WO2013103152A1 - 露光装置及び露光済み材製造方法 - Google Patents

露光装置及び露光済み材製造方法 Download PDF

Info

Publication number
WO2013103152A1
WO2013103152A1 PCT/JP2013/050011 JP2013050011W WO2013103152A1 WO 2013103152 A1 WO2013103152 A1 WO 2013103152A1 JP 2013050011 W JP2013050011 W JP 2013050011W WO 2013103152 A1 WO2013103152 A1 WO 2013103152A1
Authority
WO
WIPO (PCT)
Prior art keywords
exposure
alignment mark
exposed
mask
imaging
Prior art date
Application number
PCT/JP2013/050011
Other languages
English (en)
French (fr)
Inventor
和重 橋本
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Priority to KR1020147018966A priority Critical patent/KR102026107B1/ko
Priority to CN201380004517.1A priority patent/CN104024943B/zh
Publication of WO2013103152A1 publication Critical patent/WO2013103152A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7038Alignment for proximity or contact printer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7088Alignment mark detection, e.g. TTR, TTL, off-axis detection, array detector, video detection

Definitions

  • the present invention relates to an exposure apparatus and an exposed material manufacturing method, and more particularly to an exposure apparatus and an exposed material manufacturing method for aligning an exposed material and an exposure mask to expose the exposed material.
  • an exposure apparatus that uses an exposure mask to expose a material to be exposed in a predetermined pattern.
  • Such an exposure apparatus is used, for example, for the manufacture of a color filter for a liquid crystal display device, the alignment treatment of a photoalignment film, and the like.
  • an exposure mask it is necessary to align the exposure mask and the material to be exposed.
  • alignment marks are used as an example (for example, Patent Document 1).
  • Patent Document 1 describes a mask having a mask mark and a position detection method for detecting the position of a wafer having a wafer mark.
  • a mask having a mask mark and a wafer having a wafer mark are arranged close to each other.
  • the mask mark and the wafer mark are imaged. Since there is a distance between the mask and the wafer at the time of imaging, the imaging positions of the mask mark and the wafer mark differ depending on this distance. Therefore, in the position detection method described in Patent Document 1, a mask mark and a wafer mark are imaged using two optical paths having different optical path lengths, and the optical path lengths of the two optical paths are adjusted, whereby the mask mark and the wafer are detected.
  • the mark is imaged on the same plane.
  • An alignment reticle having a mask alignment mark and a wafer alignment mark is arranged on the same plane.
  • the relative position between the mask alignment mark on the alignment reticle and the mask mark image on the mask is detected, and the relative position between the alignment mark on the alignment reticle and the wafer mark image on the wafer is detected. To detect. Thereby, the relative position of the mask and the wafer is detected.
  • the mask mark and the wafer mark are imaged using two optical paths having different optical path lengths, and the optical path length of the two optical paths is adjusted, whereby the mask mark and the wafer are detected.
  • the mark is imaged on the same plane.
  • the angle of the optical axis with respect to the imaging target is shifted from a predetermined angle in each optical path.
  • the optical path length also changes, and accordingly, the relative positions of the mask mark and the wafer mark also change.
  • an alignment reticle is disposed on the optical axis of each optical path, and an optical path length adjusting means for each optical path is provided. Therefore, a complicated mechanism requiring cost is required for aligning the exposure mask and the wafer that is the material to be exposed.
  • the alignment optical system is moved, or at a position where the alignment optical system does not interfere from the mask side. Exposure energy is irradiated to expose the resist layer on the wafer. Rather than performing exposure at a position where the alignment optical system does not interfere, moving the alignment optical system has less influence on the arrangement position of the light source and the exposure area on the exposed material.
  • the exposure to the wafer is started after the alignment optical system is moved, there is a problem that the operation time using the exposure apparatus is delayed by the movement time of the alignment optical system.
  • an object of the present invention is to more accurately identify the relative position of the exposure mask and the material to be exposed without using a complicated and expensive mechanism in the exposure of the material to be exposed. It is to eliminate the delay of working time used.
  • an exposure apparatus includes a light source that irradiates exposure material with exposure light, an exposure mask that is held between the light source and the exposure material, the exposure material, and exposure.
  • a material to be exposed using a microlens array disposed between the mask and a first alignment mark provided on the exposure material and a second alignment mark provided on the exposure mask And aligning the exposure mask with each other, image at least a part of the first alignment mark imaged on the exposure mask via the microlens array and the second alignment mark.
  • the imaging unit that moves in a predetermined direction so as not to prevent exposure to the exposed material, and the second alignment with at least a part of the first alignment mark imaged by the imaging unit Image for recognizing mark
  • the exposure material and the exposure mask are aligned based on positional information between the recognition unit and at least a part of the first alignment mark recognized by the image recognition unit and the second alignment mark.
  • An alignment control unit and an exposure start timing control unit that starts irradiation of exposure light from the light source before the movement of the imaging unit is completed.
  • “Material to be exposed” refers to an object to be exposed. “Material to be exposed” includes a substrate having a surface to be exposed and a base material. As an example of “material to be exposed”, exposure is performed to produce a glass substrate, a photosensitive film, and a liquid crystal panel on which a photoresist film is laminated. There are various members to be used. “Before the movement of the imaging unit is completed” is before the movement of the imaging unit is completed and the imaging unit stops at a predetermined position.
  • “before the movement of the imaging unit is completed” includes “before the movement of the imaging unit”, “simultaneously with the start of the movement of the imaging unit”, and “after the movement of the imaging unit is started and before the movement of the imaging unit is completed "including.
  • the light source emits exposure light while moving.
  • the microlens array is between the first alignment mark provided on the exposed material and the second alignment mark provided on the exposure mask while the imaging unit is imaging. While moving in one direction and the light source irradiates exposure light, it moves in the opposite direction of the one direction together with the light source.
  • the microlens array moves between the first alignment mark provided on the exposed material and the second alignment mark provided on the exposure mask while the imaging unit is imaging.
  • the imaging unit captures at least a part of the first alignment mark imaged on the exposure mask through the moving microlens array together with the second alignment mark a plurality of times or continuously.
  • the image recognizing unit generates a composite image for identifying the position of the first alignment mark with respect to the second alignment mark by superimposing images captured multiple times or continuously. You may comprise so that it may do.
  • the present invention also relates to a method for producing an exposed material.
  • a light source for irradiating exposure material with exposure light an exposure mask held between the light source and the exposure material, and a microlens array disposed between the exposure material and the exposure mask
  • An exposed material manufacturing method for manufacturing an exposed material using an exposure apparatus comprising: a first alignment mark provided on an exposed material and a second alignment provided on an exposure mask At least a portion of the first alignment mark imaged on the exposure mask via the microlens array, for aligning the object to be exposed and the exposure mask using the mark for exposure, Image recognition of the second alignment mark on the mask by the imaging unit, image recognition of at least a part of the first alignment mark imaged by the imaging step and the second alignment mark Recognized And an exposure material and an exposure mask based on position information of at least a part of the first alignment mark and the second alignment mark recognized by the image recognition step, An alignment step in which the alignment control unit aligns, an imaging unit moving step in which the imaging unit moves in a predetermined direction so as
  • the “exposed material” refers to an exposed material, and the “exposed material” is exposed.
  • the “exposed material” includes an exposed substrate and a base material.
  • an exposure step of irradiating exposure light while the light source moves is further included.
  • the microlens array moves in one direction between the first alignment mark provided on the exposed material and the second alignment mark provided on the exposure mask, In the exposure step, the microlens array moves in the reverse direction of one direction together with the light source.
  • the microlens array moves between the first alignment mark provided on the exposure material and the second alignment mark provided on the exposure mask, and the moving microlens array
  • the imaging unit images at least a part of the first alignment mark imaged on the exposure mask via the second alignment mark a plurality of times or continuously with the second alignment mark.
  • the image recognition unit May be configured to generate a composite image for specifying the position of the first alignment mark with respect to the second alignment mark by superimposing images captured multiple times or continuously.
  • An exposure apparatus includes an imaging unit that images at least a part of a first alignment mark imaged on an exposure mask via a microlens array and a second alignment mark; An image recognition unit that recognizes at least a part of the first alignment mark imaged by the imaging unit and the second alignment mark is provided. Since at least a part of the first alignment mark to be imaged is formed on the exposure mask through the microlens array, the imaging unit has the second position provided on the exposure mask. At least a part of the alignment mark and the first alignment mark imaged on the exposure mask via the microlens array can be imaged on the same plane. Therefore, the first alignment mark and the first alignment mark, which are caused by the distance between the material to be exposed provided with the first alignment mark and the exposure mask provided with the second alignment mark, The shift of the image forming position of the alignment mark 2 can be eliminated.
  • a method of adjusting the optical path length of the optical path with respect to the imaging object is not employed in order to eliminate the above-described shift of the imaging position. Therefore, even when the optical axis of the imaging unit that images the first and second alignment marks deviates from a predetermined angle, the first image that is captured by the imaging unit and recognized by the image recognition unit. The relative positions of the second alignment mark and the second alignment mark do not change. Therefore, the relative position of the exposure mask and the material to be exposed can be specified more accurately.
  • the exposure apparatus also includes an imaging unit that moves in a predetermined direction so as not to prevent exposure to the exposed material when imaging is completed, and exposure from the light source before the movement of the imaging unit is completed.
  • An exposure start timing control unit for starting light irradiation is provided. Therefore, since the exposure is started before the movement of the image pickup unit is completed, a delay in work time using the exposure apparatus can be eliminated.
  • the relative position of the exposure mask and the exposed material can be more accurately specified in the exposure of the exposed material without using a complicated and expensive mechanism.
  • a delay in work time using the exposure apparatus can be eliminated.
  • the microlens array is arranged in one direction between the first alignment mark provided on the exposed material and the second alignment mark provided on the exposure mask while the imaging unit is imaging.
  • the light source is configured to move in the opposite direction of the one direction while the light source irradiates the exposure light
  • the first alignment mark imaging and the exposure of the exposed material are performed.
  • the imaging unit images at least a part of the first alignment mark imaged on the exposure mask through the moving microlens array together with the second alignment mark a plurality of times or continuously.
  • image recognition is to generate a composite image for specifying the position of the first alignment mark with respect to the second alignment mark by superimposing images captured multiple times or continuously.
  • the position information of the first alignment mark is obtained by superimposing partial images of the first alignment mark formed on the exposure mask via the microlens array. You can get more. Therefore, the position of the first alignment mark imaged by the microlens array can be specified more reliably.
  • An exposed material manufacturing method includes at least a part of a first alignment mark imaged on an exposure mask via a microlens array, and a second alignment mark of the exposure mask.
  • An imaging step in which the imaging unit images an image recognition step in which an image recognition unit that recognizes at least a part of the first alignment mark and the second alignment mark imaged in the imaging step, and including.
  • the imaging unit Since at least a part of the first alignment mark to be imaged is formed on the exposure mask through the microlens array, the imaging unit has the second position provided on the exposure mask. At least a part of the alignment mark and the first alignment mark imaged on the exposure mask via the microlens array can be imaged on the same plane. Therefore, the first alignment mark and the first alignment mark, which are caused by the distance between the material to be exposed provided with the first alignment mark and the exposure mask provided with the second alignment mark, The shift of the image forming position of the alignment mark 2 can be eliminated.
  • a method of adjusting the optical path length of the optical path with respect to the imaging object is not employed in order to eliminate the shift of the imaging position.
  • the optical axis of the imaging unit that images the first and second alignment marks deviates from a predetermined angle, the first image that is captured by the imaging unit and recognized by the image recognition unit.
  • the relative positions of the second alignment mark and the second alignment mark do not change. Therefore, the relative position of the exposure mask and the material to be exposed can be specified more accurately.
  • the exposed material manufacturing method includes an imaging unit moving step in which the imaging unit moves in a predetermined direction so as not to prevent exposure to the exposed material after imaging in the imaging step is completed, and an imaging unit Before the movement of the imaging unit in the moving step is completed, the exposure start timing control unit starts exposure of exposure light from the light source to the exposed material and the exposure mask aligned in the alignment step. Steps.
  • the exposure start step the light source starts exposure before the movement of the imaging unit is completed, so that it is possible to eliminate a delay in work time using the exposure apparatus.
  • the exposure mask and the exposed material can be positioned more accurately in the exposure of the exposed material without using a complicated and expensive mechanism. It is possible to accurately specify, and in addition, delay of working time using the exposure apparatus can be eliminated.
  • the exposure step of irradiating the exposure light while moving the light source is further included, it is possible to use a smaller light source and to save space in the exposure apparatus.
  • the microlens array moves in one direction between the first alignment mark provided on the exposed material and the second alignment mark provided on the exposure mask.
  • the microlens array can be used to perform the imaging of the first alignment mark and the exposure of the exposed material in a smaller and common microlens. It can be performed using an array. Since a large microlens array is expensive, the exposure of the first alignment mark and exposure of the exposed material can be performed using a smaller and common microlens array. Cost can be reduced.
  • the imaging unit images at least a part of the first alignment mark imaged on the exposure mask via the moving microlens array a plurality of times or continuously with the second alignment mark.
  • a composite image for specifying the position of the first alignment mark with respect to the second alignment mark is obtained by superimposing images captured multiple times or continuously by the image recognition unit.
  • the position of the first alignment mark is obtained by superimposing partial images of the first alignment mark formed on the exposure mask via the microlens array. More information can be acquired. Therefore, the position of the first alignment mark imaged by the microlens array can be specified more reliably.
  • FIG. 1 is a side view of an exposure apparatus according to a first embodiment.
  • A It is the top view which looked at the mask for exposure shown in FIG. 1 from the to-be-exposed material side.
  • B It is the top view which looked at the to-be-exposed material shown in FIG. 1 from the light source part side.
  • C It is a top view of the 1st mark for alignment and the 2nd mark for alignment shown in FIG.
  • A It is a schematic diagram which shows the structure of the microlens array shown in FIG.
  • B It is a schematic diagram which shows the positional relationship of the field stop and aperture stop of the microlens array shown in FIG. It is a schematic diagram which shows the arrangement
  • FIG. 1 shows a side view of an exposure apparatus according to the first embodiment.
  • the exposure apparatus according to the first embodiment exposes a material to be exposed through an exposure mask having a predetermined mask pattern.
  • the exposure apparatus 1 includes a light source unit 3 that irradiates exposure material 2 with exposure light, an exposure mask 4 that is held between the light source unit 3 and the exposure material 2, an exposure material 2, and an exposure mask 4. And a microlens array 6 disposed between the two.
  • the exposure apparatus 1 uses the first alignment mark 7 provided on the exposure material 2 and the second alignment mark 8 provided on the exposure mask 4 to expose the exposure material 2 and the exposure material 2.
  • the imaging mask 10 is configured to align with the mask 4 for imaging, and the imaging unit 10 that images the first alignment mark 7 and the second alignment mark 8, and the captured first alignment mark 7.
  • an image recognition unit 12 for recognizing the second alignment mark 8 and a control unit 14 for executing various controls.
  • the control unit 14 controls the position of the exposure mask relative to the exposed material based on the position information of the first alignment mark 7 and the second alignment mark 8 recognized by the image recognition unit 12.
  • An alignment control unit 16, a camera retract movement control unit 17 that controls movement of the imaging unit, and an exposure start timing control unit 18 that starts irradiation of exposure light from the light source unit are provided.
  • the exposed material 2 is a glass substrate having a photoresist layer on the exposure side surface 2a.
  • This glass substrate is, for example, G6 size (about 1850 mm ⁇ 1500 mm).
  • the exposed glass substrate is used for a color filter of a liquid crystal panel member as an example.
  • the exposed material 2 is supported by a support portion (not shown).
  • the light source unit 3 includes a light source such as an ultra-high pressure mercury lamp or a xenon flash lamp, and the exposure wavelength range is 280 nm to 400 nm as an example.
  • the light source unit 3 includes a photo integrator and a condenser lens.
  • the photo integrator makes the luminance distribution in the cross section of the exposure light emitted from the light source unit 3 uniform.
  • the photo integrator may be a fly-eye lens, a rod lens, a light pipe, or the like.
  • the exposure light having a uniform luminance distribution enters the condenser lens and becomes parallel light having a uniform luminance distribution.
  • the optical axis of the parallel light is set in a direction perpendicular to the exposure side surface 2a of the exposed material 2.
  • the light source unit 3 is configured to be movable in the X-axis direction by an arbitrary driving means (not shown), and irradiates the exposed material 2 with exposure light while moving.
  • the irradiation area of the exposure material 2 is 150 mm in the X-axis direction and 450 mm in the Y-axis direction (perpendicular to the paper surface in FIG. 1) perpendicular to the X-axis.
  • the light source unit 3 is disposed about 1 m above the exposure mask 4.
  • the exposure mask 4 is a glass photomask formed in a plate shape.
  • FIG. 2A shows a mask surface 4a on the side facing the material 2 to be exposed.
  • the exposure mask 4 is rectangular, the short side of the exposure mask 4 extends in the X-axis direction, and the long side of the exposure mask 4 is the X-axis and the Y-axis direction perpendicular to the X-axis (perpendicular to the paper surface in FIG. 1). ).
  • the exposure mask 4 has a predetermined mask pattern 20 including a light shielding region that shields exposure light from the light source unit 3 and a light-transmitting region that transmits exposure light from the light source unit 3.
  • the pattern area where the mask pattern 20 is formed in the exposure mask 4 is rectangular.
  • the exposure material 2 is exposed to a predetermined pattern by irradiating the exposure side surface 2a of the exposure material 2 with the exposure light transmitted through the exposure mask 4.
  • the light shielding region is formed by laminating a light shielding film on one surface of the glass substrate.
  • the light shielding film is an opaque thin film that shields exposure light, and as an example, is a thin film of chromium (Cr).
  • Cr chromium
  • the portion where the opaque thin film is not laminated becomes a light transmitting region because the glass substrate transmits the exposure light.
  • the mask pattern 20 is a pattern in which light shielding regions and light transmission regions extending in a straight line are alternately arranged.
  • the exposure mask 4 is held between the light source unit 3 and the exposed material 2 by an arbitrary mask holding means.
  • the distance between the exposed material 2 and the exposure mask 4 is about 5 to 15 mm.
  • the exposure mask 4 held by the mask holding means can be moved in the X-axis direction and the Y-axis direction perpendicular to the X-axis direction (perpendicular to the paper surface in FIG. 1) by an arbitrary driving means (not shown). .
  • each second alignment mark 8 is disposed near the center of each short side of the pattern region outside the pattern region.
  • the second alignment mark 8 formed on the mask surface 4 a passes through the light-transmitting portion of the exposure mask 4. Images can be taken from the imaging unit 10. The exposure light is not irradiated outside the pattern area of the mask pattern 20.
  • FIG. 2B shows an exposure side surface 2a of the material 2 to be exposed.
  • the exposed material 2 has an exposure region 21.
  • the exposure area 21 is formed in a rectangle having the same size as the rectangle of the pattern area in which the mask pattern 20 is formed.
  • the short side of the exposure region 21 extends in the X-axis direction, and the long side of the exposure region 21 extends in the Y-axis direction (perpendicular to the paper surface in FIG. 1) perpendicular to the X-axis and the X-axis.
  • the length of the long side of the exposure region 21 is 450 mm, which corresponds to the length in the Y-axis direction of the irradiation region described above.
  • Two first alignment marks 7 are provided for one exposure region 21. Each first alignment mark 7 is arranged near the center of each short side of the exposure region 21 outside the exposure region 21.
  • FIG. 2C shows an enlarged view of the first alignment mark 7 and the second alignment mark 8.
  • the second alignment mark 8 is formed in a rectangular frame shape
  • the first alignment mark 7 is rectangular.
  • the first alignment mark 7 is used for the second alignment.
  • the exposure mask 4 and the exposed material 2 are correctly aligned. Therefore, by aligning the center of the first alignment mark 7 with the center of the second alignment mark 8, the exposure mask 4 and the exposed material 2 can be aligned.
  • the imaging unit 10 is a single CCD (Charge Coupled Device) camera having a field of view of about 1.5 mm square, and includes a single focus lens and a camera light source.
  • the imaging unit 10 employs a coaxial epi-illumination method, and uses an optical system such as a half mirror to match the optical axis of illumination irradiated from the camera light source to the object with the optical axis of the single focus lens. .
  • the optical axis 11 of illumination irradiated from the imaging unit 10 toward the exposure mask 4 is set perpendicular to the mask surface 4 a of the exposure mask 4.
  • Laser light or lamp light transmitted through an interference filter may be used as the camera light source, and a halogen lamp may be used as the lamp light source.
  • the camera light source emits red light having a wavelength of about 600 nm.
  • the imaging unit 10 is configured to be movable by any driving means (not shown).
  • the image recognition unit 12 recognizes an image picked up by the image pickup unit 10.
  • the image recognition unit 12 has a function of generating a composite image by performing image processing on a captured image group.
  • the image recognition unit 12 generates a composite image for specifying the position of the first alignment mark 7 with respect to the second alignment mark 8 by superimposing images captured multiple times or continuously. can do.
  • the image recognition unit 12 and the control unit 14 include, for example, a calculation unit such as a CPU and a storage unit such as a memory, and executes a predetermined program.
  • the microlens array 6 is an array of microlenses, and in this embodiment, the microlens array 6 constitutes a 1 ⁇ upright projection lens.
  • the exposure light irradiated from the light source unit 3 through the exposure mask 4 is further applied to the exposed material 2 through the microlens array 6.
  • FIG. 3A shows the configuration of the microlens array 6.
  • the microlens array 6 has a structure in which four unit microlens arrays 61, 62, 63, 64 are laminated.
  • Each of the unit microlens arrays 61, 62, 63, and 64 includes a plurality of microlenses 60 formed of two convex lenses. Therefore, the exposure light that has entered the unit microlens array 61 through the exposure mask 4 once converges between the unit microlens array 62 and the unit microlens array 63 and is positioned below the unit microlens array 64. An image is formed on the exposure-side surface 2a of the material 2 to be exposed.
  • an inverted equal magnification image of the mask pattern 20 of the exposure mask 4 is formed between the unit microlens array 62 and the unit microlens array 63, and the mask pattern is formed on the exposure side surface 2 a of the exposed material 2. Twenty erecting equal-magnification images are formed.
  • a field stop 67 is disposed between the unit microlens array 62 and the unit microlens array 63, and an aperture stop 66 is disposed between the unit microlens array 63 and the unit microlens array 64.
  • a field stop 67 and an aperture stop 66 are provided for each microlens 60.
  • the field stop 67 is formed in a hexagonal shape, and the field stop is narrowed down to a hexagonal shape near the imaging position.
  • the aperture stop 66 is formed in a circular shape, defines the numerical aperture (NA) of each microlens 60, and shapes the light transmission region of the microlens 60 into a circular shape.
  • FIG. 3B The relationship between the field stop 67 and the aperture stop 66 is shown in FIG. As shown in FIG. 3B, the field stop 67 is formed in the aperture stop 66 as a hexagonal opening. Therefore, the exposure light transmitted through the microlens 60 is irradiated only from the region surrounded by the hexagon shown in FIG.
  • the positional relationship of the field stop 67 in the microlens array 6 is shown in FIG.
  • the microlens array 6 is configured to be movable by any driving means (not shown).
  • the size of the microlens array 6 is substantially the same as the size of the irradiation region from the light source unit 3, and the microlens array 6 moves in the X-axis direction in synchronization with the light source unit 3 that irradiates exposure light.
  • the exposed material 2 is exposed through an exposure mask 4 and a moving microlens array 6.
  • the plurality of microlenses 60 are arranged side by side in the Y-axis direction perpendicular to the X-axis to form a microlens array.
  • a plurality of microlens rows are arranged in the X-axis direction.
  • the hexagon of each field stop 67 is composed of a central rectangular portion 67a, a triangular portion 67b on the left side, and a triangular portion 67c on the right side.
  • the opening area of the left triangular portion 67b and the right triangular portion 67c is 1 ⁇ 2 of the opening area of the quadrangular portion 67a.
  • the plurality of microlens rows are arranged so as to be shifted from each other so that the triangular portion 67b of the next microlens row is located at a position corresponding to the triangular portion 67c of the microlens row.
  • the plurality of microlens rows are arranged to form a group of three rows, and the first and fourth microlens rows are arranged in the Y-axis direction. Are the same.
  • the microlens array 6 moves in the upward direction of FIG. 4 along the X axis in synchronization with the light source unit 3 that irradiates the exposure light, the first row of the exposure lens 2 on the exposure side surface 2a
  • the area exposed through the right triangular portion 67c of the field stop 67 of the microlens column is subsequently exposed through the left triangular portion 67b of the field stop 67 of the second microlens column.
  • the micro lens array is not exposed.
  • the area exposed through the rectangular portion 67a of the field stop 67 of the first microlens array is not exposed in the second and third microlens arrays.
  • the area exposed through the left triangular portion 67b of the field stop 67 of the first microlens array is not exposed by the second microlens array, and the right side of the field stop 67 of the third microlens array. Exposure is made through the triangular portion 67c.
  • the exposure side surface 2a of the exposure object 2 is exposed through the two triangular portions 67b and 67c of the field stop 67 every time three micro lens rows pass, or one exposure lens 2 is exposed. It exposes through the square part 67a. Since the opening area of the left triangular portion 67b and the right triangular portion 67c is 1 ⁇ 2 of the opening area of the rectangular portion 67a, the exposed material 2 is exposed with a uniform amount of light each time three micro lens rows pass. Will receive. Therefore, the exposure object 2 is exposed with a uniform amount of light by configuring the microlens array 6 so that 3n (n is a natural number) microlens arrays move on the exposure area 21 of the exposure object 2. can do.
  • the microlens array 6 is used for aligning the exposure mask 4 and the exposed material 2 that are executed prior to the exposure processing, in addition to the exposure processing for the exposed material 2.
  • the microlens array 6 is configured to move between the first alignment mark 7 and the second alignment mark 8 in the X-axis direction.
  • the first alignment mark 7 forms an image on the mask surface 4 a on the side facing the exposed material 2 in the exposure mask 4 via the microlens array 6.
  • the second alignment mark 8 is formed on the mask surface 4a, it is formed on at least a part of the first alignment mark 7 imaged via the microlens array 6 and the mask surface 4a.
  • the second alignment mark 8 is positioned on the same plane. Therefore, the imaging unit 10 can image the first alignment mark 7 and the second alignment mark 8 on the same plane.
  • FIG. 5A to 5C show the microlens array 6 and an image of the first alignment mark 7 that forms an image on the mask surface 4a via the microlens array 6.
  • FIG. As described above, the field stop 67 is disposed between the unit microlens array 62 and the unit microlens array 63. Therefore, the image of the first alignment mark 7 formed on the mask surface 4 a is an image corresponding to the hexagonal opening of the field stop 67.
  • the microlens array 6 includes the first alignment mark 7 provided on the exposed material 2 and the second mask provided on the exposure mask 4 while the imaging unit 10 is imaging. It moves between the alignment marks 8. The imaging unit 10 images at least a part of the first alignment mark 7 imaged on the exposure mask 4 via the moving microlens array 6 together with the second alignment mark 8 a plurality of times.
  • FIG. 5A shows an image of the first alignment mark 7 when the microlens array 6 is at the first position.
  • the edge on the left side of the first alignment mark 7 is not located at a position corresponding to the opening of the field stop 67, so that no image is formed on the mask surface 4a.
  • An image of the first alignment mark 7 imaged at the first position is shown on the right side of the microlens array 6.
  • 5A to 5C for the sake of explanation, only the image of the first alignment mark 7 is shown in the captured image.
  • a two-dot chain line surrounding a partial image of the first alignment mark 7 in a quadrangle is a virtual line, and the position of the corresponding edge of the first alignment mark 7 is virtually illustrated for the sake of explanation. It is displayed.
  • FIG. 5B shows an image of the first alignment mark 7 when the microlens array 6 is at the second position.
  • the edge on the right side of the first alignment mark 7 is not located at the position corresponding to the opening of the field stop 67, so that no image is formed on the mask surface 4a.
  • the image of the first alignment mark 7 imaged at the second position is superimposed on the image of the first alignment mark 7 previously imaged at the first position by the image recognition unit 12. Is done.
  • This superimposed image is shown on the right side of the microlens array 6. In this way, by superimposing the image of the first alignment mark 7 imaged at the second position on the image of the first alignment mark 7 imaged at the first position, The left and right edges of the alignment mark 7 can be detected.
  • FIG. 5C shows an image of the first alignment mark 7 when the microlens array 6 further moves in the movement direction D1 and reaches the third position.
  • the image of the first alignment mark 7 picked up at the third position is superimposed on the image picked up at the first and second positions by the image recognition unit 12.
  • a partial image of the first alignment mark 7 formed on the mask surface 4 a through the microlens array 6 is captured a plurality of times, and a plurality of images are captured.
  • the edge of the first alignment mark 7 can be detected more reliably. Therefore, the center position of the first alignment mark 7 can be specified more accurately.
  • the spatial imaging interval is set to an interval that does not become an integral multiple of the arrangement pitch of the microlens rows in the microlens array 6. Further, it is desirable that the number of times of imaging is equal to or greater than the number of microlens rows constituting the microlens row group. As described above, in the present embodiment, since the microlens array 6 forms one group by three microphone lens rows, it is desirable that the number of times of imaging is three or more.
  • FIG. 5D shows a composite image obtained by superimposing the three images picked up in FIGS. 5A to 5C.
  • the imaging unit 10 can simultaneously capture a partial image of the first alignment mark 7 formed on the mask surface 4a and the second alignment mark 8 in the same image.
  • the second alignment mark 8 is formed on the mask surface 4a of the exposure mask 4, and the imaging unit 10 performs imaging without moving during imaging. Accordingly, the position of the second alignment mark 8 does not change in the image captured a plurality of times.
  • FIG. 5D as an example for explanation, a case where the first alignment mark 7 is shifted to the lower right side toward the second alignment mark 8 is illustrated.
  • FIG. 2C in this embodiment, the position where the center of the first alignment mark 7 and the center of the second alignment mark 8 coincide with the exposure mask 4 and the object to be exposed.
  • the material 2 is correctly placed.
  • the center of the first alignment mark 7 is specified from the composite image, and the exposure mask 4 and the exposed material 2 are aligned so as to coincide with the center of the second alignment mark 8. Can do.
  • FIG. 6 and 7 show the positional relationship between the constituent members in the exposure apparatus 1
  • FIG. 8 shows the steps related to the operation of the exposure apparatus 1 and the method of manufacturing the exposed material using the exposure apparatus 1.
  • FIG. 6A the exposure mask 4 and the exposed material 2 are aligned prior to the exposure of the exposed material 2.
  • the imaging unit 10 is arranged outside the exposure mask 4, and the microlens array 6 includes the exposed material 2 and the exposure mask 4. Between them.
  • the imaging unit 10 moves in the movement direction D2, and as shown in FIG. Above the mark 7 and the second alignment mark 8, it stops at a predetermined position for imaging.
  • the moving direction D2 of the imaging unit 10 is the same direction as the moving direction D1 of the microlens.
  • the alignment of the exposure mask 4 and the exposed material 2 using the first alignment mark 7 and the second alignment mark 8 is performed with extremely high accuracy (for example, the exposure material 2 and the exposure mask 4). , About ⁇ 1 ⁇ m). Therefore, the exposure mask 4 and the material 2 to be exposed before this high-precision alignment include the image of the first alignment mark 7 formed on the mask surface 4a via the microlens array 6, and the exposure mask. 4 and the second alignment mark 8 provided at 4 are positioned so as to be captured in the same image by the imaging unit 10.
  • the light source unit 3 is placed stationary above the end of the exposure mask 4 until the exposure of the exposed material 2 starts.
  • the imaging unit 10 stops at a predetermined position for imaging, as shown in FIG. 6B, the microlens array 6 moves in the moving direction D1, and is connected to the exposure mask 4 via the moving microlens array 6.
  • At least a part of the imaged first alignment mark 7 and the second alignment mark 8 provided on the exposure mask 4 are imaged by the imaging unit 10 (FIG. 8, step 1). This imaging is performed a plurality of times as described above with reference to FIG.
  • the exposed material 2, the exposure mask 4, and the imaging unit 10 are fixed at predetermined positions without moving.
  • the image recognition unit 12 generates a composite image (see FIG. 5D) obtained by superimposing a plurality of captured images, and the captured first alignment mark is captured from the composite image. 7 and the second alignment mark 8 are recognized (FIG. 8, step 2). Next, the exposure material 2 and the exposure mask 4 are aligned based on the positional information of the recognized first alignment mark 7 and at least a part of the second alignment mark 8 (step 3). ). In the present embodiment, as described above, the position where the centers of the first alignment mark 7 and the second alignment mark 8 coincide is the correct positional relationship between the exposure mask 4 and the material to be exposed. .
  • the center position of the first alignment mark 7 and the second position are determined from at least a part of the first alignment mark 7 and the second alignment mark 8 in the composite image (see FIG. 5D).
  • the center position of the alignment mark 8 is specified by the image recognition unit 12.
  • the position of the exposure mask 4 is adjusted by an alignment control unit 16 via an arbitrary driving means so that the center of the first alignment mark 7 and the center of the second alignment mark 8 coincide. Adjusted.
  • the camera retraction movement control unit 17 performs image capturing so that the image capturing unit 10 that is stationary at the predetermined image capturing position does not hinder the exposure of the material to be exposed 2.
  • the unit 10 is moved in a predetermined direction via any driving means (FIG. 8, step 4).
  • the exposure start timing control unit 18 starts irradiation of exposure light from the light source unit 3 before the movement of the imaging unit 10 is completed (step 5). While the material to be exposed 2 is being exposed, the material to be exposed 2 and the exposure mask 4 are fixed at the aligned positions without moving.
  • step 4 the imaging unit 10 starts moving in the moving direction D3 as shown in FIG.
  • the light source unit 3 starts irradiation of the exposure light 5 simultaneously with the start of the movement of the imaging unit 10.
  • the light source unit 3 moves in the moving direction D4 while irradiating the exposure light 5.
  • the microlens array 6 moves in the movement direction D5 in synchronization with the light source unit 3.
  • the moving directions D3 to D5 are the same direction, which is the reverse direction of the moving direction D1 of the microlens array 6 during imaging.
  • the imaging unit 10 moves to a predetermined retracted position outside the exposure mask 4 and stops.
  • the light source unit 3 moves from one end of the exposure mask 4 to the other end together with the microlens array 6 while irradiating the exposure light 5 to complete the exposure of the exposed material 2 to the exposure region 21.
  • the exposure apparatus 1 As described above, the exposure apparatus 1 according to the first embodiment is described by taking as an example the alignment and exposure of the exposure mask 4 with respect to one exposure area 21 and the exposure area 21 formed on the exposed material 2. However, the exposure apparatus 1 is configured such that a plurality of exposure regions 21 formed on the exposed material 2 can be exposed simultaneously.
  • FIG. 9 shows an exposure side surface 2a of the exposure target material 2 on which a plurality of exposure regions 21 are formed.
  • the exposure apparatus 1 can simultaneously expose four exposure areas 4 at a time by arranging four exposure masks 4 for four exposure areas out of the exposure areas 21a to 21p. It is configured as follows. The four exposure masks 4 are held by mask holding means (not shown).
  • each exposure mask 4 is set in the exposure regions 21a, 21c, 21i, and 21k, and the alignment of each exposure mask 4 and the material 2 to be exposed (FIG. 8, step). 1 to 3) are executed.
  • the four imaging units 10 arranged corresponding to the four exposure masks 4 move simultaneously (FIG. 8, step 4).
  • irradiation of the exposure light 5 from the four light source units 3 respectively arranged corresponding to the four exposure masks 4. are simultaneously started (step 5 in FIG.
  • each light source unit 3 moves in synchronization with each corresponding microlens while irradiating each exposure region 21a, 21c, 21i, 21k with exposure light 5. (See FIG. 7 (c)).
  • the next exposure areas 21b, 21d, 21j, and 21l are arbitrarily set to correspond to the four exposure masks 4 that are held.
  • the object to be exposed 2 is moved in the X-axis direction (FIG. 1) by the driving means (not shown).
  • the next exposure areas 21f, 21h, 21n The exposed material 2 is moved in the Y-axis direction (perpendicular to the paper surface in FIG. 1) so that 21p corresponds.
  • the next exposure areas 21e, 21g, and 21m are further continued with respect to the four exposure masks 4.
  • 21o are moved in the X-axis direction so as to correspond to each other.
  • the imaging unit 10 includes the second alignment mark 8 provided on the exposure mask 4 and the first alignment mark 7 imaged on the exposure mask 4 via the microlens array 6. At least a part can be imaged on the same plane. Therefore, it is possible to eliminate the deviation of the imaging positions of the first alignment mark 7 and the second alignment mark 8 due to the distance between the exposure object 2 and the exposure mask 4.
  • the exposure apparatus 1 does not employ a method of adjusting the optical path length of the optical path with respect to the object to be imaged in order to eliminate the shift of the imaging position. Therefore, the optical axis 11 of the imaging unit 10 that captures the first alignment mark 7 and the second alignment mark 8 deviates from a predetermined angle and is inclined with respect to the mask surface 4 a of the exposure mask 4. Even if it is tilted, the relative positions of the first alignment mark 7 and the second alignment mark 8 captured by the imaging unit 10 and recognized by the image recognition unit 12 are It does not change. Therefore, the relative positions of the exposure mask 4 and the exposed material 2 can be specified more accurately.
  • the exposure apparatus 1 in order to image the first alignment mark 7 and the second alignment mark 8, there is no need to provide two optical paths having different optical path lengths and optical path length adjusting means for each optical path. In addition, it is not necessary to place an alignment reticle on the optical axis of each optical path. Therefore, a complicated mechanism requiring cost is not required for aligning the exposure mask 4 and the exposed material 2.
  • the imaging unit 10 in the exposure apparatus 1 is a single camera, and the first alignment mark 7 imaged on the exposure mask 4 via the microlens array 6 and the second alignment mark. 8 are simultaneously captured in the same image. Therefore, the first alignment mark 7 and the second alignment mark 8 are compared with the case where the first alignment mark 7 and the second alignment mark 8 are separately captured by different cameras, respectively. The relative positional relationship of the mark 8 can be specified more accurately.
  • the imaging unit 10 moves in a predetermined direction so as not to prevent exposure to the exposed material 2, and the movement of the imaging unit 10 is completed.
  • the exposure start timing control unit 18 is configured to start irradiation of the exposure light 5 from the light source unit 3 with respect to the exposure target material 2 and the exposure mask 4 that have been aligned. Therefore, since the exposure is started before the movement of the imaging unit 10 is completed, a delay in work time using the exposure apparatus 1 can be eliminated.
  • the light source unit 3 is configured to irradiate the exposure light 5 while moving, a smaller light source can be used, and space saving in the exposure apparatus 1 can be achieved.
  • the microlens array 6 is configured to be movable between the exposed material 2 and the exposure mask 4, the imaging of the first alignment mark 7 and the exposure of the exposed material 2 can be performed more. It can be implemented using a small and common microlens array 6. Since the large-sized microlens array 6 is expensive, the imaging of the first alignment mark 7 and the exposure of the exposed material 2 can be performed using a smaller and common microlens array 6. The manufacturing cost of the exposure apparatus 1 can be reduced.
  • the imaging unit 10 together with the second alignment mark 8, at least part of the first alignment mark 7 formed on the exposure mask 4 via the moving microlens array 6.
  • the image recognition unit 12 generates a composite image obtained by superimposing images captured a plurality of times. In this way, the position information of the first alignment mark 7 is obtained by superimposing the partial images of the first alignment mark 7 formed on the exposure mask 4 through the microlens array 6. You can get more. Therefore, the position of the first alignment mark 7 imaged by the microlens array 6 can be specified more reliably.
  • the present invention is not limited to the above-described embodiments, and various modifications and changes can be made based on the technical idea of the present invention.
  • the plurality of exposure masks 4 are simultaneously arranged in the plurality of exposure regions 21a to 21p, but the present invention is not limited to this.
  • a single exposure mask 4 may be used.
  • the plurality of exposure regions 21a to 21p are formed on the exposure target material 2, but the present invention is not limited to this.
  • a single exposure region 21 may be formed on the material 2 to be exposed.
  • the shapes of the first alignment mark 7 and the second alignment mark 8 are not limited to those illustrated in FIG. Any mark may be used as long as the position of the first alignment mark 7 and the second alignment mark 8 can be specified.
  • the number of the first alignment mark 7 and the second alignment mark 8 is desirably two or more with respect to the exposure region in order to maintain alignment accuracy, but the number is not limited. .
  • the arrangement positions of the first alignment mark 7 and the second alignment mark 8 are not limited to the positions illustrated in FIGS. 2 (a) and 2 (b).
  • four first alignment marks 7 may be arranged for each exposure area, or each first alignment mark 7 may be arranged at the four corners outside each exposure area. Good.
  • the imaging unit 10 is configured to move in a predetermined direction after the alignment of the exposure mask 4 and the material to be exposed 2 is completed, but is not limited thereto.
  • the imaging unit 10 can start moving before the alignment between the exposure mask 4 and the exposed material 2 is completed.
  • the exposure start timing control unit 18 irradiates the exposure light 5 from the light source unit 3 after the alignment of the exposure mask 4 and the exposed material 2 is completed and before the movement of the imaging unit 10 is completed. To start. If the movement of the imaging unit 10 is not completed, irradiation of the exposure light 5 from the light source unit 3 may be started.
  • the irradiation start of the exposure light 5 may be before the movement of the imaging unit 10 is started, may be simultaneously with the start of the movement of the imaging unit 10, and after the movement of the imaging unit 10 is started and the movement of the imaging unit 10 May be before completion.
  • the imaging unit 10 uses at least a part of the first alignment mark 7 imaged on the exposure mask 4 via the moving microlens array 6 as a second alignment mark.
  • the present invention is not limited to this.
  • the alignment of the exposure mask 4 and the exposed material 2 may be executed.
  • the temporal imaging interval may be extremely short (for example, 30 times per second), continuous imaging may be performed, and a composite image may be generated by superimposing continuously captured images.
  • the imaging unit 10 is a CCD camera that adopts a coaxial epi-illumination method using a built-in camera light source, but is not limited thereto.
  • the camera light source may not be built in the CCD camera, and a single light source may be provided as a separate camera light source.
  • a CMOS (complementary metal oxide semiconductor) camera may be used instead of the CCD camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 複雑で高価な機構を用いることなく、露光用マスクと被露光材の相対的な位置を、より正確に特定し、加えて、露光装置を用いた作業時間の遅延を解消することである。 本発明に係る露光装置は、マイクロレンズアレイを介して露光用マスクに結像された第1の位置合わせ用マークの少なくとも一部と、第2の位置合わせ用マークとを撮像し、撮像が終了すると、被露光材への露光を妨げないように所定の方向に移動する撮像部と、第1及び第2の位置合わせ用マークの位置情報に基づいて、被露光材と露光用マスクとを位置合わせする位置合わせ制御部と、撮像部の移動が完了する前に、光源からの露光光の照射を開始させる露光開始タイミング制御部とを備える。

Description

露光装置及び露光済み材製造方法
 本発明は、露光装置及び露光済み材製造方法に関するものであって、特に、被露光材と露光用マスクを位置合わせして、被露光材を露光する露光装置及び露光済み材製造方法に関する。
 従来から、露光用マスクを使用し、被露光材を所定のパターンで露光する露光装置が知られている。このような露光装置は、例えば、液晶表示装置用のカラーフィルタの製造や、光配向膜の配向処理等に用いられる。露光用マスクを使用する場合には、露光用マスクと被露光材を位置合わせする必要がある。露光用マスクと被露光材の位置合わせには、一例として位置合わせ用マークが用いられる(例えば、特許文献1)。
 特許文献1には、マスクマークを有するマスクと、ウエハマークを有するウエハの位置を検出する位置検出方法が記載されている。まず、マスクマークを有するマスクと、ウエハマークを有するウエハとを近接配置する。次いで、マスクマークとウエハマークを撮像する。撮像に際して、マスクとウエハの間には距離があるため、この距離に応じて、マスクマークとウエハマークの結像位置が異なってしまう。そこで、特許文献1に記載された位置検出方法では、光路長の異なる2つの光路を用いてマスクマークとウエハマークを撮像し、この2つの光路の光路長を調整することによって、マスクマークとウエハマークとを同一平面上に結像させている。この同一平面上にはマスク位置合わせ用マークとウエハ位置合わせ用マークとを有する位置合わせ用レティクルが配置される。位置合わせ用レティクルのマスク位置合わせ用マークと、マスクのマスクマークの像との相対的位置を検出し、位置合わせ用レティクルの位置合わせ用マークと、ウエハのウエハマークの像との相対的位置を検出する。これにより、マスクとウエハとの相対的位置を検出している。
 特許文献1に記載された方法では、マスクとウエハとの位置合わせが行われた後に、位置合わせ用光学系を移動し、又は位置合わせ用光学系が干渉しない位置で、マスク側から露光エネルギを照射し、ウエハ上のレジスト層を露光している。
特開2004-103644号公報
 しかしながら、特許文献1に記載された位置検出方法では、光路長の異なる2つの光路を用いてマスクマークとウエハマークを撮像し、この2つの光路の光路長を調整することによって、マスクマークとウエハマークとを同一平面上に結像させている。このように、2つの光路の光路長を調整することによってマスクマークとウエハマークの結像位置の差を補正する方法では、各光路において撮像対象物に対する光軸の角度が所定の角度からずれてしまった場合、光路長も変化し、それに伴って、マスクマークとウエハマークの相対的な位置も変化してしまう。したがって、カメラの傾き等、何らかの理由によって、撮像対象物に対する光軸の角度が所定の角度からずれてしまった場合には、露光用マスクと被露光材であるウエハの相対的な位置を正確に特定することができないという問題がある。
 また、特許文献1に記載された位置検出装置においては、各光路の光軸上に位置合わせレティクルを配置すると共に、各光路に対する光路長調整手段を設けている。したがって、露光用マスクと被露光材であるウエハの位置合わせのために、コストを要する複雑な機構が必要となってしまう。
 加えて、特許文献1に記載された方法では、マスクとウエハとの位置合わせが行われた後に、位置合わせ用光学系を移動し、又は位置合わせ用光学系が干渉しない位置で、マスク側から露光エネルギを照射し、ウエハ上のレジスト層を露光している。位置合わせ用光学系が干渉しない位置で露光を行うよりも、位置合わせ用光学系を移動する方が、光源の配置位置や被露光材における露光用領域の配置に与える影響が少ない。しかしながら、位置合わせ用光学系を移動してからウエハへの露光を開始すると、位置合わせ用光学系の移動時間分、露光装置を用いた作業時間が遅延してしまうという問題がある。
 そこで本発明の目的は、被露光材の露光において、複雑で高価な機構を用いることなく、露光用マスクと被露光材の相対的な位置を、より正確に特定し、加えて、露光装置を用いた作業時間の遅延を解消することである。
 本発明は、露光装置に係るものである。上記目的を達成するために、本発明に係る露光装置は、被露光材に露光光を照射する光源と、光源と被露光材との間に保持される露光用マスクと、被露光材と露光用マスクとの間に配置されるマイクロレンズアレイと、被露光材に設けられた第1の位置合わせ用マークと露光用マスクに設けられた第2の位置合わせ用マークとを用いて被露光材と露光用マスクとを位置合わせするために、マイクロレンズアレイを介して露光用マスクに結像された第1の位置合わせ用マークの少なくとも一部と、第2の位置合わせ用マークとを撮像し、撮像が終了すると、被露光材への露光を妨げないように所定の方向に移動する撮像部と、撮像部によって撮像された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとを認識する画像認識部と、画像認識部によって認識された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとの位置情報に基づいて、被露光材と露光用マスクとを位置合わせする位置合わせ制御部と、撮像部の移動が完了する前に、光源からの露光光の照射を開始させる露光開始タイミング制御部とを備える。
 「被露光材」とは、露光される対象物をいう。「被露光材」は、露光される表面を有する基板及び基材を含み、「被露光材」の一例として、フォトレジスト膜を積層したガラス基板、感光性フィルム、液晶パネルを製造するために露光される各種部材等がある。「撮像部の移動が完了する前」とは、撮像部の移動が完了して撮像部が所定位置に停止する前である。したがって、「撮像部の移動が完了する前」は、「撮像部の移動開始前」、「撮像部の移動開始と同時」、及び「撮像部の移動開始後且つ撮像部の移動が完了する前」を含む。
 例えば、光源は移動しながら露光光を照射するものである。
 一例として、マイクロレンズアレイは、撮像部が撮像している間、被露光材に設けられた第1の位置合わせ用マークと露光用マスクに設けられた第2の位置合わせ用マークとの間において一方向に移動し、光源が露光光を照射している間、光源と共に、一方向の逆方向に移動するものである。
 マイクロレンズアレイは、撮像部が撮像している間、被露光材に設けられた第1の位置合わせ用マークと露光用マスクに設けられた第2の位置合わせ用マークとの間において移動するものであり、撮像部は、移動するマイクロレンズアレイを介して露光用マスクに結像した第1の位置合わせ用マークの少なくとも一部を、第2の位置合わせ用マークと共に複数回又は連続的に撮像するものであり、画像認識部は、複数回又は連続的に撮像した画像を重ね合わせて、第2の位置合わせ用マークに対する第1の位置合わせ用マークの位置を特定するための合成画像を生成するものであるように構成してもよい。
 また、本発明は、露光済み材製造方法に係るものである。被露光材に対して、露光光を照射する光源と、光源と被露光材との間に保持される露光用マスクと、被露光材と露光用マスクとの間に配置されるマイクロレンズアレイとを備える露光装置を用いて、露光済み材を製造する露光済み材製造方法であって、被露光材に設けられた第1の位置合わせ用マークと露光用マスクに設けられた第2の位置合わせ用マークとを用いて被露光材と露光用マスクとを位置合わせするために、マイクロレンズアレイを介して露光用マスクに結像された第1の位置合わせ用マークの少なくとも一部と、露光用マスクの第2の位置合わせ用マークとを、撮像部が撮像する撮像ステップと、撮像ステップによって撮像された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとを画像認識部が認識する画像認識ステップと、画像認識ステップによって認識された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとの位置情報に基づいて、被露光材と露光用マスクとを、位置合わせ制御部が位置合わせする位置合わせステップと、撮像ステップにおける撮像が終了した後に、被露光材への露光を妨げないように撮像部が所定の方向に移動する撮像部移動ステップと、撮像部移動ステップにおける撮像部の移動が完了する前に、位置合わせステップによって位置合わせされた被露光材と露光用マスクに対して、露光開始タイミング制御部が光源からの露光光の照射を開始させる露光開始ステップとを含む。
 「露光済み材」とは、露光された物をいい、「被露光材」が露光されたものである。「露光済み材」は、露光された基板及び基材を含み、「露光済み材」の一例として、露光されたガラス基板、露光されたフィルム、液晶パネルを製造するために露光された各種部材等がある。
 例えば、光源が移動しながら露光光を照射する露光ステップをさらに含む。
 一例として、撮像ステップにおいて、被露光材に設けられた第1の位置合わせ用マークと露光用マスクに設けられた第2の位置合わせ用マークとの間をマイクロレンズアレイが一方向に移動し、露光ステップにおいて、マイクロレンズアレイは、光源と共に、一方向の逆方向に移動する。
 撮像ステップにおいて、被露光材に設けられた第1の位置合わせ用マークと露光用マスクに設けられた第2の位置合わせ用マークとの間をマイクロレンズアレイが移動し、移動するマイクロレンズアレイを介して露光用マスクに結像した第1の位置合わせ用マークの少なくとも一部を、第2の位置合わせ用マークと共に複数回又は連続的に撮像部が撮像し、画像認識ステップにおいて、画像認識部が複数回又は連続的に撮像した画像を重ね合わせて、第2の位置合わせ用マークに対する第1の位置合わせ用マークの位置を特定するための合成画像を生成するように構成してもよい。
 本発明に係る露光装置は、マイクロレンズアレイを介して露光用マスクに結像された第1の位置合わせ用マークの少なくとも一部と、第2の位置合わせ用マークとを撮像する撮像部と、撮像部によって撮像された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとを認識する画像認識部を備えている。撮像される第1の位置合わせ用マークの少なくとも一部は、マイクロレンズアレイを介して露光用マスクに結像されたものであるため、撮像部は、露光用マスクに設けられた第2の位置合わせ用マークと、マイクロレンズアレイを介して露光用マスクに結像された第1の位置合わせ用マークの少なくとも一部を同一平面上において撮像することができる。したがって、第1の位置合わせ用マークが設けられた被露光材と、第2の位置合わせ用マークが設けられた露光用マスクとの間の距離に起因する、第1の位置合わせ用マークと第2の位置合わせ用マークの結像位置のずれを解消することができる。
 本発明に係る露光装置おいては、上記結像位置のずれを解消するために、撮像対象物に対する光路の光路長を調整する方法を採用していない。したがって、第1及び第2の位置合わせ用マークを撮像する撮像部の光軸が所定の角度からずれてしまった場合であっても、撮像部によって撮像されて画像認識部によって認識される第1の位置合わせ用マークと第2の位置合わせ用マークとの相対的な位置は変化しない。したがって、露光用マスクと被露光材の相対的な位置をより正確に特定することができる。
 また、第1の位置合わせ用マークと第2の位置合わせ用マークを撮像するために、異なる光路長の2つの光路及び各光路に対する光路長調整手段を設ける必要がなく、加えて、各光路の光軸上に位置合わせレティクルを配置する必要もない。したがって、露光用マスクと被露光材の位置合わせのために、コストを要する複雑な機構は不要である。
 また、本発明に係る露光装置は、撮像が終了すると、被露光材への露光を妨げないように所定の方向に移動する撮像部と、撮像部の移動が完了する前に、光源からの露光光の照射を開始させる露光開始タイミング制御部を備えている。したがって、撮像部の移動が完了する前に露光が開始されるため、露光装置を用いた作業時間の遅延を解消することができる。
 以上のように、本発明に係る露光装置によれば、被露光材の露光において、複雑で高価な機構を用いることなく、露光用マスクと被露光材の相対的な位置を、より正確に特定し、加えて、露光装置を用いた作業時間の遅延を解消することができる。
 光源が移動しながら露光光を照射するものである場合には、より小型の光源を使用することが可能であり、露光装置における省スペース化を図ることができる。
 マイクロレンズアレイは、撮像部が撮像している間、被露光材に設けられた第1の位置合わせ用マークと露光用マスクに設けられた第2の位置合わせ用マークとの間において一方向に移動し、光源が露光光を照射している間、光源と共に、一方向の逆方向に移動するように構成した場合には、第1の位置合わせ用マークの撮像と被露光材の露光とを、より小型且つ共通のマイクロレンズアレイを用いて実行することができる。大型のマイクロレンズアレイは高価であるため、第1の位置合わせ用マークの撮像と被露光材の露光が、より小型且つ共通のマイクロレンズアレイを用いて可能となったことにより、露光装置の製造コストを削減することができる。
 撮像部は、移動するマイクロレンズアレイを介して露光用マスクに結像した第1の位置合わせ用マークの少なくとも一部を、第2の位置合わせ用マークと共に複数回又は連続的に撮像するものであり、画像認識が、複数回又は連続的に撮像した画像を重ね合わせて、第2の位置合わせ用マークに対する第1の位置合わせ用マークの位置を特定するための合成画像を生成するものであるように構成した場合には、マイクロレンズアレイを介して露光用マスクに結像した第1の位置合わせ用マークの部分的な像を重ね合わせることによって、第1の位置合わせ用マークの位置情報をより多く取得することができる。したがって、マイクロレンズアレイによって結像された第1の位置合わせ用マークの位置をより確実に特定することができる。
 本発明に係る露光済み材製造方法は、マイクロレンズアレイを介して露光用マスクに結像された第1の位置合わせ用マークの少なくとも一部と、露光用マスクの第2の位置合わせ用マークとを、撮像部が撮像する撮像ステップと、撮像ステップによって撮像された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとを認識する画像認識部が認識する画像認識ステップとを含む。
 撮像される第1の位置合わせ用マークの少なくとも一部は、マイクロレンズアレイを介して露光用マスクに結像されたものであるため、撮像部は、露光用マスクに設けられた第2の位置合わせ用マークと、マイクロレンズアレイを介して露光用マスクに結像された第1の位置合わせ用マークの少なくとも一部を同一平面上において撮像することができる。したがって、第1の位置合わせ用マークが設けられた被露光材と、第2の位置合わせ用マークが設けられた露光用マスクとの間の距離に起因する、第1の位置合わせ用マークと第2の位置合わせ用マークの結像位置のずれを解消することができる。本発明に係る露光済み材製造方法おいては、上記結像位置のずれを解消するために、撮像対象物に対する光路の光路長を調整する方法を採用していない。したがって、第1及び第2の位置合わせ用マークを撮像する撮像部の光軸が所定の角度からずれてしまった場合であっても、撮像部によって撮像されて画像認識部によって認識される第1の位置合わせ用マークと第2の位置合わせ用マークとの相対的な位置は変化しない。したがって、露光用マスクと被露光材の相対的な位置をより正確に特定することができる。
 また、第1の位置合わせ用マークと第2の位置合わせ用マークを撮像するために、異なる光路長の2つの光路及び各光路に対する光路長調整手段を設ける必要がなく、加えて、各光路の光軸上に位置合わせレティクルを配置する必要もない。したがって、露光用マスクと被露光材の位置合わせのために、コストを要する複雑な機構は不要である。
 また、本発明に係る露光済み材製造方法は、撮像ステップにおける撮像が終了した後に、被露光材への露光を妨げないように撮像部が所定の方向に移動する撮像部移動ステップと、撮像部移動ステップにおける撮像部の移動が完了する前に、位置合わせステップよって位置合わせされた被露光材と露光用マスクに対して、露光開始タイミング制御部が光源からの露光光の照射を開始させる露光開始ステップとを含む。露光開始ステップにおいて、光源は、撮像部の移動が完了する前に露光を開始するため、露光装置を用いた作業時間の遅延を解消することができる。
 以上のように、本発明に係る露光済み材製造方法によれば、被露光材の露光において、複雑で高価な機構を用いることなく、露光用マスクと被露光材の相対的な位置を、より正確に特定し、加えて、露光装置を用いた作業時間の遅延を解消することができる。
 光源が移動しながら露光光を照射する露光ステップをさらに含む場合には、より小型の光源を使用することが可能であり、露光装置における省スペース化を図ることができる。
 撮像ステップにおいて、被露光材に設けられた第1の位置合わせ用マークと露光用マスクに設けられた第2の位置合わせ用マークとの間をマイクロレンズアレイが一方向に移動し、露光ステップにおいて、マイクロレンズアレイは、光源と共に、一方向の逆方向に移動するように構成した場合には、第1の位置合わせ用マークの撮像と被露光材の露光とを、より小型且つ共通のマイクロレンズアレイを用いて実行することができる。大型のマイクロレンズアレイは高価であるため、第1の位置合わせ用マークの撮像と被露光材の露光が、より小型且つ共通のマイクロレンズアレイを用いて可能となったことにより、露光装置の製造コストを削減することができる。
 撮像ステップにおいて、移動するマイクロレンズアレイを介して露光用マスクに結像した第1の位置合わせ用マークの少なくとも一部を、第2の位置合わせ用マークと共に複数回又は連続的に撮像部が撮像し、画像認識ステップにおいて、画像認識部が複数回又は連続的に撮像した画像を重ね合わせて、第2の位置合わせ用マークに対する第1の位置合わせ用マークの位置を特定するための合成画像を生成するように構成した場合には、マイクロレンズアレイを介して露光用マスクに結像した第1の位置合わせ用マークの部分的な像を重ね合わせることによって、第1の位置合わせ用マークの位置情報をより多く取得することができる。したがって、マイクロレンズアレイによって結像された第1の位置合わせ用マークの位置をより確実に特定することができる。
第1の実施形態に係る露光装置の側面図である。 (a)図1に示す露光用マスクを被露光材側からみた平面図である。(b)図1に示す被露光材を光源部側からみた平面図である。(c)図1に示す第1の位置合わせ用マークと第2の位置合わせ用マークの平面図である。 (a)図1に示すマイクロレンズアレイの構造を示す模式図である。(b)図1に示すマイクロレンズアレイの視野絞りと開口絞りの位置関係を示す模式図である。 図1に示すマイクロレンズアレイの配置と視野絞りの位置関係を示す模式図である。 (a)~(c)図1に示すマイクロレンズアレイを介して結像する第1の位置合わせ用マークの部分的な像と、該第1の位置合わせ用マークの部分的な像を重ね合わせた合成画像を示す説明図である。(d)合成画像に表示された第1の位置合わせ用マークと第2の位置合わせ用マークを示す画像図である。 (a)第1の実施形態に係る露光装置において、各構成部材の位置関係を示す側面図である。(b)第1の実施形態に係る露光装置において、各構成部材の位置関係を示す側面図である。 (c)第1の実施形態に係る露光装置において、各構成部材の位置関係を示す側面図である。(d)第1の実施形態に係る露光装置において、各構成部材の位置関係を示す側面図である。 第1の実施形態に係る露光装置の作動方法及び露光装置を用いた露光済み材の製造方法に関する工程を示すフローチャートである。 図1に示す被露光材の露光側表面を示す平面図である。
 [第1の実施形態]
 以下、本発明の実施の形態を添付の図により説明する。図1に第1の実施形態に係る露光装置の側面図を示す。第1の実施形態に係る露光装置は、所定のマスクパターンを有する露光用マスクを介して被露光材を露光するものである。露光装置1は、被露光材2に露光光を照射する光源部3と、光源部3と被露光材2との間に保持される露光用マスク4と、被露光材2と露光用マスク4との間に配置されるマイクロレンズアレイ6を備えている。
 また、露光装置1は、被露光材2に設けられた第1の位置合わせ用マーク7と露光用マスク4に設けられた第2の位置合わせ用マーク8を用いて、被露光材2と露光用マスク4とを位置合わせするように構成されていて、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8を撮像する撮像部10と、撮像した第1の位置合わせ用マーク7と第2の位置合わせ用マーク8を認識する画像認識部12と、各種制御を実行する制御部14とを備えている。制御部14は、画像認識部12によって認識された第1の位置合わせ用マーク7と第2の位置合わせ用マーク8の位置情報に基づいて、被露光材に対する露光用マスクの位置を制御する位置合わせ制御部16と、撮像部の移動を制御するカメラ退避移動制御部17と、光源部からの露光光の照射を開始させる露光開始タイミング制御部18を備えている。
 被露光材2は、露光側表面2aにフォトレジスト層を有するガラス基板である。このガラス基板は、例えば、G6サイズ(約1850mm×1500mm)である。露光されたガラス基板は、一例として、液晶パネル部材のカラーフィルタに用いられる。露光装置1において、被露光材2は支持部(不図示)によって支持されている。
 光源部3は、例えば、超高圧水銀ランプやキセノンフラッシュランプ等からなる光源を有し、露光波長域は一例として、280nm~400nmである。光源部3は、フォトインテグレータとコンデンサレンズを搭載している。フォトインテグレータは、光源部3から照射される露光光の横断面内の輝度分布を均一化させる。このフォトインテグレータは、フライアイレンズやロッドレンズ又はライトパイプ等であってもよい。輝度分布が均一化された露光光はコンデンサレンズに入射して均一な輝度分布を有する平行光となる。この平行光の光軸は被露光材2の露光側表面2aに対して垂直方向に設定されている。
 本実施形態において、光源部3は任意の駆動手段(不図示)によって、X軸方向に移動可能に構成されていて、移動しながら被露光材2に露光光を照射するものである。被露光材2における露光光の照射領域は一例として、X軸方向に150mm、X軸に垂直なY軸方向(図1において紙面に垂直方向)に450mmである。光源部3は、一例として、露光用マスク4の約1m程度上方に配置されている。
 露光用マスク4は、板状に形成されたガラス製のフォトマスクである。被露光材2と対向する側のマスク表面4aを図2(a)に示す。露光用マスク4は矩形であり、露光用マスク4の短辺はX軸方向に延び、露光用マスク4の長辺はX軸とX軸に垂直なY軸方向(図1において紙面に垂直方向)に延びている。露光用マスク4は、光源部3からの露光光を遮光する遮光領域と光源部3からの露光光を透過する透光領域とからなる所定のマスクパターン20を有する。露光用マスク4においてマスクパターン20が形成されているパターン領域は矩形である。露光用マスク4を透過した露光光が被露光材2の露光側表面2aに照射されることによって、被露光材2は所定のパターンに露光される。遮光領域は、ガラス基板の一方の表面に遮光膜を積層することによって形成する。遮光膜は露光光を遮光する不透明な薄膜であり、一例として、クロム(Cr)の薄膜である。この不透明な薄膜を積層しなかった部分は、ガラス基板が露光光を透過させるため、透光領域となる。マスクパターン20は、直線状に延びる遮光領域と透光領域を交互に配置したパターンである。
 露光用マスク4は任意のマスク保持手段によって光源部3と被露光材2との間に保持される。被露光材2と露光用マスク4との間の距離は、5~15mm程度である。マスク保持手段に保持された露光用マスク4は、任意の駆動手段(不図示)によって、X軸方向とX軸方向に垂直なY軸方向(図1において紙面に垂直方向)に移動可能である。
 露光用マスク4において、被露光材2と対向する側のマスク表面4aには2個の第2の位置合わせ用マーク8が形成されている。本実施形態において、各第2の位置合わせ用マーク8は、パターン領域の外側においてパターン領域の各短辺中央近くに配置されている。露光用マスク4において、マスクパターン20の外側には遮光膜は形成されていないため、マスク表面4aに形成された第2の位置合わせ用マーク8は露光用マスク4の透光部分を介して、撮像部10から撮像することができる。マスクパターン20のパターン領域の外側に露光光は照射されない。
 被露光材2には、第2の位置合わせ用マーク8と対応する位置に、第1の位置合わせ用マーク7が形成されている。被露光材2の露光側表面2aを図2(b)に示す。被露光材2は露光用領域21を備えている。露光用領域21は、マスクパターン20が形成されているパターン領域の矩形と同サイズの矩形に形成されている。露光用領域21の短辺はX軸方向に延び、露光用領域21の長辺はX軸とX軸に垂直なY軸方向(図1において紙面に垂直方向)に延びている。露光用領域21の長辺の長さは450mmであり、前述した照射領域のY軸方向における長さと対応している。第1の位置合わせ用マーク7は1個の露光用領域21に対して2個設けられている。各第1の位置合わせ用マーク7は、露光用領域21の外側において露光用領域21の各短辺中央近くに配置されている。
 第1の位置合わせ用マーク7と第2の位置合わせ用マーク8の拡大図を図2(c)に示す。本実施形態において、第2の位置合わせ用マーク8は四角形の枠形状に形成されていて、第1の位置合わせ用マーク7は四角形である。本実施形態においては、図2(c)に示すように、光源部3側から露光用マスク4と被露光材2をみた場合、第1の位置合わせ用マーク7が、第2の位置合わせ用マーク8の枠形状の内側中心に位置するとき、露光用マスク4と被露光材2が正しく位置合わせされていることになる。したがって、第1の位置合わせ用マーク7の中心と第2の位置合わせ用マーク8の中心を一致させることによって、露光用マスク4と被露光材2を位置合わせすることができる。
 撮像部10は、約1.5mm角の視野を有する単一のCCD(電荷結合素子)カメラであり、単焦点レンズとカメラ用光源を内蔵している。撮像部10は、同軸落射照明方式を採用しており、ハーフミラー等の光学系を用いて、カメラ用光源から対象物に照射する照明の光軸と単焦点レンズの光軸を一致させている。撮像部10から露光用マスク4に向かって照射する照明の光軸11は露光用マスク4のマスク表面4aに対して垂直に設定されている。カメラ用光源としては、レーザ光又は干渉フィルタを透過したランプ光を使用してもよく、ランプ光源としては、ハロゲンランプを使用してもよい。カメラ用光源からは、一例として、約600nmの波長の赤色光が照射される。撮像部10は、任意の駆動手段(不図示)によって移動可能に構成されている。
 画像認識部12は撮像部10によって撮像された画像を認識するものである。本実施形態において、画像認識部12は、撮像された画像群を画像処理することにより、合成画像を生成する機能を有している。例えば、画像認識部12は、複数回又は連続的に撮像した画像を重ね合わせて、第2の位置合わせ用マーク8に対する第1の位置合わせ用マーク7の位置を特定するための合成画像を生成することができる。画像認識部12と制御部14は、例えば、CPU等の演算手段とメモリ等の記憶手段等によって構成され、所定のプログラムを実行するものである。
 マイクロレンズアレイ6は、マイクロレンズをアレイ状にしたものであり、本実施形態において、マイクロレンズアレイ6は、1倍正立投影レンズを構成している。露光用マスク4を介して光源部3から照射された露光光は、さらにマイクロレンズアレイ6を介して、被露光材2に照射される。マイクロレンズアレイ6を介して被露光材2を露光することによって、露光光の視角(コリメーション半角)に起因する露光パターンの解像度低下を抑止することができる。
 図3(a)にマイクロレンズアレイ6の構成を示す。本実施形態において、マイクロレンズアレイ6は、4個の単位マイクロレンズアレイ61,62,63,64を積層した構造を有している。単位マイクロレンズアレイ61,62,63,64のそれぞれは、2個の凸レンズによって構成されるマイクロレンズ60を複数個備えている。したがって、露光用マスク4を介して、単位マイクロレンズアレイ61に入射した露光光は、単位マイクロレンズアレイ62と単位マイクロレンズアレイ63の間で一旦収束し、単位マイクロレンズアレイ64の下方に位置する被露光材2の露光側表面2a上において結像する。すなわち、単位マイクロレンズアレイ62と単位マイクロレンズアレイ63の間には、露光用マスク4のマスクパターン20の倒立等倍像が結像し、被露光材2の露光側表面2aには、マスクパターン20の正立等倍像が結像する。
 単位マイクロレンズアレイ62と単位マイクロレンズアレイ63の間には、視野絞り67が配置され、単位マイクロレンズアレイ63と単位マイクロレンズアレイ64の間には、開口絞り66が配置されている。視野絞り67と開口絞り66は、各マイクロレンズ60ごとに設けられている。本実施形態において、視野絞り67は、六角形に形成されていて、結像位置に近いところで六角形に視野を絞る。開口絞り66は、円形に形成されていて、各マイクロレンズ60の開口数(NA)を規定すると共に、マイクロレンズ60の光透過領域を円形に整形する。
 視野絞り67と開口絞り66の関係を図3(b)に示す。図3(b)に示すように、視野絞り67は、開口絞り66の中に六角形の開口として形成される。したがって、マイクロレンズ60を透過した露光光は、被露光材2の露光側表面2aに対して、図3(b)に示す六角形に囲まれた領域からのみ照射される。
 マイクロレンズアレイ6における視野絞り67の位置関係を図4に示す。マイクロレンズアレイ6は、任意の駆動手段(不図示)によって移動可能に構成されている。マイクロレンズアレイ6のサイズは、光源部3からの照射領域のサイズとほぼ同じであり、マイクロレンズアレイ6は、露光光を照射する光源部3と同期してX軸方向に移動する。被露光材2は、露光用マスク4と移動するマイクロレンズアレイ6とを介して露光される。複数のマイクロレンズ60は、X軸に垂直なY軸方向に並んで配置されてマイクロレンズ列を構成している。マイクロレンズ列はX軸方向に複数列配置されている。
 各視野絞り67の六角形は、図4に示すように、中央の四角形部分67aと、向かって左側の三角形部分67bと、向かって右側の三角形部分67cとから構成されている。左側三角形部分67bと右側三角形部分67cの開口面積は、四角形部分67aの開口面積の1/2である。X軸方向において、マイクロレンズ列の三角形部分67cに対応する位置に、次列のマイクロレンズ列の三角形部分67bが位置するように、複数のマイクロレンズ列は、互いにずれて配置されている。本実施形態において、複数のマイクロレンズ列は、3列で一群となるように配置されていて、1列目と4列目のマイクロレンズ列は、Y軸方向において、各マイクロレンズ60の配置位置が同一である。
 マイクロレンズアレイ6が、露光光を照射する光源部3と同期して、X軸に沿って図4の上方へ向かって移動する場合、被露光材2の露光側表面2aにおいて、1列目のマイクロレンズ列の視野絞り67の右側三角形部分67cを介して露光された領域は、続いて、2列目のマイクロレンズ列の視野絞り67の左側三角形部分67bを介して露光され、3列目のマイクロレンズ列では露光されない。1列目のマイクロレンズ列の視野絞り67の四角形部分67aを介して露光された領域は、2列目及び3列目のマイクロレンズ列では露光されない。1列目のマイクロレンズ列の視野絞り67の左側三角形部分67bを介して露光された領域は、2列目のマイクロレンズ列では露光されず、3列目のマイクロレンズ列の視野絞り67の右側三角形部分67cを介して露光される。
 したがって、被露光材2の露光側表面2aは、3列のマイクロレンズ列が通過するごとに、視野絞り67の2個の三角形部分67b,67cを介して露光されるか、又は、1個の四角形部分67aを介して露光される。左側三角形部分67bと右側三角形部分67cの開口面積は、四角形部分67aの開口面積の1/2であるため、3列のマイクロレンズ列が通過するごとに、被露光材2は均一な光量の露光を受けることになる。したがって、被露光材2の露光用領域21上を、3n(nは自然数)個のマイクロレンズ列が移動するようにマイクロレンズアレイ6を構成することによって、被露光材2を均一な光量で露光することができる。
 マイクロレンズアレイ6は、被露光材2への露光処理に加えて、露光処理に先立って実行される露光用マスク4と被露光材2の位置合わせのためにも使用される。露光用マスク4と被露光材2の位置合わせ処理において、マイクロレンズアレイ6は、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8の間をX軸方向に移動するように構成されている。これにより、第1の位置合わせ用マーク7の少なくとも一部が、マイクロレンズアレイ6を介して、露光用マスク4における被露光材2と対向する側のマスク表面4aに結像する。マスク表面4aには第2の位置合わせ用マーク8が形成されているため、マイクロレンズアレイ6を介して結像した第1の位置合わせ用マーク7の少なくとも一部と、マスク表面4aに形成されている第2の位置合わせ用マーク8とが同一平面上に位置することになる。したがって、撮像部10は、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8を同一平面上において撮像することができる。
 図5(a)~(c)に、マイクロレンズアレイ6と、マイクロレンズアレイ6を介してマスク表面4aに結像する第1の位置合わせ用マーク7の像を示す。前述のように、単位マイクロレンズアレイ62と単位マイクロレンズアレイ63の間には、視野絞り67が配置されている。したがって、マスク表面4aに結像される第1の位置合わせ用マーク7の像は、視野絞り67の六角形の開口に対応した像となる。本実施形態においては、マイクロレンズアレイ6は、撮像部10が撮像している間、被露光材2に設けられた第1の位置合わせ用マーク7と露光用マスク4に設けられた第2の位置合わせ用マーク8との間において移動する。撮像部10は、移動するマイクロレンズアレイ6を介して露光用マスク4に結像した第1の位置合わせ用マーク7の少なくとも一部を、第2の位置合わせ用マーク8と共に複数回撮像する。
 図5(a)にマイクロレンズアレイ6が第1の位置にある場合における第1の位置合わせ用マーク7の像を示す。この場合、第1の位置合わせ用マーク7の向かって左側の端縁は、視野絞り67の開口に対応する位置にないため、マスク表面4aに結像していない。第1の位置において、撮像された第1の位置合わせ用マーク7の像をマイクロレンズアレイ6の右側に示す。図5(a)~(c)においては、説明のため、撮像された画像において第1の位置合わせ用マーク7の像のみを示している。第1の位置合わせ用マーク7の部分的な像を四角形に囲む2点鎖線は仮想線であり、第1の位置合わせ用マーク7の対応する端縁の位置を、説明のために仮想的に表示したものである。
 マイクロレンズアレイ6は移動方向D1に移動する。図5(b)にマイクロレンズアレイ6が第2の位置にある場合における第1の位置合わせ用マーク7の像を示す。この場合、第1の位置合わせ用マーク7の向かって右側の端縁は、視野絞り67の開口に対応する位置にないため、マスク表面4aに結像していない。しかしながら、第2の位置において撮像された第1の位置合わせ用マーク7の像は、画像認識部12によって、第1の位置において先に撮像された第1の位置合わせ用マーク7の像に重ね合わされる。この重ね合わされた像をマイクロレンズアレイ6の右側に示す。このように、第1の位置において撮像された第1の位置合わせ用マーク7の像に、第2の位置において撮像された第1の位置合わせ用マーク7の像を重ねることによって、第1の位置合わせ用マーク7の左右の端縁を検出することができる。
 マイクロレンズアレイ6がさらに移動方向D1に移動して第3の位置にきた場合における第1の位置合わせ用マーク7の像を図5(c)に示す。第3の位置において撮像された第1の位置合わせ用マーク7の像は、画像認識部12によって、第1及び第2の位置において撮像された画像に重ね合される。このように、マイクロレンズアレイ6を移動させながら、マイクロレンズアレイ6を介してマスク表面4aに結像する第1の位置合わせ用マーク7の部分的な像を複数回撮像し、撮像した複数枚の画像を重ね合わせた合成画像を生成することにより、第1の位置合わせ用マーク7の端縁をより確実に検出することができる。したがって、第1の位置合わせ用マーク7の中心位置を、より正確に特定することができる。
 第1の位置合わせ用マーク7の部分的な像は、第1の位置合わせ用マーク7の端縁を検出できる程度に、撮像されるごとに異なる位置に結像するものであることが望ましい。したがって、空間的な撮像間隔は、マイクロレンズアレイ6におけるマイクロレンズ列の配列ピッチの整数倍とならない間隔にする。また、撮像回数は、マイクロレンズ列群を構成するマイクロレンズ列の列数以上であることが望ましい。前述のように、本実施形態においては、マイクロレンズアレイ6は、3列のマイクレンズ列によって1群を形成しているため、撮像回数は3回以上であることが望ましい。
 図5(a)~(c)において撮像された3枚の画像を重ね合せた合成画像を図5(d)に示す。撮像部10はマスク表面4aに結像した第1の位置合わせ用マーク7の部分的な像と、第2の位置合わせ用マーク8を同一画像内に同時に撮像することができる。第2の位置合わせ用マーク8は露光用マスク4のマスク表面4aに形成されていて、撮像部10は、撮像中は移動せずに撮像を実行する。したがって、複数回撮像された画像において、第2の位置合わせ用マーク8の位置は変化しない。
 なお、図5(d)において、説明のため一例として、第1の位置合わせ用マーク7が第2の位置合わせ用マーク8の向かって右下側にずれている場合を図示している。図2(c)に示すように、本実施形態においては、第1の位置合わせ用マーク7の中心と第2の位置合わせ用マーク8の中心が一致する位置が、露光用マスク4と被露光材2の正しい配置である。上記合成画像から、第1の位置合わせ用マーク7の中心を特定し、第2の位置合わせ用マーク8の中心と一致するように、露光用マスク4と被露光材2とを位置合わせすることができる。
 次に、露光装置1の作動方法及び露光装置1を用いた露光済み材の製造方法について説明する。図6及び図7に、露光装置1における各構成部材の位置関係を示し、図8に、露光装置1の作動及び露光装置1を用いた露光済み材の製造方法に関する工程を示す。露光装置1においては、被露光材2への露光に先立って、露光用マスク4と被露光材2の位置合わせが行われる。この位置合わせ処理を実行する前、図6(a)に示すように、撮像部10は露光用マスク4の外側に配置されていて、マイクロレンズアレイ6は、被露光材2と露光用マスク4の間に静止して配置されている。
 第1の位置合わせ用マーク7と第2の位置合わせ用マーク8を撮像するために、撮像部10は移動方向D2へ移動し、図6(b)に示すように、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8の上方において、撮像用所定位置に静止する。本実施形態において撮像部10の移動方向D2は、マイクロレンズの移動方向D1と同方向である。第1の位置合わせ用マーク7と第2の位置合わせ用マーク8を用いた露光用マスク4と被露光材2の位置合わせは、被露光材2と露光用マスク4とを極めて高精度(例えば、±1μm程度)に位置合わせするためのものである。したがって、この高精度な位置合わせ前の露光用マスク4と被露光材2は、マイクロレンズアレイ6を介してマスク表面4aに結像する第1の位置合わせ用マーク7の像と、露光用マスク4に設けられた第2の位置合わせ用マーク8とを撮像部10によって同一画像内に捉えることができる程度に、位置を合わせて配置されている。
 光源部3は、被露光材2への露光が開始するまで、露光用マスク4の端部上方に静止して配置されている。
 撮像部10が撮像用所定位置に静止すると、図6(b)に示すように、マイクロレンズアレイ6が移動方向D1に移動すると共に、移動するマイクロレンズアレイ6を介して露光用マスク4に結像された第1の位置合わせ用マーク7の少なくとも一部と、露光用マスク4に設けられた第2の位置合わせ用マーク8を、撮像部10によって撮像する(図8,ステップ1)。この撮像は、図5を参照して前述したように、複数回実行される。撮像の間、被露光材2と露光用マスク4と撮像部10は、移動せずに所定位置に固定されている。
 画像認識部12は、前述のように、撮像した複数回の画像を重ね合わせた合成画像(図5(d)参照)を生成し、この合成画像から、撮像された第1の位置合わせ用マーク7の少なくとも一部と第2の位置合わせ用マーク8とを認識する(図8,ステップ2)。次いで、認識された第1の位置合わせ用マーク7の少なくとも一部と第2の位置合わせ用マーク8との位置情報に基づいて、被露光材2と露光用マスク4を位置合わせする(ステップ3)。本実施形態においては、前述のように、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8の中心が一致する位置が、露光用マスク4と被露材の正しい位置関係である。
 したがって、合成画像(図5(d)参照)における第1の位置合わせ用マーク7の少なくとも一部と第2の位置合わせ用マーク8から、第1の位置合わせ用マーク7の中心位置と第2の位置合わせ用マーク8の中心位置が、画像認識部12によって特定される。そして、位置合わせ制御部16によって、第1の位置合わせ用マーク7の中心と第2の位置合わせ用マーク8の中心が一致するように、任意の駆動手段を介して露光用マスク4の位置が調整される。
 露光用マスク4と被露光材2の位置合わせが完了すると、撮像用所定位置に静止している撮像部10が被露光材2への露光を妨げないように、カメラ退避移動制御部17が撮像部10を任意の駆動手段を介して所定の方向に移動させる(図8,ステップ4)。露光開始タイミング制御部18は、撮像部10の移動が完了する前に、光源部3からの露光光の照射を開始させる(ステップ5)。被露光材2が露光されている間、被露光材2と露光用マスク4は、移動せずに位置合わせされた位置に固定されている。
 ステップ4において、撮像部10は、図7(c)に示すように移動方向D3に移動を開始する。光源部3は、撮像部10の移動が完了する前、一例として、撮像部10の移動開始と同時に露光光5の照射を開始する。光源部3は露光光5を照射しながら、移動方向D4に移動していく。このとき、マイクロレンズアレイ6は、光源部3と同期して移動方向D5に移動していく。本実施形態において、移動方向D3~D5は同方向であり、撮像時のマイクロレンズアレイ6の移動方向D1の逆方向である。撮像部10は図7(d)に示すように、露光用マスク4の外側における所定の退避位置まで移動して静止する。光源部3は露光光5を照射しながら、マイクロレンズアレイ6と共に露光用マスク4の一方の端部から他方の端部まで移動して、被露光材2の露光用領域21への露光を完了させる。
 以上、第1の実施形態に係る露光装置1について、被露光材2に形成された1個の露光用領域21と露光用領域21に対する露光用マスク4の位置合わせ及び露光を例に挙げて説明したが、露光装置1は、被露光材2に形成された複数の露光用領域21を同時に露光することができるように構成されている。露光用領域21が複数個形成されている被露光材2の露光側表面2aを図9に示す。
 被露光材2の露光側表面2aには16個の露光用領域21a~21pが形成されている。露光用領域21a~21pは、図2(b)に示す露光用領域21にそれぞれ対応している。各露光用領域21a~21pに対して、第1の位置合わせ用マーク7が2個ずつ配置されている。露光装置1は、各露光用領域21a~21pの内、4個の露光用領域に対して4個の露光用マスク4を同時に配置し、一度に4個の露光用領域を露光することができるように構成されている。4個の露光用マスク4は、マスク保持手段(不図示)によって保持される。
 一例として、まず、露光用領域21a,21c,21i,21kに対して、4個の露光用マスク4をセットして、各露光用マスク4と被露光材2との位置合わせ(図8,ステップ1~3)を実行する。位置合わせが完了したら、4個の露光用マスク4にそれぞれ対応して配置された4個の撮像部10が同時に移動する(図8,ステップ4)。撮像部10の移動が完了する前に、一例として、撮像部10の移動開始と同時に、4個の露光用マスク4にそれぞれ対応して配置された4個の光源部3から露光光5の照射が同時に開始され(図8,ステップ5)、各光源部3は各露光用領域21a,21c,21i,21kに露光光5を照射しながら、対応する各マイクロレンズと共に互いに同期して移動していく(図7(c)参照)。各露光用領域21a,21c,21i,21kに対する露光が完了すると、保持されている4個の露光用マスク4に対して次の露光用領域21b,21d,21j,21lが対応するように、任意の駆動手段(不図示)によって被露光材2をX軸方向(図1)に移動させる。
 各露光用領域21b,21d,21j,21lに対する各露光用マスク4の位置合わせ及び露光が完了すると、続いて、4個の露光用マスク4に対して次の露光用領域21f,21h,21n,21pが対応するように、被露光材2をY軸方向(図1において紙面に垂直方向)に移動させる。各露光用領域21f,21h,21n,21pに対する各露光用マスク4の位置合わせ及び露光が完了すると、さらに続いて、4個の露光用マスク4に対して次の露光用領域21e,21g,21m,21oが対応するように、被露光材2をX軸方向に移動させる。各露光用領域21e,21g,21m,21oに対する各露光用マスク4の位置合わせ及び露光が完了すると、すべての露光用領域21a~21pに対する露光が完了したことになる。
 第1の実施形態に係る露光装置1は様々な利点を有している。一般的に、露光用マスクを被露光材に近接させて配置する近接露光方式においては、露光用マスクと被露光材の距離は200μm程度まで近接させることができる。しかしながら、露光用マスク4と被露光材2との間にマイクロレンズアレイ6を有する露光装置1においては、露光用マスク4と被露光材2の距離を近接させることができない。露光用マスク4と被露光材2の距離は、前述のように、一例として、5~15mm程度必要になる。この場合、視野とアラインメント精度を考慮すると、撮像部10のレンズ倍率は、一例として、4倍程度必要になる。したがって、5~15mmの距離は、5~15mm×4=80~240mmの結像位置のずれを生じる。
 しかしながら、第1の実施形態に係る露光装置1では、撮像部10によって撮像される第1の位置合わせ用マーク7の少なくとも一部は、マイクロレンズアレイ6を介して露光用マスク4に結像されたものである。したがって、撮像部10は、露光用マスク4に設けられた第2の位置合わせ用マーク8と、マイクロレンズアレイ6を介して露光用マスク4に結像された第1の位置合わせ用マーク7の少なくとも一部を同一平面上において撮像することができる。よって、被露光材2と露光用マスク4との間の距離に起因する、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8の結像位置のずれを解消することができる。
 露光装置1においては、上記結像位置のずれを解消するために、撮像対象物に対する光路の光路長を調整する方法を採用していない。したがって、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8を撮像する撮像部10の光軸11が所定の角度からずれて、露光用マスク4のマスク表面4aに対して斜めに傾斜してしまった場合であっても、撮像部10によって撮像されて画像認識部12によって認識される第1の位置合わせ用マーク7と第2の位置合わせ用マーク8との相対的な位置は変化しない。したがって、露光用マスク4と被露光材2の相対的な位置をより正確に特定することができる。
 また、露光装置1では、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8を撮像するために、異なる光路長の2つの光路及び各光路に対する光路長調整手段を設ける必要がなく、加えて、各光路の光軸上に位置合わせレティクルを配置する必要もない。したがって、露光用マスク4と被露光材2の位置合わせのために、コストを要する複雑な機構は不要である。
 また、露光装置1における撮像部10は単一のカメラであり、マイクロレンズアレイ6を介して露光用マスク4に結像された第1の位置合わせ用マーク7と、第2の位置合わせ用マーク8とを同時に同一画像内に撮像している。したがって、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8をそれぞれ別のカメラによって別々に撮像した場合と比較して、第1の位置合わせ用マーク7と第2の位置合わせ用マーク8の相対的な位置関係をより正確に特定することができる。
 さらに、第1の実施形態に係る露光装置1では、撮像が終了した後に、被露光材2への露光を妨げないように撮像部10が所定の方向に移動し、撮像部10の移動が完了する前に、位置合わせされた被露光材2と露光用マスク4に対して、露光開始タイミング制御部18が光源部3からの露光光5の照射を開始させるように構成されている。したがって、撮像部10の移動が完了する前に露光が開始されるため、露光装置1を用いた作業時間の遅延を解消することができる。
 また、光源部3は移動しながら露光光5を照射するように構成されているため、より小型の光源を使用することが可能であり、露光装置1における省スペース化を図ることができる。加えて、被露光材2と露光用マスク4の間において、マイクロレンズアレイ6を移動可能に構成しているため、第1の位置合わせ用マーク7の撮像と被露光材2の露光を、より小型且つ共通のマイクロレンズアレイ6を用いて実行することができる。大型のマイクロレンズアレイ6は高価であるため、第1の位置合わせ用マーク7の撮像と被露光材2の露光が、より小型且つ共通のマイクロレンズアレイ6を用いて可能となったことにより、露光装置1の製造コストを削減することができる。
 露光装置1において、撮像部10は、移動するマイクロレンズアレイ6を介して露光用マスク4に結像した第1の位置合わせ用マーク7の少なくとも一部を、第2の位置合わせ用マーク8と共に複数回撮像する。画像認識部12は、複数回撮像した画像を重ね合わせた合成画像を生成する。このように、マイクロレンズアレイ6を介して露光用マスク4に結像した第1の位置合わせ用マーク7の部分的な像を重ね合わせることによって、第1の位置合わせ用マーク7の位置情報をより多く取得することができる。したがって、マイクロレンズアレイ6によって結像された第1の位置合わせ用マーク7の位置をより確実に特定することができる。
 [他の実施形態]
 以上、本発明の実施形態について述べたが、本発明は既述の実施形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形及び変更が可能である。例えば、第1の実施形態に係る露光装置1においては、複数の露光用領域21a~21pに対して複数個の露光用マスク4を同時に配置しているが、これに限定されない。単一の露光用マスク4を用いてもよい。また、第1の実施形態に係る露光装置1においては、被露光材2に複数の露光用領域21a~21pが形成されているが、これに限定されない。被露光材2に単一の露光用領域21を形成してもよい。
 第1の位置合わせ用マーク7及び第2の位置合わせ用マーク8の形状は、図2(c)に図示したものに限定されない。第1の位置合わせ用マーク7及び第2の位置合わせ用マーク8の位置を特定できるマークであれば、どのような形状のマークであってもよい。
 第1の位置合わせ用マーク7及び第2の位置合わせ用マーク8の個数は、位置合わせの精度を保つために露光用領域に対して2個以上であることが望ましいが、その個数は限定されない。第1の位置合わせ用マーク7及び第2の位置合わせ用マーク8の配置位置は、図2(a)及び図2(b)に図示した位置に限定されない。例えば、各露光用領域に対して、4個の第1の位置合わせ用マーク7を配置してもよく、各第1の位置合わせ用マーク7を各露光用領域外側の四隅に配置してもよい。この場合には、露光用マスク4において、4個の第2の位置合わせ用マーク8を、それぞれ、各第1の位置合わせ用マーク7に対応する位置に配置することが望ましい。
 第1の実施形態において、撮像部10は、露光用マスク4と被露光材2との位置合わせが完了した後に、所定の方向に移動するように構成されているが、これに限定されない。撮像部10は撮像が完了すれば、露光用マスク4と被露光材2との位置合わせが完了する前に移動を開始することができる。この場合、露光開始タイミング制御部18は、露光用マスク4と被露光材2との位置合わせが完了した後、撮像部10の移動が完了する前に、光源部3からの露光光5の照射を開始させる。撮像部10の移動が完了する前であれば、光源部3からの露光光5の照射を開始してよい。したがって、露光光5の照射開始は、撮像部10の移動開始前であってもよく、撮像部10の移動開始と同時であってもよく、撮像部10の移動開始後且つ撮像部10の移動が完了する前であってもよい。
 第1の実施形態において、撮像部10は、移動するマイクロレンズアレイ6を介して露光用マスク4に結像した第1の位置合わせ用マーク7の少なくとも一部を、第2の位置合わせ用マーク8と共に複数回撮像するように構成されているが、これに限定されない。1回の撮像によって取得した第1の位置合わせ用マーク7と第2の位置合わせ用マーク8の位置情報に基づいて、露光用マスク4と被露光材2の位置合わせを実行してもよい。また、時間的な撮像間隔を極めて短く(一例として1秒間に30回)して、連続的に撮像を実行し、連続的に撮像した画像を重ね合せた合成画像を生成してもよい。
 第1の実施形態において撮像部10は、内蔵したカメラ用光源による同軸落射照明方式を採用したCCDカメラであるが、これに限定されない。カメラ用光源はCCDカメラに内蔵されていなくてもよく、単独の光源を別途カメラ用光源として設けてもよい。また、同軸落射照明方式以外の照明方式を採用してもよい。撮像部10として、CCDカメラに代えてCMOS(相補性金属酸化膜半導体)カメラを用いてもよい。
 1 露光装置
 2 被露光材
 3 光源部
 4 露光用マスク
 5 露光光
 6 マイクロレンズアレイ
 7 第1の位置合わせ用マーク
 8 第2の位置合わせ用マーク
 10 撮像部
 12 画像認識部
 16 位置合わせ制御部
 18 露光開始タイミング制御部
 

Claims (8)

  1.  被露光材に露光光を照射する光源と、
     前記光源と前記被露光材との間に保持される露光用マスクと、
     前記被露光材と前記露光用マスクとの間に配置されるマイクロレンズアレイと、
     前記被露光材に設けられた第1の位置合わせ用マークと前記露光用マスクに設けられた第2の位置合わせ用マークとを用いて前記被露光材と前記露光用マスクとを位置合わせするために、前記マイクロレンズアレイを介して前記露光用マスクに結像された第1の位置合わせ用マークの少なくとも一部と、前記第2の位置合わせ用マークとを撮像し、前記撮像が終了すると、前記被露光材への露光を妨げないように所定の方向に移動する撮像部と、
     前記撮像部によって撮像された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとを認識する画像認識部と、
     前記画像認識部によって認識された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとの位置情報に基づいて、前記被露光材と前記露光用マスクとを位置合わせする位置合わせ制御部と、
     前記撮像部の前記移動が完了する前に、前記光源からの前記露光光の照射を開始させる露光開始タイミング制御部と
     を備えることを特徴とする露光装置。
  2.  前記光源は移動しながら前記露光光を照射するものであることを特徴とする請求項1記載の露光装置。
  3.  前記マイクロレンズアレイは、前記撮像部が撮像している間、前記被露光材に設けられた前記第1の位置合わせ用マークと前記露光用マスクに設けられた前記第2の位置合わせ用マークとの間において一方向に移動し、前記光源が前記露光光を照射している間、前記光源と共に、前記一方向の逆方向に移動するものであることを特徴とする請求項2記載の露光装置。
  4.  前記マイクロレンズアレイは、前記撮像部が撮像している間、前記被露光材に設けられた前記第1の位置合わせ用マークと前記露光用マスクに設けられた前記第2の位置合わせ用マークとの間において移動するものであり、
     前記撮像部は、移動する前記マイクロレンズアレイを介して前記露光用マスクに結像した前記第1の位置合わせ用マークの少なくとも一部を、前記第2の位置合わせ用マークと共に複数回又は連続的に撮像するものであり、
     前記画像認識部は、前記複数回又は連続的に撮像した画像を重ね合わせて、前記第2の位置合わせ用マークに対する前記第1の位置合わせ用マークの位置を特定するための合成画像を生成するものであることを特徴とする請求項1から3のいずれか1項記載の露光装置。
  5.  被露光材に露光光を照射する光源と、前記光源と前記被露光材との間に保持される露光用マスクと、前記被露光材と前記露光用マスクとの間に配置されるマイクロレンズアレイとを備える露光装置を用いて、露光済み材を製造する露光済み材製造方法であって、
     前記被露光材に設けられた第1の位置合わせ用マークと前記露光用マスクに設けられた第2の位置合わせ用マークとを用いて前記被露光材と前記露光用マスクとを位置合わせするために、前記マイクロレンズアレイを介して前記露光用マスクに結像された第1の位置合わせ用マークの少なくとも一部と、前記露光用マスクの第2の位置合わせ用マークとを、撮像部が撮像する撮像ステップと、
     前記撮像ステップによって撮像された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとを画像認識部が認識する画像認識ステップと、
     前記画像認識ステップによって認識された第1の位置合わせ用マークの少なくとも一部と第2の位置合わせ用マークとの位置情報に基づいて、前記被露光材と前記露光用マスクとを、位置合わせ制御部が位置合わせする位置合わせステップと、
     前記撮像ステップにおける前記撮像が終了した後に、前記被露光材への露光を妨げないように前記撮像部が所定の方向に移動する撮像部移動ステップと、
     前記撮像部移動ステップにおける前記撮像部の前記移動が完了する前に、前記位置合わせステップによって位置合わせされた前記被露光材と前記露光用マスクに対して、露光開始タイミング制御部が前記光源からの前記露光光の照射を開始させる露光開始ステップと
     を含むことを特徴とする露光済み材製造方法。
  6.  前記光源が移動しながら前記露光光を照射する露光ステップをさらに含むことを特徴とする請求項5記載の露光済み材製造方法。
  7.  前記撮像ステップにおいて、前記被露光材に設けられた前記第1の位置合わせ用マークと前記露光用マスクに設けられた前記第2の位置合わせ用マークとの間を前記マイクロレンズアレイが一方向に移動し、
     前記露光ステップにおいて、前記マイクロレンズアレイは、前記光源と共に、前記一方向の逆方向に移動することを特徴とする請求項6記載の露光済み材製造方法。
  8.  前記撮像ステップにおいて、前記被露光材に設けられた前記第1の位置合わせ用マークと前記露光用マスクに設けられた前記第2の位置合わせ用マークとの間を前記マイクロレンズアレイが移動し、移動する前記マイクロレンズアレイを介して前記露光用マスクに結像した前記第1の位置合わせ用マークの少なくとも一部を、前記第2の位置合わせ用マークと共に複数回又は連続的に前記撮像部が撮像し、
     前記画像認識ステップにおいて、前記画像認識部が前記複数回又は連続的に撮像した画像を重ね合わせて、前記第2の位置合わせ用マークに対する前記第1の位置合わせ用マークの位置を特定するための合成画像を生成することを特徴とする請求項5から7のいずれか1項記載の露光済み材製造方法。
PCT/JP2013/050011 2012-01-06 2013-01-04 露光装置及び露光済み材製造方法 WO2013103152A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147018966A KR102026107B1 (ko) 2012-01-06 2013-01-04 노광 장치 및 노광재 제조 방법
CN201380004517.1A CN104024943B (zh) 2012-01-06 2013-01-04 曝光装置及已曝光材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-001454 2012-01-06
JP2012001454A JP5842251B2 (ja) 2012-01-06 2012-01-06 露光装置及び露光済み材製造方法

Publications (1)

Publication Number Publication Date
WO2013103152A1 true WO2013103152A1 (ja) 2013-07-11

Family

ID=48745209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050011 WO2013103152A1 (ja) 2012-01-06 2013-01-04 露光装置及び露光済み材製造方法

Country Status (5)

Country Link
JP (1) JP5842251B2 (ja)
KR (1) KR102026107B1 (ja)
CN (1) CN104024943B (ja)
TW (1) TWI578110B (ja)
WO (1) WO2013103152A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2029773B1 (en) * 2021-11-16 2022-12-30 Univ Xihua Composite lithography alignment system and method based on super-resolution imaging of dielectric microspheres

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104702340A (zh) * 2015-02-15 2015-06-10 长芯盛(武汉)科技有限公司 一种光传输端子
TWI743845B (zh) * 2015-03-31 2021-10-21 日商尼康股份有限公司 曝光裝置、平面顯示器之製造方法、元件製造方法、及曝光方法
CN110232867B (zh) * 2019-05-13 2022-01-04 Tcl华星光电技术有限公司 显示面板的母板曝光结构

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244254A (ja) * 1996-03-13 1997-09-19 Nikon Corp 液晶用露光装置
JPH10116774A (ja) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd 露光方法およびその装置
JP2003241396A (ja) * 2002-02-19 2003-08-27 Hitachi Electronics Eng Co Ltd 露光装置及び露光方法
JP2009277900A (ja) * 2008-05-15 2009-11-26 V Technology Co Ltd 露光装置及びフォトマスク
WO2010047362A1 (ja) * 2008-10-24 2010-04-29 株式会社ブイ・テクノロジー 露光装置及びフォトマスク
WO2011077992A1 (ja) * 2009-12-22 2011-06-30 株式会社ブイ・テクノロジー フォトマスク

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628390B1 (en) * 2000-01-24 2003-09-30 Kenneth C. Johnson Wafer alignment sensor using a phase-shifted microlens array
JP2004103644A (ja) 2002-09-05 2004-04-02 Sumitomo Heavy Ind Ltd 近接したマスクとウエハの位置検出装置と方法
JP4219645B2 (ja) * 2002-09-12 2009-02-04 シャープ株式会社 マイクロレンズアレイの露光方法
JP4921512B2 (ja) * 2009-04-13 2012-04-25 キヤノン株式会社 露光方法、露光装置およびデバイス製造方法
KR101941323B1 (ko) 2011-08-10 2019-01-22 브이 테크놀로지 씨오. 엘티디 노광 장치용 얼라인먼트 장치 및 얼라인먼트 마크

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244254A (ja) * 1996-03-13 1997-09-19 Nikon Corp 液晶用露光装置
JPH10116774A (ja) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd 露光方法およびその装置
JP2003241396A (ja) * 2002-02-19 2003-08-27 Hitachi Electronics Eng Co Ltd 露光装置及び露光方法
JP2009277900A (ja) * 2008-05-15 2009-11-26 V Technology Co Ltd 露光装置及びフォトマスク
WO2010047362A1 (ja) * 2008-10-24 2010-04-29 株式会社ブイ・テクノロジー 露光装置及びフォトマスク
WO2011077992A1 (ja) * 2009-12-22 2011-06-30 株式会社ブイ・テクノロジー フォトマスク

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2029773B1 (en) * 2021-11-16 2022-12-30 Univ Xihua Composite lithography alignment system and method based on super-resolution imaging of dielectric microspheres

Also Published As

Publication number Publication date
JP5842251B2 (ja) 2016-01-13
CN104024943A (zh) 2014-09-03
TW201331724A (zh) 2013-08-01
JP2013142719A (ja) 2013-07-22
KR102026107B1 (ko) 2019-09-27
CN104024943B (zh) 2016-03-02
KR20140119697A (ko) 2014-10-10
TWI578110B (zh) 2017-04-11

Similar Documents

Publication Publication Date Title
TWI431430B (zh) 曝光方法、曝光裝置、光罩以及光罩的製造方法
KR101941323B1 (ko) 노광 장치용 얼라인먼트 장치 및 얼라인먼트 마크
TWI443472B (zh) Pattern forming method and apparatus, exposure method and apparatus, and component manufacturing method and element
JP4132095B2 (ja) 走査型露光装置
KR101727773B1 (ko) 노광 장치
TWI432917B (zh) 曝光裝置
JP2004335864A (ja) 露光装置及び露光方法
JP5842251B2 (ja) 露光装置及び露光済み材製造方法
JP6261207B2 (ja) 露光装置、露光方法、それらを用いたデバイスの製造方法
KR101787155B1 (ko) 노광 장치
CN106796404A (zh) 制造光刻结构的光学***
JP5404619B2 (ja) 露光装置
JP6718281B2 (ja) 基板の位置決め方法および基板の位置決め装置
JP5895275B2 (ja) アライメントマーク及び露光装置
KR20130034521A (ko) 광학계의 왜곡 수차 측정 방법 및 왜곡 수차 측정 장치
JP2006084783A (ja) 両面露光装置のマスクアライメント方法及びマスクアライメント装置
KR102020934B1 (ko) 마스크리스 노광 장치의 얼라인 방법
JP2008152010A (ja) 鮮鋭化素子の製造方法
JP2008009158A (ja) カラーフィルタの描画方法
JP6581417B2 (ja) 露光装置、露光方法及び物品の製造方法
KR102024785B1 (ko) 마스크리스 노광 장치의 얼라인 방법
JPH08339959A (ja) 位置合わせ方法
JP2001201867A (ja) 露光方法及び露光装置、デバイス製造方法
JP2015082561A (ja) 投影露光装置
JPH08288203A (ja) 走査型露光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13733577

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147018966

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13733577

Country of ref document: EP

Kind code of ref document: A1