 7 it was found that the interface state was very smooth at the resolution level shown in FIG. 5 and was refined to a size of 2 ⁇ m or less even where the PLLA domain was visible.
  • 6 and 7 are transmission electron microscope (TEM) images showing the microscopic structure of the extrudate obtained in this example.
  • 6 (a) shows the extrudate of Example 1
  • FIG. 6 (b) shows the extrudate of Example 2.
  • FIG. FIG. 7A shows the extrudate of Example 3
  • FIG. 7B shows the extrudate of Example 4.
  • the microscopic structure in this example was measured using TEM (JEM 1230, manufactured by JEOL Ltd.) at an acceleration voltage of 120 kV. The observed images were recorded with a Gatan CCD camera.
  • the sample was embedded and double-stained with osmium tetroxide (OsO 4 ) and ruthenium tetroxide (RuO 4 ), and then an ultrathin section was prepared for TEM observation.
  • OsO 4 osmium tetroxide
  • RuO 4 ruthenium tetroxide
  • the matrix is bio-HDPE (black background phase), and the dispersed matrix is PLLA (white background domain).
  • the structure of Example 2 processed at 600 rpm has a finer dispersed phase size than Example 1 processed at 300 rpm, and the domain size distribution per unit area in the TEM image is 1 for the PLLA phase. It can be seen that the small domain of ⁇ m or less is 80% or more.
  • Example 3 and 4 shown in FIG. 7 the major difference from Examples 1 and 2 shown in FIG. 6 is that the matrix and the dispersed phase are reversed. That is, in the microscopic structure of the blend sample with this composition, PLLA forms a matrix (white background phase), and bio-HDPE has a dispersed phase (black background domain). Moreover, the microstructure here depends greatly on the molding conditions, and as shown in FIG. 7 (a), in Example 3 where high shear processing was performed at a screw rotation speed of 300 rpm, the dispersed phase size was large, and a domain of several ⁇ m to 10 ⁇ m. However, as shown in FIG. 7B, in Example 4 processed at a screw rotation speed of 600 rpm, the dispersed phase size is very small, and the ratio of the domain size of 1 ⁇ m or less in the unit area is 50. It turns out that it is more than%.
  • Tables 1 to 3 collectively show the tensile elastic modulus and elongation at break according to this example in the stress-strain characteristics shown in FIGS.
  • the content of plant-derived PLLA is 25 to 75% by weight and the total is 100% by weight with respect to plant-derived HDPE. It is clear that the tensile modulus of plant-derived HDPE (932 MPa), which originally had a low elastic modulus, is remarkably improved by kneading at 600 rpm with a high shear molding apparatus by adding 5 to 10% by weight. It was. In other words, the plant-derived plastic blend material is subjected to high shear molding to increase the plant-derived PLLA content, so that the plant-derived HDPE and the plant-derived PLLA are microscopically dispersed to improve the tensile elastic modulus.
  • plant-derived PLLAs used as Comparative Examples 2 and 3 differ only in molecular weight, but the PLLA alone has a very large elastic modulus, but the elongation at break is 4%, which is a very poor plastic.
  • plant-derived HDPE (Comparative Example 1) is a plastic that extends by 997.7%. Therefore, as shown in the present example, when the plant-derived HDPE is microscopically dispersed with respect to the plant-derived PLLA, only 4%, which is a defect of the PLLA, is extended. The disadvantage of this is significantly improved.
  • Example 8 corresponding to 136% of Example 2, it is 703.7%, in Example 10 corresponding to 13.6% of Example 4, it is 41.4%, and further in Example 6.
  • Example 12 corresponding to 14.2%, the elongation at break increases to 27.6%.
  • plant-derived PE and plant-derived PLLA are blended by high shear molding to perform fine mixing, and mechanical performance is dramatically improved.
  • An improved blend of plant-derived plastics can be realized.
  • containers and various members are created as materials having balanced mechanical performance that require higher elastic modulus than PE or higher elongation than PLLA, and use of plant-derived plastics. It is possible to accelerate further.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

高密度ポリエチレンとポリ乳酸とを微視的に混合し、力学性能を向上させた植物由来プラスチックブレンド物およびその製造方法を提供する。植物由来プラスチックブレンド物は、10重量%以上90重量%以下の植物由来ポリエチレンと、10重量%以上90重量%以下の植物由来ポリ乳酸との合計が100重量%となるように含有し、1重量%以上20重量%以下の相容化剤をさらに含有する。また、植物由来プラスチックブレンド物の製造方法は、シリンダー内で、植物由来ポリエチレンと、植物由来ポリ乳酸と、相容化剤とを含む原料を、せん断流動場および伸長場を付与して溶融混練を行う。

Description

植物由来プラスチックブレンド物およびその製造方法
本発明は、プラスチックブレンド物およびその製造方法に関する。特に、植物由来の原料を用いた植物由来プラスチックブレンド物およびその製造方法に関する。
地球温暖化の問題の対策として、化石資源への依存度を低下させることは有効な解決策の1つであると考えられる。バイオマス燃料の利用をはじめ、植物由来材料の積極的な利用は、COの排出量を抑制する有効な手段であると考えられている。このような潮流の中で、植物由来プラスチックの利用は化石資源への依存度を低減化させる上で非常に重要なキーテクノロジーである。従来は、ポリ乳酸(PLLA)が植物由来のプラスチックの代表例とされてきたが、今日ではナイロンや汎用プラスチックであるポリエチレン(PE)も植物由来のものが生産され始め、次第に石油由来のPEに代替されようとしている。
より高い力学性能等を実現する材料にPEを利用する場合、低密度PE(LDPE)ではなく、高密度PE(HDPE)を利用する必要がある。しかし、石油由来のPEにおいても、単純にHDPEに置き換えただけでは、それほど顕著な性能改善を図ることはできない。PEは弾性率が低いため、高弾性率化するためには、PLLAのような高弾性率プラスチックとブレンドして性能向上を図ることが期待される。しかしながら、従来の混合方法では、HDPEとPLLAとは微視的には混合されてはおらず、微視的に混合するブレンド技術も無かったため、HDPE等の改質は進展していなかった。このような状況は、植物由来のPEが利用可能な状況になった今日でも同様である。
特開2008-038142号公報
従って、植物由来のPEを積極的に利用し、石油由来のPEへの代替をさらに加速させるためには、HDPEとPLLAとを微視的に混合する植物由来プラスチックブレンド物の製造技術の開発が不可欠である。
本発明は、HDPEとPLLAとを微視的に混合し、力学性能を向上させた植物由来プラスチックブレンド物およびその製造方法を提供することを目的としている。
本発明の一実施形態によると、10重量%以上90重量%以下の植物由来ポリエチレンと、10重量%以上90重量%以下の植物由来ポリ乳酸との合計が100重量%となるように含有し、1重量%以上20重量%以下の相容化剤をさらに含有する植物由来プラスチックブレンド物植物由来プラスチックブレンド物の製造方法が提供される。
前記植物由来プラスチックブレンド物において、前記植物由来ポリエチレンがマトリクスの場合には、前記植物由来ポリ乳酸のドメインサイズが1 μm以下の割合が60%以上であること、前記植物由来ポリ乳酸がマトリクスの場合には、前記植物由来ポリエチレンのドメインサイズが1 μm以下の割合が40%以上であってもよい。
前記植物由来プラスチックブレンド物において、前記相容化剤はエポキシ基含有樹脂であり、エポキシ基を有し、オレフィン系化合物の構造を含有する共重合体であり、(a)エチレン単位を60重量%以上99重量%以下、(b)不飽和カルボン酸グリシジルエステル単位および/または不飽和グリシジルエーテル単位を0.1重量%以上30重量%以下、(c)エチレン系不飽和エステル化合物を0重量%以上40重量%以下からなるエポキシ基含有エチレン共重合体であってもよい。
前記植物由来プラスチックブレンド物において、前記エポキシ基含有樹脂は、グリシジルメタクリレートの含有量が0.1重量%以上30重量%以下であるエチレン-グリシジルメタクリレート-メチルアクリレート共重合体であってもよい。
前記植物由来プラスチックブレンド物の引張弾性率が950MPa以上で、破断伸びが4%以上であってもよい。
また、本発明の一実施形態によると、シリンダー内で、植物由来高密度ポリエチレンと、植物由来ポリ乳酸と、相容化剤とを含む原料を、スクリュー先端方向に送られた前記原料の溶融混練物を再度後端方向に移行できる内部帰還型スクリューを搭載した溶融混練装置に供給し、180℃以上250℃以下の加熱下、前記スクリューの回転数が200rpm以上3000rpm以下、せん断速度が300sec-1以上4500sec-1以下である条件下で、一定時間循環して溶融混練を行う植物由来プラスチックブレンド物の製造方法が提供される。
前記植物由来プラスチックブレンド物の製造方法において、前記原料を、前記スクリューに設けられた孔を通って前記後端方向に移行させてもよい。
前記植物由来プラスチックブレンド物の製造方法において、50重量%以上90重量%以下の植物由来高密度ポリエチレンと、10重量%以上50重量%以下の植物由来ポリ乳酸との合計が100重量%となるように含有し、1重量%以上10重量%以下の相容化剤をさらに添加して、混練してもよい。
また、本発明の一実施形態によると、前記何れか一に記載の植物由来プラスチックブレンド物を含む容器が提供される。
また、本発明の一実施形態によると、前記何れか一に記載の植物由来プラスチックブレンド物を含む化粧品用容器が提供される。
また、本発明の一実施形態によると、前記何れか一に記載の植物由来プラスチックブレンド物かを含む包装容器が提供される。
また、本発明の一実施形態によると、前記何れか一に記載の植物由来プラスチックブレンド物を含む自動車用部品が提供される。
本発明によれば、共に植物由来であるHDPEとPLLAとを微視的に混合し、力学性能を向上させた植物由来プラスチックブレンド物およびその製造方法が提供される。
本発明の一実施形態に係る溶融混練物製造装置を示す模式図である。 本発明の一実施形態に係る溶融混練物製造装置を示す模式図である。 本発明の一実施形態に係る溶融混練物製造装置を示す模式図である。 比較例の押出物の走査型電子顕微鏡(SEM像)である。 本発明の一実施例に係る押出物のSEM像である。 本発明の一実施例に係る押出物のSEM像である。 本発明の一実施例に係る押出物のSEM像である。 本発明の一実施例に係る応力-ひずみ特性を示す図である。 本発明の一実施例に係る応力-ひずみ特性を示す図である。 本発明の一実施例に係る応力-ひずみ特性を示す図である。 本発明の一実施例に係る応力-ひずみ特性を示す図である。 本発明の一実施例に係る応力-ひずみ特性を示す図である。 本発明の一実施例に係る応力-ひずみ特性を示す図である。 本発明の一実施例に係る応力-ひずみ特性を示す図である。 本発明の一実施例に係る応力-ひずみ特性を示す図である。
以下、図面を参照して本発明に係る植物由来プラスチックブレンド物およびその製造方法について説明する。但し、本発明の植物由来プラスチックブレンド物およびその製造方法は、以下に示す実施の形態及び実施例の記載内容に限定して解釈されるものではない。なお、本実施の形態及び実施例で参照する図面において、同一部分又は同様な機能を有する部分には同一の符号を付し、その繰り返しの説明は省略する。
本発明は上記の技術的な問題を解決するため、植物由来の高密度PEとPLLAとを微視的に混合する方法を検討した。本発明者らは、相容化剤を添加するのみならず、高せん断成形加工を施して高密度PEとPLLAとを微視的に混合することにより、力学性能が格段に向上することを見出した。
本発明の実施形態に係る植物由来プラスチックブレンド物は、植物由来高密度PEと、植物由来PLLAと、相容化剤とを含む。本実施形態に係る植物由来プラスチックブレンド物は、これらの原料を高せん断成形加工することにより、高密度PEとPLLAとを微視的に混合したプラスチックブレンド物である。
(植物由来高密度ポリエチレン)
本実施形態に係る植物由来高密度ポリエチレン(植物由来HDPE)は、植物由来プラスチックブレンド物に高い力学性能を付与する構成成分である。本実施形態に係る植物由来HDPEは、公知の植物由来HDPEを利用可能であり、商業的に入手可能である。本実施形態に係る植物由来プラスチックブレンド物は、植物由来HDPEを10重量%以上90重量%以下含有することが好ましい。
(植物由来ポリ乳酸)
本実施形態に係る植物由来ポリ乳酸(植物由来PLLA)は、植物由来プラスチックブレンド物に高い弾性率、特に引張弾性率を付与する構成成分である。本実施形態に係る植物由来PLLAは、公知の植物由来PLLAを利用可能であり、商業的に入手可能である。本実施形態に係る植物由来プラスチックブレンド物は、植物由来PLLAを10重量%以上90重量%以下含有することが好ましい。
(相容化剤)
本実施形態に係る相容化剤は、植物由来プラスチックブレンド物において、植物由来HDPEと植物由来PLLAを相容化させる成分である。本実施形態に係る相容化剤は、エポキシ基含有樹脂であり、エポキシ基を有し、オレフィン系化合物の構造を含有する共重合体であり、(a)エチレン単位を60重量%以上99重量%以下、(b)不飽和カルボン酸グリシジルエステル単位および/または不飽和グリシジルエーテル単位を0.1重量%以上30重量%以下、(c)エチレン系不飽和エステル化合物を0重量%以上40重量%以下からなるエポキシ基含有エチレン共重合体であることが好ましい。例えば、エチレン-グリシジルメタクリレート-メチルアクリレート共重合体(E-GMA-MA)を用いることができる。本実施形態において好適に利用可能なE-GMA-MAとしては、例えば、住友化学(株)製のBF7LやBF2C、BF20Cなどがある。本実施形態に係るE-GMA-MAは、グリシジルメタクリレートの含有量が0.1重量%以上30重量%以下であることが好ましい。本実施形態に係る植物由来プラスチックブレンド物は、植物由来HDPEと植物由来PLLAとの合計を100質量として、さらに、E-GMA-MAを1重量%以上20重量%以下含有することが好ましい。この範囲でE-GMA-MAを含有することにより、植物由来プラスチックブレンド物において植物由来HDPEと植物由来PLLAを好適に分散させ、優れた力学性能を発揮させることができる。
本実施形態に係る植物由来プラスチックブレンド物は、植物由来HDPEと植物由来PLLAとを微視的に混合した構造を有するため、950MPa以上の引張弾性率と、4%以上の破断伸びを有する。また、本実施形態に係る植物由来プラスチックブレンド物は、植物由来ポリエチレンがマトリクスの場合には、植物由来ポリ乳酸のドメインサイズが1 μm以下の割合が60%以上であり、植物由来ポリ乳酸がマトリクスの場合には、植物由来ポリエチレンのドメインサイズが1 μm以下の割合が40%以上である。
このような力学性能を向上させた本実施形態に係る植物由来プラスチックブレンド物は、例えば、化粧品用容器や包装容器等の容器及び自動車用部品に利用することができる。本実施形態に係る化粧品用容器、包装容器及び自動車用部品は、本実施形態に係る植物由来プラスチックブレンド物を含むことにより、植物由来材料に代替可能とするとともに、優れた力学性能を備えることができる。
(植物由来プラスチックブレンド物の製造方法)
上述したように、本発明に係る植物由来プラスチックブレンド物においては、従来困難であったHDPEとPLLAとの微視的な混合により実現される。このような微視的な混合は、相容化剤を添加するのみならず、高せん断成形加工を施す必要がある。以下に、本実施形態に係る高せん断成形加工について説明する。
本実施形態においては、内部帰還型スクリュー搭載の微量型高せん断成形加工機を用いて、スクリューの回転数が200rpm以上3000rpm以下で、スクリューを回転し、植物由来HDPEと、植物由来PLLAと、相容化剤とを添加して溶融混練することにより、一方の高分子成分をマトリクスとし、他方の高分子成分の分散相サイズを微視的に制御した植物由来プラスチックブレンド物押出し物を製造する。なお、本発明において製造する「押出し物」は、単なる混練した状態の押出し物「混練物」という。)でもよいし、成形してシート状のような形状とした押出し物「成形物」という。)としてもよい。
植物由来高密度PEと、植物由来PLLAと、相容化剤の混合物を混練させるには、予め混合物を粒状物の状態で混合させるドライブレンドによる方法を用いることができる。ドライブレンドに先立ち、例えば、植物由来PLLAを真空中80℃で24時間乾燥し、植物由来HDPEと相容化剤は真空中45℃で24時間乾燥するとよい。
ところで、植物由来PLLAと植物由来HDPEは、非相溶性であり、それらのブレンド物を得るには、通常、両者を融点近傍の170℃以上250℃以下で二軸の溶融混練機等を用いて混合する。
両者は融点近傍の170℃以上250℃以下で二軸の溶融混練機にあっては、それらの押出し物の内部構造は一方の成分をマトリクスとした場合、他方の成分の分散相サイズが数ミクロン~数十ミクロンメーターレベルにまで粗大化した、いわゆる相分離した構造となってしまうため、得られる溶融混練物の特性として良好な機械的性能を発揮させることはできない結果となる。
本発明形態の植物由来プラスチックブレンド物を製造するための溶融混練工程において用いる装置としては、せん断流動場の付与に限定されず伸長場も付与できる装置であれば好適である。たとえば、図3においてスクリューとシリンダーの間でせん断流動場が付与され、スクリュー帰還穴44を通る際には伸長場が付与される。このような場を付与できる装置であれば良い。本発明者らは鋭意、研究開発した結果、植物由来PLLAと植物由来HDPE、さらには相容化剤が添加された系からなるブレンドを、通常の二軸スクリュー型混練機の代わりに、スクリュー先端方向に送られた原料の溶融混練物を再度後端方向に移行できる内部帰還型スクリュー搭載の微量型高せん断成形加工機を用い、両者を、スクリューの回転数は200rpm以上3000rpm以下、せん断速度は300sec-1以上4500sec-1以下、加熱温度は180℃以上250℃以下の条件下で、溶融混練することにより、従来得られたことがない新規な、植物由来HDPEマトリクス相に均一かつ密に微細な植物由来PLLA相が分散している植物由来プラスチックブレンド物を得ることができる。
内部帰還型スクリュー搭載の微量型高せん断成形加工機を用いる場合にあっても、植物由来PLLAと植物由来HDPE、さらには相容化剤が添加された系などの溶融混練しようとする対象物を高せん断成形加工機に供給する前に十分にブレンドすることが必要となる。これは非溶性の樹脂を予めそれぞれの重量組成に調整した上でドライブレンドして、偏在することをなくして、できるだけ均一な状態とするということを意味している。本発明の場合には装置の規模は工業化を行うほどの大型の装置を用いていないが、実際に工業化を行う規模で行う場合には用いる非相溶樹脂の量も多くなる。この場合には非溶性の樹脂を予めそれぞれの重量組成に調整した上でドライブレンドして、偏在することをなくして供給することが必要となる。本実施例ではドライブレンドを採用しているが、より高度なブレンド方法を採用することも必要となる。
本発明者らにより作製した内部帰還型スクリュー搭載の微量型高せん断成形加工機を、図1に示す。この微量型高せん断成形加工機自体は、特開2005-313608号公報で紹介した微量型高せん断成形加工機と同様である。
図1において、微量型高せん断成形加工機10は、溶融混練部12と成形部14とを備える。成形部14は、押出成形部又は射出成形部を有する。溶融混練部12は、材料投入部16と、シリンダー18と、シリンダー18内に装着されたフィードバック型スクリュー20と、シリンダー18に軸受け22を介して接続されたシャフト24と、を備えている。シリンダー18は、シリンダー18内の樹脂を溶融するためのヒーター26を備えている。
シリンダー18は、成形部14との間をシールするためのシール部材28をシリンダー18のシャフト24の対向端に備える。シリンダー18は、図2および図3に示すように、スクリュー20の最先端面29と、該最先端面29に対向したシール部材28のシール面(以下、「シール面28」という。)との間隔(ギャップ)32を調整するための調整手段と、をスクリュー後部側に備える。この間隔32は、約0.5から約5mmの範囲内に調整する。
成形部14である押出成形部は、押出部ヒーター35とフィルム作成用Tダイ34を備えている。Tダイ34は、Tダイ先端ヒーター36と、Tダイ後端ヒーター38と、を備えている。押し出されたフィルムは、両端のヒーター36、38の間の排出口40を通る。熱電対42が押出成形部及びTダイ先端ヒーター36に装着されており、温度測定を行なう。測定結果は、制御装置(図示せず)に送られて前記溶融混練部12の温度及びTダイの温度を調整する。
スクリュー20は、内径1mm以上5mm以下、好ましくは約2mm以上3mm以下の孔44を有し、スクリューの回転数は、200rpm以上3000rpm以下であり、せん断速度は、300sec-1以上4500sec-1以下である。シリンダー18内の温度は、被溶融混練樹脂により異なるが、室温もしくは非晶性樹脂の場合にはガラス転移点より高い温度を目安に結晶性樹脂の場合にはその融点より高い温度を目安にした条件下に設定される。原料は、スクリュー20に設けられた孔44を通って、スクリュー後端方向に移行させられる。
スクリュー20は、少なくとも2種類の非相溶性のブレンドされた樹脂をスクリュー20内部で十分に溶融混錬される構造を備えている。
図3は、フィードバック型スクリュー20における樹脂の内部帰還型構造46を示す。内部帰還型構造46は、スクリュー後段48から投入された混合樹脂をスクリュー20によりスクリュー前段50に送りながら十分に混練し、混練された樹脂をスクリュー20の最先端面29と該先端面に対向したシール面28との間隔32に閉じ込め、さらに混練された樹脂をスクリュー20のほぼ中心部に長手方向に設けられた孔44内に入れ、そして再びスクリュー20の後段に戻す。
内部帰還型構造46における混練時間は、内部帰還型構造46を循環する時間により任意に変更できる。混練の度合いは、スクリュー20の先端面と該先端面に対向したシール面28との間隔32及びスクリュー20の孔44の内径を可変することにより調整される。
混練の度合いは、間隔32を狭くするほど、及びスクリュー20の孔44の内径を小さくするほど高くなるが、樹脂の粘度等を考慮して間隔32とスクリュー20の孔44の内径を最適化する必要がある。シリンダー18内の樹脂の混合時間は、1分以上10分以下である。
以上説明したように、本実施形態に係る植物由来プラスチックブレンド物の製造方法によると、植物由来高密度PEと、植物由来PLLAとに対して相容化剤を添加してブレンド間の界面で反応を誘起するだけでなく、その反応を効率化するために、高せん断場を付与して溶融混練することができる。そして、溶融混練により、一方の高分子成分をマトリックスとした場合、他方の高分子成分の分散相サイズを微細に制御した植物由来プラスチックブレンド物が作成される。
本実施形態に係る内部帰還型スクリュー搭載の微量型高せん断成形加工機を用いる場合、成形加工条件としては、上記の特定温度の設定だけでなく、当該成形加工機におけるスクリュー回転数と混練時間の設定が重要である。
本発明では、スクリュー回転数として100rpm以上3000rpm以下、混練時間として0.5分以上60分以下の間で設定可能であるが、回転数ならびに混練時間として、それぞれ200rpm以上3000rpm以下、1分以上10分以下に設定することにより最適な結果を得ることができた。
本発明に係る製造方法は、前記の特定の温度条件下で、スクリュー回転数と混練時間を最適数値条件にして高せん断成形を行ったところに特徴がある。このように、特定の条件を組み合わせて初めて良好な結果が得られる。仮に温度設定あるいは上記スクリュー回転数ならびに混練時間等の設定条件の一方でも、前記条件をはずれる場合には満足する結果を得ることができない。
本実施形態に係る内部帰還型スクリュー搭載の微量型高せん断成形加工機10を用いる場合、植物由来プラスチックブレンド物が充填されているシリンダー18における、スクリュー20の先端面29と先端面に対向したシール面との間隔32及びスクリュー20の孔44の内径を可変することにより、せん断流動場の強さもしくは混練の度合いを調整することができる。
通常、間隔32は、1mm以上5mm以下の間で任意の値を0.5mm間隔で設定可能であり、スクリュー20の孔44の内径も同様に1φから5φの間で任意の値を0.5φ間隔で設定可能であるが、間隔32およびスクリュー20の孔44の内径を、それぞれ2mm、2.5φに設定することにより最適な結果を得ることができた。
本発明は、前記の特定の温度下に、スクリューの先端面と該先端面に対向したシール面との間隔(ギャップ)及びスクリューの孔の内径を最適数値にして高せん断成形を行うことが好ましい。
上述した本発明に係る植物由来プラスチックブレンド物について、実施例を用いてさらに詳細に説明する。
(実施例)
本実施例においては、植物由来高密度PE(bio-HDPE)(豊田通商製、SGE7252)を用いた。植物由来PLLAとして、重量平均分子量(Mw)が1.7×10 g/molでD-体含有量が1.2%のもの(PLLA-1)と重量平均分子量(Mw)が1.3×10 g/molでD-体含有量が1.2%のもの(PLLA-2)とを用いた。また、相容化剤として、E-GMA-MA(住友化学製、BF2C)を用いた。各植物由来プラスチックブレンド物原料の混合比は、植物由来HDPE:植物由来PLLA-1:E-GMA-MA=75:25:5を実施例1および2、50:50:5を実施例3および4、25:75:5を実施例5および6とした。また、植物由来HDPE:植物由来PLLA-1:E-GMA-MA=75:25:10を実施例7および8、50:50:10を実施例9および10、25:75:10を実施例11および12とした。また、植物由来HDPE:植物由来PLLA-2:E-GMA-MA=75:25:10を実施例13および14、50:50:10を実施例15および16、25:75:10を実施例17および18とした。なお、植物由来PEは高密度(0.948~0.962 g/cm)のものだけでなく、低密度(0.916~0.920 g/cm)のものを用いてもほぼ同じ結果が得られた。また、相容化剤のE-GMA-MA(住友化学製)はBF7LあるいはBF20Cを用いてもほぼ同じ結果が得られた。
混練に先立って、植物由来PLLAを真空中80℃で24時間乾燥し、植物由来HDPEと相容化剤は真空中45℃で24時間乾燥した。室温で上述した割合の植物由来HDPEと、植物由来PLLAと、さらにこれらブレンド物100重量%に対してE-GMA-MAを5重量%または10重量%の割合でドライブレンドした。このドライブレンド物の約5gを微量型高せん断成形加工機((株)井元製作所製HSE3000mini)に投入し、ギャップ(図3における間隔32)ならびに内部帰還型スクリューの孔の内径(図3における孔44の内径)を、それぞれ2ミリ、2.5φに設定し、190~200℃に加熱溶融し、スクリュー回転数を300rpm(実施例1、3、5、7、9、11、13、15および17)と600rpm(実施例2、4、6、8、10、12、14、16および18)として、2分間混練し、T-ダイから押出し、冷却水槽を通すことにより冷却固化した。溶融混練装置としては(株)ニイガタマシンテクノ製全自動高せん断成形装置(NHSS2-28)を用いても同じ結果が得られた。
この際、せん断発熱を低減化するため、シリンダーを冷却する冷却手段を用いて、樹脂温度が220℃を超えないように温度制御した。このようなプロセスにより、表面状態の良好な植物由来プラスチックブレンド物を得ることができた。
(比較例)
比較例1として、植物由来高密度ポリエチレン(bio-HDPE)単体の押出物、比較例2として植物由来ポリ乳酸(PLLA-1)の押出物、比較例3として植物由来ポリ乳酸(PLLA-2)の押出物を示す。
(構造観察)
図4は比較例4の押出物の微視的構造を示す走査型電子顕微鏡(SEM像)であり、図5は実施例7で得られた押出物の微視的構造を示すSEM像である。本実施例での微視的構造は、SEM(Philips社製 フィールドエミッション型SEM XL-20)を使用し、加速電圧10 kVで測定した。
比較例4は、相容化剤を使わずに高せん断成形加工装置を用いてスクリュー回転数300 rpmにて作製したbio-HDPE/PLLA-1=75/25ブレンド試料である。図4において、マトリクス(bio-HDPE相)に分散しているPLLAドメインは20~30 μmに粗大化しており、相が分離していることが明白であった。一方、実施例7においては、図5の解像度のレベルでは界面状態が非常に平滑になっており、PLLAドメインの跡が見えるところでも2 μm以下のサイズに微細化していることが分かった。
図6および図7は本実施例で得られた押出物の微視的構造を示す透過型電子顕微鏡(TEM)像である。図6(a)は実施例1の押出物を示し、図6(b)は実施例2の押出物を示す。また、図7(a)は実施例3の押出物を示し、図7(b)は実施例4の押出物を示す。本実施例での微視的構造は、TEM(日本電子製 JEM1230)を使用し、加速電圧120 kVで測定した。観察した画像はGatanCCDカメラで収録した。
構造観察に際し、試料を包埋し、四酸化オスミウム(OsO)と四酸化ルテニウム(RuO)で二重染色した後、超薄切片を作製してTEM観察に供した。
図6においては、マトリクスはbio-HDPE(黒地の相)であり、分散しているのはPLLA(白地のドメイン)である。さらに、600 rpmで加工した実施例2の構造は300 rpmで加工した実施例1よりも分散相のサイズが微細化しており、TEM像における単位面積当たりのドメインサイズの分布は、PLLA相が1 μm以下の小さなドメインが80%以上になっていることが分かる。
図7に示した実施例3および4において、図6に示した実施例1および2との大きな相違は、マトリクスと分散相とが逆転していることである。即ち、この組成でのブレンド試料の微視的構造は、PLLAがマトリクス(白地の相)を形成し、bio-HDPEが分散相(黒地のドメイン)している。しかも、ここでの微細構造は成形条件に大きく依存し、図7(a)のようにスクリュー回転数300 rpmで高せん断加工した実施例3では分散相サイズが大きく、数 μm~10 μmのドメインとなっているが、図7(b)に示されるように、スクリュー回転数600 rpmで加工した実施例4は分散相サイズが非常に小さくなり単位面積においてドメインサイズ1 μm以下のものの割合が50%以上となっていることが分かる。
(引張特性)
実施例及び比較例の植物由来プラスチックブレンド物のシートをカッターで打ち抜いて、ダンベル状試験片とした。引張特性の試験は、ASTM D638に規定された方法に準拠して行った。応力-ひずみ曲線は、オリエンテック社製引張試験機(テンシロンUTM-300)を用いて測定した。本試験は、23℃、相対湿度50%の雰囲気で、クロスヘッド速度500mm/minで行った。
図8~図15は、本実施例に係る応力-ひずみ特性を示す図である。また、表1~表3は、図8から図15において示された応力-ひずみ特性において本実施例に係る引張弾性率及び破断伸びをまとめて示したものである。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000003
 
図8~図15および表1~表3の結果から、植物由来HDPEに対して、植物由来PLLAの含有量を25~75重量%にしてその合計を100重量%にした上、相容化剤を5~10重量%添加することにより高せん断成形装置で600 rpmの混練処理を行うことで、元々低い弾性率の植物由来HDPE(932 MPa)の引張弾性率が著しく向上することが明らかとなった。つまり、植物由来プラスチックブレンド物原料を高せん断成形加工して、植物由来PLLAの含有量を増加させることにより、植物由来HDPEと植物由来PLLAが微視的に分散することにより、引張弾性率が向上するものと推察される。引張弾性率が向上する効果として、植物由来PLLAの組成量に比例して増加しているが、植物由来PLLAの量が少ない場合(25重量%)には分子量の小さなPLLA(PLLA-2)を用いた方が、弾性率が大きくなることがわかった(表3の実施例14)。
一方、比較例2と3として用いた植物由来PLLAは、それぞれ分子量だけが異なるものであるが、PLLA単体では弾性率が極めて大きいものの、破断伸びはともに4%と極めて伸びが悪いプラスチックである。これに対して植物由来HDPE(比較例1)は997.7%も伸びるプラスチックである。従って、本実施例において示されるように、植物由来PLLAに対して植物由来HDPEが微視的に分散することにより、PLLAの欠点である、4%しか伸びない、換言すれば4%伸ばすと破断してしまうという欠点が、著しく改善されている。すなわち、実施例6、12、18に見られるように、植物由来HDPEを25重量%添加した場合、破断伸びはそれぞれ14.2%、27.6%、25.0%となり、著しい伸びが発現していることがわかる。また、相容化剤EGMAの添加量については、表1に示した実施例においては各々5重量%、表2に示した実施例においては10%であるが、10%添加の方が破断伸びは著しく増大することが分かる。具体的には、実施例2の136%に対応する実施例8では703.7%となり、実施例4の13.6%に対応する実施例10では41.4%に、さらに実施例6の14.2%に対応する実施例12では27.6%に、それぞれ破断伸びが増大している。
上述したとおり、本発明に係る植物由来プラスチックブレンド物およびその製造方法によると、植物由来のPEと植物由来PLLAとを高せん断成形加工によりブレンドして微細な混合を行い、力学性能が飛躍的に向上した植物由来プラスチック同士のブレンド物を実現することができる。本発明により、PEより高い弾性率もしくはPLLAより優れた破断伸びを必要とする、バランスのとれた力学性能を有する素材として容器や多様な部材が創出されることになり、植物由来プラスチックの利用を一層加速させることが可能である。
10:微量型高せん断成形加工機、12:溶融混練部、14:成形部、16:材料投入部、18:シリンダー、20:フィードバック型スクリュー、18:シリンダー、22:軸受け、24:シャフト、26:ヒーター、28:シール部材(シール面)、29:スクリューの最先端面、32:スクリューの最先端面との間隔(ギャップ)、35:押出部ヒーター、36:Tダイ先端ヒーター、38:Tダイ後端ヒーター、40:排出口、42:熱電対、44:スクリューの孔、46:内部帰還型構造、48:スクリュー後段、50:スクリュー前段

Claims (12)

  1. 10重量%以上90重量%以下の植物由来ポリエチレンと、10重量%以上90重量%以下の植物由来ポリ乳酸との合計が100重量%となるように含有し、
    1重量%以上20重量%以下の相容化剤をさらに含有することを特徴とする植物由来プラスチックブレンド物。
  2. 前記植物由来プラスチックブレンド物は、前記植物由来ポリエチレンがマトリクスの場合には、前記植物由来ポリ乳酸のドメインサイズが1 μm以下の割合が60%以上であること、前記植物由来ポリ乳酸がマトリクスの場合には、前記植物由来ポリエチレンのドメインサイズが1 μm以下の割合が40%以上であることを特徴とする請求項1に記載の植物由来プラスチックブレンド物。
  3. 前記相容化剤はエポキシ基含有樹脂であり、エポキシ基を有し、オレフィン系化合物の構造を含有する共重合体であり、(a)エチレン単位を60重量%以上99重量%以下、(b)不飽和カルボン酸グリシジルエステル単位および/または不飽和グリシジルエーテル単位を0.1重量%以上30重量%以下、(c)エチレン系不飽和エステル化合物を0重量%以上40重量%以下からなるエポキシ基含有エチレン共重合体であることを特徴とする請求項1に記載の植物由来プラスチックブレンド物。
  4. 前記エポキシ基含有樹脂は、グリシジルメタクリレートの含有量が0.1重量%以上30重量%以下であるエチレン-グリシジルメタクリレート-メチルアクリレート共重合体であることを特徴とする請求項1に記載の植物由来プラスチックブレンド物。
  5. 前記植物由来プラスチックブレンド物の引張弾性率が950MPa以上で、破断伸びが4%以上であることを特徴とする請求項1に記載の植物由来プラスチックブレンド物。
  6. シリンダー内で、植物由来ポリエチレンと、植物由来ポリ乳酸と、相容化剤とを含む原料を、スクリュー先端方向に送られた前記原料の溶融混練物を再度後端方向に移行できる内部帰還型スクリューを搭載した溶融混練装置に供給し、180℃以上250℃以下の加熱下、前記スクリューの回転数が200rpm以上3000rpm以下、せん断速度が300sec-1以上4500sec-1以下である条件下で、一定時間循環して溶融混練を行うことを特徴とする植物由来プラスチックブレンド物の製造方法。
  7. 前記原料を、前記スクリューに設けられた孔を通って前記後端方向に移行させることを特徴とする請求項6に記載の植物由来プラスチックブレンド物の製造方法。
  8. 10重量%以上90重量%以下の植物由来ポリエチレンと、10重量%以上90重量%以下の植物由来ポリ乳酸との合計が100重量%となるように含有し、
    1重量%以上20重量%以下の相容化剤をさらに添加して、混練することを特徴とする請求項6に記載の植物由来プラスチックブレンド物の製造方法。
  9. 請求項1に記載の植物由来プラスチックブレンド物を含むことを特徴とする容器。
  10. 請求項1に記載の植物由来プラスチックブレンド物を含むことを特徴とする化粧品用容器。
  11. 請求項1に記載の植物由来プラスチックブレンド物を含むことを特徴とする包装容器。
  12. 請求項1に記載の植物由来プラスチックブレンド物を含むことを特徴とする自動車用部品。
PCT/JP2013/050757 2012-01-17 2013-01-17 植物由来プラスチックブレンド物およびその製造方法 WO2013108817A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013554325A JP6340196B2 (ja) 2012-01-17 2013-01-17 植物由来プラスチックブレンド物およびその製造方法
CN201380005661.7A CN104053718A (zh) 2012-01-17 2013-01-17 植物源塑料掺混物及其制造方法
EP13738399.8A EP2805993A4 (en) 2012-01-17 2013-01-17 PLASTIC MIXTURE DERIVED FROM PLANTS AND METHOD FOR PRODUCING THE SAME
KR1020147018996A KR20140112019A (ko) 2012-01-17 2013-01-17 식물유래 플라스틱 블렌드물 및 그 제조방법
US14/332,570 US9546265B2 (en) 2012-01-17 2014-07-16 Plant derived plastic blend and a method of manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-007315 2012-01-17
JP2012007315 2012-01-17
JP2012-193859 2012-09-04
JP2012193859 2012-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/332,570 Continuation US9546265B2 (en) 2012-01-17 2014-07-16 Plant derived plastic blend and a method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2013108817A1 true WO2013108817A1 (ja) 2013-07-25

Family

ID=48799241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050757 WO2013108817A1 (ja) 2012-01-17 2013-01-17 植物由来プラスチックブレンド物およびその製造方法

Country Status (6)

Country Link
US (1) US9546265B2 (ja)
EP (1) EP2805993A4 (ja)
JP (1) JP6340196B2 (ja)
KR (1) KR20140112019A (ja)
CN (1) CN104053718A (ja)
WO (1) WO2013108817A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483850A (zh) * 2013-09-22 2014-01-01 苏州市湘园特种精细化工有限公司 一种生物降解塑料
JPWO2016024517A1 (ja) * 2014-08-13 2017-07-06 東洋製罐株式会社 ポリ乳酸組成物及び該組成物を用いて成形される延伸成形ボトル

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105670091B (zh) * 2016-04-21 2018-04-17 浙江鑫鼎塑业股份有限公司 一种超高分子量聚乙烯防腐托盘
KR102617471B1 (ko) * 2021-11-01 2023-12-27 이폴리텍 주식회사 내열성이 강화된 폴리락트산 조성물 및 이로부터 제조되는 내열성이 강화된 생분해성 용기

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313608A (ja) 2004-03-31 2005-11-10 National Institute Of Advanced Industrial & Technology 微量型高剪断成形加工機とそれを用いたナノ分散高分子ブレンド押出し物およびその製造方法
JP2006077063A (ja) * 2004-09-08 2006-03-23 Kaneka Corp 組成物およびその成形体
JP2008038142A (ja) 2006-07-12 2008-02-21 Toray Ind Inc 樹脂組成物およびそれからなる成形品
JP2008111043A (ja) * 2006-10-30 2008-05-15 Inoac Corp ポリ乳酸系樹脂組成物及びその成形体
JP2010058329A (ja) * 2008-09-02 2010-03-18 National Institute Of Advanced Industrial Science & Technology 脂肪族ポリエステル組成物およびその製造方法
WO2010061872A1 (ja) * 2008-11-26 2010-06-03 独立行政法人産業技術総合研究所 溶融混練方法、押出し物及び透明樹脂材
JP2010222482A (ja) * 2009-03-24 2010-10-07 Yamato Esuron Kk 植物由来の生分解性の合成樹脂シートおよび容器
JP2011021067A (ja) * 2009-07-14 2011-02-03 Unitika Ltd 樹脂組成物および成形体
JP2011132525A (ja) * 2009-11-30 2011-07-07 Sanyo Chem Ind Ltd 生分解性樹脂組成物
JP2011201980A (ja) * 2010-03-25 2011-10-13 Daiwa Can Co Ltd ポリ乳酸/ポリオレフィン樹脂組成物、及びそれからなる押出成型体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216050A (en) * 1988-08-08 1993-06-01 Biopak Technology, Ltd. Blends of polyactic acid
US7381772B2 (en) * 2003-12-12 2008-06-03 E. I. Du Pont De Nemours And Company Toughened poly(lactic acid) compositions
WO2006097979A1 (ja) 2005-03-11 2006-09-21 Fujitsu Limited 植物性樹脂組成物及び植物性樹脂成形体
JP2008000046A (ja) * 2006-06-21 2008-01-10 Mitsubishi Plastics Ind Ltd 生分解性樹脂からなるコード式草刈機に用いられるコード
JP2009114407A (ja) * 2007-11-09 2009-05-28 Sekisui Chem Co Ltd 表面保護フィルム
JP2009214488A (ja) * 2008-03-12 2009-09-24 Canon Inc 液体吐出ヘッド及びその製造方法
JP2010162748A (ja) * 2009-01-15 2010-07-29 Toppan Cosmo Inc 化粧シート
JP2011152839A (ja) * 2010-01-27 2011-08-11 Suminoe Textile Co Ltd 植物由来成分からなる自動車用マット
JP2011214163A (ja) * 2010-03-31 2011-10-27 Toray Ind Inc ポリマーアロイ長繊維不織布およびポリマーアロイ長繊維不織布の製造方法ならびにそれを用いた衛生用品

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005313608A (ja) 2004-03-31 2005-11-10 National Institute Of Advanced Industrial & Technology 微量型高剪断成形加工機とそれを用いたナノ分散高分子ブレンド押出し物およびその製造方法
JP2006077063A (ja) * 2004-09-08 2006-03-23 Kaneka Corp 組成物およびその成形体
JP2008038142A (ja) 2006-07-12 2008-02-21 Toray Ind Inc 樹脂組成物およびそれからなる成形品
JP2008111043A (ja) * 2006-10-30 2008-05-15 Inoac Corp ポリ乳酸系樹脂組成物及びその成形体
JP2010058329A (ja) * 2008-09-02 2010-03-18 National Institute Of Advanced Industrial Science & Technology 脂肪族ポリエステル組成物およびその製造方法
WO2010061872A1 (ja) * 2008-11-26 2010-06-03 独立行政法人産業技術総合研究所 溶融混練方法、押出し物及び透明樹脂材
JP2010222482A (ja) * 2009-03-24 2010-10-07 Yamato Esuron Kk 植物由来の生分解性の合成樹脂シートおよび容器
JP2011021067A (ja) * 2009-07-14 2011-02-03 Unitika Ltd 樹脂組成物および成形体
JP2011132525A (ja) * 2009-11-30 2011-07-07 Sanyo Chem Ind Ltd 生分解性樹脂組成物
JP2011201980A (ja) * 2010-03-25 2011-10-13 Daiwa Can Co Ltd ポリ乳酸/ポリオレフィン樹脂組成物、及びそれからなる押出成型体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2805993A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103483850A (zh) * 2013-09-22 2014-01-01 苏州市湘园特种精细化工有限公司 一种生物降解塑料
CN103483850B (zh) * 2013-09-22 2016-08-10 苏州市湘园特种精细化工有限公司 一种生物降解塑料
JPWO2016024517A1 (ja) * 2014-08-13 2017-07-06 東洋製罐株式会社 ポリ乳酸組成物及び該組成物を用いて成形される延伸成形ボトル

Also Published As

Publication number Publication date
EP2805993A1 (en) 2014-11-26
EP2805993A4 (en) 2016-04-27
CN104053718A (zh) 2014-09-17
JPWO2013108817A1 (ja) 2015-05-11
JP6340196B2 (ja) 2018-06-06
US20140329969A1 (en) 2014-11-06
US9546265B2 (en) 2017-01-17
KR20140112019A (ko) 2014-09-22

Similar Documents

Publication Publication Date Title
JP5177748B2 (ja) 脂肪族ポリエステル組成物およびその製造方法
Arias et al. Enhanced dispersion of cellulose nanocrystals in melt-processed polylactide-based nanocomposites
Wang et al. Preparation of 3D printable micro/nanocellulose-polylactic acid (MNC/PLA) composite wire rods with high MNC constitution
EP2467418B1 (en) Process of producing thermoplastic starch/polymer blends
Sarul et al. Preparation and characterization of PLA/PBAT/CNC blend nanocomposites
Li et al. Effect of chain extension on the properties of PLA/TPS blends
CN113088055A (zh) 一种高性能聚乙醇酸基复合材料及其制备方法
Chang et al. Tuning the compatibility to achieve toughened biobased poly (lactic acid)/poly (butylene terephthalate) blends
JP6340196B2 (ja) 植物由来プラスチックブレンド物およびその製造方法
Ting et al. Studies on tensile properties of compatibilized and uncompatibilized low-density polyethylene/jackfruit seed flour (LDPE/JFSF) blends at different JFSF content
Zhou et al. Effect of POE-g-GMA on mechanical, rheological and thermal properties of poly (lactic acid)/poly (propylene carbonate) blends
CN108794855B (zh) 一种pe/pet复合材料及其制备方法
Seydibeyoğlu et al. Synergistic improvements in the impact strength and% elongation of polyhydroxybutyrate-co-valerate copolymers with functionalized soybean oils and POSS
Abay et al. Preparation and characterization of poly (lactic acid)/recycled polypropylene blends with and without the coupling agent, n-(6-aminohexyl) aminomethyltriethoxysilane
Ikeo et al. Nano clay reinforced biodegradable plastics of PCL starch blends
Boran et al. The comparative study of different mixing methods for microcrystalline cellulose/polyethylene composites
Goitisolo et al. Stiffening of poly (ethylene terephthalate) by means of polyamide 6 nanocomposite fibers produced during processing
Gong et al. In situ grafting approach for preparing PLA/PHBV degradable blends with improved mechanical properties
Bonham et al. Effect of Co‐Rotation and Counter‐Rotation Extrusion Processing on the Thermal and Mechanical Properties, and Morphology of Plasticized Soy Protein Isolate and Poly (butylene succinate) Blends
Torres et al. Effects of the blending sequence and interfacial agent on the morphology and mechanical properties of injection molded PC/PP Blends
Zhang et al. Thermal stability and degradation of poly (lactic acid)/Hexamoll® DINCH/montmorillonite composites
Hoseini et al. Influence of compounding methods on rheology and morphology of linear low density polyethylene/poly lactic acid
CN106589875B (zh) 微晶纤维素改性聚(β-羟基丁酸酯)复合材料的制备方法
Zhang et al. Ultra-tough polylactide/bromobutyl rubber-based ionomer blends via reactive blending strategy
JP7474539B1 (ja) バイオベース複合材料及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738399

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147018996

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013554325

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013738399

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE