WO2013105650A1 - Copper foil with adhesive layer, copper-clad laminate and printed wiring board - Google Patents

Copper foil with adhesive layer, copper-clad laminate and printed wiring board Download PDF

Info

Publication number
WO2013105650A1
WO2013105650A1 PCT/JP2013/050433 JP2013050433W WO2013105650A1 WO 2013105650 A1 WO2013105650 A1 WO 2013105650A1 JP 2013050433 W JP2013050433 W JP 2013050433W WO 2013105650 A1 WO2013105650 A1 WO 2013105650A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive layer
copper foil
copper
mass
layer
Prior art date
Application number
PCT/JP2013/050433
Other languages
French (fr)
Japanese (ja)
Inventor
敏文 松島
佐藤 哲朗
眞 細川
和弘 大澤
Original Assignee
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井金属鉱業株式会社 filed Critical 三井金属鉱業株式会社
Priority to CN201910030925.3A priority Critical patent/CN110087405B/en
Priority to KR1020147018973A priority patent/KR101605449B1/en
Priority to JP2013553328A priority patent/JP6215711B2/en
Priority to CN201380005294.0A priority patent/CN104041198A/en
Publication of WO2013105650A1 publication Critical patent/WO2013105650A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0133Elastomeric or compliant polymer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0145Polyester, e.g. polyethylene terephthalate [PET], polyethylene naphthalate [PEN]

Definitions

  • the present invention relates to a copper foil with an adhesive layer for a printed wiring board, a copper-clad laminate using the copper foil with an adhesive layer, and a printed wiring board.
  • a copper foil provided with an ultrathin adhesive layer (primer resin layer) as disclosed in Patent Document 1 or Patent Document 2 , Referred to as “copper foil with adhesive layer”.
  • This copper foil with adhesive layer is applied to a resin substrate such as a resin substrate or an interlayer insulating layer, such as a prepreg, a paper phenol resin substrate, By laminating so that the adhesive layer side faces and performing heating and pressurization or the like, good adhesion between the resin substrate and the copper foil can be ensured through the adhesive layer.
  • the adhesive layer disclosed in Patent Document 1 or Patent Document 2 is an extremely thin semi-cured resin layer having a converted thickness of 0.5 ⁇ m to 10 ⁇ m.
  • These adhesive layers are a resin composition (hereinafter referred to as “PA resin composition”) in which an epoxy resin, an aromatic polyamide resin soluble in a solvent, and a curing accelerator are mixed, or an epoxy resin.
  • PA resin composition a resin composition
  • PES resin composition a resin composition in which a polyethersulfone resin and a curing accelerator are mixed.
  • a hole such as a through hole or a blind via may be formed by drilling or laser processing for interlayer connection.
  • a desmear treatment for removing smear is performed using a desmear liquid made of potassium permanganate or the like.
  • the adhesive layer formed using the PA-based resin composition is easily dissolved in the desmear liquid during the desmear treatment, the adhesion between the resin base material and the copper foil is through-holes or blind vias. There was a risk of local degradation in the surroundings.
  • the adhesive layer formed using the PES resin composition has high resistance to desmear liquid and does not dissolve even when desmear treatment is performed.
  • the peel strength after moisture absorption is significantly deteriorated.
  • the present invention provides a copper foil with an adhesive layer, a copper-clad laminate, and a printed wiring board having sufficient peel strength, high desmear liquid resistance, and excellent moisture absorption deterioration resistance. With the goal.
  • the present inventors have achieved the above-mentioned problem by adopting a layer comprising the following resin composition as an adhesive layer.
  • the copper foil with an adhesive layer according to the present invention is a copper foil with an adhesive layer provided with an adhesive layer on one side of the copper foil, and the adhesive layer is styrene butadiene with respect to 100 parts by mass of the polyphenylene ether compound. It is a layer made of a resin composition containing 5 to 65 parts by mass of a block copolymer.
  • the adhesive layer is provided on a surface having a surface roughness (Rzjis) of the copper foil of 2 ⁇ m or less.
  • the thickness of the adhesive layer is preferably 0.5 ⁇ m to 10 ⁇ m.
  • the adhesive layer includes an amino functional silane coupling agent, an acrylic functional silane coupling agent, a methacryl functional silane coupling agent, and a vinyl functional silane coupling agent. It is preferable that the filler particle
  • the copper clad laminate according to the present invention is characterized by using the above-described copper foil with an adhesive layer.
  • the printed wiring board according to the present invention is obtained using the copper-clad laminate according to the present invention. And, using the copper clad laminate according to the present invention, a printed wiring board obtained by forming a circuit by a semi-additive method by removing the copper foil layer on the surface of the copper clad laminate by etching Can also be suitably used.
  • the adhesive layer with respect to 100 parts by mass of the polyphenylene ether compound, by adopting a layer comprising a resin composition containing 5 parts by mass or more and 65 parts by mass or less of a styrene butadiene block copolymer, Adhesiveness when the copper foil with an adhesive layer is bonded to a resin base material can be improved. At the same time, even when desmear processing is included in the printed wiring board manufacturing process, it is possible to prevent the adhesive layer from dissolving in the desmear liquid and to deteriorate the peeling strength after moisture absorption. It is possible to form a printed wiring board with a small amount.
  • the copper foil with an adhesive layer according to the present invention is used as a material for producing a printed wiring board, and is a copper foil provided with an adhesive layer on one side of the copper foil.
  • the adhesive layer provided on one side of the copper foil is a layer made of a resin composition containing 5 parts by mass or more and 65 parts by mass or less of a styrene butadiene block copolymer with respect to 100 parts by mass of the polyphenylene ether compound. It is characterized by being. Below, the structure of each layer is demonstrated in order of (1) copper foil and (2) adhesive bond layer.
  • the adhesive layer may include filler particles. The filler particles will be described separately from the adhesive layer.
  • the embodiment of the copper foil with an adhesive layer according to the present invention is not limited to this, and a resin layer that functions as an insulating layer or the like is further provided on the adhesive layer of the copper foil with an adhesive layer.
  • the present invention only needs to have an adhesive having the characteristics described below on one side of the copper foil described below, and the adhesive layer is viewed as, for example, a copper-clad laminate or an entire printed wiring board. It is only necessary to intervene between the copper foil and the resin portion constituting the insulating layer or the like to have a function of adhering or adhering both.
  • any of an electrolytic copper foil, a rolled copper foil, etc. may be used as a copper foil with which an adhesive bond layer is provided, and there is no limitation regarding the kind of copper foil, etc.
  • the adhesive bond layer may be provided in any surface of a glossy surface (drum surface) or a precipitation surface (rough surface).
  • the thickness of the copper foil is not particularly limited, but it is preferable to provide the adhesive layer on a copper foil in the range of 1.0 ⁇ m to 18 ⁇ m.
  • An appropriate copper foil may be employed as appropriate according to the characteristics required when manufacturing the printed wiring board.
  • the present invention it is preferable to provide an adhesive layer on a copper foil having a surface roughness (Rzjis) of 2 ⁇ m or less. And when performing circuit formation by etching the copper foil itself, it is more preferable to use a copper foil that has not been subjected to a roughening treatment.
  • the adhesive surface refers to the surface of the copper foil that is bonded to the resin base material, and refers to the surface on which the adhesive layer is provided.
  • the copper foil with an adhesive layer according to the present invention is a copper foil having a smooth surface with a surface roughness (Rzjis) of 2 ⁇ m or less regardless of the type of electrolytic copper foil and rolled copper foil.
  • the surface roughness of the copper foil is more preferably 1.8 ⁇ m or less, and further preferably 1.5 ⁇ m or less.
  • the copper foil with adhesive layer according to the present invention was bonded to a resin substrate to obtain a copper clad laminate
  • the copper foil on the surface was removed by etching to expose the adhesive layer, and the entire surface was seeded
  • a semi-additive process (Semi Additive Process) in which a layer (electroless copper layer or the like) is provided, a plating resist is formed on a portion of the seed layer where a circuit is not formed, and a circuit is formed only on a portion where the circuit is formed by plating.
  • a semi-additive process Semi Additive Process
  • the replica surface of the roughening treatment is left in the cured adhesive layer, the specific surface area of the adhesive surface is increased, and the adhesion with the circuit formed by the SAP method is improved. It is because it can plan.
  • the copper foil subjected to the roughening treatment at this time also preferably has a surface roughness (Rzjis) of 2 ⁇ m or less.
  • the said adhesive bond layer is provided in the surface which gave this roughening process, and it becomes the copper foil with an adhesive bond layer which concerns on this invention.
  • the surface roughness of the copper foil exceeds 2 ⁇ m, it tends to be a roughening treatment with a large uneven shape, and it tends to be difficult to remove the seed layer by flash etching, and the insulation between circuits is Since it tends to decrease, it is not preferable.
  • the SAP method will be described later in detail.
  • rust prevention treatment for copper foil examples include inorganic rust prevention treatment using zinc, nickel, cobalt, etc., chromate treatment using chromate, organic rust prevention treatment using organic agents such as benzotriazole, imidazole, etc. .
  • a copper foil when simply referred to as a copper foil, it may refer to a copper foil that has been subjected to a rust prevention treatment.
  • the surface of one side of the copper foil may be treated with a silane coupling agent, and an adhesive layer may be provided on the surface of the silane coupling agent layer.
  • an adhesive layer may be provided on the surface of the copper foil via the silane coupling agent layer.
  • the wettability between the surface of the copper foil and the adhesive layer is improved, and the copper foil with the adhesive layer is used as a resin substrate. Adhesive strength when bonded can be made better, and sticking adhesion can be made better.
  • copper foil can be more firmly stuck to a resin base material.
  • a copper foil when simply referred to as a copper foil, it may refer to a copper foil that has been treated with a silane coupling agent.
  • silane coupling agent layer specifically, an amino functional silane coupling agent layer, an acrylic functional silane coupling agent layer, a methacryl functional silane coupling agent, a vinyl functional silane coupling agent, an epoxy functional silane Layers formed using various silane coupling agents such as a coupling agent layer, an olefin functional silane coupling agent layer, and a mercapto functional silane coupling agent layer can be employed.
  • the silane coupling agent layer When the silane coupling agent layer is formed, a solution obtained by dissolving 0.5 g / l to 10 g / l of the silane coupling agent in water as a solvent is immersed at a temperature of room temperature, a showering method, It is preferable that the surface of the copper foil and the silane coupling agent are brought into uniform contact with each other by a spraying method or the like so that the silane coupling agent is uniformly adsorbed on the surface of the copper foil.
  • the silane coupling agent forms a film by condensation bonding with OH groups protruding from the surface of the copper foil.
  • silane coupling agent layer examples include the following. Vinyltrimethoxysilane, vinylphenyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, N- ⁇ ( Aminoethyl) ⁇ -aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazole silane, triazine silane, ⁇ -mercaptopropyltrimethoxysilane, Silane coupling agents such as 3-acryloxypropyltrimethoxysilane can be used.
  • copper foil when referred to as copper foil, it also includes a copper foil in which a silane coupling agent layer is formed on the surface of the copper foil.
  • a silane coupling agent layer When referred to as the surface of the copper foil, it is the surface of the silane coupling agent layer. Including.
  • the adhesive layer is a layer formed of a resin composition containing 5 parts by mass or more and 65 parts by mass or less of a styrene butadiene block copolymer with respect to 100 parts by mass of the polyphenylene ether compound.
  • the polyphenylene ether compound has high desmear liquid resistance due to its structure and hardly dissolves in the desmear liquid. For this reason, the amount of the resin dissolved in the desmear liquid can be reduced by configuring the adhesive layer with the polyphenylene ether compound as a main component. Therefore, even in the case where a desmear process is present in a printed wiring board manufacturing process or the like, the adhesive layer locally dissolves before and after the desmear process, and the resin base material and the copper foil before and after the desmear process. Adhesiveness between the copper foil and the resin base material can be ensured even after desmear treatment without locally lowering. Further, by using a polyphenylene ether compound, an adhesive layer having a low dielectric constant and a low dielectric loss tangent and good electrical characteristics can be obtained.
  • the polyphenylene ether compound used in the present invention is represented by the following general formula.
  • R1, R2, R3, and R4 each represent a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.
  • the polyphenylene ether compound examples include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, and poly (2,6-dipropyl). -1,4-phenylene) ether or the like can be used.
  • the terminal group is preferably a hydroxyl group.
  • Ether compounds, glycidyl-modified polyphenylene ether compounds, and the like can also be preferably used. Moreover, you may use these commercial items.
  • the number average molecular weight of the polyphenylene ether compound is preferably 500 to 4000, and more preferably 1000 to 3000.
  • the number average molecular weight of the polyphenylene ether compound is less than 500, the flexibility of the resulting adhesive layer is lowered, which is not preferable.
  • the number average molecular weight of the polyphenylene ether compound exceeds 4000, the solubility in a solvent such as methyl ethyl ketone or toluene is not preferable.
  • the styrene butadiene block copolymer is a polymerization (crosslinking) component for the polyphenylene ether compound.
  • the adhesive layer By polymerizing the polyphenylene ether compound and the styrene-butadiene block copolymer, the adhesive layer exhibits elasticity and flexibility due to the high flexibility derived from the butadiene structure portion.
  • a styrene-modified polyphenylene ether compound or a glycidyl-modified polyphenylene ether compound is used, this tendency becomes remarkable.
  • the adhesiveness of the adhesive layer to the copper foil can be improved and the crack resistance can also be improved.
  • the peeling strength of a circuit can be made into the value requested
  • the styrene butadiene block copolymer it is possible to improve the moisture absorption deterioration characteristic, and it is possible to prevent the peeling strength from being deteriorated with time in a humid environment.
  • styrene-butadiene block copolymer has few polar groups and has little influence on the low dielectric properties of polyphenylene ether compounds, so it maintains good electrical characteristics such as low dielectric constant and low dielectric loss tangent derived from polyphenylene ether compounds. can do.
  • the blending ratio of the polyphenylene ether compound and the styrene butadiene block copolymer will be described.
  • the styrene butadiene block copolymer exceeds 65 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, the peeling strength in the normal state is low, and the PCT (Pressure Cooker Test) is used in a high-temperature humidified environment.
  • the styrene butadiene block copolymer is less than 5 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, it is not preferable because film formation is difficult and sufficient elasticity and flexibility cannot be obtained.
  • the blending ratio of the styrene butadiene block copolymer to 100 parts by mass of the polyphenylene ether compound is more preferably 10 parts by mass or more, and further preferably 20 parts by mass or more.
  • styrene butadiene block copolymer By blending styrene butadiene block copolymer with 10 parts by mass or more, preferably 20 parts by mass or more with respect to 100 parts by mass of the polyphenylene ether compound, film formation becomes easy, and elasticity and flexibility are given to the adhesive layer. Because it can.
  • the styrene butadiene block copolymer is in the range of 30 to 55 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound. More preferably, the styrene-butadiene block copolymer is more preferably blended in the range of 35 to 45 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound.
  • the peeling strength is increased both in the normal state and after the PCT, The deterioration rate of the peel strength before and after the PCT can be reduced.
  • the peel strength after PCT becomes higher, and the peel strength before and after PCT increases. The deterioration rate is further reduced.
  • the resin composition may contain various additives such as an epoxy resin, a curing agent, a curing accelerator, thermoplastic particles, a colorant, an antioxidant, a flame retardant, and a coupling agent. . These various additives may be added in appropriate amounts within a range not departing from the gist of the present invention.
  • the thickness of the adhesive layer (gauge thickness) is preferably in the range of 0.5 ⁇ m to 10 ⁇ m.
  • the thickness of the adhesive layer is less than 0.5 ⁇ m, the adhesive layer is too thin and the adhesion between the copper foil and the adhesive layer is not improved.
  • the thickness of the adhesive layer exceeds 10 ⁇ m, the adhesion between the copper foil and the adhesive layer does not improve further, and this is not preferable because it wastes resources.
  • the adhesive layer may include the filler particles.
  • the filler particles By including the filler particles in the adhesive layer, it is possible to improve the peeling strength and the moisture absorption resistance deterioration property in a normal state as compared with the adhesive layer not including the filler particles.
  • the adhesiveness between the adhesive layer and the copper foil is made better by using filler particles that have been subjected to a specific surface treatment. And the said copper foil with an adhesive bond layer and a resin base material can be stuck more firmly. As a result, the peel strength can be further improved and the occurrence of delamination can be suppressed.
  • filler particles examples include fused silica, crystalline silica, alumina, aluminum hydroxide, calcium carbonate, barium sulfate, mica, and talc. Any of these may be used alone or in combination of two or more.
  • the filler particles used in the present invention are preferably surface-treated with a silane coupling agent.
  • silane coupling agent amino functional silane coupling agent, acrylic functional silane coupling agent, methacryl functional silane coupling agent, epoxy functional silane coupling agent, olefin functional silane coupling agent, mercapto functional silane
  • silane coupling agents such as coupling agents and vinyl functional silane coupling agents can be used.
  • amino functional silane coupling agents, acrylic functional silane coupling agents, methacryl functional silane coupling agents, vinyl functional silane coupling agents and the like are more preferable.
  • the wettability with the solvent is improved, and the filler particles can be favorably dispersed in the resin solution.
  • an adhesive layer in which filler particles are uniformly dispersed in the layer can be obtained.
  • the compatibility between the filler particles and the resin composition described above can be improved, and the adhesion between the filler particles and the resin composition is also good. Can be.
  • silane coupling agent examples include the following.
  • amino-functional silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane. Examples include methoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, and N-phenyl-3-aminopropyltrimethoxysilane.
  • methacrylic functional silane coupling agent and acrylic functional silane coupling agent 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyl And triethoxysilane 3-acryloxypropyltrimethoxysilane.
  • vinyl functional silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, and vinylphenyltriethoxysilane.
  • alkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, and phenyltriethoxysilane may be used.
  • the method of surface treatment using these silane coupling agents is not particularly limited and can be appropriately performed using an appropriate method.
  • the content is preferably 40% by mass or less. This is because when the content of the filler particles exceeds 40% by mass, the contact area between the resin composition constituting the adhesive layer and the copper foil is reduced, and the adhesive strength is rapidly reduced.
  • the filler particles to be contained in the adhesive layer are preferably those having a volume cumulative particle size D 50 value in the range of 0.01 ⁇ m to 1.0 ⁇ m by a laser diffraction scattering type particle size distribution measurement method. It is more preferable to use one in the range of 0.01 ⁇ m to 0.5 ⁇ m.
  • the value of the volume cumulative particle diameter D 50 of the filler particles is less than 0.01 ⁇ m, the filler particles are too fine and difficult to uniformly disperse in the resin solution prepared when forming the adhesive layer. This is not preferable.
  • the value of the volume cumulative particle diameter D 50 of the filler particles exceeds 1.0 ⁇ m, the adhesion between the copper foil and the resin layer may be lowered, which is not preferable. From this point of view, it is more preferred the volume cumulative particle diameter D 50 of the filler particles is 0.5 ⁇ m or less. By using such fine filler particles, it is possible to further improve the peel strength when a circuit is formed using the copper foil with an adhesive layer.
  • the resin solution step comprises 5 parts by mass to 65 parts by mass of a styrene butadiene block copolymer with respect to 100 parts by mass of the polyphenylene ether compound, and the resin solid content concentration is 10% by mass.
  • This is a step of preparing a resin solution of ⁇ 40% by mass.
  • a resin composition in which a polyphenylene ether compound and a styrene butadiene block copolymer are mixed in advance at a predetermined mixing ratio may be dissolved in a solvent, or a polyphenylene ether compound and styrene may be dissolved.
  • the butadiene block copolymer dissolved in a solvent may be mixed so that the polyphenylene ether compound and the styrene butadiene block copolymer have a predetermined blending ratio, and the method for preparing the resin solution is particularly limited. It is not something.
  • the polyphenylene ether compound used in the step can be the same as the polyphenylene ether compound described above, the description thereof is omitted here.
  • the styrene butadiene block copolymer can be the same as the styrene butadiene block copolymer described above, the description of the styrene butadiene block copolymer is also omitted.
  • the blending ratio of the polyphenylene ether compound and the styrene butadiene block copolymer in the resin composition is the same as the blending ratio of the polyphenylene ether compound and the styrene butadiene block copolymer in the adhesive layer described above. Therefore, description of a more preferable range in the blending ratio of the polyphenylene ether compound and the styrene butadiene block copolymer is omitted here.
  • a ketone solvent such as methyl ethyl ketone or an aromatic solvent such as toluene can be used.
  • a ketone solvent such as methyl ethyl ketone or an aromatic solvent such as toluene
  • any of these solvents can efficiently evaporate the solvent when heating and pressurizing the copper foil with the adhesive layer and the resin base material, and the purification process of the volatilized gas is easy. is there.
  • the solution viscosity can be made appropriate, and when the resin solution is applied to the surface of the copper foil, the desired film thickness can be accurately obtained.
  • the coating film can be formed.
  • the resin solid content concentration is less than 10% by mass, the solution viscosity is low, and the resin solution flows immediately after coating on the copper foil surface, making it difficult to form a coating film having a uniform film thickness.
  • the resin solid content concentration exceeds 40% by mass, the solution viscosity becomes too high, and it becomes difficult to form a coating film of 10 ⁇ m or less.
  • a resin composition When filler particles are contained in the adhesive layer, an appropriate amount of filler particles subjected to a predetermined surface treatment at this stage is mixed with the resin composition. Since the filler particles, surface treatment, blending amount, and the like are as described above, description thereof is omitted here. Moreover, below, when calling a resin composition, a resin composition may contain a filler particle.
  • the resin solution application step is a step of applying the resin solution to one side of the copper foil so that the thickness of the adhesive layer after drying is 0.5 ⁇ m to 10 ⁇ m.
  • the application method for applying the resin solution is not particularly limited, and an appropriate method may be adopted as appropriate according to the thickness of the adhesive layer to be formed.
  • a resin solution is applied to the surface of a copper foil using a gravure coater. It is preferable to apply.
  • a drying method can be suitably performed by a conventionally known method, and is not particularly limited. Through this process, the solvent is volatilized from the coating film, and the resin composition is made into a semi-cured resin in which the curing reaction of the resin composition is terminated at an intermediate stage.
  • the copper foil with an adhesive layer according to the present invention can be manufactured by the above steps.
  • a copper-clad laminate according to the present invention is characterized by using the above-described copper foil with an adhesive layer according to the present invention.
  • a copper-clad laminate is a single-sided surface of a resin base material such as paper or a prepreg in which a sheet of glass cloth or the like impregnated with an insulating resin is stacked, or a paper phenol resin base material.
  • the copper foil with an adhesive layer mentioned above is used as copper foil mounted on resin base materials, such as a prepreg. Then, the copper foil with adhesive layer is placed on the adhesive surface of the resin base material and heated and pressurized so that the adhesive layer side of the copper foil with adhesive layer faces the adhesive surface side of the resin base material.
  • the resin and the adhesive layer of the resin base material are melted and cured, respectively, the resin and the adhesive layer of the resin base material are integrated, and the resin base material and the copper foil are firmly adhered to each other. Become.
  • the printed wiring board which concerns on this invention is characterized by using the copper foil with an adhesive layer which concerns on this invention mentioned above, It is preferable to use the said copper clad laminated board.
  • the printed wiring board according to the present invention may be a multilayer printed wiring board, for example, a build-up printed wiring board in which a build-up layer is formed using the copper foil with an adhesive layer. There may be.
  • this printed wiring board may be manufactured from any method using a copper-clad laminate.
  • SAP method either the SAP-1 or SAP-2 process described below is adopted.
  • SAP-1 “All copper foil of copper clad laminate is removed by etching” ⁇ “Drilling process by laser method” ⁇ “Desmear treatment” ⁇ “Electroless copper plating is applied to form a seed layer on the resin substrate. Forming an electrolytic copper layer ” ⁇ “ Forming a plating resist on the part where the electroless copper layer circuit is not formed ” ⁇ “ Forming a circuit on the part without the plating resist by electrolytic copper plating ” ⁇ “ Plating resist peeling ” ⁇ “ Remove the electroless copper layer at the part where the circuit is not formed by flash etching ” ⁇ “ Circuit completion ”
  • the entire copper foil of the copper clad laminate is etched away before drilling, so that the entire surface is exposed to the desmear solution and eroded.
  • the erosion by the desmear treatment of the inner wall portion of the formed via hole and the adhesion between the finally formed circuit and the resin base material tend to be lowered.
  • the copper clad laminate according to the present invention is used in the SAP-1 process, even if all the copper foil of the copper clad laminate is removed by etching before drilling, the surface of the resin base material is removed. Since an adhesive layer excellent in desmear resistance performance exists, even if the entire surface is exposed to a desmear solution, it is possible to suppress a decrease in adhesion between the finally formed circuit and the resin substrate.
  • SAP-2 “Drilling by laser” ⁇ “Desmear treatment” ⁇ “Etching and removing all copper foil of copper-clad laminate” ⁇ “Electroless copper plating, no seed layer on resin base material” Forming an electrolytic copper layer ” ⁇ “ Forming a plating resist on the part where the electroless copper layer circuit is not formed ” ⁇ “ Forming a circuit on the part without the plating resist by electrolytic copper plating ” ⁇ “ Plating resist peeling ” ⁇ “ Remove the electroless copper layer at the part where the circuit is not formed by flash etching ” ⁇ “ Circuit completion ”
  • Example 1 a copper foil with an adhesive layer was produced as follows. First, 200 g of polyphenylene ether resin (manufactured by SABIC; MX-90) and 400 g of toluene were poured into a 1 liter four-necked flask equipped with a stirrer, a temperature controller, and a reflux tube, and stirred and dissolved at 60 ° C. did. Subsequently, 10 g of chloromethylstyrene was introduced into the flask, dissolved by stirring, and the liquid temperature was adjusted to 80 ° C.
  • a styrene butadiene block copolymer (manufactured by JSR Corporation; TR2003) was dissolved in toluene to prepare a 30% by mass styrene butadiene block copolymer solution. Both were mixed so that a styrene butadiene block copolymer might be 10 mass parts with respect to 100 mass parts of polyphenylene ether compounds, and the resin solution (varnish) was prepared so that resin solid content concentration might be 25%. .
  • a desmear solution resistance evaluation sample was prepared as follows. First, two sheets of the resin solution prepared above were coated and dried on the surface of the heat-resistant film so as to have a thickness of 100 ⁇ m to form a resin layer. And after bonding the resin layers together by hot working, the heat-resistant film was peeled off and cut into 5 cm ⁇ 5 cm squares to produce a desmear liquid resistance evaluation sample.
  • a copper foil with an adhesive layer and a desmear liquid resistance evaluation sample were prepared in the same manner as in Example 1 except that 20 parts by mass of the styrene butadiene block copolymer was used with respect to 100 parts by mass of the polyphenylene ether compound. Moreover, except having used the copper foil with an adhesive layer of this Example 2, the copper clad laminated board was manufactured similarly to Example 1, and the sample for peeling strength measurement was produced.
  • a copper foil with an adhesive layer and a desmear liquid resistance evaluation sample were prepared in the same manner as in Example 1 except that 40 parts by mass of the styrene butadiene block copolymer was used with respect to 100 parts by mass of the polyphenylene ether compound. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used this copper foil with an adhesive bond layer, and the sample for peeling strength measurement was produced.
  • a copper foil with an adhesive layer and a desmear liquid resistance evaluation sample were prepared in the same manner as in Example 1 except that 60 parts by mass of the styrene-butadiene block copolymer was used with respect to 100 parts by mass of the polyphenylene ether compound. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used this copper foil with an adhesive bond layer, and the sample for peeling strength measurement was produced.
  • Example 3 As in Example 3, except that 30% by mass of filler particles (volume cumulative particle diameter D50: 0.3 ⁇ m, silica) whose surface was treated with vinyltrimethoxysilane as a vinyl-based silane coupling agent was contained. Thus, a copper foil with an adhesive layer and a sample for evaluating desmear liquid resistance were prepared. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used this copper foil with an adhesive bond layer, and the sample for peeling strength measurement was produced.
  • volume cumulative particle diameter D50: 0.3 ⁇ m, silica volume cumulative particle diameter D50: 0.3 ⁇ m, silica
  • Example 1 A copper foil with an adhesive layer and a sample for evaluating desmear liquid resistance were prepared in the same manner as in Example 1 except that 70 parts by mass of the styrene butadiene block copolymer was used with respect to 100 parts by mass of the polyphenylene ether compound. . Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used the copper foil with an adhesive bond layer of this comparative example 1, and the sample for peeling strength measurement was produced.
  • Comparative Example 2 In Comparative Example 2, the resin solution described in Comparative Sample 3 of Patent Document 2 was prepared, a coating film was formed using this resin solution, and the subsequent drying temperature was 150 ° C. In the same manner, a copper foil with an adhesive layer and a sample for evaluating desmear liquid resistance were prepared. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used the copper foil with an adhesive layer of this comparative example 2, and the sample for peeling strength measurement was produced. Hereinafter, a method for preparing the resin solution of Comparative Example 2 will be described.
  • Comparative Example 2 70 parts by mass of an aromatic polyamide resin polymer (manufactured by Nippon Kayaku Co., Ltd .; BPAM-155) and 30 parts by mass of an epoxy resin (manufactured by Nippon Kayaku Co., Ltd .; EPPN-502) were used as the PA-based resin composition. Part. Then, 1 part by mass of imidazole-based 2P4MHZ (manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator was mixed with 100 parts by mass of the PA-based resin composition to obtain a resin composition. This resin composition was dissolved in dimethylacetamide to prepare a resin solution so that the resin solid content concentration was 15% by mass.
  • Comparative Example 3 In Comparative Example 3, a primer resin solution using the second resin composition C described in Example 3 of Patent Document 1 was prepared, a coating film was formed using this primer resin solution, and the subsequent drying temperature was 150. A copper foil with an adhesive layer and a sample for evaluating desmear liquid resistance were prepared in the same manner as in Example 1 except that the temperature was set to ° C. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used the copper foil with an adhesive bond layer of this comparative example 4, and the sample for peeling strength measurement was produced. Hereinafter, a method for preparing the resin solution of Comparative Example 3 will be described.
  • Comparative Example 3 as a PES resin composition, 70 parts by mass of a polyethersulfone resin (Sumitomo Chemical Co., Ltd .; Sumika Excel PES-5003P), 30 parts by mass of an epoxy resin (Nippon Kayaku Co., Ltd. EPPN-502) And were used. Then, 1 part by mass of imidazole-based 2P4MHZ (manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator was mixed with 100 parts by mass of the PES resin composition to obtain a resin composition. This resin composition was dissolved in dimethylacetamide to prepare a resin solution so that the resin solid content concentration was 15% by mass.
  • a polyethersulfone resin Suditomo Chemical Co., Ltd .; Sumika Excel PES-5003P
  • an epoxy resin Nippon Kayaku Co., Ltd. EPPN-502
  • imidazole-based 2P4MHZ manufactured by Shikoku Kasei Co., Ltd.
  • peel strength was evaluated as follows. The peel strength before PCT was measured using the peel strength measurement samples prepared in Examples 1 to 5 and Comparative Examples 1 to 3, and this was taken as the peel strength in the normal state. Moreover, the peeling strength after hold
  • Table 1 shows the average value of weight reduction rate (%) before and after desmear treatment.
  • Examples 1 to 4 and Comparative Example 1 having an adhesive layer composed of a polyphenylene ether compound and a styrene butadiene block copolymer are less in weight after desmear treatment than Comparative Example 2. It is confirmed that it is possible to provide a copper foil with an adhesive layer with improved desmear liquid resistance by forming an adhesive layer using a polyphenylene ether compound and a styrene-butadiene block copolymer with a low rate (%). It was done. On the other hand, in Comparative Example 3, it was confirmed that the weight reduction rate (%) after the desmear treatment was as low as 1% or less.
  • Table 2 shows the normal pull measured using the samples for measuring the peel strength produced in Examples 1 to 5 and Comparative Examples 1 to 3. The peel strength, the peel strength after PCT, and the deterioration rate after PCT are shown.
  • Comparative Example 3 which had high desmear resistance, had an extremely high deterioration rate after PCT of 83%, and the average peel strength after PCT was 0.10 kgf / cm. It was confirmed that it was remarkable.
  • Comparative Example 2 the peel strength in the normal state showed an average of 0.63 kgf / cm, and the peel strength after PCT averaged 0.55 kgf / cm.
  • Comparative Example 2 the peel strength at the level required in the market was maintained even after PCT, but the deterioration rate was 12.7%.
  • Examples 1 to 5 and Comparative Example 1 in which the adhesive layer (12) is composed of a polyphenylene ether compound and a styrene butadiene block copolymer the deterioration rate is 20% or less, and the moisture absorption deterioration characteristic is low. It was confirmed that it improved.
  • the styrene-butadiene block copolymer in an amount of 5 to 65 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, 0.5 kgf / cm or more in a normal state and 0.45 kgf after PCT. It is considered that a value of not less than / cm can be obtained.
  • the peel strength after PCT is a value of 0.54 kgf / cm or more.
  • the peel strength after PCT is a value of 0.54 kgf / cm or more.
  • Example 3 and Example 5 differ only in whether or not the adhesive layer contains filler particles. As shown in Table 2, the peel strength at normal state and after PCT shows a higher value in Example 5 containing filler particles, and in order to improve the peel strength It was confirmed that it was effective to add filler particles.
  • Example 6 in order to evaluate the adhesion between the copper circuit and the resin base material in the SAP-1 process described above, the following simple process was used. Hereinafter, each process will be described.
  • Copper clad laminate A copper foil with an adhesive layer was produced in the same manner as in Example 1 using the same resin composition as in Example 3 above.
  • the ultrathin copper foil with a carrier used here is the surface of the copper foil layer of the ultrathin non-roughened copper foil with a carrier of 3 ⁇ m thickness (surface roughness (Rzjis) 0.7 ⁇ m) used in Example 1.
  • a fine copper particle was attached to the surface and subjected to a roughening treatment, and the surface roughness (Rzjis) after the roughening treatment was 1.9 ⁇ m. And it carried out similarly to Example 1, and obtained the copper clad laminated board.
  • the copper foil layer exposed on the surface of the above-mentioned copper-clad laminate was completely dissolved and removed using a commercially available sulfuric acid-hydrogen peroxide aqueous copper etching solution, and the cured adhesive layer was surfaced. It was set as the resin base material with which it prepares.
  • Desmear treatment The resin base material provided with the cured adhesive layer on the surface was immersed in the desmear solution used in the above-mentioned “(1) Evaluation of desmear liquid resistance”, and the same desmear treatment was performed.
  • Electroless copper plating Then, an electroless copper plating layer was formed as a seed layer on the surface of the resin base material provided with a hardened adhesive layer after desmear treatment on the surface, thereby obtaining a resin base material with an electroless copper plating layer. At this time, a process (process using electroless copper plating manufactured by Uemura Kogyo Co., Ltd.) used with commercially available electroless copper plated copper was employed.
  • the plating resist was formed in the location which does not perform the circuit formation of the electroless copper plating layer of the resin base material with the said electroless copper plating layer. Then, electrolytic copper plating was performed, and a circuit was formed by depositing copper at a place where no plating resist was present. Further, the plating resist was peeled off to form a circuit shape on the substrate surface.
  • Comparative Example 4 a printed wiring board was produced by the SAP method in the same manner as in Example 6 except that the resin composition of Comparative Example 2 was used, and the above-mentioned peel strength measurement sample and solder characteristics were produced. An evaluation sample was obtained.
  • Comparative Example 4 employing the resin composition of Comparative Example 2 having low desmear liquid resistance as described above, the peel strength in the normal state showed an average of 0.28 kgf / cm, and the peel strength after PCT The average loss was 0.22 kgf / cm, and the deterioration rate was 21.4%.
  • the peel strength of Comparative Example 4 is lower than that of Example 6, in the case of Comparative Example 4, the surface of the resin base material is dissolved by the desmear treatment, and the copper foil This is probably because the uneven shape of the replica shape in the roughening treatment is reduced and the specific surface area of the adhesion surface is reduced.
  • Example 6 including an adhesive layer made of a polyphenylene ether compound and a styrene butadiene block copolymer has better solder properties than Comparative Example 4. It was confirmed that there was.
  • the copper foil with an adhesive layer comprises a resin composition containing, as an adhesive layer, a styrene-butadiene block copolymer in an amount of 10 to 65 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound.
  • a resin composition containing, as an adhesive layer, a styrene-butadiene block copolymer in an amount of 10 to 65 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

The purpose of the present invention is to provide: a copper foil with an adhesive layer, which has sufficient peel strength and high resistance to a desmear solution, while being suppressed in deterioration due to moisture absorption; a copper-clad laminate; and a printed wiring board. In order to achieve this purpose, a copper foil with an adhesive layer, which is provided with an adhesive layer on one surface of a copper foil, is configured such that the adhesive layer is composed of a resin composition that contains from 5 parts by mass to 65 parts by mass (inclusive) of a styrene butadiene block copolymer per 100 parts by mass of a polyphenylene ether compound. Also provided are: a copper-clad laminate which is obtained using this copper foil with an adhesive layer; and a printed wiring board which is characterized by being obtained using this copper-clad laminate.

Description

接着剤層付銅箔、銅張積層板及びプリント配線板Copper foil with adhesive layer, copper-clad laminate and printed wiring board
 本件発明は、プリント配線板用の接着剤層付銅箔、当該接着剤層付銅箔を用いた銅張積層板及びプリント配線板に関する。 The present invention relates to a copper foil with an adhesive layer for a printed wiring board, a copper-clad laminate using the copper foil with an adhesive layer, and a printed wiring board.
 従来より、銅張積層板又は、プリント配線板を製造する際に、特許文献1或いは特許文献2に開示されているような、極薄接着剤層(プライマー樹脂層)を備えた銅箔(以下、「接着剤層付銅箔」と称する。」が用いられている。この接着剤層付銅箔を、樹脂基板又は層間絶縁層となるプリプレグ、紙フェノール樹脂基材等の樹脂基材に、接着剤層側が面するように積層し、加熱加圧等を行うことにより、接着剤層を介して、樹脂基材と銅箔との良好な張り合わせ密着性を確保することができる。 Conventionally, when manufacturing a copper-clad laminate or a printed wiring board, a copper foil provided with an ultrathin adhesive layer (primer resin layer) as disclosed in Patent Document 1 or Patent Document 2 , Referred to as “copper foil with adhesive layer”. ”This copper foil with adhesive layer is applied to a resin substrate such as a resin substrate or an interlayer insulating layer, such as a prepreg, a paper phenol resin substrate, By laminating so that the adhesive layer side faces and performing heating and pressurization or the like, good adhesion between the resin substrate and the copper foil can be ensured through the adhesive layer.
 特許文献1又は特許文献2に開示の接着剤層は、換算厚さが0.5μm~10μmの極薄い半硬化状態の樹脂層である。これらの接着剤層は、エポキシ樹脂と、溶剤に可溶な芳香族ポリアミド樹脂と、硬化促進剤等を混合した樹脂組成物(以下、「PA系樹脂組成物」と称する。)又は、エポキシ樹脂と、ポリエーテルサルホン樹脂と、硬化促進剤等を混合した樹脂組成物(以下、「PES系樹脂組成物」と称する。)を用いて形成されたものである。 The adhesive layer disclosed in Patent Document 1 or Patent Document 2 is an extremely thin semi-cured resin layer having a converted thickness of 0.5 μm to 10 μm. These adhesive layers are a resin composition (hereinafter referred to as “PA resin composition”) in which an epoxy resin, an aromatic polyamide resin soluble in a solvent, and a curing accelerator are mixed, or an epoxy resin. And a resin composition (hereinafter referred to as “PES resin composition”) in which a polyethersulfone resin and a curing accelerator are mixed.
 このような接着剤層付銅箔を用いれば、低粗度の銅箔であっても樹脂基材との密着性を確保することができるため、従来、行われてきた粗化処理工程を不要とすることができる。これにより、製造効率が向上することができ、且つ、製造コストを削減することができる。また、これらの接着剤層付銅箔を用いた場合、エッチングにより導体パターンを形成する際に、粗化処理部分を溶解するためのオーバーエッチングタイムを設ける必要がないため、ファインピッチで、良好なエッチングファクタを備える微細回路を形成することが可能になるという優れた効果を奏する。 If such a copper foil with an adhesive layer is used, adhesiveness with a resin base material can be secured even with a low-roughness copper foil, so that the conventional roughening treatment step is unnecessary. It can be. Thereby, manufacturing efficiency can be improved and manufacturing cost can be reduced. Moreover, when using these copper foils with an adhesive layer, it is not necessary to provide an over-etching time for dissolving the roughened portion when forming a conductor pattern by etching. There is an excellent effect that a fine circuit having an etching factor can be formed.
特開2005-53218号公報Japanese Patent Laid-Open No. 2005-53218 特開2009-148962号公報JP 2009-148962 A
 しかしながら、上記例示した接着剤層付銅箔については、デスミア液等に対する耐薬品性の向上又は耐吸湿劣化特性の向上が求められていた。 However, with respect to the copper foil with an adhesive layer exemplified above, improvement in chemical resistance against desmear liquid or the like or improvement in moisture absorption deterioration characteristics has been demanded.
 例えば、多層プリント配線板を製造する際には、層間接続のためにスルーホール又はブラインドビア等の穴がドリルやレーザ加工により開けられる場合がある。このとき、穴の内部に残留した樹脂(スミア)を除去するために過マンガン酸カリウム等からなるデスミア液を用いて、スミアを除去するデスミア処理が行われる。その際、PA系樹脂組成物を用いて形成された接着剤層は、デスミア処理の際にデスミア液に溶解し易いため、樹脂基材と銅箔との間の密着性がスルーホール又はブラインドビア等の周囲において局部的に低下する恐れがあった。 For example, when manufacturing a multilayer printed wiring board, a hole such as a through hole or a blind via may be formed by drilling or laser processing for interlayer connection. At this time, in order to remove the resin (smear) remaining inside the hole, a desmear treatment for removing smear is performed using a desmear liquid made of potassium permanganate or the like. At that time, since the adhesive layer formed using the PA-based resin composition is easily dissolved in the desmear liquid during the desmear treatment, the adhesion between the resin base material and the copper foil is through-holes or blind vias. There was a risk of local degradation in the surroundings.
 一方、PES系樹脂組成物を用いて形成された接着剤層は、デスミア液耐性が高く、デスミア処理を施しても溶解しない。しかしながら、吸湿後の引き剥がし強さの劣化が著しいという問題があった。 On the other hand, the adhesive layer formed using the PES resin composition has high resistance to desmear liquid and does not dissolve even when desmear treatment is performed. However, there is a problem that the peel strength after moisture absorption is significantly deteriorated.
 従って、本件発明は、十分な引き剥がし強さを有すると共に、デスミア液耐性が高く、且つ、耐吸湿劣化特性の優れた接着剤層付銅箔、銅張積層板及びプリント配線板を提供することを目的とする。 Accordingly, the present invention provides a copper foil with an adhesive layer, a copper-clad laminate, and a printed wiring board having sufficient peel strength, high desmear liquid resistance, and excellent moisture absorption deterioration resistance. With the goal.
 そこで、本発明者等は、鋭意研究を行った結果、以下の樹脂組成物からなる層を接着剤層として採用することで上記課題を達成するに到った。 Therefore, as a result of intensive studies, the present inventors have achieved the above-mentioned problem by adopting a layer comprising the following resin composition as an adhesive layer.
 本件発明に係る接着剤層付銅箔は、銅箔の片面に接着剤層を備える接着剤層付銅箔であって、前記接着剤層は、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部以上65質量部以下含む樹脂組成物からなる層であることを特徴とする。 The copper foil with an adhesive layer according to the present invention is a copper foil with an adhesive layer provided with an adhesive layer on one side of the copper foil, and the adhesive layer is styrene butadiene with respect to 100 parts by mass of the polyphenylene ether compound. It is a layer made of a resin composition containing 5 to 65 parts by mass of a block copolymer.
 本件発明に係る接着剤層付銅箔において、銅箔の表面粗さ(Rzjis)が2μm以下である面に、前記接着剤層が設けられていることが好ましい。 In the copper foil with an adhesive layer according to the present invention, it is preferable that the adhesive layer is provided on a surface having a surface roughness (Rzjis) of the copper foil of 2 μm or less.
 本件発明に係る接着剤層付銅箔において、前記接着剤層の厚みは、0.5μm~10μmであることが好ましい。 In the copper foil with an adhesive layer according to the present invention, the thickness of the adhesive layer is preferably 0.5 μm to 10 μm.
 本件発明に係る接着剤層付銅箔において、前記接着剤層は、アミノ官能性シランカップリング剤、アクリル官能性シランカップリング剤、メタクリル官能性シランカップリング剤及びビニル官能性シランカップリング剤から選ばれる1種以上を用いて表面処理されたフィラー粒子を含むものであることが好ましい。 In the copper foil with an adhesive layer according to the present invention, the adhesive layer includes an amino functional silane coupling agent, an acrylic functional silane coupling agent, a methacryl functional silane coupling agent, and a vinyl functional silane coupling agent. It is preferable that the filler particle | grains surface-treated using 1 or more types chosen are included.
 本件発明に係る銅張積層板は、上記記載の接着剤層付銅箔を用いたことを特徴とする。 The copper clad laminate according to the present invention is characterized by using the above-described copper foil with an adhesive layer.
 本件発明に係るプリント配線板は、本件発明に係る銅張積層板を用いて得られたことを特徴とする。そして、本件発明に係る銅張積層板を用い、当該銅張積層板の表面の銅箔層をエッチングにより除去してセミアディティブ法で回路形成して得られたことを特徴とするプリント配線板にも、好適に使用できる。 The printed wiring board according to the present invention is obtained using the copper-clad laminate according to the present invention. And, using the copper clad laminate according to the present invention, a printed wiring board obtained by forming a circuit by a semi-additive method by removing the copper foil layer on the surface of the copper clad laminate by etching Can also be suitably used.
 本件発明によれば、接着剤層として、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部以上65質量部以下含む樹脂組成物からなる層を採用することにより、当該接着剤層付銅箔を樹脂基材に張り合わせたときの密着性を良好なものとすることができる。これと同時に、プリント配線板の製造工程にデスミア処理が含まれる場合であっても、デスミア液に接着剤層が溶解するのを防止することができ、且つ、吸湿後の引き剥がし強さの劣化が少ないプリント配線板を形成することができる。 According to the present invention, as the adhesive layer, with respect to 100 parts by mass of the polyphenylene ether compound, by adopting a layer comprising a resin composition containing 5 parts by mass or more and 65 parts by mass or less of a styrene butadiene block copolymer, Adhesiveness when the copper foil with an adhesive layer is bonded to a resin base material can be improved. At the same time, even when desmear processing is included in the printed wiring board manufacturing process, it is possible to prevent the adhesive layer from dissolving in the desmear liquid and to deteriorate the peeling strength after moisture absorption. It is possible to form a printed wiring board with a small amount.
 以下、本発明に係る接着剤層付銅箔、銅張積層板及びプリント配線板の実施の形態を説明する。 Hereinafter, embodiments of a copper foil with an adhesive layer, a copper clad laminate, and a printed wiring board according to the present invention will be described.
<接着剤層付銅箔>
 本件発明に係る接着剤層付銅箔は、プリント配線板の製造材料として用いられるものであり、銅箔の片面に接着剤層を備えた銅箔である。本件発明において、この銅箔の片面に備えられた接着剤層が、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部以上65質量部以下含む樹脂組成物からなる層であることを特徴としている。以下では、(1)銅箔、(2)接着剤層の順に各層の構成等について説明する。また、本件発明において、接着剤層はフィラー粒子を含む構成としてもよい。フィラー粒子に関しては、接着剤層とは別に項目を分けて説明する。なお、本実施の形態では、主として、当該接着剤層付銅箔を樹脂基材に張り合わせる場合を例に挙げて説明する。しかしながら、本件発明に係る接着剤層付銅箔の実施形態はこれに限定されるものではなく、当該接着剤層付銅箔の接着剤層上に更に絶縁層等として機能する樹脂層が設けられたものも本件発明に含まれる。すなわち、本件発明は、下記に説明する銅箔の片面に下記に説明する特徴を有する接着剤を備えるものであればよく、当該接着剤層が例えば、銅張積層板或いはプリント配線板全体として見たときに、銅箔と絶縁層等を構成する樹脂部分との間に介在して、両者を接着又は密着させる機能を有するものであればよい。
<Copper foil with adhesive layer>
The copper foil with an adhesive layer according to the present invention is used as a material for producing a printed wiring board, and is a copper foil provided with an adhesive layer on one side of the copper foil. In the present invention, the adhesive layer provided on one side of the copper foil is a layer made of a resin composition containing 5 parts by mass or more and 65 parts by mass or less of a styrene butadiene block copolymer with respect to 100 parts by mass of the polyphenylene ether compound. It is characterized by being. Below, the structure of each layer is demonstrated in order of (1) copper foil and (2) adhesive bond layer. In the present invention, the adhesive layer may include filler particles. The filler particles will be described separately from the adhesive layer. In the present embodiment, a case where the copper foil with an adhesive layer is bonded to a resin base material will be mainly described as an example. However, the embodiment of the copper foil with an adhesive layer according to the present invention is not limited to this, and a resin layer that functions as an insulating layer or the like is further provided on the adhesive layer of the copper foil with an adhesive layer. Are also included in the present invention. That is, the present invention only needs to have an adhesive having the characteristics described below on one side of the copper foil described below, and the adhesive layer is viewed as, for example, a copper-clad laminate or an entire printed wiring board. It is only necessary to intervene between the copper foil and the resin portion constituting the insulating layer or the like to have a function of adhering or adhering both.
(1)銅箔
 本件発明において、接着剤層が設けられる銅箔として、電解銅箔及び圧延銅箔等のいずれを用いてもよく、銅箔の種類等に関する限定はない。また、電解銅箔に接着剤層を設ける場合、光沢面(ドラム面)或いは析出面(粗面)のいずれの面に接着剤層が設けられていてもよい。また、銅箔の厚みについても特に限定されるものではないが、1.0μm~18μmの範囲の銅箔に当該接着剤層を設けることが好ましい。プリント配線板を製造する際に求められる特性等に応じて、適宜、適切な銅箔を採用すればよい。
(1) Copper foil In this invention, any of an electrolytic copper foil, a rolled copper foil, etc. may be used as a copper foil with which an adhesive bond layer is provided, and there is no limitation regarding the kind of copper foil, etc. Moreover, when providing an adhesive bond layer in electrolytic copper foil, the adhesive bond layer may be provided in any surface of a glossy surface (drum surface) or a precipitation surface (rough surface). The thickness of the copper foil is not particularly limited, but it is preferable to provide the adhesive layer on a copper foil in the range of 1.0 μm to 18 μm. An appropriate copper foil may be employed as appropriate according to the characteristics required when manufacturing the printed wiring board.
 また、本件発明において、例えば、5.0μm以下の銅箔の片面(一面側)に接着層を備える構成とした場合、銅箔の他面に、いわゆるキャリア箔(支持体)を設けてもよい。5.0μm以下の銅箔を用いることにより、より回路ピッチの狭い高精細な回路を、良好なエッチングファクタで形成することができる。 Moreover, in this invention, when it is set as the structure provided with an adhesive layer in the single side | surface (one surface side) of 5.0 micrometers or less copper foil, you may provide what is called carrier foil (support body) in the other surface of copper foil. . By using a copper foil of 5.0 μm or less, a high-definition circuit with a narrower circuit pitch can be formed with a good etching factor.
 本件発明において、接着面の表面粗さ(Rzjis)が2μm以下の銅箔に対して接着剤層を設けることが好ましい。そして、銅箔自体をエッチング加工して、回路形成を行う場合には、粗化処理が施されていない銅箔を用いることが更に好ましい。なお、接着面とは、銅箔の樹脂基材に張り合わされる側の面を指し、接着剤層が設けられる面を指すものとする。本件発明に係る接着剤層付銅箔は、電解銅箔及び圧延銅箔等の種類の別によらず、接着面の表面粗さ(Rzjis)が2μm以下の表面が平滑な銅箔についても、銅箔と樹脂基材との間に接着剤層を介在させることにより、銅箔と樹脂基材との十分な接着強度を得ることができる。すなわち、本件発明に係る接着剤層付銅箔は、無粗化銅箔であっても、樹脂基材との十分な接着強度を得ることができるため、従来のようにエッチングによる導体パターン形成時に、粗化処理部分を溶解する必要がなく、エッチングに要する時間を削減することができる。このため、エッチングファクタの良好な回路を形成することが可能になる。より高精細な回路を形成するという観点から、銅箔の表面粗さは1.8μm以下であることがより好ましく、1.5μm以下であることが更に好ましい。 In the present invention, it is preferable to provide an adhesive layer on a copper foil having a surface roughness (Rzjis) of 2 μm or less. And when performing circuit formation by etching the copper foil itself, it is more preferable to use a copper foil that has not been subjected to a roughening treatment. The adhesive surface refers to the surface of the copper foil that is bonded to the resin base material, and refers to the surface on which the adhesive layer is provided. The copper foil with an adhesive layer according to the present invention is a copper foil having a smooth surface with a surface roughness (Rzjis) of 2 μm or less regardless of the type of electrolytic copper foil and rolled copper foil. By interposing an adhesive layer between the foil and the resin base material, sufficient adhesive strength between the copper foil and the resin base material can be obtained. That is, even if the copper foil with an adhesive layer according to the present invention is a non-roughened copper foil, sufficient adhesive strength with a resin base material can be obtained. It is not necessary to dissolve the roughened portion, and the time required for etching can be reduced. For this reason, it becomes possible to form a circuit with a good etching factor. From the viewpoint of forming a higher definition circuit, the surface roughness of the copper foil is more preferably 1.8 μm or less, and further preferably 1.5 μm or less.
 一方、本件発明に係る接着剤層付銅箔を樹脂基材に張り合わせて銅張積層板を得た後、その表面の銅箔をエッチング除去して、接着剤層を露出させ、その全面にシード層(無電解銅層等)を設け、当該シード層上の回路を形成しない部分にめっきレジストを形成し、回路を形成する部分のみにめっき法で回路を形成するセミアディティブ法(Semi Additive Process=SAP法)を採用する場合には、粗化処理を施した銅箔を使用することが好ましい。粗化処理を施した銅箔を用いることで、硬化した接着剤層に当該粗化処理のレプリカ形状を残して、接着面の比表面積を増やし、SAP法で形成する回路との密着性の向上が図れるからである。このときの粗化処理を施した銅箔も、表面粗さ(Rzjis)が2μm以下であることが好ましい。そして、この粗化処理を施した面に、前記接着剤層を設けて、本件発明に係る接着剤層付銅箔となる。当該銅箔の表面粗さが2μmを超える場合には、大きな凹凸形状を備える粗化処理となる傾向が高く、フラッシュエッチングによるシード層の除去が困難となる傾向があり、回路間の絶縁性が低下する傾向にあるため好ましくない。なお、このSAP法については、後に詳述する。 On the other hand, after the copper foil with adhesive layer according to the present invention was bonded to a resin substrate to obtain a copper clad laminate, the copper foil on the surface was removed by etching to expose the adhesive layer, and the entire surface was seeded A semi-additive process (Semi Additive Process) in which a layer (electroless copper layer or the like) is provided, a plating resist is formed on a portion of the seed layer where a circuit is not formed, and a circuit is formed only on a portion where the circuit is formed by plating. When employing the SAP method, it is preferable to use a copper foil that has been subjected to a roughening treatment. By using copper foil that has been subjected to roughening treatment, the replica surface of the roughening treatment is left in the cured adhesive layer, the specific surface area of the adhesive surface is increased, and the adhesion with the circuit formed by the SAP method is improved. It is because it can plan. The copper foil subjected to the roughening treatment at this time also preferably has a surface roughness (Rzjis) of 2 μm or less. And the said adhesive bond layer is provided in the surface which gave this roughening process, and it becomes the copper foil with an adhesive bond layer which concerns on this invention. When the surface roughness of the copper foil exceeds 2 μm, it tends to be a roughening treatment with a large uneven shape, and it tends to be difficult to remove the seed layer by flash etching, and the insulation between circuits is Since it tends to decrease, it is not preferable. The SAP method will be described later in detail.
