WO2014148421A1 - 情報記録媒体用ガラス基板の製造方法 - Google Patents

情報記録媒体用ガラス基板の製造方法 Download PDF

Info

Publication number
WO2014148421A1
WO2014148421A1 PCT/JP2014/057103 JP2014057103W WO2014148421A1 WO 2014148421 A1 WO2014148421 A1 WO 2014148421A1 JP 2014057103 W JP2014057103 W JP 2014057103W WO 2014148421 A1 WO2014148421 A1 WO 2014148421A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
cleaning
information recording
recording medium
cleaning step
Prior art date
Application number
PCT/JP2014/057103
Other languages
English (en)
French (fr)
Inventor
葉月 中江
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Publication of WO2014148421A1 publication Critical patent/WO2014148421A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/8404Processes or apparatus specially adapted for manufacturing record carriers manufacturing base layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/07Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool
    • B24B37/10Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping
    • B24B37/105Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement
    • B24B37/107Lapping machines or devices; Accessories designed for working plane surfaces characterised by the movement of the work or lapping tool for single side lapping the workpieces or work carriers being actively moved by a drive, e.g. in a combined rotary and translatory movement in a rotary movement only, about an axis being stationary during lapping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/27Work carriers
    • B24B37/30Work carriers for single side lapping of plane surfaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3649Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer made of metals other than silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/002Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to perform ion-exchange between alkali ions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • C03C23/0075Cleaning of glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B2203/00Details of cleaning machines or methods involving the use or presence of liquid or steam
    • B08B2203/02Details of machines or methods for cleaning by the force of jets or sprays
    • B08B2203/0288Ultra or megasonic jets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment

Definitions

  • the present invention relates to a method for producing a glass substrate for an information recording medium.
  • an aluminum substrate or a glass substrate is used as an information recording medium (magnetic disk recording medium) used in a computer or the like.
  • a magnetic thin film layer is formed on these substrates, and information is recorded on the magnetic thin film layer by magnetizing the magnetic thin film layer with a magnetic head.
  • a hard disk drive device which has a recording capacity of 500 GB (single side 250 GB) and a surface recording density of 630 Gb / square inch or more with one 2.5 inch recording medium.
  • glass substrate for hard disk
  • a glass substrate for hard disk used for an information recording medium (platter) of a hard disk drive device affects reading / writing of recording
  • cleanliness is particularly required.
  • batch-type ultrasonic cleaning methods in which ultrasonic waves are applied to the liquid in which the glass substrate is immersed to clean the glass substrate, and scrub cleaning process methods in which the brush is cleaned while contacting the substrate surface. It has been.
  • the scrub cleaning process has a very strong cleaning power because the brush is cleaned while directly contacting the object to be cleaned. However, the removed dirt is accumulated on the brush, and once removed, the dirt is rubbed against the glass substrate again, and often reattaches to the surface of the glass substrate.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-166043
  • Patent Document 2 JP-A-2007-22866
  • the present invention has been made in view of the above circumstances, and is an information recording medium capable of suppressing adhesion of residual deposits on the surface of a glass substrate in the manufacturing process of the glass substrate for information recording medium.
  • An object of the present invention is to provide a method for manufacturing a glass substrate.
  • the manufacturing method of the glass substrate for information recording media based on this invention, it is a manufacturing method of the glass substrate for magnetic recording, Comprising: The process of shape
  • the frequency of the ultrasonic wave applied to the liquid is 400 kHz or more and 1.5 MHz or less, and the output is 5 W / cm 2 or more and 50 W / cm 2 or less.
  • the glass substrate is cleaned by holding the glass substrate so that the planar portion of the glass substrate is vertical.
  • the glass substrate is cleaned by rotating the glass substrate to 200 rpm or more and 2000 rpm or less.
  • the glass substrate is cleaned by irradiating both surfaces of the glass substrate with a liquid to which ultrasonic waves are applied simultaneously.
  • the method for manufacturing a glass substrate for information recording medium based on the present invention, in the manufacturing process of the glass substrate for information recording medium, it is possible to suppress the adhesion of residual deposits on the surface of the glass substrate. It is possible to provide a method for manufacturing a glass substrate for a medium.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2. It is a top view which shows the information recording medium provided with the glass substrate 1 as an information recording medium.
  • FIG. 5 is a cross-sectional view taken along line VV in FIG. 4. It is a flowchart which shows the manufacturing method of a glass substrate. It is a front view which shows typically the holding state of a glass substrate. It is a right view which shows typically the holding state of a glass substrate. It is a front view which shows typically schematic structure of the holding
  • FIG. 1 is a perspective view showing the information recording apparatus 30.
  • the information recording apparatus 30 includes the glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium (hereinafter also simply referred to as a glass substrate) in the embodiment as the information recording medium 10.
  • the information recording device 30 includes an information recording medium 10, a housing 20, a head slider 21, a suspension 22, an arm 23, a vertical shaft 24, a voice coil 25, a voice coil motor 26, a clamp member 27, and a fixing screw. 28.
  • a spindle motor (not shown) is installed on the upper surface of the housing 20.
  • An information recording medium 10 such as a magnetic disk is rotatably fixed to the spindle motor by a clamp member 27 and a fixing screw 28.
  • the information recording medium 10 is rotationally driven by this spindle motor at, for example, several thousand rpm.
  • a compression stress layer 12 see FIG. 5
  • a magnetic recording layer 14 see FIGS. 4 and 5 are formed on the glass substrate 1. To be manufactured.
  • the arm 23 is attached so as to be swingable around the vertical axis 24.
  • a suspension 22 formed in a leaf spring (cantilever) shape is attached to the tip of the arm 23.
  • a head slider 21 is attached to the tip of the suspension 22 so as to sandwich the information recording medium 10.
  • a voice coil 25 is attached to the opposite side of the arm 23 from the head slider 21.
  • the voice coil 25 is clamped by a magnet (not shown) provided on the housing 20.
  • a voice coil motor 26 is constituted by the voice coil 25 and the magnet.
  • a predetermined current is supplied to the voice coil 25.
  • the arm 23 swings around the vertical axis 24 by the action of electromagnetic force generated by the current flowing through the voice coil 25 and the magnetic field of the magnet.
  • the suspension 22 and the head slider 21 also swing in the direction of the arrow AR1.
  • the head slider 21 reciprocates on the front and back surfaces of the information recording medium 10 in the radial direction of the information recording medium 10.
  • a magnetic head (not shown) provided on the head slider 21 performs a seek operation.
  • the head slider 21 While the seek operation is performed, the head slider 21 receives a levitation force due to the air flow generated as the information recording medium 10 rotates. Due to the balance between the levitation force and the elastic force (pressing force) of the suspension 22, the head slider 21 travels with a constant flying height with respect to the surface of the information recording medium 10. By the traveling, the magnetic head provided on the head slider 21 can record and reproduce information (data) on a predetermined track in the information recording medium 10.
  • the information recording apparatus 30 on which the glass substrate 1 is mounted as a part of the members constituting the information recording medium 10 is configured as described above.
  • FIG. 2 is a plan view showing glass substrate 1 manufactured by the method for manufacturing a glass substrate for information recording medium according to the present embodiment.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • the glass substrate 1 (glass substrate for information recording medium) used as a part of the information recording medium 10 (see FIGS. 4 and 5) has a main surface 2, a main surface 3, It has the inner peripheral end surface 4, the hole 5, and the outer peripheral end surface 6, and is formed in a disk shape as a whole.
  • the hole 5 is provided so as to penetrate from one main surface 2 toward the other main surface 3.
  • a chamfer 7 is formed between the main surface 2 and the inner peripheral end surface 4 and between the main surface 3 and the inner peripheral end surface 4.
  • a chamfered portion 8 (chamfer portion) is formed between the main surface 2 and the outer peripheral end surface 6 and between the main surface 3 and the outer peripheral end surface 6, a chamfered portion 8 (chamfer portion) is formed.
  • the size of the glass substrate 1 is, for example, 0.8 inch, 1.0 inch, 1.8 inch, 2.5 inch, or 3.5 inch. It is possible to make the size smaller than this or larger than this.
  • the thickness of the glass substrate is, for example, 0.30 mm to 2.2 mm from the viewpoint of preventing breakage.
  • the glass substrate has an outer diameter of about 64 mm, an inner diameter of about 20 mm, and a thickness of about 0.8 mm.
  • the thickness of the glass substrate is a value calculated by averaging the values measured at a plurality of arbitrary points to be pointed on the glass substrate. From the viewpoint of increasing the hardness of the glass substrate, the Vickers hardness of the glass substrate 1 is preferably 610 kg / mm 2 or more.
  • FIG. 4 is a plan view showing an information recording medium 10 provided with a glass substrate 1 as an information recording medium.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG.
  • the information recording medium 10 includes a glass substrate 1, a compressive stress layer 12, and a magnetic recording layer 14.
  • the compressive stress layer 12 is formed so as to cover the main surfaces 2 and 3, the inner peripheral end face 4, and the outer peripheral end face 6 of the glass substrate 1.
  • the magnetic recording layer 14 is formed so as to cover a predetermined region on the main surfaces 2 and 3 of the compressive stress layer 12.
  • the magnetic recording layer 14 is formed on both the compressive stress layer 12 formed on the main surface 2 and the compressive stress layer 12 formed on the main surface 3 (both sides). Is formed.
  • the magnetic recording layer 14 may be provided only on the compression stress layer 12 (one side) formed on the main surface 2, or on the compression stress layer 12 (one side) formed on the main surface 3. It may be provided.
  • the magnetic recording layer 14 is formed by spin-coating a thermosetting resin in which magnetic particles are dispersed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1 (spin coating method).
  • the magnetic recording layer 14 may be formed by a sputtering method or an electroless plating method performed on the compressive stress layer 12 on the main surfaces 2 and 3 of the glass substrate 1.
  • the thickness of the magnetic recording layer 14 is about 0.3 ⁇ m to 1.2 ⁇ m for the spin coating method, about 0.04 ⁇ m to 0.08 ⁇ m for the sputtering method, and about 0.05 ⁇ m to about the electroless plating method. 0.1 ⁇ m. From the viewpoint of thinning and high density, the magnetic recording layer 14 is preferably formed by sputtering or electroless plating.
  • a Co-based alloy or the like containing Ni or Cr as a main component is added for the purpose of adjusting the residual magnetic flux density. Is preferably used.
  • Fe—Pt magnetic materials have been used as magnetic layer materials suitable for heat-assisted recording.
  • the surface of the magnetic recording layer 14 may be thinly coated with a lubricant.
  • a lubricant include those obtained by diluting perfluoropolyether (PFPE), which is a liquid lubricant, with a solvent such as Freon.
  • the magnetic recording layer 14 may be provided with a base layer or a protective layer as necessary.
  • the underlayer in the information recording medium 10 is selected according to the type of magnetic film. Examples of the material for the underlayer include at least one material selected from nonmagnetic metals such as Cr, Mo, Ta, Ti, W, V, B, Al, and Ni.
  • the underlayer provided on the magnetic recording layer 14 is not limited to a single layer, and may have a multilayer structure in which the same or different layers are stacked.
  • a multilayer underlayer such as Cr / Cr, Cr / CrMo, Cr / CrV, NiAl / Cr, NiAl / CrMo, or NiAl / CrV may be used.
  • Examples of the protective layer for preventing wear and corrosion of the magnetic recording layer 14 include a Cr layer, a Cr alloy layer, a carbon layer, a hydrogenated carbon layer, a zirconia layer, and a silica layer. These protective layers can be formed continuously with an in-line type sputtering apparatus together with the underlayer and the magnetic film. These protective layers may be a single layer, or may have a multilayer structure composed of the same or different layers.
  • protective layers may be formed on the protective layer or instead of the protective layer.
  • colloidal silica fine particles are dispersed and coated on a Cr layer with tetraalkoxylane diluted with an alcohol solvent, and then fired to form a silicon oxide (SiO2) layer. May be.
  • FIG. 3 is a flowchart showing a method for manufacturing the glass substrate 1 and the information recording medium 10.
  • step 10 a “glass melting step” of step 10 (hereinafter abbreviated as “S10”, the same applies to step 11 and subsequent steps), the glass material constituting the glass substrate is melted.
  • a glass substrate was produced by pressing the molten glass material using an upper mold and a lower mold.
  • the glass composition used was a general aluminosilicate glass.
  • the method for producing the glass substrate is not limited to molding, and may be cut out from plate glass, which is a known technique, and the glass composition is not limited thereto.
  • both main surfaces of the glass substrate were lapped.
  • This first lapping step was performed using a double-sided lapping device using a planetary gear mechanism. Specifically, the lapping platen was pressed on both surfaces of the glass substrate from above and below, the grinding liquid was supplied onto the main surface of the glass substrate, and these were moved relatively to perform lapping. By this lapping process, a glass substrate having a substantially flat main surface was obtained.
  • a hole was formed in the center of the glass substrate using a cylindrical diamond drill to produce an annular glass substrate.
  • the inner peripheral end surface and the outer peripheral end surface of the glass substrate were ground with a diamond grindstone, and a predetermined chamfering process was performed.
  • the fine uneven shape formed on the main surface in the coring and end face processing in the previous step can be removed in advance. As a result, the polishing time of the main surface in the subsequent process can be shortened.
  • the outer peripheral end surface of the glass substrate was subjected to mirror polishing by brush polishing.
  • a slurry containing general cerium oxide abrasive grains was used as the abrasive grains.
  • the main surface was polished.
  • the first polishing step is mainly intended to correct scratches and warpage remaining on the main surface in the first and second lapping steps (S12, S14) described above.
  • the main surface was polished by a double-side polishing apparatus having a planetary gear mechanism.
  • the abrasive general cerium oxide abrasive grains were used.
  • a surface reinforcing layer was formed on the main surface of the glass substrate 1.
  • chemical strengthening was performed by immersing the glass substrate 1 in a mixed solution of potassium nitrate (70%) and sodium nitrate (30%) heated to 300 ° C. for about 30 minutes.
  • the lithium ion and sodium ion on the inner peripheral end surface and outer peripheral end surface of the glass substrate are respectively replaced with sodium ions and potassium ions in the chemical strengthening solution, and a compressive stress layer is formed, thereby forming the main surface of the glass substrate and The end face was strengthened.
  • the main surface polishing step was performed in the “second polishing step” of S18.
  • This second polishing step aims to eliminate the fine defects on the main surface that have been generated and remain in the above-described steps and finish it in a mirror shape, to eliminate warpage and finish it to a desired flatness.
  • polishing was performed by a double-side polishing apparatus having a planetary gear mechanism.
  • abrasive colloidal silica having an average particle diameter of about 20 nm was used to obtain a smooth surface.
  • the polished glass substrate 1 is cleaned with a brush.
  • a cleaning process (S191) and a second cleaning process (S192) for cleaning the glass substrate 1 by irradiating the glass substrate 1 with a liquid to which ultrasonic waves are applied after the first cleaning process are provided.
  • the second cleaning step (S192) the second cleaning is performed without immersing the glass substrate 1 after the first cleaning step (S191) in another liquid and before the surface of the glass substrate 1 is dried.
  • the step (S192) is started.
  • “before the surface of the glass substrate 1 is dried” refers to a state where there is no wetted portion in a range (area) of 1% or more of the recording surface of the glass substrate 1. Details of the “final cleaning step” in S19 will be described later.
  • an adhesion layer made of a Cr alloy and a soft magnetic layer made of a CoFeZr alloy are formed on both main surfaces of the glass substrate 1.
  • An information recording medium of a perpendicular magnetic recording system was manufactured by sequentially forming an orientation control underlayer made of Ru, a perpendicular magnetic recording layer made of a CoCrPt alloy, a C-based protective layer, and an F-based lubricating layer.
  • This configuration is an example of a configuration of a perpendicular magnetic recording system, and a magnetic layer or the like may be configured as an in-plane information recording medium.
  • an FePt-based material may be used as a magnetic layer material suitable for heat-assisted recording.
  • the “post-heat treatment step” of S21 is performed to complete the information recording medium.
  • the shower cleaning process using a liquid to which ultrasonic waves (US) are applied (hereinafter referred to as “US shower cleaning process”) can quickly discharge the cleaning waste liquid to the outside of the glass substrate.
  • the inventors focused on performing the final cleaning step by combining the US shower cleaning step and the scrub cleaning step of cleaning the glass substrate with a brush.
  • This fine silica particle is a deposit that has become a problem of redeposition in the scrub cleaning process.
  • the adhering material reattached in the scrub cleaning process hereinafter referred to as “residual adhering material”. The result turned out.
  • the glass substrate is immersed in a storage solution (water, cleaning solution, etc.) so as not to be dried.
  • a storage solution water, cleaning solution, etc.
  • the scrub cleaning process and the US shower cleaning process are different. Therefore, after the scrub cleaning process, the glass substrate held in the cleaning basket is once immersed in the detergent solution and stored (hereinafter referred to as “immersion storage process”). Thereafter, a US shower cleaning process is performed on the glass substrate taken out from the detergent solution. In the scrub cleaning process and the US shower cleaning process, the cleaning basket for holding the glass substrate may be exchanged.
  • FIGS. 7 is a front view schematically showing a holding state of the glass substrate 1
  • FIG. 8 is a right side view schematically showing a holding state of the glass substrate 1
  • FIG. 9 is a schematic configuration of a holding device for the glass substrate 1.
  • FIG. 10 is a right side view schematically showing a schematic configuration of the holding device for the glass substrate 1.
  • the glass substrate 1 is supported by the support rollers 211, 212, and 213 on the outer peripheral end surface 6 of the glass substrate 1 so that the main surfaces 2 and 3 that are flat portions are vertical.
  • the glass substrate 1 may be held so that the main surfaces 2 and 3 of the glass substrate 1 are horizontal.
  • the glass substrate 1 is held using three support rollers, but the number of support rollers is not limited to three.
  • Each support roller 211, 212, 213 rotates around a rotation axis P1 extending in the horizontal direction.
  • the support roller 211 is a drive roller connected to a drive motor.
  • the support rollers 212 and 213 are driven rollers. When the support roller 211 rotates in the R1 direction in the figure, the glass substrate 1 rotates in the R2 direction in the figure.
  • each support roller 211, 212, 213 is mounted on a cleaning bowl 200 having a holding device.
  • a plurality of glass substrates 1 are held in a direction perpendicular to the drawing.
  • the support roller 211 is rotatably held at the tip of the first arm 221 extending from the base frame 220.
  • the support roller 213 is rotatably held at the tip of the third arm 223 extending from the base frame 220.
  • the support roller 212 is rotatably held at the tip of the second arm 222.
  • the second arm 222 has a rotation center P2, and one end of a coil spring 230 as an urging member is connected to an end of the rotation arm P2 on the opposite side of the support roller 212.
  • the other end of the coil spring 230 is connected to the base frame 220.
  • the state shown in FIG. 9 shows a state where the glass substrate 1 is held by the support rollers 211, 212, and 213.
  • the second arm 222 holds the glass substrate 1 by a lock member (not shown) so as to oppose the rotational force based on the expansion / contraction force of the coil spring 230 around the rotational center P2 (in the direction of arrow R3 in the figure). ).
  • FIG. 11 is a front view schematically showing roll scrub cleaning
  • FIG. 12 is a right side view schematically showing roll scrub cleaning
  • FIG. 13 is a front view schematically showing cup scrub cleaning
  • FIG. 15 is a front view schematically showing the US shower cleaning
  • FIG. 16 is a right side view schematically showing the US shower cleaning.
  • 11 and 12 show roll scrub cleaning among scrub cleaning.
  • the roll brush 240 is disposed so that the rotation center axis P3 of the roll brush 240 having a cylindrical appearance is parallel to the main surface of the glass substrate 1.
  • the roll brush 240 also rotates while rotating the glass substrate 1.
  • the abrasive is supplied between the glass substrate 1 and the roll brush 240 from above.
  • FIG. 13 and FIG. 14 show cup scrub cleaning among scrub cleaning.
  • the cup brush 250 is arranged so that the rotation center axis P4 of the cup brush 250 having an outer appearance is perpendicular to the main surface of the glass substrate 1.
  • the cup brush 250 also rotates while rotating the glass substrate 1.
  • the abrasive is supplied between the glass substrate 1 and the cup brush 250 from above.
  • the rotation speed of the glass substrate is preferably 500 rpm or more and 1000 rpm in the case of roll scrub cleaning. In the case of cup scrub cleaning, 100 rpm to 120 rpm is preferable.
  • a US shower irradiation device 260 a is disposed on the main surface 2 side of the glass substrate 1
  • a US shower irradiation device 260 b is disposed on the main surface 3 side of the glass substrate 1. That is, the glass substrate 1 can be cleaned by irradiating both surfaces of the glass substrate 1 with a liquid to which ultrasonic waves are simultaneously applied.
  • the frequency of the ultrasonic wave applied to the cleaning liquid is preferably 400 kHz or more and 1.5 MHz, which has high straightness and is effective in adhering a fine abrasive. More preferably, it is 900 kHz to 1000 kHz. If the frequency of the ultrasonic wave is less than 400 kHz, the detergency is poor. When the frequency of the ultrasonic wave exceeds 1.5 MHz, the cleaning effect is deteriorated because the attenuation effect is large.
  • the output of the ultrasonic wave is preferably 5 W / cm 2 or more and 50 W / cm 2 or less. More preferably, it is 10 W / cm 2 or more and 30 W / cm 2 or less. If it is less than 5 W / cm 2 , the ultrasonic cleaning effect is poor. If it exceeds 50 W / cm 2 , the shower tends to become mist-like and the cleaning effect is reduced.
  • the glass substrate 1 is rotated even during US shower cleaning by the US shower irradiation devices 260a and 260b.
  • the rotation speed is preferably 200 rpm or more and 2000 rpm or less. If it is less than 200 rpm, the rate of discharging the waste liquid (the cleaning liquid after being irradiated on the glass substrate 1) is slow, so that the cleaning performance is poor. If it exceeds 2000 rpm, the cleaning liquid is not supplied to the entire surface of the glass substrate, resulting in poor cleaning properties. Since the centrifugal force generated on the glass substrate 1 is too strong, the cleaning liquid is not held on the glass substrate 1 so much.
  • the number of defects on the glass substrate 1 was measured using an optical surface analyzer (KLA, Candela 7120). Thereafter, defects were analyzed using SEM (S4800, manufactured by Hitachi High-Technologies Corporation), and the number of residual deposits (silica fine particles) was counted.
  • KLA optical surface analyzer
  • SEM S4800, manufactured by Hitachi High-Technologies Corporation
  • Example 1 The second polishing step (S18) was completed, and a scrub cleaning step (S191) was performed.
  • the US shower cleaning step (S192) was performed without immersing the glass substrate 1 after the scrub cleaning step (S191) in another liquid and before the surface of the glass substrate 1 was dried.
  • the cleaning conditions of the US shower cleaning step are: US frequency: 950 kHz, output: 30 W / cm 2 , cleaning liquid: ultrapure water (10 L / min on one side), cleaning time: 50 sec, rotation speed: 500 rpm.
  • tip part of US shower irradiation apparatus 260a, 260b to the main surfaces 2 and 3 of the glass substrate 1 is 2 cm.
  • the irradiation angle is about 30 ° with respect to the normal to the main surfaces 2 and 3 of the glass substrate 1.
  • Example 2 The glass substrate 1 was manufactured with the manufacturing method similar to Example 1 except having changed the US frequency of US shower washing
  • Example 3 The glass substrate 1 was manufactured with the manufacturing method similar to Example 1 except having changed the US frequency of US shower washing
  • Example 4 The glass substrate 1 was manufactured with the manufacturing method similar to Example 1 except having changed the output of US shower washing
  • Example 5 The glass substrate 1 was manufactured with the manufacturing method similar to Example 1 except having changed the output of US shower washing
  • Example 6 The glass substrate 1 was manufactured with the manufacturing method similar to Example 1 except having changed the rotation speed of US shower washing
  • Example 7 The glass substrate 1 was manufactured with the manufacturing method similar to Example 1 except having changed the rotation speed of US shower washing
  • the ultrasonic wave used in the US immersion cleaning process was 950 kHz, the output was 5 W / cm 2 , and the solution was pure water.
  • FIG. 17 shows the number of residual deposits on the glass substrate obtained by the manufacturing methods shown in Examples 1 to 7 and Comparative Examples 1 to 3. In all of Examples 1 to 7, the number of residual deposits was one digit, and good results were obtained.
  • fine particles such as silica adhering to the glass substrate 1 are separated from the glass substrate 1 in the scrub cleaning step (S191). Thereafter, deposits staying near the main surface of the glass substrate 1 and / or deposits weakly reattached by scrub can be efficiently removed from the glass substrate 1 by the US shower cleaning process (S192). It is said. Thereby, it is possible to provide a method for manufacturing a glass substrate for an information recording medium capable of suppressing adhesion of residual deposits on the main surface of the glass substrate 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

 この情報記録媒体用ガラス基板の製造方法は、磁気記録用ガラス基板の製造方法であって、円盤状のガラス基板を成形する工程と、ガラス基板を研磨剤を用いて研磨すると、研磨された上記ガラス基板をブラシを用いて洗浄する第1洗浄工程(S191)と、第1洗浄工程(S191)の後、ガラス基板に超音波が印加された液体を照射して、ガラス基板の洗浄を行なう第2洗浄工程(S192)とを備え、第2洗浄工程(S192)は、第1洗浄工程(S191)が終了したガラス基板を他の液体に浸漬させることなく、かつ、ガラス基板の表面が乾燥する前に第2洗浄工程(S192)を開始する。

Description

情報記録媒体用ガラス基板の製造方法
 本発明は、情報記録媒体用ガラス基板の製造方法に関する。
 コンピュータなどに用いられる情報記録媒体(磁気ディスク記録媒体)には、従来からアルミニウム基板またはガラス基板が用いられている。これらの基板上に磁気薄膜層が形成され、磁気薄膜層を磁気ヘッドで磁化することにより、磁気薄膜層に情報が記録される。
 近年、ハードディスクドライブ装置においては、2.5インチの記録媒体1枚で、記録容量が500GB(片面250GB)、面記録密度が630Gb/平方インチ以上の記録密度を有するものが開発されている。
 ハードディスクドライブ装置の情報記録媒体(プラッタ)に使用されるハードディスク用ガラス基板(以下、単に「ガラス基板」と称する)は記録の読み書きに影響するため、特に清浄度が求められている。ガラス基板の洗浄は、ガラス基板を浸漬した液体中に超音波を印加して、ガラス基板を洗浄するバッチ式超音波洗浄方法、ブラシを基板表面に接触させながら洗浄するスクラブ洗浄工程方法などが知られている。
 これらの洗浄方法にはいくつかの問題点がある。バッチ式超音波洗浄方法は被洗浄物を液体(主に水、洗浄液等)に浸漬させ、一定方向から超音波(US)を印加して洗浄を行なう。全体的に洗浄効果が低く、超音波によって基板から剥離した汚れは液体中に拡散する。しかし、一部の汚れは拡散しきれずに、ガラス基板の表面に再付着する。特に微小な欠陥ほど、液体に拡散されにくいため、汚れの再付着が発生し易い。
 スクラブ洗浄工程方法は、被洗浄物にブラシが直接接触しながら洗浄を行なうため、非常に強い洗浄力がある。しかし、除去した汚れがブラシに蓄積され、一度除去した汚れが再度ガラス基板に擦りつけられ、ガラス基板の表面への再付着が多い。
 このような問題を解決する方法として、超音波を流水中の液体に印加し、常に新しい液を被洗浄物に照射しながら洗浄を行なう装置が、特開2009-166043号公報(特許文献1)、および、特開2007-22866号公報(特許文献2)に開示されている。
特開2009-166043号公報 特開2007-22866号公報
 超音波洗浄方法を含む情報記録媒体用ガラス基板の製造方法で製造したガラス基板を高密度の記憶容量を有するハードディスクドライブ装置に搭載したところ、記録の読み書きエラーが発生することがあった。これは、製造工程におけるガラス基板の表面に存在する残留付着物数の多さに比例している。
 本発明は、上記の実情に鑑みてなされたものであって、情報記録媒体用ガラス基板の製造工程において、ガラス基板の表面への残留付着物の付着を抑制することが可能な、情報記録媒体用ガラス基板の製造方法を提供することを目的とする。
 この発明に基づいた情報記録媒体用ガラス基板の製造方法においては、磁気記録用ガラス基板の製造方法であって、円盤状のガラス基板を成形する工程と、上記ガラス基板を研磨剤を用いて研磨する工程と、研磨された上記ガラス基板をブラシを用いて洗浄する第1洗浄工程と、上記第1洗浄工程の後、上記ガラス基板に超音波が印加された液体を照射して、上記ガラス基板の洗浄を行なう第2洗浄工程とを備え、上記第2洗浄工程は、上記第1洗浄工程が終了した上記ガラス基板を他の液体に浸漬させることなく、かつ、上記ガラス基板の表面が乾燥する前に上記第2洗浄工程を開始する。
 他の形態においては、上記第2洗浄工程において、上記液体に印加する超音波の、周波数が400kHz以上、1.5MHz以下、出力が5W/cm以上、50W/cm以下である。
 他の形態においては、上記第2洗浄工程において、上記ガラス基板の平面部が垂直となるように上記ガラス基板を保持して、上記ガラス基板の洗浄を行なう。
 他の形態においては、上記第2洗浄工程において、上記ガラス基板を200rpm以上、2000rpm以下に回転させて、上記ガラス基板の洗浄を行なう。
 他の形態においては、上記第2洗浄工程において、上記ガラス基板の両面に、同時に超音波が印加された液体を照射して、上記ガラス基板の洗浄を行なう。
 この発明に基づいた情報記録媒体用ガラス基板の製造方法によれば、情報記録媒体用ガラス基板の製造工程において、ガラス基板の表面への残留付着物の付着を抑制することが可能な、情報記録媒体用ガラス基板の製造方法を提供することを可能とする。
情報記録装置を示す斜視図である。 本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板を示す平面図である。 図2中のIII-III線に沿った矢視断面図である。 情報記録媒体としてガラス基板1を備えた情報記録媒体を示す平面図である。 図4中のV-V線に沿った矢視断面図である。 ガラス基板の製造方法を示すフローチャートである。 ガラス基板の保持状態を模式的に示す正面図である。 ガラス基板の保持状態を模式的に示す右側面図である。 ガラス基板の保持装置の概略構成を模式的に示す正面図である。 ガラス基板の保持装置の概略構成を模式的に示す右側面図である。 ロールスクラブ洗浄を模式的に示す正面図である。 ロールスクラブ洗浄を模式的に示す右側面図である。 カップスクラブ洗浄を模式的に示す正面図である。 カップスクラブ洗浄を模式的に示す右側面図である。 USシャワー洗浄を模式的に示す正面図である。 USシャワー洗浄を模式的に示す右側面図である。 実施例1から7、および、比較例1から3の、残留付着物数を示す図である。
 本発明に基づいた実施の形態および各実施例について、以下、図面を参照しながら説明する。実施の形態および各実施例の説明において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態および各実施例の説明において、同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。
 [実施の形態]
 (情報記録装置30)
 図1を参照して、まず、情報記録装置30について説明する。図1は、情報記録装置30を示す斜視図である。情報記録装置30は、実施の形態における情報記録媒体用ガラス基板(以下、単にガラス基板ともいう)の製造方法によって製造されたガラス基板1を、情報記録媒体10として備える。
 具体的には、情報記録装置30は、情報記録媒体10、筐体20、ヘッドスライダー21、サスペンション22、アーム23、垂直軸24、ボイスコイル25、ボイスコイルモーター26、クランプ部材27、および固定ネジ28を備える。筐体20の上面上には、スピンドルモーター(図示せず)が設置される。
 磁気ディスクなどの情報記録媒体10は、クランプ部材27および固定ネジ28によって、上記のスピンドルモーターに回転可能に固定される。情報記録媒体10は、このスピンドルモーターによって、たとえば数千rpmの回転数で回転駆動される。詳細は図4および図5を参照して後述されるが、情報記録媒体10は、ガラス基板1に圧縮応力層12(図5参照)および磁気記録層14(図4および図5参照)が形成されることによって製造される。
 アーム23は、垂直軸24回りに揺動可能に取り付けられる。アーム23の先端には、板バネ(片持ち梁)状に形成されたサスペンション22が取り付けられる。サスペンション22の先端には、ヘッドスライダー21が情報記録媒体10を挟み込むように取り付けられる。
 アーム23のヘッドスライダー21とは反対側には、ボイスコイル25が取り付けられる。ボイスコイル25は、筐体20上に設けられたマグネット(図示せず)によって挟持される。ボイスコイル25およびこのマグネットにより、ボイスコイルモーター26が構成される。
 ボイスコイル25には所定の電流が供給される。アーム23は、ボイスコイル25に流れる電流と上記マグネットの磁場とにより発生する電磁力の作用によって、垂直軸24回りに揺動する。アーム23の揺動によって、サスペンション22およびヘッドスライダー21も矢印AR1方向に揺動する。ヘッドスライダー21は、情報記録媒体10の表面上および裏面上を、情報記録媒体10の半径方向に往復移動する。ヘッドスライダー21に設けられた磁気ヘッド(図示せず)はシーク動作を行なう。
 当該シーク動作が行なわれる一方で、ヘッドスライダー21は、情報記録媒体10の回転に伴って発生する空気流により、浮揚力を受ける。当該浮揚力とサスペンション22の弾性力(押圧力)とのバランスによって、ヘッドスライダー21は情報記録媒体10の表面に対して一定の浮上量で走行する。当該走行によって、ヘッドスライダー21に設けられた磁気ヘッドは、情報記録媒体10内の所定のトラックに対して情報(データ)の記録および再生を行なうことが可能となる。ガラス基板1が情報記録媒体10を構成する部材の一部として搭載される情報記録装置30は、以上のように構成される。
 (ガラス基板1)
 図2は、本実施の形態に基づく情報記録媒体用ガラス基板の製造方法によって製造されるガラス基板1を示す平面図である。図3は、図2中のIII-III線に沿った矢視断面図である。
 図2および図3に示すように、情報記録媒体10(図4および図5参照)にその一部として用いられるガラス基板1(情報記録媒体用ガラス基板)は、主表面2、主表面3、内周端面4、孔5、および外周端面6を有し、全体として円盤状に形成される。孔5は、一方の主表面2から他方の主表面3に向かって貫通するように設けられる。主表面2と内周端面4との間、および、主表面3と内周端面4との間には、面取部7がそれぞれ形成される。主表面2と外周端面6との間、および、主表面3と外周端面6との間には、面取部8(チャンファー部)が形成される。
 ガラス基板1の大きさは、たとえば0.8インチ、1.0インチ、1.8インチ、2.5インチ、または3.5インチである。これ以下、または、これ以上のインチサイズとすること可能である。ガラス基板の厚さは、破損防止の観点から、たとえば0.30mm~2.2mmである。本実施の形態におけるガラス基板の大きさは、外径が約64mm、内径が約20mm、厚さが約0.8mmである。ガラス基板の厚さとは、ガラス基板上の点対象となる任意の複数の点で測定した値の平均によって算出される値である。ガラス基板の高硬度化の観点から、ガラス基板1のビッカース硬度は、610kg/mm以上であるとよい。
 (情報記録媒体10)
 図4は、情報記録媒体としてガラス基板1を備えた情報記録媒体10を示す平面図である。図5は、図4中のV-V線に沿った矢視断面図である。
 図4および図5に示すように、情報記録媒体10は、ガラス基板1と、圧縮応力層12と、磁気記録層14とを含む。圧縮応力層12は、ガラス基板1の主表面2,3、内周端面4、および外周端面6を覆うように形成される。磁気記録層14は、圧縮応力層12の主表面2,3上の所定の領域を覆うように形成される。ガラス基板1の内周端面4上に圧縮応力層12が形成されることによって、内周端面4の内側に孔15が形成される。孔15を利用して、情報記録媒体10は筐体20(図1参照)上に設けられたスピンドルモーターに対して固定される。
 図5に示す情報記録媒体10においては、主表面2上に形成された圧縮応力層12と主表面3上に形成された圧縮応力層12との双方(両面)の上に、磁気記録層14が形成されている。磁気記録層14は、主表面2上に形成された圧縮応力層12の上(片面)にのみ設けられていてもよく、主表面3上に形成された圧縮応力層12の上(片面)に設けられていてもよい。
 磁気記録層14は、磁性粒子を分散させた熱硬化性樹脂をガラス基板1の主表面2,3上の圧縮応力層12にスピンコートすることによって形成される(スピンコート法)。磁気記録層14は、ガラス基板1の主表面2,3上の圧縮応力層12に対して実施されるスパッタリング法または無電解めっき法等により形成されてもよい。
 磁気記録層14の膜厚は、スピンコート法の場合は約0.3μm~1.2μm、スパッタリング法の場合は約0.04μm~0.08μm、無電解めっき法の場合は約0.05μm~0.1μmである。薄膜化および高密度化の観点からは、磁気記録層14はスパッタリング法または無電解めっき法によって形成されるとよい。
 磁気記録層14に用いる磁性材料としては、高い保持力を得る目的で結晶異方性の高いCoを主成分とし、残留磁束密度を調整する目的でNiまたはCrを加えたCo系合金などを付加的に用いることが好適である。近年では、熱アシスト記録用に好適な磁性層材料として、Fe-Pt系磁性材料が用いられるようになってきている。
 磁気ヘッドの滑りをよくするために、磁気記録層14の表面に潤滑剤を薄くコーティングしてもよい。潤滑剤としては、たとえば液体潤滑剤であるパーフロロポリエーテル(PFPE)をフレオン系などの溶媒で希釈したものが挙げられる。
 磁気記録層14には、必要に応じて下地層または保護層を設けてもよい。情報記録媒体10における下地層は、磁性膜の種類に応じて選択される。下地層の材料としては、たとえば、Cr、Mo、Ta、Ti、W、V、B、Al、またはNiなどの非磁性金属から選ばれる少なくとも一種以上の材料が挙げられる。
 磁気記録層14に設ける下地層は、単層に限らず、同一または異種の層を積層した複数層構造としても構わない。たとえば、Cr/Cr、Cr/CrMo、Cr/CrV、NiAl/Cr、NiAl/CrMo、または、NiAl/CrV等の多層下地層としてもよい。
 磁気記録層14の摩耗および腐食を防止する保護層としては、たとえば、Cr層、Cr合金層、カーボン層、水素化カーボン層、ジルコニア層、またはシリカ層が挙げられる。これらの保護層は、下地層および磁性膜など共にインライン型スパッタ装置で連続して形成されることができる。これらの保護層は、単層としてもよく、または、同一若しくは異種の層からなる多層構成としてもよい。
 上記保護層上に、あるいは上記保護層に代えて、他の保護層を形成してもよい。たとえば、上記保護層に代えて、Cr層の上にテトラアルコキシランをアルコール系の溶媒で希釈した中に、コロイダルシリカ微粒子を分散して塗布し、さらに焼成して酸化ケイ素(SiO2)層を形成してもよい。
 (ガラス基板の製造方法)
 次に、図6を参照して、本実施の形態に係るガラス基板1および情報記録媒体10の製造方法を説明する。図3は、ガラス基板1および情報記録媒体10の製造方法を示すフロー図である。
 まず、ステップ10(以下、「S10」と略す。ステップ11以降も同様。)の「ガラス溶融工程」において、ガラス基板を構成するガラス素材を溶融する。
 S11の「プレス成形工程」において、溶融させたガラス素材を上型および下型を用いたプレスによりガラス基板を作製した。使用したガラス組成は、一般的なアルミノシリケートガラスを用いた。ガラス基板の作製方法としては成形に限らず、公知の手法である板ガラスからの切り出し等でも構わず、ガラス組成もこれに限らない。
 S12の「第1ラップ工程」において、ガラス基板の両主表面をラッピング加工した。この第1ラップ工程は、遊星歯車機構を利用した両面ラッピング装置を用いて行なった。具体的には、ガラス基板の両面に上下からラップ定盤を押圧させ、研削液をガラス基板の主表面上に供給し、これらを相対的に移動させてラッピング加工を行なった。このラッピング加工により、おおよそ平坦な主表面を有するガラス基板を得た。
 S13の「コアリング工程」において、円筒状のダイヤモンドドリルを用いて、ガラス基板の中心部に穴を形成し、円環状のガラス基板を作製した。ガラス基板の内周端面、および外周端面をダイヤモンド砥石によって研削し、所定の面取り加工を実施した。
 S14の「第2ラップ工程」において、ガラス基板の両主表面について、上記第1ラップ工程(S12)と同様に、ラッピング加工を行なった。この第2ラップ工程を行なうことにより、前工程のコアリングおよび端面加工において主表面に形成された微細な凹凸形状を予め除去しておくことができる。その結果、後工程での主表面の研磨時間を短縮することができる。
 S15の「外周研磨工程」において、ガラス基板の外周端面について、ブラシ研磨による鏡面研磨を行なった。このとき研磨砥粒としては、一般的な酸化セリウム砥粒を含むスラリーを用いた。
 S16の「第1ポリッシュ工程」において、主表面研磨を行なった。この第1ポリッシュ工程は、上述の第1および第2ラップ工程(S12,S14)において主表面に残留したキズおよび反りを矯正することを主目的とするものである。この第1ポリッシュ工程においては、遊星歯車機構を有する両面研磨装置により主表面の研磨を行なった。研磨剤としては、一般的な酸化セリウム砥粒を用いた。
 S17の「化学強化工程」において、ガラス基板1の主表面に対して表面強化層を形成した。具体的には、300℃に加熱された硝酸カリウム(70%)と硝酸ナトリウム(30%)の混合溶液中に、ガラス基板1を約30分間浸漬することによって化学強化を行なった。その結果、ガラス基板の内周端面および外周端面のリチウムイオンおよびナトリウムイオンが、化学強化溶液中のナトリウムイオンおよびカリウムイオンにそれぞれ置換され、圧縮応力層が形成されることでガラス基板の主表面及び端面が強化された。
 S18の「第2ポリッシュ工程」において、主表面研磨工程を施した。この第2ポリッシュ工程は上述までの工程で発生、残存している主表面上の微小欠陥等を解消して鏡面状に仕上げること、反りを解消し所望の平坦度に仕上げることを目的とする。この第2ポリッシュ工程は、遊星歯車機構を有する両面研磨装置により研磨を行なった。研磨剤としては、平滑面を得る為に平均粒径が約20nmのコロイダルシリカを用いた。
 S19の「最終洗浄工程(Final Cleaning)」において、ガラス基板の主表面、端面の最終洗浄を実施する。これによりガラス基板上に残存する付着物を除去する。
 本実施の形態においては、円盤状に成形されたガラス基板を研磨剤を用いて研磨した、S18の「第2ポリッシュ工程」の後に、研磨されたガラス基板1をブラシを用いて洗浄する第1洗浄工程(S191)と、第1洗浄工程の後、ガラス基板1に超音波が印加された液体を照射して、ガラス基板1の洗浄を行なう第2洗浄工程(S192)とを備えている。
 さらに、第2洗浄工程(S192)においては、第1洗浄工程(S191)が終了したガラス基板1を他の液体に浸漬させることなく、かつ、ガラス基板1の表面が乾燥する前に第2洗浄工程(S192)を開始するようにしている。
 ここで、ガラス基板1の表面が乾燥する前とは、ガラス基板1の記録面の1%以上の範囲(面積)で濡れている部分が存在しない状態をいう。S19の「最終洗浄工程」の詳細については後述する。
 S20の「磁気薄膜層成膜工程」において、上述の工程を経て得られたガラス基板1の洗浄後に、ガラス基板1の両主表面に、Cr合金からなる密着層、CoFeZr合金からなる軟磁性層、Ruからなる配向制御下地層、CoCrPt合金からなる垂直磁気記録層、C系の保護層、F系からなる潤滑層を順次成膜することにより、垂直磁気記録方式の情報記録媒体を製造した。この構成は垂直磁気記録方式の構成の一例であり、面内情報記録媒体として磁性層等を構成してもよい。熱アシスト記録用に好適な磁性層材料として、FePt系の材料を用いてもよい。その後、S21の「後熱処理工程」を実施することで、情報記録媒体が完成する。
 ここで、S19の「最終洗浄工程」について説明する。超音波(US)が印加された液体を用いたシャワー洗浄工程(以下、「USシャワー洗浄工程」と称する。)は、洗浄廃液を素早くガラス基板の外へ排出することが可能である。
 しかし、USシャワー洗浄工程のみで、単独で最終洗浄工程を行なうと、洗浄力に問題がある。発明者らは、USシャワー洗浄工程と、ガラス基板をブラシを用いて洗浄するスクラブ洗浄工程とを組み合わせて最終洗浄工程を行なうことに着眼した。
 しかし、研究の結果、スクラブ洗浄工程とUSシャワー洗浄工程とを組み合わせた洗浄方法であっても、ガラス基板の清浄度に課題が生じることを知見した。この課題は、ガラス基板への付着物の主な成分は、研磨剤に用いられる微小なシリカ粒子であることが判明した。
 この微小なシリカ粒子は、スクラブ洗浄工程で再付着が問題となっている付着物である。つまり、スクラブ洗浄工程の後に、単純にUSシャワー洗浄工程を導入しても、スクラブ洗浄工程で再付着した付着物(以下、「残存付着物」と称する)が十分除去できていないことが研究の結果判明した。
 具体的には、以下に示す原因により、残存付着物の除去が十分でないことが判明した。通常、各洗浄工程の間は、ガラス基板を乾燥させないように保管液(水、洗浄液等)に浸漬させる。
 たとえば、スクラブ洗浄工程とUSシャワー洗浄工程とは洗浄工程が異なる。よって、スクラブ洗浄工程後は、洗浄籠に保持されたガラス基板を一旦洗剤液中に浸漬させて保管する(以下、「浸漬保管工程」と称する)。その後、洗剤液中から取り出したガラス基板に対してUSシャワー洗浄工程が実施される。スクラブ洗浄工程とUSシャワー洗浄工程とにおいて、ガラス基板を保持する洗浄籠を交換する場合もある。
 残存付着物について考察したところ、スクラブ洗浄工程とUSシャワー洗浄工程と間の浸漬保管工程において、ガラス基板に再付着している残留付着物が、強くガラス基板に固着することが判明した。つまり、スクラブ洗浄工程によって一度は除去された汚れがガラス基板表面に弱く再付着している状態で、浸漬保管工程を経ることで、この再付着物が強くガラス基板に固着する。その後、USシャワー洗浄工程を行なっても、残留付着物を除去できず、結果所望の清浄度を得ることができない。
 発明者らは、ガラス基板への残留付着物を発生させないように鋭意研究を重ねた結果、スクラブ洗浄工程による洗浄後、浸漬保管工程を実施することなく、スクラブ洗浄工程の後に連続してUSシャワーを照射する(USシャワー洗浄工程の実施)ことで、残留付着物が強固に再付着を起こす前に、ガラス基板の表面近傍の汚れを除去し、残留付着物のガラス基板への再付着を抑制できることを知見した。
 以下、本実施の形態における、S19の「最終洗浄工程」について、図7から図17を参照して説明する。まず、ガラス基板1の保持機構について図7から図10を参照して説明する。図7は、ガラス基板1の保持状態を模式的に示す正面図、図8は、ガラス基板1の保持状態を模式的に示す右側面図、図9は、ガラス基板1の保持装置の概略構成を模式的に示す正面図、図10は、ガラス基板1の保持装置の概略構成を模式的に示す右側面図である。
 図7および図8に示すように、ガラス基板1は、平面部である主表面2,3が垂直となるように、ガラス基板1の外周端面6が、支持ローラ211,212,213によって支持される。ガラス基板1の主表面2,3は水平となるように、ガラス基板1を保持してもよい。
 本実施の形態では、3つの支持ローラを用いてガラス基板1を保持しているが、支持ローラの数量は3つに限定されない。各支持ローラ211,212,213は、水平方向に延びる回転軸P1を中心にて回転する。支持ローラ211は、駆動モータに連結された駆動ローラである。支持ローラ212,213は、従動ローラである。支持ローラ211が、図中のR1方向に回転すると、ガラス基板1は、図中のR2方向に回転する。
 図9および図10に示すように、各支持ローラ211,212,213は、保持装置を備える洗浄籠200に装着されている。図面に対して垂直方向には、複数のガラス基板1が保持されている。支持ローラ211は、ベースフレーム220から延びる第1アーム221の先端に回転可能に保持されている。支持ローラ213は、ベースフレーム220から延びる第3アーム223の先端に回転可能に保持されている。
 支持ローラ212は、第2アーム222の先端に回転可能に保持されている。第2アーム222は、回転中心P2を有し、回転中心P2を挟んで、支持ローラ212との反対側の端部には、付勢部材としてコイルばね230の一端が連結されている。コイルばね230の他端は、ベースフレーム220に連結されている。
 図9に示す状態は、支持ローラ211,212,213によりガラス基板1が保持されている状態を示す。第2アーム222は、回転中心P2を中心とした、コイルばね230の伸縮力に基づく回転力に対抗するように、図示しないロック部材により、ガラス基板1を保持する位置(図中の矢印R3方向)に固定されている。
 図10に示す状態は、図示しないロック部材が解除され、第2アーム222が、コイルばね230により引かれる(図中の矢印T方向)。その結果、第2アーム222は、回転中心P2を中心として、図中の矢印R4方向に回動する。この状態では、支持ローラ212によるガラス基板1の支持が解除され、ガラス基板1の洗浄籠200からの取出し、または、収納が可能となる。
 次に、図11から図16を参照して、スクラブ洗浄およびUSシャワー洗浄について説明する。図11は、ロールスクラブ洗浄を模式的に示す正面図、図12は、ロールスクラブ洗浄を模式的に示す右側面図、図13は、カップスクラブ洗浄を模式的に示す正面図、図14は、カップスクラブ洗浄を模式的に示す右側面図、図15は、USシャワー洗浄を模式的に示す正面図、図16は、USシャワー洗浄を模式的に示す右側面図である。
 図11および図12は、スクラブ洗浄のうち、ロールスクラブ洗浄を示す。ロールスクラブ洗浄においては、外観が円筒状のロールブラシ240の回転中心軸P3が、ガラス基板1の主表面に対して平行となるように、ロールブラシ240が配置される。洗浄中は、ガラス基板1を回転させながら、ロールブラシ240も回転する。研磨剤は、ガラス基板1とロールブラシ240との間に、上方から供給される。
 図13および図14は、スクラブ洗浄のうち、カップスクラブ洗浄を示す。カップスクラブ洗浄においては、外観が円盤状のカップブラシ250の回転中心軸P4が、ガラス基板1の主表面に対して垂直となるように、カップブラシ250が配置される。洗浄中は、ガラス基板1を回転させながら、カップブラシ250も回転する。研磨剤は、ガラス基板1とカップブラシ250との間に、上方から供給される。
 ガラス基板の回転数は、ロールスクラブ洗浄の場合は、500rpm以上1000rpmが好ましい。カップスクラブ洗浄の場合は、100rpm~120rpmが好ましい。
 図15および図16は、USシャワー洗浄を示す。USシャワー洗浄においては、ガラス基板1の主表面2側に、USシャワー照射装置260aが配置され、ガラス基板1の主表面3側に、USシャワー照射装置260bが配置されている。つまり、ガラス基板1の両面に、同時に超音波が印加された液体を照射してガラス基板1の洗浄を行なうことができる。
 洗浄液に印加する超音波の周波数は直進性が高く、微小な研磨剤の付着に効果のある400kHz以上、1.5MHzが好ましい。より好ましくは、900kHz~1000kHzである。超音波の周波数が400kHz未満であれば洗浄性が劣る。超音波の周波数が1.5MHzを超える場合、減衰効果が大きいため洗浄性が落ちる。
 超音波の出力は、5W/cm以上50W/cm以下が好ましい。より好ましくは、10W/cm以上30W/cm以下がよい。5W/cm未満であれば、超音波の洗浄効果が劣る。50W/cmを超えると、シャワーが霧状になりやすくなり、洗浄効果が落ちる。
 USシャワー照射装置260a,260bによるUSシャワー洗浄中においても、ガラス基板1を回転させる。回転数は、200rpm以上、2000rpm以下が好ましい。200rpm未満であると廃液(ガラス基板1に照射された後の洗浄液)を排出する速度が遅いため、洗浄性に劣る。2000rpmを超えるとガラス基板全面に洗浄液が供給されなくなり洗浄性に劣る。ガラス基板1に生じる遠心力が強すぎるため、洗浄液がガラス基板1上にあまり保持されない状態となる。
 (実施例)
 以下、具体的な実施例について以下説明する。以下に示す各実施例1~7および比較例1~3においては、図6に示す磁気記録用ガラス基板の製造フローにおいて、最終洗浄工程S19の条件を各種設定しており、他の製造条件は同じである。スクラブ洗浄工程(S191)においては、図13および図14に示した、カップスクラブ洗浄を実施した。
 ガラス基板1の評価方法としては、光学表面解析機(KLA社 Candela 7120)を用いて、ガラス基板1上の欠陥数を測定した。その後、SEM(日立ハイテクノロジーズ社製 S4800)を用いて欠陥を解析し、残留付着物(シリカ微粒子)の数を数えた。
 (実施例1)
 第2ポリッシュ工程(S18)終了、スクラブ洗浄工程(S191)を実施した。スクラブ洗浄工程(S191)が終了したガラス基板1を他の液体に浸漬させることなく、かつ、ガラス基板1の表面が乾燥する前にUSシャワー洗浄工程(S192)を行なった。
 スクラブ洗浄工程(S191)からUSシャワー洗浄工程(S192)までの間は2秒であった。その後、さらに、US浸漬洗浄工程を実施し、最後にIPA(イソプロピルアルコール)ベーパーにて、ガラス基板1の乾燥を実施した。
 USシャワー洗浄工程(S192)の洗浄条件は、US周波数:950kHz、出力:30W/cm、洗浄液:超純水(片面 10L/min)、洗浄時間:50sec、回転数:500rpmである。USシャワー照射装置260a,260bの先端部からガラス基板1の主表面2,3までの距離は2cmである。照射角度は、ガラス基板1の主表面2,3の法線とのなす角度が、約30°である。
 (実施例2)
 USシャワー洗浄工程(S192)のUS周波数を400kHzに変更した以外は、実施例1と同様の製造方法にてガラス基板1を製造した。
 (実施例3)
 USシャワー洗浄工程(S192)のUS周波数を1500kHzに変更した以外は、実施例1と同様の製造方法にてガラス基板1を製造した。
 (実施例4)
 USシャワー洗浄工程(S192)の出力を50W/cmに変更した以外は、実施例1と同様の製造方法にてガラス基板1を製造した。
 (実施例5)
 USシャワー洗浄工程(S192)の出力を5W/cmに変更した以外は、実施例1と同様の製造方法にてガラス基板1を製造した。
 (実施例6)
 USシャワー洗浄工程(S192)の回転数を200rpmに変更した以外は、実施例1と同様の製造方法にてガラス基板1を製造した。
 (実施例7)
 USシャワー洗浄工程(S192)の回転数を2000rpmに変更した以外は、実施例1と同様の製造方法にてガラス基板1を製造した。
 (比較例1)
 第2ポリッシュ工程(S18)終了、スクラブ洗浄工程(S191)を実施した。スクラブ洗浄工程(S191)が終了した後、ガラス基板1を溶液に浸漬して、US浸漬洗浄工程を行なった。その後、IPA(イソプロピルアルコール)ベーパーにて、ガラス基板1の乾燥を実施した。
 US浸漬洗浄工程で使用した超音波は950kHz、出力は5W/cm、溶液は純水を使用した。
 (比較例2)
 第2ポリッシュ工程(S18)終了、USシャワー洗浄工程(S192)を行なった。その後、最後にIPA(イソプロピルアルコール)ベーパーにて、ガラス基板1の乾燥を実施した。他の条件は、実施例1と同様である。
 (比較例3)
 第2ポリッシュ工程(S18)終了、スクラブ洗浄工程(S191)を実施した。スクラブ洗浄工程(S191)が終了した後、USシャワー洗浄工程(S192)を行なった。この際、スクラブ洗浄工程(S191)とUSシャワー洗浄工程(S192)との間には浸漬工程を設けた。その後、さらに、US浸漬洗浄工程を実施し、最後にIPA(イソプロピルアルコール)ベーパーにて、ガラス基板1の乾燥を実施した。洗浄条件は実施例1と同じである。
 上記実施例1から7、および、比較例1から3に示す製造方法によって得られたガラス基板の残留付着物数を図17に示す。実施例1から実施例7は、いずれも残留付着物数が一桁であり良好な結果が得られた。
 このように本実施の形態における磁気記録用ガラス基板の製造方法によれば、スクラブ洗浄工程(S191)において、ガラス基板1に付着しているシリカなどの微粒子をガラス基板1から切り離す。その後、ガラス基板1の主表面付近に滞在している付着物、および/または、スクラブによって弱く再付着した付着物を、USシャワー洗浄工程(S192)によって効率的にガラス基板1から取り除くことを可能としている。これにより、ガラス基板1の主表面への残留付着物の付着を抑制することが可能な、情報記録媒体用ガラス基板の製造方法を提供することを可能としている。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1 ガラス基板、2,3 主表面、4 内周端面、5,15 孔、6 外周端面、10 情報記録媒体、12 圧縮応力層、14 磁気記録層、20 筐体、21 ヘッドスライダー、22 サスペンション、23 アーム、24 垂直軸、25 ボイスコイル、26 ボイスコイルモーター、27 クランプ部材、28 固定ネジ、30 情報記録装置、200 洗浄籠、211,212,213 支持ローラ、220 ベースフレーム、221 第1アーム、222 第2アーム、223 第3アーム、230 コイルばね、240 ロールブラシ、250 カップブラシ。

Claims (5)

  1.  情報記録媒体用ガラス基板の製造方法であって、
     円盤状に成形されたガラス基板を研磨剤を用いて研磨する工程と、
     研磨された前記ガラス基板をブラシを用いて洗浄する第1洗浄工程と、
     前記第1洗浄工程の後、前記ガラス基板に超音波が印加された液体を照射して、前記ガラス基板の洗浄を行なう第2洗浄工程と、を備え、
     前記第2洗浄工程は、前記第1洗浄工程が終了した前記ガラス基板を他の液体に浸漬させることなく、かつ、前記ガラス基板の表面が乾燥する前に前記第2洗浄工程を開始する、情報記録媒体用ガラス基板の製造方法。
  2.  前記第2洗浄工程において、
     前記液体に印加する超音波の、周波数が400kHz以上、1.5MHz以下、出力が5W/cm以上、50W/cm以下である、請求項1に記載の情報記録媒体用ガラス基板の製造方法。
  3.  前記第2洗浄工程において、前記ガラス基板の平面部が垂直となるように前記ガラス基板を保持して、前記ガラス基板の洗浄を行なう、請求項1または2に記載の情報記録媒体用ガラス基板の製造方法。
  4.  前記第2洗浄工程において、前記ガラス基板を200rpm以上、2000rpm以下の回転数で回転駆動させて、前記ガラス基板の洗浄を行なう、請求項1から3のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。
  5.  前記第2洗浄工程において、前記ガラス基板の両面に、同時に超音波が印加された液体を照射して、前記ガラス基板の洗浄を行なう、請求項1から4のいずれか1項に記載の情報記録媒体用ガラス基板の製造方法。
PCT/JP2014/057103 2013-03-22 2014-03-17 情報記録媒体用ガラス基板の製造方法 WO2014148421A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013060043 2013-03-22
JP2013-060043 2013-03-22

Publications (1)

Publication Number Publication Date
WO2014148421A1 true WO2014148421A1 (ja) 2014-09-25

Family

ID=51580100

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057103 WO2014148421A1 (ja) 2013-03-22 2014-03-17 情報記録媒体用ガラス基板の製造方法

Country Status (1)

Country Link
WO (1) WO2014148421A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109290279A (zh) * 2018-09-28 2019-02-01 东莞市银泰丰光学科技有限公司 一种玻璃导光板霉斑清洗工艺
CN110610850A (zh) * 2019-09-16 2019-12-24 西安空间无线电技术研究所 一种玻璃基板激光制孔后的清洗方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141717A (ja) * 2001-10-31 2003-05-16 Nippon Sheet Glass Co Ltd 情報記録媒体用ガラス基板の製造方法
JP2007022866A (ja) * 2005-07-19 2007-02-01 Asahi Glass Co Ltd 円盤状ガラス基板の洗浄方法および磁気ディスク

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141717A (ja) * 2001-10-31 2003-05-16 Nippon Sheet Glass Co Ltd 情報記録媒体用ガラス基板の製造方法
JP2007022866A (ja) * 2005-07-19 2007-02-01 Asahi Glass Co Ltd 円盤状ガラス基板の洗浄方法および磁気ディスク

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109290279A (zh) * 2018-09-28 2019-02-01 东莞市银泰丰光学科技有限公司 一种玻璃导光板霉斑清洗工艺
CN110610850A (zh) * 2019-09-16 2019-12-24 西安空间无线电技术研究所 一种玻璃基板激光制孔后的清洗方法
CN110610850B (zh) * 2019-09-16 2022-01-04 西安空间无线电技术研究所 一种玻璃基板激光制孔后的清洗方法

Similar Documents

Publication Publication Date Title
JP5037975B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2014148421A1 (ja) 情報記録媒体用ガラス基板の製造方法
JP6105488B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP2012079363A (ja) 情報記録媒体用ガラス基板の製造方法、情報記録媒体、および磁気ディスク装置
JP4860580B2 (ja) 磁気ディスク用基板及び磁気ディスク
JP2004335081A (ja) 磁気ディスク用ガラス基板の洗浄方法及び磁気ディスク用ガラス基板の製造方法並びに磁気ディスクの製造方法
JP4612600B2 (ja) 磁気ディスク用ガラス基板の製造方法および磁気ディスクの製造方法
JP5032758B2 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP2007090452A (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP6423935B2 (ja) 情報記録媒体用ガラス基板の製造方法および研磨用ブラシ
JP6034580B2 (ja) Hdd用ガラス基板の製造方法
JP6328052B2 (ja) 情報記録媒体用ガラス基板の製造方法、情報記録媒体の製造方法および研磨パッド
WO2013099584A1 (ja) 情報記録媒体用ガラス基板の製造方法
JP5897959B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP5886108B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP2007102844A (ja) 磁気ディスク用ガラス基板の洗浄方法、ならびに磁気ディスク用ガラス基板および磁気ディスクの製造方法
WO2012090426A1 (ja) ハードディスク用ガラス基板の製造方法
WO2015041011A1 (ja) 情報記録媒体用ガラス基板の製造方法
JP6267115B2 (ja) 情報記録媒体用ガラス基板、情報記録媒体用ガラス基板の製造方法、磁気記録媒体、および、磁気記録媒体の製造方法
JP6021911B2 (ja) 情報記録媒体用ガラス基板および情報記録媒体用ガラス基板の製造方法
WO2014077177A1 (ja) 情報記録媒体用ガラス基板の製造方法
WO2013099585A1 (ja) 情報記録媒体用ガラス基板の製造方法
JP6196976B2 (ja) 情報記録媒体用ガラス基板の製造方法、情報記録媒体の製造方法、および、情報記録媒体用ガラス基板
JP2013077351A (ja) 情報記録媒体用ガラス基板の製造方法
JPWO2011125898A1 (ja) 磁気ディスク用ガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14769214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14769214

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP