WO2013099116A1 - 電子写真用部材、その製造方法、プロセスカートリッジ及び電子写真装置 - Google Patents

電子写真用部材、その製造方法、プロセスカートリッジ及び電子写真装置 Download PDF

Info

Publication number
WO2013099116A1
WO2013099116A1 PCT/JP2012/007800 JP2012007800W WO2013099116A1 WO 2013099116 A1 WO2013099116 A1 WO 2013099116A1 JP 2012007800 W JP2012007800 W JP 2012007800W WO 2013099116 A1 WO2013099116 A1 WO 2013099116A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
electrophotographic
group
layer
represented
Prior art date
Application number
PCT/JP2012/007800
Other languages
English (en)
French (fr)
Inventor
啓二 野瀬
昌明 原田
渡辺 宏暁
匠 古川
健哉 寺田
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Priority to CN201280065054.5A priority Critical patent/CN104024957B/zh
Priority to US13/911,806 priority patent/US8685601B2/en
Publication of WO2013099116A1 publication Critical patent/WO2013099116A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/044Forming conductive coatings; Forming coatings having anti-static properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
    • G03G15/0233Structure, details of the charging member, e.g. chemical composition, surface properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0589Macromolecular compounds characterised by specific side-chain substituents or end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2301/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2301/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00953Electrographic recording members
    • G03G2215/00957Compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a process cartridge, an electrophotographic apparatus, and an electrophotographic member used in these.
  • a charging member that uniformly charges the surface of a photoreceptor, a developing member that supplies toner to an electrostatic latent image formed on the surface of the photoreceptor and develops the toner image, and a toner image as a recording material
  • a transfer member for transferring is provided.
  • a fixing member for fixing the toner image on the recording material, a cleaning member for removing the toner remaining on the surface of the photoreceptor after the transfer, and the like are provided.
  • a semiconductive resin layer is generally formed on the shaft of a metal core, and further required
  • a rubber roller having a surface layer formed thereon is used.
  • Patent Document 1 discloses a charging member in which the surface roughness of a resin layer is controlled and the surface is irradiated with energy rays such as ultraviolet rays and electron beams to form a surface modification layer. .
  • the electrophotographic member according to Patent Document 1 has been confirmed to have a certain effect on the occurrence of defects in an electrophotographic image caused by adhesion of toner and external additives to the surface of the member.
  • an electron that can more reliably suppress defects in electrophotographic images caused by adhesion of toner and external additives in view of the improvement in process speed and higher definition of image quality in recent electrophotographic image forming apparatuses, an electron that can more reliably suppress defects in electrophotographic images caused by adhesion of toner and external additives.
  • the inventors have recognized that the development of photographic members is necessary.
  • an object of the present invention is to provide a member for electrophotography that is less likely to cause defects in an electrophotographic image and that has a uniform conductivity, in which adhesion of toner and external additives is further suppressed.
  • the present invention is an electrophotographic member having a conductive substrate and a conductive resin layer as a surface layer, wherein the resin layer includes conductive particles and a binder resin, and the binder resin is represented by the following formula: At least one unit selected from the group of units represented by (1) and formula (2), and at least one unit selected from the group of units represented by formula (3) and formula (4) below:
  • R 1 to R 4 each independently represents an alkyl group having 1 to 10 carbon atoms, and a and b each independently represent 0 or an integer of 1 or more. However, a + b is an integer of 1 or more.
  • R 7 to R 10 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • R 5 and R 12 each independently represent a hydrogen atom or a methyl group,
  • R 6 and R 11 each independently represent an alkylene group having 1 to 4 carbon atoms, and
  • c and d each independently represents 0 or 1 The above integers are shown. However, c + d is an integer of 1 or more.
  • the symbol “*” indicates a connecting portion with the symbol “*” in the formula (5) or the formula (6).
  • the present invention is a process cartridge configured to be detachable from a main body of an electrophotographic apparatus, and includes the above-described electrophotographic member. Furthermore, the present invention is an electrophotographic apparatus comprising the above-described electrophotographic member.
  • the present invention is a method for producing the above electrophotographic member, (1) A polymer having a butadiene skeleton, at least one organopolysiloxane compound selected from the group represented by the following formulas (7) and (8), and conductive particles are contained on a conductive substrate. Forming a layer of the rubber composition; (2) An electron having a step of forming a conductive resin layer by irradiating the surface of the layer of the rubber composition with an electron beam to crosslink the rubber composition on the surface layer of the layer. It is a manufacturing method of the member for photography.
  • R 13 to R 16 each independently represents an alkyl group having 1 to 10 carbon atoms, and e and f each independently represent 0 or an integer of 1 or more. However, e + f is an integer of 1 or more.
  • R 19 to R 22 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • R 17 and R 24 each independently represent a hydrogen atom or a methyl group,
  • R 18 and R 23 each independently represent an alkylene group having 1 to 4 carbon atoms, and
  • g and h each independently represents 0 or 1 The above integers are shown. However, g + h is an integer of 1 or more.
  • an electrophotographic member that contributes to the formation of a high-quality electrophotographic image in which adhesion of toner and external additives is further suppressed and an electrophotographic image is less likely to cause defects.
  • 1 is a schematic cross-sectional view of an electrophotographic member according to the present invention.
  • 1 is a schematic cross-sectional view of an electrophotographic apparatus according to the present invention. It is a figure which shows the example of schematic structure of an electron beam irradiation apparatus. It is a schematic diagram for demonstrating the evaluation method of the electrical conductivity of the member for electrophotography which concerns on this invention. It is a figure which shows the example of a measurement of universal hardness.
  • FIG. 2 shows a schematic configuration example of the electrophotographic apparatus according to the present invention.
  • a roller-shaped charging member hereinafter referred to as “charging roller”
  • the electrophotographic photosensitive member 21 as a member to be charged has a drum shape having a conductive support 21b such as aluminum and a photosensitive layer 21a formed on the support 21b as basic constituent layers. It has become.
  • the electrophotographic photosensitive member 21 is rotationally driven around the shaft 21c in the clockwise direction in the drawing at a predetermined peripheral speed.
  • the charging roller 1 includes a cored bar 11 and a resin layer 12 formed on the cored bar.
  • the charging roller 1 is arranged in contact with the electrophotographic photosensitive member 21 by applying a pressing means (not shown) to both ends of the cored bar. As the electrophotographic photosensitive member is rotated, it is driven to rotate. A predetermined direct current (DC) bias is applied to the core metal 11 by the rubbing power source 23 from the power source 22, and the electrophotographic photosensitive member 21 is contact-charged to a predetermined polarity and potential.
  • the electrophotographic photosensitive member 21 whose peripheral surface is charged by the charging roller 1 is then subjected to exposure of target image information (laser beam scanning exposure, slit exposure of a document image, etc.) by an exposure device 24, so that the peripheral surface has a target. An electrostatic latent image corresponding to the image information is formed.
  • target image information laser beam scanning exposure, slit exposure of a document image, etc.
  • the electrostatic latent image is sequentially visualized as a toner image by the developing member 25.
  • This toner image is conveyed by a transfer unit 26 from a paper supply unit (not shown) to the transfer unit between the electrophotographic photoconductor 21 and the transfer unit 26 at an appropriate timing in synchronization with the rotation of the electrophotographic photoconductor 21.
  • the transfer material 27 is sequentially transferred.
  • the transfer means 26 in this example is a transfer roller, and the toner image on the electrophotographic photosensitive member 21 side is transferred to the transfer material 27 by charging from the back of the transfer material 27 with a polarity opposite to that of the toner.
  • the transfer material 27 having received the transfer of the toner image on the surface is separated from the electrophotographic photosensitive member 21 and conveyed to a fixing means (not shown) to receive image fixing and output as an image formed product.
  • a fixing means not shown
  • it is conveyed to a re-conveying means to the transfer unit.
  • the peripheral surface of the electrophotographic photosensitive member 21 after the image transfer is subjected to pre-exposure by the pre-exposure means 28, and residual charges on the electrophotographic photosensitive drum are removed (static elimination).
  • Known means can be used for the pre-exposure means 28.
  • an LED chip array, a fuse lamp, a halogen lamp, and a fluorescent lamp can be preferably exemplified.
  • the peripheral surface of the electrophotographic photosensitive member 21 from which the charge has been removed is cleaned by the cleaning member 29 after removal of adhering contaminants such as toner remaining after transfer, and is repeatedly used for image formation.
  • the charging roller 1 may be driven and driven by the electrophotographic photosensitive member 21 driven to move the surface, or may not be rotated, and has a predetermined peripheral speed in the forward direction or the reverse direction in the surface moving direction of the electrophotographic photosensitive member 21. You may make it actively rotate.
  • the electrophotographic apparatus is used as a copying machine, the exposure is reflected light or transmitted light from the original, or the original is read as a signal, and a laser beam is scanned or the LED array is driven based on this signal. Or driving a liquid crystal shutter array.
  • Examples of the electrophotographic apparatus that can use the electrophotographic member of the present invention include copying machines, laser beam printers, LED printers, and electrophotographic application apparatuses such as an electrophotographic plate making system.
  • the electrophotographic member of the present invention can be used as a developing member, a transfer member, a charge eliminating member, and a conveying member such as a paper feed roller in addition to the charging member.
  • the member for electrophotography of the present invention can be used by being incorporated in a process cartridge that is detachable from the main body of the electrophotographic apparatus.
  • the electrophotographic member according to the present invention has a conductive substrate and a conductive resin layer as a surface layer.
  • FIG. 1 shows a schematic configuration example of the electrophotographic member of the present invention.
  • the electrophotographic member 13 includes a cored bar 11 that is a conductive base and a resin layer 12 formed on the cored bar.
  • the electrophotographic member of the present invention can be used as, for example, the charging roller 1 of the electrophotographic apparatus shown in FIG.
  • the resin layer is made of a semiconductive vulcanized rubber material containing conductive particles and a binder resin, and the conductive particles are dispersed in the binder resin.
  • binder resins fillers, processing aids, vulcanization aids, vulcanization accelerators, vulcanization accelerators, vulcanization retarders, dispersants, etc. that are generally used as rubber compounding agents as required Can also be added.
  • the conductive particles include carbon materials such as carbon black and graphite; oxides such as titanium oxide and tin oxide; metals such as Cu and Ag; conductive particles obtained by coating the surface of the particles with oxides or metals and the like.
  • An electronic conductive agent can be mentioned.
  • the binder resin is at least one unit selected from the group of units represented by Formula (1) and Formula (2), and at least one unit selected from the group of units represented by Formula (3) and Formula (4)
  • the polymer chain having one unit is a polymer crosslinked by at least one organosiloxane chain selected from the group of structures represented by formula (5) and formula (6).
  • R 1 to R 4 each independently represents an alkyl group having 1 to 10 carbon atoms, and a and b each independently represent 0 or an integer of 1 or more. However, a + b is an integer of 1 or more.
  • R 7 to R 10 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • R 5 and R 12 each independently represent a hydrogen atom or a methyl group,
  • R 6 and R 11 each independently represent an alkylene group having 1 to 4 carbon atoms, and
  • c and d each independently represents 0 or 1 The above integers are shown. However, c + d is an integer of 1 or more.
  • the symbol “*” indicates a connecting portion with the symbol “*” in the formula (5) or the formula (6).
  • Examples of the method for producing the binder resin in the present invention include a method in which a polymer having a butadiene skeleton is subjected to a crosslinking reaction using a siloxane polymer represented by formula (7) or formula (8).
  • R 13 to R 16 each independently represents an alkyl group having 1 to 10 carbon atoms, and e and f each independently represent 0 or an integer of 1 or more. However, e + f is an integer of 1 or more.
  • R 19 to R 22 each independently represents an alkyl group having 1 to 10 carbon atoms.
  • R 17 and R 24 each independently represent a hydrogen atom or a methyl group,
  • R 18 and R 23 each independently represent an alkylene group having 1 to 4 carbon atoms, and
  • g and h each independently represents 0 or 1 The above integers are shown. However, g + h is an integer of 1 or more.
  • the polysiloxane used in the present invention has a structure in which silicon atoms and oxygen atoms are alternately bonded, and an alkyl group is bonded to the side chain.
  • the length of the silicon-oxygen bond of polysiloxane is 1.64 mm, which is longer than the carbon-carbon bond of the main chain of the hydrocarbon polymer.
  • the silicon-oxygen-silicon bond angle of the polysiloxane is larger than the carbon-carbon-carbon bond angle of the hydrocarbon polymer, and the bond angle deformation energy is very low.
  • it is bulky by having an alkyl group in the side chain, and the intermolecular force is small.
  • the polysiloxane molecular chain performs thermal motion with a large amplitude, the polymer chain easily moves.
  • the molecular mobility of the polysiloxane molecular chains is transmitted to the polymer molecular chains having a butadiene skeleton, and as a result, the dirt component is reduced. It is difficult to approach, and the overall dirt resistance is improved.
  • the polysiloxane is cross-linked not at one end but at both ends, the molecular motion of the polysiloxane is easily transmitted to the polymer molecular chain having a butadiene skeleton through the cross-linking point.
  • a crosslinked structure such as sulfur crosslinking, peroxide crosslinking, metal crosslinking, amine crosslinking, oxime crosslinking, and phenol resin crosslinking may be present in the resin layer.
  • the cross-linking structure with polysiloxane is preferably larger in the surface layer portion than in the resin layer.
  • the cross-linking structure inside the resin layer preferably has a structure in which the cross-linking structure by sulfur is larger than the cross-linking structure by polysiloxane. Since the surface layer portion of the resin layer has many cross-linked structures of polysiloxane, the effect of suppressing adhesion of toner and external additives can be exhibited.
  • the resin layer of the present invention uses a polymer having a butadiene skeleton having a high affinity with the conductive particles, the electrophotographic member having a high dispersibility of the conductive particles and a uniform conductivity can be obtained. Obtainable.
  • the sum of a and b and the sum of c and d are preferably 80 or more and 2100 or less. If the sum of a and b and the sum of c and d are 80 or more, a decrease in molecular mobility due to a short molecular chain between the crosslinking points can be easily prevented. In addition, when the sum of a and b and the sum of c and d are 2100 or less, molecular mobility is easily transmitted through the crosslinking point.
  • the sum of a and b and the sum of c and d can be analyzed by the following method. First, 50 g of the resin layer of the electrophotographic member is collected and immersed in 500 ml of a saturated THF solution of lithium aluminum hydride for 120 hours. Thereafter, after the soaked solution is filtered, 150 ml of water is slowly added to the filtrate, and 120 ml of a 10% potassium hydroxide aqueous solution is further slowly added. After filtering this through celite, the filtrate is distilled off under reduced pressure. The obtained residue is analyzed by 1 H-NMR.
  • the 1 H-NMR measurement conditions are shown below.
  • Measurement frequency 400 MHz.
  • Pulse condition 5.0 ⁇ S.
  • Data point 32768.
  • Frequency range 10500 Hz. Integration count: 16 times.
  • Measurement temperature room temperature.
  • Sample for measurement 50 mg of a measurement sample is placed in a sample tube having a diameter of 5 mm, and CDCl 3 (containing deuterated chloroform: 0.05% by mass of TMS (tetramethylsilane)) is added as a solvent.
  • the sum of c and d is obtained from the ratio of the peak area near 4.1 ppm to the peak area of 0.1 ppm. From the ratio of the peak area near 1.1 ppm to the peak area of 0.1 ppm, the sum of a and b is obtained.
  • the structures represented by the formulas (1) and (2) contained in the binder resin can be identified by microscopic ATR (total reflection absorption spectroscopy) analysis. In the ATR spectrum, these structures can be confirmed by a peak in the vicinity of 1420 cm ⁇ 1 derived from the CH out-of-plane bending vibration.
  • Examples of the crosslinking reaction method for crosslinking a polymer molecular chain having a butadiene skeleton with a polysiloxane molecular chain include the following. That is, it is a method in which a polysiloxane represented by formula (7) or formula (8) and a polymer having a butadiene skeleton are mixed in advance and then reacted by thermal reaction, ultraviolet rays, or electron beams.
  • the crosslinking reaction is performed between the vinyl group represented by the formula (7) or the (meth) acryloxy group represented by the formula (8) and the double bond portion of the structure represented by the formula (1) or the formula (2). Done.
  • the cross-linking reaction by electron beam irradiation is a preferable method because it has high reactivity, and the cross-linking reaction can be advanced to a deeper portion than in the case of using ultraviolet rays in the depth direction of the resin layer. .
  • the crosslinked structure by polysiloxane in the surface layer part of the resin layer can be made larger than the inside of the resin layer.
  • the binder resin thus produced originally has a structure represented by the formulas (1) and (2) that are contained in the polymer having a butadiene skeleton and remain without being crosslinked.
  • the polysiloxane represented by the formula (7) or the formula (8) is obtained by mixing a cyclic siloxane and a functional group-containing disiloxane, and adding a catalyst such as trifluoromethanesulfonic acid, ammonium silanolate, or potassium silanolate to polymerize. Obtainable.
  • Examples of the cyclic siloxane include octamethylcyclotetrasiloxane, hexamethylcyclotrisiloxane, hexadecylcyclotrisiloxane and the like.
  • Examples of functional group-containing disiloxanes include 1,3-divinyltetramethyldisiloxane, 1,3-bis (3-methacryloxypropyl) tetramethyldisiloxane, and 1,3-bis (3-methacryloxybutyl) tetramethyldisiloxane. Examples thereof include siloxane.
  • Examples of the polymer having a butadiene skeleton include polymers having at least one unit selected from the group of units represented by the above formulas (1) and (2).
  • Specific examples of the polymer having a butadiene skeleton include the following. Butadiene rubber (BR), crystalline synditactic polybutadiene-containing butadiene rubber (VCR), styrene-butadiene rubber (SBR), acrylonitrile-butadiene copolymer (NBR), polybutadiene thermoplastic elastomer, styrene-butadiene thermoplastic elastomer (SBS), acrylonitrile-butadiene-styrene copolymer (ABS), epoxidized polybutadiene, and the like. Two or more kinds of polymers having these butadiene skeletons may be blended.
  • the electrophotographic member of the present invention can be produced, for example, through the following steps (1) and (2).
  • a polymer having a butadiene skeleton, at least one organopolysiloxane compound selected from the group represented by the formulas (7) and (8), and conductive particles are contained.
  • FIG. 3 shows a schematic diagram of an electron beam irradiation apparatus.
  • An electron beam irradiation apparatus that can be used in the present invention irradiates an electron beam onto the surface of a roller while rotating a polished rubber roller, and includes an electron beam generation unit 31, an irradiation chamber 32, and an irradiation port 33. .
  • the electron beam generator 31 includes a terminal 34 that generates an electron beam and an acceleration tube 35 that accelerates the electron beam generated at the terminal 34 in a vacuum space (acceleration space).
  • the inside of the electron beam generator is kept at a vacuum of 10 ⁇ 3 Pa to 10 ⁇ 6 Pa by an unillustrated vacuum pump or the like in order to prevent electrons from losing energy due to collision with gas molecules.
  • the filament 36 When the filament 36 is heated by current from a power source (not shown), the filament 36 emits thermoelectrons, and only those thermoelectrons that have passed through the terminal 34 are effectively taken out as electron beams. Then, after being accelerated in the acceleration space in the accelerating tube 35 by the acceleration voltage of the electron beam, the rubber roller 38 after polishing is irradiated through the irradiation port foil 37 and conveyed in the irradiation chamber 32 below the irradiation port 33.
  • the inside of the irradiation chamber 32 can be a nitrogen atmosphere. Further, the polished rubber roller 38 is rotated by the roller rotating member 39 and moved from the left side to the right side in FIG. The surroundings of the electron beam generator 31 and the irradiation chamber 32 are shielded from lead (not shown) so that X-rays that are secondarily generated during electron beam irradiation do not leak to the outside.
  • the irradiation port foil 37 is made of a metal foil, and separates the vacuum atmosphere in the electron beam generator and the air atmosphere in the irradiation chamber, and takes out the electron beam into the irradiation chamber through the irradiation port foil 37.
  • the inside of the irradiation chamber 32 where the roller is irradiated with the electron beam can be a nitrogen atmosphere. Therefore, the irradiation opening foil 37 provided at the boundary between the electron beam generating unit 31 and the irradiation chamber 32 has no pinhole, has a mechanical strength that can sufficiently maintain the vacuum atmosphere in the electron beam generating unit, and easily transmits the electron beam. It is desirable.
  • the irradiation port foil 37 is preferably made of a metal having a small specific gravity and a small thickness, and aluminum or titanium foil is usually used.
  • the conditions for the crosslinking treatment with an electron beam are determined by the acceleration voltage and dose of the electron beam.
  • the acceleration voltage affects the crosslinking treatment depth, and the condition of the acceleration voltage used in the present invention is preferably 40 kV or more and 300 kV or less in the low energy region. If it is 40 kV or more, sufficient crosslinking reaction for obtaining the effects of the present invention can be easily obtained. Moreover, it can suppress especially that an electron beam irradiation apparatus enlarges and apparatus cost increases by setting it as 300 kV or less.
  • a more preferable acceleration voltage condition is 80 kV or more and 150 kV or less.
  • the dose of electron beam in electron beam irradiation is defined by the following mathematical formula (1).
  • D (K ⁇ I) / V (1)
  • D is a dose (kGy)
  • K is an apparatus constant
  • I is an electron current (mA)
  • V is a processing speed (m / min).
  • the device constant K is a constant representing the efficiency of each device, and is an index of device performance.
  • the apparatus constant K can be obtained by measuring the dose by changing the electron current and the processing speed under the condition of a constant acceleration voltage.
  • the dose of the electron beam can be measured by sticking a dose measuring film on the roller surface, actually processing it with an electron beam irradiation apparatus, and measuring the dose of this film with a film dosimeter.
  • the trade name: FWT-60 can be used as the dosimetry film
  • FWT-92D type both manufactured by Far West Technology
  • region can be formed in the whole surface of a resin layer, and when the charging member of this invention is a charging roller, for example, it can be formed in the whole outer peripheral surface of a resin layer. It can be confirmed with a universal hardness meter that the resin layer of the charging member has a region cross-linked by electron beam irradiation. Universal hardness is a physical property value obtained by pushing an indenter into a measurement object while applying a load, and is obtained as [test load] / [surface area of indenter under test load] (N / mm 2 ). .
  • the universal hardness can be measured using, for example, a hardness measuring device such as an ultra micro hardness meter H-100V (trade name) manufactured by Fischer.
  • a hardness measuring device such as an ultra micro hardness meter H-100V (trade name) manufactured by Fischer.
  • an indenter such as a square weight is pushed into an object to be measured while applying a predetermined relatively small test load, and when the predetermined indentation depth is reached, the surface area with which the indenter contacts from the indentation depth And universal hardness from the above formula. That is, when the indenter is pushed into the object to be measured under the constant load measuring condition, the stress at that time with respect to the pushed-in depth is defined as universal hardness.
  • FIG. 5 shows an example of universal hardness measurement.
  • the horizontal axis of the graph is the indentation depth ( ⁇ m), and the vertical axis is the hardness (N / mm 2 ).
  • the change in hardness with respect to the indentation depth is small, and the horizontal axis value at the point where the straight line extrapolated from the measurement area of the horizontal axis 150 ⁇ m or more and 200 ⁇ m or less, which is a linear area, and the measurement curve occurs is defined as the crosslinking treatment depth.
  • the thickness of the cured layer in the measurement example of FIG. 5 is 50 ⁇ m.
  • a crosslinked layer of 10 ⁇ m or more can be produced in a single resin layer from the roller surface in this way. That is, when the charging roller subjected to electron beam irradiation is measured with a universal hardness meter, generally the result is as shown in FIG. 5 having a soft inside and a layer with a hardness gradient only near the surface.
  • the binder resin is represented by the formula (1), formula (2), formula (3), formula (4)
  • the structure shown by Formula (5) is included.
  • the binder resin is represented by the formula (1), formula (2), formula (3), formula (4), formula
  • the structure shown by (6) is included.
  • the organopolysiloxane thus obtained is referred to as “PSiO-2”.
  • organopolysiloxanes obtained in each of the above synthesis examples and commercially available organopolysiloxanes are used.
  • These chemical structural formulas and substituent structures, and [e + f] or [g + h] ] are summarized in Table 1.
  • Example 1 [Example 1] [1. Preparation of unvulcanized rubber composition] Six types of materials of component (1) shown in Table 2 below were mixed for 16 minutes using a 6 liter pressure kneader (product name: TD6-15MDX, manufactured by Toshin) at a filling rate of 70 vol% and a blade rotation speed of 30 rpm. Thus, “A kneaded rubber composition” was obtained.
  • An unvulcanized rubber roller having a diameter of 8.8 mm was produced.
  • an extruder having a cylinder diameter of 45 mm ( ⁇ 45) and an L / D of 20 was used as the extruder, and the temperature during extrusion was adjusted to 90 ° C., 90 ° C. cylinder, and 90 ° C. screw. Both ends of the unvulcanized rubber composition layer of the obtained unvulcanized rubber roller were cut, and the axial width of the unvulcanized rubber composition layer was 228 mm. Then, it heated for 40 minutes at 160 degreeC with the electric furnace, and the layer of the unvulcanized rubber composition was used as the vulcanized rubber layer.
  • a vulcanized rubber roller 1 having a crown-shaped vulcanized rubber layer having an end diameter of 8.35 mm and a central diameter of 8.50 mm is provided.
  • the produced electrophotographic member is incorporated into an electrophotographic process cartridge as a charging roller, and this process cartridge is incorporated into an A4 paper longitudinal output electrophotographic apparatus (LBP5050 manufactured by Canon Inc.) to evaluate charging uniformity and toner and external additives. The image defect due to the adhesion of was evaluated.
  • Evaluation of charging uniformity was performed based on images before durability (before printing), and ranked based on the following criteria.
  • the halftone image is an image in which a line having a width of 1 dot is drawn at intervals of 2 dots in the direction perpendicular to the rotation direction of the electrophotographic photosensitive member.
  • the evaluation criteria are as follows, and rank C or higher was regarded as a practical level. A: There is almost no density unevenness. B: Very little density unevenness occurred. C: Density unevenness slightly occurred. D: Density unevenness occurred clearly.
  • a stainless steel cylinder 41 having a width of 10 mm and a diameter of 24 mm for placing the electrophotographic member 42 to be measured, and both ends of the electroconductive member conductive support are fixed.
  • a load device (not shown) for bringing the cylinder into contact with the electrophotographic member is provided.
  • a bias application power source 45 for applying a bias voltage to the electroconductive member of the electrophotographic member, a fixed resistor (1 k ⁇ ) 43 connected to the cylinder surface, and an ammeter 44 for measuring the current of the fixed resistor, Is provided.
  • the electrophotographic member was rotated at a rotation speed of 5 rpm, the cylinder 41 was driven, and an applied voltage of ⁇ 200 V was applied from a bias applied power source. Measurement values were sampled from an ammeter at intervals of 100 Hz to obtain measurement waveforms. After this operation, the same operation was performed by shifting the cylinder 41 by 10 mm in the direction of the arrow in FIG. This operation was repeated to measure the entire surface of the electrophotographic member, and the conductivity uniformity was evaluated by a value (R 1 / R 2 ) obtained by dividing the maximum value R 1 of all the measured waveforms by the minimum value R 2 . This value was 4 or less as the practical range.
  • the test environment was a temperature of 23 ° C. and a relative humidity of 50%. As a result of the evaluation, the value of conductivity uniformity (R 1 / R 2 ) was 1.6.
  • the thickness of the curing process was measured by measuring the surface hardness of the charging roller with a universal hardness meter. The measurement was performed using an ultrafine hardness meter H-100V (trade name) manufactured by Fischer, and a square pyramidal diamond was used as the indenter.
  • the horizontal axis value at the point where the deviation between the measurement curve and the straight line extrapolated from the measurement area of 150 ⁇ m or more and 200 ⁇ m or less of the horizontal axis where the hardness change with respect to the indentation depth is small was obtained as the thickness of the hardened layer.
  • the crosslinking treatment depth was 90 ⁇ m.
  • Example 2 to 6 The raw rubber type at the time of preparation of the unvulcanized rubber composition was changed to NBR (trade name NIPOL DN219, manufactured by Nippon Zeon Co., Ltd.) or BR (trade name: BR-1220L, manufactured by Nippon Zeon Co., Ltd.). Electrophotographic members 2 to 6 were produced in the same manner as in Example 1 except that the amount of polysiloxane 7) was changed to the amount shown in Table 3 (0.3 or 5.0 parts by mass). In the same manner as in Example 1, evaluation of charging uniformity, image evaluation, evaluation of conductive uniformity, and measurement of the crosslinking treatment depth were performed.
  • NBR trade name NIPOL DN219, manufactured by Nippon Zeon Co., Ltd.
  • BR trade name: BR-1220L, manufactured by Nippon Zeon Co., Ltd.
  • Electrophotographic members 7 to 11 Changed the type and amount of polysiloxane of formula (7) at the time of preparation of unvulcanized rubber composition to the conditions shown in Table 3 (DMS-V21 or DMS-V52 is 0.3 or 5.0 parts by mass) Electrophotographic members 7 to 11 were produced in the same manner as in Example 1 except that. In the same manner as in Example 1, evaluation of charging uniformity, image evaluation, evaluation of conductive uniformity, and measurement of the crosslinking treatment depth were performed.
  • Example 12 to 17 Except that the type of polysiloxane at the time of preparation of the unvulcanized rubber composition was changed to those shown in Table 3 (PSiO-2 to PSiO-7 represented by the formula (8)), the same as in Example 1. Electrophotographic members 12 to 17 were produced. In the same manner as in Example 1, evaluation of charging uniformity, image evaluation, evaluation of conductive uniformity, and measurement of the crosslinking treatment depth were performed.
  • Example 18 to 25 The type of raw rubber and the amount of polysiloxane (DMS-V05) represented by the formula (7) at the time of preparing the unvulcanized rubber composition were changed to the conditions shown in Table 3. Electrophotographic members 18 to 25 were produced in the same manner as in Example 1 except for these conditions. In the same manner as in Example 1, evaluation of charging uniformity, image evaluation, evaluation of conductive uniformity, and measurement of the crosslinking treatment depth were performed.
  • Example 26 As the polysiloxane at the time of preparing the unvulcanized rubber composition, those represented by the formulas (7) and (8) were used together (combination of DMS-V05 and PSiO-3), and 0.3 parts by mass were added respectively.
  • the electrophotographic member 26 was produced in the same manner as in Example 1 except for these conditions. In the same manner as in Example 1, evaluation of charging uniformity, image evaluation, evaluation of conductive uniformity, and measurement of the crosslinking treatment depth were performed.
  • Example 27 An electrophotographic member 27 was produced in the same manner as in Example 1 except that the electron current under the electron beam treatment conditions was changed to 5 mA in the crosslinking step of the polymer having a butadiene skeleton and the polyorganosiloxane chain in Example 7. In the same manner as in Example 1, evaluation of charging uniformity, image evaluation, evaluation of conductive uniformity, and measurement of the crosslinking treatment depth were performed.
  • Example 28 An electrophotographic member in the same manner as in Example 1 except that the type of polysiloxane represented by formula (7) at the time of preparation of the unvulcanized rubber composition was changed to that shown in Table 3 (DMS-V35). 28 was produced. In the same manner as in Example 1, evaluation of charging uniformity, image evaluation, evaluation of conductive uniformity, and measurement of the crosslinking treatment depth were performed.
  • Example 1 An electrophotographic member C1 was produced in the same manner as in Example 1 except that the polysiloxane represented by (7) was not added during the preparation of the unvulcanized rubber composition. In the same manner as in Example 1, evaluation of charging uniformity, image evaluation, evaluation of conductive uniformity, and measurement of the crosslinking treatment depth were performed.
  • Example 2 In the same manner as in Example 1, except that the polysiloxane represented by the formula (7) at the time of preparation of the unvulcanized rubber composition was changed to polydimethylsiloxane (trade name: DMS-T63, Gelest) A photographic member C2 was produced. In the same manner as in Example 1, evaluation of charging uniformity, image evaluation, evaluation of conductive uniformity, and measurement of the crosslinking treatment depth were performed.
  • the evaluation results of the above examples and comparative examples are summarized in Tables 3 to 6.
  • the electrophotographic member of each example is constituted by a resin layer in which a polymer containing a butadiene skeleton is cross-linked at both ends of polysiloxane, and image defects due to dirt are improved compared to those of the comparative example.
  • the resin layer of the electrophotographic member of Comparative Example 1 has a configuration not including the binder resin of the present invention, and the resin layer of the electrophotographic member of Comparative Example 2 contains uncrosslinked polysiloxane. In any of the comparative examples, the rank of the image defect due to the stain is low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Electrophotography Configuration And Component (AREA)
  • Silicon Polymers (AREA)
  • Dry Development In Electrophotography (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

 トナーや外添剤の付着がより一層抑制された、電子写真画像に欠陥を生じさせにくくかつ、導電性の均一な電子写真用部材の提供にある。 導電性の基体および表面層としての導電性の樹脂層を有する電子写真用部材であって、該樹脂層は、導電性粒子とバインダー樹脂とを含み、該バインダー樹脂は、下記式(1)および式(2)で示されるユニットの群から選択される少なくとも1つのユニットと、下記式(3)および式(4)で示されるユニットの群から選択される少なくとも1つのユニットとを有するポリマー鎖が、下記式(5)および式(6)で示される構造の群から選択される少なくとも1つのオルガノポリシロキサン鎖により架橋されているポリマーであることを特徴とする電子写真用部材。

Description

電子写真用部材、その製造方法、プロセスカートリッジ及び電子写真装置
 本発明は、プロセスカートリッジ及び電子写真装置、並びにこれらに使用される電子写真用部材に関する。
 電子写真装置には、感光体の表面を一様に帯電させる帯電部材、感光体の表面に形成された静電潜像にトナーを供給しトナー像として現像する現像部材、トナー像を記録材に転写する転写部材が設けられている。その他、記録材上のトナー像を定着する定着部材、転写後、感光体表面に残留するトナーを除去するクリーニング部材等が設けられている。これらの部材のうち、特に感光体と当接ニップを十分に確保する必要がある部材としては、一般的に、金属製芯金の軸上に半導電性の樹脂層を形成し、さらに、必要に応じて、表面層を形成させたゴムローラが用いられている。
 近年、製品の価格競争の激化により、低コスト化の重要性が高まっており、表面層を薄くしたものや、表面層を設けずに樹脂層のみの簡易な層構成を有した電子写真用部材が提案されている。しかし、ゴムや熱可塑性エラストマーは摩擦が大きく粘着性が高いことから、簡易な層構成の場合、トナーや外添剤が電子写真用部材の表面に付着し画像不良を生じさせる場合がある。
 かかる課題に対して、特許文献1には、樹脂層の表面粗さを制御し、表面に紫外線や電子線等のエネルギー線を照射して表面改質層を形成した帯電部材が開示されている。
特開平09-160355号公報
 特許文献1に係る電子写真用部材は、部材表面へのトナーや外添剤の付着に起因する電子写真画像への欠陥の発生に対しては一定の効果があることを確認している。しかし、近年の電子写真画像形成装置におけるプロセススピードの向上と画質のより一層の高精細化に鑑みると、トナーや外添剤の付着に起因する電子写真画像の不良をより確実に抑制し得る電子写真用部材の開発が必要であるとの認識を本発明者らは得ている。
 そこで、本発明の目的は、トナーや外添剤の付着がより一層抑制された、電子写真画像に欠陥を生じさせにくく、かつ、導電性の均一な電子写真用部材の提供にある。
 本発明は、導電性の基体および表面層としての導電性の樹脂層を有する電子写真用部材であって、該樹脂層は、導電性粒子とバインダー樹脂とを含み、該バインダー樹脂は、下記式(1)および式(2)で示されるユニットの群から選択される少なくとも1つのユニットと、下記式(3)および式(4)で示されるユニットの群から選択される少なくとも1つのユニットとを有するポリマー鎖が、下記式(5)および式(6)で示される構造の群から選択される少なくとも1つのオルガノポリシロキサン鎖により架橋されているポリマーであることを特徴とする電子写真用部材である。
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
 式(5)において、R~Rは、各々独立に炭素数1~10のアルキル基を示し、aおよびbは、各々独立に0または1以上の整数を示す。ただし、a+bは1以上の整数である。
 式(6)において、R~R10は、各々独立に炭素数1~10のアルキル基を示す。RおよびR12は、各々独立に水素原子またはメチル基を示し、RおよびR11は、各々独立に炭素数1~4のアルキレン基を示し、cおよびdは、各々独立に0または1以上の整数を示す。ただし、c+dは1以上の整数である。
 式(3)および式(4)において、記号「*」は、式(5)または式(6)の記号「*」との結合部を示す。
 また、本発明は、電子写真装置の本体に着脱可能に構成されているプロセスカートリッジであって、上記の電子写真用部材を備えていることを特徴とするプロセスカートリッジである。更に、本発明は、上記の電子写真用部材を備えていることを特徴とする電子写真装置である。
 また、本発明は、上記の電子写真用部材の製造方法であって、
(1)導電性の基体上に、ブタジエン骨格を有するポリマーと、下記式(7)及び式(8)で示される群から選択される少なくとも1つのオルガノポリシロキサン化合物と導電性粒子とを含有するゴム組成物の層を形成する工程と、
(2)該ゴム組成物の層の表面に電子線を照射することによって、該層の表層部のゴム組成物を架橋させて導電性の樹脂層を形成する工程を有することを特徴とする電子写真用部材の製造方法である。
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
 式(7)において、R13~R16は、各々独立に炭素数1~10のアルキル基を示し、eおよびfは、各々独立に0または1以上の整数を示す。ただし、e+fは1以上の整数である。
 式(8)において、R19~R22は、各々独立に炭素数1~10のアルキル基を示す。R17およびR24は、各々独立に水素原子またはメチル基を示し、R18およびR23は、各々独立に炭素数1~4のアルキレン基を示し、gおよびhは、各々独立に0または1以上の整数を示す。ただし、g+hは1以上の整数である。
 本発明によれば、トナーや外添剤の付着がより一層抑制された、電子写真画像に欠陥を生じさせにくい高品位な電子写真画像の形成に資する電子写真用部材が提供される。
本発明に係る電子写真用部材の模式的断面図である。 本発明に係る電子写真装置の模式的断面図である。 電子線照射装置の概略構成例を示す図である。 本発明に係る電子写真用部材の導電均一性の評価方法を説明するための模式図である。 ユニバーサル硬さの測定例を示す図である。
以下、本発明の実施形態について説明する。
<電子写真装置>
 図2は、本発明における電子写真装置の概略構成例を示している。この電子写真装置においては、ローラ形状の帯電部材(以下、「帯電ローラ」という。)が電子写真用部材として用いられている。被帯電体としての電子写真感光体21は、本例では、アルミニウムなどの導電性を有する支持体21bと、この支持体21b上に形成された感光層21aとを基本構成層とするドラム形状となっている。電子写真感光体21は、軸21cを中心に図上時計方向に所定の周速度をもって回転駆動される。帯電ローラ1は、芯金11と、この芯金上に形成された樹脂層12とからなり、芯金の両端部に不図示の押圧手段を作用させることによって、電子写真感光体21に接触配置され、電子写真感光体の回転駆動に伴い従動回転する。電源22からの摺擦電源23により、芯金11に所定の直流(DC)バイアスが印加され、電子写真感光体21は所定の極性・電位に接触帯電される。帯電ローラ1によって周面が帯電された電子写真感光体21は、次いで露光器24により目的画像情報の露光(レーザービーム走査露光、原稿画像のスリット露光など)を受けることで、その周面に目的の画像情報に対応した静電潜像が形成される。その静電潜像は、現像部材25により、トナー画像として順次に可視像化されていく。このトナー画像は、転写手段26により不図示の給紙手段部から電子写真感光体21の回転と同期取りされて適正なタイミングをもって電子写真感光体21と転写手段26との間の転写部へ搬送された転写材27に順次転写される。本例の転写手段26は転写ローラであり、転写材27の裏からトナーと逆極性の帯電を行うことで電子写真感光体21側のトナー画像が転写材27に転写される。
 表面にトナー画像の転写を受けた転写材27は、電子写真感光体21から分離されて不図示の定着手段へ搬送されて像定着を受け、画像形成物として出力される。あるいは、裏面にも像形成するものでは、転写部への再搬送手段へ搬送される。像転写後の電子写真感光体21の周面は、前露光手段28による前露光を受けて電子写真感光体ドラム上の残留電荷が除去(除電)される。
 この前露光手段28には公知の手段を利用することができ、例えばLEDチップアレイ、ヒューズランプ、ハロゲンランプおよび蛍光ランプなどを好適に例示することができる。除電された電子写真感光体21の周面は、クリーニング部材29で転写残りトナーなどの付着汚染物の除去を受けて洗浄面化されて、繰り返して画像形成に供される。帯電ローラ1は面移動駆動される電子写真感光体21に従動駆動させてもよく、非回転にしてもよく、電子写真感光体21の面移動方向に順方向または逆方向に所定の周速度をもって積極的に回転駆動させるようにしてもよい。露光は、電子写真装置を複写機として使用する場合には、原稿からの反射光や透過光、また、原稿を読み取り信号化し、この信号に基づいてレーザービームを走査したり、LEDアレイを駆動したり、液晶シャッターアレイを駆動したりして行われる。
 本発明の電子写真用部材を使用しうる電子写真装置としては、複写機、レーザービームプリンター、LEDプリンター、あるいは、電子写真製版システムなどの電子写真応用装置などが挙げられる。
 本発明の電子写真用部材は、帯電部材以外に、現像部材、転写部材、除電部材や、給紙ローラなどの搬送部材としても使用可能である。
 本発明の電子写真用部材は、電子写真装置の本体に着脱可能に構成されているプロセスカートリッジに組み込んで使用することができる。
<電子写真用部材>
 本発明に係る電子写真用部材は、導電性の基体および表面層としての導電性の樹脂層を有する。図1は、本発明の電子写真用部材の概略構成例を示す。電子写真用部材13は、導電性の基体である芯金11と、この芯金上に形成された樹脂層12とからなっている。本発明の電子写真用部材は、例えば図2に示す電子写真装置の帯電ローラ1等として用いることができる。
[樹脂層]
 樹脂層は、導電性粒子とバインダー樹脂とを含み、バインダー樹脂に導電性粒子を分散した半導電性加硫ゴム材料で構成される。バインダー樹脂には、必要に応じてゴムの配合剤として一般に用いられている充填剤、加工助剤、加硫助剤、加硫促進剤、加硫促進助剤、加硫遅延剤、分散剤等を添加することもできる。
[導電性粒子]
 導電性粒子としては、カーボンブラック、グラファイト等の炭素材料;酸化チタン、酸化錫等の酸化物;Cu、Ag等の金属;酸化物や金属を粒子表面に被覆して導電化した導電粒子等の電子導電剤を挙げる事が出来る。
[バインダー樹脂]
 バインダー樹脂は、式(1)および式(2)で示されるユニットの群から選択される少なくとも1つのユニットと、式(3)および式(4)で示されるユニットの群から選択される少なくとも1つのユニットとを有するポリマー鎖が、式(5)および式(6)で示される構造の群から選択される少なくとも1つのオルガノシロキサン鎖により架橋されているポリマーである。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 式(5)において、R~Rは、各々独立に炭素数1~10のアルキル基を示し、aおよびbは、各々独立に0または1以上の整数を示す。ただし、a+bは1以上の整数である。
 式(6)において、R~R10は、各々独立に炭素数1~10のアルキル基を示す。RおよびR12は、各々独立に水素原子またはメチル基を示し、RおよびR11は、各々独立に炭素数1~4のアルキレン基を示し、cおよびdは、各々独立に0または1以上の整数を示す。ただし、c+dは1以上の整数である。
 式(3)および式(4)において、記号「*」は、式(5)または式(6)の記号「*」との結合部を示す。
 本発明におけるバインダー樹脂を作製する方法としては、ブタジエン骨格を有するポリマーを、式(7)または式(8)で示されるシロキサンポリマーを用いて架橋反応させる方法が挙げられる。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 式(7)において、R13~R16は、各々独立に炭素数1~10のアルキル基を示し、eおよびfは、各々独立に0または1以上の整数を示す。ただし、e+fは1以上の整数である。
 式(8)において、R19~R22は、各々独立に炭素数1~10のアルキル基を示す。R17およびR24は、各々独立に水素原子またはメチル基を示し、R18およびR23は、各々独立に炭素数1~4のアルキレン基を示し、gおよびhは、各々独立に0または1以上の整数を示す。ただし、g+hは1以上の整数である。
 本発明において用いられるポリシロキサンは、ケイ素原子と酸素原子が交互に結合した構造になっており、側鎖にはアルキル基が結合している。ポリシロキサンのケイ素-酸素結合の長さは1.64Åであって炭化水素系ポリマーの主鎖の炭素-炭素結合に比べると長い。また、ポリシロキサンのケイ素-酸素-ケイ素の結合角は、炭化水素系ポリマーの炭素-炭素-炭素の結合角より大きく、かつ、その結合角変形のエネルギーも非常に低い。また側鎖にアルキル基を有することで嵩高くなっており、分子間力が小さい。そのため、ポリシロキサン分子鎖は、大きな振幅で熱運動を行うため、ポリマー鎖が動きやすい。
 このような分子を用いて、ブタジエン骨格を有するポリマー分子鎖間を架橋させることで、ポリシロキサンの分子鎖の分子運動性が、ブタジエン骨格を有するポリマー分子鎖に伝達し、その結果、汚れ成分が接近しにくく、全体として耐汚れ性が向上する。また、ポリシロキサンの片末端ではなく両末端で架橋しているため、架橋点を通じてポリシロキサンの分子運動がブタジエン骨格を有するポリマー分子鎖に伝達し易くなっている。
 本発明では、樹脂層中に硫黄架橋、過酸化物架橋、金属架橋、アミン架橋、オキシム架橋、フェノール樹脂架橋等の架橋構造が存在することもできる。ポリシロキサンによる架橋構造は、樹脂層の内部よりも表層部において多い方が好ましい。また、樹脂層の内部での架橋構造は、ポリシロキサンによる架橋構造より硫黄による架橋構造が多くなる構成の方が好ましい。樹脂層の表層部にポリシロキサンによる架橋構造が多いことから、トナーや外添剤の付着を抑制する効果を発揮することができる。樹脂層内部のポリシロキサンによる架橋構造を少なくすることで、感光体と当接することによる圧縮永久歪を低減し、Cセット画像と呼ばれるこの圧縮永久歪に起因する画像不良を抑制できる。また、本発明の樹脂層には、導電性粒子との親和性の高いブタジエン骨格を有するポリマーが用いられているため、導電性粒子の分散性が高く、導電性の均一な電子写真用部材を得ることができる。
 式(5)および式(6)で示されるオルガノポリシロキサン鎖において、aとbの和およびcとdの和が、80以上、2100以下であることが好ましい。aとbの和およびcとdの和が80以上であれば、架橋点間の分子鎖が短いことによる分子運動性の低下を容易に防ぐ事ができる。また、aとbの和およびcとdの和が2100以下であれば、架橋点を通じて分子運動性が伝達し易い。
 aとbの和およびcとdの和は、以下の方法で分析することが可能である。まず、電子写真用部材の樹脂層を50g収集し、リチウムアルミニウムハイドライドの飽和THF溶液500mlに120時間浸漬させる。その後、浸漬させた溶液をろ過した後、ろ液に対して水150mlをゆっくりと加え、さらに10%水酸化カリウム水溶液120mlをゆっくりと加える。これをセライトでろ過した後、ろ液を減圧下留去する。得られた残渣液をH―NMRで分析する。
 1H―NMR測定条件を以下に示す。
 測定装置、FTNMR装置:「JNM-EX400」(商品名、日本電子(株)製)。
 測定周波数:400MHz。
 パルス条件:5.0μS。
 データポイント:32768。
 周波数範囲:10500Hz。
 積算回数:16回。
 測定温度:室温。
 測定用サンプル:測定試料50mgを直径5mmのサンプルチューブに入れ、溶媒としてCDCl(重クロロホルム:TMS(テトラメチルシラン)0.05質量%含有)を添加することによって調製する。
 この分析によって得られるスペクトルにおいて、4.1ppm付近のピーク面積と0.1ppmのピーク面積の比から、cとdの和が求められる。1.1ppm付近のピーク面積と0.1ppmのピーク面積の比から、aとbの和が求められる。
 バインダー樹脂中に含有される式(1)と式(2)で示される構造は、顕微ATR(全反射吸収分光法)分析により同定することが可能である。ATRスペクトルにおいて、これらの構造は、C-H面外変角振動に由来する1420cm-1付近のピークによって確認できる。
 ブタジエン骨格を有するポリマー分子鎖をポリシロキサン分子鎖で架橋させる架橋反応の方法としては以下のものが挙げられる。すなわち、予め、式(7)または式(8)で示されるポリシロキサンとブタジエン骨格を有するポリマーを混合させ、その後、熱反応や、紫外線、電子線によって反応させる方法である。架橋反応は、式(7)で示されるビニル基または式(8)で示される(メタ)アクリロキシ基と、式(1)または式(2)で示される構造の二重結合部分との間で行われる。式(7)で示されるポリシロキサンを用いて架橋させた場合は、式(3)、式(4)、式(5)で示される構造が生じ、式(8)で示されるポリシロキサンを用いて架橋させた場合は、式(3)、式(4)、式(6)で示される構造が生じる。尚、式(7)で示される原料から式(5)で示される構造が形成されることから、式(7)中のR13~R16の各々は、この順に式(5)中のR~Rの各々と同一の置換基であり、また、e+f=a+bである。同様に、式(8)中のR17~R24の各々は、この順に式(5)中のR~R12の各々と同一の置換基であり、c+d=g+hである。電子線照射による架橋反応は、反応性が高いこと、及び、樹脂層の深さ方向に対して、紫外線を用いた場合より深い部分にまで架橋反応を進行させることができることから、好ましい方法である。また、電子線を用いることにより、樹脂層の表層部分でのポリシロキサンによる架橋構造を、樹脂層の内部より多くすることができる。このようにして生成されたバインダー樹脂中には、もともと、ブタジエン骨格を有するポリマー中に含まれており、架橋されずに残った式(1)および式(2)で示される構造が存在する。
 式(7)または式(8)で示されるポリシロキサンは、環状シロキサンと官能基含有ジシロキサンを混合し、トリフルオロメタンスルホン酸、アンモニウムシラノレート、カリウムシラノレート等の触媒を添加し重合することによって得ることができる。
 環状シロキサンとしては、オクタメチルシクロテトラシロキサン、ヘキサメチルシクロトリシロキサン、ヘキサデシルシクロトリシロキサン等を挙げることができる。官能基含有ジシロキサンとしては、1,3-ジビニルテトラメチルジシロキサン、1,3-ビス(3-メタクリロキシプロピル)テトラメチルジシロキサン、1,3-ビス(3-メタクリロキシブチル)テトラメチルジシロキサン等を挙げることができる。
 ブタジエン骨格を有するポリマーとしては、上記式(1)および式(2)で示されるユニットの群から選択される少なくとも1つのユニットをもつポリマーを挙げることができる。ブタジエン骨格を有するポリマーの具体例としては、例えば以下のものが挙げられる。ブタジエンゴム(BR)、結晶性シンジタクチックポリブタジエン含有ブタジエンゴム(VCR)、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエン共重合体(NBR)、ポリブタジエン系熱可塑性エラストマー、スチレン-ブタジエン系熱可塑性エラストマー(SBS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、エポキシ化ポリブタジエン等。また、これらのブタジエン骨格を有するポリマーを2種以上ブレンドしても構わない。
 本発明の電子写真用部材は、例えば下記の(1)及び(2)の工程を経て製造することができる。
(1)導電性の基体上に、ブタジエン骨格を有するポリマーと、前記式(7)及び式(8)で示される群から選択される少なくとも1つのオルガノポリシロキサン化合物と、導電性粒子を含有するゴム組成物の層を形成する工程、及び、
(2)該ゴム組成物の層の表面に電子線を照射することによって、該層の表面およびその近傍のゴム組成物を架橋させて導電性の樹脂層を形成する工程。
 図3に電子線照射装置の概略図を示す。本発明に用いることのできる電子線照射装置は研摩後のゴムローラを回転させながらローラ表面に電子線を照射するものであり、電子線発生部31と照射室32と照射口33とを備えている。電子線発生部31は、電子線を発生するターミナル34と、このターミナル34で発生した電子線を真空空間(加速空間)で加速する加速管35とを有する。また電子線発生部の内部は、電子が気体分子と衝突してエネルギーを失うことを防ぐため、不図示の真空ポンプ等により10-3Pa以上10-6Pa以下の真空に保たれている。不図示の電源によりフィラメント36に電流を通じて加熱するとフィラメント36は熱電子を放出し、この熱電子のうち、ターミナル34を通過したものだけが電子線として有効に取り出される。そして、電子線の加速電圧により加速管35内の加速空間で加速された後、照射口箔37を突き抜け、照射口33の下方の照射室32内を搬送される研摩後のゴムローラ38に照射される。研摩後のゴムローラ38に電子線を照射する場合には、照射室32の内部は窒素雰囲気とすることができる。また、研摩後のゴムローラ38はローラ回転用部材39で回転させて照射室内を搬送手段により、図3において左側から右側に移動する。尚、電子線発生部31及び照射室32の周囲は電子線照射時に二次的に発生するX線が外部へ漏出しないように、不図示の鉛遮蔽が施されている。
 照射口箔37は金属箔からなり、電子線発生部内の真空雰囲気と照射室内の空気雰囲気とを仕切るものであり、また照射口箔37を介して照射室内に電子線を取り出すものである。上述したように、ローラの照射に電子線を応用する場合には、ローラが電子線を照射される照射室32の内部は窒素雰囲気とすることができる。よって、電子線発生部31と照射室32との境界に設ける照射口箔37は、ピンホールがなく、電子線発生部内の真空雰囲気を十分維持できる機械的強度があり、電子線が透過しやすいことが望ましい。その為、照射口箔37は比重が小さく、肉厚の薄い金属が望ましく、通常、アルミニウムやチタン箔が使用される。電子線による架橋処理条件は電子線の加速電圧と線量によって決定される。加速電圧は架橋処理深さに影響し、本発明に用いる加速電圧の条件としては、低エネルギー領域である40kV以上300kV以下が好ましい。40kV以上であれば、本発明の効果を得る為の充分な架橋反応を容易に得ることができる。また、300kV以下とすることで、電子線照射装置が大型化して装置コストが増大する事を特に抑えることができる。さらに好ましい加速電圧の条件としては80kV以上150kV以下である。 
 電子線照射における電子線の線量は、下記の数式(1)で定義される。
D = (K・I)/V・・・(1)
 ここで、Dは、線量(kGy)、Kは、装置定数、Iは、電子電流(mA)、Vは、処理スピード(m/min)である。装置定数Kは、装置個々の効率を表す定数であって、装置の性能の指標である。装置定数Kは、一定の加速電圧の条件で電子電流と処理スピードを変えて線量を測定することによって求めることができる。線量測定用フィルムをローラ表面に貼り付け、これを実際に電子線照射装置で処理し、このフィルムの線量をフィルム線量計により測定することによって、電子線の線量が測定できる。その際、線量測定用フィルムは商品名:FWT-60、フィルム線量計は商品名:FWT-92D型(いずれもFar West Technology社製)を使用することができる。
 なお、架橋領域は、樹脂層の表面全体に形成することができ、本発明の帯電部材が例えば帯電ローラの場合は、樹脂層の外周面全体に形成することができる。帯電部材の樹脂層が電子線の照射によって架橋された領域を有していることは、ユニバーサル硬度計により確認することができる。ユニバーサル硬度とは、圧子を、荷重をかけながら測定対象物に押し込むことにより求められる物性値であり、[試験荷重]/[試験荷重下での圧子の表面積](N/mm)として求められる。このユニバーサル硬度の測定は、例えば、Fischer社製超微小硬度計H-100V(商品名)等の硬度測定装置を用いて行うことが可能である。この測定装置では、四角錘などの圧子を、所定の比較的小さい試験荷重をかけながら被測定物に押し込み、所定の押し込み深さに達した時点でその押し込み深さから圧子が接触している表面積を求め、上記式よりユニバーサル硬度を求めるものである。つまり、定荷重測定条件で圧子を被測定物に押し込んだ際に、押し込まれた深さに対するそのときの応力をユニバーサル硬度として定義するものである。
 図5にはユニバーサル硬さの測定例を示す。グラフの横軸は押し込み深さ(μm)であり、縦軸は硬度(N/mm)である。図5より、押し込み深さに対する硬度変化が小さく、直線領域である横軸150μm以上200μm以下の測定領域から外挿される直線と測定曲線とのずれが生じる点の横軸値を架橋処理深さとして定義することが出来る。なお、図5の測定例の硬化層の厚みは50μmである。
 また、このように、ローラ表面から10μm以上の架橋層を一層の樹脂層中に作製できることが、電子線処理の特徴である。つまり、電子線照射を行った帯電ローラは、ユニバーサル硬度計で測定すると、一般に、内部は柔らかく、表面近傍にのみ硬度の傾斜がある層を有する図5のような結果が得られる。
 以下に実施例によって本発明を更に詳細に説明する。特に明記しない限り、試薬等は市販の高純度品を用いた。
 尚、各実施例において、未加硫ゴム組成物の調製時に式(7)で示されるオルガノポリシロキサンを用いた場合、バインダー樹脂は式(1)、式(2)、式(3)、式(4)、式(5)で示される構造を含む。また、未加硫ゴム組成物の調製時に式(8)で示されるオルガノポリシロキサンを用いた場合、バインダー樹脂は式(1)、式(2)、式(3)、式(4)、式(6)で示される構造を含む。これらは、H―NMR、顕微ATRにより構造解析でき、その方法は前記のとおりである。
先ず初めに、原料として使用されるオルガノポリシロキサンの合成例1~7を説明する。
〔合成例1〕
 1,3-ジビニルテトラメチルジシロキサン(アルドリッチ社製)54mgとヘキサデシルシクロトリシロキサン200gとトリフルオロメタンスルホン酸(アルドリッチ社製)1gを混合し、80℃~90℃にて、96時間反応させた。その後トリエチルアミン(アルドリッチ社製)2gを添加し、20時間撹拌し、110℃、4mmHgの条件下で、ストリップし、ろ過した。得られた無色透明の液体をH-NMRにて同定したところ、式(7)で示される構造を有し、e+f=2100、R13~R16:C1021-であった。このようにして得られたオルガノポリシロキサンを「PSiO―1」と称す。
〔合成例2〕
 3-ビス(3-メタクリロキシプロピル)テトラメチルジシロキサン(ゲレスト社製)350mgとヘキサメチルシクロトリシロキサン200gとトリフルオロメタンスルホン酸(アルドリッチ社製)1gを混合し、80℃~90℃にて、96時間反応させた。その後トリエチルアミン(アルドリッチ社製)2gを添加し、20時間撹拌し、110℃、4mmHgの条件下で、ストリップし、ろ過した。得られた無色透明の液体をH-NMRにて同定したところ、式(7)で示される構造を有し、g+h=2100、R19~R22:CH-、R17とR24:CH-、R18とR23:-CH-であった。このようにして得られたオルガノポリシロキサンを「PSiO―2」と称す。
〔合成例3~7〕
 上記の合成例2と同様の方法で、5種類のオルガノポリシロキサン「PSiO―3」~「PSiO―7」を作製した。
 以下の実施例においては、上記の各合成例で得られたオルガノポリシロキサンおよび市販品のオルガノポリシロキサンが使用されるが、これらの化学構造式及び置換基の構造、並びに[e+f]または[g+h]の値を表1に纏めて示す。
Figure JPOXMLDOC01-appb-T000001
〔実施例1〕
[1.未加硫ゴム組成物の調製]
 下記表2に示す成分(1)の6種類の材料を、6リットル加圧ニーダー(製品名:TD6-15MDX、トーシン社製)を用いて、充填率70vol%、ブレード回転数30rpmで16分間混合して「A練りゴム組成物」を得た。
 次いで、表2に示す成分(2)の2種類の材料を、ロール径12インチ(0.30m)のオープンロールにて、A練りゴム組成物と混合した。この時、前ロール回転数8rpm、後ロール回転数10rpm、ロール間隙2mmで、左右の切り返しを合計20回実施し、その後、ロール間隙を0.5mmとして薄通し10回を行い、樹脂層用の「未加硫ゴム組成物1」を得た。
Figure JPOXMLDOC01-appb-T000002
[2.加硫ゴム層の成形]
 直径6mm、長さ252mmの円柱形の導電性芯金(鋼製、表面はニッケルメッキ)の円柱面の軸方向中央部226mmに導電性加硫接着剤(商品名:メタロックU-20;東洋化学研究所製)を塗布し、80℃で30分間乾燥した。次に、クロスヘッドを備えた押出成形機を用いて、芯金を中心として同軸状に上記未加硫ゴム組成物を円筒形に同時に押出し、芯金の外周に未加硫ゴム組成物がコーティングされた直径8.8mmの未加硫ゴムローラを作製した。その際、押出機は、シリンダー直径45mm(Φ45)、L/Dが20の押出機を使用し、押出時の温調はヘッド90℃、シリンダー90℃、スクリュー90℃とした。得られた未加硫ゴムローラの未加硫ゴム組成物の層の両端を切断し、未加硫ゴム組成物の層の軸方向幅を228mmとした。その後、電気炉にて160℃で40分間加熱して未加硫ゴム組成物の層を加硫ゴム層とした。続いて、加硫ゴム層の表面をプランジカットの研削方式の研磨機で研磨し、端部直径8.35mm、中央部直径8.50mmのクラウン形状の加硫ゴム層を有する「加硫ゴムローラ1」を得た。
[3.ブタジエン骨格を有するポリマーとポリオルガノシロキサン鎖の架橋工程]
 加硫ゴムローラ1の表面に電子線を照射して表層部のゴム成分の架橋を行い、「電子写真用部材1」を得た。電子線の照射には、最大加速電圧150kV、最大電子電流40mAの電子線照射装置(岩崎電気株式会社製)を用い、照射時には窒素ガスパージを行った。処理条件は加速電圧:150kV、電子電流:35mA、処理速度:1m/min、酸素濃度:100ppmであった。この際、電子線照射装置の加速電圧150kVにおける装置定数は37.8であり、数式(1)より算出される線量は1323kGyであった。 
[4.帯電均一性の評価および画像評価]
 作製した電子写真用部材を帯電ローラとして電子写真プロセスカートリッジに組み込み、このプロセスカートリッジをA4紙縦出力用の電子写真装置(LBP5050 キヤノン株式会社製)に組込み帯電均一性の評価とトナーや外添剤の付着による画像不良の評価を行った。
 帯電均一性の評価は、耐久前(プリント前)の画像によって行い、以下の基準に基づきランク付けした。
A:ハーフトーン画像が均一で、帯電ムラが無い。
B:ハーフトーンに濃度ムラが確認できる、あるいは帯電ローラの汚れによる縦スジ状の画像不良が軽微に発生している。
評価の結果、帯電均一性はランクAであった。
 トナーや外添剤の付着による画像不良の評価は、温度15℃、相対湿度10%環境下で行い、1%の印字濃度で6000枚プリント後において出力したハーフトーン画像によって行った。なお、ハーフトーン画像とは、電子写真感光体の回転方向と垂直方向に幅1ドットの線を間隔2ドットで描く画像である。
評価基準は以下のとおりであり、ランクC以上を実用レベルとした。
A:濃度ムラが殆んどみえない。
B:濃度ムラが極わずかに発生した。
C:濃度ムラがわずかに発生した。
D:濃度ムラがはっきりと発生した。
 画像評価の結果、ランクAであった。さらなる、耐久性評価のため、6000枚プリント後の帯電ローラをプロセスカートリッジから取り出し、新品のプロセスカートリッジに組込み、6000枚プリントを追加し、併せて12000枚のプリント後の画像評価を行った。12000枚後の画像評価の結果はランクBであった。
[5.導電均一性の評価]
 図4に示す抵抗測定器には、測定を行う電子写真用部材42を載置する幅10mm、口径24mmのステンレス鋼製のシリンダー41、電子写真用部材の導電性支持体の両端を固定し、電子写真用部材にシリンダーを当接させる不図示の荷重装置が設けられる。更に、電子写真用部材の導電性支持体にバイアス電圧を印加するバイアス印加電源45と、シリンダー表面に接続される固定抵抗器(1kΩ)43と、固定抵抗器の電流を測定する電流計44とが設けられる。
 このような抵抗測定器において、電子写真用部材を回転速度5rpmにて回転させ、シリンダー41を従動させ、バイアス印加電源から-200Vの印加電圧を通電した。100Hzの間隔で電流計から測定値をサンプリングし、測定波形を得た。この操作後、同じ操作を、シリンダー41を、図4の矢印方向に10mmずらして、同じ操作を行った。この操作を繰り返して、電子写真用部材の全面にわたって測定を行い、全測定波形の最大値Rを最小値Rで割った値(R/R)によって、導電均一性を評価した。この値が4以下を実用範囲とした。なお、試験環境としては、温度23℃、相対湿度50%で行った。評価の結果、導電均一性の値(R/R)は、1.6であった。
[6.架橋処理深さの測定]
 帯電ローラの表面硬度をユニバーサル硬度計にて測定することにより、硬化処理厚さを測定した。測定はFischer社製超微小硬度計H-100V(商品名)を用いて行い、圧子は四角錘型ダイヤモンドを用いた。押し込み速度は下記の数式(2)の条件である。
dF/dt = 1000mN/240s・・・(2)
但し、Fは力、tは時間を表す。
 図5に示すように、押し込み深さに対する硬度変化が小さい横軸150μm以上200μm以下の測定領域から外挿される直線と測定曲線とのずれが生じる点の横軸値を硬化層の厚みとして求めたところ、架橋処理深さは90μmであった。
〔実施例2~6〕
 未加硫ゴム組成物の調製時における原料ゴムの種類をNBR(商品名NIPOL DN219、日本ゼオン社製)またはBR(商品名:BR-1220L、日本ゼオン社製)に変更し、また、式(7)のポリシロキサンの配合量を表3に示す量(0.3または5.0質量部)としたこと以外は実施例1と同様にして、電子写真用部材2~6を作製した。実施例1と同様にして、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
〔実施例7~11〕
 未加硫ゴム組成物の調製時における式(7)のポリシロキサンの種類及び配合量を表3に示す条件(DMS‐V21またはDMS‐V52を、0.3または5.0質量部)に変更したこと以外は実施例1と同様にして、電子写真用部材7~11を作製した。実施例1と同様にして、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
〔実施例12~17〕
 未加硫ゴム組成物の調製時におけるポリシロキサンの種類を表3に示すもの(式(8)で示される、PSiO―2~PSiO―7)に変更したこと以外は実施例1と同様にして、電子写真用部材12~17を作製した。実施例1と同様にして、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
〔実施例18~25〕
 未加硫ゴム組成物の調製時における原料ゴムの種類及び式(7)で示されるポリシロキサン(DMS‐V05)の配合量を表3に示す条件に変更した。これら以外の条件は実施例1と同様にして、電子写真用部材18~25を作製した。実施例1と同様にして、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
〔実施例26〕
 未加硫ゴム組成物の調製時におけるポリシロキサンとして、式(7)及び式(8)で示されるもの併用(DMS‐V05及びPSiO―3の併用)し、それぞれ0.3質量部添加した。これら以外の条件は実施例1と同様にして、電子写真用部材26を作製した。実施例1と同様にして、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
〔実施例27〕
 実施例7のブタジエン骨格を有するポリマーとポリオルガノシロキサン鎖の架橋工程において電子線処理条件の電子電流を5mAに変更したこと以外は実施例1と同様にして、電子写真用部材27を作製した。実施例1と同様にして、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
〔実施例28〕
 未加硫ゴム組成物の調製時における式(7)で示されるポリシロキサンの種類を表3に示すもの(DMS‐V35)に変更したこと以外は実施例1と同様にして、電子写真用部材28を作製した。実施例1と同様に、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
〔比較例1〕
 未加硫ゴム組成物の調製時において(7)で示されるポリシロキサンを添加しなかったこと以外は、実施例1と同様にして、電子写真用部材C1を作製した。実施例1と同様にして、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
〔比較例2〕
 未加硫ゴム組成物の調製時における式(7)で示されるポリシロキサンをポリジメチルシロキサン(商品名:DMS-T63、ゲレスト社)に変更したこと以外は、実施例1と同様にして、電子写真用部材C2を作製した。実施例1と同様にして、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
〔比較例3〕
 まず、表6に示す4種類の材料を混合した。一方、直径6mm、長さ252mmの円柱形の導電性芯金(鋼製、表面はニッケルメッキ)を用意し、その円柱面の軸方向中央部226mmに接着剤(商品名:DY35-051;東レ・ダウコーニング社製)を塗布し、80℃で30分間乾燥した。
 この導電性芯金を円筒形金型の中心部に配置した状態で、金型内に上記の混合材料を注入し、温度130℃で20分間、加熱硬化した後、金型を外した。その後、更に空気中にて温度200℃で2時間加熱処理を行い、シリコーンゴムローラを得た。続いて、導電性シリコーンゴムローラの表面をプランジカットの研削方式の研磨機で研磨し、端部直径8.35mm、中央部直径8.50mmの電子写真用部材C3を得た。実施例1と同様にして、帯電均一性の評価、画像評価、導電均一性の評価および架橋処理深さの測定を行った。
 以上の実施例と比較例の評価結果を表3~表6にまとめた。
 各実施例の電子写真用部材は、ポリシロキサン両末端でブタジエン骨格を含むポリマーが架橋された樹脂層によって構成されており、比較例のものより汚れによる画像不良が良化している。比較例1の電子写真用部材の樹脂層は、本発明のバインダー樹脂を含まない構成であり、比較例2の電子写真用部材の樹脂層は、架橋されていないポリシロキサンを含有している。いずれの比較例においても、汚れによる画像不良のランクは低く、一方、架橋されたポリシロキサンを含む本発明のバインダー樹脂が用いられている各実施例においてはトナーや外添剤の付着が抑制されている効果が確認できた。バインダー樹脂としてシリコーンゴムを用いた比較例3における導電均一性は6.5と高い値を示したのに対して、各実施例における導電均一性は2.5以下であり、実施例に用いた系では導電性を均一にする効果が確認できた。
実施例1~28の本発明の電子写真用部材では、実用上問題の無い良好な画像が得られている。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
1  帯電ローラ
11 芯金
12 樹脂層
13 電子写真用部材
21  像担持体
21a 感光層
21b 導電性支持体
21c 支軸
22  電源
23  摺擦電源
24  露光器
25  現像部材
26  転写ローラ
27  転写材
28  前露光器
29  クリーニング部材

 この出願は2011年12月28日に出願された日本国特許出願第2011-289331の優先権を主張するものであり、その内容を引用してこの出願の一部とするものである。

 

Claims (6)

  1.  導電性の基体および表面層としての導電性の樹脂層を有する電子写真用部材であって、
     該樹脂層は、
      導電性粒子とバインダー樹脂とを含み、
     該バインダー樹脂は、
      下記式(1)および式(2)で示されるユニットの群から選択される少なくとも1つのユニットと、下記式(3)および式(4)で示されるユニットの群から選択される少なくとも1つのユニットとを有するポリマー鎖が、
      下記式(5)および式(6)で示される構造の群から選択される少なくとも1つのオルガノポリシロキサン鎖により架橋されているポリマーであることを特徴とする電子写真用部材:
    Figure JPOXMLDOC01-appb-C000017
    Figure JPOXMLDOC01-appb-C000018
    Figure JPOXMLDOC01-appb-C000019
    Figure JPOXMLDOC01-appb-C000020
    Figure JPOXMLDOC01-appb-C000021
    Figure JPOXMLDOC01-appb-C000022
    [式(5)において、R~Rは、各々独立に炭素数1~10のアルキル基を示し、aおよびbは各々独立に0または1以上の整数を示す。ただし、a+bは1以上の整数である。
     式(6)において、R~R10は、各々独立に炭素数1~10のアルキル基を示す。RおよびR12は、各々独立に水素原子またはメチル基を示し、RおよびR11は、各々独立に炭素数1~4のアルキレン基を示し、cおよびdは、各々独立に0または1以上の整数を示す。ただし、c+dは1以上の整数である。
     式(3)および式(4)において、記号「*」は、式(5)または式(6)の記号「*」との結合部を示す。]。
  2.  前記バインダー樹脂が、前記式(5)で示されるオルガノポリシロキサン鎖を有し、該式(5)におけるaおよびbの和が、80以上、2100以下である請求項1に記載の電子写真用部材。
  3.  前記バインダー樹脂が、前記式(6)で示されるオルガノポリシロキサン鎖を有し、該式(6)におけるcおよびdの和が、80以上、2100以下である請求項1に記載の電子写真用部材。
  4.  電子写真装置の本体に着脱可能に構成されているプロセスカートリッジであって、請求項1~3のいずれか1項に記載の電子写真用部材を備えていることを特徴とするプロセスカートリッジ。
  5.  請求項1~3のいずれか1項に記載の電子写真用部材を備えていることを特徴とする電子写真装置。
  6.  請求項1に記載の電子写真用部材の製造方法であって、
    (1)導電性の基体上に、ブタジエン骨格を有するポリマーと、下記式(7)及び式(8)で示される群から選択される少なくとも1つのオルガノポリシロキサン化合物と導電性粒子とを含有するゴム組成物の層を形成する工程と、
    (2)該ゴム組成物の層の表面に電子線を照射することによって、該層の表層部のゴム組成物を架橋させて導電性の樹脂層を形成する工程を有することを特徴とする電子写真用部材の製造方法:
    Figure JPOXMLDOC01-appb-C000023
    Figure JPOXMLDOC01-appb-C000024
    [式(7)において、R13~R16は、各々独立に炭素数1~10のアルキル基を示し、eおよびfは、各々独立に0または1以上の整数を示す。ただし、e+fは1以上の整数である。
     式(8)において、R19~R22は、各々独立に炭素数1~10のアルキル基を示す。R17およびR24は、各々独立に水素原子またはメチル基を示し、R18およびR23は、各々独立に炭素数1~4のアルキレン基を示し、gおよびhは、各々独立に0または1以上の整数を示す。ただし、g+hは1以上の整数である。]。


     
PCT/JP2012/007800 2011-12-28 2012-12-05 電子写真用部材、その製造方法、プロセスカートリッジ及び電子写真装置 WO2013099116A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280065054.5A CN104024957B (zh) 2011-12-28 2012-12-05 电子照相用构件、其制造方法、处理盒和电子照相设备
US13/911,806 US8685601B2 (en) 2011-12-28 2013-06-06 Electrophotographic member, method for producing the same, process cartridge and electrophotographic apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011289331 2011-12-28
JP2011-289331 2011-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/911,806 Continuation US8685601B2 (en) 2011-12-28 2013-06-06 Electrophotographic member, method for producing the same, process cartridge and electrophotographic apparatus

Publications (1)

Publication Number Publication Date
WO2013099116A1 true WO2013099116A1 (ja) 2013-07-04

Family

ID=48696665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007800 WO2013099116A1 (ja) 2011-12-28 2012-12-05 電子写真用部材、その製造方法、プロセスカートリッジ及び電子写真装置

Country Status (4)

Country Link
US (1) US8685601B2 (ja)
JP (1) JP5253670B1 (ja)
CN (1) CN104024957B (ja)
WO (1) WO2013099116A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6049435B2 (ja) * 2012-03-16 2016-12-21 キヤノン株式会社 帯電部材、プロセスカートリッジおよび電子写真装置
US9442408B2 (en) * 2014-11-28 2016-09-13 Canon Kabushiki Kaisha Member for electrophotography, method for producing the same, and image forming apparatus
US9910379B2 (en) 2015-10-26 2018-03-06 Canon Kabushiki Kaisha Charging member with concave portions containing insulating particles and electrophotographic apparatus
US9904199B2 (en) 2015-10-26 2018-02-27 Canon Kabushiki Kaisha Charging member having outer surface with concave portions bearing exposed elastic particles, and electrophotographic apparatus
EP3176639B1 (en) * 2015-12-04 2020-10-28 Canon Kabushiki Kaisha Member for electrophotography, process cartridge, and electrophotographic apparatus
US10317811B2 (en) 2016-10-07 2019-06-11 Canon Kabushiki Kaisha Charging member, method for producing same, process cartridge and electrophotographic image forming apparatus
US10416588B2 (en) 2016-10-31 2019-09-17 Canon Kabushiki Kaisha Charging member, process cartridge, electrophotographic image forming apparatus, and method for manufacturing charging member
JP7034815B2 (ja) 2017-04-27 2022-03-14 キヤノン株式会社 帯電部材、電子写真プロセスカートリッジ及び電子写真画像形成装置
JP7046571B2 (ja) 2017-11-24 2022-04-04 キヤノン株式会社 プロセスカートリッジ及び電子写真装置
JP7187270B2 (ja) 2017-11-24 2022-12-12 キヤノン株式会社 プロセスカートリッジ及び電子写真装置
US10558136B2 (en) 2018-04-18 2020-02-11 Canon Kabushiki Kaisha Charging member, manufacturing method of charging member, electrophotographic apparatus, and process cartridge
WO2019203225A1 (ja) 2018-04-18 2019-10-24 キヤノン株式会社 導電性部材、プロセスカートリッジ及び電子写真画像形成装置
EP3783440A4 (en) 2018-04-18 2022-01-19 Canon Kabushiki Kaisha CONDUCTIVE ELEMENT, PROCESS CARTRIDGE AND IMAGING DEVICE
CN112020678B (zh) 2018-04-18 2022-11-01 佳能株式会社 导电性构件、处理盒和电子照相图像形成设备
CN111989622B (zh) 2018-04-18 2022-11-11 佳能株式会社 显影构件、处理盒和电子照相设备
WO2019203238A1 (ja) 2018-04-18 2019-10-24 キヤノン株式会社 導電性部材及びその製造方法、プロセスカートリッジ並びに電子写真画像形成装置
CN112005173B (zh) 2018-04-18 2023-03-24 佳能株式会社 导电性构件、处理盒和图像形成设备
US11169454B2 (en) 2019-03-29 2021-11-09 Canon Kabushiki Kaisha Electrophotographic electro-conductive member, process cartridge, and electrophotographic image forming apparatus
WO2021075441A1 (ja) 2019-10-18 2021-04-22 キヤノン株式会社 導電性部材、プロセスカートリッジ及び電子写真画像形成装置
CN114556231B (zh) 2019-10-18 2023-06-27 佳能株式会社 导电性构件、其制造方法、处理盒以及电子照相图像形成设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202258A (ja) * 1990-11-29 1992-07-23 Shin Etsu Chem Co Ltd 離型耐久性に優れたシリコーンゴム組成物
JPH0820724A (ja) * 1994-07-07 1996-01-23 Shin Etsu Chem Co Ltd 画像定着用被膜形成組成物及び定着部材
JP2000007919A (ja) * 1998-06-29 2000-01-11 Shin Etsu Polymer Co Ltd 触媒含有プライマー組成物及び発泡性シリコーンゴムロール
JP2005099188A (ja) * 2003-09-22 2005-04-14 Ricoh Co Ltd 現像方法及び現像装置
JP2007058197A (ja) * 2005-07-29 2007-03-08 Canon Inc トナー離型層を有する定着用部材およびそれを具備する定着装置
JP2008176293A (ja) * 2006-12-22 2008-07-31 Canon Inc 定着部材、その製造方法、それを用いた定着装置及び電子写真画像形成装置
JP2011242459A (ja) * 2010-05-14 2011-12-01 Canon Inc 現像剤担持体

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5198685A (en) 1990-08-01 1993-03-30 Canon Kabushiki Kaisha Photoelectric conversion apparatus with shock-absorbing layer
US5342913A (en) * 1990-11-29 1994-08-30 Shin-Etsu Chemical Co., Ltd. Silicon rubber composition having excellent durability in repeated mold release
JPH09160355A (ja) 1995-12-07 1997-06-20 Nippon Zeon Co Ltd 帯電ロール
US7486911B2 (en) 2003-01-17 2009-02-03 Canon Kabushiki Kaisha Elastic member, process for manufacturing thereof and mass production process thereof, process cartridge, and electrophotographic apparatus
JP4455454B2 (ja) 2004-09-02 2010-04-21 キヤノン株式会社 帯電部材、プロセスカートリッジおよび電子写真装置
US7693457B2 (en) 2004-12-28 2010-04-06 Canon Kabushiki Kaisha Charging member, process cartridge, and electrophotographic apparatus
US7693474B2 (en) * 2005-07-29 2010-04-06 Canon Kabushiki Kaisha Fixing member with toner releasing layer, and fixing apparatus with the same
WO2008078582A1 (ja) 2006-12-22 2008-07-03 Canon Kabushiki Kaisha 定着部材、その製造方法、それを用いた定着装置及び電子写真画像形成装置
WO2011045916A1 (ja) 2009-10-15 2011-04-21 キヤノン株式会社 帯電部材及び電子写真装置
JP5875264B2 (ja) 2010-07-13 2016-03-02 キヤノン株式会社 帯電部材の製造方法
EP2607960B1 (en) 2010-08-20 2018-01-03 Canon Kabushiki Kaisha Charging member
JP4921607B2 (ja) 2010-09-03 2012-04-25 キヤノン株式会社 帯電部材およびその製造方法
CN103154830B (zh) 2010-10-15 2015-04-22 佳能株式会社 充电构件
JP4975184B2 (ja) 2010-11-11 2012-07-11 キヤノン株式会社 帯電部材
WO2012098834A1 (ja) 2011-01-21 2012-07-26 キヤノン株式会社 導電性ゴム弾性体、帯電部材および電子写真装置
WO2012137419A1 (ja) 2011-04-05 2012-10-11 キヤノン株式会社 電子写真用導電性部材、電子写真装置およびプロセスカートリッジ
CN103597411B (zh) 2011-06-30 2015-09-23 佳能株式会社 充电构件、充电构件的制造方法和电子照相设备
CN104011601B (zh) 2011-12-22 2016-09-28 佳能株式会社 充电构件、其制造方法和电子照相设备
WO2013124919A1 (ja) 2012-02-24 2013-08-29 キヤノン株式会社 帯電部材、電子写真装置およびプロセスカートリッジ
JP6049435B2 (ja) 2012-03-16 2016-12-21 キヤノン株式会社 帯電部材、プロセスカートリッジおよび電子写真装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202258A (ja) * 1990-11-29 1992-07-23 Shin Etsu Chem Co Ltd 離型耐久性に優れたシリコーンゴム組成物
JPH0820724A (ja) * 1994-07-07 1996-01-23 Shin Etsu Chem Co Ltd 画像定着用被膜形成組成物及び定着部材
JP2000007919A (ja) * 1998-06-29 2000-01-11 Shin Etsu Polymer Co Ltd 触媒含有プライマー組成物及び発泡性シリコーンゴムロール
JP2005099188A (ja) * 2003-09-22 2005-04-14 Ricoh Co Ltd 現像方法及び現像装置
JP2007058197A (ja) * 2005-07-29 2007-03-08 Canon Inc トナー離型層を有する定着用部材およびそれを具備する定着装置
JP2008176293A (ja) * 2006-12-22 2008-07-31 Canon Inc 定着部材、その製造方法、それを用いた定着装置及び電子写真画像形成装置
JP2011242459A (ja) * 2010-05-14 2011-12-01 Canon Inc 現像剤担持体

Also Published As

Publication number Publication date
US8685601B2 (en) 2014-04-01
US20140023960A1 (en) 2014-01-23
CN104024957A (zh) 2014-09-03
JP2013152437A (ja) 2013-08-08
JP5253670B1 (ja) 2013-07-31
CN104024957B (zh) 2016-03-02

Similar Documents

Publication Publication Date Title
JP5253670B1 (ja) 電子写真用部材、その製造方法、プロセスカートリッジ及び電子写真装置
KR100871048B1 (ko) 대전 부재, 공정 카트리지, 및 전자 사진 장치
JP5943695B2 (ja) 帯電部材とその製造方法、プロセスカートリッジおよび電子写真装置
JP4878659B1 (ja) 帯電部材及び電子写真装置
KR101454138B1 (ko) 대전 부재, 프로세스 카트리지 및 전자 사진 장치
KR101543139B1 (ko) 대전 부재, 그 제조 방법, 프로세스 카트리지 및 전자 사진 장치
JP6000989B2 (ja) 帯電部材および電子写真装置
KR101451046B1 (ko) 대전 부재 및 그 제조 방법
EP2515178A1 (en) Charging member, process cartridge, and electrophotographic device
JP2012093722A (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
WO2008136291A1 (ja) 現像ローラ、電子写真プロセスカートリッジ及び電子写真画像形成装置
JP5100148B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP2012042936A (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
CN101095085A (zh) 充电构件、处理盒和电子照相设备
JP5213387B2 (ja) 電子写真部材、プロセスカートリッジおよび電子写真装置
JP2020177233A (ja) 定着部材及び熱定着装置
WO2012042781A1 (ja) 帯電部材及びその製造方法
JP5279218B2 (ja) 帯電部材、プロセスカートリッジおよび電子写真装置
JP5224728B2 (ja) 帯電部材、プロセスカートリッジ及び電子写真装置
JP5171060B2 (ja) 帯電部材および帯電部材の製造方法
JP6223068B2 (ja) 帯電部材、プロセスカートリッジ、電子写真装置および帯電部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863569

Country of ref document: EP

Kind code of ref document: A1