WO2013099082A1 - Hdd用ガラス基板の製造方法 - Google Patents

Hdd用ガラス基板の製造方法 Download PDF

Info

Publication number
WO2013099082A1
WO2013099082A1 PCT/JP2012/007071 JP2012007071W WO2013099082A1 WO 2013099082 A1 WO2013099082 A1 WO 2013099082A1 JP 2012007071 W JP2012007071 W JP 2012007071W WO 2013099082 A1 WO2013099082 A1 WO 2013099082A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
cleaning
ultrasonic
polishing
irradiated
Prior art date
Application number
PCT/JP2012/007071
Other languages
English (en)
French (fr)
Inventor
直之 福本
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2013099082A1 publication Critical patent/WO2013099082A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers

Definitions

  • the present invention relates to a method for manufacturing a glass substrate for HDD. More specifically, in the present invention, when a glass substrate is cleaned by high-frequency ultrasonic waves, the glass substrate is cleaned while rotating without adding a complicated mechanism.
  • the present invention relates to a method for manufacturing a glass substrate for HDD, which includes a process capable of simultaneously cleaning both to remove fine deposits and can manufacture a glass substrate with few subsequent errors.
  • a glass substrate polishing and cleaning method there is a method of performing cleaning (megasonic ultrasonic cleaning) using high-frequency ultrasonic waves in the final cleaning step in order to remove minute deposits of about 100 nm or less (see Patent Document 1).
  • cleaning megasonic ultrasonic cleaning
  • FIG. 9 the glass substrate 101 held by the holder 51 is cleaned by high-frequency ultrasonic waves irradiated from the high-frequency ultrasonic generator 21.
  • An arrow A1 indicates the irradiation direction of the irradiated high-frequency ultrasonic waves.
  • the present invention has been made in view of such conventional problems.
  • the glass substrate is rotated by irradiating and cleaning the high-frequency ultrasonic wave while rotating the glass substrate.
  • the manufacturing method of the glass substrate for HDD which can irradiate the whole surface and can clean not only the main surface but also the end surface of the glass substrate at the same time and remove the fine deposits on the main surface and the end surface with high efficiency. With the goal.
  • a method for manufacturing a glass substrate according to an aspect of the present invention is a method for manufacturing a glass substrate for a magnetic disk having a final cleaning step for a glass substrate, and the final cleaning step is held by a holding jig in a cleaning tank.
  • the glass substrate has an ultrasonic cleaning step of irradiating a high-frequency ultrasonic wave of 430 to 2000 kHz. In the ultrasonic cleaning step, the ultrasonic wave is asymmetric with respect to the end surface of the glass substrate so that the glass substrate rotates. Irradiated.
  • the asymmetrical irradiation with respect to the end face of the glass substrate means that when high-frequency ultrasonic waves are irradiated, the outer peripheral end closest to the ultrasonic oscillation source is used as a symmetry axis. It means that the irradiation intensity of ultrasonic waves in the circumferential direction becomes asymmetric with respect to the symmetry axis.
  • the ultrasonic wave may not be applied to one side and the ultrasonic wave may be applied only to the other side with the symmetry axis as a boundary, and the irradiation intensity on one side is stronger than the irradiation intensity on the other side. It may be.
  • FIG. 1 is an explanatory diagram of a state in which a glass substrate of one embodiment (Embodiment 1) of the present invention is being cleaned in an ultrasonic cleaning process.
  • FIG. 2 is an explanatory diagram of a state in which the glass substrate of one embodiment (Embodiment 1) of the present invention is arranged in a holder.
  • FIG. 3 is an explanatory diagram of a state in which the glass substrate of one embodiment (Embodiment 1) of the present invention is subjected to roll scrub cleaning.
  • FIG. 4 is an explanatory diagram of a state in which the glass substrate of one embodiment (Embodiment 1) of the present invention is subjected to cup scrub cleaning.
  • FIG. 1 is an explanatory diagram of a state in which a glass substrate of one embodiment (Embodiment 1) of the present invention is being cleaned in an ultrasonic cleaning process.
  • FIG. 2 is an explanatory diagram of a state in which the glass substrate of one embodiment (Embodiment 1) of the present invention is
  • FIG. 5 is an explanatory diagram of a state in which the glass substrate of one embodiment (Embodiment 2) of the present invention is being cleaned in the ultrasonic cleaning process.
  • FIG. 6 is an explanatory diagram of a state in which the glass substrate of one embodiment (Embodiment 3) of the present invention is cleaned in the ultrasonic cleaning process.
  • FIG. 7 is an explanatory diagram of a state in which the glass substrate of one embodiment (Embodiment 4) of the present invention is being cleaned in the ultrasonic cleaning process.
  • FIG. 8 is a schematic diagram showing the positional relationship between the magnetic head and the deposit in the flying test.
  • FIG. 9 is an explanatory view of a state in which the glass substrate is cleaned by a conventional cleaning method.
  • a glass substrate is a blanks manufacturing process, a 1st grinding process, a coring process, an inner periphery grinding
  • the final cleaning process which is a characteristic part of the present embodiment, will be described in detail.
  • the final cleaning process is performed while rotating the glass substrate 1 by rotating the glass substrate 1 asymmetrically by irradiating high-frequency ultrasonic waves to the end surface of the glass substrate 1 that has undergone a mirror polishing process, which will be described later.
  • This is a step of cleaning the glass substrate 1 cleanly by simultaneously removing the fine deposits attached to both the main surface and the end surface of the glass substrate 1.
  • Reference sign A1 indicates the irradiation direction of high-frequency ultrasonic waves.
  • the glass substrate 1 is cleaned by immersing it in a cleaning tank with, for example, several tens to several hundreds of glass substrates 1 stored in one holder H (see FIG. 2).
  • the number of washing tanks is not particularly limited. Even when the glass substrate 1 is cleaned using a plurality of cleaning tanks, the glass substrate 1 is cleaned by moving each tank in order while being accommodated in the holder.
  • each of the tanks is, for example, a first cleaning tank (cleaning using an alkaline detergent), a second cleaning tank (pure water cleaning), and a third cleaning tank (cleaning using a neutral detergent).
  • high-frequency ultrasonic waves are applied to at least the end surface of the glass substrate (ultrasonic cleaning process).
  • the high frequency ultrasonic wave in the present invention means that the frequency is 430 to 2000 kHz, and more preferably 950 to 1000 kHz.
  • High frequency ultrasonic waves are generated from the ultrasonic generator 2.
  • reference numeral 3 indicates an ultrasonic generator body
  • reference numeral 4 indicates a diaphragm.
  • the glass substrate 1 is held by a plurality of holders 5 (three holders 5 are illustrated in FIG. 1).
  • the number and size of the holders 5 are not particularly limited. According to the cleaning method of the present embodiment, since the glass substrate 1 is rotated by being irradiated with high-frequency ultrasonic waves, there is a low possibility that the portion held by the holder 5 will not be sufficiently cleaned. However, from the viewpoint of further improving the cleaning efficiency, the number of the holders 5 is as small as possible, the size of the holders 5 is as small as possible, the rotating glass substrate 1 can be held, and the holding area of the glass substrate 1 can be reduced. It is preferable that the number and size be as large as possible. Therefore, the number of holders 5 is preferably 1 to 5, for example. The size of the holder 5 is preferably about 0.5 to 1.0 cm in diameter.
  • the high frequency is irradiated from the side surface direction of the glass substrate 1.
  • High frequency ultrasonic waves are irradiated asymmetrically to the glass substrate 1 so that the glass substrate 1 rotates.
  • ultrasonic waves are applied to the right side of the glass substrate 1 so that the glass substrate 1 rotates in the direction of arrow A2 (counterclockwise).
  • the horizontal width of the ultrasonic generator 2 is designed to be approximately the same width as the right half of the paper surface of the glass substrate 1.
  • the width of the ultrasonic generator 2 is not particularly limited as long as the glass substrate 1 can be irradiated with ultrasonic waves nonuniformly.
  • the ultrasonic generator body 3 is provided with a width larger than the diameter of the glass substrate 1, and only the diaphragm 4 is provided on the right side of the paper surface so that the ultrasonic wave is irradiated more frequently on the right side of the paper surface of the glass substrate 1. You may adjust. Furthermore, you may control the ultrasonic generator 2 so that many ultrasonic waves may be irradiated to the paper surface right side of the glass substrate 1. FIG. In addition to the end surface direction of the glass substrate 1, high-frequency ultrasonic waves may be irradiated from the main surface direction.
  • the rotation direction of the glass substrate 1 is not particularly limited, and the rotation direction of the glass substrate 1 is appropriately determined depending on whether high-frequency ultrasonic waves applied to the glass substrate 1 are strongly applied to any one of the end surfaces of the glass substrate 1. Is done.
  • the irradiation time of the high frequency ultrasonic wave is not particularly limited and is, for example, 1 to 7 minutes. When the irradiation time of the high frequency ultrasonic wave is less than 1 minute, there is a tendency that the fine deposits are not sufficiently removed. On the other hand, when the irradiation time of the high frequency ultrasonic wave exceeds 7 minutes, the fine deposits once removed may aggregate in the tank and reattach to the substrate.
  • the rotation speed of the glass substrate 1 is not particularly limited, and can be set to about 5 to 15 rpm, for example.
  • the solvent include hydrogen water, water, ozone water and dilute hydrofluoric acid aqueous solution, sulfuric acid and organic acid, alkaline aqueous solution, neutral aqueous solution, surfactant, chelating agent, distilled water (pure water), isopropyl alcohol (IPA), etc. Can be used.
  • the dissolved hydrogen concentration in the hydrogen water is preferably 0.5 to 1 ppm (0.5 to 1 mg / L), more preferably 0.6 to 0.8 ppm. .
  • the efficiency of ultrasonic cleaning is further improved since oxygen and nitrogen, which are straight-line inhibition factors in pure water, are excluded.
  • the dissolved hydrogen concentration of the hydrogen water is less than 0.5 ppm, there is a possibility that the ultrasonic irradiation time necessary for removing the fine deposits will be long.
  • bubbling (bubbles) due to hydrogen gas is likely to occur, and the generated bubbles may hinder the straightness of the ultrasonic wave. Time tends to be longer.
  • a scrub cleaning step before the ultrasonic cleaning step it is preferable to have a scrub cleaning step before the ultrasonic cleaning step.
  • scrub cleaning performed in the scrub cleaning process roll scrub cleaning shown in FIG. 3 or cup scrub cleaning shown in FIG. 4 can be employed.
  • these scrub cleaning steps before the ultrasonic cleaning step large-sized deposits among the fine deposits adhering to the glass substrate 1 are removed in advance. Moreover, the deposits on both main surfaces are efficiently removed.
  • the glass substrate 1 is cleaned by high-frequency ultrasonic waves on both the main surface and the end face at the same time in a state where the fine deposits on both the main surfaces are removed in advance. As a result, the cleaning efficiency is further improved.
  • Roll scrub cleaning is performed by a roll scrub cleaning device 6, as shown in FIG.
  • a sponge brush 8 is wound around the surface of the rollers 7 (only one is shown in FIG. 3) arranged in parallel to each other.
  • a glass substrate 1 is sandwiched between the rollers 7, and the lower end of the glass substrate 1 is rotatably supported by a rotation support roller 9.
  • the roller 7 and the rotation support roller 9 are controlled to be rotatable by a control device (not shown) and a drive device (not shown) that controls the control device.
  • the arrow A3 indicates the rotation direction of the roller 7, the arrow A4 indicates the rotation direction of the rotation support roller 9, and the arrow A5 indicates the rotation direction of the glass substrate 1.
  • a cleaning agent discharge nozzle Na is provided above the roller 7, and the cleaning agent is supplied from the cleaning agent discharge nozzle Na toward the glass substrate 1.
  • both main surfaces of the glass substrate 1 are cleaned by rotating the sponge brush 8 while the glass substrate 1 is rotated by the rotation support roller 9. And minute deposits are removed.
  • Rotational speed of the rotating shaft in roll scrub cleaning is not particularly limited, but if the rotational speed is too small, the amount of work becomes small, and if the rotational speed is excessively large, the friction coefficient becomes small, so about 500 to 1000 rpm is preferable.
  • Cup scrub cleaning is performed by a cup scrub cleaning device 10 as shown in FIG.
  • the cup scrub cleaning apparatus 10 has a plurality of columnar sponge brushes 11 arranged radially from a rotation axis.
  • a plurality of sponge brushes 11 are arranged along the axial direction of the rotating shaft 12 with a predetermined gap therebetween.
  • End disks 13 are provided at both ends of the rotating shaft 12.
  • the glass substrate 1 is sandwiched between sponge brushes 11 adjacent in the axial direction.
  • the lower end of the glass substrate 1 is rotatably supported by a rotation support roller 14.
  • the rotary shaft 12 is controlled to be rotatable by a control device (not shown) and a drive device (not shown) that controls the control device.
  • the arrow A6 indicates the rotation direction of the end disk 13
  • the arrow A7 indicates the rotation direction of the rotation support roller 14
  • the arrow A8 indicates the rotation direction of the glass substrate 1.
  • a cleaning agent discharge nozzle Nb is provided above the sponge brush 11, and the cleaning agent is supplied toward the glass substrate 1 from the cleaning agent discharge nozzle Nb.
  • both main surfaces of the glass substrate 1 are cleaned by rotating the sponge brush 11 while the glass substrate 1 is rotated by the rotation support roller 14. And minute deposits are removed.
  • the rotational speed of the rotating shaft 12 in the cup scrub cleaning is not particularly limited, but if the rotational speed is too small, the amount of work becomes small, and if the rotational speed is too large, the friction coefficient becomes small.
  • the manufacturing method of the glass substrate of this Embodiment should just have the above-mentioned final washing process, and it does not specifically limit about other processes. For this reason, the other steps described below are examples, and the design can be changed as appropriate.
  • the blanks manufacturing process is a process of melting a glass material and obtaining a glass substrate (blanks) from the molten glass material.
  • the glass material examples include aluminosilicate glass, soda lime glass, borosilicate glass, Li 2 O—SiO 2 glass, Li 2 O—Al 2 O 3 —SiO 2 glass, R′O—Al 2 O 3.
  • the glass melting method is not particularly limited, and a method of melting the glass material at a high temperature at a known temperature and time can be usually employed.
  • the method for obtaining blanks is not particularly limited, and for example, a method of obtaining a disk-shaped glass substrate (blanks) by pouring a molten glass material into a lower mold and press molding with an upper mold can be employed.
  • blanks are not restricted to press molding, For example, you may cut and produce the sheet glass formed by the down draw method, the float method, etc. with the grinding stone. In this molding process, foreign matter and bubbles are mixed in the vicinity of the surface of the blank, or scratches are generated, resulting in defects.
  • the size of the blanks is not particularly limited, and for example, blanks having various outer diameters of 2.5 inches, 1.8 inches, 1 inch, 0.8 inches, and the like can be produced. It does not specifically limit about the thickness of a glass substrate, For example, blanks of various thickness, such as 2 mm, 1 mm, 0.8 mm, 0.63 mm, can be produced.
  • the blanks produced by press molding or cutting are alternately laminated with heat-setter setters and passed through a high-temperature electric furnace, thereby reducing warpage and promoting glass crystallization.
  • the first grinding step is a step of preliminarily adjusting the parallelism, flatness and thickness of the glass substrate by grinding both surfaces of the blank.
  • a glass base material is obtained by lapping (grinding) the main surface of the blank.
  • the lapping process is performed using alumina-based loose abrasive grains by a double-sided lapping apparatus using a planetary gear mechanism. Specifically, in the lapping process, both main surfaces of the blanks are pressed against the lapping platen from above and below, a grinding liquid containing free abrasive grains is supplied onto the main surface of the plate glass, and these are relatively moved. . By this lapping process, a glass substrate having a flat main surface is obtained.
  • the coring step is a step of opening a circular hole (center hole) in the center of the glass substrate.
  • the coring step is a step of forming an annular glass substrate by forming an inner hole at the center of the glass substrate using a cylindrical diamond drill.
  • the inner peripheral polishing step is a step of alternately laminating glass substrates and spacers one by one to create a laminate, and polishing the inner peripheral end surface with an inner peripheral end surface polishing machine.
  • a spacer For example, the thing made from a polypropylene and having a thickness of 0.3 mm, an internal diameter of 21 mm, and an outer diameter of 64 mm is employable.
  • nylon fibers having a diameter of 0.2 mm can be used as the brush bristles of the polishing machine.
  • the rotation speed of the rotating brush can be set to 10,000 rpm, for example.
  • the polishing liquid for inner circumference polishing for example, a polishing liquid containing a hydrofluoric acid solvent can be used, and as the polishing agent, for example, cerium oxide having an average primary particle diameter of 3 ⁇ m can be used.
  • the outer peripheral polishing step is a step of alternately laminating glass substrates and spacers one by one to create a laminate, and polishing the outer peripheral end surface by an outer peripheral end surface polishing machine.
  • the polishing conditions of the spacer and the polishing machine used are the same as those employed in the inner peripheral polishing step.
  • both main surfaces of the glass substrate are polished using an abrasive slurry so that the finally required surface roughness can be efficiently obtained in the subsequent mirror polishing step. It is a process to do. It does not specifically limit as a grinding
  • the polishing pad used it is preferable to use a hard pad, for example, urethane foam is preferable because the shape change of the polishing surface increases when the hardness of the polishing pad decreases due to heat generated by polishing.
  • the polishing liquid cerium oxide having an average primary particle size of 0.6 to 2.5 ⁇ m is used, and cerium oxide is dispersed in a solvent to form a slurry. It does not specifically limit as a solvent, Water can be employ
  • the average primary particle diameter is less than 0.6 ⁇ m, the polishing pad tends to fail to polish both main surfaces well. On the other hand, when the average primary particle diameter exceeds 2.5 ⁇ m, the polishing pad may deteriorate the flatness of the end face or generate scratches.
  • the addition amount of the abrasive slurry is not particularly limited, and is, for example, 1000 to 9000 mL / min.
  • the amount of polishing of the glass substrate in the rough polishing step is preferably about 25 to 40 ⁇ m.
  • the polishing amount of the glass substrate is less than 25 ⁇ m, scratches and defects tend not to be sufficiently removed.
  • the polishing amount of the glass substrate exceeds 40 ⁇ m, the glass substrate is polished more than necessary, and the production efficiency tends to decrease.
  • the glass substrate after the rough polishing step is preferably washed with a neutral detergent, pure water, IPA or the like.
  • the chemical strengthening step is a step of immersing the glass substrate in a strengthening treatment solution to improve the impact resistance, vibration resistance, heat resistance, and the like of the glass substrate.
  • the chemical strengthening step is a step of chemically strengthening the glass substrate.
  • the strengthening treatment liquid used for chemical strengthening include a mixed solution of potassium nitrate (60%) and sodium nitrate (40%).
  • the chemical strengthening can be performed, for example, by heating the strengthening treatment liquid to 300 to 400 ° C., preheating the glass substrate to 200 to 300 ° C., and immersing in the strengthening treatment liquid for 3 to 4 hours. In this immersion, it is preferable that the immersion is performed in a state of being housed in a holder that holds the end faces of the plurality of glass substrates so that both main surfaces of the glass substrate are chemically strengthened.
  • a standby process for waiting the glass substrate in the air and a water immersion process are adopted to remove the strengthening treatment liquid adhering to the surface of the glass substrate and to homogenize the surface of the glass substrate. It is preferable.
  • the chemically strengthened layer is formed uniformly, the compressive strain is uniform, deformation is difficult to occur, the flatness is good, and the mechanical strength is also good.
  • the waiting time and the water temperature in the water immersing step are not particularly limited. For example, it may be kept in the air for 1 to 60 seconds and immersed in water at about 35 to 100 ° C., and may be determined appropriately in consideration of production efficiency.
  • the mirror polishing step is a step for further precisely polishing both main surfaces of the glass substrate.
  • a double-side polishing machine similar to the double-side polishing machine used in the rough polishing process can be used.
  • the polishing pad is preferably a soft pad having a lower hardness than the polishing pad used in the rough polishing step, and for example, urethane foam or suede is preferably used.
  • the same slurry containing cerium oxide as in the rough polishing step can be used.
  • an abrasive slurry having a finer grain size and less variation it is preferable to use a slurry obtained by dispersing colloidal silica having an average particle diameter of 20 to 70 nm in a solvent to form a slurry.
  • a solvent water can be employ
  • a surfactant or a dispersant can be added to these solvents.
  • the mixing ratio of the solvent and colloidal silica is preferably about 1: 9 to 3: 7.
  • the addition amount of the abrasive slurry is not particularly limited, and is, for example, 100 to 600 mL / min.
  • the polishing amount in the mirror polishing step is preferably about 2 to 5 ⁇ m.
  • the obtained glass substrate can remove fine defects such as minute roughness and waviness generated on the surface of the glass substrate, or minute scratches generated in the previous process. Is done.
  • the glass substrate manufacturing method of the present embodiment can improve the flatness of the obtained glass substrate, and can produce a glass substrate on which the magnetic head can float more stably in the end region. it can.
  • the flatness of both main surfaces of the glass substrate is reduced to 3 ⁇ m or less, and the surface roughness Ra of both main surfaces of the glass substrate is reduced to 0.1 nm. be able to.
  • the final cleaning step is as described above.
  • ultrasonic cleaning is simultaneously performed while rotating the glass substrate with respect to both the main surface and the end surface of the glass substrate. For this reason, there is little residue of fine deposits on both the main surface and the end surface of the glass substrate, and the resulting glass substrate is less likely to cause subsequent errors.
  • the glass substrate is inspected for scratches, cracks, foreign matter, etc., and then stored in a dedicated storage cassette in a clean environment and vacuum packed to prevent foreign matter from adhering to the surface. Shipped.
  • a magnetic film formation process is a process of forming a magnetic film on a glass substrate using a vapor deposition apparatus.
  • the method for forming the magnetic film is not particularly limited, and a conventionally known method can be employed.
  • a method of forming a thermosetting resin in which magnetic particles are dispersed by spin coating on a substrate, or a method of forming by sputtering or electroless plating can be employed.
  • the film thickness by spin coating is about 0.3 to 1.2 ⁇ m
  • the film thickness by sputtering is about 0.04 to 0.08 ⁇ m
  • the film thickness by electroless plating is 0.05 to 0.1 ⁇ m. Degree.
  • the glass substrate is held at about 100 to 500 ° C. depending on the type of the magnetic film.
  • the magnetic material used for the magnetic film is not particularly limited, and a conventionally known magnetic material can be used.
  • a Co-based alloy based on Co having a high crystal anisotropy and added with Ni or Cr for the purpose of adjusting the residual magnetic flux density.
  • an alloy composed of a transition metal element and a noble metal element such as a Co—Pt alloy, and an atom of the transition metal element (Co) and the noble metal element (Pt). Alloys with almost the same content, or Co—Ni in which the atomic content of the transition metal element (Co) and the noble metal element (Pt) is almost equal and the atomic content of Ni is 0.1% or more and 50% or less -Pt alloy, Co-Ni-Pt alloy, Co-Cr-Pt alloy, Fe-Pt alloy, Cu, and the like, in which the atomic contents of transition metal elements (Co and Ni) and noble metal element (Pt) are almost equal. It is preferable to form a thin film containing an oxide. In this case, a soft magnetic layer (a material having a small coercive force, a Co-based amorphous material, etc.) is preferably laminated below the thin film.
  • a soft magnetic layer a material having a small coercive force, a Co-based a
  • a lubricant may be coated on the surface of the magnetic film.
  • the magnetic film may be provided with an underlayer or a protective layer.
  • the underlayer and the protective layer are selected according to the type of the magnetic film.
  • the entire surface can be irradiated with ultrasonic waves by cleaning the glass substrate while rotating, so that it is highly efficient and minute.
  • the manufacturing method of the glass substrate for HDD which can remove surface defects, such as a deposit
  • the present embodiment is not limited to the HDD manufacturing method, and can be used as a manufacturing method of a magneto-optical disk, an optical disk, or the like.
  • the grinding process is divided into two processes sequentially, or the chemical strengthening process is performed after any of the coring process, the grinding process, the rough polishing process, and the mirror polishing process.
  • the design may be changed as appropriate.
  • the glass substrate may be subjected to a hydrogen fluoride immersion treatment as an edge mitigation treatment for scratches generated on the glass substrate.
  • the shielding member B that shields the ultrasonic wave irradiated from the ultrasonic generator 2a is provided, and the ultrasonic generator 2a has a diameter of the glass substrate.
  • the method is the same as the method for manufacturing the glass substrate 1 of the first embodiment except that it has a larger width. Therefore, description of the overlapping steps is omitted.
  • the shielding member B is provided in a path where high-frequency ultrasonic waves reach the glass substrate 1 in order to partially shield high-frequency ultrasonic waves irradiated from the ultrasonic generator 2 a. Yes.
  • the shielding member B is not particularly limited.
  • a material that reflects ultrasonic waves such as a metal plate or a wire mesh, a material that absorbs less ultrasonic waves such as a fluororesin or polyester, or a single material such as an epoxy resin or a urethane resin that is super
  • a material that is easy to absorb sound waves is mixed with materials that are hard to absorb ultrasonic waves, such as glass balloons and quartz, and as a result, materials that are hard to absorb ultrasonic waves are formed, and these materials are provided on the surface. Can be used.
  • the size (length, shape, width) of the shielding member B is not particularly limited as long as it has a length, shape, and width that can shield a part of the ultrasonic wave irradiated from the ultrasonic generator 2a. Good.
  • the shielding member B is an ultrasonic wave irradiated from a position irradiated to the left side of the paper surface of the glass substrate 1 among the ultrasonic waves irradiated from the ultrasonic generator 2a. It is provided in the position which shields.
  • An arrow A9 indicates the irradiation direction of the ultrasonic wave shielded by the shielding member.
  • the thickness of the diaphragm 4a provided in the ultrasonic generator 2b is not uniform in the final cleaning step, and the ultrasonic generator 2b is larger than the diameter of the glass substrate. Except for having a width, it is the same as the manufacturing method of the glass substrate 1 of Embodiment 1. Therefore, description of the overlapping steps is omitted.
  • the diaphragm 4a is formed so that the thickness increases from the right side of the drawing to the left side of the drawing. As a result, the intensity of the ultrasonic wave irradiated on the left side of the paper substrate 1 becomes smaller than that on the right side of the glass substrate 1.
  • An arrow A10 indicates an irradiation direction of ultrasonic waves with low intensity.
  • the vibration plate 4a formed so as to increase in thickness from the right side to the left side of the paper is illustrated, but the shape of the vibration plate 4a is not particularly limited.
  • the shape of the diaphragm 4a may be any shape that can irradiate the glass substrate 1 with ultrasonic waves asymmetrically.
  • the glass substrate 1 rotates in the direction of arrow A2. As a result, the entire end face is irradiated with ultrasonic waves, and minute deposits are removed.
  • the glass substrate manufacturing method of the present embodiment is different in the final cleaning step, except that the position of the holder 5 that holds the glass substrate 1 is different and the ultrasonic generator 2c has a width larger than the diameter of the glass substrate. This is the same as the manufacturing method of the glass substrate 1 of the first embodiment. Therefore, description of the overlapping steps is omitted.
  • the holder disposed on the right side of the drawing is provided on the downstream side in the ultrasonic irradiation direction with respect to the holder shown in the first embodiment.
  • Reference numeral 5a indicates a holder provided on the downstream side. Therefore, the ultrasonic wave irradiated to the right side of the glass substrate 1 is irradiated to the glass substrate 1 without being shielded or attenuated by the holder 5. As a result, the glass substrate 1 is cleaned while rotating in the A2 direction.
  • the position of the holder is not particularly limited, and may be provided at a position where the end surface of the glass substrate 1 is asymmetrically irradiated with high-frequency ultrasonic waves and, as a result, the glass substrate 1 can rotate.
  • size are not specifically limited.
  • the glass substrate 1 is rotatably arranged by changing the position of the holder 5. Therefore, the ultrasonic wave irradiated from the ultrasonic generator 2c is not shielded by the shielding plate or attenuated by the diaphragms having different thicknesses. As a result, the glass substrate is irradiated with a lot of ultrasonic waves, and is cleaned more cleanly in a shorter time.
  • the method for producing a glass substrate of the present invention is a method for producing a glass substrate for a magnetic disk having a final cleaning step for a glass substrate, and the final cleaning step is performed on a glass substrate held by a holding jig in a cleaning tank.
  • High-frequency ultrasonic waves of 430 kHz or higher have a strong tendency to go straight in the irradiation direction compared to low frequencies.
  • the glass substrate rotates by being asymmetrically irradiated with high-frequency ultrasonic waves that travel straight. Therefore, both main surfaces and end surfaces (inner end surface and outer end surface) of the glass substrate are simultaneously and uniformly cleaned.
  • the ultrasonic wave is applied to a part of the glass substrate.
  • the ultrasonic wave is easily rotated by being irradiated on a part of the glass substrate and holding the glass substrate on a holding jig. As a result, the surface defects of the glass substrate are easily removed.
  • the mode of irradiating a part of the glass substrate is not limited to the mode of irradiating only a part of the glass substrate with the high frequency ultrasonic wave by changing the irradiation position of the high frequency ultrasonic wave.
  • the mode of irradiating a glass substrate with a part of the ultrasonic wave irradiation path and the intensity of the high frequency ultrasonic wave to be irradiated are partially changed, and the high frequency ultrasonic wave irradiated to the glass substrate is changed.
  • size, etc., and changes the ratio of the high frequency ultrasonic wave irradiated to a glass substrate are included.
  • a filter having an opening diameter of 0.02 ⁇ m.
  • the present invention preferably includes a scrub cleaning step before the ultrasonic cleaning step.
  • the present invention has a scrub cleaning step before the ultrasonic cleaning step, it is possible to perform ultrasonic cleaning on the end surfaces in a state where surface defects on both main surfaces are removed in advance by scrub cleaning, so that the cleaning efficiency is improved. Can be further improved.
  • the method for producing a glass substrate of the present invention will be described in detail with reference to examples.
  • the manufacturing method of the glass substrate of this invention is not limited to the Example shown below at all.
  • a glass substrate was prepared by the following method.
  • Both main surfaces of the glass substrate were roughly polished using a double-side polishing machine (manufactured by Hamai Sangyo Co., Ltd., 16B type).
  • a polishing pad in which diamond abrasive grains having an average primary particle diameter of 9 ⁇ m were embedded in a resin pad was used, and water and coolant mixed at 9: 1 were used as polishing water.
  • the weight was 200 g / cm 2 .
  • the amount of abrasive slurry added was 4.5 L / min.
  • [Chemical strengthening process] A strengthening salt mixed with sodium nitrate: potassium nitrate 3: 7 was melted at 300 ° C., and the glass substrate was immersed for 30 minutes. Thereby, the lithium ion and sodium ion of the inner peripheral end surface and outer peripheral end surface of a glass substrate were each substituted by the sodium ion and potassium ion in a chemical strengthening solution, and the glass substrate was strengthened.
  • each glass substrate 1 was held by three holding jigs 5 and placed in a holder H.
  • 100 glass substrates 1 were arranged.
  • Cleaning is performed in the order of alkaline detergent tank (80 kHz), pure water tank (80 kHz), neutral detergent tank (120 kHz), pure water tank (120 kHz), ultrasonic cleaning tank (pure water, 430 kHz), IPA, and IPA vapor drying. It was performed by sequentially immersing in a washing tank. Each ultrasonic wave was irradiated for 5 minutes.
  • both main surfaces have an adhesion layer made of a Cr alloy, a soft magnetic layer made of a Co—Fe—Zr alloy, an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a Co—Cr—Pt alloy, A C-type protective layer and an F-type lubricant layer were sequentially formed, and the perpendicular magnetic recording disk of Example 1 was manufactured.
  • Example 2 A perpendicular magnetic recording disk was produced in the same manner as in Example 1 except that the ultrasonic frequency in the ultrasonic cleaning tank was changed to 950 kHz.
  • Example 3 A perpendicular magnetic recording disk was manufactured in the same manner as in Example 2 except that hydrogen water in which 0.7 ppm of hydrogen was dissolved after degassing pure water was used instead of pure water in an ultrasonic cleaning tank.
  • Example 4 A perpendicular magnetic recording disk was manufactured by the same method as in Example 2 except that the pump was circulated through a filter having a diameter of 0.02 ⁇ m in an ultrasonic cleaning tank.
  • Example 5 A perpendicular magnetic recording disk was produced in the same manner as in Example 4 except that cup scrub cleaning was performed as a pre-process of the final cleaning process to remove or activate the deposits of about 500 nm or more in advance. Cup scrub cleaning was performed for 3 minutes by rotating the sponge brush at 100 rpm while supplying an alkaline detergent from a cleaning agent discharge nozzle provided on the top.
  • a magnetic thin film layer is formed on the glass substrate 1 and the test is performed in the state of an information recording medium (magnetic disk recording medium).
  • an information recording medium magnetic disk recording medium
  • only a lubricating layer is formed on the glass substrate 1 to perform a glide test. Carried out. This is because, if a magnetic thin film layer (about 100 nm) is formed on the deposit P in the state where the deposit P exists on the glass substrate 1, the deposit P is gradually buried in the film formation process. This is because it is not a severe test.
  • a glide test was performed by forming only a lubricating layer (about several nm) on the glass substrate 1, it can be said that the evaluation is based on a more severe test.
  • Table 1 shows the results of the error rate after the floating test and full scan.
  • a floating test was performed on 100 glass substrates, and the error occurrence rate was investigated.
  • the number of perpendicular magnetic recording disks that cause subsequent errors was 20 out of 100 in the glide evaluation, and the surface properties were not good. Further, in Comparative Example 2 in which the glass substrate was not rotated at the time of ultrasonic cleaning and the frequency of the ultrasonic wave was 430 kHz, it was considered that more minute deposits remained than in Comparative Example 1. Therefore, in the obtained perpendicular magnetic recording disk, in the glide evaluation, the number of perpendicular magnetic recording disks causing a subsequent error was 25 out of 100, and the surface properties were not good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

 本発明のHDD用ガラス基板の製造方法は、ガラス基板の最終洗浄工程を有する磁気ディスク用ガラス基板の製造方法であり、前記最終洗浄工程は、洗浄槽内において、保持冶具で保持されたガラス基板に、430~2000kHzの高周波の超音波を照射する超音波洗浄工程を有し、該超音波洗浄工程において、超音波は、ガラス基板が回転するよう、ガラス基板の端面に対して非対称に照射される。当該製造方法によれば、超音波を全面に照射することができ、ガラス基板の主表面だけでなく端面も同時に洗浄して、主表面および端面の微小付着物を高効率で除去し得る。

Description

HDD用ガラス基板の製造方法
 本発明は、HDD用ガラス基板の製造方法に関する。より詳細には、本発明は、高周波の超音波によりガラス基板を洗浄する際に、複雑な機構を追加することなく、ガラス基板を回転させながら洗浄することにより、ガラス基板の主表面および端面の両方を同時に洗浄して微小付着物を除去することができる工程を備え、後発エラーの少ないガラス基板を製造することのできるHDD用ガラス基板の製造方法に関する。
 近年、情報記録媒体を搭載したディスク装置(たとえばハードディスクドライブ HDD)の高性能化に伴い、使用されるメディアに求められる品質水準が高まっている。
 最近では、2.5インチのメディアであって、記録容量が500GB以上、すなわち面記録密度が630Gb/平方インチ以上の記録密度を有する大容量のメディアがある。このようなメディアは、磁気ヘッドと磁気ディスクとの間の距離(フライングハイト)が小さい。一般に、フライングハイトが小さくなるにつれて、ガラス基板の表面欠陥を原因とするヘッドクラッシュが発生しやすくなる。そのため、HDD用ガラス基板(以下、単にガラス基板という場合がある)の表面欠陥に関して、大きさおよび個数に対する要求が厳しくなりつつある。
 表面欠陥は、ガラス基板の研磨加工、洗浄方法を工夫して低減することができる。その1つの方法として、約100nm以下の微小付着物を除去するために、最終洗浄工程において高周波の超音波を用いた洗浄(メガソニック超音波洗浄)を行う方法がある(特許文献1参照)。図9に示されるように、保持具51に保持されたガラス基板101は、高周波超音波発生器21から照射される高周波の超音波により洗浄される。矢印A1は、照射された高周波の超音波の照射方向を示している。
特開2010-92524号公報
 しかしながら、特許文献1に記載の製造方法によれば、ホルダに配置されたガラス基板に対して、スクラブ洗浄を施しながら、一方向から高周波の超音波を照射する。高周波の超音波は直進性が高いため、ガラス基板の主表面の微小付着物は比較的良好に除去できるものの、端面のうち、高周波の超音波が照射されなかった部分に微小付着物(図9の微小付着物E参照)が残存する、という問題がある。残存した微小付着物は、たとえば磁性膜形成工程などの製造工程において離脱して主表面に付着すると、後発エラーの原因となる。
 本発明は、このような従来の問題に鑑みてなされたものであり、ガラス基板の最終洗浄工程において、ガラス基板を回転させながら高周波の超音波を照射して洗浄することにより、高周波の超音波を全面に照射することができ、ガラス基板の主表面だけでなく端面も同時に洗浄して、主表面および端面の微小付着物を高効率で除去し得るHDD用ガラス基板の製造方法を提供することを目的とする。
 本発明の一局面によるガラス基板の製造方法は、ガラス基板の最終洗浄工程を有する磁気ディスク用ガラス基板の製造方法であって、前記最終洗浄工程は、洗浄槽内において、保持冶具で保持されたガラス基板に、430~2000kHzの高周波の超音波を照射する超音波洗浄工程を有し、該超音波洗浄工程において、超音波は、ガラス基板が回転するよう、ガラス基板の端面に対して非対称に照射されることを特徴とする。なお、本発明において、ガラス基板の端面に対して非対称に照射する、とは高周波の超音波を照射する場合に、超音波の発振源に対して最も近い外周の端部を対称軸として、円周方向における超音波の照射強度が当該対称軸を境に非対称となることを意味する。上記対称軸を境に、一方の側には超音波が照射されず、他方の側のみに超音波が照射されてもよく、一方の側の照射強度が他方の側の照射強度よりも強くなっていてもよい。
 本発明の目的、特徴および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
図1は、本発明の一実施形態(実施の形態1)のガラス基板を超音波洗浄工程において洗浄している状態の説明図である。 図2は、本発明の一実施形態(実施の形態1)のガラス基板をホルダに配置した状態の説明図である。 図3は、本発明の一実施形態(実施の形態1)のガラス基板をロールスクラブ洗浄している状態の説明図である。 図4は、本発明の一実施形態(実施の形態1)のガラス基板をカップスクラブ洗浄している状態の説明図である。 図5は、本発明の一実施形態(実施の形態2)のガラス基板を超音波洗浄工程において洗浄している状態の説明図である。 図6は、本発明の一実施形態(実施の形態3)のガラス基板を超音波洗浄工程において洗浄している状態の説明図である。 図7は、本発明の一実施形態(実施の形態4)のガラス基板を超音波洗浄工程において洗浄している状態の説明図である。 図8は、浮上テストにおける磁気ヘッドと付着物との位置関係を示す模式図である。 図9は、従来の洗浄方法により、ガラス基板を洗浄している状態の説明図である。
 (実施の形態1)
 以下、本実施の形態のガラス基板の製造方法について、詳細に説明する。本実施の形態のガラス基板の製造方法において、ガラス基板は、たとえばブランクス製造工程、第一研削工程、コアリング工程、内周研磨工程、外周研磨工程、第一研磨工程(粗研磨工程)、化学強化工程、第二研磨工程(鏡面研磨工程)、最終洗浄工程を経て作製される。以下、本実施の形態の特徴部分である最終洗浄工程を詳述する。
 <最終洗浄工程>
 最終洗浄工程は、図1に示されるように、後述する鏡面研磨工程を経たガラス基板1の端面に対して、高周波の超音波を非対称に照射することによりガラス基板1を回転させながら洗浄し、ガラス基板1の主表面および端面の両方に付着した微小付着物を同時に除去して、ガラス基板1を清浄に洗浄する工程である。参照符号A1は、高周波の超音波の照射方向を示している。
 最終洗浄工程において、ガラス基板1は、たとえば数十~数百枚のガラス基板1を1つのホルダHに収納した状態(図2参照)で、洗浄槽に浸漬して洗浄される。洗浄槽の数は特に限定されない。ガラス基板1は、複数の洗浄槽を用いて洗浄を行う場合にも、ホルダに収容された状態で、各槽を順に移動して洗浄される。複数の洗浄槽を用いる場合、それぞれの槽は、たとえば、第1洗浄槽(アルカリ洗剤を用いた洗浄)、第2洗浄槽(純水洗浄)、第3洗浄槽(中性洗剤を用いた洗浄)、第4洗浄槽(純水洗浄)、第5洗浄槽(イソプロピルアルコール(IPA)を用いた洗浄)、第6洗浄槽(IPAベーパー乾燥)、等に分けられる。本実施の形態は、複数の洗浄槽を用いてガラス基板1を洗浄する場合において、少なくとも1つの洗浄槽において、後述する超音波洗浄を行う。たとえば、超音波洗浄は、第4洗浄槽において行われる。
 本実施の形態では、高周波の超音波は少なくともガラス基板の端面に照射される(超音波洗浄工程)。本発明における高周波の超音波とは、周波数が、430~2000kHzであることを意味しており、より好ましくは950~1000kHzである。高周波の超音波は、超音波発生器2より発生する。図1において、参照符号3は超音波発生器本体を示しており、参照符号4は、振動板を示している。また、ガラス基板1は複数の保持具5(図1では3個の保持具5を例示)に保持されている。
 保持具5の個数および大きさとしては特に限定されない。本実施の形態の洗浄方法によれば、ガラス基板1は高周波の超音波が照射されて回転するため、保持具5に保持された箇所の洗浄が不充分になる可能性は低い。しかしながら、洗浄効率をより向上させる観点から、保持具5の個数はなるべく少なく、保持具5の大きさはなるべく小さく、回転するガラス基板1を保持でき、ガラス基板1の保持面積を小さくすることができる個数および大きさであることが好ましい。そのため、保持具5の個数は、たとえば1~5個が好ましい。また、保持具5の大きさは、直径が0.5~1.0cm程度であることが好ましい。
 図1に示されるように、高周波は、ガラス基板1の側面方向から照射される。高周波の超音波は、ガラス基板1が回転するよう、ガラス基板1に対して非対称に照射されている。図1では、ガラス基板1が矢印A2方向(反時計回り)に回転するよう、ガラス基板1の紙面右側に超音波が照射されている。本実施の形態では、図1に示されるように、超音波発生器2の横幅を、ガラス基板1の紙面右側半分と同程度の幅に設計している。超音波発生器2の横幅としては特に限定されず、ガラス基板1に対して不均一に超音波を照射できる構成であればよい。また、たとえば、超音波発生器本体3をガラス基板1の径よりも大きな幅で設け、振動板4のみを紙面右側に設けて、超音波がガラス基板1の紙面右側に多く照射されるように調整してもよい。さらに、ガラス基板1の紙面右側に多くの超音波が照射されるように、超音波発生器2を制御してもよい。なお、高周波の超音波は、ガラス基板1の端面方向に加えて、主表面方向からも照射してよい。
 ガラス基板1の回転方向は特に限定されず、ガラス基板1の回転方向は、ガラス基板1に照射される高周波の超音波が、ガラス基板1の端面のいずれかに強く照射されるかにより適宜決定される。
 高周波の超音波の照射時間としては特に限定されず、たとえば、1~7分である。高周波の超音波の照射時間が1分未満の場合には、充分に微小付着物が除去されない傾向がある。一方、高周波の超音波の照射時間が7分を超える場合には、一度除去した微小付着物が槽内で凝集し、基板に再付着する場合がある。
 ガラス基板1の回転速度としては特に限定されず、たとえば、5~15rpm程度に設定することができる。
 超音波洗浄に際して、同時に溶媒による洗浄を行うことが好ましい。溶媒としては、水素水、水、オゾン水と希フッ酸水溶液、硫酸や有機酸、アルカリ性水溶液、中性水溶液、界面活性剤、キレート剤、蒸留水(純水)、イソプロピルアルコール(IPA)等を使用することができる。
 溶媒として水素水を使用する場合、水素水の溶存水素濃度は、0.5~1ppm(0.5~1mg/L)であることが好ましく、より好ましくは、0.6~0.8ppmである。水素水の溶存水素濃度が上記範囲内の場合には、純水中の直進性阻害因子である酸素、窒素が除外されるため超音波洗浄の効率がさらに向上する。水素水の溶存水素濃度が0.5ppm未満の場合には、微小付着物を除去するために必要な超音波照射時間が長くなる可能性がある。一方、水素水の溶存水素濃度が1ppmを超える場合には、水素ガスによるバブリング(気泡)現象が発生しやすく、発生した気泡が超音波の直進性を阻害する可能性があるため、洗浄に要する時間が長くなる傾向がある。
 超音波洗浄において、溶媒を循環させながら洗浄を行う場合、循環する溶媒を清浄に維持する観点から、開口径が0.02μmのフィルタを用いることが好ましい。これにより、ガラス基板1から除去された微小付着物がフィルタに捕捉されるため、微小付着物が洗浄槽内を循環することを防ぐことができる。
 本実施の形態では、超音波洗浄工程の前に、スクラブ洗浄工程を有することが好ましい。スクラブ洗浄工程において実施されるスクラブ洗浄としては、図3に示されるロールスクラブ洗浄や、図4に示されるカップスクラブ洗浄を採用することができる。これらスクラブ洗浄工程を超音波洗浄工程の前に行うことにより、ガラス基板1に付着している微小付着物の中でも径の大きな付着物は、あらかじめ除去される。また、両主表面の付着物は、効率的に除去される。その結果、あらかじめ両主表面の微小付着物を取り除いた状態で、ガラス基板1は、主表面および端面の両方に同時に高周波の超音波により洗浄される。その結果、洗浄効率が、より向上する。
 (ロールスクラブ洗浄)
 ロールスクラブ洗浄は、図3に示されるように、ロールスクラブ洗浄装置6により行われる。相互に平行に配置されたローラ7(図3では、片方のみを表示)の表面には、スポンジブラシ8が巻き付けられている。それぞれのローラ7の間には、ガラス基板1が挟みこまれ、ガラス基板1の下端は、回転支持ローラ9により回転可能に支持されている。
 ローラ7および回転支持ローラ9は、制御装置(図示せず)および該制御装置を制御する駆動装置(図示せず)により回転可能に制御されている。矢印A3は、ローラ7の回転方向を示しており、矢印A4は回転支持ローラ9の回転方向を示しており、矢印A5はガラス基板1の回転方向を示している。
 ローラ7の上方には、洗浄剤吐出ノズルNaが設けられ、洗浄剤吐出ノズルNaからガラス基板1に向けて洗浄剤が供給される。
 ロールスクラブ洗浄装置6を用いたガラス基板1の洗浄においては、ガラス基板1が回転支持ローラ9により回転させられた状態で、スポンジブラシ8が、回転することでガラス基板1の両主表面が洗浄され、微小付着物が除去される。
 ロールスクラブ洗浄における回転軸の回転数としては特に限定されないが、回転数が小さすぎると仕事量が小さくなり、回転数が大きすぎると摩擦係数が小さくなるため、500~1000rpm程度が好ましい。
 (カップスクラブ洗浄)
 カップスクラブ洗浄は、図4に示されるように、カップスクラブ洗浄装置10により行われる。カップスクラブ洗浄装置10は、回転軸から放射状に配置された柱状の複数のスポンジブラシ11を有する。このスポンジブラシ11は、回転軸12の軸方向に沿って所定の間隙を隔てて複数配置されている。回転軸12の両端には、端部円盤13が設けられている。
 軸方向に隣接するスポンジブラシ11の間には、ガラス基板1が挟みこまれる。ガラス基板1の下端は、回転支持ローラ14により回転可能に支持されている。
 回転軸12は、制御装置(図示せず)および該制御装置を制御する駆動装置(図示せず)により回転可能に制御されている。矢印A6は、端部円盤13の回転方向を示しており、矢印A7は回転支持ローラ14の回転方向を示しており、矢印A8はガラス基板1の回転方向を示している。
 スポンジブラシ11の上方には、洗浄剤吐出ノズルNbが設けられ、洗浄剤吐出ノズルNbからガラス基板1に向けて洗浄剤が供給される。
 カップスクラブ洗浄装置10を用いたガラス基板1の洗浄においては、ガラス基板1が回転支持ローラ14により回転させられた状態で、スポンジブラシ11が、回転することでガラス基板1の両主表面が洗浄され、微小付着物が除去される。
 カップスクラブ洗浄における回転軸12の回転数としては特に限定されないが、回転数が小さすぎると仕事量が小さくなり、回転数が大きすぎると摩擦係数が小さくなるため、100~120rpm程度が好ましい。
 次に、本実施の形態が採用し得るその他の工程について説明する。なお、本実施の形態のガラス基板の製造方法は、上記した最終洗浄工程を有していればよく、その他の工程については特に限定されない。そのため、以下に説明するその他の工程は、例示であり、適宜設計変更を行うことができる。
 <ブランクス製造工程>
 ブランクス製造工程は、ガラス素材を溶融し、溶融したガラス素材からガラス基板(ブランクス)を得る工程である。
 ガラス素材の材料としては、アルミノシリケートガラス、ソーダライムガラス、ボロシリケートガラス、LiO-SiO系ガラス、LiO-Al-SiO系ガラス、R’O-Al-SiO系ガラス(R’=Mg、Ca、Sr、Ba)等を使用することができる。ガラスの溶融方法としては特に限定されず、通常は上記ガラス素材を公知の温度、時間にて高温で溶融する方法を採用することができる。
 ブランクスを得る方法としては特に限定されず、たとえば溶融したガラス素材を下型に流し込み、上型によってプレス成型して円板状のガラス基板(ブランクス)を得る方法を採用することができる。なお、ブランクスは、プレス成型に限られず、たとえばダウンドロー法やフロート法等で形成したシートガラスを研削砥石で切り出して作製してもよい。この成型工程において、ブランクスの表面近傍には、異物や気泡が混入し、あるいはキズがついて、欠陥が発生する。
 ブランクスの大きさとしては特に限定されず、たとえば、外径が2.5インチ、1.8インチ、1インチ、0.8インチ等の種々の大きさのブランクスを作製することができる。ガラス基板の厚みについては特に限定されず、たとえば、2mm、1mm、0.8mm、0.63mm等の種々の厚みのブランクスを作製することができる。
 プレス成型や切り出しによって作製されたブランクスは、耐熱部材のセッターと交互に積層し、高温の電気炉を通過させることにより、反りが低減され、ガラスの結晶化が促進され得る。
 <第一研削工程>
 第一研削工程は、ブランクスの両表面を研削加工し、ガラス基板の平行度、平坦度および厚みを予備調整する工程である。
 第一研削工程では、ブランクスの主表面を、ラッピング(研削)加工してガラス母材を得る。ラッピング加工は、遊星歯車機構を利用した両面ラッピング装置により、アルミナ系遊離砥粒を用いて行う。具体的には、ラッピング加工は、ブランクスの両主表面に上下からラップ定盤を押圧させ、遊離砥粒を含む研削液を板状ガラスの主表面上に供給し、これらを相対的に移動させる。このラッピング加工により、平坦な主表面を有するガラス基板が得られる。
 <コアリング工程>
 コアリング工程は、ガラス基板の中心部に円形の孔(中心孔)を開ける工程である。具体的には、コアリング工程は、円筒状のダイヤモンドドリルを用いて、このガラス基板の中心部に内孔を形成し、円環状のガラス基板を成形する工程である。
 <内周研磨工程>
 内周研磨工程は、ガラス基板とスペーサとを1枚ずつ交互に重ねて積層体を作成し、内周端面研磨機により内周端面を研磨する工程である。スペーサとしては特に限定されないが、たとえばポリプロピレン製で厚さ0.3mm、内径21mm、外径64mmのものを採用することができる。研磨機のブラシ毛は、たとえば直径0.2mmのナイロン繊維を採用することができる。回転ブラシの回転数は、たとえば10000rpmとすることができる。内周研磨用研磨液は、たとえばフッ酸系溶剤を含むものを用いることができ、研磨剤としてはたとえば平均一次粒子径3μmの酸化セリウムを用いることができる。
 <外周研磨工程>
 外周研磨工程は、ガラス基板とスペーサとを1枚ずつ交互に重ねて積層体を作成し、外周端面研磨機により外周端面を研磨する工程である。スペーサ、使用する研磨機の研磨条件は、内周研磨工程で採用した条件と同様である。
 <粗研磨工程>
 粗研磨工程(第一研磨工程)は、後続する鏡面研磨工程において最終的に必要とされる面粗さが効率よく得られるように、ガラス基板の両主表面を研磨剤スラリーを用いて研磨加工する工程である。この工程で採用される研磨方法としては特に限定されず、両面研磨機を用いて研磨することが可能である。
 使用する研磨パッドは、研磨パッドの硬度が研磨による発熱により低下すると研磨面の形状変化が大きくなるため、硬質パッドを使用することが好ましく、たとえば発泡ウレタンを使用することが好ましい。研磨液は、平均一次粒子径が0.6~2.5μmの酸化セリウムを使用し、酸化セリウムを溶媒に分散させてスラリー状にしたものが好ましい。溶媒としては特に限定されず、水を採用することができる。また、これら溶媒には、界面活性剤や分散剤を添加することができる。溶媒と酸化セリウムとの混合比率は、1:9~3:7程度である。平均一次粒子径が0.6μm未満の場合には、研磨パッドは、両主表面を良好に研磨できない傾向がある。一方、平均一次粒子径が2.5μmを超える場合には、研磨パッドは、端面の平坦度を悪化させたり、傷を発生する可能性がある。
 研磨剤スラリーの添加量としては特に限定されず、たとえば、1000~9000mL/分である。
 粗研磨工程におけるガラス基板の研磨量は、25~40μm程度とするのが好ましい。ガラス基板の研磨量が25μm未満の場合には、キズや欠陥が充分に除去されない傾向がある。一方、ガラス基板の研磨量が40μmを超える場合には、ガラス基板は、必要以上に研磨されることになり、製造効率が低下する傾向がある。
 粗研磨工程を終えたガラス基板は、中性洗剤、純水、IPA等で洗浄することが好ましい。
 <化学強化工程>
 化学強化工程は、ガラス基板を強化処理液に浸漬し、ガラス基板の耐衝撃性、耐振動性および耐熱性等を向上させる工程である。
 化学強化工程は、ガラス基板に化学強化を施す工程である。化学強化に用いる強化処理液としては、たとえば、硝酸カリウム(60%)と硝酸ナトリウム(40%)の混合溶液などを挙げることができる。化学強化においては、たとえば、強化処理液を300℃~400℃に加熱し、ガラス基板を200~300℃に予熱し、強化処理液中に3~4時間浸漬することによって行うことができる。この浸漬の際に、ガラス基板の両主表面全体が化学強化されるように、複数のガラス基板の端面を保持するホルダに収納した状態で行うことが好ましい。
 なお、化学強化工程後に、ガラス基板を大気中に待機させる待機工程や、水浸漬工程を採用して、ガラス基板の表面に付着した強化処理液を除去するとともに、ガラス基板の表面を均質化することが好ましい。このような工程を採用することにより、化学強化層が均質に形成され圧縮歪が均質となり変形が生じ難く平坦度が良好で、機械的強度も良好となる。待機時間や水浸漬工程の水温は特に限定されず、たとえば大気中に1~60秒待機させ、35~100℃程度の水に浸漬させるとよく、製造効率を考慮して適宜決めればよい。
 <鏡面研磨工程>
 鏡面研磨工程(第二研磨工程)は、ガラス基板の両主表面をさらに精密に研磨加工する工程である。鏡面研磨工程では、粗研磨工程で使用する両面研磨機と同様の両面研磨機を使用することができる。
 研磨パッドは、粗研磨工程で使用する研磨パッドよりも低硬度の軟質パッドを使用することが好ましく、例えば発泡ウレタンやスウェードを使用するのが好ましい。
 研磨剤スラリーとしては、粗研磨工程と同様の酸化セリウム等を含有するスラリーを用いることができる。ただし、ガラス基板の表面をより滑らかにするために、砥粒の粒径がより細かくバラツキが少ない研磨剤スラリーを用いるのが好ましい。たとえば、平均粒径が20~70nmのコロイダルシリカを溶媒に分散させてスラリー状にしたものを研磨剤スラリーとして用いることが好ましい。溶媒としては特に限定されず、水を採用することができる。また、これら溶媒には、界面活性材や分散剤を添加することができる。溶媒とコロイダルシリカとの混合比率は、1:9~3:7程度が好ましい。
 研磨剤スラリーの添加量としては特に限定されず、たとえば、100~600mL/分である。
 鏡面研磨工程での研磨量は、2~5μm程度とするのが好ましい。研磨量をこのような範囲とすることにより、得られるガラス基板は、ガラス基板の表面に発生した微小な荒れやうねり、あるいはこれまでの工程で発生した微小なキズ痕といった微小欠陥が良好に除去される。その結果、本実施の形態のガラス基板の製造方法は、得られるガラス基板の平坦度を向上させることができ、端部領域において磁気ヘッドがより安定して浮上し得るガラス基板を作製することができる。
 また、本工程では、鏡面研磨工程の研磨条件を適宜調整することにより、ガラス基板の両主表面の平坦度を3μm以下、ガラス基板の両主表面の面粗さRaを0.1nmまで小さくすることができる。
 <最終洗浄工程>
 最終洗浄工程は、すでに上記したとおりである。本実施の形態では、最終洗浄工程において、ガラス基板の主表面および端面の両方に対して、ガラス基板を回転させながら同時に超音波洗浄を行う。そのため、ガラス基板の主表面および端面の両方において、微小付着物の残存が少なく、得られるガラス基板は後発エラーを起こしにくい。
 最終洗浄工程を経たガラス基板は、キズ、割れ、異物の付着等の有無が検査されたのち、異物等が表面に付着しないように、清浄な環境中で専用収納カセットに収納され、真空パックされて出荷される。
 <磁性膜形成工程>
 磁性膜形成工程は、蒸着装置を用いてガラス基板に磁性膜を形成する工程である。磁性膜の形成方法としては特に限定されず、従来公知の方法を採用することができる。たとえば、磁性粒子を分散させた熱硬化性樹脂を基板上にスピンコートして形成する方法や、スパッタリング、無電解めっきにより形成する方法を採用することができる。スピンコート法での膜厚は約0.3~1.2μm程度、スパッタリング法での膜厚は0.04~0.08μm程度、無電解めっき法での膜厚は0.05~0.1μm程度である。これらの形成方法により磁性膜を成膜する場合、磁性膜の種類によっては、ガラス基板は、100~500℃程度に保持される。
 磁性膜に用いる磁性材料としては特に限定されず、従来公知の磁性材料を用いることができる。高い保磁力を得るために、結晶異方性の高いCoを基本とし、残留磁束密度を調整する目的でNiやCrを加えたCo系合金などを用いることができる。
 また、記録用のメディアを作製する場合には、Co-Pt合金のように、遷移金属元素と貴金属元素とからなる合金であって、遷移金属元素(Co)と貴金属元素(Pt)との原子含有量がほぼ等しい合金や、遷移金属元素(Co)と貴金属元素(Pt)との原子含有量がほぼ等しく、かつ、Niの原子含有量が0.1%以上50%以下であるCo-Ni-Pt合金や、遷移金属元素(CoおよびNi)と貴金属元素(Pt)との原子含有量がほぼ等しいCo-Ni-Pt合金や、Co-Cr-Pt合金や、Fe-Pt合金と、Cu酸化物とを含有した薄膜を形成することが好ましい。この場合、薄膜の下部には、ソフト磁性層(保磁力の小さな材料、Co系アモルファスなど)を積層することが好ましい。
 また、磁気ヘッドの滑りをよくするために、磁性膜の表面に潤滑剤をコーティングしてもよい。
 さらに必要に応じて、磁性膜には、下地層や保護層を設けてもよい。下地層および保護層は、磁性膜の種類に応じて選択される。
 以上、本実施の形態のガラス基板の製造方法によれば、ガラス基板の最終洗浄工程において、ガラス基板を回転させながら洗浄することにより、超音波を全面に照射することができ、高効率で微小付着物などの表面欠陥を除去し得るHDD用ガラス基板の製造方法を提供することができる。
 なお、本実施の形態は、HDDの製造方法に限定されるものではなく、たとえば、光磁気ディスクや光ディスク等の製造方法としても用いることができる。
 また、本実施の形態は、必要に応じて、研削工程を2つの工程に分けて順次行ったり、化学強化工程をコアリング工程、研削工程、粗研磨工程、鏡面研磨工程のいずれの工程の後に行ってもよく、適宜設計変更が可能である。
 さらに、本実施の形態は、ガラス基板に生じた傷のエッジ緩和処理として、ガラス基板をフッ化水素浸漬処理に供してもよい。
 (実施の形態2)
 本実施の形態のガラス基板の製造方法は、最終洗浄工程において、超音波発生器2aから照射される超音波を遮蔽する遮蔽部材Bが設けられており、超音波発生器2aがガラス基板の径よりも大きな幅を有する以外は、実施の形態1のガラス基板1の製造方法と同じである。そのため、重複する工程については説明を省略する。
 図5に示されるように、遮蔽部材Bは、超音波発生器2aから照射された高周波の超音波を一部遮蔽するために、高周波の超音波がガラス基板1に至る経路内に設けられている。
 遮蔽部材Bとしては特に限定されず、たとえば、金属板や金網など超音波を反射する材料、フッ素樹脂やポリエステルなどの単体で超音波の吸収の小さい材料、またはエポキシ樹脂やウレタン樹脂など単体では超音波を吸収し易い材料にガラスバルーン、石英など超音波を吸収しにくい材料を混合して結果的に超音波を吸収しにくくなった材料などを用いて成型した部材や、これら材料を表面に設けた部材を採用することができる。
 遮蔽部材Bの大きさ(長さ、形状、幅)は特に限定されず、超音波発生器2aから照射された超音波の一部を遮蔽し得る長さ、形状、幅を有していればよい。
 本実施の形態では、遮蔽部材Bは、図5に示されるように、超音波発生器2aから照射された超音波のうち、ガラス基板1の紙面左側に照射される位置から照射された超音波を遮蔽する位置に設けられている。矢印A9は、遮蔽部材により遮蔽される超音波の照射方向を示している。これにより、超音波は、ガラス基板1の紙面右側にのみ照射されるため、ガラス基板1は矢印A2方向に回転する。その結果、端面の全面に超音波が照射され、微小付着物が除去される。
 (実施の形態3)
 本実施の形態のガラス基板の製造方法は、最終洗浄工程において、超音波発生器2bに設けられた振動板4aの厚みが不均一であり、超音波発生器2bがガラス基板の径よりも大きな幅を有する以外は、実施の形態1のガラス基板1の製造方法と同じである。そのため、重複する工程については説明を省略する。
 図6に示されるように、振動板4aは、紙面右側から紙面左側にかけて厚みが増すように形成されている。その結果、ガラス基板1の紙面右側よりも、紙面左側に照射される超音波の強度が小さくなる。矢印A10は、強度の小さい超音波の照射方向を示している。
 本実施の形態では、紙面右側から紙面左側にかけて厚みが増すように形成された振動板4aを例示しているが、振動板4aの形状は特に限定されない。振動板4aの形状は、ガラス基板1に非対称に超音波を照射し得る形状であればよい。
 本実施の形態では、図6に示されるように、超音波は、ガラス基板1の紙面右側に多く照射されるため、ガラス基板1は矢印A2方向に回転する。その結果、端面の全面に超音波が照射され、微小付着物が除去される。
 (実施の形態4)
 本実施の形態のガラス基板の製造方法は、最終洗浄工程において、ガラス基板1を保持する保持具5の位置が異なり、超音波発生器2cがガラス基板の径よりも大きな幅を有する以外は、実施の形態1のガラス基板1の製造方法と同じである。そのため、重複する工程については説明を省略する。
 図7に示されるように、紙面右側に配置された保持具は、実施の形態1に示した保持具よりも超音波の照射方向の下流側に設けられている。参照符号5aは、下流側に設けられた保持具を示している。そのため、ガラス基板1の右側に照射された超音波は、当該保持具5により遮蔽または減衰されることなくガラス基板1に照射される。その結果、ガラス基板1はA2方向に回転しながら洗浄される。
 なお、保持具の位置としては特に限定されず、ガラス基板1の端面に非対称に高周波の超音波が照射され、結果的にガラス基板1が回転し得る位置に設けられればよい。また、上記のとおり、保持具の個数、大きさは特に限定されない。
 本実施の形態の洗浄方法によれば、保持具5の位置を変えてガラス基板1を回転可能に配置している。そのため、超音波発生器2cから照射される超音波は、遮蔽板により遮蔽されたり、厚みの異なる振動板により減弱されることがない。その結果、ガラス基板には、多くの超音波が照射され、より短時間でより清浄に洗浄される。
 上記ガラス基板の製造方法の技術的特徴を下記にまとめる。
 本発明のガラス基板の製造方法は、ガラス基板の最終洗浄工程を有する磁気ディスク用ガラス基板の製造方法であって、前記最終洗浄工程は、洗浄槽内において、保持冶具で保持されたガラス基板に、430~2000kHzの高周波の超音波を照射する高周波洗浄工程を有し、該超音波洗浄工程において、超音波は、ガラス基板が回転するよう、ガラス基板の端面に対して非対称に照射されることを特徴とする。
 430kHz以上の高周波の超音波は、低周波と比較して照射方向に直進する性質が強い。ガラス基板は、直進する高周波の超音波を非対称に照射されることにより回転する。そのため、ガラス基板の両主表面および端面(内端面および外端面)の両方が同時に均一に洗浄される。その結果、本発明によれば、微小付着物などの表面欠陥が高効率で除去され、後発エラーを発生しにくいガラス基板が得られる。
 前記超音波は、前記ガラス基板の一部に照射されることが好ましい。
 超音波は、前記ガラス基板の一部に照射されることにより、ガラス基板を保持冶具に保持した状態で回転させやすい。その結果、ガラス基板の表面欠陥は除去されやすい。
 なお、本発明において、ガラス基板の一部に照射する態様には、高周波の超音波の照射位置を変えて高周波の超音波をガラス基板の一部にのみ照射する態様のほかに、照射した高周波の超音波の照射経路を遮断して、一部をガラス基板に照射する態様や、照射される高周波の超音波の強度を部分的に変化させて、ガラス基板に照射される高周波の超音波の強度を変える態様や、ガラス基板を保持する保持具の位置や大きさ等を調整して、ガラス基板に照射される高周波の超音波の割合を変化させる態様、等が含まれる。
 前記洗浄槽内において、0.5~1ppmの水素水が用いられることが好ましい。
 洗浄槽内において、0.5~1ppmの水素水が用いられることにより、純水中の直進性阻害因子である酸素、窒素が除外されるため超音波洗浄の効率がさらに向上する。
 前記洗浄槽において、開口径が0.02μmのフィルタを用いることが好ましい。
 洗浄槽において、開口径が0.02μmのフィルタを用いることにより、除去した微小付着物などの表面欠陥がフィルタに捕捉されやすい。その結果、洗浄槽内は、清浄に保たれる。
 本発明は、前記超音波洗浄工程の前に、スクラブ洗浄工程を有することが好ましい。
 本発明は、超音波洗浄工程の前に、スクラブ洗浄工程を有することにより、あらかじめスクラブ洗浄により両主表面の表面欠陥を取り除いた状態で、端面に超音波洗浄を行うことができるため、洗浄効率を、より向上させることができる。
 以下、本発明のガラス基板の製造方法について実施例により詳述する。なお、本発明のガラス基板の製造方法は、以下に示す実施例になんら限定されるものではない。
 <実施例1>
 以下の方法によりガラス基板を作製した。
 [ブランクス製造工程]
 ガラス素材として、SiO、Al、RO(R=K、Na、Li)を主成分としたアルミノシリケートガラスを用い、溶融したガラス素材をプレス成形して、外径が67mmの円板状のブランクスを作製した。ブランクスの厚みは1.0mmとした。
 [第一研削工程]
 ガラス基板の両主表面を、両面研磨機(浜井産業(株)製、16Bタイプ)を用いて粗研磨加工した。研磨パッドには平均一次粒子径9μmのダイヤモンド砥粒が樹脂パッドに埋没された研磨パッド用い、研磨水として水と冷却材を9:1で混合したものを用いた。また、加重は200g/cmとした。研磨剤スラリーの添加量は、4.5L/分とした。
 [コアリング]
 円筒状のダイヤモンド砥石を備えたコアドリルを用いてブランクスの中心部に直径が約19.6mmの円形の中心孔を開けた。鼓状のダイヤモンド砥石を用いて、ブランクスの外周端面および内周端面を、外径65mm、内径20mmに内・外径加工した。
 [内周研磨・外周研磨工程]
 ブランクスを100枚重ね、この状態で、ブランクスの外周端面および内周端面を、端面研磨機((株)舘野機械製作所製、TKV-1)を用いて研磨加工した。研磨機のブラシ毛として、直径が0.2mmのナイロン繊維を用いた。研磨液は、平均一次粒子径が3μmの酸化セリウムを砥粒(研磨液成分)として含有するスラリーを用いた。
 [粗研磨工程]
 ガラス基板の両主表面を、両面研磨機(浜井産業(株)製、16Bタイプ)を用いて粗研磨加工した。研磨パッドには発泡ウレタンパッドを、砥粒には平均一次粒子径1μmの酸化セリウム砥粒を用い、水と酸化セリウムとの混合比率は、80:20とした。さらに硫酸を含有する調整液でpHを調整した。また、加重は100g/cmとした。研磨剤スラリーの添加量は、8000mL/分とした。
 [化学強化工程]
 硝酸ナトリウム:硝酸カリウムを3:7混合した強化塩を300℃にて溶融し、ガラス基板を30分間浸漬させた。これにより、ガラス基板の内周端面および外周端面のリチウムイオンおよびナトリウムイオンを、化学強化溶液中のナトリウムイオンおよびカリウムイオンにそれぞれ置換させ、ガラス基板を強化した。
 [鏡面研磨工程]
 ガラス基板の両主表面を、両面研磨機(浜井産業(株)製、16Bタイプ)を用いてさらに精密に研磨加工した。研磨剤スラリーは、平均一次粒子径が20nmのコロイダルシリカを砥粒として水に分散させてスラリー状にしたものを用い、水とコロイダルシリカとの混合比率は、80:20とした。さらに硫酸を含有する調整液でpHを調整した。また、加重は120g/cmとした。研磨剤スラリーの添加量は、500mL/分とした。本工程では、ガラス基板100枚を1バッチとし、5バッチずつ加工した。得られたガラス基板のRaは2Å以下であった。
 [最終洗浄工程]
 図1に示すように、それぞれのガラス基板1を、3個の保持治具5で保持してホルダHに配置した。ホルダHには、100枚のガラス基板1を配置した。洗浄は、アルカリ洗剤槽(80kHz)、純水槽(80kHz)、中性洗剤槽(120kHz)、純水槽(120kHz)、超音波洗浄槽(純水、430kHz)、IPA、IPAベーパー乾燥の順で各洗浄槽に順次浸漬することにより行った。超音波は、それぞれ5分間照射した。
 超音波洗浄槽では、図5に示されるように、ガラス基板の紙面右半分のみに超音波を照射した。超音波の照射により、ガラス基板は、7rpmで回転した。
 [磁性膜形成工程]
 ガラス基板の洗浄後に、両主表面にCr合金からなる密着層、Co-Fe-Zr合金からなる軟磁性層、Ruからなる配向制御下地層、Co-Cr-Pt合金からなる垂直磁気記録層、C系の保護層、F系からなる潤滑層を順次成膜し、実施例1の垂直磁気記録ディスクを製造した。
 <実施例2>
 超音波洗浄槽における超音波の周波数を950kHzに変更した以外は、実施例1と同様の方法により垂直磁気記録ディスクを作製した。
 <実施例3>
 超音波洗浄槽において純水の代わりに、純水を脱気した後に水素を0.7ppm溶解させた水素水を使用した以外は、実施例2と同様の方法により垂直磁気記録ディスクを作製した。
 <実施例4>
 超音波洗浄槽において口径0.02μmのフィルタを介してポンプ循環させた以外は、実施例2と同様の方法により垂直磁気記録ディスクを作製した。
 <実施例5>
 最終洗浄工程の前工程として、カップスクラブ洗浄を実施して、約500nm以上の付着物をあらかじめ除去もしくは活性な状態にした以外は、実施例4と同様の方法により垂直磁気記録ディスクを作製した。カップスクラブ洗浄は、アルカリ洗剤を上部に設けられた洗浄剤吐出ノズルより供給しながら100rpmでスポンジブラシを回転させて3分間行った。
 <比較例1>
 図9に示す装置を用いた以外は、実施例1と同様の方法により垂直磁気記録ディスクを作製した。
 <比較例2>
 超音波洗浄槽における超音波の周波数を430kHzに変更した以外は、比較例1と同様の方法により垂直磁気記録ディスクを作製した。
 実施例1~5および比較例1~2で得られた垂直磁気記録ディスクについて、グライド評価を行った。試験方法を以下に示すとともに、結果を表1に示す。
 [グライド評価]
 図8に示す浮上テストを実施した。図8に示されるように、磁気ヘッドMHがサスペンションSにより保持され、磁気ヘッドMHのガラス基板1表面からの浮上量(浮上高さ)をhとした。
 通常はガラス基板1上に磁気薄膜層を成膜して、情報記録媒体(磁気ディスク記録媒体)の状態で試験を行なうが、今回はガラス基板1上に潤滑層のみを形成してグライドテストを実施した。これは、仮に、ガラス基板1上に付着物Pが存在している状態で付着物Pの上に磁気薄膜層(約100nm)が形成すると、付着物Pが成膜の過程により徐々に埋没し、過酷な試験とならないためである。本発明の評価方法では、ガラス基板1上には潤滑層(約数nm)のみを形成してグライドテストを行なったため、より過酷な試験で評価しているといえる。
 浮上テストおよび全面走査後のエラー発生率の結果を表1に示す。各実施例および比較例においては、100枚のガラス基板に対して、浮上テストを行ない、エラー発生率を調査した。
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、実施例1~5のガラス基板の製造方法では、ガラス基板を回転させながら超音波洗浄を行ったため、ガラス基板の主表面および端面の全面を同時に洗浄できた。そのため、得られた垂直磁気記録ディスクは、グライド評価において、後発エラーを起こす垂直磁気記録ディスクの枚数が100枚中10枚以下となり、良好な表面性状を有していた。一方、超音波洗浄の際にガラス基板を回転させずに超音波を照射した比較例1の製造方法では、端面のうち、超音波が照射されなかった面に微小付着物が残存したと考えられた。そのため、得られた垂直磁気記録ディスクは、グライド評価において、後発エラーを起こす垂直磁気記録ディスクの枚数が100枚中20枚となり、表面性状が良好ではなかった。また、超音波洗浄の際にガラス基板を回転させず、かつ、超音波の周波数を430kHzとした比較例2では、比較例1よりもさらに微小付着物が残存したと考えられた。そのため、得られた垂直磁気記録ディスクは、グライド評価において、後発エラーを起こす垂直磁気記録ディスクの枚数が100枚中25枚となり、表面性状が良好ではなかった。
 1、101 ガラス基板
 2、21、2a、2b、2c 超音波発生器
 3 超音波発生器本体
 4、4a 振動板
 5、51、5a、 保持具
 6 ロールスクラブ洗浄装置
 7 ローラ
 8、11 スポンジブラシ
 9、14 回転支持ローラ
 10 カップスクラブ洗浄装置
 12 回転軸
 13 端部円盤
 B 遮蔽部材
 H ホルダ
 h 浮上量
 MH 磁気ヘッド
 Na、Nb 洗浄剤吐出ノズル
 P 付着物
 S サスペンション

Claims (5)

  1.  ガラス基板の最終洗浄工程を有する磁気ディスク用ガラス基板の製造方法であって、
     前記最終洗浄工程は、洗浄槽内において、保持冶具で保持されたガラス基板に、430~2000kHzの高周波の超音波を照射する超音波洗浄工程を有し、
     該超音波洗浄工程において、超音波は、ガラス基板が回転するよう、ガラス基板の端面に対して非対称に照射される、HDD用ガラス基板の製造方法。
  2.  前記超音波は、前記ガラス基板の一部に照射される請求項1記載のHDD用ガラス基板の製造方法。
  3.  前記洗浄槽内において、0.5~1ppmの水素水を用いる、請求項1または2記載のHDD用ガラス基板の製造方法。
  4.  前記洗浄槽において、開口径が0.02μmのフィルタを用いる、請求項1~3のいずれか1項に記載のHDD用ガラス基板の製造方法。
  5.  前記超音波洗浄工程の前に、スクラブ洗浄工程を有することを特徴とする請求項1~4のいずれか1項に記載のHDD用ガラス基板の製造方法。
     
PCT/JP2012/007071 2011-12-27 2012-11-05 Hdd用ガラス基板の製造方法 WO2013099082A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011286096 2011-12-27
JP2011-286096 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099082A1 true WO2013099082A1 (ja) 2013-07-04

Family

ID=48696635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/007071 WO2013099082A1 (ja) 2011-12-27 2012-11-05 Hdd用ガラス基板の製造方法

Country Status (1)

Country Link
WO (1) WO2013099082A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220157340A1 (en) * 2017-09-29 2022-05-19 Hoya Corporation Method for manufacturing ring-shaped glass spacer

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183089A (ja) * 1989-12-11 1991-08-09 Hitachi Electron Eng Co Ltd ディスクのエッジ洗浄装置
JPH05122958A (ja) * 1991-10-29 1993-05-18 Sutaaraito Kogyo Kk 超音波モータ
JPH05317820A (ja) * 1992-05-25 1993-12-03 Shimada Phys & Chem Ind Co Ltd 超音波洗浄方法及び装置
JPH06154707A (ja) * 1992-11-27 1994-06-03 Alps Electric Co Ltd 流体攪拌器
JPH07313946A (ja) * 1994-05-26 1995-12-05 Hitachi Ltd 磁気ディスク基板の洗浄装置
JP2002093765A (ja) * 2000-09-20 2002-03-29 Kaijo Corp 基板洗浄方法および基板洗浄装置
JP2003200042A (ja) * 2001-12-31 2003-07-15 Michiteru Nakahara 反応装置
JP2007022866A (ja) * 2005-07-19 2007-02-01 Asahi Glass Co Ltd 円盤状ガラス基板の洗浄方法および磁気ディスク
JP2009078214A (ja) * 2007-09-26 2009-04-16 Nippon Paper Industries Co Ltd 円筒型フィルタの洗浄装置
JP2009125645A (ja) * 2007-11-21 2009-06-11 Pre-Tech Co Ltd 超音波洗浄装置及び超音波洗浄方法
JP2009231667A (ja) * 2008-03-25 2009-10-08 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2010153541A (ja) * 2008-12-25 2010-07-08 Siltronic Ag 超音波洗浄装置及び超音波洗浄方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03183089A (ja) * 1989-12-11 1991-08-09 Hitachi Electron Eng Co Ltd ディスクのエッジ洗浄装置
JPH05122958A (ja) * 1991-10-29 1993-05-18 Sutaaraito Kogyo Kk 超音波モータ
JPH05317820A (ja) * 1992-05-25 1993-12-03 Shimada Phys & Chem Ind Co Ltd 超音波洗浄方法及び装置
JPH06154707A (ja) * 1992-11-27 1994-06-03 Alps Electric Co Ltd 流体攪拌器
JPH07313946A (ja) * 1994-05-26 1995-12-05 Hitachi Ltd 磁気ディスク基板の洗浄装置
JP2002093765A (ja) * 2000-09-20 2002-03-29 Kaijo Corp 基板洗浄方法および基板洗浄装置
JP2003200042A (ja) * 2001-12-31 2003-07-15 Michiteru Nakahara 反応装置
JP2007022866A (ja) * 2005-07-19 2007-02-01 Asahi Glass Co Ltd 円盤状ガラス基板の洗浄方法および磁気ディスク
JP2009078214A (ja) * 2007-09-26 2009-04-16 Nippon Paper Industries Co Ltd 円筒型フィルタの洗浄装置
JP2009125645A (ja) * 2007-11-21 2009-06-11 Pre-Tech Co Ltd 超音波洗浄装置及び超音波洗浄方法
JP2009231667A (ja) * 2008-03-25 2009-10-08 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
JP2010153541A (ja) * 2008-12-25 2010-07-08 Siltronic Ag 超音波洗浄装置及び超音波洗浄方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220157340A1 (en) * 2017-09-29 2022-05-19 Hoya Corporation Method for manufacturing ring-shaped glass spacer
US11705158B2 (en) * 2017-09-29 2023-07-18 Hoya Corporation Method for manufacturing ring-shaped glass spacer

Similar Documents

Publication Publication Date Title
JP5005645B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP4998095B2 (ja) 情報記録媒体用ガラス基板の製造方法、情報記録媒体用ガラス基板及び磁気記録媒体
JPWO2009031401A1 (ja) 情報記録媒体用ガラス基板の製造方法、情報記録媒体用ガラス基板及び磁気記録媒体
JP5037975B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2013145503A1 (ja) Hdd用ガラス基板の製造方法
JP2009173295A (ja) 記録媒体用ガラス基板の収納容器、記録媒体用ガラス基板収納体、記録媒体用ガラス基板の製造方法、記録媒体用ガラス基板及び記録媒体
JP5361185B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP4894678B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP2014188668A (ja) ガラス基板の製造方法
WO2013099082A1 (ja) Hdd用ガラス基板の製造方法
JP2011159367A (ja) 情報記録媒体用ガラス基板の製造方法及び情報記録媒体の製造方法
JP2009151881A (ja) 磁気ディスク用ガラス基板、磁気ディスクおよび磁気ディスク用ガラス基板の製造方法
JP2006263879A (ja) 磁気ディスク用基板の製造方法、磁気ディスク用基板の製造装置及び磁気ディスクの製造方法
JP6034580B2 (ja) Hdd用ガラス基板の製造方法
WO2014148421A1 (ja) 情報記録媒体用ガラス基板の製造方法
JP2005293840A (ja) ガラスディスク基板、磁気ディスク、磁気ディスク用ガラスディスク基板の製造方法及び磁気ディスクの製造方法
JP5859757B2 (ja) Hdd用ガラス基板の製造方法
JP5701938B2 (ja) 磁気ディスク用ガラス基板の製造方法
JP5886108B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP5897959B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP2013016214A (ja) Hdd用ガラス基板、hdd用ガラス基板の製造方法、及びhdd用磁気記録媒体
JP2011067901A (ja) 磁気ディスク用ガラス基板の製造方法
JP6088545B2 (ja) Hdd用ガラス基板の製造方法、情報記録媒体の製造方法、及びhdd用ガラス基板
JP2014175023A (ja) 磁気記録媒体用ガラス基板の製造方法
WO2015041011A1 (ja) 情報記録媒体用ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862052

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP