WO2013091141A1 - 功率器件封装结构及封装工艺 - Google Patents

功率器件封装结构及封装工艺 Download PDF

Info

Publication number
WO2013091141A1
WO2013091141A1 PCT/CN2011/002156 CN2011002156W WO2013091141A1 WO 2013091141 A1 WO2013091141 A1 WO 2013091141A1 CN 2011002156 W CN2011002156 W CN 2011002156W WO 2013091141 A1 WO2013091141 A1 WO 2013091141A1
Authority
WO
WIPO (PCT)
Prior art keywords
lead
diode
chip
mounting pad
microchannel
Prior art date
Application number
PCT/CN2011/002156
Other languages
English (en)
French (fr)
Inventor
刘胜
吴步龙
罗小兵
徐玲
周洋
张阳
吴林
Original Assignee
武汉飞恩微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉飞恩微电子有限公司 filed Critical 武汉飞恩微电子有限公司
Priority to PCT/CN2011/002156 priority Critical patent/WO2013091141A1/zh
Priority to CN201180074628.0A priority patent/CN104011855A/zh
Publication of WO2013091141A1 publication Critical patent/WO2013091141A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/433Auxiliary members in containers characterised by their shape, e.g. pistons
    • H01L23/4334Auxiliary members in encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/473Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49541Geometry of the lead-frame
    • H01L23/49562Geometry of the lead-frame for devices being provided for in H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49575Assemblies of semiconductor devices on lead frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/73Means for bonding being of different types provided for in two or more of groups H01L24/10, H01L24/18, H01L24/26, H01L24/34, H01L24/42, H01L24/50, H01L24/63, H01L24/71
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the invention relates to a package structure and a packaging process of a power device, in particular to a power device package structure and a packaging process of a preset microchannel substrate or a directly molded microchannel tube.
  • Insulated Gate Bipolar Transistor is commonly used in the inverting circuit portion of a motor drive circuit.
  • IGBT Insulated Gate Bipolar Transistor
  • the application of IGBTs in automobiles and trains has promoted the development of the electronic power industry.
  • the reduction in weight and volume and the need for high reliability require highly integrated packaging systems, improved interconnects, and the use of new materials with thermal expansion coefficients and thermal conductivity.
  • a key theme for volume and weight reduction is the electronic power cooling system.
  • Conventional assemblies of standard modules based on air-cooled aluminum heat sinks used in industrial applications are too heavy and bulky for automotive applications. Liquid cooling solves the cooling problem of high-power devices and is applied to hybrid electric vehicles.
  • the object of the present invention is to improve the structural package according to the existing technology of the power module and the existing defects and deficiencies, especially the technical improvement of the cooling part, so as to realize the requirements of the power module for high cooling performance and small size cooler, thereby satisfying Electronic power devices require high efficiency heat dissipation.
  • the present invention provides a cooling method for power packaging and is applicable to high power IGBT or SiC devices and their modules.
  • the present invention relates to a power package form using a preset microchannel substrate or molding a microchannel tube directly in a package, and a method of forming the power package.
  • the power package is encapsulated in a molding compound with leads extending from the internal components to the exterior of the package. It can be used in electronic power devices, and more specifically, in IGBTs (insulated gate bipolar transistors) that have high thermal capacitance and require good thermal control.
  • the invention comprises: a preset microchannel substrate or a directly molded microchannel tube, an IGBT chip, a diode chip, a mounting gasket, an aluminum wire and an epoxy resin outer casing, characterized by an IGBT chip, a diode chip, a chip Mounted on the upper surface of the mounting pad, the cathode of the diode and the drain of the IGBT chip are electrically connected by the mounting pad, IGBT The chip and the wire are electrically connected by aluminum wire bonding, and the electrical connection between the diode and the IGBT chip is connected by an aluminum wire bonding or a conductive adhesive microchannel tube, and the diode, the IGBT chip and all the connections are sealed into the molding plastic.
  • the leads extend outside of the molding compound to effect a connection to an external circuit that is pre-set in the substrate or molded directly into the package structure.
  • the power package structure using the preset microchannel substrate includes a mounting pad electrically interconnected with the drain lead, and the mounting surface of the pad is mounted on the surface; at least one diode is mounted on the upper surface of the conductive chip mounting pad The diode anode lead is bound to the source of the IGBT chip, the diode cathode and the mounting pad are electrically interconnected; at least one IGBT chip is mounted on the upper surface of the mounting pad, and the IGBT chip source lead is bound to the anode of the diode, The IGBT chip drain and the mounting pad are electrically interconnected, the IGBT chip source lead is bound to the lead frame of the lead frame, and the IGBT chip gate lead is bound to the lead frame of the lead frame; the preset micro channel substrate Mounted to the power module through a conductive adhesive; the molding compound will pre-set the microchannel substrate, the diode, the IGBT chip, the mounting chip, and some of the pad drain leads, the source leads, the gate leads, and the other leads
  • the power device packaging process using the preset microchannel substrate comprises the following steps: encapsulating a portion of the microchannel tube to form a prefabricated microchannel substrate; fabricating a first lead frame, which comprises a mounting spacer, wherein the mounting spacer and the drain a lead wire electrical interconnection; a second lead frame placed over the mounting pad and coplanar with the mounting pad lead, including a source lead and a gate lead; mounting on the surface of the mounting pad
  • the diode chip, the cathode of the diode chip and the mounting pad are electrically interconnected by the conductive adhesive; the IGBT chip is mounted on the surface of the mounting pad, and the drain and the mounting pad of the chip are electrically interconnected by the conductive adhesive; Forming an electrical interconnection with the IGBT chip, between the IGBT and the source lead, and the gate lead; the molding compound encloses the diode, the IGBT, a part of the mounting pad, and a part of the lead of the lead frame in the molding compound, and the other part
  • a power device package structure using a directly molded microchannel tube includes a mounting pad electrically interconnected with a drain lead, a surface mount component for mounting the pad; and at least one diode mounted on the top surface of the mounting pad
  • the diode anode lead is bound to the source of the IGBT chip, the diode cathode and the mounting pad are electrically interconnected; at least one IGBT chip is mounted on the upper surface of the mounting pad, and the IGBT chip source lead is bound to the anode of the diode,
  • the IGBT chip drain and the mounting pad are electrically interconnected, the IGBT chip source lead is bonded to the lead frame of the lead frame, and the IGBT chip gate lead is bound to the lead frame of the lead frame; directly molded into the package Microchannel tube is provided inside; the molding compound will preset microchannels, diodes, IGBT chips, mounting pads, and some pad drain leads, source leads, gate leads, and other leads extending to the outside of the molding compound. .
  • the power device packaging process using a direct molded microchannel tube includes the following steps: Making the first lead frame
  • the rack includes a mounting pad, wherein the mounting pad is electrically interconnected with the drain lead; a second lead frame is placed over the mounting pad and coplanar with the mounting pad lead, including a a source lead and a gate lead; a microchannel tube is fabricated, and the mounting spacer is mounted on the microchannel tube by epoxy tape or silicone gel; a diode chip is mounted on the surface of the gasket, and a cathode of the diode chip is The chip mounting gasket is electrically interconnected by the conductive adhesive; the IGBT chip is mounted on the surface of the mounting gasket, and the drain and the mounting gasket of the IGBT chip are electrically interconnected by the conductive adhesive; between the diode and the IGBT chip, The IGBT forms an electrical interconnection with the source lead and the gate lead; the diode, the IGBT chip, a part of the mounting pad, and a part of the lead
  • the invention has the advantages that: the package structure can cool the heat conduction through the liquid circulation in the microchannel, the interface thermal resistance is smaller, the maintenance is simple, and the power package is greatly reduced by removing the liquid cooling plate or the heat sink. Volume, which in turn reduces costs.
  • Embodiment 1A is a schematic top plan view of Embodiment 1;
  • Figure 1B is a schematic cross-sectional view of the A-A of Figure 1A;
  • FIG. 2 is a flow chart of forming a prefabricated microchannel substrate and a cross-sectional view thereof taken along line B-B and C-C;
  • FIG. 3 is a flow chart of the first embodiment, including forming a chip connection and assembling power components onto the die bond pads;
  • Figure 4 is a flow chart of the continuation of the flow of the first embodiment of Figure 3;
  • Figure 5 is a final assembly step diagram of the first embodiment
  • FIG. 6A is a schematic top view of the second embodiment
  • Figure 6B is a schematic cross-sectional view of the A-A of Figure 6A;
  • Figure 7 is a flow chart of the second embodiment
  • Figure 8 is a flow chart of the continuation of the flow of Figure 7 of the second embodiment
  • Embodiment 3 is a schematic top plan view of Embodiment 3.
  • Figure 9B is a schematic cross-sectional view of the A-A of Figure 9A;
  • Figure 10 is a flow chart of the third embodiment
  • Figure 11 is a flow chart of the continuation of the flow of Figure 3 of the third embodiment.
  • Embodiment 4 is a schematic top plan view of Embodiment 4.
  • Figure 12B is a schematic cross-sectional view of the A-A of Figure 12A;
  • Figure 13 is a flow chart of the fourth embodiment
  • Figure 14 is a flow chart of the continuation of the flow of Figure 4 of Figure 4.
  • the present embodiment will be further described with reference to the accompanying drawings - see Fig. 1A, Fig. IB, power package 100, with a prefabricated microchannel substrate 102 attached to the bottom, encapsulated in a molding compound 110.
  • the components on the molding compound 110 and the preformed microchannel substrate 102 are specifically illustrated in Figure 1B.
  • the power package 100 includes a prefabricated microchannel substrate 102 and a power module portion.
  • the prefabricated microchannel substrate 102 is connected to the mounting pad 104 by a thermogel (or epoxy) 124.
  • the power module includes a mounting pad 104, which is attached.
  • the pad is provided with a drain wire, and the diode 106 and the IGBT chip 108 are mounted on the top surface of the mounting pad 104 by a conductive paste (or conductive epoxy or solder) 118.
  • the electrical connection between diode 106, IGBT chip 108 and wires 112, 114 is accomplished by connection 116.
  • a mounting pad 104, a diode 106, an IGBT chip 108, an electrical connection 116, and a portion of the drain wire, the wires 112, 114 are molded in the molding compound 110.
  • a portion of the drain conductor, source conductor 112 and gate conductor 114 are exposed for electrical connection of components between the power module and the external environment.
  • Figure 2 depicts the structural details of the preformed microchannel substrate 102 comprised of microchannel pump 120 and molding compound 122.
  • Figure 2 depicts a flow 200 of a prefabricated microchannel substrate.
  • the micropump 120 is shaped directly as a passage for the cooling liquid to form 102.
  • 2A1 is a top plan view of the micropump 120
  • a cross-sectional view B-B is a cross-sectional view of the micropump 120.
  • the cross section of the microchannel tube of this embodiment is square, see Fig. 2A1, and the circular tube shown in Fig. 2A2 or other different shapes may also be used.
  • the microchannel tube section can be rectangular or square or triangular or circular, and the microchannel tube microchannel tubes within the substrate can be bent into different shapes.
  • the microchannel tube of this embodiment is provided with a liquid inlet end and a liquid outlet end, see Fig. 2A1.
  • the thickness of the molding compound 122 can be thicker than the cross-sectional view of 120, or equal to the thickness shown in Figure 2B2, which has a lower thermal resistance and thus better thermal performance. Molding compound 122 can also be other suitable thermoset materials. Polymeric resins are conventionally used, but other suitable materials can also be used.
  • Figure 2C is another version of a prefabricated microchannel substrate having a leadframe 204 and threaded holes 206 that are bolted to secure the power device. This form is more suitable for high power modules. 208 is a top plan view of such a microchannel form, and 210 is a front view. The bolt hole shape of such a lead frame can be set according to the details of the power module. The thickness of the preset microchannel substrate is 1 to 5 mm.
  • FIG. 3 depicts a process flow 300 for mounting pads and power packages.
  • the top view and the DD cross-section depict the formation process of the placement shims, and the other parts of the process flow 300 are explained by the top view and the EE cross-section.
  • Process flow 300 begins with metal sheet 302.
  • Metal plate 302 is comprised of a suitable electrically conductive material.
  • the metal plate 302 of the present embodiment is made of copper, and the metal plate is plated with one or more other conductive metals or metal alloys, such as nickel, palladium. And other similar ingredients.
  • Step 304 is pre-fabricated by forming a drain wire by stamping.
  • the lead frame 308 is placed on the flat surface and the parallel surface of the mounting spacer 104, and the lead frame 308 in the step 310 may be made of the same material as the metal plate 302.
  • Diode 106 and IGBT chip 108 are mounted on mounting pad 104 by conductive adhesive 118 to form assembly 310.
  • Conductive adhesive 118 can be any suitable solder or conductive resin.
  • step 312 the electrical connection between diode 106, IGBT chip 108 and wires 112, 114 is accomplished by wire bonds 116.
  • step 400 molding compound 110 is used to partially encapsulate assembly 314 to provide assembly 402, which may be any suitable thermoset material. Polymeric resins are conventionally used, but other suitable materials can also be used.
  • the molding compound 110 is molded with a diode 106, an IGBT chip 108, a wire bond 116, a portion of the drain wire, a source wire 112, and a gate wire 114 such that the wire may extend outside the molding compound 110.
  • Step 404 is the end step of the process flow, such as the operation of the substrate and the deformation of the leads, to produce the package 100.
  • FIG. 5 depicts the final assembly steps of process flow 200 for producing power package 100.
  • assembly 406 and the preformed microchannel substrate are bonded together by adhesive 124.
  • Adhesive 124 can be any suitable thermal gel or epoxy.
  • the second embodiment is the same as the first embodiment except that the prefabricated microchannel substrate shown in the second embodiment is molded into a monolithic package in the power module.
  • An advantage of the second embodiment shown in Figures 6A, 6B is that the bonding between the power module and the cooling substrate 602 is more efficient.
  • the assembly of assembly 600 is the same as that of assembly 10C in FIG.
  • Figure 6A is a plan view of assembly 600
  • Figure 6B is a cross-sectional view of assembly 600 taken along line A-A.
  • power package 600 is comprised of prefabricated microchannel substrate 602 and power module sections, joined by a thermogel (or epoxy) 624, and molded into a package.
  • the power module includes a mounting pad 604 that includes a drain lead.
  • Diode 606 and IGBT chip 608 are mounted on the top surface of mounting pad 604 by a conductive adhesive (or conductive epoxy or solder) 618. Electrical connection between diode 606, IGBT chip 608 and wires 612, 614 is achieved by connection 616.
  • Mounting pads 604, diodes 606, IGBT chips 608, electrical connections 616, and portions of drain wires, wires 612, 614 are molded in molding compound 610. A portion of the drain lead, source line 612 and gate lead 614 are exposed for electrical connection of components between the power module and the external environment.
  • the prefabricated microchannel substrate 602 is composed of a microchannel pump 620 and a molding compound. 622 composition.
  • FIG 7 depicts a process flow 700 for forming the power package 600 of Figure 6A.
  • mounting spacer 604 is attached to prefabricated microchannel substrate 602 by adhesive 624, which is placed on the lead plane of mounting spacer 604, as shown in assembly 706.
  • diode 606 and IGBT chip 608 are mounted on mounting pad 604 via conductive adhesive 618 to form assembly 618.
  • Figure 8 is a flow diagram of the continuation of the process of embodiment two, steps In 800, the electrical connection between diode 606, IGBT chip 608 and wires 612, 614 is accomplished by wire bonding 616 to form assembly 802.
  • step 804 molding compound 610 is molded with diode 606, IGBT chip 608, wire bonding 616, a portion of the drain wire, the source wire 612, and the gate wire 614, such that the wire can extend outside of the molding compound 610.
  • the molding compound 610 simultaneously encapsulates a portion of the upper surface of the preformed microchannel substrate.
  • Step 808 is the end step of the process flow.
  • Embodiment 3 is the same as Embodiment 1, except that the microchannel pump 902 is directly molded into the package to form the assembly 900.
  • FIG. 10 depicts a process flow 1000 for producing a power package 900.
  • the mounting spacer 904 is attached to the microchannel 902 via an adhesive 920.
  • Adhesive 902 can be any suitable thermal gel or epoxy tape.
  • Lead frame 1002 is placed on the lead plane of mounting spacer 904, see assembly step 1006.
  • diode 906 and IGBT chip 908 are mounted on mounting pad 904 via conductive adhesive 918 to form assembly 1010.
  • Step 1012 of process flow 1000 is the same as step 312 in process flow 300. The remaining steps of process flow 1000 are illustrated in FIG. 11.
  • step 1100 molding compound 910 molds most of microchannels 902, diodes 906, IGBT chips 908, wire bonds 916, partial drain wires, source wires 912, and gates.
  • the wire 914, and thus the lead, extends to the exterior of the molding compound 910.
  • Step 1104 is the end step of the process flow.
  • Embodiment 4 is the same as Embodiment 1, except that the microchannels are directly molded in the package.
  • the microchannel pump 1202 is mounted on the upper surface of the diode and IGBT chip 1208 by a conductive adhesive so that the diode 1206 and the IGBT chip 1208 are electrically connected.
  • Figure 12A the components of the power package are placed within the molding compound 1210 and a portion of the leads are extended to the exterior of the molding compound 1210.
  • the power package 1000 is composed of a microchannel substrate 1202, a diode 1206, an IGBT chip 1208, a conductive chip mounting pad 1204, and wires 1212, 1214.
  • Diode 1206 and IGBT chip 1208 are mounted on the top surface of mounting spacer 1204 by a conductive adhesive (or conductive epoxy or tantalum) 1218.
  • Microchannel pump 1202 is attached to the top of diode 1206 and IGBT chip 1208 by a conductive adhesive 1220, diode 1206 and the IGBT chip 1208 are connected by a lead 1216, and the electrical connection of the IGBT chip 1208 and the wires 1212, 1214 is achieved by bonding the leads 1216.
  • Mounting pads 1204, diodes 1206, IGBT chips 1208, leads 1216, and portions of the chip mounting pad drain leads, the wires 1212, 121 are molded within the molding compound 1210. A portion of the drain lead, source lead 1212 and gate lead 1214 are exposed outside of 1210 for connection of the power package component to an external circuit.
  • FIG. 13 depicts a process flow 1300 for forming a power package 1200.
  • Process flow 1300 is illustrated by a top view and an E-E cross-section.
  • the process before the start of the 1300 is to form the chip mounting pad 1204 and to mount the diode 1206 and the IGBT chip 1208 on the mounting pad. These steps are the same as steps 304 and 306 in FIG.
  • step 1302 the electrical connection between the IGBT chip 1208 and the wires 1212 and 1214 is achieved by bonding the leads 1216.
  • Lead 1216 is typically an aluminum strip.
  • microchannel pump 1202 is attached to the surface of diode 1206 and IGBT 1208 by conductive adhesive 1220 to form assembly 1310. If the thickness of the IGBT chip 1208 is different from the thickness of the diode 1206, the microchannel needs to be stepped to meet the height difference requirement.
  • the remaining steps of process flow 1300 are shown in FIG.
  • FIG. 14 depicts the remaining steps of process flow 1300 for producing power package 1200.
  • molding compound 1210 is used to partially assemble assembly 1310 to form assembly 1402.
  • Molding compound 1210 can be any suitable thermoset material. Polymeric resins are conventionally used, but other suitable materials can also be used.
  • the molding compound 1210 is molded with a diode 1206, an IGBT chip 1208, a lead 1216, a portion of the drain wire, a source wire 1212, and a gate wire 1214 that extends outside the molding compound 1210.
  • Step 1404 is the end step of the process flow, such as the operation of the substrate and the deformation of the leads, to produce package 1200.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

提供一种功率器件封装结构及封装工艺,该封装结构包括预置微通道的基板或直接模塑的微通道管、绝缘栅双极晶体管(IGBT)芯片、二极管芯片、贴装垫片(104)外壳(110),其特征在于IGBT芯片、二极管芯片贴装在贴装垫片(104)上表面,二极管芯片与IGBT芯片经导电胶(118)、贴装垫片(104)及导线实现电连接,二极管芯片、IGBT芯片及所有的连接被密封进外壳(110)中,导线延伸到外壳(110)外部以实现和外部电路之间的连接。该封装结构能够通过微通道中的液体循环冷却传导热量,界面热阻小,维护简单,同时通过除去液冷板或者热沉极大的降低了功率封装的体积,进而降低了成本。

Description

Figure imgf000003_0001
功率器件封装结构及封装工艺
技术领域
本发明涉及一种功率器件的封装结构及封装工艺,特别涉及一种预置微通道基板或 直接模塑微通道管的功率器件封装结构及封装工艺。
背景技术
绝缘栅双极型晶体管 IGBT (Insulated Gate Bipolar Transistor) 通常用于电机驱动电 路的反演电路部分。 IGBT在汽车和列车中的应用促进了电子电力工业的发展。 重量和体 积的减少以及高可靠性的需求要求高集成度的封装***、 有所提高的互联以及有关热膨 胀系数和热导率的新材料的使用。 体积和重量减少的一个关键的主题是电子电力的冷却 ***。 工业应用中使用的基于空气冷却铝热沉的标准模块的传统装配体对于汽车应用来 说过于沉重和体积庞大。 液体冷却则解决了大功率器件的冷却问题, 应用于混合电动车。
然而目前仍将先进技术的常规液体冷却结构置于 DBC基板下方来代替空气冷却热 沉, 而这对于汽车应用仍 I日过于沉重庞大。 除此以外, 这种液冷的大功率封装的热阻很 高, 这是由于多层材料导致的高的界面热阻。 因此, 急需一种有着高冷却性能和小尺寸 的冷却器。
发明内容
本发明的目的是针对已有技术中存在的缺陷,提供一种预置微通道基板或直接模塑 微通道管的功率器件。 本发明的目的是根据功率模块现有的技术以及存在的缺陷与不足 进行结构封装的改进, 尤其是冷却部分的技术改良, 以实现功率模块对高冷却性能以及 小尺寸冷却器的要求, 进而满足电子电力器件对高效率散热需求。
本发明提供一种用于功率封装的冷却方法,且适用于大功率 IGBT或者 SiC器件及其 模组。 本发明与使用预置微通道基板或者直接在封装中模塑微通道管的功率封装形式以 及形成该功率封装的方法有关。 该功率封装被包覆在模塑料内, 引线从内部组件中延伸 到封装外部。 可用于电子电力器件, 更具体的说, 可用于有着高热电容并且需要良好热 控制的 IGBT (绝缘栅双极型晶体管) 。
本发明包括: 预置微通道的基板或直接模塑的微通道管、 IGBT芯片、 二极管芯片、 贴装垫片、 铝线和环氧树脂制作的外壳, 其特征在于 IGBT芯片、 二极管芯片、 芯片贴装 在贴装垫片上表面, 二极管的阴极与 IGBT芯片的漏极通过贴装垫片实现电连接, IGBT 芯片和导线通过铝线绑定实现电连接,二极管和 IGBT芯片之间的电气连接是通过铝线绑 定或者导电胶微通道管连接, 二极管、 IGBT芯片以及所有的连接被密封进模塑料中, 引 线延伸到模塑料外部以实现和外部电路之间的连接, 微通道管在基板中预置, 或直接模 塑进封装结构中。
采用预置微通道基板的功率封装结构包含有一个与漏极引线电互连的贴装垫片, 贴 装垫片表面贴装元器件; 至少一个二极管贴装在导电芯片贴装垫片上表面, 二极管阳极 引线绑定到 IGBT芯片的源极, 二极管阴极和贴装垫片电互连; 至少一个 IGBT芯片贴装 在贴装垫片上表面, IGBT芯片源极引线绑定到二极管的阳极, IGBT芯片漏极和贴装垫 片电互连, IGBT芯片源极引线绑定到引线框架的源极引线上, IGBT芯片门极引线绑定 到引线框架的门极引线上; 预置微通道基板通过导电胶贴装到功率模块; 模塑料将预置 微通道基板、 二极管、 IGBT芯片、 贴装塾片、 以及部分垫片漏极引线、 源极引线、 门极 引线塑封, 其他引线延伸到模塑料的外部。
采用预置微通道基板的功率器件封装工艺依次包括以下步骤: 包封部分微通道管形 成预制微通道基板; 制作第一个引线框架, 其含有一个贴装垫片, 其中贴装垫片与漏极 引线电互连; 在贴装垫片上方并和贴装垫片引线共平面处放置第二个引线框架, 其中包 含有一个源极引线和一个门极引线; 在贴装垫片表面贴装二极管芯片, 二极管芯片的阴 极和贴装垫片通过导电胶实现电互连; 在贴装垫片表面贴装 IGBT芯片, 芯片的漏极和贴 装垫片通过导电胶实现电互连; 在二极管和 IGBT芯片之间、 IGBT与源极引线、 门极引 线之间形成电气互连; 模塑料将二极管、 IGBT、 贴装垫片的一部分以及引线框架的部分 引线包封在模塑料中, 另一部分引线延伸到模塑料外部, 切除掉多余引线; 使用导热胶 或者环氧树脂将功率模块贴装到预置微通道基板上。
采用直接模塑微通道管的功率器件封装结构包含有一个与漏极引线电互连的贴装垫 片, 贴装垫片表面贴装元器件; 至少一个二极管贴装在贴装垫片上表面, 二极管阳极引 线绑定到 IGBT芯片的源极, 二极管阴极和贴装垫片电互连; 至少一个 IGBT芯片贴装在 贴装垫片上表面, IGBT芯片源极引线绑定到二极管的阳极, IGBT芯片漏极和贴装垫片 电互连, IGBT芯片源极引线绑定到引线框架的源极引线上, IGBT芯片门极引线绑定到 引线框架的门极引线上; 直接模塑到封装内部设有微通道管; 模塑料将预置微通道、 二 极管、 IGBT芯片、 贴装垫片、 以及部分垫片漏极引线、 源极引线、 门极引线塑封, 其他 引线延伸到模塑料的外部。
采用直接模塑微通道管的功率器件封装工艺依次包括以下步骤: 制作第一个引线框 架, 其含有一个贴装垫片, 其中贴装垫片与漏极引线电互连; 在贴装垫片上方并和贴装 垫片引线共平面处放置第二个引线框架, 其中包含有一个源极引线和一个门极引线; 制 作微通道管, 通过环氧树脂胶带或者硅凝胶将贴装垫片贴装在微通道管上; 在垫片表面 贴装二极管芯片, 二极管芯片的阴极和芯片贴装垫片通过导电胶实现电互连; 在贴装垫 片表面贴装 IGBT芯片, IGBT芯片的漏极和贴装垫片通过导电胶实现电互连; 在二极管 和 IGBT芯片之间、 IGBT与源极引线、门极引线之间形成电互连;将二极管、 IGBT芯片、 贴装垫片的一部分、 以及引线框架的部分引线包封在模塑料中, 另一部分引线延伸到模 塑料外部; 切除掉多佘引线。
本发明的优点是: 该封装结构能够通过微通道中的液体循环冷却更有效的传导热量, 界面热阻更小, 维护简单, 同时通过除去液冷板或者热沉极大的降低了功率封装的体积, 进而降低了成本。
附图说明
图 1A 实施例一的俯视结构示意图;
图 1B 图 1A的 A-A剖视结构示意图;
图 2 实施例一形成预制微通道基板的流程图及其 B-B、 C-C剖视图;
图 2A、 图 2B、 图 2C展示了不同的微泵以及预制微通道基板形式及其剖视图; 图 3 实施例一的流程图, 包括形成芯片连接和将功率元件组装到芯片粘接垫片上; 图 4 实施例一图 3的流程续接部分流程图;
图 5 实施例一的最终组装步骤图;
图 6A 实施例二的俯视结构示意图,
图 6B 图 6A的 A-A剖视结构示意图;
图 7 实施例二的流程图;
图 8 实施例二图 7的流程续接部分流程图;
图 9A 实施例三的俯视结构示意图;
图 9B 图 9A的 A-A剖视结构示意图;
图 10 实施例三的流程图;
图 11 实施例三图 10的流程续接部分流程图;
图 12A 实施例四的俯视结构示意图;
图 12B 图 12A的 A-A剖视结构示意图;
图 13 实施例四的流程图; ; 图 14 实施例四图 13的流程续接部分流程图。
具体实施方式
实施例一
下面结合附图进一步说明本实施例- 参见图 1A、 图 IB, 功率封装 100, 底部附有预制微通道基底 102, 封装在塑封料 110中。塑封料 110上的元件和预制微通道基板 102在图 1B中具体展示。功率封装 100 包含有预制微通道基板 102和功率模块部分, 预制微通道基板 102通过热凝胶 (或者 环氧树脂) 124与贴装垫片 104连接, 功率模块含有一个贴装垫片 104, 贴装垫片设有 一漏极的导线, 二极管 106和 IGBT芯片 108通过导电胶(或导电环氧树脂或焊料) 118 贴装在贴装垫片 104的顶面。 二极管 106, IGBT芯片 108和导线 112, 114之间的电气 连接通过连接 116实现。 将贴装垫片 104, 二极管 106, IGBT芯片 108, 电气连接 116, 以及部分漏极导线, 导线 112, 114塑封在塑封料 110内。 部分漏极导线, 源极导线 112 和门极导线 114暴露在外, 用来实现功率模块和外界环境间的元件的电气连接。 图 2 描述了由微通道泵 120和模塑料 122组成的预制微通道基板 102的结构细节。
图 2描述了预制微通道基板的流程 200。 微泵 120作为冷却液体的通道直接塑造 形成 102。 图 2A1是微泵 120的俯视视结构示意图,剖视图 B-B为微泵 120的截面图。 本实施例微通道管截面为正方形, 参见图 2A1 , 也可以采用图 2A2中展示的圆管或者其 他不同的形状。 微通道管截面可以为矩形或正方形或三角形或圆形, 在基板内的微通 道管微通道管可弯曲成不同的形状。 本实施例的微通道管设有一个液体入端和一个液 体出端, 参见图 2A1。 模塑料 122的厚度可以比 120的截面图更厚, 或者等于图 2B2 中展示的厚度, 这样的厚度有着更小的热阻, 从而热性能更好。 模塑料 122也可以是 其他的适合的热固性材料。 传统使用聚合树脂, 但也能使用其他合适的材料。 图 2C是 预制微通道基板的另一种形式, 有着引线框架 204和螺紋孔 206, 采用螺栓连接来固定 功率器件, 这种形式更适合于大功率模块。 208是这种微通道形式的俯视结构示意图, 210是主视图。这种引线框架的螺栓孔外形可根据功率模块的细节而设置制造。预置微 通道基板的厚度为 1讓到 5mm。
图 3描述了贴装垫片和功率封装的工艺流程 300。 其中俯视图和 D-D截面图描述 了贴装垫片的形成过程, 工艺流程 300其他的部分由俯视图和 E-E截面图解释。 工艺 流程 300从金属板 302开始。 金属板 302通过合适的导电材料组成。 本实施例的金属 板 302由铜制成, 金属板电镀了一种或多种其他的导电金属或金属合金, 例如镍, 钯 以及其他类似成分。
步骤 304是预制的初步, 通过冲压来形成漏极导线。 步骤 306中, 引线框架 308 放置在贴装垫片 104上的平面以及平行面, 步骤 310中的引线框架 308的材料可以和 金属板 302相同。二极管 106和 IGBT芯片 108通过导电粘合剂 118贴装在贴装垫片 104 上, 形成组装 310。 导电粘合剂 118可以是任何合适焊料或者导电树脂。 在步骤 312 中, 二极管 106, IGBT芯片 108和导线 112, 114之间的电气连接通过引线键合 116完 成。 116通常为铝带, 二极管 106和 IGBT芯片 108之间的连接通过三根铝带线绑定连 接, IGBT芯片 108和外部引线之间的连接通过三根铝带线绑定连接。从而形成组装 314。 工艺流程 300的剩余步骤在图 4中描述。 图 4为流程续接部分的步骤。 步骤 400中, 模塑料 110被用来部分塑封组装 314, 从而得到组装 402, 模塑料 110可以是任何合适 的热固性材料。 传统使用聚合树脂, 但也能使用其他合适的材料。 模塑料 110塑封了 二极管 106, IGBT芯片 108, 引线键合 116, 漏极导线的一部分, 源极导线 112以及门 极导线 114,从而导线可以延伸到模塑料 110的外部。步骤 404是工艺流程的结束步骤, 例如基板的操作以及引线的变形, 进而生产出封装 100。
图 5描述了生产功率封装 100的工艺流程 200的最终组装步骤。 在步骤 500中, 组装 406和预制微通道基板通过粘合剂 124粘接在一起。 粘合剂 124可以是任何合适 的热凝胶或环氧树脂。
实施例二
实施例二与实施例一相同,所不同的是实施例二中展示的预制微通道基板被模塑 在功率模块中成为一个整体封装。 图 6A、 图 6B中展示的实施例二的优势在于功率模块 和冷却基板 602之间的粘接更高效。 组装 600的组件和图 1中组装 10C的一样。 图 6A 是组装 600的俯视图, 图 6B是组装 600的 A- A剖视图。
根据图 6A和图 6B,功率封装 600由预制微通道基板 602以及功率模块部分组成, 通过热凝胶(或环氧树脂) 624连接, 并模塑在一个封装体内。 该功率模块包含有一个 贴装垫片 604, 贴装垫片含有一个漏极引线。 二极管 606和 IGBT芯片 608通过导电粘 合剂(或者导电环氧树脂或者悍料) 618贴装在贴装垫片 604的顶面。二极管 606, IGBT 芯片 608和导线 612, 614之间的电气连接通过连接 616实现。 将贴装垫片 604、 二极 管 606、 IGBT芯片 608、 电气连接 616、 以及部分漏极导线、 导线 612、 614塑封在塑 封料 610中。 部分漏极导线, 源极导线 612和门极导线 614暴露在外, 用来实现功率 模块和外界环境间的元件的电连接。 预制微通道基板 602由微通道泵 620以及模塑料 622组成。
图 7描述了形成图 6A中得功率封装 600的工艺流程 700。在工艺流程 700的步骤 704中, 贴装垫片 604通过粘合剂 624附着在预制微通道基板 602上, 引线框架 702 放置在贴装垫片 604的引线平面上, 如组装 706所示。 工艺流程 700的步骤 708中, 二极管 606和 IGBT芯片 608通过导电粘合剂 618贴装在贴装垫片 604上,形成组装 618. 图 8是实施例二的流程续接部分的流程图, 步骤 800中, 二极管 606, IGBT芯片 608和导线 612, 614之间的电气连接通过引线键合 616完成, 形成了组装 802, 在步骤 804中模塑料 610塑封了二极管 606, IGBT芯片 608, 引线键合 616, 部分漏极导线, 源极导线 612以及门极导线 614, 从而导线可以延伸到模塑料 610外部。 模塑料 610 同时塑封了预制微通道基板的部分上表面。 步骤 808是工艺流程的结束步骤。
实施例三
实施例三与实施例一相同,所不同的是微通道泵 902直接模塑在封装中形成组装 900。
图 10描述了生产功率封装 900的工艺流程 1000。 步骤 1004中, 贴装垫片 904通 过粘合剂 920贴装在微通道 902上。 粘合剂 902可以是任何合适的热凝胶或者环氧树 脂胶带。 引线框架 1002放置在贴装垫片 904的引线平面上, 参见组装步骤 1006所示。 步骤 1008中, 二极管 906和 IGBT芯片 908通过导电粘合剂 918贴装在贴装垫片 904 上, 形成组装 1010。 工艺流程 1000的步骤 1012与工艺流程 300中的步骤 312相同。 工艺流程 1000的剩余步骤见图 11描述, 步骤 1100中, 模塑料 910塑封了大部分微通 道 902, 二极管 906, IGBT芯片 908, 引线键合 916, 部分漏极导线, 源极导线 912以 及门极导线 914, 进而引线延伸到模塑料 910的外部。 步骤 1104是工艺流程的结束步 骤。
实施例四
实施例四与实施例一相同,所不同的是在封装中直接模塑微通道。 微通道泵 1202 通过导电粘合剂贴装在二极管和 IGBT芯片 1208的上表面, 从而二极管 1206和 IGBT 芯片 1208电气连接。 根据图 12A, 功率封装的元件放置在模塑料 1210内, 部分引线延 伸到模塑料 1210的外部。
参见图 12B, 功率封装 1000由微通道基板 1202, 二极管 1206, IGBT芯片 1208, 导电芯片贴装垫片 1204以及导线 1212, 1214组成。 二极管 1206和 IGBT芯片 1208通 过导电粘合剂(或者导电环氧树脂或者悍料) 1218贴装在贴装垫片 1204的顶面。微通 道泵 1202通过导电粘合剂 1220固定在二极管 1206和 IGBT芯片 1208的顶部, 二极管 1206和 IGBT芯片 1208之间经引线 1216键合连接, IGBT芯片 1208和导线 1212, 1214 的电气连接通过引线 1216键合实现。 贴装垫片 1204, 二极管 1206, IGBT芯片 1208, 引线 1216以及部分芯片贴装垫片漏极引线,导线 1212, 121 被塑封在模塑料 1210内。 部分漏极导线, 源极导线 1212和门极导线 1214暴露在 1210的外部, 用于功率封装元 件与外部电路的连接。
图 13描述了形成功率封装 1200的工艺流程 1300。工艺流程 1300由俯视图和 E-E 截面图解释。 工艺流程 1300开始前的步骤是形成芯片贴装垫片 1204以及在贴装垫片 上贴装二极管 1206和 IGBT芯片 1208, 这些步骤和图 3中的步骤 304、 步骤 306相同。 步骤 1302中, IGBT芯片 1208和导线 1212、 导线 1214之间的电气连接通过引线 1216 键合实现。引线 1216通常是铝带。在步骤 1308中,微通道泵 1202通过导电粘合剂 1220 固定在二极管 1206和 IGBT1208的表面, 形成组装 1310。 如果当 IGBT芯片 1208的厚 度和二极管 1206的厚度不同, 微通道需要形成阶梯状, 从而满足高度差的需求。 工艺 流程 1300的剩余步骤如图 14所示。
图 14描述了生产功率封装 1200的工艺流程 1300的剩余步骤。 步骤 1400中, 模 塑料 1210被用来一部分塑封组装 1310, 形成组装 1402。 模塑料 1210可以是任何合适 的热固性材料。 传统采用聚合树脂, 但其他合适的材料也可以使用。 模塑料 1210塑封 了二极管 1206、 IGBT芯片 1208、 引线 1216、 部分漏极导线、 源极导线 1212以及门极 导线 1214, 导线延伸到模塑料 1210的外部。
步骤 1404是工艺流程的结束步骤, 例如基板的操作以及引线的变形, 进而生产 出封装 1200。

Claims

权 利 要 求 书
1. 一种功率器件封装结构, 包括: 预置微通道的基板或直接模塑的微通道管、 IGBT 芯片、 二极管芯片、 贴装垫片、 铝线和环氧树脂制作的外壳, 其特征在于 IGBT 芯片、 二极管芯片、 芯片贴装在贴装垫片上表面, 二极管的阴极与 IGBT芯片的 漏极通过贴装垫片实现电连接, IGBT芯片和导线通过铝线绑定实现电连接, 二极 管和 IGBT芯片之间的电气连接是通过铝线绑定或者导电胶微通道管连接, 二极 管、 IGBT芯片以及所有的连接被密封进模塑料中, 引线延伸到模塑料外部以实现 和外部电路之间的连接, 微通道管在基板中预置, 或直接模塑进封装结构中。
2. 根据权利要求 1所述的功率器件封装结构,其特征在于微通道管截面为矩形或正 方形或三角形或圆形, 在基板内的微通道管或直接模塑的微通道管可弯曲成不同 的形状。
3. 根据权利要求 1所述的功率器件封装结构,其特征在于所述微通道管设有一个液 体入端和一个液体出端。
4. 根据权利要求 1所述的功率器件封装结构, 其特征在于所述模塑料的厚度大于或 等于预置微通道基板的厚度。
5. 根据权利要求 1和所述的功率器件封装结构, 其特征在于采用预置微通道基板的 功率封装结构包含有一个与漏极引线电互连的贴装垫片, 贴装垫片表面贴装元器 件; 至少一个二极管贴装在贴装垫片上表面, 二极管阳极引线绑定到 IGBT芯片的 源极,二极管阴极和贴装垫片电互连;至少一个 IGBT芯片贴装在贴装垫片上表面, IGBT芯片源极引线绑定到二极管的阳极, IGBT芯片漏极和贴装垫片电互连, IGBT 芯片源极引线绑定到引线框架的源极引线上, IGBT芯片门极引线绑定到引线框架 的门极引线上; 预置微通道基板通过导电胶贴装到功率模块; 模塑料将预置微通 道基板、 二极管、 IGBT芯片、 贴装垫片、 以及部分垫片漏极引线、 源极引线、 门 极引线塑封, 其他引线延伸到模塑料的外部。
6. 根据权利要求 5所述的功率器件封装结构, 其特征在于预置微通道基板设有引线 框架和用于螺栓连接的螺栓孔, 功率模块直接贴装在基板上。
7. 根据权利要求 5所述的功率器件封装结构, 其特征在于预置微通道基板的厚度为 lmm至 (J 5 mm
8. 根据权利要求 1或 5所述的功率器件封装结构,其特征在于使用二极管和 IGBT芯 片通过至少三根线绑定连接。
9. 根据权利要求 1或 5所述的功率器件封装结构, 其特征在于采用预制微通道基板 的功率封装中 IGBT芯片和外部引线通过至少三根线绑定连接。
10. 如权利要求 1或 5的功率器件封装结构的封装工艺, 其特征在于采用预置微通道 基板的功率器件封装工艺依次包括以下步骤: 包封部分微通道管形成预制微通道 基板; 制作第一个引线框架, 其含有一个贴装垫片, 该贴装垫片与漏极引线电互 连; 在贴装垫片上方并和贴装垫片引线共平面处放置第二个引线框架, 其中包含 有一个源极引线和一个门极引线; 在贴装垫片表面贴装二极管芯片, 二极管芯片 的阴极和贴装垫片通过导电胶实现电互连; 在贴装垫片表面贴装 IGBT芯片, 芯片 的漏极和贴装垫片通过导电胶实现电互连; 在二极管和 IGBT芯片之间、 IGBT与 源极引线、 门极引线之间形成电气互连; 模塑料将二极管, IGBT, 贴装垫片的一 部分以及引线框架的部分引线包封在模塑料中, 另一部分引线延伸到模塑料外部, 切除掉多余引线; 使用导热胶或者环氧树脂将功率模块贴装到预置微通道基板上。
11. 根据权利要求 1所述的功率器件封装结构, 其特征在于采用直接模塑微通道管的 功率器件封装结构包含有一个与漏极引线电互连的贴装垫片, 贴装垫片表面贴装 元器件; 至少一个二极管贴装在贴装垫片上表面, 二极管阳极引线绑定到 IGBT芯 片的源极, 二极管阴极和贴装垫片电互连; 至少一个 IGBT芯片贴装在贴装垫片上 表面, IGBT芯片源极引线绑定到二极管的阳极, IGBT芯片漏极和贴装塾片电互 连, IGBT芯片源极引线绑定到引线框架的源极引线上, IGBT芯片门极引线绑定 到引线框架的门极引线上; 直接模塑到封装内部设有微通道管; 模塑料将预置微 通道、 二极管、 IGBT芯片、 贴装垫片、 以及部分贴装垫片漏极引线、 源极引线、 门极引线塑封, 其他引线延伸到模塑料的外部。
12. 根据权利要求 1或 11所述的功率器件封装结构的封装工艺, 其特征在于采用直接 模塑微通道管的功率器件封装工艺依次包括以下步骤: 制作第一个引线框架, 其 含有一个贴装垫片, 其中贴装垫片与漏极引线电互连; 在贴装垫片上方并和贴装 垫片引线共平面处放置第二个引线框架, 其中包含有一个源极引线和一个门极引 线; 制作微通道管, 通过环氧树脂胶带或者硅凝胶将贴装垫片贴装在微通道管上; 在垫片表面贴装二极管芯片, 二极管芯片的阴极和芯片贴装垫片通过导电胶实现 电互连; 在贴装垫片表面贴装 IGBT芯片, IGBT芯片的漏极和贴装垫片通过导电 胶实现电互连; 在二极管和 IGBT芯片之间、 IGBT与源极引线、 门极引线之间形 成电互连; 将二极管、 IGBT芯片、 贴装垫片的一部分、 以及引线框架的部分引线 包封在模塑料中, 另一部分引线延伸到模塑料外部; 切除掉多余引线。
PCT/CN2011/002156 2011-12-21 2011-12-21 功率器件封装结构及封装工艺 WO2013091141A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/002156 WO2013091141A1 (zh) 2011-12-21 2011-12-21 功率器件封装结构及封装工艺
CN201180074628.0A CN104011855A (zh) 2011-12-21 2011-12-21 功率器件封装结构及封装工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/002156 WO2013091141A1 (zh) 2011-12-21 2011-12-21 功率器件封装结构及封装工艺

Publications (1)

Publication Number Publication Date
WO2013091141A1 true WO2013091141A1 (zh) 2013-06-27

Family

ID=48667606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/002156 WO2013091141A1 (zh) 2011-12-21 2011-12-21 功率器件封装结构及封装工艺

Country Status (2)

Country Link
CN (1) CN104011855A (zh)
WO (1) WO2013091141A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112599425A (zh) * 2020-12-14 2021-04-02 苏州华太电子技术有限公司 应用于电子器件的混合封装方法及混合封装结构
TWI727861B (zh) * 2020-07-23 2021-05-11 朋程科技股份有限公司 晶片封裝結構及其製造方法
CN112908962A (zh) * 2021-01-26 2021-06-04 江苏云意电气股份有限公司 一种车用贴片式二极管封装结构及方法
CN116631972A (zh) * 2023-04-28 2023-08-22 海信家电集团股份有限公司 功率模块和具有其的电子设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104743508A (zh) * 2015-04-16 2015-07-01 歌尔声学股份有限公司 含有传感器单元的模组的封装方法和封装结构

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090095979A1 (en) * 2007-10-02 2009-04-16 Rohm Co., Ltd. Power Module
JP2009252885A (ja) * 2008-04-03 2009-10-29 Mitsubishi Electric Corp 電力半導体装置
US20100289127A1 (en) * 2009-05-14 2010-11-18 Renesas Technology Corp. Semiconductor device
CN101901795A (zh) * 2009-05-25 2010-12-01 三星电机株式会社 功率半导体模块

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4015975B2 (ja) * 2003-08-27 2007-11-28 三菱電機株式会社 半導体装置
CN101707192A (zh) * 2009-11-05 2010-05-12 中国北车股份有限公司大连电力牵引研发中心 散热封装结构及其大功率器件管芯的封装方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090095979A1 (en) * 2007-10-02 2009-04-16 Rohm Co., Ltd. Power Module
JP2009252885A (ja) * 2008-04-03 2009-10-29 Mitsubishi Electric Corp 電力半導体装置
US20100289127A1 (en) * 2009-05-14 2010-11-18 Renesas Technology Corp. Semiconductor device
CN101901795A (zh) * 2009-05-25 2010-12-01 三星电机株式会社 功率半导体模块

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI727861B (zh) * 2020-07-23 2021-05-11 朋程科技股份有限公司 晶片封裝結構及其製造方法
CN112599425A (zh) * 2020-12-14 2021-04-02 苏州华太电子技术有限公司 应用于电子器件的混合封装方法及混合封装结构
CN112908962A (zh) * 2021-01-26 2021-06-04 江苏云意电气股份有限公司 一种车用贴片式二极管封装结构及方法
CN112908962B (zh) * 2021-01-26 2024-01-23 江苏云意电气股份有限公司 一种车用贴片式二极管封装结构及方法
CN116631972A (zh) * 2023-04-28 2023-08-22 海信家电集团股份有限公司 功率模块和具有其的电子设备
CN116631972B (zh) * 2023-04-28 2024-03-22 海信家电集团股份有限公司 功率模块和具有其的电子设备

Also Published As

Publication number Publication date
CN104011855A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
CN104170086B (zh) 半导体装置及半导体装置的制造方法
TWI404177B (zh) 功率半導體電路裝置及其製造方法
US10818574B2 (en) Plug-in type power module and subsystem thereof
WO2012053205A1 (ja) 半導体装置およびその製造方法
CN108074892B (zh) 具有不同熔化温度的互连结构的封装体
CN104303299B (zh) 半导体装置的制造方法及半导体装置
JP2009536458A (ja) 半導体モジュール及びその製造方法
CN105161477B (zh) 一种平面型功率模块
WO2013091141A1 (zh) 功率器件封装结构及封装工艺
CN111095537B (zh) 半导体装置及具备该半导体装置的功率转换装置
CN103975432A (zh) 微通道直接敷铜基板及其功率器件的封装结构和工艺
CN104051397B (zh) 包括非整数引线间距的封装器件及其制造方法
CN111276447B (zh) 双侧冷却功率模块及其制造方法
JP2007305772A (ja) 半導体装置および半導体装置の製造方法
JP7125931B2 (ja) パワーモジュールおよびその製造方法
JP2012182250A (ja) 半導体装置
CN105990275A (zh) 功率模块封装件及其制作方法
JP7026823B2 (ja) 半導体装置、電力変換装置及び半導体装置の製造方法
CN103295920A (zh) 非绝缘型功率模块及其封装工艺
CN216145615U (zh) 半导体电路
US11456285B2 (en) Semiconductor device and method of manufacturing semiconductor device
CN104425404A (zh) 封装半导体器件
JP2010141034A (ja) 半導体装置及びその製造方法
JP4249366B2 (ja) 金属ベース回路基板と電子モジュールの製造方法
CN209045567U (zh) 一种绝缘栅双极性晶体管模块封装结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878225

Country of ref document: EP

Kind code of ref document: A1