WO2013105190A1 - ズームレンズ系、撮像装置及びカメラ - Google Patents

ズームレンズ系、撮像装置及びカメラ Download PDF

Info

Publication number
WO2013105190A1
WO2013105190A1 PCT/JP2012/008241 JP2012008241W WO2013105190A1 WO 2013105190 A1 WO2013105190 A1 WO 2013105190A1 JP 2012008241 W JP2012008241 W JP 2012008241W WO 2013105190 A1 WO2013105190 A1 WO 2013105190A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
zoom lens
lens system
image
lens group
Prior art date
Application number
PCT/JP2012/008241
Other languages
English (en)
French (fr)
Inventor
岩下 勉
朴 一武
靖典 東地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013105190A1 publication Critical patent/WO2013105190A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/143Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only
    • G02B15/1435Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative
    • G02B15/143507Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having three groups only the first group being negative arranged -++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1441Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive
    • G02B15/144113Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being positive arranged +-++
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof

Definitions

  • the present disclosure relates to a zoom lens system, an imaging device, and a camera.
  • a digital camera such as a digital still camera or a digital video camera
  • a compact digital camera equipped with a zoom lens system having a high zooming ratio is strongly demanded for its convenience.
  • a zoom lens system having a wide angle range with a wide shooting range for example, various zoom lens systems having a negative lead three-group structure and a positive lead four-group structure have been proposed.
  • a variable aperture for determining an open F-number is arranged on the object side of a second lens group having a three-group configuration of the negative lead and having a positive refractive power.
  • a zoom lens is disclosed in which a mechanical aperture for cutting harmful rays is arranged on the image side.
  • the present disclosure not only has a high resolution but also a zooming ratio as high as 5 times or more, and also has a large angle of view at the wide-angle end and can be sufficiently adapted to wide-angle shooting while being compact.
  • a zoom lens system capable of forming an image having a desired brightness in accordance with a zoom position.
  • the present disclosure also provides an imaging apparatus including the zoom lens system and a thin and compact camera including the imaging apparatus.
  • the zoom lens system in the present disclosure is: Having a plurality of lens groups composed of at least one lens element; With at least two aperture stops, At least one lens element is disposed between the at least two aperture stops; During zooming from the wide-angle end to the telephoto end during imaging, one of the at least two aperture stops is selected and the amount of light is adjusted according to the zoom position.
  • An imaging apparatus capable of outputting an optical image of an object as an electrical image signal, A zoom lens system that forms an optical image of the object; An image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is Having a plurality of lens groups composed of at least one lens element; With at least two aperture stops, At least one lens element is disposed between the at least two aperture stops; During zooming from the wide-angle end to the telephoto end during imaging, one of the at least two aperture stops is selected and the amount of light is adjusted according to the zoom position.
  • the camera in the present disclosure is A camera that converts an optical image of an object into an electrical image signal, and displays and stores the converted image signal;
  • An image pickup apparatus including a zoom lens system that forms an optical image of an object, and an image sensor that converts an optical image formed by the zoom lens system into an electrical image signal;
  • the zoom lens system is Having a plurality of lens groups composed of at least one lens element; With at least two aperture stops, At least one lens element is disposed between the at least two aperture stops; During zooming from the wide-angle end to the telephoto end during imaging, one of the at least two aperture stops is selected and the amount of light is adjusted according to the zoom position.
  • the zoom lens system according to the present disclosure not only has high resolution, but also has a high zooming ratio of about 5 times or more, and also has a large angle of view at the wide-angle end and is small enough to be used for wide-angle shooting. In addition, it is possible to form an image having a desired brightness according to the zoom position.
  • FIG. 1 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 1 (Numerical Example 1).
  • FIG. 2 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 1 when the zoom lens system is in focus at infinity.
  • FIG. 3 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 2 (Numerical Example 2).
  • FIG. 4 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 2 when the zoom lens system is in focus at infinity.
  • FIG. 5 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 3 (Numerical Example 3).
  • FIG. 6 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 3 when the zoom lens system is in focus at infinity.
  • FIG. 7 is a lens arrangement diagram illustrating an infinitely focused state of the zoom lens system according to Embodiment 4 (Numerical Example 4).
  • FIG. 8 is a longitudinal aberration diagram of the zoom lens system according to Numerical Example 4 when the zoom lens system is in focus at infinity.
  • FIG. 9 is a schematic configuration diagram of a digital still camera according to the fifth embodiment.
  • Embodiments 1 to 4) 1, 3, 5, and 7 are lens arrangement diagrams of the zoom lens systems according to Embodiments 1 to 4, respectively, and all represent the zoom lens system in an infinitely focused state.
  • the lens configuration of T )) and (c) show the lens configuration at the telephoto end (longest focal length state: focal length f T ).
  • the broken line arrows provided between FIGS. (A) and (b) are obtained by connecting the positions of the lens groups in the wide-angle end, the intermediate position, and the telephoto end in order from the top. Straight line.
  • the wide-angle end and the intermediate position, and the intermediate position and the telephoto end are simply connected by a straight line, which is different from the actual movement of each lens group.
  • FIGS. 1, 3, 5, and 7 show directions in which a third lens group G3, which will be described later, moves during focusing from an infinitely focused state to a close object focused state.
  • the zoom lens systems according to Embodiments 1 and 2 in order from the object side to the image side, the first lens group G1 having negative power, the second lens group G2 having positive power, and the positive power And a third lens group G3.
  • the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, and the distance between the second lens group G2 and the third lens group G3 are all changed. All lens groups move in the direction along the optical axis.
  • the zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
  • the zoom lens systems according to Embodiments 3 and 4 the first lens group G1 having a positive power, the second lens group G2 having a negative power, and the positive power in order from the object side to the image side. And a fourth lens group G4 having a positive power.
  • the distance between the lens groups that is, the distance between the first lens group G1 and the second lens group G2, the distance between the second lens group G2 and the third lens group G3, and the third lens group G3 and the third lens group G3. All the lens groups are moved in the direction along the optical axis so that the intervals between the four lens groups G4 are all changed.
  • the zoom lens system according to each embodiment can reduce the size of the entire lens system while maintaining high optical performance by arranging these lens groups in a desired power arrangement.
  • an asterisk * attached to a specific surface indicates that the surface is aspherical.
  • a symbol (+) and a symbol ( ⁇ ) attached to a symbol of each lens group correspond to a power symbol of each lens group.
  • the straight line described on the rightmost side represents the position of the image plane S.
  • the object side of the image plane S (FIGS. 1 and 3: the image plane S and the most image side lens surface of the third lens group G3). 5 and 7: between the image plane S and the most image side lens surface of the fourth lens group G4), a parallel flat plate P equivalent to an optical low-pass filter, a face plate of an image sensor, or the like is provided. It has been.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side.
  • the second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces.
  • the second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side.
  • the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer.
  • the fifth lens element L5 has two aspheric surfaces.
  • the third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side.
  • the sixth lens element L6 has two aspheric surfaces.
  • An aperture stop 1 (surface number 5 in the surface data in the corresponding numerical example described later) A1 is provided immediately on the object side of the third lens element L3, and immediately on the object side of the fifth lens element L5, An aperture stop 2 (surface number 10 in the surface data in the corresponding numerical example described later) A2 is provided.
  • the aperture stop 1A1 and the aperture stop 2A2 move on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
  • a parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
  • the first lens group G1 moves toward the object side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously.
  • the third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
  • the third lens group G3 moves toward the object side along the optical axis.
  • the entire second lens group G2 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a positive meniscus having a convex surface facing the object side.
  • the second lens element L2 having a shape. Among these, the second lens element L2 has two aspheric surfaces.
  • the second lens group G2 includes, in order from the object side to the image side, a biconvex third lens element L3, a biconcave fourth lens element L4, and a negative meniscus second lens element with a convex surface facing the object side.
  • the third lens element L3 and the fourth lens element L4 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the third lens element L3 and the fourth lens element L4. Surface number 7 is given to the agent layer.
  • the fifth lens element L5 has two aspheric surfaces.
  • the third lens group G3 comprises solely a positive meniscus sixth lens element L6 with the convex surface facing the image side.
  • the sixth lens element L6 has two aspheric surfaces.
  • An aperture stop 1 (surface number 5 in the surface data in the corresponding numerical example described later) A1 is provided immediately on the object side of the third lens element L3, and immediately on the object side of the fifth lens element L5, An aperture stop 2 (surface number 10 in the surface data in the corresponding numerical example described later) A2 is provided.
  • the aperture stop 1A1 and the aperture stop 2A2 move on the optical axis integrally with the second lens group G2 during zooming from the wide-angle end to the telephoto end during imaging.
  • a parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the sixth lens element L6.
  • the first lens group G1 moves toward the object side along a locus convex to the image side, and the second lens group G2 moves toward the object side substantially monotonously.
  • the third lens group G3 moves to the image side substantially monotonously. That is, during zooming, all the lens groups are placed on the optical axis so that the distance between the first lens group G1 and the second lens group G2 changes and the distance between the second lens group G2 and the third lens group G3 increases. Move along each.
  • the third lens group G3 moves toward the object side along the optical axis.
  • the entire second lens group G2 By moving the entire second lens group G2 in a direction orthogonal to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire second lens group G2 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. It consists of.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesive layer between the first lens element L1 and the second lens element L2 is used. Surface number 2 is given.
  • the second lens element L2 has an aspheric image side surface.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave third lens element L3, a biconcave fourth lens element L4, and a positive meniscus second lens element with a convex surface facing the object side. 5 lens elements L5. Among these, the fourth lens element L4 has an aspheric object side surface.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex sixth lens element L6, a positive meniscus seventh lens element L7 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus eighth lens element L8.
  • the seventh lens element L7 and the eighth lens element L8 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the seventh lens element L7 and the eighth lens element L8. Surface number 16 is given to the agent layer.
  • the sixth lens element L6 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a biconvex ninth lens element L9.
  • the ninth lens element L9 has two aspheric surfaces.
  • An aperture stop 1 (surface number 11 in the surface data in the corresponding numerical example described later) A1 is provided immediately on the object side of the sixth lens element L6, and immediately on the object side of the seventh lens element L7, An aperture stop 2 (surface number 14 in the surface data in the corresponding numerical example described later) A2 is provided.
  • the aperture stop 1A1 and the aperture stop 2A2 move on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging.
  • a parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the ninth lens element L9.
  • the first lens group G1 moves to the object side substantially monotonously, and the second lens group G2 slightly draws a slightly convex locus on the object side.
  • the third lens group G3 moves toward the object side with a convex locus on the object side, and the fourth lens group G4 moves toward the image side substantially monotonously. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 changes, the distance between the second lens group G2 and the third lens group G3 changes, and the third lens group G3 and the fourth lens. All the lens groups move along the optical axis so that the distance from the group G4 increases.
  • the third lens group G3 moves toward the object side along the optical axis.
  • the entire third lens group G3 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • the first lens group G1 includes, in order from the object side to the image side, a negative meniscus first lens element L1 having a convex surface facing the object side, and a biconvex second lens element L2. It consists of.
  • the first lens element L1 and the second lens element L2 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesive layer between the first lens element L1 and the second lens element L2 is used. Surface number 2 is given.
  • the second lens element L2 has an aspheric image side surface.
  • the second lens group G2 includes, in order from the object side to the image side, a biconcave third lens element L3, a biconcave fourth lens element L4, and a positive meniscus second lens element with a convex surface facing the object side. 5 lens elements L5. Among these, the fourth lens element L4 has an aspheric object side surface.
  • the third lens group G3 includes, in order from the object side to the image side, a biconvex sixth lens element L6, a positive meniscus seventh lens element L7 with a convex surface facing the object side, and a convex surface facing the object side. And a negative meniscus eighth lens element L8.
  • the seventh lens element L7 and the eighth lens element L8 are cemented, and in the surface data in the corresponding numerical value example described later, the adhesion between the seventh lens element L7 and the eighth lens element L8. Surface number 16 is given to the agent layer.
  • the sixth lens element L6 has two aspheric surfaces.
  • the fourth lens group G4 comprises solely a biconvex ninth lens element L9.
  • the ninth lens element L9 has two aspheric surfaces.
  • An aperture stop 1 (surface number 11 in the surface data in the corresponding numerical example described later) A1 is provided immediately on the object side of the sixth lens element L6, and immediately on the object side of the seventh lens element L7, An aperture stop 2 (surface number 14 in the surface data in the corresponding numerical example described later) A2 is provided.
  • the aperture stop 1A1 and the aperture stop 2A2 move on the optical axis integrally with the third lens group G3 during zooming from the wide-angle end to the telephoto end during imaging.
  • a parallel plate P is provided on the object side of the image plane S, that is, between the image plane S and the ninth lens element L9.
  • the first lens group G1 moves to the object side substantially monotonously, and the second lens group G2 slightly draws a slightly convex locus on the object side.
  • the third lens group G3 moves toward the object side with a convex locus on the object side, and the fourth lens group G4 moves toward the image side substantially monotonously. That is, during zooming, the distance between the first lens group G1 and the second lens group G2 changes, the distance between the second lens group G2 and the third lens group G3 changes, and the third lens group G3 and the fourth lens. All the lens groups move along the optical axis so that the distance from the group G4 increases.
  • the third lens group G3 moves toward the object side along the optical axis.
  • the entire third lens group G3 By moving the entire third lens group G3 in a direction perpendicular to the optical axis, it is possible to correct image point movement due to vibration of the entire system. That is, when correcting the image point movement due to the vibration of the entire system, the entire third lens group G3 moves in a direction perpendicular to the optical axis, thereby suppressing the enlargement of the entire zoom lens system and making it compact. However, it is possible to optically correct image blur due to camera shake, vibration, etc. while maintaining excellent imaging characteristics with small decentration coma and decentering astigmatism.
  • a zoom lens system such as the zoom lens systems according to Embodiments 1 to 4 includes at least two aperture stops, and at least one lens element is disposed between the at least two aperture stops. Then, during zooming from the wide-angle end to the telephoto end during imaging, one of these at least two aperture stops is selected and the amount of light is adjusted according to the zoom position. That is, in the zoom lens system according to the present disclosure, at the time of zooming, one aperture stop selected from a plurality of aperture stops so that an image having a desired brightness can be formed at that zoom position. The light quantity is adjusted by one aperture stop selected from a plurality of aperture stops so that an image having a desired brightness can be formed at another zoom position.
  • the zoom lens system according to the present disclosure includes at least two aperture stops that can contribute to the F-number. Therefore, the light amount can be appropriately adjusted according to the zoom position, and the zoom position can be adjusted according to the zoom position. An image having a desired brightness can be formed.
  • the zoom lens system was selected at the wide-angle end during zooming from the wide-angle end to the telephoto end during imaging, as shown in various data in the corresponding numerical examples described later.
  • the aperture stop is different from the aperture stop selected at the telephoto end.
  • the aperture stop 1A1 is selected so that the F-number is small at the wide-angle end, that is, the amount of light is large and a bright image is formed, and the F-number is large at the telephoto end. That is, the aperture stop 2A2 is selected so that the amount of light is small and a dark image is formed compared to the wide-angle end.
  • Each lens group constituting the zoom lens system according to Embodiments 1 to 4 includes a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes)
  • a diffractive lens element that deflects incident light by diffraction a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffraction and refraction, and a refractive index that deflects incident light by the refractive index distribution in the medium
  • Each lens group may be composed of a distributed lens element or the like.
  • a diffractive / diffractive hybrid lens element forming a diffractive structure at the interface of media having different refractive indexes is advantageous because the wavelength dependency of diffraction efficiency is improved.
  • Embodiments 1 to 4 have been described as examples of the technology disclosed in the present application. However, the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • FIG. 9 is a schematic configuration diagram of a digital still camera according to the fifth embodiment.
  • the digital still camera includes an image pickup apparatus including a zoom lens system 1 and an image pickup device 2 that is a CCD, a liquid crystal monitor 3, and a housing 4.
  • the zoom lens system 1 includes a first lens group G1, a second lens group G2 including an aperture stop 1A1 and an aperture stop 2A2, and a third lens group G3.
  • the zoom lens system 1 is disposed on the front side, and the imaging element 2 is disposed on the rear side of the zoom lens system 1.
  • a liquid crystal monitor 3 is disposed on the rear side of the housing 4, and an optical image of the subject by the zoom lens system 1 is formed on the image plane S.
  • the lens barrel is composed of a main lens barrel 5, a movable lens barrel 6, and a cylindrical cam 7.
  • the first lens group G1, the aperture stop 1A1, the aperture stop 2A2, the second lens group G2, and the third lens group G3 move to predetermined positions with the image sensor 2 as a reference, and a wide angle. Zooming from the end to the telephoto end can be performed.
  • the third lens group G3 is movable in the optical axis direction by a focus adjustment motor.
  • any of the zoom lens systems according to the second to fourth embodiments may be used instead of the zoom lens system according to the first embodiment.
  • the optical system of the digital still camera shown in FIG. 9 can be used for a digital video camera for moving images. In this case, not only a still image but also a moving image with high resolution can be taken.
  • the zoom lens system according to the first to fourth embodiments is shown as the zoom lens system 1, but these zoom lens systems do not use the entire zooming area. May be. That is, a range in which the optical performance is ensured may be cut out according to a desired zooming area, and used as a zoom lens system having a lower magnification than the zoom lens system described in the first to fourth embodiments.
  • the zoom lens system is applied to a so-called collapsible lens barrel
  • a prism having an internal reflection surface or a surface reflection mirror may be disposed at an arbitrary position such as in the first lens group G1, and the zoom lens system may be applied to a so-called bent lens barrel.
  • a part of the lens groups constituting the zoom lens system such as the entire second lens group G2 and a part of the second lens group G2 are retracted from the optical axis when retracted.
  • a zoom lens system may be applied to the sliding lens barrel.
  • the fifth embodiment has been described as an example of the technique disclosed in the present application.
  • the technology in the present disclosure is not limited to this, and can also be applied to an embodiment in which changes, replacements, additions, omissions, and the like are appropriately performed.
  • an image pickup apparatus including the zoom lens system according to Embodiments 1 to 4 described above and an image pickup device such as a CCD or a CMOS is used as a camera for a portable information terminal such as a smartphone, a monitoring camera for a monitoring system, a Web
  • an image pickup apparatus including the zoom lens system according to Embodiments 1 to 4 described above and an image pickup device such as a CCD or a CMOS is used as a camera for a portable information terminal such as a smartphone, a monitoring camera for a monitoring system, a Web
  • the present invention can also be applied to cameras, in-vehicle cameras, and the like.
  • the unit of length in the table is “mm”, and the unit of angle of view is “°”.
  • r is a radius of curvature
  • d is a surface interval
  • nd is a refractive index with respect to the d line
  • vd is an Abbe number with respect to the d line
  • the diameters of the diaphragm 1 and the diaphragm 2 are effective diameters.
  • the surface marked with * is an aspherical surface, and the aspherical shape is defined by the following equation.
  • Z distance from a point on the aspheric surface having a height h from the optical axis to the tangent plane of the aspheric vertex
  • h height from the optical axis
  • r vertex radius of curvature
  • conic constant
  • An n-order aspherical coefficient.
  • each longitudinal aberration diagram shows the aberration at the wide angle end, (b) shows the intermediate position, and (c) shows the aberration at the telephoto end.
  • SA spherical aberration
  • AST mm
  • DIS distortion
  • the vertical axis represents the F number (indicated by F in the figure)
  • the solid line is the d line (d-line)
  • the short broken line is the F line (F-line)
  • the long broken line is the C line (C- line).
  • the vertical axis represents the image height (indicated by H in the figure), the solid line represents the sagittal plane (indicated by s), and the broken line represents the meridional plane (indicated by m in the figure). is there.
  • the vertical axis represents the image height (indicated by H in the figure).
  • the present disclosure can be applied to digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • digital input devices such as digital cameras, cameras of portable information terminals such as smartphones, surveillance cameras in surveillance systems, Web cameras, and in-vehicle cameras.
  • the present disclosure can be applied to a photographing optical system that requires high image quality, such as a digital camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

 少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、少なくとも2つの開口絞りを備え、前記少なくとも2つの開口絞りの間に、少なくとも1枚のレンズ素子が配置され、撮像時の広角端から望遠端へのズーミングの際に、ズーム位置に応じて、前記少なくとも2つの開口絞りの中から1つを選択して光量を調整することを特徴とするズームレンズ系。

Description

ズームレンズ系、撮像装置及びカメラ
 本開示は、ズームレンズ系、撮像装置及びカメラに関する。
 デジタルスチルカメラやデジタルビデオカメラ等の、光電変換を行う撮像素子を持つカメラ(以下、単にデジタルカメラという)に対するコンパクト化及び高性能化の要求は極めて強い。特に、ズーミング比が高いズームレンズ系を搭載したコンパクトタイプのデジタルカメラが、その利便性から強く要望されている。またさらに、撮影範囲が広い広角域を持つズームレンズ系も求められている。このようなズームレンズ系としては、例えば、ネガティブリードの3群構成を有するズームレンズ系やポジティブリードの4群構成を有するズームレンズ系が種々提案されている。
 特許文献1には、前記ネガティブリードの3群構成を有し、正の屈折力を有する第2レンズ群の物体側に、開放Fナンバーを決定する可変絞りが配置され、該第2レンズ群の像側に、有害な光線をカットするメカ絞りが配置されたズームレンズが開示されている。
特開2010-243637号公報
 本開示は、高解像度を有するのは勿論のこと、5倍程度以上の高いズーミング比を有するだけでなく、広角端での画角が大きく、小型でありながら広角撮影に充分に適応でき、しかもズーム位置に応じて所望の明るさの像を形成することが可能なズームレンズ系を提供する。また本開示は、該ズームレンズ系を含む撮像装置、及び該撮像装置を備えた薄型でコンパクトなカメラを提供する。
 本開示におけるズームレンズ系は、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
少なくとも2つの開口絞りを備え、
前記少なくとも2つの開口絞りの間に、少なくとも1枚のレンズ素子が配置され、
撮像時の広角端から望遠端へのズーミングの際に、ズーム位置に応じて、前記少なくとも2つの開口絞りの中から1つを選択して光量を調整する、ことを特徴とする。
 本開示における撮像装置は、
物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
物体の光学的な像を形成するズームレンズ系と、
該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
を備え、
前記ズームレンズ系が、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
少なくとも2つの開口絞りを備え、
前記少なくとも2つの開口絞りの間に、少なくとも1枚のレンズ素子が配置され、
撮像時の広角端から望遠端へのズーミングの際に、ズーム位置に応じて、前記少なくとも2つの開口絞りの中から1つを選択して光量を調整する、ことを特徴とする。
 本開示におけるカメラは、
物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
前記ズームレンズ系が、
少なくとも1枚のレンズ素子で構成されたレンズ群を複数有し、
少なくとも2つの開口絞りを備え、
前記少なくとも2つの開口絞りの間に、少なくとも1枚のレンズ素子が配置され、
撮像時の広角端から望遠端へのズーミングの際に、ズーム位置に応じて、前記少なくとも2つの開口絞りの中から1つを選択して光量を調整する、ことを特徴とする。
 本開示におけるズームレンズ系は、高解像度を有するのは勿論のこと、5倍程度以上の高いズーミング比を有するだけでなく、広角端での画角が大きく、小型でありながら広角撮影に充分に適応でき、しかもズーム位置に応じて所望の明るさの像を形成することが可能である。
図1は、実施の形態1(数値実施例1)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図2は、数値実施例1に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図3は、実施の形態2(数値実施例2)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図4は、数値実施例2に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図5は、実施の形態3(数値実施例3)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図6は、数値実施例3に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図7は、実施の形態4(数値実施例4)に係るズームレンズ系の無限遠合焦状態を示すレンズ配置図である。 図8は、数値実施例4に係るズームレンズ系の無限遠合焦状態の縦収差図である。 図9は、実施の形態5に係るデジタルスチルカメラの概略構成図である。
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。ただし、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を充分に理解するために添付図面および以下の説明を提供するのであって、これらによって請求の範囲に記載の主題を限定することを意図するものではない。
 (実施の形態1~4) 
 図1、3、5及び7は、各々実施の形態1~4に係るズームレンズ系のレンズ配置図であり、いずれも無限遠合焦状態にあるズームレンズ系を表している。
 各図において、(a)図は広角端(最短焦点距離状態:焦点距離f)のレンズ構成、(b)図は中間位置(中間焦点距離状態:焦点距離f=√(f*f))のレンズ構成、(c)図は望遠端(最長焦点距離状態:焦点距離f)のレンズ構成をそれぞれ表している。また各図において、(a)図と(b)図との間に設けられた折れ線の矢印は、上から順に、広角端、中間位置、望遠端の各状態におけるレンズ群の位置を結んで得られる直線である。広角端と中間位置との間、中間位置と望遠端との間は、単純に直線で接続されているだけであり、実際の各レンズ群の動きとは異なる。
 さらに各図において、レンズ群に付された矢印は、無限遠合焦状態から近接物体合焦状態へのフォーカシングを表す。すなわち、図1、3、5及び7では、後述する第3レンズ群G3が無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に移動する方向を示している。
 実施の形態1及び2に係るズームレンズ系は、物体側から像側へと順に、負のパワーを有する第1レンズ群G1と、正のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3とを備える。ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、及び第2レンズ群G2と第3レンズ群G3との間隔がいずれも変化するように、全レンズ群が光軸に沿った方向にそれぞれ移動する。各実施の形態に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。
 実施の形態3及び4に係るズームレンズ系は、物体側から像側へと順に、正のパワーを有する第1レンズ群G1と、負のパワーを有する第2レンズ群G2と、正のパワーを有する第3レンズ群G3と、正のパワーを有する第4レンズ群G4とを備える。ズーミングに際して、各レンズ群の間隔、すなわち、前記第1レンズ群G1と第2レンズ群G2との間隔、第2レンズ群G2と第3レンズ群G3との間隔、及び第3レンズ群G3と第4レンズ群G4との間隔がいずれも変化するように、全レンズ群が光軸に沿った方向にそれぞれ移動する。各実施の形態に係るズームレンズ系は、これら各レンズ群を所望のパワー配置にすることにより、高い光学性能を保持しつつ、レンズ系全体の小型化を可能にしている。
 なお図1、3、5及び7において、特定の面に付されたアスタリスク*は、該面が非球面であることを示している。また各図において、各レンズ群の符号に付された記号(+)及び記号(-)は、各レンズ群のパワーの符号に対応する。また各図において、最も右側に記載された直線は、像面Sの位置を表し、該像面Sの物体側(図1及び3:像面Sと第3レンズ群G3の最像側レンズ面との間、図5及び7:像面Sと第4レンズ群G4の最像側レンズ面との間)には、光学的ローパスフィルタや撮像素子のフェースプレート等と等価な平行平板Pが設けられている。
(実施の形態1)
 図1に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2とからなる。これらのうち、第2レンズ素子L2は、その両面が非球面である。
 第2レンズ群G2は、物体側から像側へと順に、両凸形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第3レンズ素子L3と第4レンズ素子L4とが接合されており、後述する対応数値実施例における面データでは、これら第3レンズ素子L3と第4レンズ素子L4との間の接着剤層に面番号7が付与されている。また、第5レンズ素子L5は、その両面が非球面である。
 第3レンズ群G3は、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6のみからなる。この第6レンズ素子L6は、その両面が非球面である。
 第3レンズ素子L3のすぐ物体側には、開口絞り1(後述する対応数値実施例における面データでは、面番号5)A1が設けられており、第5レンズ素子L5のすぐ物体側には、開口絞り2(後述する対応数値実施例における面データでは、面番号10)A2が設けられている。これら開口絞り1A1及び開口絞り2A2は、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2と一体的に光軸上を物体側へ移動する。
 像面Sの物体側、すなわち像面Sと第6レンズ素子L6との間には、平行平板Pが設けられている。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、略単調に物体側へ移動し、第3レンズ群G3は、略単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が増大するように、全レンズ群が光軸に沿ってそれぞれ移動する。
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第3レンズ群G3が光軸に沿って物体側へ移動する。
 第2レンズ群G2全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第2レンズ群G2全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。
(実施の形態2)
 図3に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、物体側に凸面を向けた正メニスカス形状の第2レンズ素子L2とからなる。これらのうち、第2レンズ素子L2は、その両面が非球面である。
 第2レンズ群G2は、物体側から像側へと順に、両凸形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた負メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第3レンズ素子L3と第4レンズ素子L4とが接合されており、後述する対応数値実施例における面データでは、これら第3レンズ素子L3と第4レンズ素子L4との間の接着剤層に面番号7が付与されている。また、第5レンズ素子L5は、その両面が非球面である。
 第3レンズ群G3は、像側に凸面を向けた正メニスカス形状の第6レンズ素子L6のみからなる。この第6レンズ素子L6は、その両面が非球面である。
 第3レンズ素子L3のすぐ物体側には、開口絞り1(後述する対応数値実施例における面データでは、面番号5)A1が設けられており、第5レンズ素子L5のすぐ物体側には、開口絞り2(後述する対応数値実施例における面データでは、面番号10)A2が設けられている。これら開口絞り1A1及び開口絞り2A2は、撮像時の広角端から望遠端へのズーミングの際に、第2レンズ群G2と一体的に光軸上を物体側へ移動する。
 像面Sの物体側、すなわち像面Sと第6レンズ素子L6との間には、平行平板Pが設けられている。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、像側に凸の軌跡を描いて物体側へ移動し、第2レンズ群G2は、略単調に物体側へ移動し、第3レンズ群G3は、略単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が増大するように、全レンズ群が光軸に沿ってそれぞれ移動する。
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第3レンズ群G3が光軸に沿って物体側へ移動する。
 第2レンズ群G2全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第2レンズ群G2全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。
(実施の形態3)
 図5に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2とからなる。これら第1レンズ素子L1と第2レンズ素子L2とは接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。また、第2レンズ素子L2は、その像側面が非球面である。
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第4レンズ素子L4は、その物体側面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第6レンズ素子L6と、物体側に凸面を向けた正メニスカス形状の第7レンズ素子L7と、物体側に凸面を向けた負メニスカス形状の第8レンズ素子L8とからなる。これらのうち、第7レンズ素子L7と第8レンズ素子L8とが接合されており、後述する対応数値実施例における面データでは、これら第7レンズ素子L7と第8レンズ素子L8との間の接着剤層に面番号16が付与されている。また、第6レンズ素子L6は、その両面が非球面である。
 第4レンズ群G4は、両凸形状の第9レンズ素子L9のみからなる。この第9レンズ素子L9は、その両面が非球面である。
 第6レンズ素子L6のすぐ物体側には、開口絞り1(後述する対応数値実施例における面データでは、面番号11)A1が設けられており、第7レンズ素子L7のすぐ物体側には、開口絞り2(後述する対応数値実施例における面データでは、面番号14)A2が設けられている。これら開口絞り1A1及び開口絞り2A2は、撮像時の広角端から望遠端へのズーミングの際に、第3レンズ群G3と一体的に光軸上を物体側へ移動する。
 像面Sの物体側、すなわち像面Sと第9レンズ素子L9との間には、平行平板Pが設けられている。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、略単調に物体側へ移動し、第2レンズ群G2は、物体側に僅かに凸の軌跡を描いて僅かに物体側へ移動し、第3レンズ群G3は、物体側に凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、略単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が増大するように、全レンズ群が光軸に沿ってそれぞれ移動する。
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第3レンズ群G3が光軸に沿って物体側へ移動する。
 第3レンズ群G3全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第3レンズ群G3全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。
(実施の形態4)
 図7に示すように、第1レンズ群G1は、物体側から像側へと順に、物体側に凸面を向けた負メニスカス形状の第1レンズ素子L1と、両凸形状の第2レンズ素子L2とからなる。これら第1レンズ素子L1と第2レンズ素子L2とは接合されており、後述する対応数値実施例における面データでは、これら第1レンズ素子L1と第2レンズ素子L2との間の接着剤層に面番号2が付与されている。また、第2レンズ素子L2は、その像側面が非球面である。
 第2レンズ群G2は、物体側から像側へと順に、両凹形状の第3レンズ素子L3と、両凹形状の第4レンズ素子L4と、物体側に凸面を向けた正メニスカス形状の第5レンズ素子L5とからなる。これらのうち、第4レンズ素子L4は、その物体側面が非球面である。
 第3レンズ群G3は、物体側から像側へと順に、両凸形状の第6レンズ素子L6と、物体側に凸面を向けた正メニスカス形状の第7レンズ素子L7と、物体側に凸面を向けた負メニスカス形状の第8レンズ素子L8とからなる。これらのうち、第7レンズ素子L7と第8レンズ素子L8とが接合されており、後述する対応数値実施例における面データでは、これら第7レンズ素子L7と第8レンズ素子L8との間の接着剤層に面番号16が付与されている。また、第6レンズ素子L6は、その両面が非球面である。
 第4レンズ群G4は、両凸形状の第9レンズ素子L9のみからなる。この第9レンズ素子L9は、その両面が非球面である。
 第6レンズ素子L6のすぐ物体側には、開口絞り1(後述する対応数値実施例における面データでは、面番号11)A1が設けられており、第7レンズ素子L7のすぐ物体側には、開口絞り2(後述する対応数値実施例における面データでは、面番号14)A2が設けられている。これら開口絞り1A1及び開口絞り2A2は、撮像時の広角端から望遠端へのズーミングの際に、第3レンズ群G3と一体的に光軸上を物体側へ移動する。
 像面Sの物体側、すなわち像面Sと第9レンズ素子L9との間には、平行平板Pが設けられている。
 撮像時の広角端から望遠端へのズーミングの際に、第1レンズ群G1は、略単調に物体側へ移動し、第2レンズ群G2は、物体側に僅かに凸の軌跡を描いて僅かに物体側へ移動し、第3レンズ群G3は、物体側に凸の軌跡を描いて物体側へ移動し、第4レンズ群G4は、略単調に像側へ移動する。すなわち、ズーミングに際して、第1レンズ群G1と第2レンズ群G2との間隔が変化し、第2レンズ群G2と第3レンズ群G3との間隔が変化し、第3レンズ群G3と第4レンズ群G4との間隔が増大するように、全レンズ群が光軸に沿ってそれぞれ移動する。
 無限遠合焦状態から近接物体合焦状態へのフォーカシングの際に、第3レンズ群G3が光軸に沿って物体側へ移動する。
 第3レンズ群G3全体を光軸に直交する方向に移動させることによって、全系の振動による像点移動を補正することができる。すなわち、全系の振動による像点移動を補正する際に、第3レンズ群G3全体が光軸に直交する方向に移動することにより、ズームレンズ系全体の大型化を抑制してコンパクトに構成しながら、偏心コマ収差や偏心非点収差が小さい優れた結像特性を維持して、手ぶれ、振動等による像のぶれを光学的に補正することができる。
 実施の形態1~4に係るズームレンズ系のごときズームレンズ系は、少なくとも2つの開口絞りを備えており、これら少なくとも2つの開口絞りの間に、少なくとも1枚のレンズ素子が配置されている。そして、撮像時の広角端から望遠端へのズーミングの際に、ズーム位置に応じて、これら少なくとも2つの開口絞りの中から1つを選択して光量を調整する。すなわち、本開示におけるズームレンズ系では、ズーミングの際に、あるズーム位置では、そのズーム位置で所望する明るさの像が形成され得るように、複数の開口絞りの中から選択した1つの開口絞りによって光量を調整し、また別のあるズーム位置では、そのズーム位置で所望する明るさの像が形成され得るように、複数の開口絞りの中から選択した1つの開口絞りによって光量を調整する。このように、本開示におけるズームレンズ系は、Fナンバーに寄与し得る開口絞りを少なくとも2つ備えているので、ズーム位置に応じて光量の調整を適切に行うことができ、ズーム位置に応じて所望の明るさの像を形成することができる。
 なお、実施の形態1~4に係るズームレンズ系では、後述する対応数値実施例における各種データに示すように、撮像時の広角端から望遠端へのズーミングの際に、広角端において選択された開口絞りと、望遠端において選択された開口絞りとが異なる。実施の形態1~4に係るズームレンズ系において、広角端では、Fナンバーが小さく、すなわち光量が多く、明るい像が形成されるように開口絞り1A1が選択され、望遠端では、Fナンバーが大きく、すなわち光量が少なく、広角端と比べて暗い像が形成されるように開口絞り2A2が選択されている。
 実施の形態1~4に係るズームレンズ系を構成している各レンズ群は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ群を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善されるので、有益である。
 以上のように、本出願において開示する技術の例示として、実施の形態1~4を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 (実施の形態5) 
 図9は、実施の形態5に係るデジタルスチルカメラの概略構成図である。図9において、デジタルスチルカメラは、ズームレンズ系1とCCDである撮像素子2とを含む撮像装置と、液晶モニタ3と、筐体4とから構成される。ズームレンズ系1として、実施の形態1に係るズームレンズ系が用いられている。図9において、ズームレンズ系1は、第1レンズ群G1と、開口絞り1A1及び開口絞り2A2を含む第2レンズ群G2と、第3レンズ群G3とから構成されている。筐体4は、前側にズームレンズ系1が配置され、ズームレンズ系1の後側には、撮像素子2が配置されている。筐体4の後側に液晶モニタ3が配置され、ズームレンズ系1による被写体の光学的な像が像面Sに形成される。
 鏡筒は、主鏡筒5と、移動鏡筒6と、円筒カム7とで構成されている。円筒カム7を回転させると、第1レンズ群G1、開口絞り1A1及び開口絞り2A2と第2レンズ群G2、及び第3レンズ群G3が撮像素子2を基準にした所定の位置に移動し、広角端から望遠端までのズーミングを行うことができる。第3レンズ群G3はフォーカス調整用モータにより光軸方向に移動可能である。
 こうして、デジタルスチルカメラに実施の形態1に係るズームレンズ系を用いることにより、解像度及び像面湾曲を補正する能力が高く、非使用時のレンズ全長が短い小型のデジタルスチルカメラを提供することができる。なお、図9に示したデジタルスチルカメラには、実施の形態1に係るズームレンズ系の替わりに実施の形態2~4に係るズームレンズ系のいずれかを用いてもよい。また、図9に示したデジタルスチルカメラの光学系は、動画像を対象とするデジタルビデオカメラに用いることもできる。この場合、静止画像だけでなく、解像度の高い動画像を撮影することができる。
 なお、本実施の形態5に係るデジタルスチルカメラでは、ズームレンズ系1として実施の形態1~4に係るズームレンズ系を示したが、これらのズームレンズ系は、全てのズーミング域を使用しなくてもよい。すなわち、所望のズーミング域に応じて、光学性能が確保されている範囲を切り出し、実施の形態1~4で説明したズームレンズ系よりも低倍率のズームレンズ系として使用してもよい。
 さらに、実施の形態5では、いわゆる沈胴構成の鏡筒にズームレンズ系を適用した例を示したが、これに限られない。例えば、第1レンズ群G1内等の任意の位置に、内部反射面を持つプリズムや、表面反射ミラーを配置し、いわゆる屈曲構成の鏡筒にズームレンズ系を適用してもよい。さらに、実施の形態5において、第2レンズ群G2全体、第2レンズ群G2の一部等のズームレンズ系を構成している一部のレンズ群を、沈胴時に光軸上から退避させる、いわゆるスライディング鏡筒にズームレンズ系を適用してもよい。
 以上のように、本出願において開示する技術の例示として、実施の形態5を説明した。しかしながら、本開示における技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。
 また、以上説明した実施の形態1~4に係るズームレンズ系と、CCDやCMOS等の撮像素子とから構成される撮像装置を、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用することもできる。
 以下、実施の形態1~4に係るズームレンズ系を具体的に実施した数値実施例を説明する。なお、各数値実施例において、表中の長さの単位はすべて「mm」であり、画角の単位はすべて「°」である。また、各数値実施例において、rは曲率半径、dは面間隔、ndはd線に対する屈折率、vdはd線に対するアッベ数であり、絞り1及び絞り2の直径は有効径である。また、各数値実施例において、*印を付した面は非球面であり、非球面形状は次式で定義している。
Figure JPOXMLDOC01-appb-M000001
ここで、
Z:光軸からの高さがhの非球面上の点から、非球面頂点の接平面までの距離、
h:光軸からの高さ、
r:頂点曲率半径、
κ:円錐定数、
An:n次の非球面係数
である。
 図2、4、6及び8は、各々数値実施例1~4に係るズームレンズ系の縦収差図である。
 各縦収差図において、(a)図は広角端、(b)図は中間位置、(c)図は望遠端における各収差を表す。各縦収差図は、左側から順に、球面収差(SA(mm))、非点収差(AST(mm))、歪曲収差(DIS(%))を示す。球面収差図において、縦軸はFナンバー(図中、Fで示す)を表し、実線はd線(d-line)、短破線はF線(F-line)、長破線はC線(C-line)の特性である。非点収差図において、縦軸は像高(図中、Hで示す)を表し、実線はサジタル平面(図中、sで示す)、破線はメリディオナル平面(図中、mで示す)の特性である。歪曲収差図において、縦軸は像高(図中、Hで示す)を表す。
(数値実施例1)
 数値実施例1のズームレンズ系は、図1に示した実施の形態1に対応する。数値実施例1のズームレンズ系の面データを表1に、非球面データを表2に、各種データを表3に示す。
表 1(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1        196.45960     0.30000     1.72916    54.7               
     2          5.98460     1.86770                                   
     3*         8.66670     1.53070     1.63550    23.9               
     4*        14.84410        可変                                   
   5(絞り1)          ∞    -0.30000                                   
     6          4.58530     1.58970     1.72916    54.7               
     7         -8.94400     0.00500     1.56732    42.8               
     8         -8.94400     0.30000     1.62004    36.3               
     9         36.01690     0.49620                                   
  10(絞り2)          ∞     0.00000                                   
    11*         8.37030     1.28650     1.63550    23.9               
    12*         3.69800        可変                                   
    13*       -35.59240     1.43840     1.54310    56.0               
    14*        -7.00810        可変                                   
    15               ∞     0.50000     1.51680    64.2               
    16               ∞     0.37000                                   
    17               ∞        (BF)                                       
    像面             ∞                                               
表 2(非球面データ)
 
  第3面
   K= 0.00000E+00, A4=-1.96013E-04, A6= 8.08283E-06, A8=-1.38859E-06 
   A10= 5.09613E-08, A12=-4.79626E-11, A14= 1.28647E-11, A16=-1.00260E-12 
  第4面
   K= 0.00000E+00, A4=-4.49795E-04, A6= 2.80911E-06, A8=-1.82439E-06 
   A10= 1.18077E-07, A12=-2.34888E-09, A14=-9.27771E-18, A16= 1.24568E-16 
  第11面
   K= 0.00000E+00, A4=-2.78446E-03, A6=-2.52712E-04, A8= 8.93720E-06 
   A10= 2.13422E-05, A12=-7.27526E-06, A14= 1.74476E-07, A16= 1.16882E-07 
  第12面
   K= 0.00000E+00, A4= 1.43930E-04, A6= 2.45586E-04, A8=-7.63582E-05 
   A10=-2.11697E-05, A12= 1.03466E-05, A14= 5.08150E-06, A16=-1.72649E-06 
  第13面
   K= 0.00000E+00, A4= 6.59545E-04, A6=-7.68656E-05, A8= 7.03087E-06 
   A10=-2.67241E-07, A12= 4.96282E-09, A14= 1.20119E-18, A16= 5.61307E-17 
  第14面
   K= 0.00000E+00, A4= 1.81052E-03, A6=-1.03965E-04, A8= 8.50713E-06 
   A10=-3.50264E-07, A12= 7.11113E-09, A14=-7.86620E-19, A16=-3.92809E-17
表 3(各種データ)
 
  ズーム比     4.60994
                広角      中間      望遠
  焦点距離       4.4515    9.2575   20.5212
 Fナンバー     2.66857   3.93480   6.80005
    画角        42.0647   22.4483   10.4203
    像高         3.4000    3.8770    3.8770
 レンズ全長     30.6310   26.1886   31.7260
    BF        0.04090  -0.00776  -0.01299
    d4          14.7223    5.6089    0.6000 
    d12          3.0287    8.1765   18.7176 
    d14          3.4549    3.0269    3.0372 
 入射瞳位置      7.1348    4.9579    2.6926
 射出瞳位置    -13.0677  -39.0826   56.0917
 前側主点位置   10.0747   12.0222   30.7198
 後側主点位置   26.1795   16.9311   11.2048
 絞り1(直径)     4.1000    4.1000    4.1000
 絞り2(直径)     3.3600    3.3600    3.3600
 ※絞り1は広角端用の絞りであり、絞り2は中間・望遠端用の絞りである。
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1       -8.4710
     2         3       29.8926
     3         6        4.3739
     4         8      -11.5259
     5        11      -11.6736
     6        13       15.7880
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -12.19926     3.69840        -0.09212       0.68998
   2      5     8.89034     3.37740        -2.80370      -0.37274
   3     13    15.78795     1.43840         1.14049       1.66296
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      5   -0.48752   -0.97455   -2.16119
   3     13    0.74849    0.77868    0.77835
(数値実施例2)
 数値実施例2のズームレンズ系は、図3に示した実施の形態2に対応する。数値実施例2のズームレンズ系の面データを表4に、非球面データを表5に、各種データを表6に示す。
表 4(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1        196.45960     0.30000     1.72916    54.7               
     2          5.98460     1.86770                                   
     3*         8.66670     1.53070     1.63550    23.9               
     4*        14.84410        可変                                   
   5(絞り1)          ∞    -0.30000                                   
     6          4.58530     1.58970     1.72916    54.7               
     7         -8.94400     0.00500     1.56732    42.8               
     8         -8.94400     0.30000     1.62004    36.3               
     9         36.01690     0.49620                                   
  10(絞り2)          ∞     0.00000                                   
    11*         8.37030     1.28650     1.63550    23.9               
    12*         3.69800        可変                                   
    13*       -35.59240     1.43840     1.54310    56.0               
    14*        -7.00810        可変                                   
    15               ∞     0.50000     1.51680    64.2               
    16               ∞     0.37000                                   
    17               ∞        (BF)                                       
    像面             ∞                                               
表 5(非球面データ)
 
  第3面
   K= 0.00000E+00, A4=-1.96013E-04, A6= 8.08283E-06, A8=-1.38859E-06 
   A10= 5.09613E-08, A12=-4.79626E-11, A14= 1.28647E-11, A16=-1.00260E-12 
  第4面
   K= 0.00000E+00, A4=-4.49795E-04, A6= 2.80911E-06, A8=-1.82439E-06 
   A10= 1.18077E-07, A12=-2.34888E-09, A14=-9.27771E-18, A16= 1.24568E-16 
  第11面
   K= 0.00000E+00, A4=-2.78446E-03, A6=-2.52712E-04, A8= 8.93720E-06 
   A10= 2.13422E-05, A12=-7.27526E-06, A14= 1.74476E-07, A16= 1.16882E-07 
  第12面
   K= 0.00000E+00, A4= 1.43930E-04, A6= 2.45586E-04, A8=-7.63582E-05 
   A10=-2.11697E-05, A12= 1.03466E-05, A14= 5.08150E-06, A16=-1.72649E-06 
  第13面
   K= 0.00000E+00, A4= 6.59545E-04, A6=-7.68656E-05, A8= 7.03087E-06 
   A10=-2.67241E-07, A12= 4.96282E-09, A14= 1.20119E-18, A16= 5.61307E-17 
  第14面
   K= 0.00000E+00, A4= 1.81052E-03, A6=-1.03965E-04, A8= 8.50713E-06 
   A10=-3.50264E-07, A12= 7.11113E-09, A14=-7.86620E-19, A16=-3.92809E-17
表 6(各種データ)
 
  ズーム比     4.60994
                広角      中間      望遠
  焦点距離       4.4515    9.2575   20.5212
 Fナンバー     2.66857   3.86762   6.65393
    画角        42.0642   22.4488   10.4205
    像高         3.4000    3.8770    3.8770
 レンズ全長     30.6310   26.1886   31.7260
    BF        0.04090  -0.00776  -0.01299
    d4          14.7223    5.6089    0.6000 
    d12          3.0287    8.1765   18.7176 
    d14          3.4549    3.0269    3.0372 
 入射瞳位置      7.1348    4.9579    2.6926
 射出瞳位置    -13.0677  -39.0826   56.0917
 前側主点位置   10.0747   12.0222   30.7198
 後側主点位置   26.1795   16.9311   11.2048
 絞り1(直径)     4.1000    4.1000    4.1000
 絞り2(直径)     3.4400    3.4400    3.4400
 ※絞り1は広角端・中間用の絞りであり、絞り2は望遠端用の絞りである。
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1       -8.4710
     2         3       29.8926
     3         6        4.3739
     4         8      -11.5259
     5        11      -11.6736
     6        13       15.7880
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1   -12.19926     3.69840        -0.09212       0.68998
   2      5     8.89034     3.37740        -2.80370      -0.37274
   3     13    15.78795     1.43840         1.14049       1.66296
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      5   -0.48752   -0.97455   -2.16119
   3     13    0.74849    0.77868    0.77835
(数値実施例3)
 数値実施例3のズームレンズ系は、図5に示した実施の形態3に対応する。数値実施例3のズームレンズ系の面データを表7に、非球面データを表8に、各種データを表9に示す。
表 7(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         15.33220     0.50000     1.92286    20.9               
     2         12.03590     0.01000     1.56732    42.8               
     3         12.03590     3.30000     1.58332    59.1               
     4*      -143.37120        可変                                   
     5       -113.96490     0.30000     1.77250    49.6               
     6          5.08880     2.55380                                   
     7*       -16.51260     0.60000     1.54410    56.1               
     8         15.13410     0.11490                                   
     9         10.75730     0.95960     1.94595    18.0               
    10         33.23970        可変                                   
  11(絞り1)          ∞    -0.08590                                   
    12*         4.23020     1.67510     1.51776    69.9               
    13*       -14.19860     0.25000                                   
  14(絞り2)          ∞     0.00000                                   
    15          5.26140     0.89530     1.70154    41.1               
    16          9.13560     0.01000     1.56732    42.8               
    17          9.13560     0.35000     1.84666    23.8               
    18          3.25590        可変                                   
    19*        21.65070     1.74000     1.54410    56.1               
    20*       -17.66480        可変                                   
    21               ∞     0.80000     1.51680    64.2               
    22               ∞     0.37000                                   
    23               ∞        (BF)                                       
    像面             ∞                                               
表 8(非球面データ)
 
  第4面
   K= 0.00000E+00, A4= 1.69025E-05, A6= 1.93134E-07, A8=-1.17642E-08 
   A10= 3.27810E-10, A12=-4.48109E-12, A14= 2.36404E-14, A16= 0.00000E+00 
  第7面
   K= 0.00000E+00, A4= 4.61142E-04, A6=-3.45253E-05, A8= 2.34230E-06 
   A10=-4.73645E-08, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第12面
   K= 0.00000E+00, A4=-1.15181E-03, A6= 3.93138E-04, A8=-1.67053E-04 
   A10= 4.07248E-05, A12=-2.82709E-06, A14=-6.18533E-08, A16= 0.00000E+00 
  第13面
   K= 0.00000E+00, A4= 1.13400E-03, A6= 6.51554E-04, A8=-2.72078E-04 
   A10= 6.63743E-05, A12=-4.88291E-06, A14=-5.65986E-08, A16= 2.37810E-12 
  第19面
   K= 0.00000E+00, A4= 9.22737E-04, A6=-5.75715E-05, A8= 2.79486E-06 
   A10=-4.21216E-08, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第20面
   K= 0.00000E+00, A4= 1.48827E-03, A6=-1.65871E-04, A8= 1.65675E-05 
   A10=-1.21484E-06, A12= 5.87659E-08, A14=-1.53743E-09, A16= 1.59274E-11
表 9(各種データ)
 
  ズーム比     9.33019
                広角      中間      望遠
  焦点距離       4.6197   14.1110   43.1029
 Fナンバー     3.24493   5.08837   6.30160
    画角        41.2135   15.3419    5.1314
    像高         3.4500    3.9020    3.9020
 レンズ全長     34.3989   41.5046   48.4135
    BF        0.43414   0.32845   0.37289
    d4           0.3060    6.3831   13.7180 
    d10         11.6829    4.9579    0.3859 
    d18          3.5500   11.3731   16.4768 
    d20          4.0831    4.1192    3.1171 
 入射瞳位置      9.6445   22.5852   56.8422
 射出瞳位置    -13.6977  -57.7278  807.5997
 前側主点位置   12.7540   33.2665  102.2466
 後側主点位置   29.7792   27.3935    5.3106
 絞り1(直径)     3.7760    3.7760    3.7760
 絞り2(直径)     3.4400    3.4400    3.4400
 ※絞り1は広角端用の絞りであり、絞り2は中間・望遠端用の絞りである。
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1      -65.4255
     2         3       19.1855
     3         5       -6.2990
     4         7      -14.4169
     5         9       16.4715
     6        12        6.4962
     7        15       16.1465
     8        17       -6.1427
     9        19       18.1620
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    27.66189     3.81000         0.06360       1.50233
   2      5    -5.87785     4.52830         0.27326       1.13244
   3     11     9.07354     3.09450        -2.32889      -0.22903
   4     19    18.16203     1.74000         0.63039       1.22567
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      5   -0.31105   -0.45849   -1.07160
   3     11   -0.79715   -1.64253   -1.99160
   4     19    0.67355    0.67738    0.73011
(数値実施例4)
 数値実施例4のズームレンズ系は、図7に示した実施の形態4に対応する。数値実施例4のズームレンズ系の面データを表10に、非球面データを表11に、各種データを表12に示す。
表 10(面データ)
 
  面番号         r           d           nd         vd                
    物面             ∞                                               
     1         15.33220     0.50000     1.92286    20.9               
     2         12.03590     0.01000     1.56732    42.8               
     3         12.03590     3.30000     1.58332    59.1               
     4*      -143.37120        可変                                   
     5       -113.96490     0.30000     1.77250    49.6               
     6          5.08880     2.55380                                   
     7*       -16.51260     0.60000     1.54410    56.1               
     8         15.13410     0.11490                                   
     9         10.75730     0.95960     1.94595    18.0               
    10         33.23970        可変                                   
  11(絞り1)          ∞    -0.08590                                   
    12*         4.23020     1.67510     1.51776    69.9               
    13*       -14.19860     0.25000                                   
  14(絞り2)          ∞     0.00000                                   
    15          5.26140     0.89530     1.70154    41.1               
    16          9.13560     0.01000     1.56732    42.8               
    17          9.13560     0.35000     1.84666    23.8               
    18          3.25590        可変                                   
    19*        21.65070     1.74000     1.54410    56.1               
    20*       -17.66480        可変                                   
    21               ∞     0.80000     1.51680    64.2               
    22               ∞     0.37000                                   
    23               ∞        (BF)                                       
    像面             ∞                                               
表 11(非球面データ)
 
  第4面
   K= 0.00000E+00, A4= 1.69025E-05, A6= 1.93134E-07, A8=-1.17642E-08 
   A10= 3.27810E-10, A12=-4.48109E-12, A14= 2.36404E-14, A16= 0.00000E+00 
  第7面
   K= 0.00000E+00, A4= 4.61142E-04, A6=-3.45253E-05, A8= 2.34230E-06 
   A10=-4.73645E-08, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第12面
   K= 0.00000E+00, A4=-1.15181E-03, A6= 3.93138E-04, A8=-1.67053E-04 
   A10= 4.07248E-05, A12=-2.82709E-06, A14=-6.18533E-08, A16= 0.00000E+00 
  第13面
   K= 0.00000E+00, A4= 1.13400E-03, A6= 6.51554E-04, A8=-2.72078E-04 
   A10= 6.63743E-05, A12=-4.88291E-06, A14=-5.65986E-08, A16= 2.37810E-12 
  第19面
   K= 0.00000E+00, A4= 9.22737E-04, A6=-5.75715E-05, A8= 2.79486E-06 
   A10=-4.21216E-08, A12= 0.00000E+00, A14= 0.00000E+00, A16= 0.00000E+00 
  第20面
   K= 0.00000E+00, A4= 1.48827E-03, A6=-1.65871E-04, A8= 1.65675E-05 
   A10=-1.21484E-06, A12= 5.87659E-08, A14=-1.53743E-09, A16= 1.59274E-11
表 12(各種データ)
 
  ズーム比     9.33019
                広角      中間      望遠
  焦点距離       4.6197   14.1110   43.1029
 Fナンバー     3.24493   5.00440   6.18468
    画角        41.2147   15.3422    5.1313
    像高         3.4500    3.9020    3.9020
 レンズ全長     34.3989   41.5046   48.4135
    BF        0.43414   0.32845   0.37289
    d4           0.3060    6.3831   13.7180 
    d10         11.6829    4.9579    0.3859 
    d18          3.5500   11.3731   16.4768 
    d20          4.0831    4.1192    3.1171 
 入射瞳位置      9.6445   22.5852   56.8422
 射出瞳位置    -13.6977  -57.7278  807.5997
 前側主点位置   12.7540   33.2665  102.2466
 後側主点位置   29.7792   27.3935    5.3106
 絞り1(直径)     3.7760    3.7760    3.7760
 絞り2(直径)     3.5100    3.5100    3.5100
 ※絞り1は広角端・中間用の絞りであり、絞り2は望遠端用の絞りである。
 
単レンズデータ
  レンズ     始面     焦点距離
     1         1      -65.4255
     2         3       19.1855
     3         5       -6.2990
     4         7      -14.4169
     5         9       16.4715
     6        12        6.4962
     7        15       16.1465
     8        17       -6.1427
     9        19       18.1620
 
ズームレンズ群データ
  群   始面    焦点距離  レンズ構成長    前側主点位置  後側主点位置
   1      1    27.66189     3.81000         0.06360       1.50233
   2      5    -5.87785     4.52830         0.27326       1.13244
   3     11     9.07354     3.09450        -2.32889      -0.22903
   4     19    18.16203     1.74000         0.63039       1.22567
 
ズームレンズ群倍率
  群   始面    広角       中間       望遠
   1      1    0.00000    0.00000    0.00000
   2      5   -0.31105   -0.45849   -1.07160
   3     11   -0.79715   -1.64253   -1.99160
   4     19    0.67355    0.67738    0.73011
 以上のように、本開示における技術の例示として、実施の形態を説明した。そのために、添付図面および詳細な説明を提供した。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のために必須な構成要素だけでなく、上記技術を例示するために、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須ではない構成要素が添付図面や詳細な説明に記載されていることをもって、直ちに、それらの必須ではない構成要素が必須であるとの認定をするべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものであるから、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、デジタルカメラ、スマートフォン等の携帯情報端末のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等のデジタル入力装置に適用可能である。特に本開示は、デジタルカメラ等の高画質が要求される撮影光学系に適用可能である。
G1  第1レンズ群
G2  第2レンズ群
G3  第3レンズ群
G4  第4レンズ群
L1  第1レンズ素子
L2  第2レンズ素子
L3  第3レンズ素子
L4  第4レンズ素子
L5  第5レンズ素子
L6  第6レンズ素子
L7  第7レンズ素子
L8  第8レンズ素子
L9  第9レンズ素子
A1  開口絞り1
A2  開口絞り2
P   平行平板
S   像面
1   ズームレンズ系
2   撮像素子
3   液晶モニタ
4   筐体
5   主鏡筒
6   移動鏡筒
7   円筒カム
 

Claims (4)

  1.  少なくとも1枚のレンズ素子で構成されたレンズ群を複数有するズームレンズ系であって、
    少なくとも2つの開口絞りを備え、
    前記少なくとも2つの開口絞りの間に、少なくとも1枚のレンズ素子が配置され、
    撮像時の広角端から望遠端へのズーミングの際に、ズーム位置に応じて、前記少なくとも2つの開口絞りの中から1つを選択して光量を調整することを特徴とする、ズームレンズ系。
  2.  撮像時の広角端から望遠端へのズーミングの際に、広角端において選択された開口絞りと、望遠端において選択された開口絞りとが異なる、請求項1に記載のズームレンズ系。
  3.  物体の光学的な像を電気的な画像信号として出力可能な撮像装置であって、
    物体の光学的な像を形成するズームレンズ系と、
    該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子と
    を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、撮像装置。
  4.  物体の光学的な像を電気的な画像信号に変換し、変換された画像信号の表示及び記憶の少なくとも一方を行うカメラであって、
    物体の光学的な像を形成するズームレンズ系と、該ズームレンズ系により形成された光学的な像を電気的な画像信号に変換する撮像素子とを含む撮像装置を備え、
    前記ズームレンズ系が、請求項1に記載のズームレンズ系である、カメラ。
     
PCT/JP2012/008241 2012-01-13 2012-12-25 ズームレンズ系、撮像装置及びカメラ WO2013105190A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-005152 2012-01-13
JP2012005152A JP2013145286A (ja) 2012-01-13 2012-01-13 ズームレンズ系、撮像装置及びカメラ

Publications (1)

Publication Number Publication Date
WO2013105190A1 true WO2013105190A1 (ja) 2013-07-18

Family

ID=48781169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008241 WO2013105190A1 (ja) 2012-01-13 2012-12-25 ズームレンズ系、撮像装置及びカメラ

Country Status (2)

Country Link
JP (1) JP2013145286A (ja)
WO (1) WO2013105190A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111624751A (zh) * 2016-01-26 2020-09-04 三星电机株式会社 变焦光学***

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106133578B (zh) 2014-03-27 2019-09-10 株式会社尼康 变倍光学***以及摄像装置
JP6507479B2 (ja) * 2014-03-27 2019-05-08 株式会社ニコン 変倍光学係および撮像装置
KR102595462B1 (ko) * 2018-04-04 2023-10-30 삼성전기주식회사 줌 광학계

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160696A (ja) * 1992-11-24 1994-06-07 Nikon Corp 像検出光学装置
JPH09105858A (ja) * 1995-08-07 1997-04-22 Minolta Co Ltd リレーレンズ系
JP2002174838A (ja) * 2000-12-07 2002-06-21 Olympus Optical Co Ltd 焦点距離切換レンズ絞り装置及びそれを有したカメラ
JP2002369049A (ja) * 2001-06-08 2002-12-20 Pentax Corp 画像検出装置と絞り装置
JP2005352318A (ja) * 2004-06-11 2005-12-22 Canon Inc 光学機器
JP2007264600A (ja) * 2006-02-28 2007-10-11 Canon Inc ズームレンズ及びそれを有する光学機器
JP2011039210A (ja) * 2009-08-10 2011-02-24 Canon Inc 画像投射装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160696A (ja) * 1992-11-24 1994-06-07 Nikon Corp 像検出光学装置
JPH09105858A (ja) * 1995-08-07 1997-04-22 Minolta Co Ltd リレーレンズ系
JP2002174838A (ja) * 2000-12-07 2002-06-21 Olympus Optical Co Ltd 焦点距離切換レンズ絞り装置及びそれを有したカメラ
JP2002369049A (ja) * 2001-06-08 2002-12-20 Pentax Corp 画像検出装置と絞り装置
JP2005352318A (ja) * 2004-06-11 2005-12-22 Canon Inc 光学機器
JP2007264600A (ja) * 2006-02-28 2007-10-11 Canon Inc ズームレンズ及びそれを有する光学機器
JP2011039210A (ja) * 2009-08-10 2011-02-24 Canon Inc 画像投射装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111624751A (zh) * 2016-01-26 2020-09-04 三星电机株式会社 变焦光学***
US11604338B2 (en) 2016-01-26 2023-03-14 Samsung Electro-Mechanics Co., Ltd. Zoom optical system
US11953663B2 (en) 2016-01-26 2024-04-09 Samsung Electro-Mechanics Co., Ltd. Zoom optical system

Also Published As

Publication number Publication date
JP2013145286A (ja) 2013-07-25

Similar Documents

Publication Publication Date Title
JP5676505B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5543838B2 (ja) ズームレンズ系、撮像装置及びカメラ
WO2012101959A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198504A (ja) ズームレンズ系、撮像装置及びカメラ
JP5919519B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198503A (ja) ズームレンズ系、撮像装置及びカメラ
JP2012048200A (ja) ズームレンズ系、撮像装置及びカメラ
JP2011232542A (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198505A (ja) ズームレンズ系、撮像装置及びカメラ
WO2014006653A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP5919518B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP2011085653A (ja) ズームレンズ系、撮像装置及びカメラ
JP2012198506A (ja) ズームレンズ系、撮像装置及びカメラ
WO2013105190A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP7178554B2 (ja) ズームレンズ系とそれを備える撮像装置およびカメラシステム
JP2011064933A (ja) ズームレンズ系、撮像装置及びカメラ
JP2010152144A (ja) ズームレンズ系、撮像装置及びカメラ
WO2012098617A1 (ja) ズームレンズ系、撮像装置及びカメラ
JP6198071B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP2011248269A (ja) ズームレンズ系、撮像装置およびカメラシステム
JP2010160334A (ja) ズームレンズ系、撮像装置及びカメラ
JP2010160329A (ja) ズームレンズ系、撮像装置及びカメラ
JP5669105B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5271090B2 (ja) ズームレンズ系、撮像装置及びカメラ
JP5320080B2 (ja) ズームレンズ系、撮像装置及びカメラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865385

Country of ref document: EP

Kind code of ref document: A1