WO2013099521A1 - Electroconductive composition, method for manufacturing wiring board, wiring board, electrode, method for manufacturing electrode, and electronic device - Google Patents

Electroconductive composition, method for manufacturing wiring board, wiring board, electrode, method for manufacturing electrode, and electronic device Download PDF

Info

Publication number
WO2013099521A1
WO2013099521A1 PCT/JP2012/081170 JP2012081170W WO2013099521A1 WO 2013099521 A1 WO2013099521 A1 WO 2013099521A1 JP 2012081170 W JP2012081170 W JP 2012081170W WO 2013099521 A1 WO2013099521 A1 WO 2013099521A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resin
conductive composition
base material
conductive
Prior art date
Application number
PCT/JP2012/081170
Other languages
French (fr)
Japanese (ja)
Inventor
米田 直樹
鈴木 信之
吉田 学
鎌田 俊英
Original Assignee
太陽ホールディングス株式会社
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011284896A external-priority patent/JP6168510B2/en
Priority claimed from JP2012027608A external-priority patent/JP2013164990A/en
Application filed by 太陽ホールディングス株式会社, 独立行政法人産業技術総合研究所 filed Critical 太陽ホールディングス株式会社
Publication of WO2013099521A1 publication Critical patent/WO2013099521A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1216Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by screen printing or stencil printing

Definitions

  • the present invention relates to a conductive composition, a method for manufacturing a wiring substrate, a wiring substrate, an electrode, a method for manufacturing an electrode, and an electronic device. More specifically, the wiring pattern having excellent adhesion to a substrate and low resistance is preferable. , A wiring board manufacturing method and wiring board using the same, and a conductive portion that can be manufactured at low cost and has excellent adhesion to the base material and low resistance.
  • the present invention relates to an electrode, an electrode manufacturing method, and an electronic device using the same.
  • a technique for forming a fine wiring pattern a technique of patterning a metal thin film formed by a heating vapor deposition method or a sputtering method by a photolithography method is known.
  • a vacuum environment is indispensable for the heating vapor deposition method and the sputtering method, and the production cost is a problem.
  • the photolithography method uses a large amount of a solvent, the burden on the environment is also cited as a problem.
  • an etching method has been used for forming conductive parts such as printed wiring boards and RFID (radio frequency recognition) electrodes.
  • a desired conductive portion made of an aluminum foil or a copper foil is formed by etching a substrate obtained by laminating an aluminum foil or a copper foil with an insulating resin.
  • the etching method includes steps such as coating of an etching resist and peeling of the etching resist, there are many work steps, and there is a problem that productivity is poor as compared with the printing method.
  • the etching method has problems such as waste liquid treatment, which is not preferable from the viewpoint of the environment.
  • Patent Document 1 a metal particle having a nano-order particle size is applied to a base material base and heated at a low temperature (200 to 300 ° C.), whereby a low resistivity (about 10 ⁇ ⁇ cm)) and a conductive nanoparticle paste capable of producing a conductive pattern have been proposed.
  • metal particles having a particle size of nano-order as proposed in Patent Document 1 are generally expensive, it is difficult to manufacture a wiring board and a conductive part at low cost.
  • Patent Document 2 proposes a wiring board that does not use nano-order metal particles, does not require high-temperature heating, and has a conductive portion formed on a resinous substrate at a low cost, and a method for manufacturing this wiring board. ing. Specifically, a conductive paste is applied to the surface of the substrate in a desired wiring pattern shape or conductive portion shape, and the obtained wiring pattern or conductive portion is pressed with a pressure roller, and then the temperature is 150 ° C. or lower. Heat with. As a result, a wiring board in which the base material, the wiring pattern, and the conductive portion are firmly adhered is manufactured.
  • Patent Document 3 discloses a conductive paste containing silver-coated copper powder in which at least a part of the surface of the copper powder is covered with silver, and a binder resin having a glass transition temperature (Tg) of 35 to 170 ° C.
  • Tg glass transition temperature
  • a method for forming a conductor pattern has been proposed in which the conductive paste is printed in a predetermined shape on a substrate and then pressed or heated and humidified. This method compresses silver-coated copper powder with a press to increase the contact area between conductive particles such as metal powder, lowering the specific resistance compared to conventional conductor patterns that are not pressed, and improving conductivity. It is something that is going to be raised.
  • an object of the present invention is to provide an electrically conductive composition that can efficiently produce a wiring board at low cost, and that can satisfactorily form a wiring pattern excellent in adhesion to a substrate and low resistance
  • An object of the present invention is to provide a method of manufacturing a wiring board and a wiring board used.
  • Another object of the present invention is to provide an electrode having a conductive part that can be manufactured at low cost and has excellent adhesion to a substrate and low resistance, a method for manufacturing the electrode, and an electronic device using the electrode. There is.
  • the present inventors have found that in a conductive composition used for a method of manufacturing a wiring board that is subjected to a resistance reduction treatment by pressurizing a wiring pattern formed on a substrate, a binder resin By using a thermoplastic resin and a thermosetting resin in combination, the adhesion between the wiring pattern and the substrate is improved even when metal particles other than silver such as aluminum and copper are used as the conductive particles. I found out that it is possible.
  • the present inventors flatten the surface of at least the conductive part so as to have a metallic luster by applying pressure to the substrate having the conductive part, and use thermoplastic resin and heat as a binder resin for the conductive part.
  • thermoplastic resin and heat as a binder resin for the conductive part.
  • the conductive composition of the present invention is a conductive composition used in a method for manufacturing a wiring board that is subjected to a resistance reduction treatment by pressurizing a wiring pattern formed on a substrate.
  • a thermoplastic resin and a thermosetting resin as a binder resin, a curing agent, and metal particles are contained.
  • the low resistance treatment is performed by pressing the wiring pattern formed on the base material in the vertical direction with the pressurizing body while the base material or the pressurizing body is in the horizontal direction. It is preferable that it is a process to move to.
  • the thermoplastic resin is preferably at least one selected from polyester resins and phenoxy resins.
  • the thermosetting resin is preferably an epoxy resin.
  • the method for manufacturing a wiring board according to the present invention includes a coating step of coating a conductive composition on a base material, and forming a wiring pattern made of the conductive composition on the base material, and the coating step.
  • the conductive composition of the present invention is used as the conductive composition.
  • the wiring board of the present invention is manufactured by the above-described method for manufacturing a wiring board of the present invention.
  • the electrode of the present invention is an electrode having a base material and a conductive part formed on the base material,
  • the conductive part is composed of a conductive composition containing a thermoplastic resin and a thermosetting resin as a binder resin, a curing agent, and metal particles,
  • the surface of the conductive part has a metallic luster.
  • the arithmetic average roughness of the surface of the conductive part is preferably 40 nm or less.
  • the arithmetic average roughness is a value (Ra) obtained from a roughness curve with a measurement range of 25 ⁇ m ⁇ 25 ⁇ m by an atomic force microscope image of the surface.
  • the manufacturing method of the electrode of the present invention is the manufacturing method of the electrode of the present invention described above, and a coating step of coating a conductive composition on a substrate to form a conductive part;
  • an electronic device of the present invention is characterized by having the electrode of the present invention.
  • the electrically conductive composition which can manufacture a wiring board inexpensively and efficiently and can form favorably the wiring pattern excellent in adhesiveness with a base material and low resistance, and this were used.
  • a method for manufacturing a wiring board and a wiring board can be provided.
  • an electrode having a conductive portion that can be manufactured at low cost by using an inexpensive material other than silver as the metal particles and has excellent adhesion to the substrate and low resistance, and manufacturing of the electrode A method and an electronic device using the method can be provided.
  • the electrode which has the electroconductive part excellent in the adhesiveness and low resistance which can be manufactured cheaply and was excellent, the manufacturing method of an electrode, and an electronic device using the same can be provided.
  • FIG. 10 is a diagram showing a result of evaluating transmission / reception performance in an electronic device including the electrodes of Examples 2-1 to 2-3.
  • the conductive composition of the present invention is a conductive composition that can be suitably used in a method for manufacturing a wiring board that reduces resistance by pressurizing a wiring pattern formed on a substrate.
  • a thermoplastic resin and a thermosetting resin, a curing agent, and metal particles are contained.
  • the conductive composition of the present invention has the greatest feature in that a thermoplastic resin and a thermosetting resin are used in combination as a binder resin.
  • the formed wiring pattern has excellent adhesion to the substrate, and the resistance value is reduced. The effect that it can be made can also be acquired.
  • each component of the electrically conductive composition of this invention is demonstrated in detail.
  • the thermoplastic resin constituting the conductive composition includes polyester resin, phenoxy resin, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, Polybutadiene resin, polycarbonate resin, thermoplastic polyimide resin, polyamide resin such as 6-nylon or 6,6 nylon, acrylic resin, polyamideimide resin, or fluorine resin can be used.
  • these thermoplastic resins may be used alone or in combination of two or more.
  • the polyester resin is obtained by polycondensing one or more selected from unsaturated fatty acids and saturated fatty acids and one or more selected from glycols under normal pressure or reduced pressure by a known method.
  • unsaturated fatty acids include maleic anhydride, fumaric acid, citraconic acid, itaconic acid and the like.
  • saturated fatty acids include het acid, phthalic anhydride, isophthalic acid, terephthalic acid, endomethylenetetrahydrophthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, succinic acid, adipic acid, azelaic acid, and sebacic acid. .
  • glycols include ethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, 2,3-butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, 1,5-pentanediol, , 6-hexanediol, neopentyl glycol, 2,2,4-trimethylpentane-1,3-diol, hydrogenated bisphenol A, pentaerythritol diallyl ether, trimethylene glycol, 2-ethyl 1,3-hexanediol, etc. Can be mentioned.
  • phenoxy resin examples include a phenoxy resin having a bisphenol A skeleton, a phenoxy resin having a bisphenol F skeleton, a phenoxy resin having a bisphenol S skeleton, and a bisphenol M skeleton (4,4 ′-(1,3-phenylenedioxide).
  • Phenoxy resin having a bisphenol skeleton such as a phenoxy resin having a sidiene bisphenol skeleton), a phenoxy resin having a novolac skeleton, a phenoxy resin having an anthracene skeleton, a phenoxy resin having a fluorene skeleton, Phenoxy resins having pentadiene skeleton, phenoxy resins having a norbornene skeleton, phenoxy resins having a naphthalene skeleton, phenoxy resins having a biphenyl skeleton include phenoxy resins having an adamantane skeleton.
  • Such a thermoplastic resin preferably has a number average molecular weight (Mn) of 2,000 to 200,000, and more preferably in the range of 5,000 to 100,000. If the number average molecular weight is less than 2000, a transfer failure during printing tends to occur, and it may be difficult to form a good wiring pattern. On the other hand, if the number average molecular weight exceeds 200000, whisker defects or line waviness due to stringing of the conductive composition is likely to occur during printing, and printability may be impaired.
  • the number average molecular weight is a standard polystyrene equivalent value measured by gel permeation chromatography (GPC).
  • thermosetting resin an epoxy resin, a phenol resin, an amino resin, an unsaturated polyester resin, a polyurethane resin, a silicone resin, a thermosetting polyimide resin, or the like is used as the thermosetting resin constituting the conductive composition. It can. Among these, it is preferable to use an epoxy resin. In the present invention, these thermosetting resins may be used alone or in combination of two or more.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and cresol novolac.
  • Type epoxy resin bisphenol A novolak type epoxy resin, biphenyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin, alicyclic epoxy resin, aliphatic chain Epoxy resin, phosphorus-containing epoxy resin, anthracene epoxy resin, norbornene epoxy resin, adamantane epoxy resin, fluorene epoxy resin, aminophenol epoxy Shi resin, amino cresol type epoxy resins, phenol type epoxy resin.
  • thermosetting resin preferably has a number average molecular weight (Mn) of 100 to 50,000, more preferably 150 to 10,000. If the number average molecular weight deviates from this range, the adhesion to the substrate may be impaired.
  • thermoplastic resin and thermosetting resin as the binder resin as described above are preferably blended in a mass ratio of 95: 5 to 30:70, more preferably 90:10 to 50:50. Mix in proportions.
  • the blending amount as the binder resin is preferably 1 to 25% by mass, more preferably 3 to 20% by mass in terms of solid content in the conductive composition. The more binder resin, the better the adhesion with the substrate can be ensured, but sufficient conductivity may not be obtained. On the other hand, if the binder resin is decreased, the adhesion with the substrate may be impaired.
  • the curing agent constituting the conductive composition is not particularly limited as long as it can cure a thermosetting resin such as an epoxy resin, and a known one can be appropriately used.
  • a thermosetting resin such as an epoxy resin
  • an organic phosphine compound such as phosphine, tetraphenylphosphonium, tetraphenylborate, and the epoxy adduct described in JP-A-06-73156 with a boric acid ester compound, etc.
  • the resulting one-part epoxy compound such as an epoxy-phenol-borate compound, can be used.
  • These curing agents may be used alone or in combination of two or more.
  • the blending amount of such a curing agent is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the thermosetting resin.
  • the addition amount of the curing agent is preferably 0.01 to 5% by mass in terms of solid content in the conductive composition, and more preferably 0.05 to 3% by mass.
  • examples of the metal particles constituting the conductive composition include aluminum, copper, silver, and gold particles. From the viewpoint of cost, low resistance treatment, and migration, aluminum and copper particles. Is preferred. These metal particles have an average particle diameter of 10 random metal particles observed at 10000 times using an electron microscope (SEM), and are preferably 0.1 to 15 ⁇ m, and in the range of 0.5 to 5 ⁇ m. More preferably. These metal particles can improve the contact state between the metal particles as the average particle size is small, and it is possible to improve the conductivity of the formed wiring pattern. If the value is on the nano order, the effect of reducing the resistance may not be sufficiently obtained. On the other hand, when the average particle size of the metal particles is increased, the adhesion with the substrate may be impaired.
  • SEM electron microscope
  • the shape of the metal particles to be used is not particularly limited, but a spherical shape is more suitable for the resistance reduction treatment.
  • the blending amount of such metal particles is preferably 50 to 90% by volume in terms of solid content in the conductive composition, and more preferably in the range of 60 to 85% by volume. If the blending amount of the metal particles is less than 50% by volume, the contact points between the metal particles in the wiring pattern may be reduced, and sufficient conductivity may not be obtained. On the other hand, if the blending amount of the metal particles exceeds 90% by volume, the amount of the binder resin is relatively decreased, and thus the adhesion between the wiring pattern and the substrate may be lowered.
  • the mass ratio is preferably 65 to 99% by mass in terms of solid content in the conductive composition, and more preferably in the range of 75 to 97% by mass.
  • the conductive composition of the present invention includes, for example, an antifoaming agent, a metal dispersant, a leveling agent, a thixotropy imparting agent, a coupling agent, a diluent, a plasticizer, an oxidation, as long as printability is not impaired. You may mix
  • antifoaming agents examples include SN Dispersant 5020, SN Dispersant 5468, SN Dispersant 9228, SN Dispersant 9228, SN Wet 366, SN Sparse 70, SN Sparse 2190, etc. manufactured by San Nopco Co., Ltd., Dappo SN-348 Dappo series such as Dappo SN-351, Dappo SN-357, Dappo SN-368, SN deformer 470, SN deformer 477, SN deformer 777, SN deformer 5013, SN deformer JK And the Deparon series manufactured by Enomoto Kasei Co., Ltd.
  • DISPERBYK series BYK-300, -306, ⁇ 310, ⁇ 313, ⁇ 322, ⁇ 331, ⁇ 341, ⁇ 345, ⁇ 347, ⁇ 348, ⁇ 350, ⁇ 352, ⁇ 356, ⁇ 358N, ⁇ 375, ⁇ 378, ⁇ 381, ⁇ 392, ⁇ 405 , -410, -430, -431, -054, -055, -057, -1752, -1790, -060N, -063 BYK series such as ⁇ 065, ⁇ 067A, ⁇ 080A, ⁇ 354, and ⁇ 392, SN deformer 470, SN deformer 477, SN deformer 777, SN deformer 5013, manufactured by Sannopco Corporation Deformer series such as SN deformer JK and Disparon series manufactured by Enomoto Kasei Co., Ltd. can be listed.
  • leveling agent examples include Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 7, Polyflow No. 50EHF, Polyflow No. 75, Polyflow No. 85, Polyflow No. 90, polyflow no. 95, Polyflow No. Polyflow series such as 99C, Floren AC202, Floren AC300HF, Floren AC303HF, Floren AC326F, Floren AC530, Floren AC901HF, Floren AC903HF, Floren AC970MS, Floren AC1170, Floren AC1190HF, Floren AC2200C, Floren AC2300C, Floren AO5 -98, Floren series such as Floren AO-108, Monsanto Modaflow and the like.
  • thixotropic agents examples include Flownon SH-295S, Flownon SH-350, Flownon HR-4AF, Flownon SP-1000AF, Flownon SA-330HF and Flownon SA-345HF manufactured by Kyoeisha Chemical Co., Ltd. Series, Taren series such as Talen 7200-20, Talen 8300-20, Talen KU-700, Talen M-1020XFS, Talen 2000 and the like.
  • KBM series such as KBM-903, KBM-573, KBM-803, KBE-1003, KBE-402, KBE-403, KBE-502, KBE-503, KBE-603, KBE-903, KBE-585, KBE KBE series such as -9103, KBE-846, Z-601, Z-6019, Z-6020, Z-6030, Z-6040, Z-6040N, Z-6043, Z-manufactured by Toray Dow Corning Co., Ltd.
  • Z series such as 6062, Z-6300, Z-6519, Z-6883, etc.
  • the conductive composition of the present invention is usually diluted with a solvent, and as such a solvent, metal particles are dispersed. It is preferable to use a volatile one having good properties.
  • the method for manufacturing a wiring board according to the present invention comprises: applying a conductive composition on a substrate; forming a wiring pattern made of the conductive composition on the substrate; and a wiring pattern formed by the applying step.
  • the conductive composition of the present invention can produce a wiring board inexpensively and efficiently, and can form a wiring pattern having excellent adhesion to a substrate.
  • the manufacturing method of the wiring board of this invention is demonstrated in detail.
  • FIG. 1 is a flowchart showing a method for manufacturing a wiring board according to the present invention.
  • the wiring board is formed by applying a conductive composition on a base material and applying a wiring pattern made of the conductive composition on the base material.
  • the substrate having the coating pattern (S1), the thermosetting process (S2) for thermosetting the wiring pattern formed by the coating process, and the wiring pattern thermoset by the thermosetting process is applied to the pressure body. It is manufactured through a pressing step (S3) in which the substrate or the pressing body is moved in the horizontal direction while pressing in the vertical direction.
  • the conductive composition of the present invention is applied to the substrate surface in a predetermined wiring pattern.
  • coating method A well-known method is applicable as a method of apply
  • the coating method include various printing methods (screen printing method, intaglio printing method, relief printing method, lithographic printing method), dispensing method, ink jet method and the like.
  • the wiring pattern is heat-cured in the thermosetting step (S2) of the substrate on which the conductive composition of the present invention has been applied in the applying step (S1).
  • the applied wiring pattern can be dried at the same time, but if necessary, a coating film drying step may be performed in advance to dry the wiring pattern.
  • the binder resin of the conductive composition of the present invention is composed of a thermoplastic resin and a thermosetting resin. As described above, since the thermosetting resin exists in the binder resin, the binder resin is subjected to this thermosetting step. Good adhesion to the substrate can be obtained.
  • the thermosetting conditions are preferably 80 to 200 ° C. for 1 to 120 minutes, more preferably 100 to 170 ° C. for 10 to 60 minutes.
  • the wiring board on which the wiring pattern is heat-cured in the thermosetting step (S2) is pressurized in the pressurizing step (S3).
  • the pressurizing step (S3) the substrate or the pressure body is moved in the horizontal direction while pressurizing the printed conductive composition in the vertical direction using the pressure body, and the surface of the conductive composition Generate shear stress.
  • the metal particles are plastically deformed to form a continuous conductor layer.
  • a resistance reduction process is realized.
  • the substrate having the wiring pattern in the state where the resistance is reduced in the pressurizing step (S3) is heated in the heating step.
  • the contact probability between the metal particles is further increased by curing and shrinking the wiring pattern.
  • the coating process of the conductive composition (corresponding to S1 in FIG. 1) will be described with reference to FIG.
  • FIG. 2 the case where the screen printing method is employ
  • a screen plate 5 capable of printing a predetermined wiring pattern is disposed on the substrate 1.
  • the conductive composition is disposed on the screen plate 5.
  • the conductive composition 4 placed on the screen plate 5 is stretched while being pressed against the substrate 1 side using the squeegee 6. Thereby, it will be in the state by which the conductive composition 4 was apply
  • thermosetting process (corresponding to S2 in FIG. 1) will be described.
  • the conductive composition pressed in the pressing step is heated and thermoset.
  • the conductive composition is preferably thermoset at a heating temperature of preferably 80 to 200 ° C., more preferably 100 to 170 ° C.
  • the pressurizing step (corresponding to S3 in FIG. 1) will be described with reference to FIG.
  • a pressurizing body 7 is placed on the conductive composition 4 constituting the wiring pattern thermoset by the thermosetting step (see FIG. 1), and the pressurizing body 7 is used to make the vertical.
  • the base material 1 or the pressure body 7 is moved in the horizontal direction to pressurize the conductive composition 4.
  • shear stress is generated and the metal surface is crushed, the metal particles 3 are plastically deformed, pressed between the adjacent metal particles 3, and a continuous conductor layer is formed. Will improve.
  • a pressure roller is used as the pressure body 7, but in the present invention, the pressure body is not limited to this.
  • the pressure and the number of times of pressurization are not limited.
  • the pressure is 10 to 200 MPa and the number of times of pressurization is one to a plurality of times.
  • the conductive composition of the present invention is applied onto a substrate to form a wiring pattern.
  • thermosetting resin and the base material are firmly adhered to each other, it is possible to produce a wiring board having a wiring pattern with excellent adhesion and realizing low resistance.
  • the resin material conventionally used as a material of a base material can be used.
  • a resin base material for example, polyimide, polyester resin, polyethersulfone (PES), polystyrene (PS), polymethyl methacrylate (PMMA), polycarbonate (PC), polyamide (PA ), Polypropylene (PP), polyphenylene oxide (PPO) and the like, and a polyester resin can be preferably used.
  • polyester resin examples include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polybutylene naphthalate (PBN).
  • PET polyethylene terephthalate
  • PBT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • PBN polybutylene naphthalate
  • the electrode of the present invention is an electrode having a base material and a conductive part formed on the base material, and the conductive part includes a thermoplastic resin and a thermosetting resin as a binder resin, a curing agent, and metal particles.
  • the surface of the conductive portion has a metallic luster.
  • the glossiness of the surface is, for example, preferably 40 or more, more preferably 60 or more, and even more preferably 80 or more. When the glossiness of the surface of the conductive portion is 40 or more, excellent conductivity can be exhibited.
  • the electrode of the present invention is manufactured by pressurizing a conductive part formed on a substrate with a pressure body such as a roller in the manufacturing process. Metal particles near the surface are plastically deformed and pressed between adjacent metal particles to form a continuous conductor layer. As a result, a metallic luster is generated on the surface of the conductive portion. Since it is such a surface state, the adjacent metal particles are in good contact with each other, and the resistivity of the electrode is greatly reduced.
  • the arithmetic average roughness (measurement range 25 ⁇ m ⁇ 25 ⁇ m) of the conductive portion is preferably 40 nm or less.
  • the arithmetic average roughness of the surface of the conductive portion is 20 nm or less, more preferably 15 nm or less, and particularly preferably 10 nm or less.
  • the arithmetic average roughness is 40 nm or less, the resistivity of the electrode becomes small, so that it functions well as an electrode.
  • the arithmetic average roughness of the surface of the electrode of the present invention is 40 nm or less in the resistance reduction treatment, the surface of the conductive part is smooth, and the electrode of the present invention is applied to an electronic device such as an RFID. Efficient transmission / reception is possible over a wide communication distance.
  • the ratio of the metal particles in the conductive part is preferably 60 to 95% by volume, more preferably 65 to 95% in the total amount of the conductive composition excluding the solvent (in terms of solid content). It is volume%.
  • the resistivity of the electrode is preferably 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less after the resistance reduction treatment, more preferably 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less, and still more preferably 1 ⁇ 10 ⁇ 3 ⁇ ⁇ cm or less. ⁇ 10 ⁇ 4 ⁇ ⁇ cm or less.
  • the resistivity of a conductive part is so preferable that it is low, when the addition amount of a metal particle is increased in order to reduce the resistivity of a conductive part, the quantity of binder resin will reduce relatively, a conductive part and a base material There is a possibility that the adhesiveness with the lowering.
  • the conductive composition of the present invention is usually diluted with a solvent.
  • a solvent it is preferable to use a volatile solvent having good dispersibility of metal particles. Examples thereof include diethylene glycol monoethyl ether acetate, dipropylene glycol monoethyl methyl ether, dipropylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate. Each of these solvents may be used alone, or two or more of them may be mixed and used in an arbitrary ratio.
  • Base material There is no restriction
  • the conductive composition of the present invention described above can be suitably used for a conductive portion of an electronic device such as a flexible sheet display or a flexible RFID system.
  • an electrode formed using the conductive composition of the present invention is applied to an RFID system, the electrode has a low resistivity, so that the communicable distance can be improved as compared with a conventional RFID system.
  • FIG. 4 is a flowchart showing the method for manufacturing an electrode of the present invention.
  • the electrode manufacturing method of the present invention includes a coating step (S1) in which a conductive composition is applied on a substrate to form a conductive portion, and the conductive portion formed by the coating step is thermally cured.
  • S3 pressurizing step for pressurizing a base material having a conductive portion thermoset by the thermosetting step
  • FIG. 2 is a schematic diagram showing an example of the coating step (S1).
  • a screen plate 5 on which a predetermined conductive portion can be printed is disposed on the substrate 1, and the screen plate 5 is electrically conductive.
  • the sex composition 4 is arranged.
  • the conductive composition 4 placed on the screen plate 5 is stretched while being pressed against the substrate 1 using the squeegee 6. Thereby, it will be in the state by which the conductive composition 4 was apply
  • a coating method of the conductive resin composition in a coating process it is not restricted to such a screen printing method, A well-known method is employable.
  • thermosetting step (S2) step the conductive resin composition applied on the base material is thermally cured by heat-treating the conductive portion, thereby realizing good adhesion to the base material.
  • the thermosetting conditions are preferably 80 to 200 ° C. for 1 to 120 minutes, more preferably 100 to 170 ° C. for 10 to 60 minutes. Under such conditions, the conductive portion can be formed without affecting the physical properties of the base material even when a resinous material that is relatively weak against heat is used as the base material.
  • the substrate or the pressurizing body is moved in the horizontal direction while pressurizing the electrode in the vertical direction using the pressurizing body.
  • the method for producing an electrode of the present invention if a metallic luster is generated on the surface of the conductive part, preferably, if the arithmetic average roughness (Ra) of the surface of the conductive part is 40 nm or less,
  • the number of pressurizations is not limited, for example, the pressure is set to 10 to 200 MPa, and the pressurization number is set to one to plural times. Thereby, the electrode of the present invention described above can be obtained.
  • the pressurizing means in the pressurizing step of the electrode manufacturing method of the present invention the same method as the above-described wiring substrate manufacturing method of the present invention can be employed.
  • a pressure body 7 is placed on the conductive composition 4 constituting the cured conductive portion, and the base material 1 or the pressure body 7 is moved in the horizontal direction while pressing the pressure body 7 in the vertical direction.
  • a method of pressurizing the composition 4 can be employed.
  • a pressure roller is used as the pressure body 7.
  • the pressure body 7 is not limited to the pressure roller, and satisfies the above pressure conditions. Any method may be adopted as long as it can be applied.
  • thermoplastic resin amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
  • thermosetting resin bisphenol A type epoxy resin: EPICLON 840 manufactured by DIC Corporation
  • organic solvent Parts diethylene glycol monoethyl ether acetate
  • curing agent (1) epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • curing agent (2) 3.
  • thermoplastic resin amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
  • thermosetting resin bisphenol A epoxy resin: EPICLON 840 manufactured by DIC Corporation
  • organic solvent Parts diethylene glycol monoethyl ether acetate
  • curing agent (1) epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • curing agent (2) 3.
  • thermoplastic resin amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
  • thermosetting resin bisphenol A type epoxy resin: EPICLON 840 manufactured by DIC Corporation
  • organic solvent Parts diethylene glycol monoethyl ether acetate
  • curing agent (1) epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • curing agent (2) 3.
  • thermoplastic resin phenoxy resin: YP-50 manufactured by Nippon Steel Chemical Co., Ltd.
  • thermosetting resin bisphenol A type epoxy resin: EPICLON 840 manufactured by DIC Corporation
  • organic solvent 289 Parts by mass diethylene glycol monoethyl ether acetate
  • curing agent (1) 1.7 parts by mass (epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.), curing agent (2) 3 .2 parts by mass (epoxyimidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd.), 5 parts by mass of leveling / foaming agent (Polyflow No.
  • thermoplastic resin amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
  • thermosetting resin bisphenol A epoxy resin: EPICLON 840 manufactured by DIC Corporation
  • organic solvent Parts diethylene glycol monoethyl ether acetate
  • curing agent (1) epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • curing agent (2) 3.
  • thermoplastic resin amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
  • thermosetting resin bisphenol A epoxy resin: EPICLON 840 manufactured by DIC Corporation
  • organic solvent Parts diethylene glycol monoethyl ether acetate
  • curing agent (1) epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • curing agent (2) 3.
  • thermoplastic resin amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
  • organic solvent diethylene glycol monoethyl ether acetate
  • leveling / foaming agent Kelvin Chemical Co., Ltd.
  • Polyflow No. 90 5 parts by mass of a surface modifier (silane coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 416 parts by mass of aluminum particles (spherical powder, average particle size 2 ⁇ m)
  • the mixture was stirred with a dissolver at 500 rpm for 20 minutes. Then, it knead
  • aluminum content was 60 volume% in conversion of solid content in an electroconductive composition.
  • thermoplastic resin amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
  • organic solvent diethylene glycol monoethyl ether acetate
  • leveling / foaming agent Kelvin-based foaming agent
  • Polyflow No. 90 5 parts by mass of a surface modifier (silane coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.)
  • 648 parts by mass of aluminum particles spherical powder, average particle size 2 ⁇ m
  • the mixture was stirred with a dissolver at 500 rpm for 20 minutes. Then, it knead
  • aluminum content was 70 volume% in conversion of solid content in an electroconductive composition.
  • a wiring pattern formed with a screen-printed conductive composition is placed on a pressure machine stage with a vacuum chuck or adhesive tape, and shear stress is generated between the pressure body and the surface of the wiring pattern of the conductive composition.
  • the shear stress generated at this time was measured with a prescale (manufactured by Fuji Film Co., Ltd.) and was 55 MPa or more.
  • count of the resistance reduction process was 1 time or more.
  • ⁇ Adhesion> For the wiring pattern (2 cm ⁇ 5 cm) of the substrate for adhesion evaluation subjected to low resistance treatment, 25 wiring patterns were cut into a 1 mm-interval grid pattern according to the cross-cut method (JIS K-5600). . Adhesion was evaluated according to the state when a tape was applied and peeled off. The case where there was no peeling was marked with ⁇ , and the case where there was peeling was marked with ⁇ . The obtained results are shown in Tables 1 and 2 below.
  • Thermoplastic resin A Amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd. * 2
  • Thermoplastic resin B Phenoxy resin: YP-50 manufactured by Nippon Steel Chemical Co., Ltd. * 3
  • Thermosetting resin Bisphenol A type epoxy resin: EPICLON840 manufactured by DIC Corporation * 4
  • Curing agent 1 Epoxy-phenol-borate ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd. * 5
  • Curing agent 2 Epoxy imidazole adduct: P0505 manufactured by Shikoku Chemicals Co., Ltd.
  • Metal particles A Aluminum particles, spherical powder, average particle size 2 ⁇ m * 7
  • Metal particle B Aluminum particles, long fine powder, long axis direction average particle size 4 ⁇ m, short axis direction average particle size 2 ⁇ m * 8
  • Metal particle C Copper particle, spherical powder, average particle size 3 ⁇ m * 9
  • Leveling and antifoaming agent Allyl leveling and antifoaming agent: Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 90 * 10
  • Surface modifier Silane coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd. * 11
  • Organic solvent Diethylene glycol monoethyl ether acetate * 12 Cannot be measured beyond the measurement range of HIOKIMm ⁇ HiTester (non-conductive)
  • the wiring pattern formed on the base material using the conductive composition of the present invention has strong adhesion to the base material, and has a sufficiently low specific resistance value. I understand that.
  • thermoplastic resin amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
  • thermosetting resin bisphenol A epoxy resin: EPICLON 840 manufactured by DIC Corporation
  • organic solvent Parts diethylene glycol monoethyl ether acetate
  • curing agent (1) epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • curing agent (2) 3.
  • An RFID electrode was produced using the obtained conductive composition.
  • a polyimide film of 50 ⁇ m was used as a base material, and a conductive portion was formed on the base material by screen printing (pattern printing) using the obtained conductive composition to obtain an RFID electrode.
  • screen printing a 300 mesh polyester screen plate was used.
  • the conductive part of the substrate for specific resistance measurement was 0.1 cm ⁇ 40 cm, and the conductive part of the substrate for adhesion evaluation was 2 cm ⁇ 5 cm.
  • the electroconductive part formed on the base material was dried and heat-cured at 150 ° C. for 30 minutes, and then subjected to a resistance reduction treatment described later to produce an electrode.
  • An RFID electrode having a conductive portion formed of a screen-printed conductive composition is placed on a pressurizer stage by a vacuum chuck so that shear stress is generated between the pressure member and the surface of the conductive portion.
  • the speed of the stage and the pressure body was adjusted.
  • the shear stress generated at this time was measured with a prescale (manufactured by Fuji Film Co., Ltd.), set to 30 MPa, and the number of resistance reduction treatments was set to one.
  • An IC chip (Monza 3) made by impinj was mounted on the RFID electrode on the obtained wiring board. Thereafter, the mounted IC chip was embedded with epoxy resin for reinforcement.
  • thermoplastic resin amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
  • organic solvent diethylene glycol monoethyl ether acetate
  • leveling / foaming agent Kelvin
  • ⁇ Resistivity> For the conductive part (0.1cm x 40cm) for resistance measurement that has been subjected to low resistance treatment, a four-probe probe (PSP) for a micro sample is mounted on a Loresta GP made by Mitsubishi Chemical Analytic, and the four-probe method is used. Measurements were made. The film thickness of the sample was measured using a Mitsutoyo Digimatic Micrometer (MDC-25MJ). The obtained results are shown in Table 3 below.
  • ⁇ Adhesion> In accordance with the cross-cut method (JIS K-5600), 25 conductive parts were cut in a 1 mm-interval grid pattern for the conductive part (2 cm ⁇ 5 cm) of the substrate for adhesion evaluation subjected to low resistance treatment. . Adhesion was evaluated according to the state when a tape was applied and peeled off. The case where there was no peeling was marked with ⁇ , and the case where there was peeling was marked with ⁇ . The obtained results are shown in Table 3 below.
  • Thermoplastic resin Amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd. * 14 Thermosetting resin: Bisphenol A type epoxy resin: EPICLON840 manufactured by DIC Corporation * 15 Curing agent 1: Epoxy-phenol-borate ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd. * 16 Curing agent 2: Epoxy imidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd. * 17 Metal particles A: Aluminum particles, spherical powder, average particle size 2 ⁇ m * 18 Leveling and antifoaming agent: Arryl-based leveling and antifoaming agent: Polyflow No.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Conductive Materials (AREA)

Abstract

Provided are: an electroconductive composition in which a wiring pattern having an excellent adhesion performance with respect to the base material and low-resistance performance can be formed in a satisfactory manner; a method for manufacturing a wiring board, and a wiring board, using same; an electrode that can be manufactured at low cost and that has an electroconductive part having an excellent adhesion performance with respect to the base material and low-resistance performance; a method for manufacturing the electrode; and an electronic device using same. This invention is an electroconductive composition used in a method for manufacturing a wiring board that is subjected to a resistance-lowering treatment by pressing a wiring pattern formed on the base material, wherein the electroconductive composition contains metal particles, a hardening agent, and a heat-curing resin and a thermoplastic resin as binder resins.

Description

導電性組成物、配線基板の製造方法、配線基板、電極、電極の製造方法、および電子デバイスConductive composition, wiring board manufacturing method, wiring board, electrode, electrode manufacturing method, and electronic device
 本発明は、導電性組成物、配線基板の製造方法、配線基板、電極、電極の製造方法、および電子デバイスに関し、詳しくは、基材との密着性および低抵抗性に優れた配線パターンを良好に形成することができる導電性組成物、これを用いた配線基板の製造方法および配線基板、並びに、安価に製造でき、かつ、基材との密着性および低抵抗性に優れた導電部を有する電極、電極の製造方法およびそれを用いた電子デバイスに関する。 The present invention relates to a conductive composition, a method for manufacturing a wiring substrate, a wiring substrate, an electrode, a method for manufacturing an electrode, and an electronic device. More specifically, the wiring pattern having excellent adhesion to a substrate and low resistance is preferable. , A wiring board manufacturing method and wiring board using the same, and a conductive portion that can be manufactured at low cost and has excellent adhesion to the base material and low resistance. The present invention relates to an electrode, an electrode manufacturing method, and an electronic device using the same.
 従来、微細な配線パターンを形成する技術として、加熱蒸着法やスパッタリング法で形成した金属薄膜をフォトリソグラフィー法によりパターニングする手法が知られている。しかしながら、加熱蒸着法やスパッタリング法は真空環境が不可欠であり、その製造コストが問題となっている。また、フォトリソグラフィー法は溶剤を多量に使用するため、環境に対する負荷も問題点として挙げられている。 Conventionally, as a technique for forming a fine wiring pattern, a technique of patterning a metal thin film formed by a heating vapor deposition method or a sputtering method by a photolithography method is known. However, a vacuum environment is indispensable for the heating vapor deposition method and the sputtering method, and the production cost is a problem. In addition, since the photolithography method uses a large amount of a solvent, the burden on the environment is also cited as a problem.
 また、従来、プリント配線板やRFID(ラジオ周波数認識)の電極等の導電部の形成には、エッチング法が用いられてきた。エッチング法は、アルミニウム箔や銅箔を絶縁性樹脂にラミネートした基板をエッチングすることにより、アルミニウム箔又は銅箔からなる所望の導電部を形成するものである。しかしながら、エッチング法には、エッチングレジストの塗布、エッチングレジストの剥離等の工程が含まれているため作業工程が多く、印刷法と比較して生産性が悪いという問題を有している。さらに、エッチング法には廃液処理等の問題もあり、環境面からも好ましくない。 Conventionally, an etching method has been used for forming conductive parts such as printed wiring boards and RFID (radio frequency recognition) electrodes. In the etching method, a desired conductive portion made of an aluminum foil or a copper foil is formed by etching a substrate obtained by laminating an aluminum foil or a copper foil with an insulating resin. However, since the etching method includes steps such as coating of an etching resist and peeling of the etching resist, there are many work steps, and there is a problem that productivity is poor as compared with the printing method. Furthermore, the etching method has problems such as waste liquid treatment, which is not preferable from the viewpoint of the environment.
 これに対し、印刷法による配線パターンや導電部の形成は、低コストで多量の製品を効率よく製造することができるため、既に実用的に用いられている。しかしながら、印刷法にて高い導電性を持つ配線パターンや導電部を形成する場合、その材料として導電性に優れた銀等を用いる必要があり、材料コストが上昇してしまうという問題を有している。また、形成した導電性パターンや導電部に含まれるバインダー成分等を高温で焼成して除去する必要もあり、印刷法においては、ガラス等の耐熱性硬質基板上に配線パターンや導電部が形成されることがほとんどである。 On the other hand, the formation of wiring patterns and conductive parts by a printing method has already been practically used because a large amount of products can be efficiently manufactured at low cost. However, when forming a wiring pattern or a conductive part having high conductivity by a printing method, it is necessary to use silver or the like excellent in conductivity as the material, and there is a problem that the material cost increases. Yes. In addition, it is necessary to remove the binder component contained in the formed conductive pattern and conductive part by baking at a high temperature. In the printing method, a wiring pattern or conductive part is formed on a heat-resistant hard substrate such as glass. It is almost that.
 一方で、近年の電子デバイスとして、フレキシブルシートディスプレイやフレキシブルRFIDシステム等の急速な普及が期待されている。これらのフレキシブルなデバイスを実現するには、可撓性を持つプラスチックフィルム上に配線パターンや導電部を形成しなければならない。しかしながら、可撓性をもつプラスチックフィルムの多くは、高温で軟化・溶融してしまうため、印刷法によりプラスチックフィルム上に配線パターンや導電部を形成することは困難である。 On the other hand, rapid spread of flexible sheet displays and flexible RFID systems is expected as recent electronic devices. In order to realize these flexible devices, a wiring pattern and a conductive part must be formed on a flexible plastic film. However, since many plastic films having flexibility are softened and melted at high temperatures, it is difficult to form a wiring pattern or a conductive portion on the plastic film by a printing method.
 かかる課題に対して、例えば、特許文献1では、粒子径がナノオーダーの金属粒子を基材基に塗布し、低温(200~300℃)にて加熱することによって、低抵抗率(約10μΩ・cm)の配線パターンや導電部を作製することが可能な導電性ナノ粒子ペーストが提案されている。しかしながら、特許文献1で提案されているような、粒径がナノオーダーの金属粒子は一般的に高価であるため、配線基板や導電部を安価に製造することは困難である。 To deal with such a problem, for example, in Patent Document 1, a metal particle having a nano-order particle size is applied to a base material base and heated at a low temperature (200 to 300 ° C.), whereby a low resistivity (about 10 μΩ · cm)) and a conductive nanoparticle paste capable of producing a conductive pattern have been proposed. However, since metal particles having a particle size of nano-order as proposed in Patent Document 1 are generally expensive, it is difficult to manufacture a wiring board and a conductive part at low cost.
 また、特許文献2では、ナノオーダーの金属粒子を使用せず、高温加熱を要せず、安価に樹脂性基板上に導電部を作製した配線基板、およびこの配線基板を作製する方法が提案されている。具体的には、基材の表面に所望の配線パターン状や導電部状に導電性ペーストを塗布し、得られた配線パターンや導電部を加圧ローラで加圧した後、150℃以下の温度にて加熱する。これにより、基材と配線パターンや導電部とが強固に密着した配線基板を製造するというものである。 Further, Patent Document 2 proposes a wiring board that does not use nano-order metal particles, does not require high-temperature heating, and has a conductive portion formed on a resinous substrate at a low cost, and a method for manufacturing this wiring board. ing. Specifically, a conductive paste is applied to the surface of the substrate in a desired wiring pattern shape or conductive portion shape, and the obtained wiring pattern or conductive portion is pressed with a pressure roller, and then the temperature is 150 ° C. or lower. Heat with. As a result, a wiring board in which the base material, the wiring pattern, and the conductive portion are firmly adhered is manufactured.
 さらに、特許文献3では、銅粉表面の少なくとも一部を銀で覆った銀コート銅粉末と、ガラス転移温度(Tg)が35~170℃のバインダー樹脂とを含有する導電性ペーストが開示されており、この導電性ペーストを基材に所定形状で印刷した後、プレス又は加熱加湿処理して形成する導体パターンの形成方法が提案されている。この方法は、プレスで銀コート銅粉末を圧縮することで、金属粉等の導電性粒子間の接触面積を増加させ、プレスされない従来の導体パターンに比べて、比抵抗を低くし、導電性を高めようとするものである。 Further, Patent Document 3 discloses a conductive paste containing silver-coated copper powder in which at least a part of the surface of the copper powder is covered with silver, and a binder resin having a glass transition temperature (Tg) of 35 to 170 ° C. A method for forming a conductor pattern has been proposed in which the conductive paste is printed in a predetermined shape on a substrate and then pressed or heated and humidified. This method compresses silver-coated copper powder with a press to increase the contact area between conductive particles such as metal powder, lowering the specific resistance compared to conventional conductor patterns that are not pressed, and improving conductivity. It is something that is going to be raised.
特開2004-273205号公報JP 2004-273205 A 特開2010-21470号公報JP 2010-21470 A 特開2010-123457号公報JP 2010-123457 A
 確かに、特許文献2に記載の配線基板の製造方法によれば、金属粒子として銀を用いる場合には適用することができる。しかしながら、アルミニウムや銅等の銀以外の金属粒子に適用すると、形成された配線パターンは基材と十分な密着性が得られないという新たな課題を本発明者らは見出した。 Certainly, according to the method for manufacturing a wiring board described in Patent Document 2, it can be applied when silver is used as the metal particles. However, the present inventors have found a new problem that, when applied to metal particles other than silver, such as aluminum and copper, the formed wiring pattern cannot provide sufficient adhesion to the substrate.
 また、特許文献2で提案されている配線基板の製造方法においては、金属粒子として銀が用いられているが、銀はアルミニウム(Al)や銅(Cu)と比較して高価である。そこで、さらなるコストダウンを狙って、金属粒子としてアルミニウムや銅を用いることも考えられる。しかしながら、特許文献2に記載の配線基板の製造方法に、アルミニウムや銅を用いた導電性ペーストを用いた場合、上述のとおり、形成された導電部と基材との間の密着性は、必ずしも十分なものではなかった。さらに、特許文献3で提案されている導体パターンの形成方法であっても、必ずしも、十分な導電性を得られるものではなく、また、基材と導電パターンとの密着性についても十分なものではなかった。 Moreover, in the method for manufacturing a wiring board proposed in Patent Document 2, silver is used as the metal particles, but silver is more expensive than aluminum (Al) or copper (Cu). Therefore, it is conceivable to use aluminum or copper as the metal particles for further cost reduction. However, when a conductive paste using aluminum or copper is used in the method for manufacturing a wiring board described in Patent Document 2, as described above, the adhesion between the formed conductive portion and the substrate is not necessarily limited. It was not enough. Furthermore, even with the method for forming a conductor pattern proposed in Patent Document 3, sufficient conductivity is not necessarily obtained, and the adhesion between the substrate and the conductive pattern is not sufficient. There wasn't.
 そこで、本発明の目的は、配線基板を安価で効率よく製造でき、かつ、基材との密着性および低抵抗性に優れた配線パターンを良好に形成することができる導電性組成物、これを用いた配線基板の製造方法および配線基板を提供することにある。 Accordingly, an object of the present invention is to provide an electrically conductive composition that can efficiently produce a wiring board at low cost, and that can satisfactorily form a wiring pattern excellent in adhesion to a substrate and low resistance, An object of the present invention is to provide a method of manufacturing a wiring board and a wiring board used.
 また、本発明の他の目的は、安価に製造でき、かつ、基材との密着性および低抵抗性に優れた導電部を有する電極、電極の製造方法およびそれを用いた電子デバイスを提供することにある。 Another object of the present invention is to provide an electrode having a conductive part that can be manufactured at low cost and has excellent adhesion to a substrate and low resistance, a method for manufacturing the electrode, and an electronic device using the electrode. There is.
 本発明者らは上記課題を解消するために鋭意検討した結果、基材上に形成した配線パターンを加圧することにより低抵抗化処理する配線基板の製造方法に用いる導電性組成物において、バインダー樹脂として熱可塑性樹脂と熱硬化性樹脂とを併用することにより、導電性粒子としてアルミニウムや銅等の銀以外の金属粒子を用いた場合であっても、配線パターンと基材との密着性を改善させることが可能であることを見出した。 As a result of intensive studies to solve the above problems, the present inventors have found that in a conductive composition used for a method of manufacturing a wiring board that is subjected to a resistance reduction treatment by pressurizing a wiring pattern formed on a substrate, a binder resin By using a thermoplastic resin and a thermosetting resin in combination, the adhesion between the wiring pattern and the substrate is improved even when metal particles other than silver such as aluminum and copper are used as the conductive particles. I found out that it is possible.
 また、本発明者らは、導電部を有する基材に対して加圧することで、少なくとも導電部の表面が金属光沢を有するように平坦化し、かつ、導電部のバインダー樹脂として熱可塑性樹脂と熱硬化性樹脂とを併用することにより、導電性粒子としてアルミニウムや銅等の銀以外の金属粒子を用いた場合であっても、導電部と基材との密着性を改善しながら、低抵抗性に優れる電極を得ることが可能であることを見出し、本発明を完成するに至った。 In addition, the present inventors flatten the surface of at least the conductive part so as to have a metallic luster by applying pressure to the substrate having the conductive part, and use thermoplastic resin and heat as a binder resin for the conductive part. By using together with a curable resin, even when using metal particles other than silver, such as aluminum or copper, as conductive particles, low resistance while improving the adhesion between the conductive part and the substrate As a result, it was found that an electrode having excellent resistance can be obtained, and the present invention has been completed.
 すなわち、本発明の導電性組成物は、基材上に形成した配線パターンを加圧することにより低抵抗化処理する配線基板の製造方法に用いる導電性組成物において、
 バインダー樹脂としての熱可塑性樹脂および熱硬化性樹脂と、硬化剤と、金属粒子とを含有することを特徴とするものである。
That is, the conductive composition of the present invention is a conductive composition used in a method for manufacturing a wiring board that is subjected to a resistance reduction treatment by pressurizing a wiring pattern formed on a substrate.
A thermoplastic resin and a thermosetting resin as a binder resin, a curing agent, and metal particles are contained.
 本発明の導電性組成物においては、前記低抵抗化処理は、前記基材上に形成した配線パターンを、加圧体により垂直方向に加圧しつつ、前記基材または前記加圧体を水平方向に移動させる処理であることが好ましい。また、前記熱可塑性樹脂はポリエステル系樹脂およびフェノキシ系樹脂から選ばれる少なくとも1種であることが好ましい。さらに、前記熱硬化性樹脂はエポキシ系樹脂であることが好ましい。 In the conductive composition of the present invention, the low resistance treatment is performed by pressing the wiring pattern formed on the base material in the vertical direction with the pressurizing body while the base material or the pressurizing body is in the horizontal direction. It is preferable that it is a process to move to. The thermoplastic resin is preferably at least one selected from polyester resins and phenoxy resins. Furthermore, the thermosetting resin is preferably an epoxy resin.
 また、本発明の配線基板の製造方法は、導電性組成物を基材上に塗布し、該導電性組成物からなる配線パターンを前記基材上に形成する塗布工程と、前記塗布工程により形成された配線パターンを熱硬化する熱硬化工程と、前記熱硬化工程により熱硬化された配線パターンを有する前記基材を、加圧体により垂直方向に加圧しつつ、前記基材または前記加圧体を水平方向に移動させる加圧工程とを有する配線基板の製造方法において、
 前記導電性組成物として、上記本発明の導電性組成物を用いることを特徴とするものである。
In addition, the method for manufacturing a wiring board according to the present invention includes a coating step of coating a conductive composition on a base material, and forming a wiring pattern made of the conductive composition on the base material, and the coating step. A thermosetting step for thermosetting the wiring pattern formed, and the base material or the pressurizing body while pressing the base material having the wiring pattern thermoset by the thermosetting step in a vertical direction by a pressurizing body. In a manufacturing method of a wiring board having a pressurizing step of moving the horizontal direction,
As the conductive composition, the conductive composition of the present invention is used.
 さらに、本発明の配線基板は、上記本発明の配線基板の製造方法により製造されてなることを特徴とするものである。 Further, the wiring board of the present invention is manufactured by the above-described method for manufacturing a wiring board of the present invention.
 さらにまた、本発明の電極は、基材と、該基材上に形成された導電部を有する電極であって、
 前記導電部が、バインダー樹脂としての熱可塑性樹脂および熱硬化性樹脂と、硬化剤と、金属粒子とを含有する導電性組成物からなり、
 前記導電部の表面が、金属光沢を有するものである。
Furthermore, the electrode of the present invention is an electrode having a base material and a conductive part formed on the base material,
The conductive part is composed of a conductive composition containing a thermoplastic resin and a thermosetting resin as a binder resin, a curing agent, and metal particles,
The surface of the conductive part has a metallic luster.
 本発明の電極においては、前記導電部の表面の算術平均粗さは40nm以下であることが好ましい。ここで、算術平均粗さとは、表面の原子間力顕微鏡像により、測定範囲を25μm×25μmとして粗さ曲線から求めたときの値(Ra)である。 In the electrode of the present invention, the arithmetic average roughness of the surface of the conductive part is preferably 40 nm or less. Here, the arithmetic average roughness is a value (Ra) obtained from a roughness curve with a measurement range of 25 μm × 25 μm by an atomic force microscope image of the surface.
 また、本発明の電極の製造方法は、上記本発明の電極の製造方法であって、基材上に導電性組成物を塗布して導電部を形成する塗布工程と、
 前記塗布工程により形成された前記導電部を熱硬化する熱硬化工程と、
 前記熱硬化工程により熱硬化された前記導電部を有する前記基材を、加圧体により垂直方向に加圧しつつ、前記基材または前記加圧体を水平方向に移動させる加圧工程と、を有することを特徴とするものである。
Moreover, the manufacturing method of the electrode of the present invention is the manufacturing method of the electrode of the present invention described above, and a coating step of coating a conductive composition on a substrate to form a conductive part;
A thermosetting step for thermosetting the conductive portion formed by the coating step;
A pressurizing step of moving the base material or the pressurizing body in a horizontal direction while pressurizing the base material having the conductive portion thermoset by the thermosetting step in a vertical direction by a pressurizing body; It is characterized by having.
 さらに、本発明の電子デバイスは、上記本発明の電極を有することを特徴とするものである。 Furthermore, an electronic device of the present invention is characterized by having the electrode of the present invention.
 本発明によれば、配線基板を安価で効率よく製造でき、かつ、基材との密着性および低抵抗性に優れた配線パターンを良好に形成することができる導電性組成物、これを用いた配線基板の製造方法および配線基板を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the electrically conductive composition which can manufacture a wiring board inexpensively and efficiently and can form favorably the wiring pattern excellent in adhesiveness with a base material and low resistance, and this were used. A method for manufacturing a wiring board and a wiring board can be provided.
 また、本発明によれば、金属粒子として銀以外の廉価な材料を用いることで安価に製造でき、かつ、基材との密着性および低抵抗性に優れた導電部を有する電極、電極の製造方法およびそれを用いた電子デバイスを提供することができる。また、安価に製造でき、かつ、基材との密着性および低抵抗性に優れた導電部を有する電極、電極の製造方法およびそれを用いた電子デバイスを提供することができる。 In addition, according to the present invention, an electrode having a conductive portion that can be manufactured at low cost by using an inexpensive material other than silver as the metal particles and has excellent adhesion to the substrate and low resistance, and manufacturing of the electrode A method and an electronic device using the method can be provided. Moreover, the electrode which has the electroconductive part excellent in the adhesiveness and low resistance which can be manufactured cheaply and was excellent, the manufacturing method of an electrode, and an electronic device using the same can be provided.
本発明の配線基板の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the wiring board of this invention. 導電性組成物を基材に塗布する塗布工程を示す模式図である。It is a schematic diagram which shows the application | coating process which apply | coats an electroconductive composition to a base material. 塗布された導電性組成物に対して加圧を行う加圧工程を示す模式図である。It is a schematic diagram which shows the pressurization process which pressurizes with respect to the apply | coated electrically conductive composition. 本発明の電極の製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the electrode of this invention. 低抵抗化処理回数を変えた場合の、導電部表面の原子間顕微鏡写真であり、(a)は加圧回数が0回、(b)は加圧回数が1回、(c)は加圧回数が2回、(d)は加圧回数が4回、の場合である。It is an atomic microscope photograph of the conductive part surface when changing the number of times of low resistance treatment, (a) is the number of times of pressurization, (b) is the number of times of pressurization, and (c) is the pressurization. The number of times is 2, and (d) is the case where the number of times of pressurization is 4. 低抵抗化処理回数を変えた場合の、導電部表面の表面粗さを示すチャートであり、(a)は加圧回数が0回、(b)は加圧回数が1回、(c)は加圧回数が2回、(d)は加圧回数が4回、の場合である。It is a chart which shows the surface roughness of the electroconductive part surface at the time of changing the number of resistance reduction processes, (a) is 0 times of pressurization, (b) is 1 time of pressurization, (c) is The number of times of pressurization is 2, and (d) is the case where the number of pressurizations is 4. 実施例2-1~2-3の電極を備える電子デバイスにおける送受信性能を評価した結果を示す図である。FIG. 10 is a diagram showing a result of evaluating transmission / reception performance in an electronic device including the electrodes of Examples 2-1 to 2-3.
 以下、本発明の実施の形態について、詳細に説明する。
 まず、本発明の導電性組成物について説明する。本発明の導電性組成物は、基材上に形成した配線パターンを加圧することにより低抵抗化処理する配線基板の製造方法に好適に用いることができる導電性組成物であり、バインダー樹脂としての熱可塑性樹脂および熱硬化性樹脂と、硬化剤と、金属粒子とを含有する。このように本発明の導電性組成物は、バインダー樹脂として熱可塑性樹脂と熱硬化性樹脂とを併用した点に最大の特徴がある。その結果、本発明によれば、金属粒子として、銀以外のアルミニウムや銅等を用いた場合であっても、形成された配線パターンは基材との密着性に優れ、しかも、抵抗値を低下させることができるという効果も得ることができる。以下、本発明の導電性組成物の各成分について、詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail.
First, the conductive composition of the present invention will be described. The conductive composition of the present invention is a conductive composition that can be suitably used in a method for manufacturing a wiring board that reduces resistance by pressurizing a wiring pattern formed on a substrate. A thermoplastic resin and a thermosetting resin, a curing agent, and metal particles are contained. Thus, the conductive composition of the present invention has the greatest feature in that a thermoplastic resin and a thermosetting resin are used in combination as a binder resin. As a result, according to the present invention, even when aluminum other than silver, copper, or the like is used as the metal particles, the formed wiring pattern has excellent adhesion to the substrate, and the resistance value is reduced. The effect that it can be made can also be acquired. Hereinafter, each component of the electrically conductive composition of this invention is demonstrated in detail.
 <熱可塑性樹脂>
 本発明において、導電性組成物を構成する熱可塑性樹脂としては、ポリエステル系樹脂、フェノキシ系樹脂、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸共重合体、エチレン-アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6-ナイロンや6,6ナイロン等のポリアミド樹脂、アクリル樹脂、ポリアミドイミド樹脂又はフッ素樹脂等を用いることができる。本発明においては、これら熱可塑性樹脂は単独で用いてもよく、2種以上を併用してもよい。なかでも、本発明においては、ポリエステル系樹脂およびフェノキシ系樹脂から選ばれる少なくとも1種の熱可塑性樹脂を用いることが好ましい。
<Thermoplastic resin>
In the present invention, the thermoplastic resin constituting the conductive composition includes polyester resin, phenoxy resin, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, Polybutadiene resin, polycarbonate resin, thermoplastic polyimide resin, polyamide resin such as 6-nylon or 6,6 nylon, acrylic resin, polyamideimide resin, or fluorine resin can be used. In the present invention, these thermoplastic resins may be used alone or in combination of two or more. In particular, in the present invention, it is preferable to use at least one thermoplastic resin selected from polyester resins and phenoxy resins.
 ポリエステル系樹脂としては、不飽和脂肪酸と飽和脂肪酸のうちから選ばれた1種類以上と、グリコール類のうちから選ばれた1種類以上を公知の方法により常圧又は減圧下で重縮合して得られたものを使用できる。例えば、不飽和脂肪酸としては、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸等が挙げられる。飽和脂肪酸としては、ヘット酸、無水フタル酸、イソフタル酸、テレフタル酸、エンドメチレンテトラヒドロ無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、コハク酸、アジピン酸、アゼライン酸、セバシン酸等が挙げられる。グリコール類としては、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、2,2,4-トリメチルペンタン-1,3-ジオール、水素化ビスフェノールA、ペンタエリスリトールジアリルエーテル、トリメチレングリコール、2-エチル1,3-ヘキサンジオール等が挙げられる。 The polyester resin is obtained by polycondensing one or more selected from unsaturated fatty acids and saturated fatty acids and one or more selected from glycols under normal pressure or reduced pressure by a known method. Can be used. Examples of unsaturated fatty acids include maleic anhydride, fumaric acid, citraconic acid, itaconic acid and the like. Examples of saturated fatty acids include het acid, phthalic anhydride, isophthalic acid, terephthalic acid, endomethylenetetrahydrophthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, succinic acid, adipic acid, azelaic acid, and sebacic acid. . Examples of glycols include ethylene glycol, propylene glycol, 1,4-butanediol, 1,3-butanediol, 2,3-butanediol, diethylene glycol, dipropylene glycol, triethylene glycol, 1,5-pentanediol, , 6-hexanediol, neopentyl glycol, 2,2,4-trimethylpentane-1,3-diol, hydrogenated bisphenol A, pentaerythritol diallyl ether, trimethylene glycol, 2-ethyl 1,3-hexanediol, etc. Can be mentioned.
 また、フェノキシ系樹脂としては、例えば、ビスフェノールA骨格を有するフェノキシ樹脂、ビスフェノールF骨格を有するフェノキシ樹脂、ビスフェノールS骨格を有するフェノキシ樹脂、ビスフェノールM骨格(4,4’-(1,3-フェニレンジイソプリジエン)ビスフェノール骨格)を有するフェノキシ樹脂、ビスフェノールP(4,4’-(1,4)-フェニレンジイソプリジエン)ビスフェノール骨格)骨格を有するフェノキシ樹脂、ビスフェノールZ(4,4’-シクロヘキシィジエンビスフェノール骨格)骨格を有するフェノキシ樹脂等のビスフェノール骨格を有するフェノキシ樹脂、ノボラック骨格を有するフェノキシ樹脂、アントラセン骨格を有するフェノキシ樹脂、フルオレン骨格を有するフェノキシ樹脂、ジシクロペンタジエン骨格を有するフェノキシ樹脂、ノルボルネン骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂、アダマンタン骨格を有するフェノキシ樹脂等が挙げられる。 Examples of the phenoxy resin include a phenoxy resin having a bisphenol A skeleton, a phenoxy resin having a bisphenol F skeleton, a phenoxy resin having a bisphenol S skeleton, and a bisphenol M skeleton (4,4 ′-(1,3-phenylenedioxide). Phenoxy resin having isopropylidene) bisphenol skeleton), phenoxy resin having bisphenol P (4,4 ′-(1,4) -phenylenediisopridiene) bisphenol skeleton), bisphenol Z (4,4′-cyclohexene) Phenoxy resin having a bisphenol skeleton, such as a phenoxy resin having a sidiene bisphenol skeleton), a phenoxy resin having a novolac skeleton, a phenoxy resin having an anthracene skeleton, a phenoxy resin having a fluorene skeleton, Phenoxy resins having pentadiene skeleton, phenoxy resins having a norbornene skeleton, phenoxy resins having a naphthalene skeleton, phenoxy resins having a biphenyl skeleton include phenoxy resins having an adamantane skeleton.
 このような熱可塑性樹脂は、数平均分子量(Mn)が2000~200000であることが好ましく、5000~100000の範囲であることがより好ましい。数平均分子量が2000未満であると、印刷時の転移不良が発生しやすくなり良好な配線パターンの形成が困難となる場合がある。一方、数平均分子量が200000を超えると印刷時に導電性組成物の糸引きに起因するヒゲ欠陥やラインのうねり等が発生しやすくなり印刷適性を損なう場合があるので好ましくない。なお、数平均分子量は、ゲルパーメーションクロマトグラフィー(GPC)にて測定した標準ポリスチレン換算の値である。 Such a thermoplastic resin preferably has a number average molecular weight (Mn) of 2,000 to 200,000, and more preferably in the range of 5,000 to 100,000. If the number average molecular weight is less than 2000, a transfer failure during printing tends to occur, and it may be difficult to form a good wiring pattern. On the other hand, if the number average molecular weight exceeds 200000, whisker defects or line waviness due to stringing of the conductive composition is likely to occur during printing, and printability may be impaired. The number average molecular weight is a standard polystyrene equivalent value measured by gel permeation chromatography (GPC).
 <熱硬化性樹脂>
 本発明において、導電性組成物を構成する熱硬化性樹脂としては、エポキシ系樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、又は熱硬化性ポリイミド樹脂等を用いることができる。なかでも、エポキシ系樹脂を用いることが好ましい。本発明においては、これら熱硬化性樹脂は単独で用いてもよく、2種以上を併用してもよい。
<Thermosetting resin>
In the present invention, an epoxy resin, a phenol resin, an amino resin, an unsaturated polyester resin, a polyurethane resin, a silicone resin, a thermosetting polyimide resin, or the like is used as the thermosetting resin constituting the conductive composition. it can. Among these, it is preferable to use an epoxy resin. In the present invention, these thermosetting resins may be used alone or in combination of two or more.
 エポキシ系樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、水添ビスフェノールA型エポキシ樹脂、臭素化ビスフェノールA型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、リン含有エポキシ樹脂、アントラセン型エポキシ樹脂、ノルボルネン型エポキシ樹脂、アダマンタン型エポキシ樹脂、フルオレン型エポキシ樹脂、アミノフェノール型エポキシ樹脂、アミノクレゾール型エポキシ樹脂、アルキルフェノール型エポキシ樹脂等が挙げられる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, hydrogenated bisphenol A type epoxy resin, brominated bisphenol A type epoxy resin, bisphenol S type epoxy resin, phenol novolac type epoxy resin, and cresol novolac. Type epoxy resin, bisphenol A novolak type epoxy resin, biphenyl type epoxy resin, naphthol type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene type epoxy resin, triphenylmethane type epoxy resin, alicyclic epoxy resin, aliphatic chain Epoxy resin, phosphorus-containing epoxy resin, anthracene epoxy resin, norbornene epoxy resin, adamantane epoxy resin, fluorene epoxy resin, aminophenol epoxy Shi resin, amino cresol type epoxy resins, phenol type epoxy resin.
 このような熱硬化性樹脂は、数平均分子量(Mn)が100~50000であることが好ましく、150~10000の範囲であることがより好ましい。数平均分子量がかかる範囲から逸脱すると基材との密着性を損なう場合があるので好ましくない。 Such a thermosetting resin preferably has a number average molecular weight (Mn) of 100 to 50,000, more preferably 150 to 10,000. If the number average molecular weight deviates from this range, the adhesion to the substrate may be impaired.
 以上説明したようなバインダー樹脂としての熱可塑性樹脂と熱硬化性樹脂とは、質量比で95:5~30:70の割合で配合することが好ましく、より好ましくは90:10~50:50の割合で配合する。熱可塑性樹脂と熱硬化性樹脂との配合割合を上記範囲とすることにより、基材との密着性に優れた配線パターンを形成することができ、また、併せて配線パターンの抵抗値を低下させることができる。なお、バインダー樹脂としての配合量は、導電性組成物中に固形分換算で1~25質量%であることが好ましく、3~20質量%の範囲であることがより好ましい。バインダー樹脂は多いほど、基材との優れた密着性を確保することができるが、十分な導電性が得られなくなる場合がある。一方、バインダー樹脂が少なくなると、基材との密着性を損なう場合がある。 The thermoplastic resin and thermosetting resin as the binder resin as described above are preferably blended in a mass ratio of 95: 5 to 30:70, more preferably 90:10 to 50:50. Mix in proportions. By setting the blending ratio of the thermoplastic resin and the thermosetting resin within the above range, it is possible to form a wiring pattern with excellent adhesion to the base material, and also reduce the resistance value of the wiring pattern. be able to. The blending amount as the binder resin is preferably 1 to 25% by mass, more preferably 3 to 20% by mass in terms of solid content in the conductive composition. The more binder resin, the better the adhesion with the substrate can be ensured, but sufficient conductivity may not be obtained. On the other hand, if the binder resin is decreased, the adhesion with the substrate may be impaired.
 <硬化剤>
 本発明において、導電性組成物を構成する硬化剤としては、エポキシ系樹脂等の熱硬化性樹脂を硬化させることができるものであれば特に制限はなく、公知のものを適宜用いることができる。例えば、フェノール樹脂、イミダゾール化合物、酸無水物、脂肪族アミン、脂環族ポリアミン、芳香族ポリアミン、第3級アミン、ジシアンジアミド、グアニジン類、又はこれらのエポキシアダクトやマイクロカプセル化したもののほか、トリフェニルホスフィン、テトラフェニルホスフォニウム、テトラフェニルボレート等の有機ホスフィン系化合物、特開平06-73156号公報に記載されているようなエポキシアダクトの表面を、ホウ酸エステル化合物等を用いて処理することにより得られる一液性エポキシ配合物、例えば、エポキシ-フェノール-ホウ酸エステル配合物等を用いることができる。これらの硬化剤は、単独用いてもよく、又は2種以上を併用して用いてもよい。
<Curing agent>
In the present invention, the curing agent constituting the conductive composition is not particularly limited as long as it can cure a thermosetting resin such as an epoxy resin, and a known one can be appropriately used. For example, phenol resins, imidazole compounds, acid anhydrides, aliphatic amines, alicyclic polyamines, aromatic polyamines, tertiary amines, dicyandiamide, guanidines, or epoxy adducts or microencapsulated products thereof, triphenyl By treating the surface of an organic phosphine compound such as phosphine, tetraphenylphosphonium, tetraphenylborate, and the epoxy adduct described in JP-A-06-73156 with a boric acid ester compound, etc. The resulting one-part epoxy compound, such as an epoxy-phenol-borate compound, can be used. These curing agents may be used alone or in combination of two or more.
 このような硬化剤の配合量は、熱硬化性樹脂100質量部に対して、1~50質量部が好ましい。硬化剤の配合量をかかる範囲とすることにより、配線パターンの熱硬化性樹脂を良好に硬化させ、配線パターン中の金属粒子を保持すると共に基材との優れた密着性を確保することが可能となる。なお、硬化剤の添加量は、導電性組成物中に固形分換算で0.01~5質量%であることが好ましく、0.05~3質量%の範囲であることがより好ましい。 The blending amount of such a curing agent is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the thermosetting resin. By setting the blending amount of the curing agent in such a range, it is possible to cure the thermosetting resin of the wiring pattern well, hold the metal particles in the wiring pattern, and ensure excellent adhesion to the substrate. It becomes. The addition amount of the curing agent is preferably 0.01 to 5% by mass in terms of solid content in the conductive composition, and more preferably 0.05 to 3% by mass.
 <金属粒子>
 本発明において、導電性組成物を構成する金属粒子としては、アルミニウムや銅、銀、金等の粒子を挙げることができるが、コストや低抵抗化処理、マイグレーションの観点から、アルミニウムおよび銅の粒子が好ましい。これら金属粒子は、電子顕微鏡(SEM)を用いて10000倍で観察したランダムな10個の金属粒子の平均粒径で、0.1~15μmであることが好ましく、0.5~5μmの範囲であることがより好ましい。これらの金属粒子は、平均粒径が小さいほど金属粒子どうしの接触状態を良好とすることができ、形成される配線パターンの導電性を向上させることが可能となるが、金属粒子の平均粒径がナノオーダーになると低抵抗化処理の効果が十分に得られない場合がある。一方、金属粒子の平均粒径が大きくなると基材との密着性を損なう場合がある。
<Metal particles>
In the present invention, examples of the metal particles constituting the conductive composition include aluminum, copper, silver, and gold particles. From the viewpoint of cost, low resistance treatment, and migration, aluminum and copper particles. Is preferred. These metal particles have an average particle diameter of 10 random metal particles observed at 10000 times using an electron microscope (SEM), and are preferably 0.1 to 15 μm, and in the range of 0.5 to 5 μm. More preferably. These metal particles can improve the contact state between the metal particles as the average particle size is small, and it is possible to improve the conductivity of the formed wiring pattern. If the value is on the nano order, the effect of reducing the resistance may not be sufficiently obtained. On the other hand, when the average particle size of the metal particles is increased, the adhesion with the substrate may be impaired.
 本発明の導電性組成物においては、使用する金属粒子の形状については特に制限はないが、球状がより低抵抗化処理には好適である。このような金属粒子の配合量は、導電性組成物中に固形分換算で50~90容量%であることが好ましく、60~85容量%の範囲であることがより好ましい。金属粒子の配合量が50容量%未満であると、配線パターン内での金属粒子どうしの接触点が減少し、十分な導電性を得ることができなくなるおそれがある。一方、金属粒子の配合量が90容量%を超えると、相対的にバインダー樹脂の量が減少するので、配線パターンと基材との密着性が低下するおそれがある。なお、質量比では、導電性組成物中に固形分換算で65~99質量%であることが好ましく、75~97質量%の範囲であることがより好ましい。 In the conductive composition of the present invention, the shape of the metal particles to be used is not particularly limited, but a spherical shape is more suitable for the resistance reduction treatment. The blending amount of such metal particles is preferably 50 to 90% by volume in terms of solid content in the conductive composition, and more preferably in the range of 60 to 85% by volume. If the blending amount of the metal particles is less than 50% by volume, the contact points between the metal particles in the wiring pattern may be reduced, and sufficient conductivity may not be obtained. On the other hand, if the blending amount of the metal particles exceeds 90% by volume, the amount of the binder resin is relatively decreased, and thus the adhesion between the wiring pattern and the substrate may be lowered. The mass ratio is preferably 65 to 99% by mass in terms of solid content in the conductive composition, and more preferably in the range of 75 to 97% by mass.
 なお、本発明の導電性組成物には、例えば、印刷適性を損なわない範囲で、消泡剤、金属分散剤、レベリング剤、チクソトロピー性付与剤、カップリング剤、希釈剤、可塑化剤、酸化防止剤、金属不活性化剤や充填剤等の添加剤を配合してもよい。 The conductive composition of the present invention includes, for example, an antifoaming agent, a metal dispersant, a leveling agent, a thixotropy imparting agent, a coupling agent, a diluent, a plasticizer, an oxidation, as long as printability is not impaired. You may mix | blend additives, such as an inhibitor, a metal deactivator, and a filler.
 消泡剤としては、例えば、サンノプコ(株)社製のSNディスパーサント5020、SNディスパーサント5468、SNディスパーサント9228、SNウェット366、SNスパース70、SNスパース2190等のディスパーシリーズ、ダッポーSN-348、ダッポーSN-351、ダッポーSN-357、ダッポーSN-368等のダッポーシリーズ、SNディフォーマー470、SNディフォーマー477、SNディフォーマー777、SNディフォーマー5013、SNディフォーマーJK等のディフォーマーシリーズや楠本化成(株)社製のディスパロンシリーズ等を挙げることができる。 Examples of antifoaming agents include SN Dispersant 5020, SN Dispersant 5468, SN Dispersant 9228, SN Dispersant 9228, SN Wet 366, SN Sparse 70, SN Sparse 2190, etc. manufactured by San Nopco Co., Ltd., Dappo SN-348 Dappo series such as Dappo SN-351, Dappo SN-357, Dappo SN-368, SN deformer 470, SN deformer 477, SN deformer 777, SN deformer 5013, SN deformer JK And the Deparon series manufactured by Enomoto Kasei Co., Ltd.
 分散剤としては、BYK-Chemie社製のDISPERBYK-101、-102、-103、-106、-108、-110、-111、-112、-116,-140、-142、-145、-164、-167、180、-182、-183、-184、-185、-2000、-2001、-2020、-2050、-2096、-2155、-2163等のDISPERBYKシリーズ、BYK-300、-306、-310、-313、-322、-331、-341、-345、-347、-348、-350、-352、-356、-358N、-375、-378、-381、-392、-405、-410、-430、-431、-054、-055、-057、-1752、-1790、-060N、-063、-065、-067A、-080A、-354、-392等のBYKシリーズ、サンノプコ(株)社製のSNディフォーマー470、SNディフォーマー477、SNディフォーマー777、SNディフォーマー5013、SNディフォーマーJK等のディフォーマーシリーズや楠本化成(株)社製のディスパロンシリーズ等を挙げることができる。 As the dispersant, DISPERBYK-101, -102, -103, -106, -108, -110, -111, -112, -116, -140, -142, -145, -164 manufactured by BYK-Chemie , -167, 180, -182, -183, -184, -185, -2000, -2001, -2020, -2050, -2096, -2155, -2163, etc. DISPERBYK series, BYK-300, -306, −310, −313, −322, −331, −341, −345, −347, −348, −350, −352, −356, −358N, −375, −378, −381, −392, −405 , -410, -430, -431, -054, -055, -057, -1752, -1790, -060N, -063 BYK series such as −065, −067A, −080A, −354, and −392, SN deformer 470, SN deformer 477, SN deformer 777, SN deformer 5013, manufactured by Sannopco Corporation Deformer series such as SN deformer JK and Disparon series manufactured by Enomoto Kasei Co., Ltd. can be listed.
 レベリング剤としては、例えば、共栄社化学(株)社製のポリフローNo.7、ポリフローNo.50EHF、ポリフローNo.75、ポリフローNo.85、ポリフローNo.90、ポリフローNo.95、ポリフローNo.99C等のポリフローシリーズ、フローレンAC202、フローレンAC300HF、フローレンAC303HF、フローレンAC326F、フローレンAC530、フローレンAC901HF、フローレンAC903HF、フローレンAC970MS、フローレンAC1170、フローレンAC1190HF、フローレンAC2200HF、フローレンAC2300C、フローレンAO-5、フローレンAO-98、フローレンAO-108等のフローレンシリーズ、モンサント社製モダフロー等を挙げることができる。 Examples of the leveling agent include Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 7, Polyflow No. 50EHF, Polyflow No. 75, Polyflow No. 85, Polyflow No. 90, polyflow no. 95, Polyflow No. Polyflow series such as 99C, Floren AC202, Floren AC300HF, Floren AC303HF, Floren AC326F, Floren AC530, Floren AC901HF, Floren AC903HF, Floren AC970MS, Floren AC1170, Floren AC1190HF, Floren AC2200C, Floren AC2300C, Floren AO5 -98, Floren series such as Floren AO-108, Monsanto Modaflow and the like.
 チクソトロピー性付与剤としては、例えば、共栄社化学(株)社製のフローノンSH-295S、フローノンSH-350、フローノンHR-4AF、フローノンSP-1000AF、フローノンSA-330HF、フローノンSA-345HF等のフローノンシリーズ、ターレン7200-20、ターレン8300-20、ターレンKU-700、ターレンM-1020XFS、ターレン2000等のターレンシリーズ等を挙げることができる。 Examples of thixotropic agents include Flownon SH-295S, Flownon SH-350, Flownon HR-4AF, Flownon SP-1000AF, Flownon SA-330HF and Flownon SA-345HF manufactured by Kyoeisha Chemical Co., Ltd. Series, Taren series such as Talen 7200-20, Talen 8300-20, Talen KU-700, Talen M-1020XFS, Talen 2000 and the like.
 カップリング剤としては、信越化学工業(株)社製のKBM-1003、KBM-303、KBM-402、KBM-403、KBM-1403、KBM-502、KBM-503、KBM-5103、KBM-603、KBM-903、KBM-573、KBM-803等のKBMシリーズ、KBE-1003、KBE-402、KBE-403、KBE-502、KBE-503、KBE-603、KBE-903、KBE-585、KBE-9103、KBE-846等のKBEシリーズ、東レ・ダウコーニン(株)社製のZ-601、Z-6019、Z-6020、Z-6030、Z-6040、Z-6040N、Z-6043、Z-6062、Z-6300、Z-6519、Z-6883等のZシリーズ等を挙げることができる。 As coupling agents, KBM-1003, KBM-303, KBM-402, KBM-403, KBM-1403, KBM-502, KBM-503, KBM-5103, KBM-603 manufactured by Shin-Etsu Chemical Co., Ltd. KBM series such as KBM-903, KBM-573, KBM-803, KBE-1003, KBE-402, KBE-403, KBE-502, KBE-503, KBE-603, KBE-903, KBE-585, KBE KBE series such as -9103, KBE-846, Z-601, Z-6019, Z-6020, Z-6030, Z-6040, Z-6040N, Z-6043, Z-manufactured by Toray Dow Corning Co., Ltd. Z series such as 6062, Z-6300, Z-6519, Z-6883, etc.
 本発明の導電性組成物を用いて、基材上に配線パターンを印刷する場合、通常、本発明の導電性組成物は溶剤で希釈して用いられるが、かかる溶剤としては、金属粒子の分散性がよく揮発性のあるものを用いるのが好ましい。例えば、メタノール、エタノール、イソプロピルアルコール(IPA)、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、酢酸エチル、シクロヘキサノン、トルエン、キシレン、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノエチルメチルエーテル、ジプロピレングリコールモノメチルエーテル、1-(2-メトキシ-2-メチルエトキシ)-2-プロパノール、プロピレングリコールモノメチルエーテルアセテート、および水等を挙げることができる。これら溶剤は、それぞれ単独で用いてもよく、2種以上を任意の割合で混合して用いてもよい。 When a wiring pattern is printed on a substrate using the conductive composition of the present invention, the conductive composition of the present invention is usually diluted with a solvent, and as such a solvent, metal particles are dispersed. It is preferable to use a volatile one having good properties. For example, methanol, ethanol, isopropyl alcohol (IPA), methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), ethyl acetate, cyclohexanone, toluene, xylene, diethylene glycol monoethyl ether acetate, dipropylene glycol monoethyl methyl ether, dipropylene glycol Examples thereof include monomethyl ether, 1- (2-methoxy-2-methylethoxy) -2-propanol, propylene glycol monomethyl ether acetate, and water. Each of these solvents may be used alone, or two or more of them may be mixed and used in an arbitrary ratio.
 次に、本発明の配線基板の製造方法、および本発明の配線基板について説明する。
 本発明の配線基板の製造方法は、導電性組成物を基材上に塗布し、導電性組成物からなる配線パターンを基材上に形成する塗布工程と、塗布工程により形成された配線パターンを熱硬化する熱硬化工程と、熱硬化工程により熱硬化された配線パターンを有する基材を加圧する加圧工程とを有する。本発明の配線基板の製造方法においては、導電性組成物として上記本発明の導電性組成物を用いることが重要である。上述の通り、本発明の導電性組成物は、配線基板を安価で効率よく製造でき、かつ、基材との密着性に優れた配線パターンを形成することができるからである。以下、本発明の配線基板の製造方法について、詳細に説明する。
Next, the manufacturing method of the wiring board of this invention and the wiring board of this invention are demonstrated.
The method for manufacturing a wiring board according to the present invention comprises: applying a conductive composition on a substrate; forming a wiring pattern made of the conductive composition on the substrate; and a wiring pattern formed by the applying step. A thermosetting process for thermosetting, and a pressurizing process for pressurizing a substrate having a wiring pattern thermoset by the thermosetting process. In the method for producing a wiring board of the present invention, it is important to use the conductive composition of the present invention as the conductive composition. As described above, the conductive composition of the present invention can produce a wiring board inexpensively and efficiently, and can form a wiring pattern having excellent adhesion to a substrate. Hereafter, the manufacturing method of the wiring board of this invention is demonstrated in detail.
 まず、図1を参照し、配線基板の作製方法について説明する。図1は、本発明の配線基板の製造方法を示すフローチャートであり、図示する通り、配線基板は、導電性組成物を基材上に塗布し、導電性組成物からなる配線パターンを基材上に形成する塗布工程(S1)と、塗布工程により形成された配線パターンを熱硬化する熱硬化工程(S2)と、熱硬化工程により熱硬化された配線パターンを有する基材を、加圧体を用いて垂直方向に加圧しつつ、基材または加圧体を水平方向に移動させる加圧工程(S3)とを経て製造される。塗布工程(S1)では、上記本発明の導電性組成物が所定の配線パターン状に基材表面に塗布される。塗布方法としては特に制限はなく、導電性組成物を塗布する方法として公知の手法を適用することができる。塗布方法としては、例えば、各種印刷法(スクリーン印刷法、凹版印刷法、凸版印刷法、平版印刷法)、ディスペンシング法、インクジェット法等を挙げることができる。 First, a method for manufacturing a wiring board will be described with reference to FIG. FIG. 1 is a flowchart showing a method for manufacturing a wiring board according to the present invention. As shown in the figure, the wiring board is formed by applying a conductive composition on a base material and applying a wiring pattern made of the conductive composition on the base material. The substrate having the coating pattern (S1), the thermosetting process (S2) for thermosetting the wiring pattern formed by the coating process, and the wiring pattern thermoset by the thermosetting process is applied to the pressure body. It is manufactured through a pressing step (S3) in which the substrate or the pressing body is moved in the horizontal direction while pressing in the vertical direction. In the application step (S1), the conductive composition of the present invention is applied to the substrate surface in a predetermined wiring pattern. There is no restriction | limiting in particular as an application | coating method, A well-known method is applicable as a method of apply | coating an electroconductive composition. Examples of the coating method include various printing methods (screen printing method, intaglio printing method, relief printing method, lithographic printing method), dispensing method, ink jet method and the like.
 次いで、塗布工程(S1)において本発明の導電性組成物が塗布された状態の基材は、熱硬化工程(S2)において配線パターンが加熱硬化される。この工程では、塗布された配線パターンの乾燥も同時に行うことができるが、必要に応じて、事前に塗膜乾燥工程を施して配線パターンを乾燥してもよい。本発明の導電性組成物のバインダー樹脂は熱可塑性樹脂および熱硬化性樹脂より構成されており、上述のとおり、バインダー樹脂中に熱硬化性樹脂が存在するため、この熱硬化工程を経ることにより、基材との良好な密着性を得ることができる。ここで、熱硬化条件は、好ましくは80~200℃で1~120分、より好ましくは100~170℃で10~60分とする。 Next, the wiring pattern is heat-cured in the thermosetting step (S2) of the substrate on which the conductive composition of the present invention has been applied in the applying step (S1). In this step, the applied wiring pattern can be dried at the same time, but if necessary, a coating film drying step may be performed in advance to dry the wiring pattern. The binder resin of the conductive composition of the present invention is composed of a thermoplastic resin and a thermosetting resin. As described above, since the thermosetting resin exists in the binder resin, the binder resin is subjected to this thermosetting step. Good adhesion to the substrate can be obtained. Here, the thermosetting conditions are preferably 80 to 200 ° C. for 1 to 120 minutes, more preferably 100 to 170 ° C. for 10 to 60 minutes.
 次いで、熱硬化工程(S2)において配線パターンが加熱硬化された配線基板は、加圧工程(S3)において加圧される。ここで、加圧工程(S3)では、印刷した導電性組成物に加圧体を用いて垂直方向に加圧しつつ、基材または加圧体を水平方向に移動させ、導電性組成物の表面にずり応力を発生させる。これにより、金属粒子が塑性変形し、連続した導体層が形成される。その結果、低抵抗化処理が実現される。 Next, the wiring board on which the wiring pattern is heat-cured in the thermosetting step (S2) is pressurized in the pressurizing step (S3). Here, in the pressurizing step (S3), the substrate or the pressure body is moved in the horizontal direction while pressurizing the printed conductive composition in the vertical direction using the pressure body, and the surface of the conductive composition Generate shear stress. As a result, the metal particles are plastically deformed to form a continuous conductor layer. As a result, a resistance reduction process is realized.
 さらに必要に応じて、加圧工程(S3)において低抵抗化処理された状態の配線パターンを有する基材は、加熱工程において加熱される。この加熱工程では、配線パターンを硬化収縮させることにより、金属粒子どうしの接触確率がさらに増加する。なお、この加熱工程は、加圧工程(S3)において加圧中に同時に実施してもよい。 Further, if necessary, the substrate having the wiring pattern in the state where the resistance is reduced in the pressurizing step (S3) is heated in the heating step. In this heating step, the contact probability between the metal particles is further increased by curing and shrinking the wiring pattern. In addition, you may implement this heating process simultaneously during a pressurization in a pressurization process (S3).
 ここで、図2を用いて、導電性組成物の塗布工程(図1中S1に相当)について説明する。図2では、バインダー2と金属粒子3とを有する導電性組成物4を基材1上に所定のパターンに塗布する方法として、スクリーン印刷法を採用した場合を示している。図2に示すように、塗布工程では、所定の配線パターンを印刷可能なスクリーン版5が基材1上に配置される。そして、スクリーン版5上に導電性組成物が配置される。 Here, the coating process of the conductive composition (corresponding to S1 in FIG. 1) will be described with reference to FIG. In FIG. 2, the case where the screen printing method is employ | adopted as a method of apply | coating the electrically conductive composition 4 which has the binder 2 and the metal particle 3 to the base material 1 in a predetermined pattern is shown. As shown in FIG. 2, in the coating process, a screen plate 5 capable of printing a predetermined wiring pattern is disposed on the substrate 1. Then, the conductive composition is disposed on the screen plate 5.
 次いで、スクリーン版5上に配置された状態の導電性組成物4を、スキージー6を使用して基材1側に押し付けながら伸ばす。これにより、基材1上に所定の配線パターン状に導電性組成物4が塗布された状態となる。 Next, the conductive composition 4 placed on the screen plate 5 is stretched while being pressed against the substrate 1 side using the squeegee 6. Thereby, it will be in the state by which the conductive composition 4 was apply | coated on the base material 1 in the predetermined wiring pattern shape.
 次に、熱硬化工程(図1中S2に相当)について説明する。熱硬化工程では、加圧工程により加圧された状態の導電性組成物を加熱し、熱硬化させる。以上の工程を経て、配線パターンが形成された状態の配線基板が作製される。なお、本発明では、好ましくは80~200℃で、より好ましくは100~170℃の加熱温度にて導電性組成物を熱硬化させる。これにより、基材の材料として比較的熱に弱い樹脂性材料を使用した場合でも、基材の物性に影響を及ぼすことなく配線パターンを形成させることが可能となる。 Next, the thermosetting process (corresponding to S2 in FIG. 1) will be described. In the thermosetting step, the conductive composition pressed in the pressing step is heated and thermoset. Through the above steps, a wiring board in which a wiring pattern is formed is manufactured. In the present invention, the conductive composition is preferably thermoset at a heating temperature of preferably 80 to 200 ° C., more preferably 100 to 170 ° C. Thereby, even when a resinous material that is relatively weak against heat is used as the material of the base material, it is possible to form a wiring pattern without affecting the physical properties of the base material.
 次に、図3を参照し、加圧工程(図1中S3に相当)について説明する。図示するように、加圧工程では、熱硬化工程(図1参照)により熱硬化された配線パターンを構成する導電性組成物4上に加圧体7を置き、加圧体7を用いて垂直方向に加圧しつつ、基材1または加圧体7を水平方向に移動させて導電性組成物4を加圧する。これにより、ずり応力が発生して、金属表面が押し潰されることになり、金属粒子3が塑性変形し、隣接金属粒子3間で圧接され、連続した導体層が形成され、配線パターンの導電性が向上する。なお、図示例においては、加圧体7として加圧ローラを用いているが、本発明においては、加圧体はこれに限られるものではない。なお、本発明の配線基板の製造方法においては、加圧圧力や加圧回数は制限されないが、例えば、圧力を10~200MPaとして、加圧回数を1~複数回とする。 Next, the pressurizing step (corresponding to S3 in FIG. 1) will be described with reference to FIG. As shown in the figure, in the pressurizing step, a pressurizing body 7 is placed on the conductive composition 4 constituting the wiring pattern thermoset by the thermosetting step (see FIG. 1), and the pressurizing body 7 is used to make the vertical. While pressing in the direction, the base material 1 or the pressure body 7 is moved in the horizontal direction to pressurize the conductive composition 4. As a result, shear stress is generated and the metal surface is crushed, the metal particles 3 are plastically deformed, pressed between the adjacent metal particles 3, and a continuous conductor layer is formed. Will improve. In the illustrated example, a pressure roller is used as the pressure body 7, but in the present invention, the pressure body is not limited to this. In the method for manufacturing a wiring board according to the present invention, the pressure and the number of times of pressurization are not limited. For example, the pressure is 10 to 200 MPa and the number of times of pressurization is one to a plurality of times.
 以上説明したように、本発明の導電性組成物を基材上に塗布し、配線パターンを形成する。これにより、熱硬化性樹脂と基材とが強固に密着するため、密着性に優れた配線パターンを有し、かつ、低抵抗化を実現した配線基板を作製することが可能となる。 As described above, the conductive composition of the present invention is applied onto a substrate to form a wiring pattern. Thereby, since the thermosetting resin and the base material are firmly adhered to each other, it is possible to produce a wiring board having a wiring pattern with excellent adhesion and realizing low resistance.
 なお、本発明の配線基板の製造方法に用いる基材については特に制限はなく、従来から、基材の材料として使用される樹脂材料が使用可能である。特に基材として樹脂製の基材を用いる場合は、例えば、ポリイミド、ポリエステル系樹脂、ポリエーテルサルフォン(PES)、ポリスチレン(PS)、ポリメチルメタクリレート(PMMA)、ポリカーボネート(PC)、ポリアミド(PA)、ポリプロピレン(PP)、ポリフェニレンオキサイド(PPO)等を挙げることができ、好適には、ポリエステル系樹脂を用いることができる。 In addition, there is no restriction | limiting in particular about the base material used for the manufacturing method of the wiring board of this invention, The resin material conventionally used as a material of a base material can be used. In particular, when a resin base material is used as the base material, for example, polyimide, polyester resin, polyethersulfone (PES), polystyrene (PS), polymethyl methacrylate (PMMA), polycarbonate (PC), polyamide (PA ), Polypropylene (PP), polyphenylene oxide (PPO) and the like, and a polyester resin can be preferably used.
 ポリエステル系樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート(PTT)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリブチレンナフタレート(PBN)を挙げることができる。また、これらの樹脂材料では導電性組成物の密着性を向上させるために、プライマーを塗布したり、コロナ処理等の処理を施したりすることがあるが、そのような処理を行ってもかまわない。 Examples of the polyester resin include polyethylene terephthalate (PET), polytrimethylene terephthalate (PTT), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polybutylene naphthalate (PBN). Moreover, in these resin materials, in order to improve the adhesiveness of the conductive composition, a primer may be applied or a treatment such as a corona treatment may be performed, but such a treatment may be performed. .
 次に、本発明の電極について説明する。
<電極>
 本発明の電極は、基材と、基材上に形成された導電部を有する電極であって、導電部が、バインダー樹脂としての熱可塑性樹脂および熱硬化性樹脂と、硬化剤と、金属粒子とを含有する導電性組成物からなり、導電部の表面は、金属光沢を有する。その表面の光沢度は、例えば、40以上であることが好ましく、より好ましくは、60以上であり、さらにより好ましくは、80以上である。導電部の表面の光沢度が40以上であることにより、優れた導電性を発揮できる。
Next, the electrode of the present invention will be described.
<Electrode>
The electrode of the present invention is an electrode having a base material and a conductive part formed on the base material, and the conductive part includes a thermoplastic resin and a thermosetting resin as a binder resin, a curing agent, and metal particles. The surface of the conductive portion has a metallic luster. The glossiness of the surface is, for example, preferably 40 or more, more preferably 60 or more, and even more preferably 80 or more. When the glossiness of the surface of the conductive portion is 40 or more, excellent conductivity can be exhibited.
 後述するが、本発明の電極は、その製造工程において、ローラ等の加圧体で基材上に形成された導電部が加圧されて製造されるものであるが、その際、導電部の表面近傍の金属粒子が塑性変形し、隣接金属粒子間で圧接され、連続した導体層が形成される結果、導電部の表面には金属光沢が生じる。このような表面状態であるため、隣接する金属粒子同士は良好に接触しており、電極の抵抗率は大幅に低減している。本発明の電極においては、その導電部の算術平均粗さ(測定範囲25μm×25μm)が40nm以下であることが好ましい。より好ましくは、導電部の表面の算術平均粗さは、20nm以下、さらに好ましくは15nm以下、特に好ましくは10nm以下である。算術平均粗さが40nm以下の場合、電極の抵抗率が小さくなるため、電極として良好に機能する。 As will be described later, the electrode of the present invention is manufactured by pressurizing a conductive part formed on a substrate with a pressure body such as a roller in the manufacturing process. Metal particles near the surface are plastically deformed and pressed between adjacent metal particles to form a continuous conductor layer. As a result, a metallic luster is generated on the surface of the conductive portion. Since it is such a surface state, the adjacent metal particles are in good contact with each other, and the resistivity of the electrode is greatly reduced. In the electrode of the present invention, the arithmetic average roughness (measurement range 25 μm × 25 μm) of the conductive portion is preferably 40 nm or less. More preferably, the arithmetic average roughness of the surface of the conductive portion is 20 nm or less, more preferably 15 nm or less, and particularly preferably 10 nm or less. When the arithmetic average roughness is 40 nm or less, the resistivity of the electrode becomes small, so that it functions well as an electrode.
 また、本発明の電極は、低抵抗化処理にて表面の算術平均粗さが40nm以下である場合、導電部の表面が平滑であり、本発明の電極をRFID等の電子デバイスに適用した場合、広範囲な通信距離で効率よく送受信が可能である。 In addition, when the arithmetic average roughness of the surface of the electrode of the present invention is 40 nm or less in the resistance reduction treatment, the surface of the conductive part is smooth, and the electrode of the present invention is applied to an electronic device such as an RFID. Efficient transmission / reception is possible over a wide communication distance.
 本発明の電極においては、導電部における金属粒子の割合は、溶媒を除く導電性組成物全量(固形分換算)中で、60~95容量%であることが好ましく、さらに好ましくは、65~95容量%である。 In the electrode of the present invention, the ratio of the metal particles in the conductive part is preferably 60 to 95% by volume, more preferably 65 to 95% in the total amount of the conductive composition excluding the solvent (in terms of solid content). It is volume%.
 また、電極の抵抗率は、低抵抗化処理後1×10-2Ω・cm以下であることが好ましく、さらに好ましくは、1×10-3Ω・cm以下であり、さらにより好ましくは、1×10-4Ω・cm以下である。なお、導電部の抵抗率は低いほど好ましいが、導電部の抵抗率を低下させるために金属粒子の添加量を多くすると、相対的にバインダー樹脂の量が減少してしまい、導電部と基材との密着性が低下するおそれがある。 The resistivity of the electrode is preferably 1 × 10 −2 Ω · cm or less after the resistance reduction treatment, more preferably 1 × 10 −3 Ω · cm or less, and still more preferably 1 × 10 −3 Ω · cm or less. × 10 −4 Ω · cm or less. In addition, although the resistivity of a conductive part is so preferable that it is low, when the addition amount of a metal particle is increased in order to reduce the resistivity of a conductive part, the quantity of binder resin will reduce relatively, a conductive part and a base material There is a possibility that the adhesiveness with the lowering.
 本発明の電極を製造するに当たって、上記本発明の導電性組成物を用いて、基材上に導電部を印刷する場合、通常、本発明の導電性組成物は溶剤で希釈して用いられるが、かかる溶剤としては、金属粒子の分散性がよく揮発性のあるものを用いるのが好ましい。例えば、ジエチレングリコールモノエチルエーテルアセテート、ジプロピレングリコールモノエチルメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート等を挙げることができる。これら溶剤は、それぞれ単独で用いてもよく、2種以上を任意の割合で混合して用いてもよい。 In producing the electrode of the present invention, when a conductive part is printed on a substrate using the conductive composition of the present invention, the conductive composition of the present invention is usually diluted with a solvent. As such a solvent, it is preferable to use a volatile solvent having good dispersibility of metal particles. Examples thereof include diethylene glycol monoethyl ether acetate, dipropylene glycol monoethyl methyl ether, dipropylene glycol monomethyl ether, and propylene glycol monomethyl ether acetate. Each of these solvents may be used alone, or two or more of them may be mixed and used in an arbitrary ratio.
<基材>
 本発明の電極に用いる基材については特に制限はなく、従来から、基材の材料として使用される樹脂材料が使用可能である。例えば、上記本発明の配線基板の製造方法に用いる基材と同じものを用いることができる。
<Base material>
There is no restriction | limiting in particular about the base material used for the electrode of this invention, The resin material conventionally used as a material of a base material can be used. For example, the same substrate as that used in the method for manufacturing a wiring board of the present invention can be used.
<電子デバイス>
 上述した本発明の導電性組成物は、フレキシブルシートディスプレイやフレキシブルRFIDシステム等の電子デバイスの導電部に好適に用いることができる。例えば、本発明の導電性組成物を用いて形成した電極をRFIDシステムに適用した場合、電極が低抵抗率であるため、従来のRFIDシステムと比較して通信可能距離を向上させることができる。
<Electronic device>
The conductive composition of the present invention described above can be suitably used for a conductive portion of an electronic device such as a flexible sheet display or a flexible RFID system. For example, when an electrode formed using the conductive composition of the present invention is applied to an RFID system, the electrode has a low resistivity, so that the communicable distance can be improved as compared with a conventional RFID system.
 <電極の製造方法>
 次に、本発明の電極の製造方法について詳細に説明する。図4は、本発明の電極の製造方法を示すフローチャートである。本発明の電極の製造方法は、図4に示す通り、基材上に導電性組成物を塗布して導電部を形成する塗布工程(S1)と、塗布工程により形成された導電部を熱硬化する熱硬化工程(S2)と、熱硬化工程により熱硬化された導電部を有する基材を加圧する加圧工程(S3)を含むことを特徴としており、上述の本発明の配線基板の製造方法と類似しているため、再度、図2、3を用いて本発明の電極の製造方法について説明する。
<Method for producing electrode>
Next, the manufacturing method of the electrode of this invention is demonstrated in detail. FIG. 4 is a flowchart showing the method for manufacturing an electrode of the present invention. As shown in FIG. 4, the electrode manufacturing method of the present invention includes a coating step (S1) in which a conductive composition is applied on a substrate to form a conductive portion, and the conductive portion formed by the coating step is thermally cured. And a pressurizing step (S3) for pressurizing a base material having a conductive portion thermoset by the thermosetting step, and the method for manufacturing a wiring board according to the present invention as described above The method for manufacturing the electrode of the present invention will be described again with reference to FIGS.
 塗布工程(S1)では、上記本発明の導電性組成物を所定のパターン状に基材表面に塗布する。図2は、塗布工程(S1)の例を示す模式図であり、図示例においては、所定の導電部を印刷可能なスクリーン版5を基材1上に配置し、このスクリーン版5上に導電性組成物4を配置する。次いで、スクリーン版5上に配置された状態の導電性組成物4を、スキージー6を使用して基材1側に押し付けながら伸ばす。これにより、基材1上に所定の導電部状に導電性組成物4が塗布された状態となる。なお、本発明の電極の製造方法においても、塗布工程における導電性樹脂組成物の塗布方法としては、このようなスクリーン印刷法に限られるものではなく、既知の手法を採用することができる。 In the coating step (S1), the conductive composition of the present invention is coated on the substrate surface in a predetermined pattern. FIG. 2 is a schematic diagram showing an example of the coating step (S1). In the illustrated example, a screen plate 5 on which a predetermined conductive portion can be printed is disposed on the substrate 1, and the screen plate 5 is electrically conductive. The sex composition 4 is arranged. Next, the conductive composition 4 placed on the screen plate 5 is stretched while being pressed against the substrate 1 using the squeegee 6. Thereby, it will be in the state by which the conductive composition 4 was apply | coated on the base material 1 in the predetermined | prescribed conductive part shape. In addition, also in the manufacturing method of the electrode of this invention, as a coating method of the conductive resin composition in a coating process, it is not restricted to such a screen printing method, A well-known method is employable.
 熱硬化工程(S2)工程では、導電部を加熱処理することにより、基材上に塗布された導電性樹脂組成物を熱硬化させ、基材と良好な密着性を実現している。ここで、熱硬化条件は、好ましくは80~200℃で1~120分、より好ましくは100~170℃で10~60分とする。かかる条件であれば、基材の材料として比較的熱に弱い樹脂性材料を使用した場合でも、基材の物性に影響を及ぼすことなく導電部を形成することが可能である。 In the thermosetting step (S2) step, the conductive resin composition applied on the base material is thermally cured by heat-treating the conductive portion, thereby realizing good adhesion to the base material. Here, the thermosetting conditions are preferably 80 to 200 ° C. for 1 to 120 minutes, more preferably 100 to 170 ° C. for 10 to 60 minutes. Under such conditions, the conductive portion can be formed without affecting the physical properties of the base material even when a resinous material that is relatively weak against heat is used as the base material.
 加圧工程(S3)では、電極を、加圧体を用いて垂直方向に加圧しつつ、基材または加圧体を水平方向に移動させる。本発明の電極の製造方法では、導電部の表面に金属光沢が生じれば、好ましくは、導電部の表面の算術平均粗さ(Ra)が40nm以下となる条件であれば、加圧圧力や加圧回数は制限されないが、例えば、圧力を10~200MPaとして、加圧回数を1~複数回とする。これにより、上述した本発明の電極を得ることができる。すなわち、このような加圧工程を経ることにより、金属粒子に好適なずり応力を与えることができ、その結果、導電部の表面に金属光沢が生じ、導電部の低抵抗化を実現できるのである(低抵抗化処理)。 In the pressurizing step (S3), the substrate or the pressurizing body is moved in the horizontal direction while pressurizing the electrode in the vertical direction using the pressurizing body. In the method for producing an electrode of the present invention, if a metallic luster is generated on the surface of the conductive part, preferably, if the arithmetic average roughness (Ra) of the surface of the conductive part is 40 nm or less, Although the number of pressurizations is not limited, for example, the pressure is set to 10 to 200 MPa, and the pressurization number is set to one to plural times. Thereby, the electrode of the present invention described above can be obtained. That is, through such a pressurizing step, a suitable shear stress can be applied to the metal particles, and as a result, a metallic luster is generated on the surface of the conductive portion, and the resistance of the conductive portion can be reduced. (Low resistance treatment).
 なお、本発明の電極の製造方法の加圧工程における加圧手段としては、上述の本発明の配線基板の製造方法と同じ手法を採用することができ、例えば、図3に示すように、熱硬化した導電部を構成する導電性組成物4上に加圧体7を置き、加圧体7を用いて垂直方向に加圧しつつ、基材1または加圧体7を水平方向に移動させ導電性組成物4を加圧する方法を採用することができる。図示例においては、加圧体7として加圧ローラを用いているが、本発明の電極の製造方法においては、加圧体7は加圧ローラに限られるものではなく、上記加圧条件を満足させることができるものであれば、いずれの手法を採用してもよい。また、必要に応じて、加圧工程(S3)において低抵抗化処理された状態の導電部を加熱してもよい。 As the pressurizing means in the pressurizing step of the electrode manufacturing method of the present invention, the same method as the above-described wiring substrate manufacturing method of the present invention can be employed. For example, as shown in FIG. A pressure body 7 is placed on the conductive composition 4 constituting the cured conductive portion, and the base material 1 or the pressure body 7 is moved in the horizontal direction while pressing the pressure body 7 in the vertical direction. A method of pressurizing the composition 4 can be employed. In the illustrated example, a pressure roller is used as the pressure body 7. However, in the electrode manufacturing method of the present invention, the pressure body 7 is not limited to the pressure roller, and satisfies the above pressure conditions. Any method may be adopted as long as it can be applied. Moreover, you may heat the electroconductive part of the state by which the resistance reduction process was carried out in the pressurization process (S3) as needed.
 以下、実施を用いて本発明をより詳細に説明する。ただし、本発明は、これら実施例に限定されるものではない。
<実施例1-1>
 熱可塑性樹脂83質量部(非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290)、熱硬化性樹脂17質量部(ビスフェノールA型エポキシ樹脂:DIC(株)社製 EPICLON840)、有機溶剤241質量部(ジエチレングリコールモノエチルエーテルアセテート)、硬化剤(1)1.7質量部(エポキシ-フェノール-ホウ酸エステル配合物:四国化成工業(株)社製 L-07N)、硬化剤(2)3.2質量部(エポキシイミダゾールアダクト:四国化成工業(株)社製 P0505)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)およびアルミニウム粒子433質量部(球状粉、平均粒径2μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、アルミニウム含有量は、導電性組成物中に固形分換算で60容量%であった。
Hereinafter, the present invention will be described in more detail with reference to implementation. However, the present invention is not limited to these examples.
<Example 1-1>
83 parts by mass of thermoplastic resin (amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.), 17 parts by mass of thermosetting resin (bisphenol A type epoxy resin: EPICLON 840 manufactured by DIC Corporation), 241 masses of organic solvent Parts (diethylene glycol monoethyl ether acetate), 1.7 parts by mass of curing agent (1) (epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.), curing agent (2) 3. 2 parts by mass (epoxyimidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd.), 5 parts by mass of leveling / foaming agent (Polyflow No. 90 manufactured by Kyoeisha Chemical Co., Ltd.), 5 parts by mass of surface modifier (silane) Coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 433 parts by mass of aluminum particles (spherical powder, average particle size 2) m) was stirred 500 rpm, 20 min at dissolver. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, aluminum content was 60 volume% in conversion of solid content in an electroconductive composition.
<実施例1-2>
 熱可塑性樹脂83質量部(非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290)、熱硬化性樹脂17質量部(ビスフェノールA型エポキシ樹脂:DIC(株)社製 EPICLON840)、有機溶剤289質量部(ジエチレングリコールモノエチルエーテルアセテート)、硬化剤(1)1.7質量部(エポキシ-フェノール-ホウ酸エステル配合物:四国化成工業(株)社製 L-07N)、硬化剤(2)3.2質量部(エポキシイミダゾールアダクト:四国化成工業(株)社製 P0505)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)およびアルミニウム粒子675質量部(球状粉、平均粒径2μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、アルミニウム含有量は、導電性組成物中に固形分換算で70容量%であった。
<Example 1-2>
83 parts by mass of thermoplastic resin (amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.), 17 parts by mass of thermosetting resin (bisphenol A epoxy resin: EPICLON 840 manufactured by DIC Corporation), 289 masses of organic solvent Parts (diethylene glycol monoethyl ether acetate), 1.7 parts by mass of curing agent (1) (epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.), curing agent (2) 3. 2 parts by mass (epoxyimidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd.), 5 parts by mass of leveling / foaming agent (Polyflow No. 90 manufactured by Kyoeisha Chemical Co., Ltd.), 5 parts by mass of surface modifier (silane) Coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 675 parts by mass of aluminum particles (spherical powder, average particle size 2) m) was stirred 500 rpm, 20 min at dissolver. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, aluminum content was 70 volume% in conversion of solid content in an electroconductive composition.
<実施例1-3>
 熱可塑性樹脂83質量部(非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290)、熱硬化性樹脂17質量部(ビスフェノールA型エポキシ樹脂:DIC(株)社製 EPICLON840)、有機溶剤414質量部(ジエチレングリコールモノエチルエーテルアセテート)、硬化剤(1)1.7質量部(エポキシ-フェノール-ホウ酸エステル配合物:四国化成工業(株)社製 L-07N)、硬化剤(2)3.2質量部(エポキシイミダゾールアダクト:四国化成工業(株)社製 P0505)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)およびアルミニウム粒子1152質量部(球状粉、平均粒径2μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、アルミニウム含有量は、導電性組成物中に固形分換算で80容量%であった。
<Example 1-3>
83 parts by mass of thermoplastic resin (amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.), 17 parts by mass of thermosetting resin (bisphenol A type epoxy resin: EPICLON 840 manufactured by DIC Corporation), 414 masses of organic solvent Parts (diethylene glycol monoethyl ether acetate), 1.7 parts by mass of curing agent (1) (epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.), curing agent (2) 3. 2 parts by mass (epoxyimidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd.), 5 parts by mass of leveling / foaming agent (Polyflow No. 90 manufactured by Kyoeisha Chemical Co., Ltd.), 5 parts by mass of surface modifier (silane) Coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 1152 parts by mass of aluminum particles (spherical powder, average particle size) μm) and the mixture was stirred 500rpm, 20 minutes in the dissolver. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, aluminum content was 80 volume% in conversion of solid content in an electroconductive composition.
<実施例1-4>
 熱可塑性樹脂83質量部(フェノキシ樹脂:新日鐵化学(株)社製 YP-50)、熱硬化性樹脂17質量部(ビスフェノールA型エポキシ樹脂:DIC(株)社製 EPICLON840)、有機溶剤289質量部(ジエチレングリコールモノエチルエーテルアセテート)、硬化剤(1)1.7質量部(エポキシ-フェノール-ホウ酸エステル配合物:四国化成工業(株)社製 L-07N)、硬化剤(2)3.2質量部(エポキシイミダゾールアダクト:四国化成工業(株)社製 P0505)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)およびアルミニウム粒子675質量部(球状粉、平均粒径2μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、アルミニウム含有量は、導電性組成物中に固形分換算で70容量%であった。
<Example 1-4>
83 parts by mass of thermoplastic resin (phenoxy resin: YP-50 manufactured by Nippon Steel Chemical Co., Ltd.), 17 parts by mass of thermosetting resin (bisphenol A type epoxy resin: EPICLON 840 manufactured by DIC Corporation), organic solvent 289 Parts by mass (diethylene glycol monoethyl ether acetate), curing agent (1) 1.7 parts by mass (epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.), curing agent (2) 3 .2 parts by mass (epoxyimidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd.), 5 parts by mass of leveling / foaming agent (Polyflow No. 90 manufactured by Kyoeisha Chemical Co., Ltd.), 5 parts by mass of surface modifier ( Silane coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 675 parts by mass of aluminum particles (spherical powder, average particle size 2 μm) And the mixture was stirred 500rpm, 20 minutes at Izoruba. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, aluminum content was 70 volume% in conversion of solid content in an electroconductive composition.
<実施例1-5>
 熱可塑性樹脂83質量部(非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290)、熱硬化性樹脂17質量部(ビスフェノールA型エポキシ樹脂:DIC(株)社製 EPICLON840)、有機溶剤289質量部(ジエチレングリコールモノエチルエーテルアセテート)、硬化剤(1)1.7質量部(エポキシ-フェノール-ホウ酸エステル配合物:四国化成工業(株)社製 L-07N)、硬化剤(2)3.2質量部(エポキシイミダゾールアダクト:四国化成工業(株)社製 P0505)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)およびアルミニウム粒子675質量部(長細粉、長軸方向平均粒径4μm、短軸方向平均粒径2μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、アルミニウム含有量は、導電性組成物中に固形分換算で70容量%であった。
<Example 1-5>
83 parts by mass of thermoplastic resin (amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.), 17 parts by mass of thermosetting resin (bisphenol A epoxy resin: EPICLON 840 manufactured by DIC Corporation), 289 masses of organic solvent Parts (diethylene glycol monoethyl ether acetate), 1.7 parts by mass of curing agent (1) (epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.), curing agent (2) 3. 2 parts by mass (epoxyimidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd.), 5 parts by mass of leveling / foaming agent (Polyflow No. 90 manufactured by Kyoeisha Chemical Co., Ltd.), 5 parts by mass of surface modifier (silane) Coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 675 parts by mass of aluminum particles (long fine powder, flat in the long axis direction) Particle size 4 [mu] m, a minor axis average particle diameter 2 [mu] m) was stirred 500 rpm, 20 min at dissolver. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, aluminum content was 70 volume% in conversion of solid content in an electroconductive composition.
<実施例1-6>
 熱可塑性樹脂83質量部(非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290)、熱硬化性樹脂17質量部(ビスフェノールA型エポキシ樹脂:DIC(株)社製 EPICLON840)、有機溶剤289質量部(ジエチレングリコールモノエチルエーテルアセテート)、硬化剤(1)1.7質量部(エポキシ-フェノール-ホウ酸エステル配合物:四国化成工業(株)社製 L-07N)、硬化剤(2)3.2質量部(エポキシイミダゾールアダクト:四国化成工業(株)社製 P0505)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)および銅粒子2220質量部(球状粉、平均粒径3μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、銅含有量は、導電性組成物中に固形分換算で70容量%であった。
<Example 1-6>
83 parts by mass of thermoplastic resin (amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.), 17 parts by mass of thermosetting resin (bisphenol A epoxy resin: EPICLON 840 manufactured by DIC Corporation), 289 masses of organic solvent Parts (diethylene glycol monoethyl ether acetate), 1.7 parts by mass of curing agent (1) (epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.), curing agent (2) 3. 2 parts by mass (epoxyimidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd.), 5 parts by mass of leveling / foaming agent (Polyflow No. 90 manufactured by Kyoeisha Chemical Co., Ltd.), 5 parts by mass of surface modifier (silane) Coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 2220 parts by mass of copper particles (spherical powder, average particle size of 3 μm) And the mixture was stirred 500rpm, 20 minutes at Izoruba. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, copper content was 70 volume% in conversion of solid content in an electroconductive composition.
<比較例1-1>
 熱可塑性樹脂100質量部(非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290)、有機溶剤277質量部(ジエチレングリコールモノエチルエーテルアセテート)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)およびアルミニウム粒子416質量部(球状粉、平均粒径2μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、アルミニウム含有量は、導電性組成物中に固形分換算で60容量%であった。
<Comparative Example 1-1>
100 parts by weight of thermoplastic resin (amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.), 277 parts by weight of organic solvent (diethylene glycol monoethyl ether acetate), 5 parts by weight of leveling / foaming agent (Kyoeisha Chemical Co., Ltd.) Polyflow No. 90), 5 parts by mass of a surface modifier (silane coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 416 parts by mass of aluminum particles (spherical powder, average particle size 2 μm) The mixture was stirred with a dissolver at 500 rpm for 20 minutes. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, aluminum content was 60 volume% in conversion of solid content in an electroconductive composition.
<比較例1-2>
 熱可塑性樹脂100質量部(非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290)、有機溶剤338質量部(ジエチレングリコールモノエチルエーテルアセテート)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)およびアルミニウム粒子648質量部(球状粉、平均粒径2μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、アルミニウム含有量は、導電性組成物中に固形分換算で70容量%であった。
<Comparative Example 1-2>
100 parts by weight of thermoplastic resin (amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.), 338 parts by weight of organic solvent (diethylene glycol monoethyl ether acetate), 5 parts by weight of leveling / foaming agent (Kyoeisha Chemical Co., Ltd.) Polyflow No. 90), 5 parts by mass of a surface modifier (silane coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 648 parts by mass of aluminum particles (spherical powder, average particle size 2 μm) The mixture was stirred with a dissolver at 500 rpm for 20 minutes. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, aluminum content was 70 volume% in conversion of solid content in an electroconductive composition.
<基材の作製>
 得られた実施例1-1~1-6および比較例1-1、1-2の導電性組成物を用いて、配線基板を作製した。基材としてはポリイミドフィルム50μmを用いた。この基材の上に、得られた導電性組成物を用いてスクリーン印刷(パターン印刷)を行った。スクリーン印刷には、300メッシュのポリエステルスクリーン版を用いた。比抵抗値測定用の基板の配線パターンは、0.1cm×40cmとし、密着性評価用の基材の配線パターンは2cm×5cmとした。次いで、基材上に形成した配線パターンを、150℃で30分間の条件にて乾燥・熱硬化し、その後、後述する低抵抗化処理を行って配線基板を作製した。
<Production of base material>
Using the obtained conductive compositions of Examples 1-1 to 1-6 and Comparative Examples 1-1 and 1-2, wiring boards were produced. A polyimide film of 50 μm was used as the substrate. On this base material, screen printing (pattern printing) was performed using the obtained conductive composition. For screen printing, a 300 mesh polyester screen plate was used. The wiring pattern of the substrate for specific resistance measurement was 0.1 cm × 40 cm, and the wiring pattern of the base material for adhesion evaluation was 2 cm × 5 cm. Next, the wiring pattern formed on the base material was dried and heat-cured at 150 ° C. for 30 minutes, and then a resistance reduction process described later was performed to produce a wiring board.
<低抵抗化処理>
 スクリーン印刷した導電性組成物により形成された配線パターンを加圧機ステージに真空チャックもしくは粘着性テープにより設置し、加圧体と導電性組成物の配線パターンの表面との間にずり応力が発生するように加圧機ステージと加圧体の速度を調整した。このとき発生するずり応力はプレスケール(富士フィルム(株)社製)により計測し、55MPa以上であった。なお、低抵抗化処理の回数は1回以上とした。
<Low resistance treatment>
A wiring pattern formed with a screen-printed conductive composition is placed on a pressure machine stage with a vacuum chuck or adhesive tape, and shear stress is generated between the pressure body and the surface of the wiring pattern of the conductive composition. Thus, the speed of the pressurizer stage and the pressurizing body was adjusted. The shear stress generated at this time was measured with a prescale (manufactured by Fuji Film Co., Ltd.) and was 55 MPa or more. In addition, the frequency | count of the resistance reduction process was 1 time or more.
<比抵抗値>
 低抵抗化処理を施した抵抗値測定用の配線パターン(0.1cm×40cm)について、HIOKI社製のHIOKI3540mΩハイテスタを用いて配線パターンのライン抵抗値を測定した。得られたライン抵抗値から、下記式を用いて比抵抗値を算出した。
比抵抗値(Ω・cm)=ライン抵抗値(Ω)×膜厚(cm)×ライン幅(cm)/ライン長さ(cm)
得られた結果を、下記表1および2に示す。
<Specific resistance value>
With respect to the resistance value measurement wiring pattern (0.1 cm × 40 cm) subjected to the resistance reduction treatment, the line resistance value of the wiring pattern was measured using a HIOKI 3540 mΩ high tester manufactured by HIOKI. From the obtained line resistance value, a specific resistance value was calculated using the following formula.
Specific resistance (Ω · cm) = Line resistance (Ω) × film thickness (cm) × line width (cm) / line length (cm)
The obtained results are shown in Tables 1 and 2 below.
<密着性>
 低抵抗化処理を施した密着性評価用の基板の配線パターン(2cm×5cm)について、クロスカット法(JIS K-5600)に準拠して、1mm間隔の格子状に配線パターンを25個切り込んだ。その上にテープを貼り、剥がした時の状態により密着性の評価を行った。剥離がないものを○、剥離があるものを×とした。得られた結果を下記表1および2に示す。
<Adhesion>
For the wiring pattern (2 cm × 5 cm) of the substrate for adhesion evaluation subjected to low resistance treatment, 25 wiring patterns were cut into a 1 mm-interval grid pattern according to the cross-cut method (JIS K-5600). . Adhesion was evaluated according to the state when a tape was applied and peeled off. The case where there was no peeling was marked with ◯, and the case where there was peeling was marked with ×. The obtained results are shown in Tables 1 and 2 below.
<表面光沢度>
 実施例1-2および1-6については、低抵抗化処理前の配線パターンと、低抵抗化処理を施した配線パターン(2cm×5cm)について、表面光沢度を測定した。測定は、光沢度計マイクロトリグロス(ビッグガードナー社製)を用いて20°時の光沢度を測定した。光沢度は40以上であれば比抵抗値が低くなり良好である。
<Surface gloss>
For Examples 1-2 and 1-6, the surface glossiness of the wiring pattern before the resistance reduction treatment and the wiring pattern subjected to the resistance reduction treatment (2 cm × 5 cm) were measured. For the measurement, the glossiness at 20 ° was measured using a gloss meter Micro Trigloss (manufactured by Big Gardner). If the glossiness is 40 or more, the specific resistance value is lowered and good.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
※1 熱可塑性樹脂A:非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290
※2 熱可塑性樹脂B:フェノキシ樹脂:新日鐵化学(株)社製 YP-50
※3 熱硬化性樹脂:ビスフェノールA型エポキシ樹脂:DIC(株)社製 EPICLON840
※4 硬化剤1:エポキシ-フェノール-ホウ酸エステル配合物:四国化成工業(株)社製 L-07N
※5 硬化剤2:エポキシイミダゾールアダクト:四国化成工業(株)社製 P0505
※6 金属粒子A:アルミニウム粒子、球状粉、平均粒径2μm
※7 金属粒子B:アルミニウム粒子、長細粉、長軸方向平均粒径4μm、短軸方向平均粒径2μm
※8 金属粒子C:銅粒子、球状粉、平均粒径3μm
※9 レベリング・消泡剤:アルリル系レベリング・消泡剤:共栄社化学(株)社製 ポリフローNo.90
※10 表面改質剤:シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040
※11 有機溶剤:ジエチレングリコールモノエチルエーテルアセテート
※12 HIOKImΩハイテスタの測定レンジを超えて測定不能(非導電性)
Figure JPOXMLDOC01-appb-T000002
* 1 Thermoplastic resin A: Amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
* 2 Thermoplastic resin B: Phenoxy resin: YP-50 manufactured by Nippon Steel Chemical Co., Ltd.
* 3 Thermosetting resin: Bisphenol A type epoxy resin: EPICLON840 manufactured by DIC Corporation
* 4 Curing agent 1: Epoxy-phenol-borate ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.
* 5 Curing agent 2: Epoxy imidazole adduct: P0505 manufactured by Shikoku Chemicals Co., Ltd.
* 6 Metal particles A: Aluminum particles, spherical powder, average particle size 2μm
* 7 Metal particle B: Aluminum particles, long fine powder, long axis direction average particle size 4 μm, short axis direction average particle size 2 μm
* 8 Metal particle C: Copper particle, spherical powder, average particle size 3μm
* 9 Leveling and antifoaming agent: Allyl leveling and antifoaming agent: Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 90
* 10 Surface modifier: Silane coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.
* 11 Organic solvent: Diethylene glycol monoethyl ether acetate * 12 Cannot be measured beyond the measurement range of HIOKIMmΩ HiTester (non-conductive)
 表1および2より、本発明の導電性組成物を用いて基材上に形成した配線パターンは基材と強固な密着性を有しており、また、比抵抗値も十分に低いものであることがわかる。 From Tables 1 and 2, the wiring pattern formed on the base material using the conductive composition of the present invention has strong adhesion to the base material, and has a sufficiently low specific resistance value. I understand that.
<実施例2-1>
 熱可塑性樹脂83質量部(非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290)、熱硬化性樹脂17質量部(ビスフェノールA型エポキシ樹脂:DIC(株)社製 EPICLON840)、有機溶剤289質量部(ジエチレングリコールモノエチルエーテルアセテート)、硬化剤(1)1.7質量部(エポキシ-フェノール-ホウ酸エステル配合物:四国化成工業(株)社製 L-07N)、硬化剤(2)3.2質量部(エポキシイミダゾールアダクト:四国化成工業(株)社製 P0505)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)およびアルミニウム粒子675質量部(球状粉、平均粒径2μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、アルミニウム含有量は、導電性組成物中に固形分換算で70容量%であった。
<Example 2-1>
83 parts by mass of thermoplastic resin (amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.), 17 parts by mass of thermosetting resin (bisphenol A epoxy resin: EPICLON 840 manufactured by DIC Corporation), 289 masses of organic solvent Parts (diethylene glycol monoethyl ether acetate), 1.7 parts by mass of curing agent (1) (epoxy-phenol-boric acid ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.), curing agent (2) 3. 2 parts by mass (epoxyimidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd.), 5 parts by mass of leveling / foaming agent (Polyflow No. 90 manufactured by Kyoeisha Chemical Co., Ltd.), 5 parts by mass of surface modifier (silane) Coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 675 parts by mass of aluminum particles (spherical powder, average particle size 2) m) was stirred 500 rpm, 20 min at dissolver. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, aluminum content was 70 volume% in conversion of solid content in an electroconductive composition.
 得られた導電性組成物を用いてRFID用電極を作製した。まず、基材としてはポリイミドフィルム50μmを用い、この基材の上に、得られた導電性組成物を用いてスクリーン印刷(パターン印刷)により導電部を形成し、RFID用電極とした。スクリーン印刷には、300メッシュのポリエステルスクリーン版を用いた。また、比抵抗値測定用の基板の導電部は、0.1cm×40cmとし、密着性評価用の基板の導電部は2cm×5cmとした。次いで、基材上に形成した導電部を、150℃で30分間の条件にて乾燥および熱硬化し、その後、後述する低抵抗化処理を行って電極を作製した。 An RFID electrode was produced using the obtained conductive composition. First, a polyimide film of 50 μm was used as a base material, and a conductive portion was formed on the base material by screen printing (pattern printing) using the obtained conductive composition to obtain an RFID electrode. For screen printing, a 300 mesh polyester screen plate was used. Moreover, the conductive part of the substrate for specific resistance measurement was 0.1 cm × 40 cm, and the conductive part of the substrate for adhesion evaluation was 2 cm × 5 cm. Subsequently, the electroconductive part formed on the base material was dried and heat-cured at 150 ° C. for 30 minutes, and then subjected to a resistance reduction treatment described later to produce an electrode.
 スクリーン印刷した導電性組成物により形成された導電部を有するRFID用電極を加圧機ステージに真空チャックにより設置し、加圧体と導電部の表面との間にずり応力が発生するように加圧機ステージと加圧体の速度を調整した。このとき発生するずり応力はプレスケール(富士フィルム(株)社製)により計測し、30MPaとし、低抵抗化処理回数を1回とした。得られた配線基板にRFID用電極にimpinj製のICチップ(Monza3)をマウントした。その後、マウントしたICチップを補強のためエポキシ樹脂で包埋した。 An RFID electrode having a conductive portion formed of a screen-printed conductive composition is placed on a pressurizer stage by a vacuum chuck so that shear stress is generated between the pressure member and the surface of the conductive portion. The speed of the stage and the pressure body was adjusted. The shear stress generated at this time was measured with a prescale (manufactured by Fuji Film Co., Ltd.), set to 30 MPa, and the number of resistance reduction treatments was set to one. An IC chip (Monza 3) made by impinj was mounted on the RFID electrode on the obtained wiring board. Thereafter, the mounted IC chip was embedded with epoxy resin for reinforcement.
<実施例2-2>
 低抵抗化処理回数を2回に増やしたこと以外は、実施例2-1と同様の手法で電極を作製した。
<Example 2-2>
An electrode was produced in the same manner as in Example 2-1, except that the number of times of low resistance treatment was increased to 2.
<実施例2-3>
 低抵抗化処理回数を4回に増やしたこと以外は、実施例2-1と同様の手法で電極を作製した。
<Example 2-3>
An electrode was produced in the same manner as in Example 2-1, except that the number of times of low resistance treatment was increased to 4.
<比較例2-1>
 低抵抗化処理しなかった以外は、実施例2-1と同様の手法で電極を作製した。
<Comparative Example 2-1>
An electrode was produced in the same manner as in Example 2-1, except that the resistance reduction treatment was not performed.
<比較例2-2>
 導電性組成物として、以下の組成物を用いた以外は、実施例2-1と同様の手法で電極を作製した。熱可塑性樹脂100質量部(非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290)、有機溶剤338質量部(ジエチレングリコールモノエチルエーテルアセテート)、レベリング・消泡剤5質量部(共栄社化学(株)社製 ポリフローNo.90)、表面改質剤5質量部(シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040)およびアルミニウム粒子648質量部(球状粉、平均粒径2μm)をディゾルバーにて500rpm、20分間撹拌した。その後、7インチサイズセラミックス製3本ロールにて3回混練して導電性組成物を作製した。なお、アルミニウム含有量は、導電性組成物中に固形分換算で70容量%であった。
<Comparative Example 2-2>
An electrode was produced in the same manner as in Example 2-1, except that the following composition was used as the conductive composition. 100 parts by weight of thermoplastic resin (amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.), 338 parts by weight of organic solvent (diethylene glycol monoethyl ether acetate), 5 parts by weight of leveling / foaming agent (Kyoeisha Chemical Co., Ltd.) Polyflow No. 90), 5 parts by mass of a surface modifier (silane coupling agent: Z-6040 manufactured by Toray Dow Corning Co., Ltd.) and 648 parts by mass of aluminum particles (spherical powder, average particle size 2 μm) The mixture was stirred with a dissolver at 500 rpm for 20 minutes. Then, it knead | mixed 3 times with 3 rolls made from 7 inch size ceramics, and produced the electrically conductive composition. In addition, aluminum content was 70 volume% in conversion of solid content in an electroconductive composition.
<抵抗率>
 低抵抗化処理を施した抵抗値測定用の導電部(0.1cm×40cm)について、三菱化学アナリティック製のロレスタGPに微小サンプル用四探針プローブ(PSP)を装着し四探針法により測定を行なった。試料の膜厚はミツトヨ製デジマチックマイクロメータ(MDC-25MJ)を用いて測定した。得られた結果を、下記表3に示す。
<Resistivity>
For the conductive part (0.1cm x 40cm) for resistance measurement that has been subjected to low resistance treatment, a four-probe probe (PSP) for a micro sample is mounted on a Loresta GP made by Mitsubishi Chemical Analytic, and the four-probe method is used. Measurements were made. The film thickness of the sample was measured using a Mitsutoyo Digimatic Micrometer (MDC-25MJ). The obtained results are shown in Table 3 below.
<導電部の表面の評価>
 導電部の表面の評価は、原子間力顕微鏡(セイコーインスツルメンツ(株)社製:SP13800プローブステーション)にておこなった。評価結果は、表3の算術平均粗さ(Ra)、図5の原子間顕微鏡写真および図6の表面粗さのチャート((a):比較例2-1、(b):実施例2-1、(c):実施例2-2、(d):実施例2-3)に示す通りである。
<Evaluation of the surface of the conductive part>
The surface of the conductive part was evaluated with an atomic force microscope (manufactured by Seiko Instruments Inc .: SP13800 probe station). The evaluation results are as follows: arithmetic mean roughness (Ra) in Table 3, atomic microscope photograph in FIG. 5 and surface roughness chart in FIG. 6 ((a): Comparative Example 2-1; (b): Example 2- 1, (c): Example 2-2, (d): Example 2-3).
<送受信性能評価>
 実施例2-1~2-3の電極を、UHF帯RFIDシステム(オムロン(株)社製:V750シリーズ)を用いて通信可能距離を計測した。計測にあたっては、円偏波アンテナ(V750-HS01-CA-JP)に対するUHF-RFIDの角度を30°ずつ変えて行った。得られた結果を図7に示す。
<Transmission / reception performance evaluation>
The communicable distance of the electrodes of Examples 2-1 to 2-3 was measured using a UHF band RFID system (Omron Corp .: V750 series). In the measurement, the angle of UHF-RFID with respect to the circularly polarized antenna (V750-HS01-CA-JP) was changed by 30 °. The obtained results are shown in FIG.
<密着性>
 低抵抗化処理を施した密着性評価用の基板の導電部(2cm×5cm)について、クロスカット法(JIS K-5600)に準拠して、1mm間隔の格子状に導電部を25個切り込んだ。その上にテープを貼り、剥がした時の状態により密着性の評価を行った。剥離がないものを○、剥離があるものを×とした。得られた結果を下記表3に示す。
<Adhesion>
In accordance with the cross-cut method (JIS K-5600), 25 conductive parts were cut in a 1 mm-interval grid pattern for the conductive part (2 cm × 5 cm) of the substrate for adhesion evaluation subjected to low resistance treatment. . Adhesion was evaluated according to the state when a tape was applied and peeled off. The case where there was no peeling was marked with ◯, and the case where there was peeling was marked with ×. The obtained results are shown in Table 3 below.
Figure JPOXMLDOC01-appb-T000003
※13 熱可塑性樹脂:非晶性ポリエステル樹脂:東洋紡(株)社製 バイロン290
※14 熱硬化性樹脂:ビスフェノールA型エポキシ樹脂:DIC(株)社製 EPICLON840
※15 硬化剤1:エポキシ-フェノール-ホウ酸エステル配合物:四国化成工業(株)社製 L-07N
※16 硬化剤2:エポキシイミダゾールアダクト:四国化成工業(株)社製 P0505
※17 金属粒子A:アルミニウム粒子、球状粉、平均粒径2μm
※18 レベリング・消泡剤:アルリル系レベリング・消泡剤:共栄社化学(株)社製 ポリフローNo.90
※19 表面改質剤:シランカップリング剤:東レ・ダウコーニング(株)社製 Z-6040
※20 有機溶剤:ジエチレングリコールモノエチルエーテルアセテート
※21 測定不能(非導電性)
Figure JPOXMLDOC01-appb-T000003
* 13 Thermoplastic resin: Amorphous polyester resin: Byron 290 manufactured by Toyobo Co., Ltd.
* 14 Thermosetting resin: Bisphenol A type epoxy resin: EPICLON840 manufactured by DIC Corporation
* 15 Curing agent 1: Epoxy-phenol-borate ester compound: L-07N manufactured by Shikoku Kasei Kogyo Co., Ltd.
* 16 Curing agent 2: Epoxy imidazole adduct: P0505 manufactured by Shikoku Kasei Kogyo Co., Ltd.
* 17 Metal particles A: Aluminum particles, spherical powder, average particle size 2 μm
* 18 Leveling and antifoaming agent: Arryl-based leveling and antifoaming agent: Polyflow No. manufactured by Kyoeisha Chemical Co., Ltd. 90
* 19 Surface modifier: Silane coupling agent: Z-6040, manufactured by Toray Dow Corning Co., Ltd.
* 20 Organic solvent: Diethylene glycol monoethyl ether acetate * 21 Unmeasurable (non-conductive)
 上記表3より、実施例2-1~2-3の電極では、基材と導電部との密着性が向上し、かつ、導電性に優れていることがわかる。さらに、図7より、特に実施例2-2,2-3の電極を用いたRFIDデバイスは、通信可能距離が向上していることがわかる。また、高価な材料を用いず、かつ、配線基板を印刷法にて作製しているため、製造コストを下げることができる。さらに、実施例2-1~2-3では、Alを含有する導電性組成物を用いた電極について評価したが、Cuを含有する導電性組成物を用いた場合についても同様の結果が得られることがわかった。一方、比較例2-1の電極は、金属光沢を有さず導電性を示さなかった。また、比較例2-2電極では十分な密着性が得られなかったため、抵抗率および算術平均粗さ(Ra)は測定しなかった。 From Table 3 above, it can be seen that in the electrodes of Examples 2-1 to 2-3, the adhesion between the base material and the conductive portion was improved and the conductivity was excellent. Furthermore, it can be seen from FIG. 7 that the communicable distance is improved particularly in the RFID device using the electrodes of Examples 2-2 and 2-3. In addition, since an expensive material is not used and the wiring board is manufactured by a printing method, the manufacturing cost can be reduced. Further, in Examples 2-1 to 2-3, the electrode using the conductive composition containing Al was evaluated, but the same result can be obtained when the conductive composition containing Cu is used. I understood it. On the other hand, the electrode of Comparative Example 2-1 did not have metallic luster and did not show conductivity. Moreover, since sufficient adhesion could not be obtained with the electrode of Comparative Example 2-2, resistivity and arithmetic average roughness (Ra) were not measured.
 1 基材
 2 バインダー樹脂(熱硬化性樹脂組成物、熱可塑性樹脂組成物)
 3 金属粒子
 3a 変形した金属粒子
 4 導電性組成物
 5 スクリーン版
 6 スキージー
 7 加圧体
1 base material 2 binder resin (thermosetting resin composition, thermoplastic resin composition)
3 Metal Particles 3a Deformed Metal Particles 4 Conductive Composition 5 Screen Plate 6 Squeegee 7 Pressurized Body

Claims (10)

  1.  基材上に形成した配線パターンを加圧することにより低抵抗化処理する配線基板の製造方法に用いる導電性組成物において、
     バインダー樹脂としての熱可塑性樹脂および熱硬化性樹脂と、硬化剤と、金属粒子とを含有することを特徴とする導電性組成物。
    In the conductive composition used in the method for manufacturing a wiring board for reducing resistance by pressurizing the wiring pattern formed on the substrate,
    A conductive composition comprising a thermoplastic resin and a thermosetting resin as a binder resin, a curing agent, and metal particles.
  2.  前記低抵抗化処理が、前記基材上に形成した配線パターンを、加圧体により垂直方向に加圧しつつ、前記基材または前記加圧体を水平方向に移動させる処理である請求項1記載の導電性組成物。 2. The resistance reduction process is a process of moving the base material or the pressurizing body in a horizontal direction while pressurizing a wiring pattern formed on the base material in a vertical direction by a pressurizing body. Conductive composition.
  3.  前記熱可塑性樹脂がポリエステル系樹脂およびフェノキシ系樹脂から選ばれる少なくとも1種である請求項2記載の導電性組成物。 The conductive composition according to claim 2, wherein the thermoplastic resin is at least one selected from polyester resins and phenoxy resins.
  4.  前記熱硬化性樹脂がエポキシ系樹脂である請求項2記載の導電性組成物。 3. The conductive composition according to claim 2, wherein the thermosetting resin is an epoxy resin.
  5.  導電性組成物を基材上に塗布し、該導電性組成物からなる配線パターンを前記基材上に形成する塗布工程と、前記塗布工程により形成された配線パターンを熱硬化する熱硬化工程と、前記熱硬化工程により熱硬化された配線パターンを有する前記基材を、加圧体により垂直方向に加圧しつつ、前記基材または前記加圧体を水平方向に移動させる加圧工程とを有する配線基板の製造方法において、
     前記導電性組成物として、請求項1~4のうちいずれか一項記載の導電性組成物を用いることを特徴とする配線基板の製造方法。
    An application step of applying a conductive composition on a substrate, forming a wiring pattern made of the conductive composition on the substrate, and a thermosetting step of thermosetting the wiring pattern formed by the application step; And a pressurizing step of moving the base material or the pressurizing body in the horizontal direction while pressurizing the base material having the wiring pattern thermoset by the thermosetting step in the vertical direction by the pressurizing body. In the method of manufacturing a wiring board,
    A method for manufacturing a wiring board, comprising using the conductive composition according to any one of claims 1 to 4 as the conductive composition.
  6.  請求項5項記載の配線基板の製造方法により製造されてなることを特徴とする配線基板。 A wiring board manufactured by the method for manufacturing a wiring board according to claim 5.
  7.  基材と、該基材上に形成された導電部を有する電極であって、
     前記導電部が、バインダー樹脂としての熱可塑性樹脂および熱硬化性樹脂と、硬化剤と、金属粒子とを含有する導電性組成物からなり、
     前記導電部の表面が、金属光沢を有することを特徴とする電極。
    An electrode having a base material and a conductive portion formed on the base material,
    The conductive part is composed of a conductive composition containing a thermoplastic resin and a thermosetting resin as a binder resin, a curing agent, and metal particles,
    The surface of the said electroconductive part has metal luster, The electrode characterized by the above-mentioned.
  8.  前記導電部の表面の算術平均粗さが40nm以下である請求項7記載の電極。 The electrode according to claim 7, wherein the arithmetic average roughness of the surface of the conductive portion is 40 nm or less.
  9.  請求項7または8記載の電極の製造方法であって、
     基材上に導電性組成物を塗布して導電部を形成する塗布工程と、
     前記塗布工程により形成された前記導電部を熱硬化する熱硬化工程と、
     前記熱硬化工程により熱硬化された前記導電部を有する前記基材を、加圧体により垂直方向に加圧しつつ、前記基材または前記加圧体を水平方向に移動させる加圧工程と、を有することを特徴とする電極の製造方法。
    A method for producing an electrode according to claim 7 or 8,
    An application step of applying a conductive composition on a substrate to form a conductive portion;
    A thermosetting step for thermosetting the conductive portion formed by the coating step;
    A pressurizing step of moving the base material or the pressurizing body in a horizontal direction while pressurizing the base material having the conductive portion thermoset by the thermosetting step in a vertical direction by a pressurizing body; A method for producing an electrode, comprising:
  10.  請求項7または8記載の電極を有することを特徴とする電子デバイス。 An electronic device comprising the electrode according to claim 7 or 8.
PCT/JP2012/081170 2011-12-27 2012-11-30 Electroconductive composition, method for manufacturing wiring board, wiring board, electrode, method for manufacturing electrode, and electronic device WO2013099521A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011284896A JP6168510B2 (en) 2011-12-27 2011-12-27 Conductive composition, method for producing wiring board using the same, and wiring board
JP2011-284896 2011-12-27
JP2012-027608 2012-02-10
JP2012027608A JP2013164990A (en) 2012-02-10 2012-02-10 Electrode, manufacturing method of electrode, and electronic device using the same

Publications (1)

Publication Number Publication Date
WO2013099521A1 true WO2013099521A1 (en) 2013-07-04

Family

ID=48697019

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081170 WO2013099521A1 (en) 2011-12-27 2012-11-30 Electroconductive composition, method for manufacturing wiring board, wiring board, electrode, method for manufacturing electrode, and electronic device

Country Status (2)

Country Link
TW (1) TW201340126A (en)
WO (1) WO2013099521A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022506921A (en) * 2018-11-07 2022-01-17 ファインライン テクノロジーズ RFID bead label device capable of withstanding RFID operation for identification purposes and maintaining RFID operability during and after vulcanization of rubber products
GB2612776A (en) * 2021-11-10 2023-05-17 Asm Assembly Systems Singapore Pte Ltd Deposit levelling
WO2024070661A1 (en) * 2022-09-26 2024-04-04 サトーホールディングス株式会社 Method for manufacturing electroconductive base material, method for manufacturing electronic device, method for manufacturing electromagnetic wave shield film, and method for manufacturing planar heating element

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05290624A (en) * 1992-04-14 1993-11-05 Kao Corp Conductive paste and conductive film
JPH0612912A (en) * 1991-11-19 1994-01-21 Kao Corp Conductive paste and conductive coating film
JPH069167Y2 (en) * 1987-07-28 1994-03-09 オイレス工業株式会社 Ceiling installation louver blade mounting structure
JP2008086895A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Method for manufacturing electrically conductive substrate and electrically conductive substrate
JP2010023465A (en) * 2008-07-24 2010-02-04 Dainippon Printing Co Ltd Printing device and printing method
JP2011093124A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Method for manufacturing intaglio for printing, intaglio for printing, and conductor pattern
JP2011119682A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Conductor-pattern formed substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH069167Y2 (en) * 1987-07-28 1994-03-09 オイレス工業株式会社 Ceiling installation louver blade mounting structure
JPH0612912A (en) * 1991-11-19 1994-01-21 Kao Corp Conductive paste and conductive coating film
JPH05290624A (en) * 1992-04-14 1993-11-05 Kao Corp Conductive paste and conductive film
JP2008086895A (en) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd Method for manufacturing electrically conductive substrate and electrically conductive substrate
JP2010023465A (en) * 2008-07-24 2010-02-04 Dainippon Printing Co Ltd Printing device and printing method
JP2011093124A (en) * 2009-10-27 2011-05-12 Panasonic Electric Works Co Ltd Method for manufacturing intaglio for printing, intaglio for printing, and conductor pattern
JP2011119682A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Conductor-pattern formed substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022506921A (en) * 2018-11-07 2022-01-17 ファインライン テクノロジーズ RFID bead label device capable of withstanding RFID operation for identification purposes and maintaining RFID operability during and after vulcanization of rubber products
GB2612776A (en) * 2021-11-10 2023-05-17 Asm Assembly Systems Singapore Pte Ltd Deposit levelling
WO2024070661A1 (en) * 2022-09-26 2024-04-04 サトーホールディングス株式会社 Method for manufacturing electroconductive base material, method for manufacturing electronic device, method for manufacturing electromagnetic wave shield film, and method for manufacturing planar heating element

Also Published As

Publication number Publication date
TW201340126A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
JP4677900B2 (en) Mixed conductive powder and its use
JP6592363B2 (en) Conductive composition for thin film printing and method for forming thin film conductive pattern
TWI554588B (en) A selectively conductive conductive agent composition
JP6168510B2 (en) Conductive composition, method for producing wiring board using the same, and wiring board
EP3630376B1 (en) Graphene enhanced and engineered materials for membrane touch switch and other flexible electronic structures
KR101753497B1 (en) Conductive paste for screen printing, method for producing wiring line, and method for producing electrode
TW201030766A (en) Conductive paste, electro-magnetic wave shielding film using the same and electro-magnetic wave shielding flexible printed wiring board
JP5045803B2 (en) Conductive composition and solar battery cell
TWI504327B (en) Manufacturing method of metal base substrate and electronic circuit board
JP2013149596A (en) Heat-curable conductive paste
JP6018476B2 (en) Thermosetting conductive paste
WO2018051830A1 (en) Silver paste for flexible substrate
WO2013099521A1 (en) Electroconductive composition, method for manufacturing wiring board, wiring board, electrode, method for manufacturing electrode, and electronic device
CN108137930A (en) Resin combination, conjugant and semiconductor device
JP5859823B2 (en) Heat curable conductive paste composition
JP2013164990A (en) Electrode, manufacturing method of electrode, and electronic device using the same
TW201833940A (en) Conductive composition
TWI742157B (en) Silver paste for resin substrate, electronic component and manufacturing method thereof
US20160133350A1 (en) Conductive resin composition for microwave heating
CN106028637B (en) Flexible wiring board and use thereof
KR101996605B1 (en) Epoxy paste using silver coated-copper nanowire of core-shell structure and conductive film including the same
KR102442606B1 (en) A conductive paste composition
JP2012227406A (en) Paste composition, magnetic body composition, and inductor
JP4413700B2 (en) Conductive paste composition for collecting electrode for solar cell
WO2013015155A1 (en) Conductive paste for electron beam curing and method for producing circuit board using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863093

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863093

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12863093

Country of ref document: EP

Kind code of ref document: A1