WO2013094707A1 - Deposition apparatus - Google Patents

Deposition apparatus Download PDF

Info

Publication number
WO2013094707A1
WO2013094707A1 PCT/JP2012/083147 JP2012083147W WO2013094707A1 WO 2013094707 A1 WO2013094707 A1 WO 2013094707A1 JP 2012083147 W JP2012083147 W JP 2012083147W WO 2013094707 A1 WO2013094707 A1 WO 2013094707A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
vapor deposition
deposition mask
substrate holder
deposition apparatus
Prior art date
Application number
PCT/JP2012/083147
Other languages
French (fr)
Japanese (ja)
Inventor
梶山 康一
水村 通伸
正実 岩本
修二 工藤
Original Assignee
株式会社ブイ・テクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011282052A external-priority patent/JP5994088B2/en
Priority claimed from JP2011290297A external-priority patent/JP5994089B2/en
Priority claimed from JP2012008775A external-priority patent/JP2013147700A/en
Application filed by 株式会社ブイ・テクノロジー filed Critical 株式会社ブイ・テクノロジー
Publication of WO2013094707A1 publication Critical patent/WO2013094707A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/225Oblique incidence of vaporised material on substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • H01L21/681Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment using optical controlling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks

Definitions

  • the present invention relates to a vapor deposition apparatus for depositing and forming a thin film pattern on a substrate electrostatically attracted to a substrate holder, and in particular, vapor deposition that is intended to prevent the substrate from falling off the substrate holder even if electrostatic adsorption defects occur. It concerns the device.
  • a conventional vapor deposition apparatus is a device in which a substrate and a vapor deposition mask are made to face each other, a vapor deposition material is vapor-deposited on the surface of the substrate from an vapor deposition source through an opening pattern provided in the vapor deposition mask, and a thin film pattern is formed. Is smaller than the area of the substrate, and vapor deposition is performed while moving the substrate in one direction (see, for example, Patent Document 1).
  • an object of the present invention is to provide a vapor deposition apparatus that can cope with such problems and prevent the substrate from falling off the substrate holder even if a problem of electrostatic attraction occurs.
  • a vapor deposition apparatus includes, in a vacuum chamber, a vapor deposition source for evaporating a vapor deposition material, a substrate holder facing the vapor deposition source and holding a substrate on a holding surface, and a substrate surface.
  • a deposition mask formed by arranging a plurality of openings corresponding to a plurality of preset pattern formation regions, and vapor deposition material evaporated from the deposition source is deposited on the substrate through the openings of the deposition mask.
  • the substrate holder includes a fixing means that acts on a fixing auxiliary member disposed in an edge region of the substrate to fix the substrate to a holding surface. Is.
  • the substrate can be firmly fixed to the holding surface by acting on the fixing auxiliary member disposed in the edge region of the substrate by the fixing means built in the substrate holder. Therefore, even when used in combination with an electrostatic chuck, it is possible to prevent the substrate from falling off the substrate holder even if a malfunction occurs in electrostatic adsorption due to vibration or the like.
  • FIG. 1 It is a front view which shows the principal part of 1st Embodiment of the vapor deposition apparatus by this invention. It is a left view of FIG. It is a figure which shows one structural example of the substrate holder used in the said embodiment, (a) is a bottom view, (b) is the OO sectional view taken on the arrow line of (a). It is a figure which shows one structural example of the magnetic metal plate for carrying out the magnetic chuck of the board
  • substrate used in the said 3rd Embodiment is shown.
  • FIG. 1 is a front view showing a main part of a first embodiment of a vapor deposition apparatus according to the present invention
  • FIG. 2 is a left side view of FIG.
  • This vapor deposition apparatus deposits and forms a thin film pattern using a vapor deposition mask having a smaller area than the substrate while conveying the substrate in one direction.
  • the conveyance means 1 the substrate holder 2, and the vapor deposition mask are formed.
  • a vapor deposition source 4 an imaging unit 5
  • an alignment unit 6 an alignment unit 6.
  • the transport means 1 transports the substrate 7 at a constant speed in the direction of arrow A shown in FIG. 1 and is, for example, a linear motor actuator that supports a substrate holder 2 to be described later and moves it in the direction of arrow A.
  • the movable part 9 is provided. Then, a forward loop and a return path are provided in the vacuum chamber so as to form a closed loop, and the substrate holder 2 after vapor deposition can be returned to the start position.
  • a substrate holder 2 is provided with one end 2a rotatably supported by the transport means 1.
  • the substrate holder 2 is configured to attract and hold the back surface of the substrate 7 on a flat holding surface 2b.
  • a DC voltage can be applied to the central region of the holding surface 2b by a high voltage source 21.
  • the electrostatic chuck 22 is provided so that the substrate 7 can be electrostatically attracted to the holding surface 2b by applying a DC voltage.
  • a magnetic chuck is provided as a fixing means with a built-in electromagnet 23, and both ends of the surface of the substrate 7 corresponding to the magnetic force of the electromagnet 23 are provided.
  • the magnetic metal plate 10 as a fixing auxiliary member installed in the edge region 7b (see FIG. 6) is adsorbed to hold the substrate 7 on the holding surface 2b.
  • the magnetic metal plate 10 is preferably formed with a thickness equal to or less than a gap dimension between the substrate 7 and a vapor deposition mask 3 described later.
  • the magnetic metal plate 10 is formed of a magnetic material such as nickel or a nickel alloy in a strip shape corresponding to the edge region 7b of the substrate 7 as shown in FIG. 4, and has a plurality of openings penetrating the magnetic material.
  • a window 11 is provided along the long axis.
  • the substrate holder 2 rotates in the direction of arrow B about the one end portion 2a so that the holding surface 2b faces upward at a loading position (not shown).
  • the substrate 7 carried into the vacuum chamber by the carry-in robot is received by the holding surface 2b and electrostatically and magnetically attracted, the substrate 7 is reversed in the direction of arrow C as shown in FIG. It rotates so that it may face down, and the board
  • the unloading position after rotating in the arrow B direction so that the holding surface 2b faces upward, the electrostatic and magnetic adsorption of the substrate 7 is released, and the deposition is performed.
  • reference numeral 12 indicates that a follow-up mark 14 (described later) provided in the edge region 7b of the substrate 7 and a substrate transport direction (hereinafter referred to as “X direction”) indicated by an arrow A are parallel.
  • X direction substrate transport direction
  • the substrate 7 used here is a TFT substrate for organic EL display. As shown in FIG. 6, red (R), green (G), and blue (G) are formed in the central region 7a on the surface of a transparent glass substrate.
  • a row of anode electrodes 24 corresponding to colors is formed at a constant arrangement pitch, and a corresponding color (for example, red) to be deposited on the row of anode electrodes 24 corresponding to the same color (for example, red).
  • a plurality of stripe-shaped pattern forming regions 13 corresponding to the organic EL layers (thin film patterns) are set in advance at an arrangement pitch three times that of the rows of anode electrodes 24.
  • linear tracking marks 14 are parallel to the major axis of the pattern formation region 13 with a certain distance from each other.
  • the pattern is formed.
  • the substrate 7 is held by the substrate holder 2 so that the follow-up mark 14 is parallel to the substrate transport direction indicated by the arrow A.
  • a vapor deposition mask 3 is provided so as to face the substrate holder 2.
  • the vapor deposition mask 3 is for shielding a portion outside the pattern formation region 13 of the R organic EL layer to be vapor-deposited on the substrate 7, and is smaller than the area of the substrate 7 as shown in FIG.
  • a plurality of openings 15 penetrating through the central region 3a of the metal plate having an area corresponding to the formation position of the R organic EL layer are arranged at the same arrangement pitch as the arrangement pitch of the R organic EL layer (three times the row of the anode electrodes 24). Arranged pitch).
  • the vapor deposition mask 3 has a length in the X direction that is shorter than the length in the same direction of the substrate 7, and a length in a direction intersecting with the substrate transport direction (hereinafter referred to as “Y direction”). It has a strip shape that is the same as or longer than the direction length. Then, a pair of alignment marks 16 is formed by providing openings of a certain shape (for example, a quadrangle) in both end edge regions 3b in the Y direction.
  • the vapor deposition mask 3 is desirably made of a metal material having a thermal expansion coefficient of 10 ⁇ 10 ⁇ 6 / ° C. or less, preferably invar having a thermal expansion coefficient of 2 ⁇ 10 ⁇ 6 / ° C. or less, or 1 ⁇ 10 A super invar of -6 / ° C or lower is desirable.
  • a deposition source 4 is provided below the deposition mask 3 so as to face the deposition mask 3.
  • the vapor deposition source 4 evaporates a vapor deposition material of a thin film pattern to be formed on the substrate 7, and is a box-like crucible 17 that is long in the major axis direction (Y direction) of the vapor deposition mask 3 and has an upper opening.
  • the heater 18 for heating and evaporating the vapor deposition material stored in the crucible 17 and the shutter 19 for opening and closing the opening of the crucible 17 are provided.
  • the shutter 19 is arranged close to and opposed to the lower surface of the vapor deposition mask 3 is shown, but the shutter 19 may be provided close to and opposed to the opening of the crucible 17.
  • an opening having a size including a plurality of opening patterns 15 of the vapor deposition mask 3 is provided on the vapor deposition mask 3 side, and the vapor deposition source 4 is disposed on the vapor deposition source 4 side.
  • a cylindrical protection plate 20 having an opening of a size that encloses the peripheral edge of the crucible 17 is provided. More specifically, as shown in FIG. 2, the peripheral portion of the central region 3 a in which the plurality of openings 15 are formed inside the position where the alignment mark 16 of the vapor deposition mask 3 is formed, and the open peripheral portion of the crucible 17.
  • the connecting cylindrical protection plate 20 is provided to prevent the vapor deposition material from scattering to the peripheral region outside the central region 3a and adhering to the substrate 7 through the alignment mark 16 of the vapor deposition mask 3.
  • the imaging means 5 is provided below the both-ends edge area
  • This imaging means 5 has the same alignment mark 16 provided on the vapor deposition mask 3 and the follow-up mark 14 provided on the surface of both edge region 7b parallel to the X axis of the substrate 7 observed through the alignment mark 16.
  • This is a line camera that captures images in the field of view simultaneously and has a plurality of light receiving elements arranged in a straight line in the Y direction.
  • an illuminating unit (not shown) is provided so as to illuminate the imaging region of the imaging unit 5.
  • Alignment means 6 is provided so that the vapor deposition mask 3 can be moved in the Y direction in an XY plane parallel to the mask surface.
  • the alignment means 6 moves the deposition mask 3 in the Y direction within the XY plane at all times during the transport of the substrate 7 based on the positional relationship between the alignment mark 16 and the tracking mark 14 detected by photographing with the imaging means 5.
  • an opening is formed that penetrates the central region 3 a of the vapor deposition mask 3.
  • the vapor deposition mask 3 is about 100 ⁇ m from the surface of the substrate 7. It also serves as a mask holder for the vapor deposition mask 3 that is held close to each other through a gap.
  • the substrate holder 2 stands by until the substrate 7 is loaded with the holding surface 2b facing upward at the loading position.
  • the substrate 7 in which the magnetic metal plate 10 is previously installed in the both-ends edge region 7 b is loaded by the loading robot and positioned on the holding surface 2 b of the substrate holder 2.
  • one of the tracking marks 14 is arranged on the magnetic metal plate 10 by two two-dimensional cameras arranged in parallel to the X axis.
  • the angle of the substrate 7 is adjusted so that the follow-up marks 14 imaged through the provided opening window 11 and detected by both cameras are connected to one straight line.
  • a high DC voltage is applied to the holding surface 2b of the substrate holder 2 so that the substrate 7 is electrostatically held on the holding surface 2b, and the electromagnet 23 is turned on.
  • the substrate 7 is held on the holding surface 2b by magnetically attracting the magnetic metal plate 10 installed in the both edge region 7b.
  • the substrate holder 2 rotates in the direction of arrow C by 180 degrees around the one end portion 2a supported by the transfer means 1 so that the surface of the substrate 7 faces downward.
  • the transfer means 1 is activated and the transfer of the substrate 7 is started.
  • the imaging means 5 causes both end edges parallel to the X direction of the substrate 7 through the openings of the alignment marks 16 provided on the vapor deposition mask 3.
  • the tracking mark 14 provided on the surface of the partial area 7b and the alignment mark 16 of the vapor deposition mask 3 are photographed simultaneously.
  • the image photographed by the imaging means 5 is subjected to image processing by a control means (not shown), and the center position of the tracking mark 14 and the opening center position of the alignment mark 16 are detected based on the change in luminance in the Y direction. A positional deviation amount is calculated.
  • the alignment means 6 is driven, and the vapor deposition mask 3 is moved in the Y direction so that the positional deviation amount is within an allowable value. In this manner, the alignment between the substrate 7 and the vapor deposition mask 3 is always performed during the vapor deposition, and the vapor deposition mask 3 can follow the movement of the substrate 7 that moves while swinging left and right.
  • the shutter 19 of the vapor deposition source 4 is opened for a certain time, and the vapor deposition material for the R organic EL layer evaporated from the crucible 17 is opened in the vapor deposition mask 3. It adheres on the substrate 7 via Thus, vapor deposition is performed over the entire surface of the substrate 7 while transporting the substrate 7, and a stripe-shaped R organic EL layer is formed in the pattern formation region 13 on the row of the R corresponding anode electrodes 24.
  • the substrate 7 on which deposition has been completed is transported further back by the transport means 1 and stops at the unloading position.
  • the substrate holder 2 is rotated 180 degrees in the direction of arrow B about the one end 2a on the conveying means 1 side as shown in FIG.
  • the application of the DC voltage to the holding surface 2b and the driving of the electromagnet 23 are released.
  • the substrate 7 is carried out of the vacuum chamber by the carry-out robot.
  • the substrate holder 2 which has been emptied after the substrate 7 is unloaded, rotates around the one end 2a on the conveying means 1 side in the direction of the arrow C so that the holding surface 2b faces downward. In this state, it returns to the start position through the return path of the conveying means 1 and returns to the initial state again.
  • the present invention is not limited to this, and the substrate holder 2 may be deposited in a fixed state.
  • vapor deposition may be performed by step-moving back and forth and right and left within a two-dimensional plane.
  • the vapor deposition mask 3 is formed in substantially the same area as the substrate 7 and corresponds to the stripe-shaped or rectangular pattern forming region on the substrate 7. A shape in which an opening having a shape is formed is used.
  • the vapor deposition mask 3 is formed in an area smaller than the substrate 7 and is formed in a stripe shape or a rectangular pattern formation region on the substrate 7. A rectangular opening is used. Furthermore, in this case, the electromagnets 23 only need to be provided in the four edge regions of the holding surface 2b of the substrate holder 2 or in either end edge region facing each other. Moreover, if the thickness of the magnetic metal plate 10 is formed to the same dimension as the gap between the substrate 7 and the vapor deposition mask, the gap can be managed with the prescribed thickness of the magnetic metal plate 10.
  • the substrate holder 2 holds the substrate 7 by applying heat to solder (not shown) as a fixing auxiliary member disposed in the edge region 7 b on the back surface of the substrate 7 to melt the solder.
  • solder (not shown) as a fixing auxiliary member disposed in the edge region 7 b on the back surface of the substrate 7 to melt the solder.
  • a heater is built in as a fixing means for soldering and fixing to the surface 2b.
  • the substrate holder 2 is formed in a central region of the holding surface 2b so that a DC voltage can be applied by a high voltage source 21, and an electrostatic chuck 22 is provided.
  • the substrate 7 can be electrostatically attracted to the holding surface 2b by application.
  • heaters 26 are provided at a plurality of positions in the peripheral area of the holding surface 2b so that they can be energized by a separately provided heater power supply 25, and further, for example, by ultrasonic vibration applying means 27 configured to include a piezoelectric element. Ultrasonic vibration can be applied to the holding surface 2b.
  • solder such as Cerasolzer (registered trademark) placed on the installation portion 28 of the heater 26 is melted by heating the heater 26, and at the same time, the holding surface 2b is ultrasonically vibrated to solder the substrate 7 to the holding surface 2b. It can be attached and held.
  • reference numeral 29 denotes an ultrasonic power source that applies ultrasonic waves to the ultrasonic vibration applying means 27.
  • the ultrasonic vibration applying means 27 may be provided so as to ultrasonically vibrate the substrate 7 side, but in the following description, the case of ultrasonically vibrating the holding surface 2b side of the substrate holder 2 will be described.
  • the heater installation portion 28 is formed in a shallow concave portion and can accommodate, for example, a solder ball.
  • the substrate holder 2 stands by until the substrate 7 is loaded with the holding surface 2b facing upward at the loading position.
  • a solder ball such as Cerasolzer (registered trademark) is supplied to the heater installation portion 28 (see FIG. 8) in the peripheral region of the holding surface 2b from the outside by a solder ball supply means (not shown).
  • the substrate 7 is loaded by the loading robot and positioned on the holding surface 2 b of the substrate holder 2.
  • one of the following marks 14 provided in the both edge region 7b of the substrate 7 is imaged by two two-dimensional cameras 12 arranged in parallel to the X axis.
  • the angle of the substrate 7 is adjusted so that the detected tracking mark 14 is connected to one straight line.
  • a high DC voltage is applied to the holding surface 2b of the substrate holder 2, and the substrate 7 is electrostatically attracted to the holding surface 2b.
  • the heater power supply 25 is turned on to melt the solder balls placed on the heater installation section 28, and the ultrasonic power supply 29 is activated by the ultrasonic power supply 29 to apply ultrasonic vibration to the holding surface 2b. Then, the substrate 7 is soldered to the holding surface 2 b of the substrate holder 2. Note that the electrostatic adsorption and soldering operations are not performed simultaneously, and either one may be performed first.
  • the substrate holder 2 rotates in the direction of arrow C by 180 degrees around the one end portion 2a supported by the transfer means 1 so that the surface of the substrate 7 faces downward.
  • the transfer means 1 is activated and the transfer of the substrate 7 is started.
  • the imaging means 5 causes both end edges parallel to the X direction of the substrate 7 through the openings of the alignment marks 16 provided on the vapor deposition mask 3.
  • the tracking mark 14 provided on the surface of the partial area 7b and the alignment mark 16 of the vapor deposition mask 3 are photographed simultaneously.
  • the image photographed by the imaging means 5 is subjected to image processing by a control means (not shown), and the center position of the tracking mark 14 and the opening center position of the alignment mark 16 are detected based on the change in luminance in the Y direction. A positional deviation amount is calculated.
  • the alignment means 6 is driven, and the vapor deposition mask 3 is moved in the Y direction so that the positional deviation amount is within an allowable value. In this way, the alignment of the substrate 7 and the vapor deposition mask 3 is always performed during the vapor deposition, and the vapor deposition mask 3 can follow the movement of the substrate 7 that moves while swinging left and right to perform the vapor deposition.
  • the control means If alignment by either the left or right imaging unit 5 with respect to the X direction cannot be performed within an allowable value, it is suspected that the follow-up mark 14 is not formed correctly or that the substrate 7 is thermally expanded beyond the allowable value. At this time, the number and defect content of the substrate 7 are recorded by the control means, and the defective substrate 7 can be removed by looking at the recorded content after the deposition is completed.
  • the shutter 19 of the vapor deposition source 4 is opened for a certain time, and the vapor deposition material for the R organic EL layer evaporated from the crucible 18 is opened in the vapor deposition mask 3. It adheres on the substrate 7 via Thus, vapor deposition is performed over the entire surface of the substrate 7 while transporting the substrate 7, and a stripe-shaped R organic EL layer is formed in the pattern formation region 13 on the row of the R corresponding anode electrodes 24.
  • the substrate 7 on which deposition has been completed is transported further back by the transport means 1 and stops at the unloading position.
  • the substrate holder 2 is rotated 180 degrees in the direction of arrow B about the one end 2a on the conveying means 1 side as shown in FIG.
  • the heater power supply 25 is turned on to melt the solder of the heater installation portion 28.
  • the ultrasonic vibration applying unit 27 may not be driven. Thereafter, the substrate 7 is carried out of the vacuum chamber by the carry-out robot.
  • the substrate holder 2 which has been emptied after the substrate 7 is unloaded, rotates around the one end 2a on the conveying means 1 side in the direction of the arrow C so that the holding surface 2b faces downward. In this state, it returns to the start position through the return path of the conveying means 1 and returns to the initial state again.
  • the transport means 1 includes a plurality of substrate holders 2 and can be transported at any time, it is possible to perform deposition while continuously transporting the plurality of substrates 7, thereby shortening the tact time of the deposition process. it can.
  • the organic EL layer is formed by a single vapor deposition step.
  • the organic EL layer includes a hole injection layer and a hole transport layer. And a plurality of film forming steps such as a light emitting layer and an electron transport layer. Therefore, the organic EL layer is formed by a plurality of times of vapor deposition by a plurality of vapor deposition apparatuses.
  • an organic EL layer corresponding to R, G, and B is formed in one vapor deposition process. can do.
  • the substrate 7 used in the third embodiment has a plurality of stripe-shaped pattern forming regions 13 corresponding to the thin film pattern to be deposited on the central region 7a on the surface of the transparent substrate.
  • Both end edge regions 7b that are set in advance and are parallel to the long axis of the stripe-shaped pattern forming region 13 are respectively linear tracking marks made of, for example, black resist in parallel to the long axis of the pattern forming region 13.
  • the patterns 14 are formed in parallel with a certain distance from each other.
  • a plurality of short linear angle adjustment marks 30 that intersect each other at a predetermined interval are similarly formed on each tracking mark 14 by patterning, for example, with a black resist.
  • the substrate 7 is held by the substrate holder 2 so that the follow-up mark 14 is parallel to the substrate 7 conveyance direction indicated by the arrow A.
  • the width of the substrate holder 2 in the Y direction is formed so as to be narrower than the separation distance between the pair of tracking marks 14 provided in both end edge regions 7b of the substrate 7,
  • the follow-up mark 14 can be observed through the substrate 7 from the back side of the substrate 7 by the imaging means 5 described later.
  • the vapor deposition mask 3 is provided with openings having a fixed shape in both end edge regions 3b in the Y direction, and a pair of alignment marks 16 is formed.
  • each of the pair of alignment marks 16 has two fine line-shaped openings 16a parallel to the X direction, and two fine line-shaped openings 16a. It has an N-shape formed by combining one oblique opening 16b that obliquely intersects the direction.
  • the imaging means 5 is provided above the both-ends edge part area
  • the image pickup means 5 passes through both end edge regions 7 b parallel to the X-axis of the substrate 7, follows the tracking mark 14 and the angle adjustment mark 30 provided on the surface of the substrate 7, and the alignment provided on the vapor deposition mask 3.
  • This is a line camera that photographs the mark 16 at the same time and includes a plurality of light receiving elements arranged in a straight line in the Y direction.
  • An epi-illumination (not shown) is provided so as to illuminate the imaging region of the imaging means 5.
  • An alignment means 6 is provided so that the vapor deposition mask 3 can be finely moved and rotated in an XY plane parallel to the mask surface.
  • the alignment means 6 moves the deposition mask 3 in the Y direction within the XY plane at all times during the transport of the substrate 7 based on the positional relationship between the alignment mark 16 and the tracking mark 14 detected by photographing with the imaging means 5.
  • the positional deviation between the substrate 7 and the vapor deposition mask 3 is corrected, and based on the positional deviation amount between the angle adjustment marks 30 located corresponding to both ends in the Y direction, detected by photographing with the imaging means 5.
  • the deposition mask 3 is rotated to correct the angular deviation of the substrate 7, and the action point and the center position of the long side of the deposition mask 3 indicated by arrows u, v, and w in FIG.
  • an actuator for applying a force parallel to the surface of the vapor deposition mask 3 with respect to the action point.
  • the deposition mask 3 can be moved or rotated in the Y direction within the XY plane by adjusting the pushing amount or the drawing amount with respect to the action points of the arrows u and v.
  • the action of the arrow w The deposition mask 3 can be moved in the X direction by adjusting the pushing amount or the drawing amount with respect to the point.
  • the alignment means 6 forms an opening penetrating the central area 3a of the vapor deposition mask 3 and holds the vapor deposition mask 3 in close proximity to the surface of the substrate 7 through a gap of about 100 ⁇ m. It also plays the role of mask holder for mask 3.
  • the substrate holder 2 stands by until the substrate 7 is loaded with the holding surface 2b facing upward at the loading position.
  • the substrate 7 is loaded by the loading robot and positioned on the holding surface 2 b of the substrate holder 2.
  • the tracking mark 14 provided in the edge region 7b of the substrate 7 is imaged by the two two-dimensional cameras 12 arranged in parallel to the X axis, and the tracking mark 14 detected by both cameras is linear.
  • the angle of the substrate 7 is adjusted so as to be connected.
  • a DC voltage is applied to the holding surface 2 b of the substrate holder 2, and the back surface of the substrate 7 is electrostatically adsorbed to the holding surface 2 b of the substrate holder 2 and is held by the substrate holder 2.
  • the substrate holder 2 may be provided with the fixing means of the first and second embodiments, and the substrate 7 may be held on the holding surface 2b by the fixing means.
  • the fixing means is preferably provided on the substrate holder 2 in correspondence with both end edge regions in the X direction (substrate transport direction) of the holding surface 2b.
  • the substrate holder 2 is rotated 180 degrees around the one end portion 2a supported by the transport means 1 so that the surface of the substrate 7 faces downward.
  • the transfer means 1 is activated and the transfer of the substrate 7 is started.
  • the image capturing unit 5 transmits both end edge regions 7 b parallel to the X direction of the substrate 7 to be provided on the surface of the substrate 7.
  • the follow mark 14 and the angle adjustment mark 30 and the alignment mark 16 provided on the vapor deposition mask 3 are photographed simultaneously.
  • FIG. 4A shows a state where the angle adjustment mark 30 is detected. Since the alignment mark 16 is formed by an opening, the illumination light is transmitted and detected as three black spots as shown in FIG. 5A, and the illumination light is reflected around the alignment mark 16. It is detected as a bright part.
  • the alignment mark 16 is represented as three parallel black straight lines
  • the follow-up mark 14 is represented as a black straight line
  • FIG. 30 is represented as a black thin line that intersects the black straight line of the tracking mark 14 at regular intervals.
  • the distances L1 and L2 (see FIG. 12A) between the three black dots of the alignment mark 16 detected based on the photographed image of the imaging means 5 are relative to the central axis of the vapor deposition mask 3 in the X direction.
  • the positions of the vapor deposition mask 3 and the imaging means 5 are adjusted so that the two alignment marks 16 on the left and right coincide with each other.
  • the alignment means 6 is driven to apply a force to the application point indicated by arrows u, v, and w in FIG. 11 and the evaporation mask 3 is moved to move the two alignment marks 16.
  • the center line connecting the centers and the longitudinal center axis of the imaging means 5 are matched.
  • the distances L3 and L4 between the middle black spot and the black spot of the tracking mark 14 are measured.
  • the force of the same magnitude is applied to the point of action indicated by the arrows u and v in FIG. 11 of the vapor deposition mask 3 so that the alignment means 6 is driven to match the distances L3 and L4. Is applied, and the positional deviation of the substrate 7 in the Y direction is corrected.
  • FIG. 13 shows detection times t1 and t2 of the angle adjustment marks 30 that are located on the left and right sides of the center line in the X direction of the substrate 7 and that are detected based on the captured image of the imaging means 5.
  • the substrate 7 is inclined by an angle ⁇ with respect to the X direction. Accordingly, at this time, the distance L5 in the X direction between the two angle adjustment marks 30 is calculated from the detection time difference (t2 ⁇ t1) between the two left and right angle adjustment marks 30 and the conveyance speed of the substrate 7, and the distance L5 is calculated.
  • the positional deviation correction in the Y direction of the substrate 7 and the positional deviation correction in the rotational direction between the substrate 7 and the vapor deposition mask 3 are always performed during the vapor deposition, and the substrate 7 moves while pitching and yawing.
  • the vapor deposition mask 3 can be made to follow. Therefore, the thin film pattern can be formed with high positional accuracy.
  • the shutter 19 of the vapor deposition source 4 is opened for a certain time, and the vapor deposition material evaporated from the crucible 17 adheres onto the substrate 7 through the opening 15 of the vapor deposition mask 3. .
  • vapor deposition is performed over the entire surface of the substrate 7 while transporting the substrate 7, and a striped thin film pattern (organic EL layer) is formed in the pattern formation region 13 on the substrate 7.
  • the substrate 7 on which deposition has been completed is transported further back by the transport means 1 and stops at the unloading position.
  • the substrate holder 2 is rotated 180 degrees in the direction of arrow B about the one end 2a on the conveying means 1 side as shown in FIG.
  • the application of the DC voltage to the holding surface 2b is released.
  • the substrate 7 is carried out of the vacuum chamber by the carry-out robot.
  • the substrate holder 2 which has been emptied after the substrate 7 is unloaded, rotates around the one end 2a on the conveying means 1 side in the direction of the arrow C so that the holding surface 2b faces downward. In this state, it returns to the start position through the return path of the conveying means 1 and returns to the initial state again.
  • the alignment mark 16 and the tracking mark 14 are provided as a pair.
  • the present invention is not limited to this, and the alignment mark 16 and the tracking mark 14 are One vapor deposition mask 3 and one substrate edge region in the Y direction of the substrate 7 may be provided corresponding to each other.
  • the alignment mark 16 and the tracking mark 14 may be photographed by a single image pickup means 5 and the vapor deposition mask 3 may be moved in the Y direction by the alignment means 6 so that both marks have a certain positional relationship. Thereby, the vapor deposition mask 3 can be aligned with respect to the board
  • the present invention is not limited to this, and the substrate holder 2 The side may be moved.
  • the alignment means 6 is provided on the substrate holder 2 side, and the vapor deposition mask 3 is fixedly held by the mask holder of the vapor deposition mask 3 provided separately.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

The present invention relates to a deposition apparatus which comprises: a deposition source that evaporates a deposition material into a vacuum chamber; a substrate holder which opposes the deposition source and holds a substrate on a holding surface; and a deposition mask where a plurality of openings are formed side by side corresponding to a plurality of pattern formation regions set in advance on a surface of the substrate. The deposition apparatus forms the thin film pattern by depositing the deposition material evaporated from the deposition source onto the substrate through the openings in the deposition mask. The substrate holder is configured to include a built-in fixing unit which acts on an auxiliary fixing unit disposed in an edge region of the substrate to fix the substrate to the holding surface. Thereby, it is possible to prevent the substrate from becoming dislodged from the substrate holder even if there is an electrostatic adsorption failure.

Description

蒸着装置Vapor deposition equipment
 本発明は、基板ホルダーに静電吸着された基板上に薄膜パターンを蒸着形成する蒸着装置に関し、特に静電吸着の不具合が発生しても基板ホルダーから基板が脱落するのを防止しようとする蒸着装置に係るものである。 The present invention relates to a vapor deposition apparatus for depositing and forming a thin film pattern on a substrate electrostatically attracted to a substrate holder, and in particular, vapor deposition that is intended to prevent the substrate from falling off the substrate holder even if electrostatic adsorption defects occur. It concerns the device.
 従来の蒸着装置は、基板と蒸着マスクとを対向させ、蒸着源から、蒸着マスクに設けられた開口パターンを通して基板の表面に蒸着材料を蒸着し、薄膜パターンの形成を行なうものであり、蒸着マスクの面積が基板の面積より小さく、基板を一方向に移動させながら蒸着を行なうようになっていた(例えば、特許文献1参照)。 A conventional vapor deposition apparatus is a device in which a substrate and a vapor deposition mask are made to face each other, a vapor deposition material is vapor-deposited on the surface of the substrate from an vapor deposition source through an opening pattern provided in the vapor deposition mask, and a thin film pattern is formed. Is smaller than the area of the substrate, and vapor deposition is performed while moving the substrate in one direction (see, for example, Patent Document 1).
特許2003-297562号公報Japanese Patent No. 2003-297562
 しかし、このような従来の蒸着装置においては、蒸着が真空室内で行われるため、基板は、一方向に移動可能に設けられた基板ホルダーに静電吸着して保持されるのが一般的であり、基板を搬送しながら行う蒸着中に、搬送時の機械振動等により静電吸着が外れて基板が落下する不具合が発生するおそれがあった。特に、サイズの大きい大型基板の場合は、その自重により静電吸着がはずれ易くなり、上記不具合の発生がより大きな問題となっていた。 However, in such a conventional vapor deposition apparatus, since vapor deposition is performed in a vacuum chamber, the substrate is generally held by electrostatic adsorption on a substrate holder that is movable in one direction. During the vapor deposition performed while the substrate is being transported, there is a possibility that a problem occurs in which the electrostatic adsorption is removed due to mechanical vibration during transport and the substrate falls. In particular, in the case of a large substrate having a large size, electrostatic attraction tends to come off due to its own weight, and the occurrence of the above-described problems has become a larger problem.
 そこで、本発明は、このような問題点に対処し、静電吸着の不具合が発生しても基板ホルダーから基板が脱落するのを防止できる蒸着装置を提供することを目的とする。 In view of the above, an object of the present invention is to provide a vapor deposition apparatus that can cope with such problems and prevent the substrate from falling off the substrate holder even if a problem of electrostatic attraction occurs.
 上記目的を達成するために、本発明による蒸着装置は、真空室内に、蒸着材料を蒸発させる蒸着源と、該蒸着源に対向させて基板を保持面に保持する基板ホルダーと、前記基板表面に予め設定された複数のパターン形成領域に対応して複数の開口を並べて形成した蒸着マスクと、を備え、前記蒸着源から蒸発した蒸着材料を前記蒸着マスクの開口を介して前記基板上に蒸着させ前記薄膜パターンを形成する蒸着装置であって、前記基板ホルダーは、前記基板の縁部領域に配置された固定補助部材に作用して前記基板を保持面に固定する固定手段を内蔵する構成としたものである。 In order to achieve the above object, a vapor deposition apparatus according to the present invention includes, in a vacuum chamber, a vapor deposition source for evaporating a vapor deposition material, a substrate holder facing the vapor deposition source and holding a substrate on a holding surface, and a substrate surface. A deposition mask formed by arranging a plurality of openings corresponding to a plurality of preset pattern formation regions, and vapor deposition material evaporated from the deposition source is deposited on the substrate through the openings of the deposition mask. In the vapor deposition apparatus for forming the thin film pattern, the substrate holder includes a fixing means that acts on a fixing auxiliary member disposed in an edge region of the substrate to fix the substrate to a holding surface. Is.
 本発明の蒸着装置によれば、基板ホルダーに内蔵した固定手段により基板の縁部領域に配置された固定補助部材に作用して基板を保持面に強固に固定することができる。したがって、静電チャックと併用した場合にも、振動等により静電吸着に不具合が発生しても基板ホルダーから基板が脱落するのを防止することができる。 According to the vapor deposition apparatus of the present invention, the substrate can be firmly fixed to the holding surface by acting on the fixing auxiliary member disposed in the edge region of the substrate by the fixing means built in the substrate holder. Therefore, even when used in combination with an electrostatic chuck, it is possible to prevent the substrate from falling off the substrate holder even if a malfunction occurs in electrostatic adsorption due to vibration or the like.
本発明による蒸着装置の第1実施形態の要部を示す正面図である。It is a front view which shows the principal part of 1st Embodiment of the vapor deposition apparatus by this invention. 図1の左側面図である。It is a left view of FIG. 上記実施形態において使用される基板ホルダーの一構成例を示す図であり、(a)は底面図、(b)は(a)のO-O線断面矢視図である。It is a figure which shows one structural example of the substrate holder used in the said embodiment, (a) is a bottom view, (b) is the OO sectional view taken on the arrow line of (a). 上記基板ホルダーに基板を磁気チャックするための磁性金属板の一構成例を示す図であり、(a)は平面図、(b)は長手中心線断面図である。It is a figure which shows one structural example of the magnetic metal plate for carrying out the magnetic chuck of the board | substrate to the said board | substrate holder, (a) is a top view, (b) is a longitudinal centerline sectional drawing. 上記基板ホルダーの載荷位置における動作を示す説明図であり、(a)は基板の搬入待機状態を示し、(b)は基板搬送時の状態を示している。It is explanatory drawing which shows the operation | movement in the loading position of the said substrate holder, (a) shows the carrying-in stand-by state of a board | substrate, (b) has shown the state at the time of board | substrate conveyance. 上記第1実施形態において使用される基板の一構成例を示す平面図である。It is a top view which shows the example of 1 structure of the board | substrate used in the said 1st Embodiment. 上記第1実施形態において使用される蒸着マスクの一構成例を示す平面図である。It is a top view which shows one structural example of the vapor deposition mask used in the said 1st Embodiment. 本発明による蒸着装置の第2実施形態において使用される基板ホルダーの一構成例を示す図であり、(a)は底面図、(b)は内部構造を示す正面図である。It is a figure which shows one structural example of the substrate holder used in 2nd Embodiment of the vapor deposition apparatus by this invention, (a) is a bottom view, (b) is a front view which shows an internal structure. 本発明による蒸着装置の第3実施形態の要部を示す左側面図である。It is a left view which shows the principal part of 3rd Embodiment of the vapor deposition apparatus by this invention. 上記第3実施形態において使用される基板の一構成例を示す。One structural example of the board | substrate used in the said 3rd Embodiment is shown. 上記第3実施形態において使用される蒸着マスクの一構成例を示す平面図である。It is a top view which shows one structural example of the vapor deposition mask used in the said 3rd Embodiment. 上記実施形態における基板と蒸着マスクとの位置合わせについて示す説明図である。It is explanatory drawing shown about position alignment with the board | substrate and vapor deposition mask in the said embodiment. 上記3実施形態における基板と蒸着マスクとの間の角度ずれ調整について示す説明図である。It is explanatory drawing shown about the angle shift | offset | difference adjustment between the board | substrate and vapor deposition mask in the said 3 embodiment.
 以下、本発明の実施形態を添付図面に基づいて詳細に説明する。図1は本発明による蒸着装置の第1実施形態の要部を示す正面図であり、図2は図1の左側面図である。この蒸着装置は、基板を一方向に搬送しながら基板よりも面積の小さい蒸着マスクを使用して薄膜パターンを蒸着形成するもので、真空室内に、搬送手段1と、基板ホルダー2と、蒸着マスク3と、蒸着源4と、撮像手段5と、アライメント手段6とを備えて構成されている。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a front view showing a main part of a first embodiment of a vapor deposition apparatus according to the present invention, and FIG. 2 is a left side view of FIG. This vapor deposition apparatus deposits and forms a thin film pattern using a vapor deposition mask having a smaller area than the substrate while conveying the substrate in one direction. In the vacuum chamber, the conveyance means 1, the substrate holder 2, and the vapor deposition mask are formed. 3, a vapor deposition source 4, an imaging unit 5, and an alignment unit 6.
 上記搬送手段1は、基板7を図1に示す矢印A方向に一定速度で搬送するもので、後述の基板ホルダー2を支持して矢印A方向に移動させる例えばリニアモータアクチュエータであり、レール8と可動部9とを備えて構成されている。そして、真空室内に往路及び復路を備えて閉ループに形成され、蒸着が終了した基板ホルダー2をスタート位置まで戻すことができるようになっている。 The transport means 1 transports the substrate 7 at a constant speed in the direction of arrow A shown in FIG. 1 and is, for example, a linear motor actuator that supports a substrate holder 2 to be described later and moves it in the direction of arrow A. The movable part 9 is provided. Then, a forward loop and a return path are provided in the vacuum chamber so as to form a closed loop, and the substrate holder 2 after vapor deposition can be returned to the start position.
 上記搬送手段1に一端部2aが回動可能に支持されて基板ホルダー2が設けられている。この基板ホルダー2は、平坦な保持面2bに基板7の裏面を吸着して保持するものであり、図3に示すように、保持面2bの中央領域に高電圧源21により直流電圧が印加可能に形成されて静電チャック22が設けられ、直流電圧の印加により基板7を保持面2bに静電吸着することができるようになっている。また、矢印Aで示す移動方向に平行な両端縁部領域には、電磁石23を内蔵して固定手段としての磁気チャックが設けられ、電磁石23の磁力により、それに対応して基板7の表面の両端縁部領域7b(図6参照)に設置された固定補助部材としての磁性金属板10を吸着して基板7を保持面2bに保持するようになっている。この場合、磁性金属板10は、基板7と後述の蒸着マスク3との間のギャップ寸法以下の厚みで形成されるのが望ましい。 A substrate holder 2 is provided with one end 2a rotatably supported by the transport means 1. The substrate holder 2 is configured to attract and hold the back surface of the substrate 7 on a flat holding surface 2b. As shown in FIG. 3, a DC voltage can be applied to the central region of the holding surface 2b by a high voltage source 21. The electrostatic chuck 22 is provided so that the substrate 7 can be electrostatically attracted to the holding surface 2b by applying a DC voltage. Further, in both end edge regions parallel to the moving direction indicated by the arrow A, a magnetic chuck is provided as a fixing means with a built-in electromagnet 23, and both ends of the surface of the substrate 7 corresponding to the magnetic force of the electromagnet 23 are provided. The magnetic metal plate 10 as a fixing auxiliary member installed in the edge region 7b (see FIG. 6) is adsorbed to hold the substrate 7 on the holding surface 2b. In this case, the magnetic metal plate 10 is preferably formed with a thickness equal to or less than a gap dimension between the substrate 7 and a vapor deposition mask 3 described later.
 ここで、上記磁性金属板10は、例えばニッケル又はニッケル合金の磁性材料によって、図4に示すように基板7の縁部領域7bに対応した短冊状に形成され、磁性材料を貫通する複数の開口窓11が長軸に沿って設けられている。これにより、開口窓11を通して基板7の上記両縁部領域7bに互いに平行に予め形成された後述の追従マーク14を後述の撮像手段5により観察できるようになっている。 Here, the magnetic metal plate 10 is formed of a magnetic material such as nickel or a nickel alloy in a strip shape corresponding to the edge region 7b of the substrate 7 as shown in FIG. 4, and has a plurality of openings penetrating the magnetic material. A window 11 is provided along the long axis. As a result, follow-up marks 14 to be described later formed in advance in parallel with each other on both edge regions 7b of the substrate 7 through the opening window 11 can be observed by the image pickup means 5 to be described later.
 また、基板ホルダー2は、図示省略の載荷位置(loading position)において、図5(a)に示すように、保持面2bが上を向くように一端部2aを中心に矢印B方向に回動し、搬入ロボットによって真空室内に搬入された基板7を保持面2bに受けて静電的及び磁気的に吸着した後、同図(b)に示すように矢印C方向に反転して保持面2bが下を向くように回動し、基板7を後述の蒸着マスク3に対して対向させるようになっている。また、図示省略の除荷位置(unloading position)においては、保持面2bが上を向くように矢印B方向に回動した後、基板7の静電的及び磁気的な吸着を解除して、蒸着が終了した基板7を搬出ロボットにより真空室外に搬出できるようになっている。なお、図5(a)において符号12は、基板7の縁部領域7bに設けられた後述の追従マーク14と矢印Aで示す基板搬送方向(以下「X方向」という)とが平行となるように基板7を予め位置合わせするための二次元カメラであり、X軸に平行に2台が並べて配置されている。 Further, as shown in FIG. 5A, the substrate holder 2 rotates in the direction of arrow B about the one end portion 2a so that the holding surface 2b faces upward at a loading position (not shown). After the substrate 7 carried into the vacuum chamber by the carry-in robot is received by the holding surface 2b and electrostatically and magnetically attracted, the substrate 7 is reversed in the direction of arrow C as shown in FIG. It rotates so that it may face down, and the board | substrate 7 is made to oppose the vapor deposition mask 3 mentioned later. Further, in the unloading position (not shown), after rotating in the arrow B direction so that the holding surface 2b faces upward, the electrostatic and magnetic adsorption of the substrate 7 is released, and the deposition is performed. The substrate 7 that has been completed can be carried out of the vacuum chamber by the carry-out robot. In FIG. 5A, reference numeral 12 indicates that a follow-up mark 14 (described later) provided in the edge region 7b of the substrate 7 and a substrate transport direction (hereinafter referred to as “X direction”) indicated by an arrow A are parallel. Are two-dimensional cameras for previously aligning the substrate 7, and two units are arranged in parallel to the X axis.
 ここで使用する基板7は、有機EL表示用のTFT基板であり、図6に示すように、透明なガラス基板の表面にて中央領域7aに、赤(R)、緑(G)及び青(B)色対応のアノード電極24の列が一定の配列ピッチで形成されたもので、同じ色(例えば赤色)に対応したアノード電極24の列上に蒸着形成しようとする対応色(例えば赤色)の有機EL層(薄膜パターン)に対応したストライプ状の複数のパターン形成領域13がアノード電極24の列の3倍の配列ピッチで予め設定されている。また、このパターン形成領域13の長軸に平行な基板7の両端縁部領域7bには、夫々、上記パターン形成領域13の長軸に平行に線状の追従マーク14が互いに一定距離はなれて平行にパターン形成されている。そして、基板7は、上記基板ホルダー2に上記追従マーク14が矢印Aで示す基板搬送方向に平行となるように保持される。 The substrate 7 used here is a TFT substrate for organic EL display. As shown in FIG. 6, red (R), green (G), and blue (G) are formed in the central region 7a on the surface of a transparent glass substrate. B) A row of anode electrodes 24 corresponding to colors is formed at a constant arrangement pitch, and a corresponding color (for example, red) to be deposited on the row of anode electrodes 24 corresponding to the same color (for example, red). A plurality of stripe-shaped pattern forming regions 13 corresponding to the organic EL layers (thin film patterns) are set in advance at an arrangement pitch three times that of the rows of anode electrodes 24. Further, in both end edge regions 7b of the substrate 7 parallel to the major axis of the pattern formation region 13, linear tracking marks 14 are parallel to the major axis of the pattern formation region 13 with a certain distance from each other. The pattern is formed. The substrate 7 is held by the substrate holder 2 so that the follow-up mark 14 is parallel to the substrate transport direction indicated by the arrow A.
 上記基板ホルダー2と対向するように蒸着マスク3が設けられている。この蒸着マスク3は、基板7上に蒸着形成しようとする例えばR有機EL層のパターン形成領域13外の部分を遮蔽するためのもので、図7に示すように、基板7の面積よりも小さい面積を有する金属板の中央領域3aに、上記R有機EL層の形成位置に対応して貫通する複数の開口15をR有機EL層の配列ピッチと同じ配列ピッチ(アノード電極24の列の3倍の配列ピッチ)で並べて形成したものである。より詳細には、蒸着マスク3は、X方向の長さが基板7の同方向の長さよりも短く、基板搬送方向と交差する方向(以下「Y方向」という)の長さが基板7の同方向の長さと同じかそれよりも長い短冊形状をなしている。そして、Y方向の両端縁部領域3bに、一定形状(例えば四角形)の開口部を設けて1対のアライメントマーク16が形成されている。なお、蒸着マスク3は、熱膨張係数が10×10-6/℃以下の金属材料を使用するのが望ましく、好ましくは、熱膨張係数が2×10-6/℃以下のインバー又は1×10-6/℃以下のスーパーインバーが望ましい。 A vapor deposition mask 3 is provided so as to face the substrate holder 2. The vapor deposition mask 3 is for shielding a portion outside the pattern formation region 13 of the R organic EL layer to be vapor-deposited on the substrate 7, and is smaller than the area of the substrate 7 as shown in FIG. A plurality of openings 15 penetrating through the central region 3a of the metal plate having an area corresponding to the formation position of the R organic EL layer are arranged at the same arrangement pitch as the arrangement pitch of the R organic EL layer (three times the row of the anode electrodes 24). Arranged pitch). More specifically, the vapor deposition mask 3 has a length in the X direction that is shorter than the length in the same direction of the substrate 7, and a length in a direction intersecting with the substrate transport direction (hereinafter referred to as “Y direction”). It has a strip shape that is the same as or longer than the direction length. Then, a pair of alignment marks 16 is formed by providing openings of a certain shape (for example, a quadrangle) in both end edge regions 3b in the Y direction. The vapor deposition mask 3 is desirably made of a metal material having a thermal expansion coefficient of 10 × 10 −6 / ° C. or less, preferably invar having a thermal expansion coefficient of 2 × 10 −6 / ° C. or less, or 1 × 10 A super invar of -6 / ° C or lower is desirable.
 上記蒸着マスク3の下方には、該蒸着マスク3に対向して蒸着源4が設けられている。この蒸着源4は、基板7に形成しようとする薄膜パターンの蒸着材料を蒸発させるものであり、蒸着マスク3の長軸方向(Y方向)に長細い、上側を開口した箱状のルツボ17と、ルツボ17に収納された蒸着材料を加熱して蒸発させるヒータ18と、ルツボ17の開口を開閉するシャッタ19とを備えて構成されている。なお、本実施形態においては、シャッタ19を蒸着マスク3の下面に近接対向して配置した場合について示しているが、ルツボ17の開口に近接対向させて設けてもよい。 A deposition source 4 is provided below the deposition mask 3 so as to face the deposition mask 3. The vapor deposition source 4 evaporates a vapor deposition material of a thin film pattern to be formed on the substrate 7, and is a box-like crucible 17 that is long in the major axis direction (Y direction) of the vapor deposition mask 3 and has an upper opening. The heater 18 for heating and evaporating the vapor deposition material stored in the crucible 17 and the shutter 19 for opening and closing the opening of the crucible 17 are provided. In the present embodiment, the case where the shutter 19 is arranged close to and opposed to the lower surface of the vapor deposition mask 3 is shown, but the shutter 19 may be provided close to and opposed to the opening of the crucible 17.
 そして、蒸着マスク3と蒸着源4との間には、蒸着マスク3側に該蒸着マスク3の複数の開口パターン15を内包する大きさの開口を有し、蒸着源4側に該蒸着源4のルツボ17の周縁部を内包する大きさの開口を有する筒状の防着板20が設けられている。より詳細には、図2に示すように、蒸着マスク3のアライメントマーク16の形成位置よりも内側にて複数の開口15を形成した中央領域3aの周縁部と、ルツボ17の開口周縁部とをつなぐ筒状の防着板20が設けられ、蒸着材料が上記中央領域3a外の周辺領域に飛散し、蒸着マスク3のアライメントマーク16を介して基板7に付着するのを防止している。 Between the vapor deposition mask 3 and the vapor deposition source 4, an opening having a size including a plurality of opening patterns 15 of the vapor deposition mask 3 is provided on the vapor deposition mask 3 side, and the vapor deposition source 4 is disposed on the vapor deposition source 4 side. A cylindrical protection plate 20 having an opening of a size that encloses the peripheral edge of the crucible 17 is provided. More specifically, as shown in FIG. 2, the peripheral portion of the central region 3 a in which the plurality of openings 15 are formed inside the position where the alignment mark 16 of the vapor deposition mask 3 is formed, and the open peripheral portion of the crucible 17. The connecting cylindrical protection plate 20 is provided to prevent the vapor deposition material from scattering to the peripheral region outside the central region 3a and adhering to the substrate 7 through the alignment mark 16 of the vapor deposition mask 3.
 上記蒸着マスク3の両端縁部領域3bの下方には、夫々撮像手段5が設けられている。この撮像手段5は、蒸着マスク3に設けられたアライメントマーク16と該アライメントマーク16を通して観察される基板7のX軸に平行な両端縁部領域7bの表面に設けられた追従マーク14とを同一視野内に捕らえて同時に撮影するものであり、Y方向に複数の受光エレメントを一直線に並べて備えたラインカメラである。なお、撮像手段5の撮影領域を照明可能に図示省略の照明手段が設けられている。 The imaging means 5 is provided below the both-ends edge area | region 3b of the said vapor deposition mask 3, respectively. This imaging means 5 has the same alignment mark 16 provided on the vapor deposition mask 3 and the follow-up mark 14 provided on the surface of both edge region 7b parallel to the X axis of the substrate 7 observed through the alignment mark 16. This is a line camera that captures images in the field of view simultaneously and has a plurality of light receiving elements arranged in a straight line in the Y direction. Note that an illuminating unit (not shown) is provided so as to illuminate the imaging region of the imaging unit 5.
 上記蒸着マスク3をマスクの面に平行なXY平面内をY方向に移動可能にアライメント手段6が設けられている。このアライメント手段6は、撮像手段5で撮影して検出されたアライメントマーク16及び追従マーク14の位置関係に基づいて、基板7の搬送中常時、蒸着マスク3をXY平面内にてY方向に移動させて基板7と蒸着マスク3との位置ずれを補正するもので、蒸着マスク3の中央領域3aに対応して貫通する開口部を形成し、蒸着マスク3を基板7面に対して100μm程度のギャップを介して近接対向させて保持する蒸着マスク3のマスクホルダーの役目も果たしている。 Alignment means 6 is provided so that the vapor deposition mask 3 can be moved in the Y direction in an XY plane parallel to the mask surface. The alignment means 6 moves the deposition mask 3 in the Y direction within the XY plane at all times during the transport of the substrate 7 based on the positional relationship between the alignment mark 16 and the tracking mark 14 detected by photographing with the imaging means 5. In order to correct the positional deviation between the substrate 7 and the vapor deposition mask 3, an opening is formed that penetrates the central region 3 a of the vapor deposition mask 3. The vapor deposition mask 3 is about 100 μm from the surface of the substrate 7. It also serves as a mask holder for the vapor deposition mask 3 that is held close to each other through a gap.
 次に、このように構成された第1実施形態の動作について説明する。なお、ここでは、一例としてR有機EL層を形成する場合について説明する。
 先ず、初期状態においては、基板ホルダー2は、図5(a)に示すように、載荷位置で保持面2bを上向きにして基板7が搬入されるまで待機している。
Next, the operation of the first embodiment configured as described above will be described. Here, a case where an R organic EL layer is formed will be described as an example.
First, in the initial state, as shown in FIG. 5A, the substrate holder 2 stands by until the substrate 7 is loaded with the holding surface 2b facing upward at the loading position.
 続いて、予め両端縁部領域7bに磁性金属板10を設置した基板7が搬入ロボットによって搬入されて基板ホルダー2の保持面2b上に位置づけられる。この状態で基板7の上記両端縁部領域7bに設けられた追従マーク14のうち、一方の追従マーク14がX軸に平行に並べられた2台の2次元カメラにより、上記磁性金属板10に設けられた開口窓11を通して撮像され、両カメラで検出された追従マーク14が1直線につながるように基板7の角度が調整される。それが終了すると、基板ホルダー2の保持面2bに高圧の直流電圧が印加されて基板7が保持面2bに静電的に保持されると共に、電磁石23がオン駆動されて、その磁力により基板7の両端縁部領域7bに設置された磁性金属板10を磁気的に吸着して基板7が保持面2bに保持される。 Subsequently, the substrate 7 in which the magnetic metal plate 10 is previously installed in the both-ends edge region 7 b is loaded by the loading robot and positioned on the holding surface 2 b of the substrate holder 2. In this state, among the tracking marks 14 provided on the both end edge regions 7b of the substrate 7, one of the tracking marks 14 is arranged on the magnetic metal plate 10 by two two-dimensional cameras arranged in parallel to the X axis. The angle of the substrate 7 is adjusted so that the follow-up marks 14 imaged through the provided opening window 11 and detected by both cameras are connected to one straight line. When this is finished, a high DC voltage is applied to the holding surface 2b of the substrate holder 2 so that the substrate 7 is electrostatically held on the holding surface 2b, and the electromagnet 23 is turned on. The substrate 7 is held on the holding surface 2b by magnetically attracting the magnetic metal plate 10 installed in the both edge region 7b.
 次いで、基板ホルダー2は、図5(b)に示すように、搬送手段1に支持された一端部2a側を中心に180度矢印C方向に回動して基板7の表面を下向きにする。同時に、搬送手段1が起動して基板7の搬送が開始される。 Next, as shown in FIG. 5B, the substrate holder 2 rotates in the direction of arrow C by 180 degrees around the one end portion 2a supported by the transfer means 1 so that the surface of the substrate 7 faces downward. At the same time, the transfer means 1 is activated and the transfer of the substrate 7 is started.
 基板7が搬送手段1の往路を搬送されて撮像手段5の上側に達すると、撮像手段5により、蒸着マスク3に設けられたアライメントマーク16の開口部を通して基板7のX方向に平行な両端縁部領域7bの表面に設けられた追従マーク14と蒸着マスク3のアライメントマーク16とが同時に撮影される。 When the substrate 7 is conveyed on the forward path of the conveying means 1 and reaches the upper side of the imaging means 5, the imaging means 5 causes both end edges parallel to the X direction of the substrate 7 through the openings of the alignment marks 16 provided on the vapor deposition mask 3. The tracking mark 14 provided on the surface of the partial area 7b and the alignment mark 16 of the vapor deposition mask 3 are photographed simultaneously.
 撮像手段5で撮影された画像は、図示省略の制御手段において画像処理され、Y方向の輝度変化に基づいて追従マーク14の中心位置とアライメントマーク16の開口中心位置とが検出され、両マークの位置ずれ量が演算される。次いで、アライメント手段6が駆動されて上記位置ずれ量が許容値内となるように蒸着マスク3がY方向に移動される。このようにして、蒸着実行中、常時、基板7と蒸着マスク3とのアライメントが行われ、左右に揺れながら移動する基板7の動きに蒸着マスク3を追従させて蒸着を行うことができる。なお、X方向に対して左右いずれか一方の撮像手段5によるアライメントが許容値内で実行できない場合には、追従マーク14の形成不良、又は基板7が許容以上に熱膨張していることが疑われ、このときには、制御手段により上記基板7の番号と不良内容が記録されて、蒸着終了後に不良基板7を取除くことができるようになっている。 The image photographed by the imaging means 5 is subjected to image processing by a control means (not shown), and the center position of the tracking mark 14 and the opening center position of the alignment mark 16 are detected based on the change in luminance in the Y direction. A positional deviation amount is calculated. Next, the alignment means 6 is driven, and the vapor deposition mask 3 is moved in the Y direction so that the positional deviation amount is within an allowable value. In this manner, the alignment between the substrate 7 and the vapor deposition mask 3 is always performed during the vapor deposition, and the vapor deposition mask 3 can follow the movement of the substrate 7 that moves while swinging left and right. If alignment by either the left or right imaging unit 5 with respect to the X direction cannot be performed within an allowable value, it is suspected that the follow-up mark 14 is not formed correctly or that the substrate 7 is thermally expanded beyond the allowable value. At this time, the number of the substrate 7 and the content of the defect are recorded by the control means so that the defective substrate 7 can be removed after the deposition is completed.
 続いて、基板7が搬送されて蒸着マスク3の上方に達すると、蒸着源4のシャッタ19が一定時間開かれ、ルツボ17から蒸発したR有機EL層用の蒸着材料が蒸着マスク3の開口15を介して基板7上に付着する。こうして、基板7を搬送しながら基板7全面に渡って蒸着が行われ、R対応アノード電極24の列上のパターン形成領域13にストライプ状のR有機EL層が形成される。 Subsequently, when the substrate 7 is conveyed and reaches above the vapor deposition mask 3, the shutter 19 of the vapor deposition source 4 is opened for a certain time, and the vapor deposition material for the R organic EL layer evaporated from the crucible 17 is opened in the vapor deposition mask 3. It adheres on the substrate 7 via Thus, vapor deposition is performed over the entire surface of the substrate 7 while transporting the substrate 7, and a stripe-shaped R organic EL layer is formed in the pattern formation region 13 on the row of the R corresponding anode electrodes 24.
 蒸着が終了した基板7は、搬送手段1によってさらに後方まで搬送され、除荷位置において停止する。そして、この除荷位置において、基板ホルダー2が図5(a)に示すように搬送手段1側の一端部2aを中心に矢印B方向に180度回動して基板7を上向きにし、この状態で保持面2bに対する直流電圧の印加及び電磁石23の駆動が解除される。その後、搬出ロボットによって基板7は、真空室外に搬出される。 The substrate 7 on which deposition has been completed is transported further back by the transport means 1 and stops at the unloading position. At this unloading position, the substrate holder 2 is rotated 180 degrees in the direction of arrow B about the one end 2a on the conveying means 1 side as shown in FIG. Thus, the application of the DC voltage to the holding surface 2b and the driving of the electromagnet 23 are released. Thereafter, the substrate 7 is carried out of the vacuum chamber by the carry-out robot.
 基板7が搬出されて空となった基板ホルダー2は、図5(b)に示すように搬送手段1側の一端部2aを中心に矢印C方向に回動して保持面2bを下向きにした状態で搬送手段1の復路を通ってスタート位置まで戻され、再び、初期状態に戻る。 As shown in FIG. 5 (b), the substrate holder 2, which has been emptied after the substrate 7 is unloaded, rotates around the one end 2a on the conveying means 1 side in the direction of the arrow C so that the holding surface 2b faces downward. In this state, it returns to the start position through the return path of the conveying means 1 and returns to the initial state again.
 なお、上記第1実施形態においては、基板ホルダー2を一方向に移動しながら蒸着する場合について説明したが、本発明はこれに限られず、基板ホルダー2を固定状態で蒸着するものであっても、二次元平面内を前後左右にステップ移動して蒸着するものであってもよい。この場合、基板ホルダー2を固定状態で蒸着するときには、蒸着マスク3は、基板7と略同じ面積に形成され、基板7上のストライプ状又は矩形状のパターン形成領域に対応してストライプ状又は矩形状の開口が形成されたものが使用される。また、基板ホルダー2をステップ移動させて蒸着するときは、蒸着マスク3は、基板7よりも小さい面積に形成され、基板7上のストライプ状又は矩形状のパターン形成領域に対応してストライプ状又は矩形状の開口が形成されたものが使用される。さらに、この場合、電磁石23は、基板ホルダー2の保持面2bの4つの縁部領域、又はいずれか対向する両端縁部領域に備えられていればよい。また、磁性金属板10の厚みを基板7と蒸着マスクとの間のギャップと同じ寸法に形成すれば、磁性金属板10の規定の厚みで上記ギャップを管理することができる。 In the first embodiment, the case where deposition is performed while the substrate holder 2 is moved in one direction has been described. However, the present invention is not limited to this, and the substrate holder 2 may be deposited in a fixed state. Alternatively, vapor deposition may be performed by step-moving back and forth and right and left within a two-dimensional plane. In this case, when the substrate holder 2 is vapor-deposited in a fixed state, the vapor deposition mask 3 is formed in substantially the same area as the substrate 7 and corresponds to the stripe-shaped or rectangular pattern forming region on the substrate 7. A shape in which an opening having a shape is formed is used. Further, when vapor deposition is performed by moving the substrate holder 2 stepwise, the vapor deposition mask 3 is formed in an area smaller than the substrate 7 and is formed in a stripe shape or a rectangular pattern formation region on the substrate 7. A rectangular opening is used. Furthermore, in this case, the electromagnets 23 only need to be provided in the four edge regions of the holding surface 2b of the substrate holder 2 or in either end edge region facing each other. Moreover, if the thickness of the magnetic metal plate 10 is formed to the same dimension as the gap between the substrate 7 and the vapor deposition mask, the gap can be managed with the prescribed thickness of the magnetic metal plate 10.
 次に、本発明による蒸着装置の第2実施形態について説明する。ここでは、第1実施形態と異なる部分について説明する。
 この第2実施形態において、基板ホルダー2は、基板7の裏面の縁部領域7bに配置された固定補助部材としての図示省略の半田に熱を作用して該半田を溶融させ、基板7を保持面2bに半田付けして固定する固定手段としてのヒータを内蔵する構成となっている。
Next, a second embodiment of the vapor deposition apparatus according to the present invention will be described. Here, a different part from 1st Embodiment is demonstrated.
In the second embodiment, the substrate holder 2 holds the substrate 7 by applying heat to solder (not shown) as a fixing auxiliary member disposed in the edge region 7 b on the back surface of the substrate 7 to melt the solder. A heater is built in as a fixing means for soldering and fixing to the surface 2b.
 より詳細には、図8に示すように、上記基板ホルダー2は、保持面2bの中央領域に高電圧源21により直流電圧が印加可能に形成されて静電チャック22が設けられ、直流電圧の印加により基板7を保持面2bに静電吸着することができるようになっている。また、保持面2bの周縁領域の複数位置には、夫々、別に備えたヒータ電源25によって通電可能にヒータ26が設けられ、さらに、例えば圧電素子を備えて構成された超音波振動付与手段27により保持面2bに超音波振動が付与できるようになっている。これにより、ヒータ26の設置部28に置かれた例えばセラソルザ(商標登録)のような半田をヒータ26の加熱により溶融させ、同時に保持面2bを超音波振動させて保持面2bに基板7を半田付けして保持できるようになっている。なお、図8において符号29は超音波振動付与手段27に超音波を付与する超音波電源である。また、超音波振動付与手段27は、基板7側を超音波振動させるように設けてもよいが、以下の説明においては、基板ホルダー2の保持面2b側を超音波振動させる場合について述べる。さらに、上記ヒータ設置部28は、浅い凹部に形成されて例えば半田ボールを収容することができるようになっている。 More specifically, as shown in FIG. 8, the substrate holder 2 is formed in a central region of the holding surface 2b so that a DC voltage can be applied by a high voltage source 21, and an electrostatic chuck 22 is provided. The substrate 7 can be electrostatically attracted to the holding surface 2b by application. In addition, heaters 26 are provided at a plurality of positions in the peripheral area of the holding surface 2b so that they can be energized by a separately provided heater power supply 25, and further, for example, by ultrasonic vibration applying means 27 configured to include a piezoelectric element. Ultrasonic vibration can be applied to the holding surface 2b. As a result, solder such as Cerasolzer (registered trademark) placed on the installation portion 28 of the heater 26 is melted by heating the heater 26, and at the same time, the holding surface 2b is ultrasonically vibrated to solder the substrate 7 to the holding surface 2b. It can be attached and held. In FIG. 8, reference numeral 29 denotes an ultrasonic power source that applies ultrasonic waves to the ultrasonic vibration applying means 27. Further, the ultrasonic vibration applying means 27 may be provided so as to ultrasonically vibrate the substrate 7 side, but in the following description, the case of ultrasonically vibrating the holding surface 2b side of the substrate holder 2 will be described. Further, the heater installation portion 28 is formed in a shallow concave portion and can accommodate, for example, a solder ball.
 次に、このように構成された第2実施形態の動作について説明する。なお、ここでは、一例としてR有機EL層を形成する場合について説明する。
 先ず、初期状態においては、基板ホルダー2は、図5(a)に示すように、載荷位置で保持面2bを上向きにして基板7が搬入されるまで待機している。このとき、保持面2bの周縁領域のヒータ設置部28(図8参照)には、例えばセラソルザ(商標登録)のような半田ボールが図示省略の半田ボール供給手段によって外部から供給されている。
Next, the operation of the second embodiment configured as described above will be described. Here, a case where an R organic EL layer is formed will be described as an example.
First, in the initial state, as shown in FIG. 5A, the substrate holder 2 stands by until the substrate 7 is loaded with the holding surface 2b facing upward at the loading position. At this time, a solder ball such as Cerasolzer (registered trademark) is supplied to the heater installation portion 28 (see FIG. 8) in the peripheral region of the holding surface 2b from the outside by a solder ball supply means (not shown).
 続いて、基板7が搬入ロボットによって搬入されて基板ホルダー2の保持面2b上に位置づけられる。この状態で基板7の上記両端縁部領域7bに設けられた追従マーク14のうち、一方の追従マーク14がX軸に平行に並べられた2台の2次元カメラ12により撮像され、両カメラで検出された追従マーク14が1直線につながるように基板7の角度が調整される。それが終了すると、基板ホルダー2の保持面2bに高圧の直流電圧が印加されて基板7が保持面2bに静電吸着される。同時に、ヒータ電源25がオン駆動されてヒータ設置部28に置かれた半田ボールが溶融されると共に、超音波電源29により超音波振動付与手段27が起動されて保持面2bに超音波振動が付与され、基板7が基板ホルダー2の保持面2bに半田付けされる。なお、上記静電吸着と半田付けの動作は、同時でなく、いずれか一方が先に行われてもよい。 Subsequently, the substrate 7 is loaded by the loading robot and positioned on the holding surface 2 b of the substrate holder 2. In this state, one of the following marks 14 provided in the both edge region 7b of the substrate 7 is imaged by two two-dimensional cameras 12 arranged in parallel to the X axis. The angle of the substrate 7 is adjusted so that the detected tracking mark 14 is connected to one straight line. When this is finished, a high DC voltage is applied to the holding surface 2b of the substrate holder 2, and the substrate 7 is electrostatically attracted to the holding surface 2b. At the same time, the heater power supply 25 is turned on to melt the solder balls placed on the heater installation section 28, and the ultrasonic power supply 29 is activated by the ultrasonic power supply 29 to apply ultrasonic vibration to the holding surface 2b. Then, the substrate 7 is soldered to the holding surface 2 b of the substrate holder 2. Note that the electrostatic adsorption and soldering operations are not performed simultaneously, and either one may be performed first.
 次いで、基板ホルダー2は、図5(b)に示すように、搬送手段1に支持された一端部2a側を中心に180度矢印C方向に回動して基板7の表面を下向きにする。同時に、搬送手段1が起動して基板7の搬送が開始される。 Next, as shown in FIG. 5B, the substrate holder 2 rotates in the direction of arrow C by 180 degrees around the one end portion 2a supported by the transfer means 1 so that the surface of the substrate 7 faces downward. At the same time, the transfer means 1 is activated and the transfer of the substrate 7 is started.
 基板7が搬送手段1の往路を搬送されて撮像手段5の上側に達すると、撮像手段5により、蒸着マスク3に設けられたアライメントマーク16の開口部を通して基板7のX方向に平行な両端縁部領域7bの表面に設けられた追従マーク14と蒸着マスク3のアライメントマーク16とが同時に撮影される。 When the substrate 7 is conveyed on the forward path of the conveying means 1 and reaches the upper side of the imaging means 5, the imaging means 5 causes both end edges parallel to the X direction of the substrate 7 through the openings of the alignment marks 16 provided on the vapor deposition mask 3. The tracking mark 14 provided on the surface of the partial area 7b and the alignment mark 16 of the vapor deposition mask 3 are photographed simultaneously.
 撮像手段5で撮影された画像は、図示省略の制御手段において画像処理され、Y方向の輝度変化に基づいて追従マーク14の中心位置とアライメントマーク16の開口中心位置とが検出され、両マークの位置ずれ量が演算される。次いで、アライメント手段6が駆動されて上記位置ずれ量が許容値内となるように蒸着マスク3がY方向に移動される。このようにして、蒸着実行中、常時、基板7と蒸着マスク3とのアライメントが行われ、左右に振れながら移動する基板7の動きに蒸着マスク3を追従させて蒸着を行うことができる。なお、X方向に対して左右いずれか一方の撮像手段5によるアライメントが許容値内で実行できない場合には、追従マーク14の形成不良、又は基板7が許容以上に熱膨張していることが疑われ、このときには、制御手段により上記基板7の番号と不良内容が記録され、蒸着終了後に、この記録内容を見て不良基板7を取除くことができるようになっている。 The image photographed by the imaging means 5 is subjected to image processing by a control means (not shown), and the center position of the tracking mark 14 and the opening center position of the alignment mark 16 are detected based on the change in luminance in the Y direction. A positional deviation amount is calculated. Next, the alignment means 6 is driven, and the vapor deposition mask 3 is moved in the Y direction so that the positional deviation amount is within an allowable value. In this way, the alignment of the substrate 7 and the vapor deposition mask 3 is always performed during the vapor deposition, and the vapor deposition mask 3 can follow the movement of the substrate 7 that moves while swinging left and right to perform the vapor deposition. If alignment by either the left or right imaging unit 5 with respect to the X direction cannot be performed within an allowable value, it is suspected that the follow-up mark 14 is not formed correctly or that the substrate 7 is thermally expanded beyond the allowable value. At this time, the number and defect content of the substrate 7 are recorded by the control means, and the defective substrate 7 can be removed by looking at the recorded content after the deposition is completed.
 続いて、基板7が搬送されて蒸着マスク3の上方に達すると、蒸着源4のシャッタ19が一定時間開かれ、ルツボ18から蒸発したR有機EL層用の蒸着材料が蒸着マスク3の開口15を介して基板7上に付着する。こうして、基板7を搬送しながら基板7全面に渡って蒸着が行われ、R対応アノード電極24の列上のパターン形成領域13にストライプ状のR有機EL層が形成される。 Subsequently, when the substrate 7 is transported and reaches above the vapor deposition mask 3, the shutter 19 of the vapor deposition source 4 is opened for a certain time, and the vapor deposition material for the R organic EL layer evaporated from the crucible 18 is opened in the vapor deposition mask 3. It adheres on the substrate 7 via Thus, vapor deposition is performed over the entire surface of the substrate 7 while transporting the substrate 7, and a stripe-shaped R organic EL layer is formed in the pattern formation region 13 on the row of the R corresponding anode electrodes 24.
 蒸着が終了した基板7は、搬送手段1によってさらに後方まで搬送され、除荷位置において停止する。そして、この除荷位置において、基板ホルダー2が図5(a)に示すように搬送手段1側の一端部2aを中心に矢印B方向に180度回動して基板7を上向きにし、この状態で保持面2bに対する静電チャックが解除されるのと同時に、ヒータ電源25がオン駆動されてヒータ設置部28の半田を溶融させる。なお、この場合、超音波振動付与手段27は駆動されなくてもよい。その後、搬出ロボットによって基板7は、真空室外に搬出される。 The substrate 7 on which deposition has been completed is transported further back by the transport means 1 and stops at the unloading position. At this unloading position, the substrate holder 2 is rotated 180 degrees in the direction of arrow B about the one end 2a on the conveying means 1 side as shown in FIG. At the same time as the electrostatic chuck for the holding surface 2b is released, the heater power supply 25 is turned on to melt the solder of the heater installation portion 28. In this case, the ultrasonic vibration applying unit 27 may not be driven. Thereafter, the substrate 7 is carried out of the vacuum chamber by the carry-out robot.
 基板7が搬出されて空となった基板ホルダー2は、図5(b)に示すように搬送手段1側の一端部2aを中心に矢印C方向に回動して保持面2bを下向きにした状態で搬送手段1の復路を通ってスタート位置まで戻され、再び、初期状態に戻る。 As shown in FIG. 5 (b), the substrate holder 2, which has been emptied after the substrate 7 is unloaded, rotates around the one end 2a on the conveying means 1 side in the direction of the arrow C so that the holding surface 2b faces downward. In this state, it returns to the start position through the return path of the conveying means 1 and returns to the initial state again.
 なお、搬送手段1に複数の基板ホルダー2を備えて随時搬送できるように構成すれば、複数の基板7を連続的に搬送しながら蒸着をすることができ、蒸着工程のタクトを短縮することができる。 If the transport means 1 includes a plurality of substrate holders 2 and can be transported at any time, it is possible to perform deposition while continuously transporting the plurality of substrates 7, thereby shortening the tact time of the deposition process. it can.
 また、上記第1及び第2実施形態においては、1回の蒸着工程で有機EL層が形成されるように説明したが、実際には、有機EL層は、正孔注入層、正孔輸送層、発光層、電子輸送層等の複数の成膜工程を経て形成される。したがって、有機EL層は、複数の蒸着装置による複数回の蒸着により形成されることになる。 In the first and second embodiments, it has been described that the organic EL layer is formed by a single vapor deposition step. However, in actuality, the organic EL layer includes a hole injection layer and a hole transport layer. And a plurality of film forming steps such as a light emitting layer and an electron transport layer. Therefore, the organic EL layer is formed by a plurality of times of vapor deposition by a plurality of vapor deposition apparatuses.
 この場合、一つの真空室内に複数種の蒸着源4及び対応する蒸着マスク3を基板7の搬送方向に並べて備えれば、1回の蒸着工程でR,G,B対応の有機EL層を形成することができる。 In this case, if a plurality of types of vapor deposition sources 4 and corresponding vapor deposition masks 3 are arranged in the conveyance direction of the substrate 7 in one vacuum chamber, an organic EL layer corresponding to R, G, and B is formed in one vapor deposition process. can do.
 次に、本発明による蒸着装置の第3実施形態について図9を参照して説明する。ここでは、上記第1及び第2実施形態と異なる部分について説明する。
 この第3実施形態において使用する基板7は、図10に示すように、透明基板の表面にて中央領域7aに、蒸着形成しようとする薄膜パターンに対応したストライプ状の複数のパターン形成領域13が予め設定されており、上記ストライプ状のパターン形成領域13の長軸に平行な両端縁部領域7bには、夫々、上記パターン形成領域13の長軸に平行に例えば黒色レジストにより線状の追従マーク14が互いに一定距離はなれて平行にパターン形成されている。さらに、各追従マーク14には、夫々一定間隔で交差する短い線状の複数の角度調整用マーク30が同じく例えば黒色レジストによりパターン形成されている。そして、基板7は、上記基板ホルダー2に上記追従マーク14が矢印Aで示す基板7搬送方向に平行となるように保持される。
Next, a third embodiment of the vapor deposition apparatus according to the present invention will be described with reference to FIG. Here, a different part from the said 1st and 2nd embodiment is demonstrated.
As shown in FIG. 10, the substrate 7 used in the third embodiment has a plurality of stripe-shaped pattern forming regions 13 corresponding to the thin film pattern to be deposited on the central region 7a on the surface of the transparent substrate. Both end edge regions 7b that are set in advance and are parallel to the long axis of the stripe-shaped pattern forming region 13 are respectively linear tracking marks made of, for example, black resist in parallel to the long axis of the pattern forming region 13. The patterns 14 are formed in parallel with a certain distance from each other. Furthermore, a plurality of short linear angle adjustment marks 30 that intersect each other at a predetermined interval are similarly formed on each tracking mark 14 by patterning, for example, with a black resist. The substrate 7 is held by the substrate holder 2 so that the follow-up mark 14 is parallel to the substrate 7 conveyance direction indicated by the arrow A.
 また、図9に示すように、基板ホルダー2のY方向の幅は、基板7の両端縁部領域7bに設けられている1対の追従マーク14の離隔距離よりも狭くなるように形成され、後述の撮像手段5により基板7の裏面側から基板7を透過して上記追従マーク14が観察できるようになっている。 Further, as shown in FIG. 9, the width of the substrate holder 2 in the Y direction is formed so as to be narrower than the separation distance between the pair of tracking marks 14 provided in both end edge regions 7b of the substrate 7, The follow-up mark 14 can be observed through the substrate 7 from the back side of the substrate 7 by the imaging means 5 described later.
 さらに、蒸着マスク3には、Y方向の両端縁部領域3bに一定形状の開口部が設けられ、1対のアライメントマーク16が形成されている。この1対のアライメントマーク16は、詳細には、夫々、図11に示すように、X方向に平行な2本の細線状開口部16aと、該2本の細線状開口部16a間にてX方向と斜めに交差する1本の斜線状開口部16bとを組み合わせたN字状の形をなしている。 Furthermore, the vapor deposition mask 3 is provided with openings having a fixed shape in both end edge regions 3b in the Y direction, and a pair of alignment marks 16 is formed. Specifically, as shown in FIG. 11, each of the pair of alignment marks 16 has two fine line-shaped openings 16a parallel to the X direction, and two fine line-shaped openings 16a. It has an N-shape formed by combining one oblique opening 16b that obliquely intersects the direction.
 さらにまた、図9に示すように、上記蒸着マスク3の両端縁部領域3aの上方には、夫々撮像手段5が設けられている。この撮像手段5は、基板7のX軸に平行な両端縁部領域7bを透過して基板7の表面に設けられた追従マーク14及び角度調整用マーク30と、蒸着マスク3に設けられたアライメントマーク16とを同時に撮影するものであり、Y方向に複数の受光エレメントを一直線に並べて備えたラインカメラである。なお、撮像手段5の撮影領域を照明可能に図示省略の落射照明が設けられている。 Furthermore, as shown in FIG. 9, the imaging means 5 is provided above the both-ends edge part area | region 3a of the said vapor deposition mask 3, respectively. The image pickup means 5 passes through both end edge regions 7 b parallel to the X-axis of the substrate 7, follows the tracking mark 14 and the angle adjustment mark 30 provided on the surface of the substrate 7, and the alignment provided on the vapor deposition mask 3. This is a line camera that photographs the mark 16 at the same time and includes a plurality of light receiving elements arranged in a straight line in the Y direction. An epi-illumination (not shown) is provided so as to illuminate the imaging region of the imaging means 5.
 そして、上記蒸着マスク3をマスクの面に平行なXY平面内を微動及び回動可能にアライメント手段6が設けられている。このアライメント手段6は、撮像手段5で撮影して検出されたアライメントマーク16及び追従マーク14の位置関係に基づいて、基板7の搬送中常時、蒸着マスク3をXY平面内にてY方向に移動させて基板7と蒸着マスク3との位置ずれを補正すると共に、撮像手段5で撮影して検出された、Y方向両端に互いに対応して位置する角度調整用マーク30間の位置ずれ量に基づいて蒸着マスク3を回動させ、該基板7の角度ずれを補正するもので、図11に矢印u,v,wで示す蒸着マスク3の短辺の両端位置の作用点及び長辺の中心位置の作用点に対して蒸着マスク3の面に平行な力を加えるアクチュエータを備えている。この場合、矢印u,vの作用点に対する各押し込み量又は引き出し量を調整することにより、蒸着マスク3をXY平面内をY方向に移動させたり回動させたりすることができ、矢印wの作用点に対する押し込み量又は引き出し量を調整することにより、蒸着マスク3をX方向に移動することができる。また、アライメント手段6は、蒸着マスク3の中央領域3aに対応して貫通する開口部を形成し、蒸着マスク3を基板7面に対して100μm程度のギャップを介して近接対向させて保持する蒸着マスク3のマスクホルダーの役目も果たしている。 An alignment means 6 is provided so that the vapor deposition mask 3 can be finely moved and rotated in an XY plane parallel to the mask surface. The alignment means 6 moves the deposition mask 3 in the Y direction within the XY plane at all times during the transport of the substrate 7 based on the positional relationship between the alignment mark 16 and the tracking mark 14 detected by photographing with the imaging means 5. Thus, the positional deviation between the substrate 7 and the vapor deposition mask 3 is corrected, and based on the positional deviation amount between the angle adjustment marks 30 located corresponding to both ends in the Y direction, detected by photographing with the imaging means 5. The deposition mask 3 is rotated to correct the angular deviation of the substrate 7, and the action point and the center position of the long side of the deposition mask 3 indicated by arrows u, v, and w in FIG. There is provided an actuator for applying a force parallel to the surface of the vapor deposition mask 3 with respect to the action point. In this case, the deposition mask 3 can be moved or rotated in the Y direction within the XY plane by adjusting the pushing amount or the drawing amount with respect to the action points of the arrows u and v. The action of the arrow w The deposition mask 3 can be moved in the X direction by adjusting the pushing amount or the drawing amount with respect to the point. The alignment means 6 forms an opening penetrating the central area 3a of the vapor deposition mask 3 and holds the vapor deposition mask 3 in close proximity to the surface of the substrate 7 through a gap of about 100 μm. It also plays the role of mask holder for mask 3.
 次に、このように構成された第3実施形態の動作について説明する。
 初期状態においては、基板ホルダー2は、図5(a)に示すように、載荷位置で保持面2bを上向きにして基板7が搬入されるまで待機している。
Next, the operation of the third embodiment configured as described above will be described.
In the initial state, as shown in FIG. 5A, the substrate holder 2 stands by until the substrate 7 is loaded with the holding surface 2b facing upward at the loading position.
 続いて、基板7が搬入ロボットによって搬入されて基板ホルダー2の保持面2b上に位置づけられる。この状態で基板7の縁部領域7bに設けられた追従マーク14がX軸に平行に並べられた2台の2次元カメラ12により撮像され、両カメラで検出された追従マーク14が1直線につながるように基板7の角度が調整される。それが終了すると、基板ホルダー2の保持面2bに直流電圧が印加され、基板7はその裏面が基板ホルダー2の保持面2bに静電吸着されて基板ホルダー2に保持される。この場合、基板ホルダー2に第1及び第2実施形態の固定手段を備え、該固定手段により基板7を保持面2bに保持してもよい。なお、第3実施形態においては、上記固定手段は、保持面2bのX方向(基板搬送方向)の両端縁部領域に対応して基板ホルダー2に設けるのがよい。 Subsequently, the substrate 7 is loaded by the loading robot and positioned on the holding surface 2 b of the substrate holder 2. In this state, the tracking mark 14 provided in the edge region 7b of the substrate 7 is imaged by the two two-dimensional cameras 12 arranged in parallel to the X axis, and the tracking mark 14 detected by both cameras is linear. The angle of the substrate 7 is adjusted so as to be connected. When this is completed, a DC voltage is applied to the holding surface 2 b of the substrate holder 2, and the back surface of the substrate 7 is electrostatically adsorbed to the holding surface 2 b of the substrate holder 2 and is held by the substrate holder 2. In this case, the substrate holder 2 may be provided with the fixing means of the first and second embodiments, and the substrate 7 may be held on the holding surface 2b by the fixing means. In the third embodiment, the fixing means is preferably provided on the substrate holder 2 in correspondence with both end edge regions in the X direction (substrate transport direction) of the holding surface 2b.
 次いで、基板ホルダー2は、図5(b)に示すように、搬送手段1に支持された一端部2a側を中心に180度回動して基板7の表面を下向きにする。同時に、搬送手段1が起動して基板7の搬送が開始される。 Next, as shown in FIG. 5B, the substrate holder 2 is rotated 180 degrees around the one end portion 2a supported by the transport means 1 so that the surface of the substrate 7 faces downward. At the same time, the transfer means 1 is activated and the transfer of the substrate 7 is started.
 基板7が搬送手段1の往路を搬送されて撮像手段5の下側に達すると、撮像手段5により、基板7のX方向に平行な両端縁部領域7bを透過して基板7の表面に設けられた追従マーク14及び角度調整用マーク30と蒸着マスク3に設けられたアライメントマーク16とが同時に撮影される。 When the substrate 7 is transported along the forward path of the transport unit 1 and reaches the lower side of the image capturing unit 5, the image capturing unit 5 transmits both end edge regions 7 b parallel to the X direction of the substrate 7 to be provided on the surface of the substrate 7. The follow mark 14 and the angle adjustment mark 30 and the alignment mark 16 provided on the vapor deposition mask 3 are photographed simultaneously.
 ここで、基板7と蒸着マスク3との位置合わせについて説明する。
 ラインカメラからなる撮像手段5を使用して落射照明により基板7の追従マーク14及び角度調整用マーク30並びに蒸着マスク3のアライメントマーク16を撮影すると、黒色パターンからなる追従マーク14及び角度調整用マーク30は、図12(a)に示すように夫々一つの黒点及び黒い細線として検出される。なお、同図(a)は、角度調整用マーク30を検出した状態を示す。また、アライメントマーク16は、開口部により形成されているため、同図(a)に示すように照明光が透過して3つの黒点として検出され、アライメントマーク16の周辺は照明光が反射されて明部として検出される。さらに、各マークの検出結果を時間経過で示すと同図(b)に示すようにアライメントマーク16は3本の平行な黒い直線として表わされ、追従マーク14は黒い直線として、角度調整用マーク30は追従マーク14の黒い直線に一定間隔で交差する黒い細線として表わされる。
Here, the alignment between the substrate 7 and the vapor deposition mask 3 will be described.
When the tracking mark 14 and the angle adjustment mark 30 on the substrate 7 and the alignment mark 16 on the vapor deposition mask 3 are photographed by epi-illumination using the imaging means 5 consisting of a line camera, the tracking mark 14 and the angle adjustment mark made of a black pattern are taken. 30 is detected as one black dot and a black thin line, respectively, as shown in FIG. FIG. 4A shows a state where the angle adjustment mark 30 is detected. Since the alignment mark 16 is formed by an opening, the illumination light is transmitted and detected as three black spots as shown in FIG. 5A, and the illumination light is reflected around the alignment mark 16. It is detected as a bright part. Further, when the detection result of each mark is shown over time, the alignment mark 16 is represented as three parallel black straight lines, and the follow-up mark 14 is represented as a black straight line, as shown in FIG. 30 is represented as a black thin line that intersects the black straight line of the tracking mark 14 at regular intervals.
 初期状態においては、撮像手段5の撮影画像に基づいて検出されたアライメントマーク16の3つの黒点間の距離L1,L2(図12(a)参照)が蒸着マスク3のX方向の中心軸に対して左右2つのアライメントマーク16で共に合致するように蒸着マスク3と撮像手段5との位置調整がされている。より詳細には、アライメント手段6を駆動して蒸着マスク3の、図11に矢印u,v,wで示す作用点に力が作用され、蒸着マスク3が移動されて上記2つのアライメントマーク16の中心を結ぶ中心線と撮像手段5の長手中心軸とが合致されている。 In the initial state, the distances L1 and L2 (see FIG. 12A) between the three black dots of the alignment mark 16 detected based on the photographed image of the imaging means 5 are relative to the central axis of the vapor deposition mask 3 in the X direction. Thus, the positions of the vapor deposition mask 3 and the imaging means 5 are adjusted so that the two alignment marks 16 on the left and right coincide with each other. More specifically, the alignment means 6 is driven to apply a force to the application point indicated by arrows u, v, and w in FIG. 11 and the evaporation mask 3 is moved to move the two alignment marks 16. The center line connecting the centers and the longitudinal center axis of the imaging means 5 are matched.
 蒸着が開始されると、撮像手段5の撮影画像に基づいて検出されたアライメントマーク16の3つの黒点うち、真中の黒点と追従マーク14の黒点との間の距離L3,L4が計測される。この場合、上記距離L3,L4が異なるときには、アライメント手段6を駆動して該距離L3,L4が合致するように蒸着マスク3の図11に矢印u,vで示す作用点に同じ大きさの力が作用され、基板7のY方向への位置ずれが補正される。 When vapor deposition is started, among the three black spots of the alignment mark 16 detected based on the image taken by the imaging means 5, the distances L3 and L4 between the middle black spot and the black spot of the tracking mark 14 are measured. In this case, when the distances L3 and L4 are different, the force of the same magnitude is applied to the point of action indicated by the arrows u and v in FIG. 11 of the vapor deposition mask 3 so that the alignment means 6 is driven to match the distances L3 and L4. Is applied, and the positional deviation of the substrate 7 in the Y direction is corrected.
 また、撮像手段5の撮影画像に基づいて検出される、基板7のX方向の中心線を挟んで左右に互いに対応して位置する角度調整用マーク30の検出時刻t1,t2が図13に示すように異なる場合には、基板7がX方向に対して角度θだけ傾いていることを示す。したがって、このときには、左右二つの角度調整用マーク30の検出時間差(t2-t1)と基板7の搬送速度から、2つの角度調整用マーク30のX方向の距離L5を演算し、該距離L5と予めメモリに保存された左右の追従マーク14間の距離L6とに基づいてθ=sin-1(L5/L6)を演算して基板7の傾き角度θを求める。そして、蒸着マスク3の図11に矢印u,vで示す作用点に対して互いに異なる大きさの力を作用し、蒸着マスク3を回転して蒸着マスク3のX方向に対する傾き角度が基板7の傾き角度θに合わされる。これにより、基板7と蒸着マスク3との間の相対的な回転方向の位置ずれが補正される。 FIG. 13 shows detection times t1 and t2 of the angle adjustment marks 30 that are located on the left and right sides of the center line in the X direction of the substrate 7 and that are detected based on the captured image of the imaging means 5. In such a case, the substrate 7 is inclined by an angle θ with respect to the X direction. Accordingly, at this time, the distance L5 in the X direction between the two angle adjustment marks 30 is calculated from the detection time difference (t2−t1) between the two left and right angle adjustment marks 30 and the conveyance speed of the substrate 7, and the distance L5 is calculated. The inclination angle θ of the substrate 7 is obtained by calculating θ = sin −1 (L5 / L6) based on the distance L6 between the left and right tracking marks 14 stored in advance in the memory. Then, forces having different magnitudes are applied to the action points indicated by arrows u and v in FIG. 11 of the vapor deposition mask 3, and the vapor deposition mask 3 is rotated so that the inclination angle of the vapor deposition mask 3 with respect to the X direction is It is adjusted to the tilt angle θ. Thereby, the position shift of the relative rotation direction between the board | substrate 7 and the vapor deposition mask 3 is correct | amended.
 なお、基板7のY方向への位置ずれ補正及び基板7と蒸着マスク3との間の回転方向の位置ずれ補正は、蒸着実行中常時行われ、ピッチング及びヨーイングしながら移動する基板7に対して蒸着マスク3を追従させることができる。したがって、薄膜パターンを位置精度よく形成することができる。 The positional deviation correction in the Y direction of the substrate 7 and the positional deviation correction in the rotational direction between the substrate 7 and the vapor deposition mask 3 are always performed during the vapor deposition, and the substrate 7 moves while pitching and yawing. The vapor deposition mask 3 can be made to follow. Therefore, the thin film pattern can be formed with high positional accuracy.
 基板7が搬送されて蒸着マスク3の上方に達すると、蒸着源4のシャッタ19が一定時間開かれ、ルツボ17から蒸発した蒸着材料が蒸着マスク3の開口15を介して基板7上に付着する。こうして、基板7を搬送しながら基板7全面に渡って蒸着が行われ、基板7上のパターン形成領域13にストライプ状の薄膜パターン(有機EL層)が形成される。 When the substrate 7 is conveyed and reaches above the vapor deposition mask 3, the shutter 19 of the vapor deposition source 4 is opened for a certain time, and the vapor deposition material evaporated from the crucible 17 adheres onto the substrate 7 through the opening 15 of the vapor deposition mask 3. . Thus, vapor deposition is performed over the entire surface of the substrate 7 while transporting the substrate 7, and a striped thin film pattern (organic EL layer) is formed in the pattern formation region 13 on the substrate 7.
 蒸着が終了した基板7は、搬送手段1によってさらに後方まで搬送され、除荷位置において停止する。そして、この除荷位置において、基板ホルダー2が図5(a)に示すように搬送手段1側の一端部2aを中心に矢印B方向に180度回動して基板7を上向きにし、この状態で保持面2bに対する直流電圧の印加が解除される。その後、搬出ロボットによって基板7は、真空室外に搬出される。 The substrate 7 on which deposition has been completed is transported further back by the transport means 1 and stops at the unloading position. At this unloading position, the substrate holder 2 is rotated 180 degrees in the direction of arrow B about the one end 2a on the conveying means 1 side as shown in FIG. Thus, the application of the DC voltage to the holding surface 2b is released. Thereafter, the substrate 7 is carried out of the vacuum chamber by the carry-out robot.
 基板7が搬出されて空となった基板ホルダー2は、図5(b)に示すように搬送手段1側の一端部2aを中心に矢印C方向に回動して保持面2bを下向きにした状態で搬送手段1の復路を通ってスタート位置まで戻され、再び、初期状態に戻る。 As shown in FIG. 5 (b), the substrate holder 2, which has been emptied after the substrate 7 is unloaded, rotates around the one end 2a on the conveying means 1 side in the direction of the arrow C so that the holding surface 2b faces downward. In this state, it returns to the start position through the return path of the conveying means 1 and returns to the initial state again.
 なお、上記第1~第3実施形態においては、アライメントマーク16及び追従マーク14が夫々1対設けられている場合について説明したが、本発明はこれに限られず、アライメントマーク16及び追従マーク14は、蒸着マスク3及び基板7のY方向の一方側縁部領域に互いに対応して1つ設けられていてもよい。この場合、1台の撮像手段5によりアライメントマーク16と追従マーク14とを撮影し、両マークが一定の位置関係を有するようにアライメント手段6により蒸着マスク3をY方向に移動させればよい。これにより、Y方向に振れながら搬送される基板7に対して蒸着マスク3を位置合わせすることができる。 In the first to third embodiments, the description has been given of the case where the alignment mark 16 and the tracking mark 14 are provided as a pair. However, the present invention is not limited to this, and the alignment mark 16 and the tracking mark 14 are One vapor deposition mask 3 and one substrate edge region in the Y direction of the substrate 7 may be provided corresponding to each other. In this case, the alignment mark 16 and the tracking mark 14 may be photographed by a single image pickup means 5 and the vapor deposition mask 3 may be moved in the Y direction by the alignment means 6 so that both marks have a certain positional relationship. Thereby, the vapor deposition mask 3 can be aligned with respect to the board | substrate 7 conveyed, swinging in a Y direction.
 また、上記第1~第3実施形態においては、基板7と蒸着マスク3との位置合わせを蒸着マスク3側を移動させて行う場合について説明したが、本発明はこれに限られず、基板ホルダー2側を移動させてもよい。この場合、アライメント手段6は、基板ホルダー2側に備えられ、蒸着マスク3は別に設けた蒸着マスク3のマスクホルダーに固定的に保持される。 In the first to third embodiments, the case where the alignment of the substrate 7 and the vapor deposition mask 3 is performed by moving the vapor deposition mask 3 side has been described. However, the present invention is not limited to this, and the substrate holder 2 The side may be moved. In this case, the alignment means 6 is provided on the substrate holder 2 side, and the vapor deposition mask 3 is fixedly held by the mask holder of the vapor deposition mask 3 provided separately.
 1…搬送手段
 2…基板ホルダー
 2a…保持面
 3…蒸着マスク
 4…蒸着源
 5…撮像手段
 6…アライメント手段
 7…基板
 10…磁性金属板
 11…開口窓
 14…追従マーク
 15…開口
 16…アライメントマーク
 16a…細線状開口部
 16b…斜線状開口部
 17…ルツボ
 20…防着板
 21…高電圧源
 22…電磁石
 26…ヒータ
 27…超音波振動付与手段
 30…角度調整用マーク
DESCRIPTION OF SYMBOLS 1 ... Conveyance means 2 ... Substrate holder 2a ... Holding surface 3 ... Deposition mask 4 ... Deposition source 5 ... Imaging means 6 ... Alignment means 7 ... Substrate 10 ... Magnetic metal plate 11 ... Opening window 14 ... Tracking mark 15 ... Opening 16 ... Alignment Mark 16a ... Fine line-shaped opening 16b ... Diagonal line-shaped opening 17 ... Crucible 20 ... Depositing plate 21 ... High voltage source 22 ... Electromagnet 26 ... Heater 27 ... Ultrasonic vibration applying means 30 ... Mark for angle adjustment

Claims (14)

  1.  真空室内に、蒸着材料を蒸発させる蒸着源と、該蒸着源に対向させて基板を保持面に保持する基板ホルダーと、前記基板表面に予め設定された複数のパターン形成領域に対応して複数の開口を並べて形成した蒸着マスクと、を備え、前記蒸着源から蒸発した蒸着材料を前記蒸着マスクの開口を介して前記基板上に蒸着させ前記薄膜パターンを形成する蒸着装置であって、
     前記基板ホルダーは、前記基板の縁部領域に配置された固定補助部材に作用して前記基板を保持面に固定する固定手段を内蔵する構成としたことを特徴とする蒸着装置。
    In the vacuum chamber, a deposition source for evaporating the deposition material, a substrate holder for holding the substrate on the holding surface so as to face the deposition source, and a plurality of pattern formation regions corresponding to a plurality of pattern formation regions set in advance on the substrate surface A vapor deposition mask formed by arranging openings, and depositing a vapor deposition material evaporated from the vapor deposition source on the substrate through the vapor deposition mask opening, and forming the thin film pattern,
    The vapor deposition apparatus according to claim 1, wherein the substrate holder includes a fixing means that acts on a fixing auxiliary member disposed in an edge region of the substrate to fix the substrate to a holding surface.
  2.  前記固定補助部材は、前記基板表面の両端縁部領域に配置された磁性金属板であり、
     前記固定手段は、前記磁性金属板に磁力を作用して該磁性金属部材を磁気的に吸着する磁気チャックである、
    ことを特徴とする請求項1記載の蒸着装置。
    The fixing auxiliary member is a magnetic metal plate disposed in both end edge regions of the substrate surface,
    The fixing means is a magnetic chuck that magnetically attracts the magnetic metal member by applying a magnetic force to the magnetic metal plate.
    The vapor deposition apparatus according to claim 1.
  3.  前記固定補助部材は、前記基板の裏面の周縁領域に配置された半田であり、
     前記固定手段は、前記半田に熱を作用して該半田を溶融させ、前記基板を前記保持面に半田付けするためのヒータである、
    ことを特徴とする請求項1記載の蒸着装置。
    The fixing auxiliary member is solder arranged in a peripheral region on the back surface of the substrate,
    The fixing means is a heater for applying heat to the solder to melt the solder and soldering the substrate to the holding surface.
    The vapor deposition apparatus according to claim 1.
  4.  前記蒸着マスクの前記複数の開口は、一定間隔で並べて設けられており、
     前記基板ホルダーを前記蒸着マスクの前記開口の並び方向と交差する方向に一定速度で搬送する搬送手段をさらに備えたことを特徴とする請求項1~3のいずれか1項に記載の蒸着装置。
    The plurality of openings of the vapor deposition mask are provided side by side at regular intervals,
    The vapor deposition apparatus according to any one of claims 1 to 3, further comprising a conveyance unit configured to convey the substrate holder at a constant speed in a direction intersecting an arrangement direction of the openings of the vapor deposition mask.
  5.  前記基板ホルダーは、前記搬送方向に平行な両端縁部領域に前記磁気チャックを備えたことを特徴とする請求項4記載の蒸着装置。 The vapor deposition apparatus according to claim 4, wherein the substrate holder includes the magnetic chuck in both end edge regions parallel to the transport direction.
  6.  前記磁性金属板には、前記基板ホルダーの搬送方向に平行な前記基板の両端縁部領域に互いに平行に予め形成された細線状の追従マークを観察可能な開口窓が設けられ、
     前記基板ホルダーと前記蒸着マスクとを相対的に前記基板ホルダーの搬送方向と交差する方向に移動可能なアライメント手段と、
     前記磁性金属板の前記開口窓を通して前記基板の前記追従マークを撮像する撮像手段と、
    をさらに備えたことを特徴とする請求項5記載の蒸着装置。
    The magnetic metal plate is provided with an opening window capable of observing fine line-shaped following marks formed in advance in parallel with each other at both end edge regions of the substrate parallel to the transport direction of the substrate holder,
    An alignment means capable of relatively moving the substrate holder and the vapor deposition mask in a direction intersecting with the transport direction of the substrate holder;
    Imaging means for imaging the tracking mark of the substrate through the opening window of the magnetic metal plate;
    The vapor deposition apparatus according to claim 5, further comprising:
  7.  前記磁性金属板は、前記基板と前記蒸着マスクとの間のギャップ寸法以下の厚みで形成されていることを特徴とする請求項2記載の蒸着装置。 The vapor deposition apparatus according to claim 2, wherein the magnetic metal plate is formed with a thickness equal to or less than a gap dimension between the substrate and the vapor deposition mask.
  8.  前記基板ホルダーの前記保持面側、及び前記基板側のいずれか一方に超音波振動を付与する超音波振動付与手段をさらに備えたことを特徴とする請求項3記載の蒸着装置。 4. The vapor deposition apparatus according to claim 3, further comprising ultrasonic vibration applying means for applying ultrasonic vibration to either the holding surface side or the substrate side of the substrate holder.
  9.  前記蒸着マスクは、前記基板ホルダーの搬送方向と交差する方向の少なくとも一方端側の縁部領域に、一定形状の開口部を設けてアライメントマークを形成してなり、
     前記搬送方向と交差する方向に複数の受光エレメントを一直線に並べて備え、前記蒸着マスクのアライメントマークと、該アライメントマークに対応して前記搬送方向と交差する方向の少なくとも一方端側の前記基板の縁部領域に設けられた前記搬送方向に平行な細線状の追従マークとを同時に撮影して両マークの位置関係を検出可能にした撮像手段と、
     前記撮像手段で撮影して検出された前記両マークの位置関係に基づいて、前記基板ホルダーの搬送中常時、前記基板と前記蒸着マスクとを前記蒸着マスクの面に平行な面内で相対的に移動させて前記基板と前記蒸着マスクとの位置ずれを補正するアライメント手段と、
    をさらに備えたことを特徴とする請求項4記載の蒸着装置。
    The vapor deposition mask is formed by forming an alignment mark by providing a fixed-shaped opening in an edge region on at least one end side in a direction intersecting the transport direction of the substrate holder,
    A plurality of light receiving elements are arranged in a straight line in a direction crossing the transport direction, the alignment mark of the vapor deposition mask, and the edge of the substrate on at least one end side in the direction crossing the transport direction corresponding to the alignment mark An imaging means capable of simultaneously capturing a thin line-shaped follow-up mark parallel to the transport direction provided in the partial area and detecting the positional relationship between the two marks;
    Based on the positional relationship between the two marks detected by photographing with the imaging means, the substrate and the vapor deposition mask are relatively moved in a plane parallel to the surface of the vapor deposition mask at all times during the transport of the substrate holder. An alignment unit that moves and corrects a positional deviation between the substrate and the vapor deposition mask;
    The vapor deposition apparatus according to claim 4, further comprising:
  10.  前記蒸着マスクには、前記搬送方向と平行な両端縁部領域に夫々前記アライメントマークが設けられ、
     前記基板には、前記搬送方向に平行な両端縁部領域に夫々前記追従マークが設けられ、
     前記各アライメントマーク及び前記各追従マークを撮影可能に1対の前記撮像手段を備え、
     前記アライメント手段は、前記各撮像手段で検出された前記アライメントマークと前記追従マークとの間の距離が互いに合致するように、前記基板と前記蒸着マスクとを相対的に前記搬送方向と交差する方向に移動させ、同方向の位置ずれを補正する、
    ことを特徴とする請求項9記載の蒸着装置。
    The vapor deposition mask is provided with the alignment marks in both end edge regions parallel to the transport direction, respectively.
    The substrate is provided with the following marks in both end edge regions parallel to the transport direction,
    A pair of the imaging means so that the alignment marks and the tracking marks can be photographed;
    The alignment means is a direction that relatively intersects the transport direction with the substrate and the vapor deposition mask so that the distance between the alignment mark and the follow-up mark detected by each imaging means matches each other. To correct misalignment in the same direction,
    The vapor deposition apparatus according to claim 9.
  11.  前記各追従マークには、夫々一定間隔で交差する細線状の複数の角度調整用マークが設けられており、
     前記アライメント手段は、前記各撮像手段で撮影して検出された前記搬送方向両端に対応して位置する前記角度調整用マーク間の位置ずれ量に基づいて前記蒸着マスクと前記基板とを相対的に回動させ、回転方向の位置ずれを補正する、
    ことを特徴とする請求項10記載の蒸着装置。
    Each follow-up mark is provided with a plurality of fine line-shaped angle adjustment marks that intersect at regular intervals,
    The alignment means relatively positions the vapor deposition mask and the substrate based on a positional deviation amount between the angle adjustment marks located corresponding to both ends in the transport direction detected by photographing with the imaging means. Rotate to correct misalignment in the rotation direction,
    The vapor deposition apparatus according to claim 10.
  12.  前記アライメントマークは、前記搬送方向に平行な2本の細線状開口部と、該2本の細線状開口部間にて前記搬送方向と斜めに交差する1本の斜線状開口部とを組み合わせた形態をなしていることを特徴とする請求項9記載の蒸着装置。 The alignment mark is a combination of two thin line-shaped openings parallel to the transport direction and one oblique line opening that obliquely intersects the transport direction between the two thin line-shaped openings. The vapor deposition apparatus according to claim 9, wherein the vapor deposition apparatus has a form.
  13.  前記基板は、透明な基板であり、
     前記撮像手段は、前記透明な基板を透過して前記追従マーク及び前記アライメントマークを撮影可能に配置された、
    ことを特徴とする請求項9記載の蒸着装置。
    The substrate is a transparent substrate;
    The imaging means is arranged to be able to photograph the tracking mark and the alignment mark through the transparent substrate,
    The vapor deposition apparatus according to claim 9.
  14.  前記蒸着マスク側に該蒸着マスクの複数の開口パターンを内包する大きさの開口を有し、前記蒸着源側に該蒸着源のルツボの周縁部を内包する大きさの開口を有する筒状の防着板を前記蒸着マスクと前記蒸着源との間にさらに設けたことを特徴とする請求項1記載の蒸着装置。 A cylindrical protective member having an opening large enough to enclose a plurality of opening patterns of the vapor deposition mask on the vapor deposition mask side and having an opening large enough to enclose the peripheral edge of the crucible of the vapor deposition source on the vapor deposition source side. The vapor deposition apparatus according to claim 1, further comprising a deposition plate between the vapor deposition mask and the vapor deposition source.
PCT/JP2012/083147 2011-12-22 2012-12-20 Deposition apparatus WO2013094707A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-282052 2011-12-22
JP2011282052A JP5994088B2 (en) 2011-12-22 2011-12-22 Vapor deposition equipment
JP2011290297A JP5994089B2 (en) 2011-12-29 2011-12-29 Vapor deposition equipment
JP2011-290297 2011-12-29
JP2012-008775 2012-01-19
JP2012008775A JP2013147700A (en) 2012-01-19 2012-01-19 Vapor deposition apparatus

Publications (1)

Publication Number Publication Date
WO2013094707A1 true WO2013094707A1 (en) 2013-06-27

Family

ID=48668586

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083147 WO2013094707A1 (en) 2011-12-22 2012-12-20 Deposition apparatus

Country Status (2)

Country Link
TW (1) TW201333234A (en)
WO (1) WO2013094707A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290879A (en) * 2017-08-11 2017-10-24 深圳市华星光电技术有限公司 Light shield for liquid crystal display panel
CN110656305A (en) * 2018-06-29 2020-01-07 三星显示有限公司 Deposition apparatus
CN113206020A (en) * 2021-04-08 2021-08-03 深圳市时代速信科技有限公司 Evaporation offset measurement method and system of evaporation table
CN113684445A (en) * 2017-01-17 2021-11-23 大日本印刷株式会社 Intermediate product, method for manufacturing vapor deposition mask, and alignment method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106094430A (en) * 2016-08-23 2016-11-09 贵州劲瑞新型包装材料有限公司 A kind of vacuum aluminum-coated device for forming pattern and operational approach thereof
CN107475675A (en) * 2017-09-11 2017-12-15 武汉华星光电半导体显示技术有限公司 evaporator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126978A (en) * 1982-01-22 1983-07-28 Hitachi Ltd Base plate holding device
JP2006057183A (en) * 2004-08-20 2006-03-02 Jds Uniphase Corp Magnetic latch for vapor deposition system
JP2006156905A (en) * 2004-12-01 2006-06-15 Nikon Corp Substrate omission preventing device and exposure device
JP2010261081A (en) * 2009-05-08 2010-11-18 V Technology Co Ltd Vapor deposition method and vapor deposition apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58126978A (en) * 1982-01-22 1983-07-28 Hitachi Ltd Base plate holding device
JP2006057183A (en) * 2004-08-20 2006-03-02 Jds Uniphase Corp Magnetic latch for vapor deposition system
JP2006156905A (en) * 2004-12-01 2006-06-15 Nikon Corp Substrate omission preventing device and exposure device
JP2010261081A (en) * 2009-05-08 2010-11-18 V Technology Co Ltd Vapor deposition method and vapor deposition apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113684445A (en) * 2017-01-17 2021-11-23 大日本印刷株式会社 Intermediate product, method for manufacturing vapor deposition mask, and alignment method
CN113684445B (en) * 2017-01-17 2023-08-08 大日本印刷株式会社 Intermediate product, method for manufacturing vapor deposition mask, and alignment method
CN107290879A (en) * 2017-08-11 2017-10-24 深圳市华星光电技术有限公司 Light shield for liquid crystal display panel
CN107290879B (en) * 2017-08-11 2020-06-09 深圳市华星光电技术有限公司 Light shield for liquid crystal display panel
CN110656305A (en) * 2018-06-29 2020-01-07 三星显示有限公司 Deposition apparatus
CN110656305B (en) * 2018-06-29 2023-08-11 三星显示有限公司 Deposition apparatus
CN113206020A (en) * 2021-04-08 2021-08-03 深圳市时代速信科技有限公司 Evaporation offset measurement method and system of evaporation table
CN113206020B (en) * 2021-04-08 2023-02-14 深圳市时代速信科技有限公司 Evaporation offset measurement method and system of evaporation table

Also Published As

Publication number Publication date
TW201333234A (en) 2013-08-16

Similar Documents

Publication Publication Date Title
JP5323581B2 (en) Vapor deposition method and vapor deposition apparatus
WO2013094707A1 (en) Deposition apparatus
US9496524B2 (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
TWI555862B (en) Evaporation mask, method for manufacturing the same and thinfilm pattern forming method
JP4510609B2 (en) Substrate and mask alignment method, organic thin film deposition method, and alignment apparatus
US9246135B2 (en) Organic layer deposition apparatus, method of manufacturing organic light-emitting display apparatus using the same, and organic light-emitting display apparatus manufactured using the method
JP5994089B2 (en) Vapor deposition equipment
KR101826068B1 (en) Apparatus for thin layer deposition
JP4560682B2 (en) Conductive ball mounting device
WO2016080235A1 (en) Vapor deposition device, vapor deposition method, and method for manufacturing organic electroluminescence element
JP5957322B2 (en) Vapor deposition apparatus and vapor deposition method
KR20070046375A (en) Apparatus for aligning substrate and mask, and method of aligning using the same
CN111128828B (en) Adsorption and alignment method, adsorption system, film forming method and apparatus, and method for manufacturing electronic device
US8962360B2 (en) Organic layer deposition apparatus and method of manufacturing organic light-emitting display device by using the organic layer deposition apparatus
JP2012104393A (en) Alignment method, alignment device, and manufacturing method and manufacturing apparatus of organic el display device
JP2022114212A (en) Film deposition apparatus
KR102590797B1 (en) Adsorption system, adsorption method and film forming apparatus using the same, film forming method, and manufacturing method of electronic device
JP5994088B2 (en) Vapor deposition equipment
JP4766242B2 (en) Conductive ball array device
JP5853334B2 (en) Exposure equipment
JP2013147700A (en) Vapor deposition apparatus
KR102217879B1 (en) Method for processing a substrate, apparatus for vacuum processing, and vacuum processing system
CN113106387A (en) Film forming apparatus and method for manufacturing electronic device
JP2006269952A (en) Proximity exposure device
JP2020515705A (en) Method for handling a mask structure, reference substrate for optical inspection of the mask structure, and vacuum deposition system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860902

Country of ref document: EP

Kind code of ref document: A1