 なお、本件発明では、銅箔の表面に防錆処理を施し、この防錆処理層の表面に接着剤層を設ける構成としてもよい。銅箔に対する防錆処理として、亜鉛、ニッケル、コバルト等を用いた無機防錆処理、クロム酸塩を用いたクロメート処理、ベンゾトリアゾール、イミダゾール等の有機剤を用いた有機防錆処理等が挙げられる。また、本件発明において、以下、単に銅箔と称した場合、防錆処理が施された銅箔を指す場合がある。 In addition, in this invention, it is good also as a structure which gives an antirust process to the surface of copper foil, and provides an adhesive bond layer on the surface of this antirust process layer. Examples of rust prevention treatment for copper foil include inorganic rust prevention treatment using zinc, nickel, cobalt, etc., chromate treatment using chromate, organic rust prevention treatment using organic agents such as benzotriazole, imidazole, etc. . In the present invention, hereinafter, when simply referred to as a copper foil, it may refer to a copper foil that has been subjected to a rust prevention treatment.
 また、本件発明では、銅箔の片面側の表面にシランカップリング剤処理を施し、このシランカップリング剤層の表面に接着剤層を設ける構成としてもよい。シランカップリング剤層を介して、接着剤層を銅箔の表面に設けることにより、銅箔の表面と接着剤層との濡れ性を改善し、当該接着剤層付銅箔を樹脂基材に張り合わせたときの接着強度をより良好なものとし、張り合わせ密着性をより良好なものとすることができる。そして、シランカップリング剤層を介在させることにより、シランカップリング剤層が存在しない場合に比して、銅箔をより強固に樹脂基材に密着させることができる。また、本件発明において、以下、単に銅箔と称した場合、シランカップリング剤処理が施された銅箔を指す場合がある。 In the present invention, the surface of one side of the copper foil may be treated with a silane coupling agent, and an adhesive layer may be provided on the surface of the silane coupling agent layer. By providing an adhesive layer on the surface of the copper foil via the silane coupling agent layer, the wettability between the surface of the copper foil and the adhesive layer is improved, and the copper foil with the adhesive layer is used as a resin substrate. Adhesive strength when bonded can be made better, and sticking adhesion can be made better. And by interposing a silane coupling agent layer, compared with the case where a silane coupling agent layer does not exist, copper foil can be more firmly stuck to a resin base material. In the present invention, hereinafter, when simply referred to as a copper foil, it may refer to a copper foil that has been treated with a silane coupling agent.
 シランカップリング剤層として、具体的には、アミノ官能性シランカップリング剤層、アクリル官能性シランカップリング剤層、メタクリル官能性シランカップリング剤、ビニル官能性シランカップリング剤、エポキシ官能性シランカップリング剤層、オレフィン官能性シランカップリング剤層、メルカプト官能性シランカップリング剤層等の種々のシランカップリング剤を用いて形成された層を採用することができる。 As the silane coupling agent layer, specifically, an amino functional silane coupling agent layer, an acrylic functional silane coupling agent layer, a methacryl functional silane coupling agent, a vinyl functional silane coupling agent, an epoxy functional silane Layers formed using various silane coupling agents such as a coupling agent layer, an olefin functional silane coupling agent layer, and a mercapto functional silane coupling agent layer can be employed.
 シランカップリング剤層を形成する際には、溶媒としての水にシランカップリング剤を0.5g/l~10g/l溶解させたものを、室温レベルの温度で、浸漬法、シャワーリング法、噴霧法等により銅箔の表面とシランカップリング剤とを均一に接触させて、銅箔の表面にシランカップリング剤を均一に吸着させることが好ましい。シランカップリング剤は、銅箔の表面に突きだしたOH基と縮合結合することにより、被膜を形成する。シランカップリング剤の濃度が0.5g/l未満の溶液を用いた場合、銅箔の表面に対するシランカップリング剤の吸着速度が遅く、一般的な商業ベースの採算に合わず好ましくない。また、シランカップリング剤も銅箔の表面に対して不均一に吸着されるため好ましくない。一方、シランカップリング剤の濃度が10g/lを超える溶液を用いた場合であっても、特に吸着速度や均一吸着性が向上する訳ではなく、経済上の観点から好ましくない。 When the silane coupling agent layer is formed, a solution obtained by dissolving 0.5 g / l to 10 g / l of the silane coupling agent in water as a solvent is immersed at a temperature of room temperature, a showering method, It is preferable that the surface of the copper foil and the silane coupling agent are brought into uniform contact with each other by a spraying method or the like so that the silane coupling agent is uniformly adsorbed on the surface of the copper foil. The silane coupling agent forms a film by condensation bonding with OH groups protruding from the surface of the copper foil. When a solution having a concentration of the silane coupling agent of less than 0.5 g / l is used, the adsorption rate of the silane coupling agent on the surface of the copper foil is slow, which is not preferable because it does not meet general commercial profitability. Moreover, since a silane coupling agent is adsorbed unevenly with respect to the surface of copper foil, it is not preferable. On the other hand, even when a solution having a concentration of the silane coupling agent exceeding 10 g / l is used, the adsorption rate and the uniform adsorptivity are not particularly improved, which is not preferable from an economic viewpoint.
 上記シランカップリング剤層を形成する際に用いるシランカップリング剤として、具体的には以下のものが挙げられる。ビニルトリメトキシシラン、ビニルフェニルトリメトキシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、4-グリシジルブチルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-3-(4-(3-アミノプロポキシ)プトキシ)プロピル-3-アミノプロピルトリメトキシシラン、イミダゾールシラン、トリアジンシラン、γ-メルカプトプロピルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン等のシランカップリング剤を用いることが可能である。 Specific examples of the silane coupling agent used when forming the silane coupling agent layer include the following. Vinyltrimethoxysilane, vinylphenyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, 4-glycidylbutyltrimethoxysilane, γ-aminopropyltrimethoxysilane, N-β ( Aminoethyl) γ-aminopropyltrimethoxysilane, N-3- (4- (3-aminopropoxy) ptoxy) propyl-3-aminopropyltrimethoxysilane, imidazole silane, triazine silane, γ-mercaptopropyltrimethoxysilane, Silane coupling agents such as 3-acryloxypropyltrimethoxysilane can be used.
 なお、以下において銅箔と称した場合、銅箔表面にシランカップリング剤層が形成されている銅箔も含むものとし、銅箔の表面と称した場合、シランカップリング剤層の表面である場合も含む。 In the following, when referred to as copper foil, it also includes a copper foil in which a silane coupling agent layer is formed on the surface of the copper foil. When referred to as the surface of the copper foil, it is the surface of the silane coupling agent layer. Including.
(2)接着剤層
 次に、接着剤層について説明する。本件発明において、接着剤層は、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部以上65質量部以下含む樹脂組成物からなる層であることを特徴としている。
(2) Adhesive layer Next, the adhesive layer will be described. In the present invention, the adhesive layer is a layer formed of a resin composition containing 5 parts by mass or more and 65 parts by mass or less of a styrene butadiene block copolymer with respect to 100 parts by mass of the polyphenylene ether compound.
 まず、ポリフェニレンエーテル化合物について説明する。ポリフェニレンエーテル化合物は、その構造から耐デスミア液特性が高く、デスミア液に殆ど溶解しない。このため、ポリフェニレンエーテル化合物を主成分として接着剤層を構成することにより、デスミア液に溶解する樹脂量を減少させることができる。従って、プリント配線板の製造工程等において、デスミア処理工程が存在する場合であっても、デスミア処理の前後において、接着剤層が局所的に溶解し、デスミア処理の前後において樹脂基材と銅箔との間の密着性が局部的に低下することなく、デスミア処理後も銅箔と樹脂基材との良好な密着性を確保することができる。また、ポリフェニレンエーテル化合物を用いることにより、低誘電率及び低誘電正接の電気特性の良い接着剤層を得ることができる。 First, the polyphenylene ether compound will be described. The polyphenylene ether compound has high desmear liquid resistance due to its structure and hardly dissolves in the desmear liquid. For this reason, the amount of the resin dissolved in the desmear liquid can be reduced by configuring the adhesive layer with the polyphenylene ether compound as a main component. Therefore, even in the case where a desmear process is present in a printed wiring board manufacturing process or the like, the adhesive layer locally dissolves before and after the desmear process, and the resin base material and the copper foil before and after the desmear process. Adhesiveness between the copper foil and the resin base material can be ensured even after desmear treatment without locally lowering. Further, by using a polyphenylene ether compound, an adhesive layer having a low dielectric constant and a low dielectric loss tangent and good electrical characteristics can be obtained.
 この発明に用いられるポリフェニレンエーテル化合物は、次の一般式で表される。但し、下記一般式において、R1、R2、R3、R4はそれぞれ水素原子または炭素数1~3の炭化水素基を表す。
The polyphenylene ether compound used in the present invention is represented by the following general formula. In the following general formula, R1, R2, R3, and R4 each represent a hydrogen atom or a hydrocarbon group having 1 to 3 carbon atoms.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 上記ポリフェニレンエーテル化合物として、具体的には、ポリ(2,6-ジメチル-1,4-フェニレン)エーテル、ポリ(2,6-ジエチル-1,4-フェニレン)エーテル、ポリ(2,6-ジプロピル-1,4-フェニレン)エーテル等を用いることができる。また、上記一般式で表されるポリフェニレンエーテル化合物において、末端基は水酸基であることが好ましい。しかしながら、本件発明では、末端基が水酸基であるポリフェニレンエーテル化合物だけではなく、必要に応じて、スチレン基やグリシジル基を有する化合物を用いて、公知の方法により、末端基を変性させたスチレン変性ポリフェニレンエーテル化合物や、グリシジル変性ポリフェニレンエーテル化合物等も好ましく用いることができる。また、これらの市販品を用いてもよい。 Specific examples of the polyphenylene ether compound include poly (2,6-dimethyl-1,4-phenylene) ether, poly (2,6-diethyl-1,4-phenylene) ether, and poly (2,6-dipropyl). -1,4-phenylene) ether or the like can be used. In the polyphenylene ether compound represented by the above general formula, the terminal group is preferably a hydroxyl group. However, in the present invention, not only a polyphenylene ether compound having a terminal hydroxyl group but also a styrene-modified polyphenylene having a terminal group modified by a known method using a compound having a styrene group or a glycidyl group as necessary. Ether compounds, glycidyl-modified polyphenylene ether compounds, and the like can also be preferably used. Moreover, you may use these commercial items.
 ポリフェニレンエーテル化合物の数平均分子量は、500~4000であることが好ましく、1000~3000であることがより好ましい。ポリフェニレンエーテル化合物の数平均分子量が500未満である場合、得られる接着剤層の可撓性が低くなるため好ましくない。一方、ポリフェニレンエーテル化合物の数平均分子量が4000を超える場合、メチルエチルケトンやトルエン等の溶剤に対する溶解性が低くなるため好ましくない。 The number average molecular weight of the polyphenylene ether compound is preferably 500 to 4000, and more preferably 1000 to 3000. When the number average molecular weight of the polyphenylene ether compound is less than 500, the flexibility of the resulting adhesive layer is lowered, which is not preferable. On the other hand, when the number average molecular weight of the polyphenylene ether compound exceeds 4000, the solubility in a solvent such as methyl ethyl ketone or toluene is not preferable.
 次に、スチレンブタジエンブロック共重合体について説明する。スチレンブタジエンブロック共重合体は、ポリフェニレンエーテル化合物に対する重合(架橋)成分である。ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体とが重合することにより、ブタジエン構造体部分に由来する高柔軟性により当該接着剤層が弾性、可撓性を示すようになる。特に、スチレン変性ポリフェニレンエーテル化合物又はグリシジル変性ポリフェニレンエーテル化合物を用いた場合、この傾向は顕著になる。その結果、接着剤層の銅箔に対する密着性が向上すると共に、耐クラック性も向上することができる。そして、当該接着剤層付銅箔を用いてプリント配線板を製造したときに、回路の引き剥がし強さを実用上要求される値にすることができる。また、当該スチレンブタジエンブロック共重合体を用いることにより、耐吸湿劣化特性を向上させることができ、引き剥がし強さが多湿環境下で経時的に劣化することを防ぐことができる。さらに、スチレンブタジエンブロック共重合体は、極性基が少なく、ポリフェニレンエーテル化合物が有する低誘電特性に与える影響が少ないため、ポリフェニレンエーテル化合物に由来する低誘電率及び低誘電正接の良い電気的特性を維持することができる。 Next, the styrene butadiene block copolymer will be described. The styrene butadiene block copolymer is a polymerization (crosslinking) component for the polyphenylene ether compound. By polymerizing the polyphenylene ether compound and the styrene-butadiene block copolymer, the adhesive layer exhibits elasticity and flexibility due to the high flexibility derived from the butadiene structure portion. In particular, when a styrene-modified polyphenylene ether compound or a glycidyl-modified polyphenylene ether compound is used, this tendency becomes remarkable. As a result, the adhesiveness of the adhesive layer to the copper foil can be improved and the crack resistance can also be improved. And when a printed wiring board is manufactured using the said copper foil with an adhesive bond layer, the peeling strength of a circuit can be made into the value requested | required practically. In addition, by using the styrene butadiene block copolymer, it is possible to improve the moisture absorption deterioration characteristic, and it is possible to prevent the peeling strength from being deteriorated with time in a humid environment. Furthermore, styrene-butadiene block copolymer has few polar groups and has little influence on the low dielectric properties of polyphenylene ether compounds, so it maintains good electrical characteristics such as low dielectric constant and low dielectric loss tangent derived from polyphenylene ether compounds. can do.
 次に、ポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体の配合比について説明する。本件発明において、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部以上65質量部以下の範囲で用いることが好ましい。ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体が65質量部を超える場合、常態時の引き剥がし強さが低く、また、PCT(Pressure Cooker Test)等により高温加湿環境下での加速試験を行った場合、市場で要求されるレベルのPCT後の引き剥がし強さを維持することが困難になるため好ましくない。また、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体が5質量部未満の場合、成膜が困難である他、十分な弾性、可撓性が得られないため好ましくない。ここで、ポリフェニレンエーテル化合物100質量部に対してスチレンブタジエンブロック共重合体の配合比は10質量部以上であることがより好ましく、20質量部以上であることが更に好ましい。ポリフェニレンエーテル化合物100質量部に対してスチレンブタジエンブロック共重合体を10質量部以上、好ましくは20質量部以上配合することにより、成膜が容易になり、接着剤層に弾性及び可撓性を与えることができるためである。 Next, the blending ratio of the polyphenylene ether compound and the styrene butadiene block copolymer will be described. In this invention, it is preferable to use a styrene butadiene block copolymer in 5 to 65 mass parts with respect to 100 mass parts of polyphenylene ether compounds. When the styrene butadiene block copolymer exceeds 65 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, the peeling strength in the normal state is low, and the PCT (Pressure Cooker Test) is used in a high-temperature humidified environment. When an accelerated test is performed, it is not preferable because it becomes difficult to maintain the peel strength after PCT at a level required in the market. Further, when the styrene butadiene block copolymer is less than 5 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, it is not preferable because film formation is difficult and sufficient elasticity and flexibility cannot be obtained. Here, the blending ratio of the styrene butadiene block copolymer to 100 parts by mass of the polyphenylene ether compound is more preferably 10 parts by mass or more, and further preferably 20 parts by mass or more. By blending styrene butadiene block copolymer with 10 parts by mass or more, preferably 20 parts by mass or more with respect to 100 parts by mass of the polyphenylene ether compound, film formation becomes easy, and elasticity and flexibility are given to the adhesive layer. Because it can.
 また、常態時の引き剥がし強さが高く、且つ、耐吸湿劣化特性が高くなるという観点からポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を30質量部~55質量部の範囲で配合することがより好ましく、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を35質量部~45質量部の範囲で配合することが更に好ましい。ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を30質量部~55質量部の範囲で配合することにより、常態時及びPCT後のいずれの場合も引き剥がし強さが高くなり、PCT前後の引き剥がし強さの劣化率を低減させることができる。ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を35質量部~45質量部の範囲で配合することにより、PCT後の引き剥がし強さがより高くなり、PCT前後の引き剥がし強さの劣化率が更に低減する。 Further, from the viewpoints of high peel strength in the normal state and high moisture absorption deterioration resistance, the styrene butadiene block copolymer is in the range of 30 to 55 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound. More preferably, the styrene-butadiene block copolymer is more preferably blended in the range of 35 to 45 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound. By blending the styrene butadiene block copolymer in the range of 30 parts by mass to 55 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, the peeling strength is increased both in the normal state and after the PCT, The deterioration rate of the peel strength before and after the PCT can be reduced. By blending the styrene butadiene block copolymer in the range of 35 parts by mass to 45 parts by mass with 100 parts by mass of the polyphenylene ether compound, the peel strength after PCT becomes higher, and the peel strength before and after PCT increases. The deterioration rate is further reduced.
 なお、必要に応じて、上記樹脂組成物がエポキシ樹脂、硬化剤、硬化促進剤、熱可塑性粒子、着色剤、酸化防止剤、難燃剤、カップリング剤等の各種添加剤を含む構成としてもよい。これらの各種添加剤を本件発明の趣旨を逸脱しない範囲において、適宜量、添加してもよい。 If necessary, the resin composition may contain various additives such as an epoxy resin, a curing agent, a curing accelerator, thermoplastic particles, a colorant, an antioxidant, a flame retardant, and a coupling agent. . These various additives may be added in appropriate amounts within a range not departing from the gist of the present invention.
 次に、接着剤層の厚みについて説明する。本件発明において、接着剤層の厚み(ゲージ厚)は、0.5μm~10μmの範囲内であることが好ましい。接着剤層の厚みが、0.5μm未満の場合には、接着剤層が薄すぎて、銅箔と接着剤層との密着性が向上しない。これに対して、接着剤層の厚みが10μmを超えても、銅箔と接着剤層との密着性がそれ以上に向上する訳ではなく、資源の無駄使いとなるため好ましくない。 Next, the thickness of the adhesive layer will be described. In the present invention, the thickness of the adhesive layer (gauge thickness) is preferably in the range of 0.5 μm to 10 μm. When the thickness of the adhesive layer is less than 0.5 μm, the adhesive layer is too thin and the adhesion between the copper foil and the adhesive layer is not improved. On the other hand, even if the thickness of the adhesive layer exceeds 10 μm, the adhesion between the copper foil and the adhesive layer does not improve further, and this is not preferable because it wastes resources.
(3)フィラー粒子
 次に、フィラー粒子について説明する。本件発明では、上述した様に、接着剤層がフィラー粒子を含む構成としてもよい。接着剤層にフィラー粒子を含有させることにより、フィラー粒子を含有しない接着剤層に比して、常態時の引き剥がし強さ及び耐吸湿劣化特性を向上させることができる。また、上述した樹脂組成物からなる接着剤層にフィラー粒子を含有させる場合、特定の表面処理を施したフィラー粒子を用いることにより、接着剤層と銅箔との密着性をより良好なものとし、当該接着剤層付銅箔と、樹脂基材とをより強固に密着させることができる。その結果、引き剥がし強さをより向上させることができ、デラミネーションの発生を抑えることができる。
(3) Filler particles Next, the filler particles will be described. In the present invention, as described above, the adhesive layer may include the filler particles. By including the filler particles in the adhesive layer, it is possible to improve the peeling strength and the moisture absorption resistance deterioration property in a normal state as compared with the adhesive layer not including the filler particles. Further, when filler particles are contained in the adhesive layer made of the resin composition described above, the adhesiveness between the adhesive layer and the copper foil is made better by using filler particles that have been subjected to a specific surface treatment. And the said copper foil with an adhesive bond layer and a resin base material can be stuck more firmly. As a result, the peel strength can be further improved and the occurrence of delamination can be suppressed.
 本件発明において用いることのできるフィラー粒子として、溶融シリカ、結晶性シリカ、アルミナ、水酸化アルミニウム、炭酸カルシウム、硫酸バリウム、マイカ、タルク等を挙げることができる。これらをいずれか一種又は二種以上を混合して用いることができる。 Examples of filler particles that can be used in the present invention include fused silica, crystalline silica, alumina, aluminum hydroxide, calcium carbonate, barium sulfate, mica, and talc. Any of these may be used alone or in combination of two or more.
 本件発明において用いるフィラー粒子はシランカップリング剤で表面処理されていることが好ましい。シランカップリング剤として、アミノ官能性シランカップリング剤、アクリル官能性シランカップリング剤、メタクリル官能性シランカップリング剤、エポキシ官能性シランカップリング剤、オレフィン官能性シランカップリング剤、メルカプト官能性シランカップリング剤、ビニル官能性シランカップリング剤等の種々のシランカップリング剤を用いることが出来る。上記の中でも、アミノ官能性シランカップリング剤、アクリル官能性シランカップリング剤、メタクリル官能性シランカップリング剤、ビニル官能性シランカップリング剤等がより好ましい。 The filler particles used in the present invention are preferably surface-treated with a silane coupling agent. As silane coupling agent, amino functional silane coupling agent, acrylic functional silane coupling agent, methacryl functional silane coupling agent, epoxy functional silane coupling agent, olefin functional silane coupling agent, mercapto functional silane Various silane coupling agents such as coupling agents and vinyl functional silane coupling agents can be used. Among these, amino functional silane coupling agents, acrylic functional silane coupling agents, methacryl functional silane coupling agents, vinyl functional silane coupling agents and the like are more preferable.
 このようにフィラー粒子に対して、上記表面処理を施すことにより、溶剤との濡れ性が向上し、樹脂溶液中にフィラー粒子を良好に分散させることができる。その結果、フィラー粒子が層内に均一に分散した接着剤層を得ることができる。また、フィラー粒子に対して上記表面処理を施すことにより、フィラー粒子と、上述した樹脂組成物との相溶性を良好なものとすることができ、フィラー粒子と樹脂組成物との密着性も良好なものとすることができる。 Thus, by performing the above surface treatment on the filler particles, the wettability with the solvent is improved, and the filler particles can be favorably dispersed in the resin solution. As a result, an adhesive layer in which filler particles are uniformly dispersed in the layer can be obtained. Also, by applying the above surface treatment to the filler particles, the compatibility between the filler particles and the resin composition described above can be improved, and the adhesion between the filler particles and the resin composition is also good. Can be.
 上記シランカップリング剤としては具体的に以下のものが挙げられる。まず、アミノ官能性シランカップリング剤として、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン等が挙げられる。 Specific examples of the silane coupling agent include the following. First, amino-functional silane coupling agents include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and 3-aminopropyltrimethoxysilane. Examples include methoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, and N-phenyl-3-aminopropyltrimethoxysilane.
 メタクリル官能性シランカップリング剤、アクリル官能性シランカップリング剤として、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン3-アクリロキシプロピルトリメトキシシラン等が挙げられる。
 また、ビニル官能性シランカップリング剤としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルフェニルトリエトキシシラン等が挙げられる。
 さらに、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン等のアルコキシシランを用いてもよい。 
As methacrylic functional silane coupling agent and acrylic functional silane coupling agent, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyl And triethoxysilane 3-acryloxypropyltrimethoxysilane.
Examples of the vinyl functional silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, and vinylphenyltriethoxysilane.
Further, alkoxysilanes such as methyltrimethoxysilane, dimethyldimethoxysilane, phenyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, and phenyltriethoxysilane may be used.
 これらのシランカップリング剤を用いた表面処理の方法は、特に限定されるものではなく、適宜、適切な方法を用いて行うことができる。 The method of surface treatment using these silane coupling agents is not particularly limited and can be appropriately performed using an appropriate method.
 また、接着剤層にフィラー粒子を含有させる場合、その含有率は40質量%以下とすることが好ましい。フィラー粒子の含有率が40質量%を超える場合、接着剤層を構成する樹脂組成物と銅箔との接触面積が低下して、接着強さが急激に低下するためである。 Further, when filler particles are contained in the adhesive layer, the content is preferably 40% by mass or less. This is because when the content of the filler particles exceeds 40% by mass, the contact area between the resin composition constituting the adhesive layer and the copper foil is reduced, and the adhesive strength is rapidly reduced.
 また、接着剤層に含有させるフィラー粒子は、レーザー回析散乱式粒度分布測定法による体積累積粒径D50の値が、0.01μm~1.0μmの範囲内のものを用いることが好ましく、0.01μm~0.5μmの範囲内のものを用いることがより好ましい。フィラー粒子の当該体積累積粒径D50の値が0.01μm未満となると、フィラー粒子が微粒であり過ぎるため、接着剤層を形成する際に調製する樹脂溶液中に均一に分散させることが困難になるため好ましくない。一方、フィラー粒子の当該体積累積粒径D50の値が1.0μmを超える場合、銅箔と樹脂層との密着性が低下する場合があるため好ましくない。当該観点から、フィラー粒子の当該体積累積粒径D50が0.5μm以下であることがより好ましい。このような微粒のフィラー粒子を用いることにより、当該接着剤層付銅箔を用いて回路を形成した場合の引き剥がし強さをより向上させることが可能になる。 The filler particles to be contained in the adhesive layer are preferably those having a volume cumulative particle size D 50 value in the range of 0.01 μm to 1.0 μm by a laser diffraction scattering type particle size distribution measurement method. It is more preferable to use one in the range of 0.01 μm to 0.5 μm. When the value of the volume cumulative particle diameter D 50 of the filler particles is less than 0.01 μm, the filler particles are too fine and difficult to uniformly disperse in the resin solution prepared when forming the adhesive layer. This is not preferable. On the other hand, when the value of the volume cumulative particle diameter D 50 of the filler particles exceeds 1.0 μm, the adhesion between the copper foil and the resin layer may be lowered, which is not preferable. From this point of view, it is more preferred the volume cumulative particle diameter D 50 of the filler particles is 0.5μm or less. By using such fine filler particles, it is possible to further improve the peel strength when a circuit is formed using the copper foil with an adhesive layer.
<接着剤層付銅箔の製造方法>
 次に、上記接着剤層付銅箔の製造方法の一例を説明する。上記接着剤層付銅箔の製造工程は、例えば、(1)樹脂溶液調製工程と、(2)樹脂溶液塗布工程と、(3)乾燥工程とに大別することができる。以下、各工程毎に説明する。
<Method for producing copper foil with adhesive layer>
Next, an example of the manufacturing method of the said adhesive layer copper foil is demonstrated. The manufacturing process of the said copper foil with an adhesive layer can be divided roughly into, for example, (1) resin solution preparation process, (2) resin solution application process, and (3) drying process. Hereinafter, each step will be described.
(1)樹脂溶液調製工程
 樹脂溶液工程は、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部~65質量部の範囲で含むと共に、樹脂固形分濃度が10質量%~40質量%の樹脂溶液を調製する工程である。当該樹脂溶液を調製する際には、例えば、ポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体を予め所定の配合比で混合した樹脂組成物を溶剤に溶解させてもよいし、ポリフェニレンエーテル化合物及びスチレンブタジエンブロック共重合体をそれぞれ溶剤に溶解させたものを、ポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体とが所定の配合比となるように混合してもよく、樹脂溶液の調製方法は特に限定されるものではない。
(1) Resin Solution Preparation Step The resin solution step comprises 5 parts by mass to 65 parts by mass of a styrene butadiene block copolymer with respect to 100 parts by mass of the polyphenylene ether compound, and the resin solid content concentration is 10% by mass. This is a step of preparing a resin solution of ˜40% by mass. When preparing the resin solution, for example, a resin composition in which a polyphenylene ether compound and a styrene butadiene block copolymer are mixed in advance at a predetermined mixing ratio may be dissolved in a solvent, or a polyphenylene ether compound and styrene may be dissolved. The butadiene block copolymer dissolved in a solvent may be mixed so that the polyphenylene ether compound and the styrene butadiene block copolymer have a predetermined blending ratio, and the method for preparing the resin solution is particularly limited. It is not something.
 当該工程で用いるポリフェニレンエーテル化合物は、上述したポリフェニレンエーテル化合物と同じものを用いることができるため、ここでは説明を省略する。同様に、スチレンブタジエンブロック共重合体は、上述したスチレンブタジエンブロック共重合体と同じものを用いることができるため、スチレンブタジエンブロック共重合体についても説明を省略する。また、樹脂組成物においるポリフェニレンエーテル化合物と、スチレンブタジエンブロック共重合体との配合比についても上述した接着剤層内におけるポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体との配合比についても同様であるため、ここではポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体との配合比におけるより好ましい範囲等の記載については省略する。 Since the polyphenylene ether compound used in the step can be the same as the polyphenylene ether compound described above, the description thereof is omitted here. Similarly, since the styrene butadiene block copolymer can be the same as the styrene butadiene block copolymer described above, the description of the styrene butadiene block copolymer is also omitted. Further, the blending ratio of the polyphenylene ether compound and the styrene butadiene block copolymer in the resin composition is the same as the blending ratio of the polyphenylene ether compound and the styrene butadiene block copolymer in the adhesive layer described above. Therefore, description of a more preferable range in the blending ratio of the polyphenylene ether compound and the styrene butadiene block copolymer is omitted here.
 樹脂溶液の溶剤としては、メチルエチルケトン等のケトン系溶剤、或いはトルエン等の芳香族系溶剤を用いることができる。これらの溶剤を用いることにより樹脂組成物を溶解させることが容易であり、且つ、樹脂溶液の粘度の調整も容易になる。また、これらの溶剤は、いずれも当該接着剤層付銅箔と樹脂基材とを張り合わせる際に加熱加圧する際に効率良く溶剤を揮発させることができ、揮発したガスの浄化処理も容易である。 As the solvent for the resin solution, a ketone solvent such as methyl ethyl ketone or an aromatic solvent such as toluene can be used. By using these solvents, it is easy to dissolve the resin composition, and the viscosity of the resin solution can be easily adjusted. In addition, any of these solvents can efficiently evaporate the solvent when heating and pressurizing the copper foil with the adhesive layer and the resin base material, and the purification process of the volatilized gas is easy. is there.
 また、樹脂固形分濃度を10質量%~40質量%とすることにより、溶液粘度を適正なものとすることができ、銅箔の表面に樹脂溶液を塗布したときに、精度良く所望の膜厚の塗布膜を形成することができる。樹脂固形分濃度が10質量%未満である場合、溶液粘度が低く、銅箔表面に塗布した直後に樹脂溶液が流れてしまい、膜厚の均一な塗布膜を形成することが困難になる。一方、樹脂固形分濃度が40質量%を超える場合、溶液粘度が高くなり過ぎるため、10μm以下の塗布膜を形成することが困難になる。 Further, by setting the resin solid content concentration to 10% by mass to 40% by mass, the solution viscosity can be made appropriate, and when the resin solution is applied to the surface of the copper foil, the desired film thickness can be accurately obtained. The coating film can be formed. When the resin solid content concentration is less than 10% by mass, the solution viscosity is low, and the resin solution flows immediately after coating on the copper foil surface, making it difficult to form a coating film having a uniform film thickness. On the other hand, when the resin solid content concentration exceeds 40% by mass, the solution viscosity becomes too high, and it becomes difficult to form a coating film of 10 μm or less.
 なお、接着剤層にフィラー粒子を含有させる場合には、この段階で所定の表面処理を施したフィラー粒子を適当量、樹脂組成物に混合する。フィラー粒子、及び表面処理、配合量等については、上述したとおりであるため、ここでは説明を省略する。また、以下では、樹脂組成物と称した場合、樹脂組成物がフィラー粒子を含有する場合もある。 When filler particles are contained in the adhesive layer, an appropriate amount of filler particles subjected to a predetermined surface treatment at this stage is mixed with the resin composition. Since the filler particles, surface treatment, blending amount, and the like are as described above, description thereof is omitted here. Moreover, below, when calling a resin composition, a resin composition may contain a filler particle.
(2)樹脂溶液塗布工程
 樹脂溶液塗布工程は、銅箔の片面に、乾燥後の接着剤層の厚さが0.5μm~10μmになるように、当該樹脂溶液を塗布する工程である。樹脂溶液を塗布する際の塗布方法は特に限定されるものではなく、形成する接着剤層の厚みに応じて、適宜、適切な方法を採用すればよい。しかしながら、0.1μm~10μmの極薄い接着剤層を形成することを考慮すると、薄膜形成に有利な塗布方法を採用することが好ましく、例えば、グラビアコーターを用いて樹脂溶液を銅箔の表面に塗布することが好ましい。
(2) Resin Solution Application Step The resin solution application step is a step of applying the resin solution to one side of the copper foil so that the thickness of the adhesive layer after drying is 0.5 μm to 10 μm. The application method for applying the resin solution is not particularly limited, and an appropriate method may be adopted as appropriate according to the thickness of the adhesive layer to be formed. However, in consideration of forming an extremely thin adhesive layer of 0.1 μm to 10 μm, it is preferable to adopt a coating method advantageous for thin film formation. For example, a resin solution is applied to the surface of a copper foil using a gravure coater. It is preferable to apply.
(3)乾燥工程
 乾燥方法は、従来既知の方法により適宜行うことができ、特に限定されるものではない。当該工程により、塗布膜から溶剤を揮発させると共に、樹脂組成物の硬化反応を中間段階で終了させた半硬化状態の樹脂とする。以上の工程により、本件発明に係る接着剤層付銅箔を製造することができる。
(3) Drying process A drying method can be suitably performed by a conventionally known method, and is not particularly limited. Through this process, the solvent is volatilized from the coating film, and the resin composition is made into a semi-cured resin in which the curing reaction of the resin composition is terminated at an intermediate stage. The copper foil with an adhesive layer according to the present invention can be manufactured by the above steps.
<銅張積層板>
 次に、本件発明に係る銅張積層板の実施の形態を説明する。本件発明に係る銅張積層板は、上述した本件発明に係る接着剤層付銅箔を用いたことを特徴とする。ここで、周知のように、銅張積層板とは、紙、または、ガラス布等に絶縁性樹脂を含浸させたシートを必要枚数重ねたプリプレグ、紙フェノール樹脂基材等の樹脂基材の片面又は両面に銅箔を載せ、加熱加圧して積層した板をいい、プリント配線板の製造材料として用いられる。本件発明では、プリプレグ等の樹脂基材に載せる銅箔として、上述した接着剤層付銅箔を用いる。そして、接着剤層付銅箔の接着剤層側が樹脂基材の接着面側に面するように、樹脂基材の接着面に当該接着剤層付銅箔を載せて、加熱加圧する。これにより、樹脂基材の樹脂と接着剤層とがそれぞれ溶融、硬化する過程で、樹脂基材の樹脂と接着剤層とが一体化し、樹脂基材と銅箔とが強固に密着することになる。
<Copper-clad laminate>
Next, an embodiment of a copper clad laminate according to the present invention will be described. The copper-clad laminate according to the present invention is characterized by using the above-described copper foil with an adhesive layer according to the present invention. Here, as is well known, a copper-clad laminate is a single-sided surface of a resin base material such as paper or a prepreg in which a sheet of glass cloth or the like impregnated with an insulating resin is stacked, or a paper phenol resin base material. Or the board which put copper foil on both surfaces, heat-pressed and laminated | stacked, and is used as a manufacturing material of a printed wiring board. In this invention, the copper foil with an adhesive layer mentioned above is used as copper foil mounted on resin base materials, such as a prepreg. Then, the copper foil with adhesive layer is placed on the adhesive surface of the resin base material and heated and pressurized so that the adhesive layer side of the copper foil with adhesive layer faces the adhesive surface side of the resin base material. As a result, in the process where the resin and the adhesive layer of the resin base material are melted and cured, respectively, the resin and the adhesive layer of the resin base material are integrated, and the resin base material and the copper foil are firmly adhered to each other. Become.
<プリント配線板>
 また、本件発明に係るプリント配線板は、上述した本件発明に係る接着剤層付銅箔を用いたことを特徴とするものであり、上記銅張積層板を用いることが好ましい。そして、本件発明に係るプリント配線板は、多層プリント配線板であってもよいのは勿論であり、例えば、当該接着剤層付銅箔を用いてビルドアップ層を形成したビルドアッププリント配線板であってもよい。また、このプリント配線板は、銅張積層板から如何なる方法を用いて製造しても構わない。
<Printed wiring board>
Moreover, the printed wiring board which concerns on this invention is characterized by using the copper foil with an adhesive layer which concerns on this invention mentioned above, It is preferable to use the said copper clad laminated board. The printed wiring board according to the present invention may be a multilayer printed wiring board, for example, a build-up printed wiring board in which a build-up layer is formed using the copper foil with an adhesive layer. There may be. Moreover, this printed wiring board may be manufactured from any method using a copper-clad laminate.
 本件発明に係る銅張積層板は、上述のセミアディティブ法(Semi Additive Process=SAP法)でプリント配線板を製造する場合にも好適に使用できる。即ち、本件出願に係る接着剤層付銅箔を用いた銅張積層板を用いることで、最終的に形成した回路と樹脂基材との密着性の低下防止が可能となるからである。一般的なSAP法としては、以下に述べるSAP-1又はSAP-2のいずれかのプロセスが採用されている。 The copper-clad laminate according to the present invention can also be suitably used when a printed wiring board is manufactured by the semi-additive method (Semi Additive Process = SAP method) described above. That is, by using the copper-clad laminate using the copper foil with an adhesive layer according to the present application, it is possible to prevent a decrease in the adhesion between the finally formed circuit and the resin substrate. As a general SAP method, either the SAP-1 or SAP-2 process described below is adopted.
SAP-1: 「銅張積層板の銅箔を全てエッチング除去」→「レーザー法による孔明け加工」→「デスミア処理」→「無電解銅めっきを行い、樹脂基材上にシード層となる無電解銅層を形成」→「無電解銅層の回路を形成しない部位にめっきレジストを形成」→「めっきレジストの無い部位に電気銅めっきで回路形成を行う」→「めっきレジストの剥離」→「回路を形成しない部位にある無電解銅層を、フラッシュエッチングにより除去」→「回路完成」 SAP-1: “All copper foil of copper clad laminate is removed by etching” → “Drilling process by laser method” → “Desmear treatment” → “Electroless copper plating is applied to form a seed layer on the resin substrate. Forming an electrolytic copper layer ”→“ Forming a plating resist on the part where the electroless copper layer circuit is not formed ”→“ Forming a circuit on the part without the plating resist by electrolytic copper plating ”→“ Plating resist peeling ”→“ Remove the electroless copper layer at the part where the circuit is not formed by flash etching ”→“ Circuit completion ”
 上述のSAP-1のプロセスを採用した場合、孔明け加工前に銅張積層板の銅箔を全てエッチング除去しているため、全面がデスミア溶液に晒され浸食されることにより、一般的には、形成されたビアホールの内壁部のデスミア処理による浸食及び最終的に形成した回路と樹脂基材との密着性が低下する傾向がある。しかし、このSAP-1のプロセスの中で、本件発明に係る銅張積層板を用いると、孔明け加工前に銅張積層板の銅箔を全てエッチング除去しても、樹脂基材の表面には耐デスミア性能に優れた接着剤層が存在するため、全面がデスミア溶液に晒されても、最終的に形成した回路と樹脂基材との密着性の低下を抑制することが可能となる。 When the above-described SAP-1 process is adopted, the entire copper foil of the copper clad laminate is etched away before drilling, so that the entire surface is exposed to the desmear solution and eroded. The erosion by the desmear treatment of the inner wall portion of the formed via hole and the adhesion between the finally formed circuit and the resin base material tend to be lowered. However, when the copper clad laminate according to the present invention is used in the SAP-1 process, even if all the copper foil of the copper clad laminate is removed by etching before drilling, the surface of the resin base material is removed. Since an adhesive layer excellent in desmear resistance performance exists, even if the entire surface is exposed to a desmear solution, it is possible to suppress a decrease in adhesion between the finally formed circuit and the resin substrate.
SAP-2: 「レーザー法による孔明け加工」→「デスミア処理」→「銅張積層板の銅箔を全てエッチング除去」→「無電解銅めっきを行い、樹脂基材上にシード層となる無電解銅層を形成」→「無電解銅層の回路を形成しない部位にめっきレジストを形成」→「めっきレジストの無い部位に電気銅めっきで回路形成を行う」→「めっきレジストの剥離」→「回路を形成しない部位にある無電解銅層を、フラッシュエッチングにより除去」→「回路完成」 SAP-2: “Drilling by laser” → “Desmear treatment” → “Etching and removing all copper foil of copper-clad laminate” → “Electroless copper plating, no seed layer on resin base material” Forming an electrolytic copper layer ”→“ Forming a plating resist on the part where the electroless copper layer circuit is not formed ”→“ Forming a circuit on the part without the plating resist by electrolytic copper plating ”→“ Plating resist peeling ”→“ Remove the electroless copper layer at the part where the circuit is not formed by flash etching ”→“ Circuit completion ”
 このSAP-2のプロセスを採用した場合、銅張積層板の銅箔を全てエッチング除去する前に、レーザー法による孔明け加工、デスミア処理が行われるため、形成されたビアホールの周囲に存在する接着剤層がデスミア処理により浸食される傾向にある。しかし、このSAP-2のプロセスの中で、本件発明に係る銅張積層板を用いると、形成したビアホールの開孔部の周囲に存在する接着剤層が、耐デスミア性能に優れているため、この部分のデスミア処理による浸食を防止できるため、ランド形成部と樹脂基材との良好な密着性が維持できるため好ましい。 When this SAP-2 process is adopted, before the copper foil of the copper-clad laminate is removed by etching, drilling and desmearing are performed by a laser method. The agent layer tends to be eroded by desmear treatment. However, in this SAP-2 process, when the copper clad laminate according to the present invention is used, the adhesive layer present around the opening of the formed via hole is excellent in desmear resistance, Since erosion due to desmear treatment of this portion can be prevented, good adhesion between the land forming portion and the resin base material can be maintained, which is preferable.
 上記説明した本件発明に係る接着剤層付銅箔、銅張積層板及びプリント配線板の実施の形態は、本件発明の一態様に過ぎず、本件発明の趣旨を逸脱しない範囲において適宜変更可能であるのは勿論である。また、以下では実施例を挙げて、本件発明をより具体的に説明するが、本件発明は以下の実施例に限定されるものではないことは勿論である。以下において比較例1~比較例3は、実施例1~実施例5との対比を行うためのものである。そして、比較例4は実施例6と対比するためのものである。 The embodiment of the copper foil with an adhesive layer, the copper clad laminate, and the printed wiring board according to the present invention described above is only one aspect of the present invention, and can be appropriately changed without departing from the gist of the present invention. Of course there is. Moreover, although an Example is given and this invention is demonstrated more concretely below, of course, this invention is not limited to a following example. In the following, Comparative Examples 1 to 3 are for comparison with Examples 1 to 5. Comparative Example 4 is for comparison with Example 6.
<接着剤層付銅箔の製造>
 実施例1では、次のようにして接着剤層付銅箔を製造した。まず、撹拌装置、温度調節機、還流管を備えた1リットルの4つ口フラスコに、ポリフェニレンエーテル樹脂(SABIC社製;MX-90)200gとトルエン400gとを注入し、60℃にて撹拌溶解した。続いて、当該フラスコ内に、クロロメチルスチレン10gを導入し、撹拌溶解し、液温を80℃とした。さらに、撹拌しながら、水酸化ナトリウム50質量%水溶液24gを滴下導入し、80℃で3時間撹拌を続けた。次に、内容物を1N塩酸水溶液で中和後、メタノールを添加し化合物を沈殿させ、ろ過した。ろ過物をメタノール水溶液(メタノール:蒸留水=4:1)で2回洗浄後、溶剤、水分を乾燥除去し、ポリフェニレンエーテル化合物を得た。
 次に、上記で得られたポリフェニレンエーテル化合物をトルエンに溶解して、50質量%ポリフェニレンエーテル化合物溶液を調製した。また、スチレンブタジエンブロック共重合体(JSR株式会社製;TR2003)をトルエンに溶解して、30質量%のスチレンブタジエンブロック共重合体溶液を調製した。ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体が10質量部となるように、両者を混合するとともに、樹脂固形分濃度が25%となるように樹脂溶液(ワニス)を調製した。 
<Manufacture of copper foil with adhesive layer>
In Example 1, a copper foil with an adhesive layer was produced as follows. First, 200 g of polyphenylene ether resin (manufactured by SABIC; MX-90) and 400 g of toluene were poured into a 1 liter four-necked flask equipped with a stirrer, a temperature controller, and a reflux tube, and stirred and dissolved at 60 ° C. did. Subsequently, 10 g of chloromethylstyrene was introduced into the flask, dissolved by stirring, and the liquid temperature was adjusted to 80 ° C. Further, with stirring, 24 g of a 50% by weight aqueous solution of sodium hydroxide was added dropwise, and stirring was continued at 80 ° C. for 3 hours. Next, after neutralizing the contents with 1N aqueous hydrochloric acid, methanol was added to precipitate the compound, followed by filtration. The filtrate was washed twice with an aqueous methanol solution (methanol: distilled water = 4: 1), and then the solvent and water were removed by drying to obtain a polyphenylene ether compound.
Next, the polyphenylene ether compound obtained above was dissolved in toluene to prepare a 50 mass% polyphenylene ether compound solution. Further, a styrene butadiene block copolymer (manufactured by JSR Corporation; TR2003) was dissolved in toluene to prepare a 30% by mass styrene butadiene block copolymer solution. Both were mixed so that a styrene butadiene block copolymer might be 10 mass parts with respect to 100 mass parts of polyphenylene ether compounds, and the resin solution (varnish) was prepared so that resin solid content concentration might be 25%. .
 そして、3μm厚さのキャリア付極薄無粗化銅箔(表面粗さ(Rzjis)0.7μm)の表面にニッケル21mg/m、亜鉛8mg/m、クロム3mg/mを含む防錆処理を施した後、この防錆処理層の表面にアミノ系シランカップリング剤処理を施し、シランカップリング剤層を形成した。続いて、シランカップリング剤層の表面にグラビアコータを用いて、乾燥後の接着剤層の厚みが2.5μmになるように、当該樹脂溶液を塗布した。塗布膜形成後、180℃で2分間乾燥することにより、樹脂組成物を半硬化させた接着剤層を備える接着剤層付銅箔を製造した。 Then, 3 [mu] m thick carrier with ultrathin free roughened copper foil (surface roughness (Rzjis) 0.7 [mu] m) of nickel 21 mg / m 2 on the surface of zinc 8 mg / m 2, rust containing chromium 3 mg / m 2 After the treatment, the surface of the antirust treatment layer was treated with an amino silane coupling agent to form a silane coupling agent layer. Subsequently, the resin solution was applied using a gravure coater on the surface of the silane coupling agent layer so that the thickness of the adhesive layer after drying was 2.5 μm. After forming the coating film, a copper foil with an adhesive layer provided with an adhesive layer obtained by semi-curing the resin composition was produced by drying at 180 ° C. for 2 minutes.
<銅張積層板の製造>
 以上のようにして製造した接着剤層付銅箔の接着剤層側を、100μmの厚さのFR-4プリプレグ(三菱瓦斯化学会社製:GHPL-830NS)の片面に当接させて220℃×90分、40kgf/cmの加熱加圧条件下で熱間プレス成形することで、銅張積層板を製造した。
<Manufacture of copper-clad laminate>
The adhesive layer side of the copper foil with the adhesive layer produced as described above was brought into contact with one side of a 100 μm thick FR-4 prepreg (manufactured by Mitsubishi Gas Chemical Company: GHPL-830NS) at 220 ° C. A copper-clad laminate was manufactured by hot press molding under heating and pressing conditions of 40 kgf / cm 2 for 90 minutes.
<引き剥がし強さ測定用サンプルの作製>
 以上のようにして製造した銅張積層板の銅箔層からキャリアを引き剥がした後、表面に電解銅めっきにより10μmの厚みとなるようにめっきし、ドライフィルムを張り合わせてエッチングレジスト層を形成した。そして、エッチングレジスト層に、0.4mm幅の引き剥がし強度測定用回路パターンを露光して現像し、エッチングパターンを形成した。その後、銅エッチング液で回路エッチング、エッチングレジスト剥離を行い、回路厚さ10μmの引き剥がし強さ測定用サンプルを作製した。
<Preparation of peel strength measurement sample>
After peeling the carrier from the copper foil layer of the copper clad laminate produced as described above, the surface was plated to a thickness of 10 μm by electrolytic copper plating, and a dry film was laminated to form an etching resist layer. . The etching resist layer was exposed and developed with a 0.4 mm width peel strength measurement circuit pattern to form an etching pattern. Thereafter, circuit etching and etching resist peeling were performed with a copper etching solution, and a peel strength measuring sample having a circuit thickness of 10 μm was produced.
<デスミア液耐性評価用サンプルの作製>
 また、本実施例では、デスミア液耐性評価用サンプルを次のようにして作製した。まず、上記において調製した樹脂溶液を、耐熱性フィルムの表面に厚さが100μmとなるように塗工乾燥して樹脂層を形成したものを2枚用意した。そして、樹脂層同士を熱間加工により張り合わせた後、耐熱性フィルムを剥がし、5cm×5cm角にカットし、デスミア液耐性評価用サンプルを作製した。
<Preparation of desmear solution resistance evaluation sample>
In this example, a desmear solution resistance evaluation sample was prepared as follows. First, two sheets of the resin solution prepared above were coated and dried on the surface of the heat-resistant film so as to have a thickness of 100 μm to form a resin layer. And after bonding the resin layers together by hot working, the heat-resistant film was peeled off and cut into 5 cm × 5 cm squares to produce a desmear liquid resistance evaluation sample.
 ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を20質量部用いたこと以外は実施例1と同様にして接着剤層付銅箔及びデスミア液耐性評価用サンプルを作製した。また、この実施例2の接着剤層付銅箔を用いたこと以外は実施例1と同様に、銅張積層板を製造し、引き剥がし強さ測定用サンプルを作製した。 A copper foil with an adhesive layer and a desmear liquid resistance evaluation sample were prepared in the same manner as in Example 1 except that 20 parts by mass of the styrene butadiene block copolymer was used with respect to 100 parts by mass of the polyphenylene ether compound. Moreover, except having used the copper foil with an adhesive layer of this Example 2, the copper clad laminated board was manufactured similarly to Example 1, and the sample for peeling strength measurement was produced.
 ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を40質量部用いたこと以外は実施例1と同様にして、接着剤層付銅箔及びデスミア液耐性評価用サンプルを作製した。また、この接着剤層付銅箔を用いたこと以外は実施例1と同様に、銅張積層板を製造し、引き剥がし強さ測定用サンプルを作製した。 A copper foil with an adhesive layer and a desmear liquid resistance evaluation sample were prepared in the same manner as in Example 1 except that 40 parts by mass of the styrene butadiene block copolymer was used with respect to 100 parts by mass of the polyphenylene ether compound. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used this copper foil with an adhesive bond layer, and the sample for peeling strength measurement was produced.
 ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を60質量部用いたこと以外は実施例1と同様にして接着剤層付銅箔及びデスミア液耐性評価用サンプルを作製した。また、この接着剤層付銅箔を用いたこと以外は実施例1と同様に、銅張積層板を製造し、引き剥がし強さ測定用サンプルを作製した。 A copper foil with an adhesive layer and a desmear liquid resistance evaluation sample were prepared in the same manner as in Example 1 except that 60 parts by mass of the styrene-butadiene block copolymer was used with respect to 100 parts by mass of the polyphenylene ether compound. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used this copper foil with an adhesive bond layer, and the sample for peeling strength measurement was produced.
 ビニル系シランカップリング剤として、ビニルトリメトキシシランを用いて表面を処理したフィラー粒子(体積累積粒径D50:0.3μm、シリカ)を30質量%含むことを除いては、実施例3と同様にして、接着剤層付銅箔及びデスミア液耐性評価用サンプルを作製した。また、この接着剤層付銅箔を用いたこと以外は実施例1と同様に、銅張積層板を製造し、引き剥がし強さ測定用サンプルを作製した。 As in Example 3, except that 30% by mass of filler particles (volume cumulative particle diameter D50: 0.3 μm, silica) whose surface was treated with vinyltrimethoxysilane as a vinyl-based silane coupling agent was contained. Thus, a copper foil with an adhesive layer and a sample for evaluating desmear liquid resistance were prepared. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used this copper foil with an adhesive bond layer, and the sample for peeling strength measurement was produced.
 次に、比較例1~比較例3について説明する。 Next, Comparative Examples 1 to 3 will be described.
[比較例1]
 ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を70質量部用いたこと以外は、実施例1と同様にして、接着剤層付銅箔及びデスミア液耐性評価用サンプルを作製した。また、この比較例1の接着剤層付銅箔を用いたこと以外は実施例1と同様に、銅張積層板を製造し、引き剥がし強さ測定用サンプルを作製した。
[Comparative Example 1]
A copper foil with an adhesive layer and a sample for evaluating desmear liquid resistance were prepared in the same manner as in Example 1 except that 70 parts by mass of the styrene butadiene block copolymer was used with respect to 100 parts by mass of the polyphenylene ether compound. . Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used the copper foil with an adhesive bond layer of this comparative example 1, and the sample for peeling strength measurement was produced.
[比較例2]
 比較例2では、特許文献2の比較試料3に記載の樹脂溶液を調製し、この樹脂溶液を用いて塗布膜を形成し、その後の乾燥温度を150℃としたこと以外は、実施例1と同様にして、接着剤層付銅箔及びデスミア液耐性評価用サンプルを作製した。また、この比較例2の接着剤層付銅箔を用いたこと以外は実施例1と同様に、銅張積層板を製造し、引き剥がし強さ測定用サンプルを作製した。以下、比較例2の樹脂溶液の調製方法を述べる。
[Comparative Example 2]
In Comparative Example 2, the resin solution described in Comparative Sample 3 of Patent Document 2 was prepared, a coating film was formed using this resin solution, and the subsequent drying temperature was 150 ° C. In the same manner, a copper foil with an adhesive layer and a sample for evaluating desmear liquid resistance were prepared. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used the copper foil with an adhesive layer of this comparative example 2, and the sample for peeling strength measurement was produced. Hereinafter, a method for preparing the resin solution of Comparative Example 2 will be described.
 比較例2では、PA系樹脂組成物として、芳香族ポリアミド樹脂ポリマー(日本化薬株式会社製;BPAM-155)70質量部と、エポキシ樹脂(日本化薬株式会社製;EPPN-502)30質量部とを用いた。そして、このPA系樹脂組成物100質量部に対して、硬化促進剤としてイミダゾール系の2P4MHZ(四国化成株式会社製)1質量部とを混合し、樹脂組成物とした。この樹脂組成物を、ジメチルアセトアミドに溶解して、樹脂固形分濃度が15質量%となるように樹脂溶液を調製した。 In Comparative Example 2, 70 parts by mass of an aromatic polyamide resin polymer (manufactured by Nippon Kayaku Co., Ltd .; BPAM-155) and 30 parts by mass of an epoxy resin (manufactured by Nippon Kayaku Co., Ltd .; EPPN-502) were used as the PA-based resin composition. Part. Then, 1 part by mass of imidazole-based 2P4MHZ (manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator was mixed with 100 parts by mass of the PA-based resin composition to obtain a resin composition. This resin composition was dissolved in dimethylacetamide to prepare a resin solution so that the resin solid content concentration was 15% by mass.
[比較例3]
 比較例3では、特許文献1の実施例3に記載の第2樹脂組成物Cを用いたプライマー樹脂溶液を調製し、このプライマー樹脂溶液を用いて塗布膜を形成し、その後の乾燥温度を150℃としたこと以外は、実施例1と同様にして、接着剤層付銅箔及びデスミア液耐性評価用サンプルを作製した。また、この比較例4の接着剤層付銅箔を用いたこと以外は実施例1と同様に、銅張積層板を製造し、引き剥がし強さ測定用サンプルを作製した。以下、比較例3の樹脂溶液の調製方法を述べる。
[Comparative Example 3]
In Comparative Example 3, a primer resin solution using the second resin composition C described in Example 3 of Patent Document 1 was prepared, a coating film was formed using this primer resin solution, and the subsequent drying temperature was 150. A copper foil with an adhesive layer and a sample for evaluating desmear liquid resistance were prepared in the same manner as in Example 1 except that the temperature was set to ° C. Moreover, the copper clad laminated board was manufactured similarly to Example 1 except having used the copper foil with an adhesive bond layer of this comparative example 4, and the sample for peeling strength measurement was produced. Hereinafter, a method for preparing the resin solution of Comparative Example 3 will be described.
 比較例3では、PES系樹脂組成物として、ポリエーテルサルホン樹脂(住友化学株式会社製;スミカエクセルPES-5003P)70質量部、エポキシ樹脂(日本化薬株式会社製EPPN-502)30質量部とを用いた。そして、このPES系樹脂組成物100質量部に対して、硬化促進剤としてイミダゾール系の2P4MHZ(四国化成株式会社製)1質量部とを混合し、樹脂組成物とした。この樹脂組成物を、ジメチルアセトアミドに溶解して、樹脂固形分濃度が15質量%となるように樹脂溶液を調製した。 In Comparative Example 3, as a PES resin composition, 70 parts by mass of a polyethersulfone resin (Sumitomo Chemical Co., Ltd .; Sumika Excel PES-5003P), 30 parts by mass of an epoxy resin (Nippon Kayaku Co., Ltd. EPPN-502) And were used. Then, 1 part by mass of imidazole-based 2P4MHZ (manufactured by Shikoku Kasei Co., Ltd.) as a curing accelerator was mixed with 100 parts by mass of the PES resin composition to obtain a resin composition. This resin composition was dissolved in dimethylacetamide to prepare a resin solution so that the resin solid content concentration was 15% by mass.
[評価1]
 以上のように製造した実施例1~実施例5及び比較例1~比較例3の各サンプルを用いて、(1)デスミア液耐性の評価、(2)引き剥がし強さの評価、(3)半田特性の評価を行った。以下、評価方法と評価結果とに分けて説明する。
[Evaluation 1]
Using the samples of Examples 1 to 5 and Comparative Examples 1 to 3 produced as described above, (1) evaluation of desmear solution resistance, (2) evaluation of peel strength, (3) Solder characteristics were evaluated. Hereinafter, the evaluation method and the evaluation result will be described separately.
1.評価方法
(1)デスミア液耐性の評価
 デスミア液耐性の評価は、次のようにして行った。実施例1~実施例4及び比較例1~比較例3で作製したデスミア液耐性評価用サンプルをそれぞれ3枚用い、各デスミア液耐性評価用サンプルを、75℃の膨潤液(ローム・アンド・ハース電子材料株式会社製)に20分間浸漬した後、80℃の過マンガン酸カリウム溶液(ローム・アンド・ハース電子材料株式会社製)(アルカリ規定度:1.25N)に20分間浸漬した。その後、45℃の中和液(ローム・アンド・ハース電子材料株式会社製)に5分間浸漬し、水洗した。この一連のデスミア処理に供する前後の各デスミア液耐性評価用サンプルの重さを測定し、デスミア処理前後の重量減少率(%)を求め、その平均値を求めた。
1. Evaluation method (1) Evaluation of desmear solution resistance The evaluation of desmear solution resistance was performed as follows. Three samples for desmear resistance evaluation prepared in each of Examples 1 to 4 and Comparative Examples 1 to 3 were used, and each desmear resistance evaluation sample was a 75 ° C. swelling liquid (Rohm and Haas). After being immersed in Electronic Materials Co., Ltd. for 20 minutes, they were immersed in an 80 ° C. potassium permanganate solution (Rohm and Haas Electronic Materials Co., Ltd.) (alkali normality: 1.25 N) for 20 minutes. Then, it was immersed for 5 minutes in a 45 degreeC neutralization liquid (made by Rohm and Haas Electronic Materials Co., Ltd.) and washed with water. The weight of each desmear solution resistance evaluation sample before and after being subjected to this series of desmear treatments was measured, the weight reduction rate (%) before and after desmear treatment was obtained, and the average value was obtained.
(2)引き剥がし強さの評価
 引き剥がし強さの評価は次のようにして行った。実施例1~実施例5及び比較例1~比較例3で作製した引き剥がし強さ測定用サンプルを用いてPCT前の引き剥がし強さを測定し、これを常態時の引き剥がし強さとした。また、121℃、2atm、100%RHのPressure Cooker槽に24時間保持した後の引き剥がし強さを測定し、これをPCT後の引き剥がし強さとした。引き剥がし強さの測定は、JIS C-6481に準じて行った。
(2) Evaluation of peel strength The peel strength was evaluated as follows. The peel strength before PCT was measured using the peel strength measurement samples prepared in Examples 1 to 5 and Comparative Examples 1 to 3, and this was taken as the peel strength in the normal state. Moreover, the peeling strength after hold | maintaining for 24 hours in a Pressure Cooker tank of 121 degreeC, 2 atm, and 100% RH was measured, and this was made into the peeling strength after PCT. The peel strength was measured according to JIS C-6481.
(3)半田特性の評価
 半田特性の評価は次のようにして行った。実施例1~実施例5及び比較例1~比較例3で製造した接着剤層付銅箔から5cm×5cm角にカットし、銅箔部分が1/2の大きさ(2.5cm×5cm)になるようにエッチング処理を施したものを半田特性評価用サンプルとした。各半田特性評価用サンプルを、121℃、2atm、100%RHのPressure Cooker槽に5時間保持した後、260℃の半田浴に1分間浸漬して、膨れの発生の有無を観察した。そして、膨れが発生しなかった場合はPCT後の半田特性が合格レベルにあると判断し「○」とした。一方、膨れが発生したサンプルは「×」とした。
(3) Evaluation of solder characteristics Evaluation of solder characteristics was performed as follows. Cut from the copper foil with adhesive layer produced in Example 1 to Example 5 and Comparative Example 1 to Comparative Example 3 to 5 cm × 5 cm square, and the copper foil part is ½ size (2.5 cm × 5 cm) The sample subjected to the etching treatment as described above was used as a sample for evaluating solder characteristics. Each solder property evaluation sample was held in a pressure cooker bath at 121 ° C., 2 atm, 100% RH for 5 hours, and then immersed in a solder bath at 260 ° C. for 1 minute to observe the occurrence of swelling. When no swelling occurred, it was determined that the solder characteristics after PCT were at an acceptable level, and “◯” was given. On the other hand, the sample in which the swelling occurred was indicated as “x”.
2.評価結果
(1)デスミア液耐性の評価
 表1に、デスミア処理前後における重量減少率(%)の平均値を示す。表1に示すように、ポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体とからなる接着剤層を備える実施例1~実施例4及び比較例1は、比較例2に対してデスミア処理後の重量減少率(%)が低く、ポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体とを用いて接着剤層を構成することにより、デスミア液耐性が向上した接着剤層付銅箔を提供可能であることが確認された。一方、比較例3は、デスミア処理後の重量減少率(%)が1%以下と低いことが確認された。
2. Evaluation Results (1) Evaluation of Desmear Solution Resistance Table 1 shows the average value of weight reduction rate (%) before and after desmear treatment. As shown in Table 1, Examples 1 to 4 and Comparative Example 1 having an adhesive layer composed of a polyphenylene ether compound and a styrene butadiene block copolymer are less in weight after desmear treatment than Comparative Example 2. It is confirmed that it is possible to provide a copper foil with an adhesive layer with improved desmear liquid resistance by forming an adhesive layer using a polyphenylene ether compound and a styrene-butadiene block copolymer with a low rate (%). It was done. On the other hand, in Comparative Example 3, it was confirmed that the weight reduction rate (%) after the desmear treatment was as low as 1% or less.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(2)引き剥がし強さの評価
 次に、表2に、実施例1~実施例5及び比較例1~比較例3で製造した引き剥がし強さ測定用サンプルを用いて測定した常態時の引き剥がし強さと、PCT後の引き剥がし強さと、PCT後の劣化率とを示す。
(2) Evaluation of peel strength Next, Table 2 shows the normal pull measured using the samples for measuring the peel strength produced in Examples 1 to 5 and Comparative Examples 1 to 3. The peel strength, the peel strength after PCT, and the deterioration rate after PCT are shown.
 表2に示すように、デスミア液耐性の高かった比較例3は、PCT後の劣化率が83%と極めて高く、PCT後の引き剥がし強さも平均で0.10kgf/cmであり、吸湿劣化が著しいことが確認された。一方、比較例2は、常態時における引き剥がし強さは、平均で0.63kgf/cmを示し、PCT後の引き剥がし強さは、平均で0.55kgf/cmであった。比較例2は、PCT後においても市場で要求されるレベルの引き剥がし強さを維持しているが、劣化率は12.7%であった。 As shown in Table 2, Comparative Example 3, which had high desmear resistance, had an extremely high deterioration rate after PCT of 83%, and the average peel strength after PCT was 0.10 kgf / cm. It was confirmed that it was remarkable. On the other hand, in Comparative Example 2, the peel strength in the normal state showed an average of 0.63 kgf / cm, and the peel strength after PCT averaged 0.55 kgf / cm. In Comparative Example 2, the peel strength at the level required in the market was maintained even after PCT, but the deterioration rate was 12.7%.
 一方、接着剤層(12)をポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体とを用いて構成した実施例1~実施例5及び比較例1では、劣化率が20%以下と耐吸湿劣化特性が改善されることが確認された。また、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部~65質量部の範囲で配合することにより、常態時において0.5kgf/cm以上、PCT後において0.45kgf/cm以上の値が得られると考えられる。特に、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を35質量部~45質量部の範囲で配合することにより、PCT後の引き剥がし強さが0.54kgf/cm以上の値が得られると考えられる。このように、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部~65質量部の範囲内で配合することにより、十分な引き剥がし強さを有すると共に、デスミア液耐性が高く、且つ、耐吸湿劣化特性の高い接着剤層付銅箔が提供可能であることが確認された。なお、比較例1は、上述の通り、耐吸湿劣化特性の改善が見られるものの、実施例1~実施例5と比較すると、常態時及びPCT後の引き剥がし強さが若干低くくなる。 On the other hand, in Examples 1 to 5 and Comparative Example 1 in which the adhesive layer (12) is composed of a polyphenylene ether compound and a styrene butadiene block copolymer, the deterioration rate is 20% or less, and the moisture absorption deterioration characteristic is low. It was confirmed that it improved. In addition, by blending the styrene-butadiene block copolymer in an amount of 5 to 65 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, 0.5 kgf / cm or more in a normal state and 0.45 kgf after PCT. It is considered that a value of not less than / cm can be obtained. Particularly, when the styrene-butadiene block copolymer is blended in the range of 35 to 45 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, the peel strength after PCT is a value of 0.54 kgf / cm or more. Can be obtained. Thus, by blending the styrene butadiene block copolymer in the range of 5 to 65 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound, it has sufficient peel strength and is resistant to desmear liquid. It was confirmed that it is possible to provide a copper foil with an adhesive layer that has a high resistance to moisture absorption and a high resistance to moisture absorption. In Comparative Example 1, as described above, although the moisture absorption deterioration characteristics are improved, the peel strength after normal operation and after PCT is slightly reduced as compared with Examples 1 to 5.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(3)半田特性の評価
 表1に示したように、比較例3に比して、ポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体とからなる接着剤層を備える実施例1~実施例5及び比較例1は、それぞれ半田特性が良好であることが確認された。
(3) Evaluation of Solder Properties As shown in Table 1, compared with Comparative Example 3, Examples 1 to 5 and Comparative Examples each having an adhesive layer composed of a polyphenylene ether compound and a styrene butadiene block copolymer Example 1 was confirmed to have good solder characteristics.
3.その他
 実施例3と、実施例5は、接着剤層にフィラー粒子を含有するか否かという点においてのみ異なっている。表2に示したように、常態時及びPCT後の引き剥がし強さはいずれもフィラー粒子を含有する実施例5の方が高い値を示しており、引き剥がし強さの向上を図るためには、フィラー粒子を添加することが有効であることが確認された。
3. Others Example 3 and Example 5 differ only in whether or not the adhesive layer contains filler particles. As shown in Table 2, the peel strength at normal state and after PCT shows a higher value in Example 5 containing filler particles, and in order to improve the peel strength It was confirmed that it was effective to add filler particles.
 この実施例6では、上述のSAP-1のプロセスにおける銅回路と樹脂基材との密着性を評価するため、以下の簡易プロセスによる評価を行った。以下、そのプロセス毎に説明する。 In Example 6, in order to evaluate the adhesion between the copper circuit and the resin base material in the SAP-1 process described above, the following simple process was used. Hereinafter, each process will be described.
銅張積層板: 上述の実施例3と同様の樹脂組成を使用し、実施例1と同様にして、接着剤層付銅箔を製造した。なお、ここで使用したキャリア付極薄銅箔は、実施例1で用いた3μm厚さのキャリア付極薄無粗化銅箔(表面粗さ(Rzjis)0.7μm)の銅箔層の表面に、微細銅粒を付着させて粗化処理を施し、粗化処理後の表面粗さ(Rzjis)が1.9μmとしたものを用いた。そして、実施例1と同様にして、銅張積層板を得た。 Copper clad laminate: A copper foil with an adhesive layer was produced in the same manner as in Example 1 using the same resin composition as in Example 3 above. In addition, the ultrathin copper foil with a carrier used here is the surface of the copper foil layer of the ultrathin non-roughened copper foil with a carrier of 3 μm thickness (surface roughness (Rzjis) 0.7 μm) used in Example 1. Then, a fine copper particle was attached to the surface and subjected to a roughening treatment, and the surface roughness (Rzjis) after the roughening treatment was 1.9 μm. And it carried out similarly to Example 1, and obtained the copper clad laminated board.
銅箔層の除去: 上述の銅張積層板の表面に露出した銅箔層を、市販の硫酸-過酸化水素水系銅エッチング液を用いて、完全に溶解除去し、硬化した接着剤層を表面に備える樹脂基材とした。 Removal of the copper foil layer: The copper foil layer exposed on the surface of the above-mentioned copper-clad laminate was completely dissolved and removed using a commercially available sulfuric acid-hydrogen peroxide aqueous copper etching solution, and the cured adhesive layer was surfaced. It was set as the resin base material with which it prepares.
デスミア処理: 当該硬化した接着剤層を表面に備える樹脂基材を、上述の「(1)デスミア液耐性の評価」で用いたデスミア溶液に浸漬して、同様のデスミア処理を行った。 Desmear treatment: The resin base material provided with the cured adhesive layer on the surface was immersed in the desmear solution used in the above-mentioned “(1) Evaluation of desmear liquid resistance”, and the same desmear treatment was performed.
無電解銅めっき: そして、デスミア処理後の硬化した接着剤層を表面に備える樹脂基材表面にシード層として無電解銅めっき層を形成し、無電解銅めっき層付樹脂基材とした。このとき、市販の無電解銅めっき銅で使用されるプロセス(上村工業株式会社製の無電解銅めっきを使用したプロセス)を採用した。 Electroless copper plating: Then, an electroless copper plating layer was formed as a seed layer on the surface of the resin base material provided with a hardened adhesive layer after desmear treatment on the surface, thereby obtaining a resin base material with an electroless copper plating layer. At this time, a process (process using electroless copper plating manufactured by Uemura Kogyo Co., Ltd.) used with commercially available electroless copper plated copper was employed.
ベーキング: 無電解銅めっきが終了すると、当該無電解銅めっき層付樹脂基材に、大気雰囲気中で150℃×30分の加熱処理を行った。 Baking: When the electroless copper plating was completed, the resin base material with the electroless copper plating layer was subjected to a heat treatment at 150 ° C. for 30 minutes in an air atmosphere.
回路形成: 当該無電解銅めっき層付樹脂基材の無電解銅めっき層の回路形成を行わない箇所にめっきレジストを形成した。そして、電気銅めっきを行って、めっきレジストの存在しない箇所に銅を析出させ回路を形成した。更に、めっきレジストの剥離を行い、基材表面に回路形状を形成した。 Circuit formation: The plating resist was formed in the location which does not perform the circuit formation of the electroless copper plating layer of the resin base material with the said electroless copper plating layer. Then, electrolytic copper plating was performed, and a circuit was formed by depositing copper at a place where no plating resist was present. Further, the plating resist was peeled off to form a circuit shape on the substrate surface.
フラッシュエッチング: 最後に、市販の硫酸-過酸化水素水系銅エッチング液を用いて、回路間に露出した無電解銅めっき層付樹脂基材の表面にある無電解銅めっき層を除去して、水洗、乾燥することで、回路幅0.4mm、回路厚さ18μmの銅回路を備え、且つ、半田特性の評価試料を得ることの出来るプリント配線板を得た。そして、このプリント配線板から、上述の引き剥がし強さ測定用サンプル及び半田特性評価用サンプルを得た。 Flash etching: Finally, using a commercially available sulfuric acid-hydrogen peroxide copper etching solution, the electroless copper plating layer on the surface of the resin base material with the electroless copper plating layer exposed between the circuits is removed and washed with water. By drying, a printed wiring board having a copper circuit with a circuit width of 0.4 mm and a circuit thickness of 18 μm and capable of obtaining an evaluation sample of solder characteristics was obtained. From the printed wiring board, the above-described peel strength measurement sample and solder property evaluation sample were obtained.
[比較例4]
 比較例4では、上述の比較例2の樹脂組成を用いたこと以外は、実施例6と同様にして、SAP法でプリント配線板を製造し、上述の引き剥がし強さ測定用サンプル及び半田特性評価用サンプルを得た。
[Comparative Example 4]
In Comparative Example 4, a printed wiring board was produced by the SAP method in the same manner as in Example 6 except that the resin composition of Comparative Example 2 was used, and the above-mentioned peel strength measurement sample and solder characteristics were produced. An evaluation sample was obtained.
[評価2]
 以上のように製造した実施例6及び比較例4のサンプルを用いて、(1)引き剥がし強さの評価、(2)半田特性の評価を行った。以下、評価方法と評価結果とに分けて説明する。
[Evaluation 2]
Using the samples of Example 6 and Comparative Example 4 manufactured as described above, (1) peeling strength was evaluated and (2) solder characteristics were evaluated. Hereinafter, the evaluation method and the evaluation result will be described separately.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
1.評価方法
 この評価2における「引き剥がし強さの評価」、「半田特性の評価」共に、上述の「評価1」と同様の方法を採用している。従って、重複する説明となるため省略する。
1. Evaluation Method In this “Evaluation of peel strength” and “Evaluation of solder characteristics” in Evaluation 2, the same method as in “Evaluation 1” described above is adopted. Therefore, it will be omitted because it is an overlapping description.
2.評価結果
(1)引き剥がし強さの評価
 表3には、実施例6及び比較例4で製造した引き剥がし強さ測定用サンプルを用いて測定した「常態時の引き剥がし強さ」と、「PCT後の引き剥がし強さ」と、「PCT後の劣化率」とを示している。この表3に示すように、実施例3と同様のポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体とを用いて構成した樹脂組成を採用した実施例6では、常態時における引き剥がし強さは、平均で0.52kgf/cmを示し、PCT後の引き剥がし強さは、平均で0.47kgf/cmで、劣化率が9.8%の耐吸湿劣化特性となることが確認された。これに対し、上述のデスミア液耐性の低い比較例2の樹脂組成を採用した比較例4では、常態時における引き剥がし強さは、平均で0.28kgf/cmを示し、PCT後の引き剥がし強さは、平均で0.22kgf/cmで、劣化率が21.4%と耐吸湿劣化特性が低下することが確認された。このように、比較例4の引き剥がし強さが、実施例6に比べて低くなっているのは、比較例4の場合はデスミア処理により樹脂基材の表面が溶解しており、銅箔の粗化処理のレプリカ形状の凹凸形状が減少し、接着面の比表面積が減少しているためと考えられる。
2. Evaluation Results (1) Evaluation of Peeling Strength Table 3 shows “peeling strength in a normal state” measured using the peel strength measurement samples produced in Example 6 and Comparative Example 4, and “ “Stripping strength after PCT” and “Deterioration rate after PCT” are shown. As shown in Table 3, in Example 6 employing a resin composition composed of the same polyphenylene ether compound and styrene butadiene block copolymer as in Example 3, the peel strength in the normal state is the average. 0.52 kgf / cm, the peel strength after PCT was 0.47 kgf / cm on average, and it was confirmed that the moisture absorption deterioration characteristics had a deterioration rate of 9.8%. On the other hand, in Comparative Example 4 employing the resin composition of Comparative Example 2 having low desmear liquid resistance as described above, the peel strength in the normal state showed an average of 0.28 kgf / cm, and the peel strength after PCT The average loss was 0.22 kgf / cm, and the deterioration rate was 21.4%. Thus, the peel strength of Comparative Example 4 is lower than that of Example 6, in the case of Comparative Example 4, the surface of the resin base material is dissolved by the desmear treatment, and the copper foil This is probably because the uneven shape of the replica shape in the roughening treatment is reduced and the specific surface area of the adhesion surface is reduced.
(2)半田特性の評価
 表3に示したように、ポリフェニレンエーテル化合物とスチレンブタジエンブロック共重合体とからなる接着剤層を備える実施例6は、比較例4に比べて、半田特性が良好であることが確認された。
(2) Evaluation of Solder Properties As shown in Table 3, Example 6 including an adhesive layer made of a polyphenylene ether compound and a styrene butadiene block copolymer has better solder properties than Comparative Example 4. It was confirmed that there was.
 本件発明に係る接着剤層付銅箔は、接着剤層として、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を10質量部~65質量部の範囲で含む樹脂組成物からなる層を採用することにより、当該接着剤層付銅箔を樹脂基材に張り合わせたときの密着性を良好なものとすることができる。また、同時に、プリント配線板の製造工程にデスミア処理が含まれる場合であっても、接着剤層がデスミア液に溶解するのを防止することができる。また、常態時において十分な引き剥がし強さを有すると共に、引き剥がし強さの劣化の少ないプリント配線板を製造することができる。従って、プリント配線板の製造材料として好適に用いることができる接着剤層付銅箔を提供することができる。 The copper foil with an adhesive layer according to the present invention comprises a resin composition containing, as an adhesive layer, a styrene-butadiene block copolymer in an amount of 10 to 65 parts by mass with respect to 100 parts by mass of the polyphenylene ether compound. By adopting the layer, the adhesiveness when the adhesive-coated copper foil is bonded to the resin base material can be improved. At the same time, even when the desmear process is included in the manufacturing process of the printed wiring board, the adhesive layer can be prevented from being dissolved in the desmear liquid. Further, it is possible to produce a printed wiring board having a sufficient peeling strength in a normal state and having little deterioration of the peeling strength. Therefore, the copper foil with an adhesive layer which can be used suitably as a manufacturing material of a printed wiring board can be provided.

Claims (7)

  1.  銅箔の片面に接着剤層を備える接着剤層付銅箔であって、
     前記接着剤層は、ポリフェニレンエーテル化合物100質量部に対して、スチレンブタジエンブロック共重合体を5質量部以上65質量部以下含む樹脂組成物からなる層であること、
     を特徴とする接着剤層付銅箔。
    A copper foil with an adhesive layer provided with an adhesive layer on one side of the copper foil,
    The adhesive layer is a layer made of a resin composition containing 5 parts by mass or more and 65 parts by mass or less of a styrene butadiene block copolymer with respect to 100 parts by mass of the polyphenylene ether compound.
    A copper foil with an adhesive layer.
  2.  銅箔の表面粗さ(Rzjis)が2μm以下である面に、前記接着剤層が設けられている請求項1に記載の接着剤層付銅箔。 The copper foil with an adhesive layer according to claim 1, wherein the adhesive layer is provided on a surface of the copper foil having a surface roughness (Rzjis) of 2 µm or less.
  3.  前記接着剤層の厚みは、0.5μm~10μmである請求項1又は請求項2のいずれか一項に記載の接着剤層付銅箔。 The copper foil with an adhesive layer according to any one of claims 1 and 2, wherein the adhesive layer has a thickness of 0.5 µm to 10 µm.
  4.  前記接着剤層は、アミノ官能性シランカップリング剤、アクリル官能性シランカップリング剤、メタクリル官能性シランカップリング剤及びビニル官能性シランカップリング剤から選ばれる1種以上を用いて表面処理されたフィラー粒子を含むものである請求項1~請求項3のいずれか一項に記載の接着剤層付銅箔。 The adhesive layer was surface treated with one or more selected from amino functional silane coupling agents, acrylic functional silane coupling agents, methacryl functional silane coupling agents and vinyl functional silane coupling agents. The copper foil with an adhesive layer according to any one of claims 1 to 3, which contains filler particles.
  5.  請求項1~請求項4のいずれか一項に記載の接着剤層付銅箔を用いたことを特徴とする銅張積層板。 A copper clad laminate comprising the copper foil with an adhesive layer according to any one of claims 1 to 4.
  6.  請求項5に記載の銅張積層板を用いて得られたことを特徴とするプリント配線板。 A printed wiring board obtained by using the copper-clad laminate according to claim 5.
  7.  請求項5に記載の銅張積層板を用い、当該銅張積層板の表面の銅箔層をエッチングにより除去してセミアディティブ法で回路形成して得られたことを特徴とするプリント配線板。 A printed wiring board obtained by using the copper-clad laminate according to claim 5 and removing the copper foil layer on the surface of the copper-clad laminate by etching and forming a circuit by a semi-additive method.
PCT/JP2013/050433 2012-01-11 2013-01-11 Copper foil with adhesive layer, copper-clad laminate and printed wiring board WO2013105650A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201910030925.3A CN110087405B (en) 2012-01-11 2013-01-11 Copper foil with adhesive layer, copper-clad laminate, and printed wiring board
KR1020147018973A KR101605449B1 (en) 2012-01-11 2013-01-11 Copper foil with adhesive layer, copper-clad laminate and printed wiring board
JP2013553328A JP6215711B2 (en) 2012-01-11 2013-01-11 Copper foil with adhesive layer, copper-clad laminate and printed wiring board
CN201380005294.0A CN104041198A (en) 2012-01-11 2013-01-11 Copper foil with adhesive layer, copper-clad laminate and printed wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-002909 2012-01-11
JP2012002909 2012-01-11

Publications (1)

Publication Number Publication Date
WO2013105650A1 true WO2013105650A1 (en) 2013-07-18

Family

ID=48781591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050433 WO2013105650A1 (en) 2012-01-11 2013-01-11 Copper foil with adhesive layer, copper-clad laminate and printed wiring board

Country Status (5)

Country Link
JP (1) JP6215711B2 (en)
KR (1) KR101605449B1 (en)
CN (2) CN110087405B (en)
TW (1) TWI609779B (en)
WO (1) WO2013105650A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070041A (en) * 2013-09-27 2015-04-13 凸版印刷株式会社 Method for forming through-hole of core substrate
US9647272B1 (en) 2016-01-14 2017-05-09 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil
WO2017098969A1 (en) * 2015-12-07 2017-06-15 三井金属鉱業株式会社 Method for manufacturing layered body, and metal foil provided with resin layer
JP2017197597A (en) * 2016-04-25 2017-11-02 京セラ株式会社 Adhesive composition, adhesive sheet, copper foil with adhesive layer, copper-clad laminate, and circuit board
KR20180019190A (en) 2015-07-23 2018-02-23 미쓰이금속광업주식회사 Copper foil with resin, copper clad laminate and printed wiring board
JP2018115225A (en) * 2017-01-16 2018-07-26 京セラ株式会社 Fiber material, prepreg, metal-clad laminate, and circuit board
WO2018179682A1 (en) * 2017-03-28 2018-10-04 京セラ株式会社 Copper foil having adhesive agent adhered thereto, copper-clad laminated plate, and wiring substrate
WO2018186025A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Metal-clad laminated board, metal member provided with resin, and wiring board
WO2019188087A1 (en) * 2018-03-30 2019-10-03 三井金属鉱業株式会社 Copper-clad laminate
JPWO2019021862A1 (en) * 2017-07-27 2020-05-28 三井金属鉱業株式会社 Resin composition, insulating layer for wiring board and laminate
CN114683633A (en) * 2020-12-25 2022-07-01 律胜科技股份有限公司 Laminate and method for manufacturing same
KR20230110598A (en) 2021-02-10 2023-07-24 미쓰이금속광업주식회사 Resin composition, copper foil with resin, and printed wiring board

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6579309B2 (en) * 2015-05-01 2019-09-25 味の素株式会社 Curable composition
JP6553311B2 (en) 2017-01-10 2019-07-31 住友精化株式会社 Epoxy resin composition
JP6853370B2 (en) * 2017-07-31 2021-03-31 サーキット フォイル ルクセンブルグ エス.エイ.アール.エル.Circuit Foil Luxembourg S.A.R.L. Surface-treated copper foil and copper-clad laminate
TWI655263B (en) * 2017-12-27 2019-04-01 台燿科技股份有限公司 Adhesive composition and application thereof
CN114828447A (en) * 2021-01-28 2022-07-29 鹏鼎控股(深圳)股份有限公司 Circuit board and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266087A (en) * 2001-03-07 2002-09-18 Hitachi Chem Co Ltd Etchant for copper and method for manufacturing printed circuit board using the same
JP2008105409A (en) * 2006-09-26 2008-05-08 Mitsui Mining & Smelting Co Ltd Copper foil with resin layer containing filler particle and copper-clad laminated plate using the same
JP2009007551A (en) * 2007-05-30 2009-01-15 Hitachi Chem Co Ltd Resin varnish, adhesive layer-coated metal foil, metal-clad laminate, printed wiring board, and multilayer wiring board
JP2009078209A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Metal foil bearing resin, method for manufacturing the same, and metal-coated flexible laminated sheet
JP2009148962A (en) * 2007-12-19 2009-07-09 Mitsui Mining & Smelting Co Ltd Copper foil with filler particle-containing resin layer and copper-clad laminate using filler particle-containing resin layer
JP2010195970A (en) * 2009-02-26 2010-09-09 Asahi Kasei E-Materials Corp Modified polyphenylene ether, curable resin composition prepared by using the ether, curable material, cured material and laminate thereof
JP2011225639A (en) * 2010-04-15 2011-11-10 Hitachi Chem Co Ltd Thermosetting resin composition, and resin varnish, prepreg and metal-clad laminate using the same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2529512C2 (en) * 1975-07-02 1984-10-04 Henkel KGaA, 4000 Düsseldorf Adhesives based on aqueous dispersions of copolymers of butadiene
US5156920A (en) * 1986-09-05 1992-10-20 General Electric Company Polyphenylene ether resin compositions having improved adhesion for decorative and protective coatings
EP0744884A3 (en) * 1995-05-23 1997-09-24 Hitachi Chemical Co Ltd Process for producing multilayer printed circuit board
US7091266B2 (en) * 2002-05-28 2006-08-15 Asahi Kasei Kabushiki Kaisha Flame retardant composition
JP2005112981A (en) * 2003-10-07 2005-04-28 Hitachi Chem Co Ltd Low-permittivity resin composition, prepreg using the same, metal-clad laminate, and printed circuit board
JP2007030326A (en) * 2005-07-26 2007-02-08 Matsushita Electric Works Ltd Copper foil with resin, laminate for producing printed wiring boad, and multilayer printed wiring board
JP5023732B2 (en) * 2006-03-23 2012-09-12 日立化成工業株式会社 Laminated board
CN101250318B (en) * 2008-03-25 2011-07-20 中国科学院广州化学研究所 Epoxy radical material for printing circuit copper clad laminate and preparation method thereof
KR20110044207A (en) * 2008-07-30 2011-04-28 스미토모 베이클리트 컴퍼니 리미티드 Electroless copper plating method, printed wiring board, method for manufacturing printed wiring board and semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002266087A (en) * 2001-03-07 2002-09-18 Hitachi Chem Co Ltd Etchant for copper and method for manufacturing printed circuit board using the same
JP2008105409A (en) * 2006-09-26 2008-05-08 Mitsui Mining & Smelting Co Ltd Copper foil with resin layer containing filler particle and copper-clad laminated plate using the same
JP2009007551A (en) * 2007-05-30 2009-01-15 Hitachi Chem Co Ltd Resin varnish, adhesive layer-coated metal foil, metal-clad laminate, printed wiring board, and multilayer wiring board
JP2009078209A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Metal foil bearing resin, method for manufacturing the same, and metal-coated flexible laminated sheet
JP2009148962A (en) * 2007-12-19 2009-07-09 Mitsui Mining & Smelting Co Ltd Copper foil with filler particle-containing resin layer and copper-clad laminate using filler particle-containing resin layer
JP2010195970A (en) * 2009-02-26 2010-09-09 Asahi Kasei E-Materials Corp Modified polyphenylene ether, curable resin composition prepared by using the ether, curable material, cured material and laminate thereof
JP2011225639A (en) * 2010-04-15 2011-11-10 Hitachi Chem Co Ltd Thermosetting resin composition, and resin varnish, prepreg and metal-clad laminate using the same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015070041A (en) * 2013-09-27 2015-04-13 凸版印刷株式会社 Method for forming through-hole of core substrate
US11166383B2 (en) 2015-07-23 2021-11-02 Mitsui Mining & Smelting Co., Ltd. Resin-clad copper foil, copper-clad laminated plate, and printed wiring board
KR20180019190A (en) 2015-07-23 2018-02-23 미쓰이금속광업주식회사 Copper foil with resin, copper clad laminate and printed wiring board
WO2017098969A1 (en) * 2015-12-07 2017-06-15 三井金属鉱業株式会社 Method for manufacturing layered body, and metal foil provided with resin layer
JP2021079702A (en) * 2015-12-07 2021-05-27 三井金属鉱業株式会社 Laminate manufacturing method and metallic foil with resin layer
JPWO2017098969A1 (en) * 2015-12-07 2018-09-27 三井金属鉱業株式会社 Manufacturing method of laminate and metal foil with resin layer
CN113825316A (en) * 2015-12-07 2021-12-21 三井金属矿业株式会社 Method for producing laminate and metal foil with resin layer
CN113825316B (en) * 2015-12-07 2024-06-11 三井金属矿业株式会社 Method for producing laminate and resin layer-attached metal foil
JP7045500B2 (en) 2015-12-07 2022-03-31 三井金属鉱業株式会社 Manufacturing method of laminate and metal leaf with resin layer
US9647272B1 (en) 2016-01-14 2017-05-09 Chang Chun Petrochemical Co., Ltd. Surface-treated copper foil
JP2017197597A (en) * 2016-04-25 2017-11-02 京セラ株式会社 Adhesive composition, adhesive sheet, copper foil with adhesive layer, copper-clad laminate, and circuit board
JP2018115225A (en) * 2017-01-16 2018-07-26 京セラ株式会社 Fiber material, prepreg, metal-clad laminate, and circuit board
JPWO2018179682A1 (en) * 2017-03-28 2020-02-06 京セラ株式会社 Copper foil with adhesive, copper-clad laminate and wiring board
JP7421337B2 (en) 2017-03-28 2024-01-24 京セラ株式会社 Copper foil with adhesive, copper clad laminates and wiring boards
WO2018179682A1 (en) * 2017-03-28 2018-10-04 京セラ株式会社 Copper foil having adhesive agent adhered thereto, copper-clad laminated plate, and wiring substrate
US11330710B2 (en) 2017-04-07 2022-05-10 Panasonic Intellectual Property Management Co., Ltd. Metal-clad laminated board, metal member provided with resin, and wiring board
JPWO2018186025A1 (en) * 2017-04-07 2020-02-13 パナソニックIpマネジメント株式会社 Metal-clad laminate, metal member with resin, and wiring board
WO2018186025A1 (en) * 2017-04-07 2018-10-11 パナソニックIpマネジメント株式会社 Metal-clad laminated board, metal member provided with resin, and wiring board
JPWO2019021862A1 (en) * 2017-07-27 2020-05-28 三井金属鉱業株式会社 Resin composition, insulating layer for wiring board and laminate
JP7219216B2 (en) 2017-07-27 2023-02-07 三井金属鉱業株式会社 Resin composition, insulating layer for wiring board, and laminate
JPWO2019188087A1 (en) * 2018-03-30 2021-04-15 三井金属鉱業株式会社 Copper-clad laminate
JP7166334B2 (en) 2018-03-30 2022-11-07 三井金属鉱業株式会社 copper clad laminate
TWI787480B (en) * 2018-03-30 2022-12-21 日商三井金屬鑛業股份有限公司 Copper-clad laminate
WO2019188087A1 (en) * 2018-03-30 2019-10-03 三井金属鉱業株式会社 Copper-clad laminate
US11950376B2 (en) 2018-03-30 2024-04-02 Mitsui Mining & Smelting Co., Ltd. Copper-clad laminate
CN114683633A (en) * 2020-12-25 2022-07-01 律胜科技股份有限公司 Laminate and method for manufacturing same
KR20230110598A (en) 2021-02-10 2023-07-24 미쓰이금속광업주식회사 Resin composition, copper foil with resin, and printed wiring board

Also Published As

Publication number Publication date
KR101605449B1 (en) 2016-03-22
TW201331025A (en) 2013-08-01
CN110087405A (en) 2019-08-02
JPWO2013105650A1 (en) 2015-05-11
JP6215711B2 (en) 2017-10-18
KR20140102736A (en) 2014-08-22
CN104041198A (en) 2014-09-10
TWI609779B (en) 2018-01-01
CN110087405B (en) 2022-08-12

Similar Documents

Publication Publication Date Title
JP6215711B2 (en) Copper foil with adhesive layer, copper-clad laminate and printed wiring board
TWI457363B (en) Resin composition for interlayer insulating layer of multi-layer printed wiring board
TWI335347B (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film and prepreg
JP5929220B2 (en) Printed wiring board and printed wiring board manufacturing method
JP5378620B2 (en) LAMINATED BOARD AND PRINTED WIRING BOARD MANUFACTURING METHOD
TW201040226A (en) Resin composition
JP2005154727A (en) Resin composition for interlayer insulation of multilayer printed wiring board, adhesive film, and prepreg
KR20130037661A (en) Resin composition
JP5359026B2 (en) Slurry composition, method for producing slurry composition, method for producing resin varnish
WO2005104638A1 (en) Wiring board and method for producing the same
KR20180059507A (en) Metal foil, metal foil with a release layer, laminate, printed wiring board, semiconductor package, electronic device and manufacturing method of printed wiring board
JP5002943B2 (en) Metal foil with adhesive aid and printed wiring board using the same
JPWO2014054812A1 (en) Metal foil with carrier
JP2007001291A (en) Metallic foil with adhesion adjuvant, printed-wiring board using the same, and manufacturing method for printed-wiring board
JP7325000B2 (en) Surface-treated copper foil, and copper-clad laminate, resin-coated copper foil and circuit board using the same
JP4944483B2 (en) Method for manufacturing printed wiring board
WO2014046256A1 (en) Metallic foil having carrier
JP2011051247A (en) Metal foil with thermosetting resin composition layer, metal clad laminated plate, and printed wiring board
JP4400060B2 (en) Insulating resin composition and use thereof
JP5516657B2 (en) Metal foil with adhesion aid, printed wiring board using the same, and method for producing the same
JP4019800B2 (en) Insulating resin composition manufacturing method, insulating resin composition, multilayer wiring board and manufacturing method thereof
JP4839982B2 (en) Manufacturing method of flexible rigid wiring board
JP2008130592A (en) Manufacturing method of printed wiring board, and manufacturing method of multilayer printed wiring board
JP2015107598A (en) Laminate with resin substrates in close contact with each other in peelable manner
TWI596005B (en) A laminated body, a method of manufacturing the laminated body, and a multilayer substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13736392

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013553328

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147018973

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13736392

Country of ref document: EP

Kind code of ref document: A1