WO2013089258A1 - 顕微鏡及び刺激装置 - Google Patents

顕微鏡及び刺激装置 Download PDF

Info

Publication number
WO2013089258A1
WO2013089258A1 PCT/JP2012/082584 JP2012082584W WO2013089258A1 WO 2013089258 A1 WO2013089258 A1 WO 2013089258A1 JP 2012082584 W JP2012082584 W JP 2012082584W WO 2013089258 A1 WO2013089258 A1 WO 2013089258A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
light source
objective lens
conical
Prior art date
Application number
PCT/JP2012/082584
Other languages
English (en)
French (fr)
Inventor
吉田 祐樹
福武 直樹
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2013089258A1 publication Critical patent/WO2013089258A1/ja
Priority to US14/298,135 priority Critical patent/US20140327960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0032Optical details of illumination, e.g. light-sources, pinholes, beam splitters, slits, fibers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/0004Microscopes specially adapted for specific applications
    • G02B21/002Scanning microscopes
    • G02B21/0024Confocal scanning microscopes (CSOMs) or confocal "macroscopes"; Accessories which are not restricted to use with CSOMs, e.g. sample holders
    • G02B21/0052Optical details of the image generation
    • G02B21/0076Optical details of the image generation arrangements using fluorescence or luminescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/32Micromanipulators structurally combined with microscopes

Definitions

  • the present invention relates to a microscope and a stimulation device.
  • a specific wavelength on the specimen is stimulated by irradiating laser light of a predetermined wavelength, and further, the fluorescence generated in this specimen is observed by irradiating and exciting with laser light of a different wavelength
  • the spine can be uncaged for fluorescence observation, but because the cerebral cortex is thick, spines other than the observation surface can be uncaged
  • This spine is a protrusion of about 1 ⁇ m, and other places do not want to stimulate the light as much as possible.
  • the beam diameter of the stimulating light is reduced and the NA is reduced, the focal depth of the objective lens is deepened. Therefore, the stimulating region is expanded to some extent in the optical axis direction (deeper). There was a problem that the spot in the plane perpendicular to the optical axis) also increased. When the spot of light to be stimulated becomes large in this way, when observing brain cells as described above, it becomes impossible to stimulate a specific spine with high accuracy.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a microscope and a stimulation apparatus that can stimulate a deeper area than before with light with a simple configuration.
  • a microscope according to the present invention includes a first optical system that irradiates a specimen with light from a first light source via an objective lens and receives light from the specimen, A second optical system that irradiates the specimen with light from a first light source or light from a second light source different from the first light source via an objective lens to cause a specific phenomenon;
  • the second optical system is configured so that the light from the first light source or the light collection region of the light from the second light source collected through the objective lens satisfies the following condition. It has a beam shaping optical system for shaping light from a light source or light from a second light source.
  • ⁇ D maximum distance of a light collection region of light from the first light source or light from the second light source
  • NA of the objective lens
  • the condensing area is an area having an intensity of 80% or more of the maximum intensity when the condensed area is continuous, and each area when the condensed area is intermittent. All of the lines connecting the centers of the regions (when each region is a condensing point, all of the lines connecting the centers of the condensing points).
  • the beam shaping optical system has a predetermined cross section in which the light from the first light source or the light from the second light source includes the optical axis of the second optical system via the objective lens. It is preferable to shape the light so that the two light beams are separated from each other by a predetermined distance and form a predetermined angle with each other.
  • the beam shaping optical system allows light from the first light source or light from the second light source to pass through a region at a predetermined distance from the optical axis in the pupil of the objective lens. It is preferable to shape the shape in a plane perpendicular to the optical axis of the light so that the light is condensed through the objective lens.
  • the beam shaping optical system shapes the shape in a plane perpendicular to the optical axis of light into an annular shape.
  • the beam shaping optical system is preferably composed of two conical lenses arranged so that their vertices face each other.
  • the beam shaping optical system is composed of two conical lenses arranged so that their vertices face in opposite directions.
  • the beam shaping optical system includes a concave conical lens in which a conical surface is formed in a mortar shape, and a convex conical lens in which a conical surface is disposed so as to face the conical surface, It is preferable that it is comprised.
  • the beam shaping optical system includes a concave conical mirror in which a conical surface that reflects light is formed in a mortar shape and a through hole is formed on the optical axis, and a cone that reflects light.
  • a convex conical mirror having a surface formed and aligned with the through hole, and reflecting light from the light source through the through hole and reflected by the convex conical mirror. It is preferable to be configured to reflect with a conical mirror.
  • the beam shaping optical system includes, in order from the light source side, a conical lens, a flat mirror that reflects light transmitted through the conical lens and further enters the conical lens, and conical light from the light source.
  • An optical path switching member that guides the light from the conical lens to the sample is preferable.
  • Such a microscope is arranged between the first light source or the second light source and the beam shaping optical system, or between the beam shaping optical system and the objective lens, and by changing the diameter of the light, It is preferable to have a beam expander that changes the ring width of the ring-shaped light.
  • the beam shaping optical system is arranged on a part of one of the light from the first light source and the light from the second light source and at least a part of the remaining light. It is preferable to provide a phase difference and form a plurality of condensing points on the optical axis of the objective lens via the objective lens.
  • the beam shaping optical system has a plurality of light-transmitting portions that transmit light, and the light transmitted through at least one of the light-transmitting portions is replaced with another light-transmitting portion. It is preferable to provide a phase difference between the light transmitted through the portion.
  • the beam shaping optical system is a plate-like member and is formed so that the optical optical path lengths of the light in the respective light transmitting portions are different from each other.
  • the beam shaping optical system is a spatial light modulation element, and the optical optical path length of light in each light transmitting portion can be arbitrarily switched.
  • each translucent portion has an incident surface on which light is incident, and the area of each incident surface is set so that the amount of incident light on each incident surface is equal. It is preferable.
  • such a microscope controls the beam shaping optical system in accordance with the input unit for inputting the size of the condensing region where the light is collected through the objective lens and the size of the condensing region. And a control unit.
  • such a microscope has an input unit for inputting the size of a condensing region where light is collected through the objective lens, and a conical lens position and a conical mirror position corresponding to the size of the condensing region. It is preferable to have a control unit that controls at least one of the above.
  • such a microscope has an input unit for inputting the size of a condensing region where light is collected through an objective lens, and a position of a conical lens and a plane mirror corresponding to the size of the condensing region. It is preferable to have a control unit that controls the position of
  • such a microscope has an input unit that inputs the size of a light collection region where light is collected through an objective lens, and a control that controls the beam expander according to the size of the light collection region.
  • such a microscope controls the switching of the plate-like member in accordance with the input unit for inputting the size of the light collection region where light is collected through the objective lens and the size of the light collection region.
  • a control unit that controls the spatial light modulation element.
  • the stimulation device is a stimulation device attached to a microscope having a condensing optical system that irradiates a sample with excitation light through an objective lens and collects fluorescence generated in the sample
  • a stimulation optical system for irradiating a specimen with light from a first light source that emits excitation light or light from a second light source that is different from the first light source, to cause a specific phenomenon to occur.
  • the first condensing area of the light from the first light source or the light from the second light source collected through the objective lens satisfies the following condition.
  • a beam shaping optical system for shaping light from the second light source or light from the second light source.
  • ⁇ D maximum distance of a light collection region of light from the first light source or light from the second light source
  • NA of the objective lens
  • FIG. 3 is an explanatory diagram showing a method of changing the outer diameter NA of the annular laser beam in the beam shaping optical system in the first embodiment, where (a) shows a reference state and (b) shows a large NA. (C) shows a state where NA is reduced.
  • FIG. 3 it is an explanatory diagram for explaining the annular zone width of the annular laser beam when the diameter of the laser beam is changed by a beam expander, (a) is a beam shaping optical system (B) shows the case where the diameter of the light beam incident on the beam shaping optical system is large.
  • FIG. 4 is an explanatory diagram for illustrating a configuration example of a beam shaping optical system according to a second embodiment, in which (a) shows a plan view and (b) is a II longitudinal sectional view of (a).
  • FIG. 4 is a longitudinal sectional view of IV-IV.
  • FIG. 4 is a longitudinal sectional view of IV-IV.
  • it is explanatory drawing which shows another modification of the beam shaping optical system for forming two condensing points Comprising: (a) is a top view, (b) is (a). It is VI-VI longitudinal cross-sectional view.
  • the scanning microscope 10 irradiates the specimen 20 placed on the stage 30 via the objective lens 304 with the laser light emitted from the first light source 101 and deflects the laser light to cause the specimen 20 to be deflected.
  • the sample 20 is irradiated with the laser light emitted from the first scanning optical system 100 and the second light source 201 through the objective lens 304, and the laser light is deflected to scan the sample 20.
  • the second scanning optical system 200 and the objective lens 304 are included, and the laser light emitted from the first and second scanning optical systems 100 and 200 is condensed on the specimen 20 and stimulated and excited by the laser light.
  • the imaging optical system 300 that condenses the fluorescence generated from the sample 20 and the first detection unit 400 and the second detection unit 500 that detect the fluorescence are configured. That is, in the scanning microscope 10, the first scanning optical system 100, the imaging optical system 300, and the first and second detection units 400 and 500 are applied to the specimen 20 with laser light from the first light source 101.
  • the first optical system for observing the specimen 20 is formed by fluorescence generated by irradiating and exciting the second optical system, and the second scanning optical system 200 and the imaging optical system 300 are provided with the second light source 201 on the specimen 20.
  • the second optical system is configured to cause the specimen 20 to exhibit a specific phenomenon by being stimulated by irradiating the laser beam.
  • the second scanning optical system 200 and the imaging optical system 300 are a condensing optical system that irradiates the specimen 20 with excitation light via the objective lens 304 and condenses the fluorescence generated in the specimen 20. It also functions as a stimulation device having a stimulation optical system attached to a microscope equipped with the imaging optical system 300.
  • the light from the first light source 101 may be condensed by the second scanning optical system 200 and irradiated onto the specimen 20.
  • the optical axis direction of the imaging optical system 300 is defined as the z axis, and the directions orthogonal to each other in a plane orthogonal to the z axis are defined as the x axis and the y axis.
  • the first scanning optical system 100 includes a laser introduction optical system 102, a first optical path dividing member 103, and a first scanning unit 104 in order from the first light source 101 side.
  • the second scanning optical system 200 includes, in order from the second light source 201 side, an optical fiber 202, a fiber exit end 203, a collimator lens 204, a beam shaping optical system 205, and a second scanning unit 206. And a second optical path dividing member 207.
  • the imaging optical system 300 includes a pupil projection lens 301, a second objective lens 302, a third optical path dividing member 303, and an objective lens 304 in order from the light source side.
  • the first light source 101 is a very short pulsed laser beam (for example, 100 femtosecond pulsed light emitted at a predetermined period for inducing multiphoton excitation of the specimen 20, hereinafter referred to as “IR pulse light "or” excitation light ").
  • the IR pulse light emitted from the first light source 101 is substantially parallel light, passes through the laser introducing optical system 102, passes through the first optical path dividing member 103, and then enters the first scanning unit 104. Incident.
  • the IR pulse light is scanned by the first scanning unit 104, passes through the second optical path dividing member 207, and enters the imaging optical system 300.
  • the first optical path dividing member 103 is constituted by a dichroic mirror or a half mirror.
  • the first scanning unit 104 scans IR pulse light in a two-dimensional manner in a direction orthogonal to the optical axis (the above-described x-axis direction and y-axis direction), and reflects, for example, the IR pulse light.
  • the first deflection element for deflecting the IR pulse light in a predetermined direction (x-axis direction) within a plane orthogonal to the optical axis, and the IR pulse light reflected by the first deflection element are further reflected.
  • the IR pulse light is constituted by a second deflecting element that deflects the IR pulse light in a direction (y-axis direction) substantially orthogonal to a predetermined direction.
  • the second light source 201 emits visible laser light (hereinafter referred to as “visible light” or “stimulating light”) for stimulating the specimen 20.
  • visible light hereinafter referred to as “visible light” or “stimulating light”
  • the visible light emitted from the second light source 201 passes through the optical fiber 202 and is then emitted from the fiber exit end 203 as spread light.
  • the collimating lens 204 makes the light substantially parallel, and the beam shaping optical system.
  • the light passes through 205 and enters the second scanning unit 206.
  • the visible light is scanned by the second scanning unit 206, reflected by the second optical path dividing member 207, superimposed on the IR pulse light, and incident on the imaging optical system 300.
  • the second optical path dividing member 207 is also composed of a dichroic mirror or a half mirror.
  • the second scanning unit 206 also scans the visible light two-dimensionally in the direction orthogonal to the optical axis (the above-described x-axis direction and y-axis direction). For example, the second scanning unit 206 reflects the visible light.
  • a first deflecting element that deflects the visible light in a predetermined direction (x-axis direction) within a plane orthogonal to the optical axis, and the visible light reflected by the first deflecting element is further reflected to thereby reflect the visible light.
  • the second deflecting element deflects light in a direction (y-axis direction) substantially orthogonal to a predetermined direction.
  • the IR pulse light and the visible light emitted from the second optical path splitting member 207 are once condensed by the pupil projection lens 301 and then made into substantially parallel light by the second objective lens 302, and the third optical path splitting member 303 is passed through the third optical path splitting member 303.
  • the light passes through and enters the objective lens 304, and is collected through the objective lens 304 onto the specimen 20 placed on the stage 30.
  • the third optical path dividing member 303 is also constituted by a dichroic mirror or a half mirror. Note that the deflecting elements of the first scanning unit 104 and the second scanning unit 206 are arranged substantially in the vicinity of the pupil image of the objective lens 304 formed by the pupil projection lens 301 or in the vicinity thereof. .
  • Fluorescence generated from the specimen 20 by being stimulated by visible light and excited by IR pulse light is collected by the objective lens 304 and enters the third optical path dividing member 303.
  • the first detection unit 400 includes a first condenser lens 401, a second condenser lens 402, and a first photoelectric conversion element 403 in this order from the third optical path dividing member 303 side. ing.
  • the fluorescence reflected by the third optical path dividing member 303 is condensed by the first and second condenser lenses 401 and 402, and then enters the first photoelectric conversion element 403 and is converted into an electric signal. .
  • the fluorescence reflected by the third optical path dividing member 303 is fluorescence generated by two-photon excitation by excitation light. Since two-photon excitation occurs only on the focal plane of the objective lens 304, it is not necessary to provide a light shielding plate (pinhole) in the first detection unit 400.
  • the first detector 400 is also called NDD (Non-Descan-Detector).
  • the fluorescent light having a wavelength different from the predetermined wavelength passes through the third optical path dividing member 303 and passes through the second objective lens 302 and the pupil projection lens 301. Further, the light passes through the second optical path dividing member 207 and enters the first scanning unit 104. The fluorescence is descanned by the first scanning unit 104, reflected by the first optical path dividing member 103, and incident on the second detection unit 500.
  • the second detection unit 500 includes, in order from the first optical path dividing member 103 side, a third condensing lens 501 and a light shielding plate 502 disposed at a position substantially conjugate with the specimen-side focal plane of the objective lens 304. And a second photoelectric conversion element 503.
  • the light shielding plate 502 is provided with a pinhole 502a, and the pinhole 502a is disposed so as to include the optical axis.
  • the fluorescence reflected by the first optical path dividing member 103 is condensed on the pinhole 502a of the light shielding plate 502 by the third condenser lens 501, and only the light passing through the pinhole 502a is subjected to the second photoelectric conversion. It is detected by the element 503 and converted into an electric signal.
  • the pinhole 502a of the light shielding plate 502 is conjugate with the point image of the laser light (excitation light) collected on the scanning surface on the specimen 20, and the irradiation area on the specimen 20 (the focal point of the objective lens 304).
  • the fluorescence emitted from the surface) can pass through the pinhole 502a.
  • most of the light emitted from other regions on the specimen 20 is not condensed on the pinhole 502a and cannot pass therethrough. Therefore, the resolution in the depth direction of the image of the specimen 20 can be improved.
  • the scanning microscope 10 is connected to a control unit 40 that controls the operation of the scanning microscope 10, and the control unit 40 further includes an input unit 50 for operating the scanning microscope 10, An output unit 60 for displaying an operation menu, an image of the specimen 20 obtained by the first and second photoelectric conversion elements 403 and 503, and a storage unit 70 for storing the image are provided. ing.
  • the control unit 40 processes the optical signals (electric signals) detected by the first or second photoelectric conversion elements 403 and 503 in synchronization with the scanning of the first and second scanning units 104 and 206.
  • a two-dimensional image on the scanning surface of the specimen 20 can be obtained using the coordinates of the specimen 20 irradiated with the laser light and the luminance obtained from the optical signal.
  • this scanning microscope 10 can obtain an image of the specimen 20 with high resolution.
  • the scanning microscope 10 can be used as both a scanning multiphoton microscope and a scanning confocal microscope.
  • the beam shaping optical system 205 disposed in the second scanning optical system 200 having the above configuration will be described based on two embodiments.
  • the beam shaping optical system 205 according to the first embodiment has a cross-sectional shape (a surface orthogonal to the optical axis) of laser light (stimulation light) emitted from the second light source 201 and made substantially parallel light by the collimator lens 204.
  • the shape of the light beam in the cross section) is shaped so that the laser light passes through at least a predetermined distance from the optical axis in the pupil of the objective lens 304 and is condensed by the objective lens 304.
  • the laser light (stimulation light) shaped by the beam shaping optical system 205 is a two light flux having a predetermined angle with respect to the optical axis in a cross section by a predetermined surface including the optical axis, It is condensed through.
  • As a cross-sectional shape of such laser light there is an annular shape surrounding the optical axis.
  • the beam shaping optical system 205 that shapes laser light into an annular shape will be described.
  • the cross-sectional shape of the laser beam is shaped so as to pass at least a region at a predetermined distance from the optical axis in the pupil of the objective lens 304, the peripheral portion of the objective lens 304 (region at a predetermined distance from the optical axis)
  • the light is condensed on the focal plane of the objective lens 304.
  • the width (depth) in the optical axis direction that is, the focal depth of the objective lens 304 becomes deep in the region stimulated by the laser beam. .
  • the intensity distribution in the radial direction of the cross-section of the laser light condensed by the objective lens 304 is represented by the first type Bessel function. It becomes a Bessel beam and its depth of focus becomes very deep. That is, longer stimulation light is formed in the optical axis direction (depth direction) (stimulation light spreading in the depth direction is formed).
  • the plane focused and observed by the first scanning optical system 100 is indicated by A1
  • the area (condensing area) stimulated by the Bessel beam from the second scanning optical system 200 is A2.
  • this scanning microscope 10 is suitable for the observation of brain cells as described above.
  • FIG. 3A shows an example of the configuration of a beam shaping optical system 205 that shapes the cross-sectional shape of substantially parallel laser light (visible light or stimulation light) into an annular shape.
  • this beam shaping optical system 205 two transmissive and convex conical lenses (axicon lenses) 205a and 205b are arranged so that their vertices face each other.
  • the laser light emitted from the second light source 201 travels from left to right.
  • the beam shaping optical system 205 is configured as described above, the substantially parallel laser light from the second light source 201 is converted into an annular laser light diffused by the first conical lens 205a, and further the second It is converted into a substantially parallel ring-shaped laser beam by the conical lens 205b.
  • FIG. 3B even if the first and second conical lenses 205a and 205b are arranged so that their vertices are opposite to each other, as in FIG. A band-shaped laser beam can be obtained.
  • a convex first conical mirror 215a arranged so that the apex is directed to the light source side, and a through hole is formed in a region including the optical axis, and a mortar is formed around it.
  • the cross-sectional shape of the laser light can be shaped into an annular shape.
  • the substantially parallel laser light from the second light source 201 passes through the through hole of the second conical mirror 215b and enters the reflection surface of the first conical mirror 215a. .
  • the laser beam reflected by the reflecting surface of the first conical mirror 215a is converted into a diffusing ring-shaped laser beam, and is incident on the reflecting surface of the second conical mirror 215b. It is reflected and converted into a substantially parallel ring-shaped laser beam.
  • the substantially conical laser light from the second light source 201 is converted into an annular laser light diffused by the mortar-shaped conical surface of the first conical mirror 225a.
  • the conical lens 225b converts the laser light into a substantially parallel ring-shaped laser beam.
  • the laser beam can be used.
  • the cross-sectional shape can be shaped into an annular shape. In the case of FIG.
  • a hollow mirror 235c tilted with respect to the optical axis (for example, tilted by 45 degrees) is disposed on the light source side of the conical lens 235a, and the substantially parallel laser beam from the second light source 201 is It passes through the hollow portion of the hollow mirror 235c, enters the conical lens 235a, and is converted into an annular laser beam that diffuses by the conical lens 235a. Then, the light is reflected by the plane mirror 235b, enters the conical lens 235a again, is converted into a substantially parallel ring-shaped laser beam, is reflected by the hollow mirror 235c, and is emitted.
  • an expensive conical lens can be configured with one piece in the beam shaping optical system 205.
  • the hollow mirror 235c can function as an optical path switching member, and incident light and outgoing light with respect to the beam shaping optical system 205 can be separated.
  • the laser beam (Bessel beam) shaped by such a beam shaping optical system 205 has an annular pupil shape IA as shown in FIG.
  • the numerical aperture of the outer diameter of the annular pupil shape IA is NA
  • the numerical aperture of the inner diameter is NA ′
  • the wavefront aberration ⁇ with respect to the numerical apertures NA and NA ′ is expressed by the following equations (1) and (2 ).
  • represents a wavelength
  • ⁇ z represents a defocus amount.
  • the relationship between the numerical aperture of the Bessel beam and the depth of focus is as shown in FIG.
  • the abscissa indicates a standardized NA, that is, a value obtained by dividing the numerical aperture NA ′ of the inner diameter of the Bessel beam by the numerical aperture NA of the outer diameter
  • the vertical axis indicates the objective for the Bessel beam.
  • the focal depth of the lens 304 is indicated (the focal depth on the light source side or specimen side from the focal plane of the Bessel beam).
  • the objective lens 304 is an immersion objective lens, and the refractive index of the specimen 20 and the immersion liquid are both 1.35.
  • the wavelength of the laser beam is assumed to be 0.405 ⁇ m.
  • the diameter of the spot collected by the objective lens 304 is determined by the NA of the outer diameter of the beam shape of the laser light shaped by the beam shaping optical system 205, and the NA of the outer diameter and the normalized diameter are determined.
  • the NA of the outer diameter of the annular laser beam can be changed by changing the distance between the first and second conical lenses 205a and 205b in the optical axis direction.
  • a beam expander 208 is disposed on the light source side of the beam shaping optical system 205, and the diameter of the light beam incident on the beam shaping optical system 205 is changed, so that the ring of the annular laser beam is obtained.
  • the band width can be changed. That is, when the interval between the first and second conical lenses 205a and 205b is increased, the NA of the outer diameter of the annular laser beam can be increased, and when the interval is reduced, the NA of the outer diameter can be decreased. .
  • the ring width can be narrowed by narrowing the diameter of the light beam incident on the beam shaping optical system 205 by the beam expander 208, and the ring width can be widened by increasing the diameter of the light beam.
  • the beam shaping optical system 205 is provided with an actuator that moves the position of the above-described conical lens, conical mirror, or plane mirror in the optical axis direction, and the control unit 40 controls the operation thereof.
  • a desired region of the specimen 20 can be stimulated with laser light.
  • the diameter of the light beam emitted from the beam expander 208 is controlled by the control unit 40.
  • the size of the condensing region where the laser light from the second light source 201 is condensed via the objective lens 304 is set in the control unit 40 using the input unit 50, and the control unit 40 sets the beam described above.
  • the control amount for example, the defocus amount ⁇ z
  • the control unit 40 may be calculated by the control unit 40 using the above-described equation or the like. These relationships may be stored in advance in the storage unit 70 as a table, and the values may be read out by the control unit 40.
  • the distance in the optical axis direction of the condensing region of the stimulating light that is, the distance ⁇ D in the optical axis direction of the region having 80% or more of the maximum intensity of the collected light is the laser.
  • the wavelength of light is ⁇
  • the distance in the optical axis direction of the region having an intensity of 80% or more of the maximum intensity of the collected light is, in other words, a light source having an intensity of 80% of the maximum intensity around the focal plane of the objective lens 304. It is also the distance in the optical axis direction from the position on the side to the position on the side opposite to the light source having 80% of the maximum intensity.
  • NA 0.9
  • NA ′ 0.88
  • 488 nm
  • ⁇ D 1.99 ⁇ m
  • the distance in the optical axis direction of the condensing region of the stimulation light that is, the intensity of 80% or more of the maximum intensity of the collected light.
  • the distance ⁇ DS in the optical axis direction of the region having ## EQU3 ## is as shown in the following equation (5).
  • the objective lens 304 with immersion liquid is an immersion objective lens, assuming that the refractive index of the immersion liquid is n, in the above formulas (4) to (7), ⁇ is replaced with ⁇ / n, and NA is It is necessary to replace with NA / n.
  • the distances ⁇ D and ⁇ DS in the optical axis direction of the stimulating light condensing region are such that the center of the beam incident on the objective lens 304 substantially coincides with the optical axis, and the distance in the optical axis direction is the maximum distance.
  • the distance in the direction maximum distance, when the center of the beam incident on the objective lens 304 does not substantially coincide with the optical axis, the distance in the optical axis direction does not become the maximum distance. It is necessary to replace it with the maximum distance.
  • the laser beam for observation is IR pulse light and the laser beam for stimulation (stimulation light) is visible light
  • the light may be IR pulse light, both may be visible light, or both may be IR pulse light.
  • the excitation light is visible light, for example, when the brain cell is the specimen 20, only a shallow portion can be excited (observed), but the stimulation light can be stimulated deeply by using IR pulse light. Further, when the excitation light and the stimulation light are IR pulse light, excitation (observation) and stimulation can be performed even in the deep part of the specimen 20.
  • the beam shaping optical system 205 is provided only in the second scanning optical system 200 has been described.
  • the beam shaping optical system can also be provided in the first scanning optical system 100. It is. Further, when the sample 20 is stimulated around a plane different from the focal plane of the objective lens 304, the second scanning optical system 200 causes the center of the collection of stimulation light to be closer to the sample than the focal plane of the objective lens 304.
  • an optical system that adjusts the imaging position may be provided so as to shift to the light source side (for example, the stimulation light that is substantially parallel light is slightly diverged or converged to the specimen side from the focal plane of the objective lens 304 or An optical system for condensing light is provided on the image side).
  • this beam shaping optical system can be applied not only to the scanning microscope 10 described above, but also to an optical system for stimulating light in other microscopes.
  • the light source side of the beam shaping optical system 205 arranged in the second scanning optical system 200 that is, between the beam shaping optical system 205 and the second light source 201 (fiber exit end 203).
  • the beam expander 208 may be disposed on the specimen side of the beam shaping optical system 205, that is, between the beam shaping optical system 205 and the objective lens 304.
  • a beam extractor is provided between the beam shaping optical system and the first light source 101 or between the beam shaping optical system and the objective lens 304. A panda can be placed.
  • the case where visible light (stimulation light) is converted into an annular laser beam (Bessel beam) has been described.
  • FIG. A shape lacking a part of may also be used.
  • FIG. 10B light from a plurality of light sources or light from one or more light sources may be divided and arranged in a ring shape.
  • the laser light (stimulation light) shaped by the beam shaping optical system 205 has a predetermined angle with respect to the optical axis in a cross section by a predetermined plane including the optical axis.
  • a diaphragm having an annular opening may be disposed as the beam shaping optical system 205 without using a conical lens or a conical mirror.
  • the laser beam shaped by the beam shaping optical system 205 may have an annular pupil shape IM substantially coincident with the center of the pupil P of the objective lens 304 as shown in FIG. Or, as shown in FIG. 11 (b), it may be at the center of the pupil P, or it may be off the center of the pupil P as shown in FIG. 11 (c).
  • the beam shaping optical system 205 according to the second embodiment is configured as a disc-shaped optical member as shown in FIG.
  • a step portion 221 extending in the circumferential direction of the optical system 205 is formed.
  • the step portion 221 can be formed using, for example, a conventionally well-known lithography technique. Due to the formation of the step portion 221, a first light transmitting portion 222 having a cylindrical shape is formed at the center of the beam shaping optical system 205, and the first light transmitting portion is formed at the peripheral portion of the beam shaping optical system 205. An annular second light transmitting portion 223 having a plate thickness dimension smaller than the plate thickness dimension of 222 is formed.
  • Each of the first and second light transmitting portions 222 and 223 has incident surfaces 222a and 223a on which laser light is incident, respectively.
  • the sizes of the incident surfaces 222a and 223a are set so that the amounts of incident light on the respective incident surfaces are equal.
  • the other surface 220b of the beam shaping optical system 205 configured by the incident surfaces 222a and 223a is uniformly irradiated with laser light, and the areas of the incident surfaces 222a and 223a are equal to each other.
  • the two laser beams having the phase difference pass through the second operation unit 206 and the second optical path dividing member 207, respectively, are converted into spherical waves by the objective lens 304, and are condensed toward the sample 20.
  • the phase differences “0” and “ ⁇ ” shown in FIG. 12 are examples and may be reversed.
  • the intensity of the laser beam on the optical axis L of the objective lens 304 at this time is expressed by the following formula (8).
  • NA is the numerical aperture of the objective lens 304.
  • Expression (8) is an approximate expression when the NA is small, and light when the laser light is transmitted through the phase mask having the transmittance shown in FIG. The light intensity distribution on the axis is shown.
  • FIG. 13B is a graph in which Expression (8) is plotted.
  • the vertical axis of the graph in FIG. 13B indicates the light intensity of the laser light
  • the horizontal axis indicates coordinates on the optical axis L.
  • two peaks with the maximum light intensity appear before and after the geometric optical focus of the objective lens 304. That is, when two laser beams having different phases pass through the objective lens 304, two condensing points 224 and 225 on the optical axis L have the maximum light intensity as shown in FIG. Is formed.
  • the interval between the two condensing points 224 and 225 is set such that the wavelength of the laser light is ⁇ and the numerical aperture of the objective lens 304 is NA. 4.6 ⁇ / NA 2 .
  • equation (8) does not hold, and the distance between the two condensing points 224 and 225 is about 2 ⁇ / NA 2 . In other words, when the distance between the two condensing points 224 and 225 (the distance between the centers of the condensing points) is d, there is a relationship of the following equation (9).
  • a (NA) is a proportional coefficient and is a function of NA.
  • a (NA) has a value of 4.6 when NA is small, a value of 2 when NA is large, and a value between 2 and 4.6 when NA is medium. That is, the range of the proportionality coefficient A (NA) is 2 ⁇ A (NA) ⁇ 4.6.
  • FIG. 15 shows the result of one OTF among the condensing points 224 and 225.
  • the vertical axis in FIG. 15 indicates the spatial frequency in the XY plane, and the horizontal axis indicates the spatial frequency in the optical axis direction.
  • Depth resolution is the ability to resolve a three-dimensional grating having a grating vector in the direction of the optical axis, as is well known.
  • Each laser beam that has passed through the objective lens 304 is irradiated to the specimen 20.
  • the condensing points 224 and 225 are scanned by the second scanning unit 206.
  • the second embodiment there is a phase difference between the light beam transmitted through one light transmitting portion 222 of the beam shaping optical system 205 and the light beam transmitted through the other light transmitting portion 223.
  • the same number of light transmitting portions 222 and 223 having a phase difference is placed on the optical axis L of the objective lens 304.
  • the condensing points 224 and 225 are formed at intervals defined according to the wavelength of the laser beam. Thereby, it is possible to simultaneously irradiate laser beams onto two cross sections orthogonal to the optical axis L of the objective lens 304 at different height positions of the specimen 20.
  • the distance between the two condensing points 224 and 225 is a predetermined distance d, a deeper region in the optical axis direction can be stimulated.
  • the sizes of the incident surfaces 222a and 223a of the first and second light transmitting portions 222 and 223 are set so that the amounts of incident light on the respective incident surfaces are equal.
  • the amount of laser light transmitted through the first light transmitting portion 222 and the amount of laser light transmitted through the second light transmitting portion 223 can be made equal.
  • the stimulation with respect to the sample 20 in each condensing point 224,225 can be performed on the same conditions.
  • the light amount distribution of the laser light has a Gaussian distribution in the radial direction of the cross section perpendicular to the optical axis
  • the laser light is incident on the first and second light transmitting portions 222 and 223 by multiplying the ratio of the Gaussian distribution.
  • FIGS. 16A and 16B an example is shown in which two condensing points 224 and 225 are formed on the optical axis L. Instead, three or more condensing points are formed on the optical axis L. can do.
  • a beam shaping optical system 205 as shown in FIGS. 16A and 16B can be used.
  • one surface 220 a of the beam shaping optical system 205 is open to the peripheral surface 220 c of the beam shaping optical system 205 and in addition to a step portion 234 that extends in the circumferential direction of the beam shaping optical system 205.
  • a recess 235 is formed at the center of the beam shaping optical system 205.
  • the depth dimension h1 of the step portion 234 and the depth dimension h2 of the recess 235 are equal to each other.
  • the beam shaping optical system 205 is formed with the first light transmitting portion 236 at the peripheral portion thereof, and the thickness of the first light transmitting portion 236 at the center portion.
  • a second light-transmitting portion 237 having the same plate thickness is formed, and has a thickness greater than the plate thickness of each light-transmitting portion between the first and second light-transmitting portions 236 and 237.
  • An annular third translucent portion 238 is formed.
  • the areas of the incident surfaces 236a, 237a, and 238a of the first to third light transmitting portions 236, 237, and 238 are equal to each other. That is, when the amount of laser light is uniform in a cross section perpendicular to the optical axis, the amounts of light transmitted through the first to third light transmitting portions 236, 237, and 238 are equal.
  • the radius of the entire concave portion of the beam shaping optical system 205 that is, the radius of the outer periphery of the first light transmitting portion 236 is R.
  • the radius of the outer periphery of the second light transmitting portion 237 is r1
  • the radius of the outer periphery of the third light transmitting portion 238 is r2
  • the following expressions (10) and (11) are satisfied.
  • phase difference ⁇ is given between the laser light transmitted through the first light transmitting portion 236 and the laser light transmitted through the second light transmitting portion 237, so that the second light transmitting light is transmitted.
  • a phase difference ⁇ is given between the laser light transmitted through the portion 237 and the laser light transmitted through the third light transmitting portion 238. Note that the phase differences “0”, “ ⁇ ”, and “0” illustrated in FIG. 16 are examples and may be reversed.
  • the three condensing elements are arranged.
  • the amounts of light at the points 239, 240, and 241 are also substantially equal. Further, the condensing points 239, 240, and 241 are also scanned by the second scanning unit 206.
  • the interval between two condensing points adjacent to each other is d (in other words, the three condensing points 239, The distance d between 240 and 241) is the relationship of the aforementioned equation (9), and the proportionality coefficient A (NA) is 1.75 when NA is large, and 1.75 and 4 when NA is medium. Therefore, the range of the proportionality coefficient A (NA) is 1.75 ⁇ A (NA) ⁇ 4.6.
  • the distance d is never greater than the distance 4.6 ⁇ / NA 2 between the centers of the condensing points when there are two condensing points. Therefore, the distance 2d of the entire straight line connecting the condensing points is expressed by the following equation (12), where ⁇ is the wavelength of the laser beam.
  • the distance between the centers of the respective condensing points should be larger than the distance between the centers of the condensing points in the case of two condensing points 4.6 ⁇ / NA 2 There is no.
  • the amount of laser light has a Gaussian distribution
  • the first to third condensing points 239, 240, and 241 Although the interval does not change, the fourth and fifth condensing points are formed outside the condensing points 239, 240, and 241 in the optical axis direction, and the light amounts of the three condensing points 239, 240, and 241 are formed. The balance will be lost.
  • the condensing region of the laser beam spread by the beam shaping optical system 205 (the condensing region spreading the focal plane of the objective lens 304 in the central optical axis direction) is proportional to the beam diameter of the laser light from the second light source 201. It will be.
  • two light-transmitting portions having different plate thickness dimensions are formed in the beam shaping optical system 205 by forming a step 221 at the peripheral edge of the beam shaping optical system 205.
  • An example in which 222 and 223 are formed is shown.
  • a concave portion 242 is formed at the center of one surface 220a of the beam shaping optical system 205, so that a plate is formed on the beam shaping optical system 205.
  • Two translucent portions 243 and 244 having different thickness dimensions can also be formed.
  • the beam shaping optical system 205 has a plurality of light transmitting portions 222, 223, 236 having different plate thickness dimensions.
  • a plurality of light-transmitting portions having different plate thickness dimensions can be formed in the beam shaping optical system 205 by overlapping a plurality of glass plates having different sizes.
  • FIGS. 19A and 19B when two light transmitting portions are formed in the beam shaping optical system 205 in order to form two condensing points, two glasses having different diameters are used.
  • the plates 245 and 246 can also be arranged with an interval between them.
  • the step 234 and the concave portion are formed in the beam shaping optical system 205 in order to form the three condensing points 239, 240, and 241 on the optical axis L.
  • An example in which three translucent portions 236, 237, and 238 are formed by forming 235 has been shown, but instead, for example, as shown in FIGS. 20A and 20B, three different diameters are provided.
  • Three light-transmitting portions can be formed in the beam shaping optical system 205 by superimposing the two glass plates 247, 248, and 249 regardless of their diameters.
  • the beam shaping optical system 205 has a disk shape, but instead, for example, as shown in FIGS. 21A and 21B, a rectangular beam is formed. It is also possible to use the shaping optical system 205.
  • the scanning microscope 10 controls the operation of the glass plate described above in the beam shaping optical system 205 by controlling the switching by the control unit 40 that controls the spatial light modulation element.
  • a desired area can be stimulated with laser light.
  • the size of the region where the laser light from the second light source 201 is collected via the objective lens 304 is set in the control unit 40 using the input unit 50, and the control unit 40 uses the beam shaping optics described above. It is configured to stimulate (illuminate) a set area by controlling the actuator of the system 205 and the operation of the beam expander 208.
  • a control amount for example, an interval between two adjacent condensing points (a distance d between the centers of the condensing points) when controlling the operation of the beam shaping optical system 205 is determined using the above-described equation or the like.
  • the relationship may be calculated by 40, or the relationship may be stored in advance in the storage unit 70 as a table, and the value may be read by the control unit 40.
  • the distance ⁇ D of the whole straight line connecting a plurality of condensing points is expressed by the following equation (13) where NA is the numerical aperture of the objective lens 304 and ⁇ is the wavelength of the laser beam. )become that way.
  • ⁇ D (N ⁇ 1) ⁇ A (NA) ⁇ ⁇ / NA 2 (13)
  • a (NA) is a proportional coefficient, is a function of NA, N is the number of condensing points, and the range of the proportional coefficient A (NA) is 1.5 ⁇ A (NA) ⁇ 4.6. It is.
  • ⁇ D 1.20 ⁇ m.
  • the distance in the optical axis direction of the condensing region of the stimulation light that is, the intensity of 80% or more of the maximum intensity of the collected light.
  • the distance ⁇ DS in the optical axis direction of the region having ⁇ is expressed by the following equation (14), where ⁇ is the wavelength.
  • ⁇ DS 0.43 ⁇ m.
  • the objective lens 304 with immersion liquid is an immersion objective lens, assuming that the refractive index of the immersion liquid is n, in the above formulas (13) to (15), ⁇ is replaced with ⁇ / n, and NA is It is necessary to replace with NA / n.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

 簡単な構成で、従来よりも深い領域を光により刺激することが可能な顕微鏡及び刺激装置を提供する。 走査型顕微鏡10は、第1の光源101からの光を、対物レンズ304を介して標本20に照射してこの標本20からの光を受光する第1の走査光学系100と、第1の光源101からの光、又は第1の光源101とは異なる第2の光源201からの光を、対物レンズ304を介して標本20に照射して特異現象を発現させる第2の走査光学系200と、を有し、第2の走査光学系200は、対物レンズ304を介して集光される、第1の光源101からの光、又は第2の光源201からの光の集光領域が、所定の条件を満たすように、第1の光源101からの光、又は第2の光源201からの光を整形するビーム整形光学系205を有することを特徴とする。

Description

顕微鏡及び刺激装置
 本発明は、顕微鏡及び刺激装置に関する。
 顕微鏡による標本の観察において、所定の波長のレーザ光を照射して標本上の特定の部位を刺激し、さらに、異なる波長のレーザ光を照射して励起させることによりこの標本で発生する蛍光を観察する方法が知られている。例えば、大脳皮質の樹上突起であるスパインにレーザ光を照射するとこのスパインをアンケイジングして蛍光観察をすることができるが、大脳皮質に厚みがあるため、観察面以外のスパインもアンケイジできると研究の幅が広がる。このスパインは1μm程度の突起であり、それ以外の場所は極力光刺激をしたくない。このような顕微鏡において、レーザ光により特異現象(上述のような光刺激による現象)を発現させることができる範囲は、対物レンズの焦点深度程度である。そのため、光刺激をする領域の深さ(光軸方向の幅)、すなわち、対物レンズの焦点深度を広げる方法として、対物レンズに入射するビームの径をビームエキスパンダにより可変にすることで、ビーム径を絞る構成が開示されている(例えば、特許文献1参照)。
米国発行特許発明第7196843号明細書
 しかしながら、刺激する光のビーム径を絞り、NAを小さくすれば対物レンズの焦点深度は深くなるため、刺激する領域は光軸方向にある程度広がる(深くなる)が、NAを小さくすると、平面方向(光軸と直交する面内)におけるスポットも大きくなってしまうという課題があった。このように刺激する光のスポットが大きくなると、上述のような脳細胞を観察する場合、特定のスパインを高精度に刺激することができなくなる。
 本発明はこのような課題に鑑みてなされたものであり、簡単な構成で、従来よりも深い領域を光により刺激することが可能な顕微鏡及び刺激装置を提供することを目的とする。
 前記課題を解決するために、本発明に係る顕微鏡は、第1の光源からの光を、対物レンズを介して標本に照射してこの標本からの光を受光する第1の光学系と、第1の光源からの光、又は第1の光源とは異なる第2の光源からの光を、対物レンズを介して標本に照射して特異現象を発現させる第2の光学系と、を有し、第2の光学系は、対物レンズを介して集光される、第1の光源からの光、又は第2の光源からの光の集光領域が、以下の条件を満たすように、第1の光源からの光、又は第2の光源からの光を整形するビーム整形光学系を有することを特徴とする。
Figure JPOXMLDOC01-appb-M000003
 但し、
  ΔD:第1の光源からの光、又は第2の光源からの光の集光領域の最大距離
  λ :第1の光源からの光、又は第2の光源からの光の波長
  NA:対物レンズの開口数
 ここで、集光領域とは、集光された領域が連続的である場合は、最大強度の8割以上の強度を有する領域であり、集光された領域が断続的である場合は、各領域の中心間を結ぶ線の全て(各領域が集光点のときは、集光点の中心間を結ぶ線の全て)である。
 このような顕微鏡において、ビーム整形光学系は、第1の光源からの光、又は第2の光源からの光が、対物レンズを介して、第2の光学系の光軸を含む所定の断面内において互いに所定の距離離れ、互いに所定の角度をなす2光束となって集光されるように光を整形することが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、第1の光源からの光、又は第2の光源からの光が、対物レンズの瞳において光軸から所定の距離離れた領域を通過して対物レンズを介して集光されるように光の光軸に直交する面における形状を整形することが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、光の光軸に直交する面における形状を輪帯形状に整形することが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、互いの頂点が対向するように配置された2枚の円錐レンズで構成されることが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、互いの頂点が逆方向を向くように配置された2枚の円錐レンズで構成されることが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、円錐面がすり鉢状に形成された凹型の円錐レンズと、この円錐面と対向するように円錐面が配置された凸型の円錐レンズと、から構成されることが好ましい。
 また、このような顕微鏡は、円錐レンズ間の光軸方向の間隔を変化させて輪帯形状の光の外径を変化させることが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、光を反射する円錐面がすり鉢状に形成されるとともに、光軸上に貫通孔が形成された凹型の円錐ミラーと、光を反射する円錐面が形成され、貫通孔と位置整合して配置された凸型の円錐ミラーと、を有し、光源からの光を、貫通孔を通過させて凸型の円錐ミラーで反射させ、さらに、凹型の円錐ミラーで反射させるように構成されることが好ましい。
 また、このような顕微鏡は、円錐ミラー間の光軸方向の間隔を変化させて輪帯形状の光の外径を変化させることが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、光源側から順に、円錐レンズと、この円錐レンズを透過した光を反射し、さらに円錐レンズに入射させる平面ミラーと、光源からの光を円錐レンズに導き、円錐レンズからの光を標本に導く光路切換部材と、から構成されることが好ましい。
 また、このような顕微鏡は、円錐レンズと平面ミラーとの光軸方向の間隔を変化させて輪帯形状の光の外径を変化させることが好ましい。
 また、このような顕微鏡は、第1の光源又は第2の光源とビーム整形光学系との間、或いはビーム整形光学系と対物レンズとの間に配置され、光の径を変化させることにより、輪帯形状の光の輪帯幅を変化させるビームエキスパンダを有することが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、第1の光源からの光、及び第2の光源からの光のいずれか一方の光の一部と残りの光の少なくとも一部とに位相差を付与し、対物レンズを介して当該対物レンズの光軸上に複数の集光点を形成することが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、光を透過させる複数の透光部分を有し、該各透光部分のうち少なくとも一つの該透光部分を透過した光に他の透光部分を透過した光との間で位相差を付与することが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、板状部材であり、各透光部分における光の光学的光路長がそれぞれ異なるように形成されていることが好ましい。
 また、このような顕微鏡において、ビーム整形光学系は、空間光変調素子であり、各透光部分における光の光学的光路長が任意に切り替え可能であることが好ましい。
 また、このような顕微鏡において、各透光部分はそれぞれ光が入射する入射面を有し、該各入射面の面積は、該各入射面への入射光量がそれぞれ等しくなるように設定されていることが好ましい。
 また、このような顕微鏡は、光が対物レンズを介して集光される集光領域の大きさを入力する入力部と、集光領域の大きさに対応させて、ビーム整形光学系を制御する制御部と、を有することが好ましい。
 また、このような顕微鏡は、光が対物レンズを介して集光される集光領域の大きさを入力する入力部と、集光領域の大きさに対応させて、円錐レンズ位置、円錐ミラー位置の少なくとも1つを制御する制御部と、を有することが好ましい。
 また、このような顕微鏡は、光が対物レンズを介して集光される集光領域の大きさを入力する入力部と、集光領域の大きさに対応させて、円錐レンズの位置と平面ミラーの位置とを制御する制御部と、を有することが好ましい。
 また、このような顕微鏡は、光が対物レンズを介して集光される集光領域の大きさを入力する入力部と、集光領域の大きさに対応させて、ビームエキスパンダを制御する制御部と、を有することが好ましい。
 また、このような顕微鏡は、光が対物レンズを介して集光される集光領域の大きさを入力する入力部と、集光領域の大きさに対応させて、板状部材の切替を制御する、或いは空間光変調素子を制御する制御部と、を有することが好ましい。
 また、本発明に係る刺激装置は、対物レンズを介して励起光を標本に照射し、標本で発生した蛍光を集光する集光光学系を備えた顕微鏡に装着される刺激装置であって、励起光を出射した第1の光源からの光、又は第1の光源とは異なる第2の光源からの光を、対物レンズを介して標本に照射して特異現象を発現させる刺激光学系を有し、この刺激光学系は、対物レンズを介して集光される、第1の光源からの光、又は第2の光源からの光の集光領域が、以下の条件を満たすように、第1の光源からの光、又は第2の光源からの光を整形するビーム整形光学系を有することを特徴とする。
Figure JPOXMLDOC01-appb-M000004
 但し、
  ΔD:第1の光源からの光、又は第2の光源からの光の集光領域の最大距離
  λ :第1の光源からの光、又は第2の光源からの光の波長
  NA:対物レンズの開口数
 本発明によれば、簡単な構成で、従来よりも深い領域を光により刺激することが可能な顕微鏡及び刺激装置を提供することができる。
顕微鏡の一例である走査型顕微鏡の構成を示す説明図である。 第1の実施形態における、励起する領域及び刺激する領域と対物レンズとの関係を説明するための説明図である。 第1の実施形態に係るビーム整形光学系の構成例を示すための説明図であって、(a)は凸型の円錐レンズを、互いの頂点が対向するように配置した場合を示し、(b)は凸型の円錐レンズを、互いの頂点が逆方向を向くように配置した場合を示す。 第1の実施形態に係るビーム整形光学系の他の構成例を示すための説明図であって、(a)は2枚の円錐ミラーを組み合わせた場合を示し、(b)は凸型と凹型の円錐レンズを組み合わせた場合を示す。 第1の実施形態に係るビーム整形光学系の他の構成例を示すための説明図であって、一枚の円錐レンズと平面ミラーとを組み合わせた場合を示す。 第1の実施形態における、帯状のレーザ光の外径及び内径のNAを説明するための説明図である。 第1の実施形態における、輪帯状のレーザ光による対物レンズの規格化したNAと焦点深度との関係を説明するためのグラフである。 第1の実施形態において、ビーム整形光学系における輪帯状のレーザ光の外径のNAを変化させる方法を示す説明図であって、(a)は基準状態を示し、(b)はNAを大きくした状態を示し、(c)はNAを小さくした状態を示す。 第1の実施形態において、ビームエキスパンダによりレーザ光の径を変化させたときの輪帯状のレーザ光の輪帯幅を説明するための説明図であって、(a)は、ビーム整形光学系に入射する光束の径が細いときを示し、(b)は、ビーム整形光学系に入射する光束の径が太いときを示す。 第1の実施形態における、刺激用のレーザ光の断面形状の変形例を説明するための説明図である。 第1の実施形態における、輪帯状のレーザ光の断面形状と対物レンズの瞳との関係を示す説明図であって、(a)は対物レンズの瞳中心に略一致している場合を示し、(b)は瞳中心にかかっている場合を示し、(c)は瞳中心から外れている場合を示す。 第2の実施形態に係るビーム整形光学系の構成例を示すための説明図であって、(a)は平面図を示し、(b)は(a)のI-I縦断面図である。 第2の実施形態に係るビーム整形光学系を説明するための説明図であって,(a)は式(8)を説明するための説明図であり、(b)は標本上に集光されたレーザ光の光強度と光軸上の座標との関係を示すグラフである。 第2の実施形態において、対物レンズの光軸上に二つの集光点が形成された状態を概略的に示す説明図である。 上記二つの集光点のうち一方の光学的伝達関数の結果を示すグラフである。 三つの集光点を光軸上に形成するためのビーム整形光学系の構成例を示す説明図であって、(a)は平面図であり、(b)は(a)のII-II縦断面図である。 第2の実施形態において、対物レンズの光軸上に三つの集光点が形成された状態を概略的に示す説明図である。 第2の実施形態において、二つの集光点を形成するためのビーム整形光学系の変形例を示す説明図であって、(a)は平面図であり、(b)は(a)のIII-III縦断面図である。 第2の実施形態において、二つの集光点を形成するためのビーム整形光学系の別の変形例を示す説明図であって、(a)は平面図であり、(b)は(a)のIV-IV縦断面図である。 第2の実施形態において、三つの集光点を形成するためのビーム整形光学系の変形例を示す説明図であって、(a)は平面図であり、(b)は(a)のV-V縦断面図である。 第2の実施形態において、二つの集光点を形成するためのビーム整形光学系の別の変形例を示す説明図であって、(a)は平面図であり、(b)は(a)のVI-VI縦断面図である。
 以下、本発明の好ましい実施形態について図面を参照して説明する。まず、図1を用いて顕微鏡の一例である走査型顕微鏡10の構成について説明する。この走査型顕微鏡10は、第1の光源101から放射されたレーザ光を、対物レンズ304を介してステージ30上に載置された標本20に照射するとともに、このレーザ光を偏向して標本20を走査する第1の走査光学系100と、第2の光源201から放射されたレーザ光を、対物レンズ304を介して標本20に照射するとともに、このレーザ光を偏向して標本20を走査する第2の走査光学系200と、上記対物レンズ304を含み、第1及び第2の走査光学系100,200から射出したレーザ光を標本20上に集光するとともに、このレーザ光により刺激及び励起された標本20から発生する蛍光を集光する結像光学系300と、この蛍光を検出する第1の検出部400及び第2の検出部500と、を有して構成される。すなわち、この走査型顕微鏡10において、第1の走査光学系100、結像光学系300、並びに、第1及び第2の検出部400,500は、標本20に第1の光源101からのレーザ光を照射して励起させることにより発生する蛍光によりこの標本20を観察する第1の光学系を構成し、第2の走査光学系200及び結像光学系300は、標本20に第2の光源201からのレーザ光を照射して刺激することにより、この標本20に特異現象を発現させる第2の光学系を構成している。また、この第2の走査光学系200及び結像光学系300は、対物レンズ304を介して励起光を標本20に照射し、この標本20で発生した蛍光を集光する集光光学系である結像光学系300を備えた顕微鏡に装着される刺激光学系を有する刺激装置としても機能する。なお、第2の光源201の代わりに第1の光源101からの光を第2の走査光学系200で集光して標本20に照射するように構成しても良い。また、以降の説明において、結像光学系300の光軸方向をz軸とし、このz軸に直交する面内で互いに直交する方向をx軸及びy軸とする。
 第1の走査光学系100は、第1の光源101側から順に、レーザ導入光学系102と、第1の光路分割部材103と、第1の走査ユニット104と、から構成される。また、第2の走査光学系200は、第2の光源201側から順に、光ファイバ202と、ファイバ射出端203と、コリメートレンズ204と、ビーム整形光学系205と、第2の走査ユニット206と、第2の光路分割部材207と、から構成される。また、結像光学系300は、光源側から順に、瞳投影レンズ301と、第2対物レンズ302と、第3の光路分割部材303と、対物レンズ304と、から構成される。
 第1の光源101は、標本20の多光子励起を誘発するための、所定の周期で射出される非常に短いパルス状のレーザ光(例えば、100フェムト秒のパルス光であって、以下、「IRパルス光」又は「励起光」と呼ぶ)を放射する。この第1の光源101から射出されたIRパルス光は、略平行光であって、レーザ導入光学系102を通過した後、第1の光路分割部材103を透過して第1の走査ユニット104に入射する。そして、このIRパルス光は第1の走査ユニット104で走査され、第2の光路分割部材207を透過して結像光学系300に入射する。
 ここで、第1の光路分割部材103はダイクロイックミラー若しくはハーフミラーで構成されている。また、第1の走査ユニット104は、光軸に直交する方向(上述のx軸方向及びy軸方向)にIRパルス光を2次元的に走査するものであり、例えば、IRパルス光を反射することによりこのIRパルス光を光軸に直交する面内で所定の方向(x軸方向)に偏向させる第1の偏向素子と、第1の偏向素子で反射されたIRパルス光をさらに反射することにより、このIRパルス光を所定の方向と略直交する方向(y軸方向)に偏向させる第2の偏向素子とにより構成される。
 また、第2の光源201は、標本20を刺激するための可視レーザ光(以下、「可視光」又は「刺激光」と呼ぶ)を放射する。この第2の光源201から放射された可視光は、光ファイバ202を通過したのち、ファイバ射出端203から拡がりのある光として射出され、コリメートレンズ204で略平行光にされて、ビーム整形光学系205を通過して第2の走査ユニット206に入射する。そして、この可視光はこの第2の走査ユニット206で走査され、第2の光路分割部材207で反射されて、IRパルス光と重ね合わされて結像光学系300に入射する。
 ここで、第2の光路分割部材207もダイクロイックミラー若しくはハーフミラーで構成されている。また、第2の走査ユニット206も、光軸に直交する方向(上述のx軸方向及びy軸方向)に可視光を2次元的に走査するものであり、例えば、可視光を反射することによりこの可視光を光軸に直交する面内で所定の方向(x軸方向)に偏向させる第1の偏向素子と、第1の偏向素子で反射された可視光をさらに反射することにより、この可視光を所定の方向と略直交する方向(y軸方向)に偏向させる第2の偏向素子とにより構成される。
 第2の光路分割部材207を射出したIRパルス光及び可視光は、瞳投影レンズ301により一度集光された後、第2対物レンズ302により略平行光にされ、第3の光路分割部材303を透過して対物レンズ304に入射し、この対物レンズ304を介してステージ30上に載置された標本20に集光される。ここで、第3の光路分割部材303もダイクロイックミラー若しくはハーフミラーで構成されている。なお、第1の走査ユニット104及び第2の走査ユニット206の偏向素子は、それぞれ、瞳投影レンズ301により形成される対物レンズ304の瞳像と略一致するか、若しくはその近傍に配置されている。
 可視光により刺激され、IRパルス光により励起されて標本20から発生した蛍光は、対物レンズ304で集光され、第3の光路分割部材303に入射する。
 第3の光路分割部材303に入射する蛍光のうち、所定の波長の蛍光は、この第3の光路分割部材303で反射されて第1の検出部400に入射する。この第1の検出部400は、第3の光路分割部材303側から順に、第1の集光レンズ401と、第2の集光レンズ402と、第1の光電変換素子403と、から構成されている。第3の光路分割部材303で反射された蛍光は、第1及び第2の集光レンズ401,402で集光された後、第1の光電変換素子403に入射して電気信号に変換される。
 この第3の光路分割部材303で反射される蛍光は、励起光による2光子励起で生じる蛍光である。2光子励起は対物レンズ304の焦点面でしか発生しないため、第1の検出部400に遮光板(ピンホール)を設ける必要はない。この第1の検出部400は、NDD(Non-Descan Detector)とも呼ばれる。
 一方、第3の光路分割部材303に入射する蛍光うち、上記所定の波長と異なる波長の蛍光は、この第3の光路分割部材303を透過し、第2対物レンズ302及び瞳投影レンズ301を通過し、さらに、第2の光路分割部材207を透過して第1の走査ユニット104に入射する。そして、この蛍光は第1の走査ユニット104でデスキャンされ、第1の光路分割部材103で反射されて第2の検出部500に入射する。
 第2の検出部500は、第1の光路分割部材103側から順に、第3の集光レンズ501と、対物レンズ304の標本側の焦点面と略共役な位置に配置された遮光版502と、第2の光電変換素子503と、から構成される。ここで、遮光板502にはピンホール502aが設けられており、このピンホール502aは、光軸を含むように配置されている。第1の光路分割部材103で反射された蛍光は、第3の集光レンズ501により遮光板502のピンホール502a上に集光され、このピンホール502aを通過した光のみが第2の光電変換素子503で検出されて電気信号に変換される。
 上述のように、遮光板502のピンホール502aは標本20上の走査面に集光されたレーザ光(励起光)の点像と共役であり、標本20上の照射領域(対物レンズ304の焦点面上)から出た蛍光はこのピンホール502aを通過することができる。一方、標本20上の他の領域から出た光のほとんどはこのピンホール502a上に集光されず、通過することができない。そのため、標本20の像の深さ方向の分解能を向上させることができる。
 また、この走査型顕微鏡10は、この走査型顕微鏡10の作動を制御する制御部40が接続されており、さらに、この制御部40には、走査型顕微鏡10を操作するための入力部50、操作のためのメニューや第1及び第2の光電変換素子403,503で得られた標本20の画像を表示するための出力部60、及び、この画像を記憶するための記憶部70が設けられている。
 以上より、制御部40が第1及び第2の走査ユニット104,206の走査に同期して第1又は第2の光電変換素子403,503で検出された光信号(電気信号)を処理することにより、標本20上のレーザ光が照射された座標と光信号から求められる輝度とを用いて、標本20の走査面における二次元的な画像を得ることができる。これにより、この走査型顕微鏡10は、高い分解能で標本20の像を得ることができる。また、この走査型顕微鏡10は、走査型多光子顕微鏡及び走査型共焦点顕微鏡の両方として使用することができる。
 それでは、以上のような構成の第2の走査光学系200に配置されているビーム整形光学系205について2つの実施形態に基づいて説明する。
[第1の実施形態]
 まず、第1の実施形態に係るビーム整形光学系205について図2~図11を用いて説明する。この第1の実施形態に係るビーム整形光学系205は、第2の光源201から放射されコリメートレンズ204で略平行光にされたレーザ光(刺激光)の断面形状(光軸に直交する面による断面の光束の形状)を、このレーザ光が、少なくとも対物レンズ304の瞳における光軸から所定の距離離れた領域を通過して対物レンズ304で集光されるように整形するものである。換言すると、ビーム整形光学系205によって整形されたレーザ光(刺激光)は、光軸を含む所定の面による断面において光軸に対して所定の角度をなす2光束であって、対物レンズ304を介して集光される。このようなレーザ光の断面形状としては、光軸を囲む輪帯形状がある。以下、レーザ光を輪帯形状に整形するビーム整形光学系205について説明する。
 レーザ光の断面形状を、少なくとも対物レンズ304の瞳における光軸から所定の距離離れた領域を通過するように整形すると、対物レンズ304の周辺部(光軸から所定の距離離れた領域)からこの対物レンズ304の焦点面に集光される。このように、対物レンズ304の周辺部からレーザ光を集光すると、このレーザ光により刺激される領域のうち、光軸方向の幅(深さ)、すなわち、対物レンズ304の焦点深度は深くなる。特に、ビーム整形光学系205によりレーザ光の断面形状を輪帯状にすると、対物レンズ304により集光されたレーザ光は、その断面の動径方向の強度分布が第1種ベッセル関数で表されるベッセルビームとなり、その焦点深度は非常に深くなる。つまり、光軸方向(深さ方向)に、より長い刺激光が形成される(深さ方向に広がった刺激光が形成される)。図2において、第1の走査光学系100により集光され観察される平面はA1で示されており、第2の走査光学系200からのベッセルビームにより刺激される領域(集光領域)はA2で示されている。このように、第1の走査光学系100により平面A1を観察しつつも、第2の走査光学系200で形成されたベッセルビームにより、観察面では狭い1点の領域であるが、光軸方向のより深い領域を刺激することができる。そのため、この走査型顕微鏡10は、上述したような脳細胞の観察に適している。
 図3(a)は、略平行のレーザ光(可視光又は刺激光)の断面形状を輪帯状に整形するビーム整形光学系205の構成の一例を示している。このビーム整形光学系205は、2つの透過型で凸型の円錐レンズ(アキシコンレンズ)205a,205bを、その頂点が対向するように配置している。なお、図3において、第2の光源201から射出されたレーザ光は、左から右に進む場合を示している。ビーム整形光学系205を、このような構成にすると、第2の光源201からの略平行のレーザ光が、第1の円錐レンズ205aで拡散する輪帯状のレーザ光に変換され、さらに第2の円錐レンズ205bで略平行の輪帯状のレーザ光に変換される。なお、図3(b)に示すように、第1及び第2の円錐レンズ205a,205bを、その頂点が互いに逆方向を向くように配置しても、図3(a)と同様に、輪帯状のレーザ光を得ることができる。
 また、図4(a)に示すように、光源側に頂点が向くように配置された凸型の第1の円錐ミラー215aと、光軸を含む領域に貫通孔が形成され、その周囲にすり鉢状の円錐面が反射面として形成された凹型の第2の円錐ミラー215bとを組み合わせても、レーザ光の断面形状を輪帯状に整形することができる。この図4(a)の構成の場合、第2の光源201からの略平行のレーザ光は、第2の円錐ミラー215bの貫通孔を通過して第1の円錐ミラー215aの反射面に入射する。そして、この第1の円錐ミラー215aの反射面で反射されたレーザ光は、拡散する輪帯状のレーザ光に変換され、さらに、第2の円錐ミラー215bの反射面に入射し、この反射面で反射されて略平行の輪帯状のレーザ光に変換される。
 また、図4(b)に示すように、すり鉢状の円錐面が形成された透過型で凹型の第1の円錐レンズ225aと、凸型の第2の円錐レンズ225bとを、その頂点が光源側を向くように配置しても、レーザ光の断面形状を輪帯状に整形することができる。この図4(b)の場合、第1の円錐ミラー225aのすり鉢状の円錐面で、第2の光源201からの略平行のレーザ光が拡散する輪帯状のレーザ光に変換され、さらに第2の円錐レンズ225bで略平行の輪帯状のレーザ光に変換される。
 また、図5に示すように、標本側に頂点が向いた透過型で凸型の円錐レンズ235aと、この円錐レンズ235aを透過したレーザ光を反射する平面ミラー235bとを組み合わせても、レーザ光の断面形状を輪帯状に整形することができる。この図5の場合、円錐レンズ235aの光源側には光軸に対して傾いた(例えば45度傾いた)中空ミラー235cが配置されており、第2の光源201からの略平行のレーザ光はこの中空ミラー235cの中空部分を通過して円錐レンズ235aに入射し、この円錐レンズ235aで拡散する輪帯状のレーザ光に変換される。そして、平面ミラー235bで反射されて再度円錐レンズ235aに入射して略平行の輪帯状のレーザ光に変換され、中空ミラー235cで反射されて射出される。このように、1枚の円錐ミラー235aに1枚の平面ミラー235bを組み合わせることにより、このビーム整形光学系205において、高価な円錐レンズを1枚で構成することができる。また、中空ミラー235cを配置することにより、この中空ミラー235cを光路切換部材として機能させ、ビーム整形光学系205に対する入射光と射出光とを分離することができる。
 このようなビーム整形光学系205で整形されたレーザ光(ベッセルビーム)は、図6に示すように輪帯状の瞳形状IAを有している。ここで、この輪帯状の瞳形状IAの外径の開口数をNAとし、内径の開口数をNA′とすると、開口数NA及びNA′に対する波面収差φは、次式(1)及び(2)のように表される。なお、この式(1),(2)において、λは波長を示し、Δzはデフォーカス量を示す。
Figure JPOXMLDOC01-appb-M000005
 また、上述の図6に示す輪帯状のレーザ光(ベッセルビーム)の波面収差をΔφとすると、上記式(1),(2)の差として表されるため、以下の式(3)のようになる。
Figure JPOXMLDOC01-appb-M000006
 ここで、波面収差がλ/4発生するところまでデフォーカスした領域をベッセルビームの焦点深度とし、この焦点深度の範囲をレーザ光により標本20を刺激することができる領域であるとすると、上述の式(3)から、ベッセルビームの開口数と焦点深度との関係は図7のようになる。なお、この図7において、横軸は、規格化されたNA、すなわち、ベッセルビームの内径の開口数NA′を外径の開口数NAで除した値を示し、縦軸はこのベッセルビームに対する対物レンズ304の焦点深度を示している(ベッセルビームの焦点面からの光源側若しくは標本側の焦点深度)。なお、この図7に示すグラフの算出において、対物レンズ304は液浸系の対物レンズであって、標本20及び浸液の屈折率はいずれも1.35であるとする。また、レーザ光の波長は0.405μmであるとする。また、図7のグラフは、ベッセルビームの外径の開口数NAを0.1~1.3まで0.1刻みで変化させたときを表しており、最も上側の線がNA=0.1のときを示し、最も下側の線がNA=1.3のときを示している。
 このように、ビーム整形光学系205で整形されたレーザ光のビーム形状の外径のNAにより、対物レンズ304により集光されるスポットの径が決定され、また、外径のNA及び規格化されたNA(=NA′/NA)により、焦点深度を決定することができる。
 なお、図8に示すように、第1及び第2の円錐レンズ205a,205bの光軸方向の間隔を変化させることにより、輪帯状のレーザ光の外径のNAを変化させることができる。また、図9に示すように、ビーム整形光学系205の光源側にビームエキスパンダ208を配置し、ビーム整形光学系205に入射する光束の径を変化させることにより、輪帯状のレーザ光の輪帯幅を変化させることができる。すなわち、第1及び第2の円錐レンズ205a,205bの間隔を広げると輪帯状のレーザ光の外径のNAを大きくすることでき、これらの間隔を狭めると外径のNAを小さくすることができる。また、ビームエキスパンダ208によりビーム整形光学系205に入射する光束の径を細くすることにより輪帯幅を狭くし、光束の径を太くすることにより輪帯幅を広くすることができる。円錐レンズ225a,225bや円錐ミラー215a,215bを組み合わせた構成、及び、円錐レンズ235aと平面ミラー235bを組み合わせた構成でも同様である
 本実施形態に係る走査型顕微鏡10は、ビーム整形光学系205に上述した円錐レンズ、円錐ミラー又は平面ミラーの位置を光軸方向に移動させるアクチュエータを設け、制御部40でその作動を制御することにより、標本20の所望の領域をレーザ光で刺激することができる。また、制御部40でビームエキスパンダ208から出射する光束径を制御しても同様である。この場合、第2の光源201からのレーザ光が対物レンズ304を介して集光される集光領域の大きさを入力部50を用いて制御部40に設定し、制御部40が上述したビーム整形光学系205のアクチュエータやビームエキスパンダ208の作動を制御することにより設定された集光領域を刺激する(照明する)ように構成される。なお、ビーム整形光学系205やビームエキスパンダ208の作動を制御するときの制御量(例えば、デフォーカス量Δz)は、上述した式等を用いて制御部40で演算して求めても良いし、予め記憶部70にこれらの関係をテーブルとして記憶しておき、制御部40でその値を読み出しても良い。
 上述の式(3)から、刺激光の集光領域の光軸方向の距離、つまり、集光された光の最大強度の8割以上の強度を有する領域の光軸方向の距離ΔDは、レーザ光の波長をλとすると、次式(4)のようになる。なお、集光された光の最大強度の8割以上の強度を有する領域の光軸方向の距離は、換言すると、対物レンズ304の焦点面を中心に、最大強度の8割の強度を有する光源側の位置から最大強度の8割の強度を有する光源と反対側の位置までの光軸方向の距離でもある。
Figure JPOXMLDOC01-appb-M000007
 例えば、NA=0.9、NA′=0.88とし、λ=488nmとすると、ΔD=1.99μmとなる。
 一方、対物レンズ304に入射するビームの径をビームエキスパンダにより可変にする場合、刺激光の集光領域の光軸方向の距離、つまり、集光された光の最大強度の8割以上の強度を有する領域の光軸方向の距離ΔDSは、次式(5)のようになる。
Figure JPOXMLDOC01-appb-M000008
 例えば、NA=0.9とすると、ΔDS=0.43μmとなる。
 ここで、次式(6)の関係から、式(4)に示した、集光領域の光軸方向の距離ΔDは、次式(7)の関係を有していると言える。
Figure JPOXMLDOC01-appb-M000009
 なお、浸液がある対物レンズ304が液浸対物レンズの場合は、浸液の屈折率をnとすると、上述の式(4)~(7)において、λをλ/nに置き換え、NAをNA/nに置き換える必要がある。
 また、刺激光の集光領域の光軸方向の距離ΔD、ΔDSは、対物レンズ304に入射するビームの中心が光軸に略一致し、光軸方向の距離が最大距離となるので、光軸方向の距離=最大距離であるが、対物レンズ304に入射するビームの中心が、光軸に略一致しない場合は、光軸方向の距離が最大距離とはならないので、刺激光の集光領域の最大距離に置き換える必要がある。
 また、以上の説明では、観察用のレーザ光(励起光)をIRパルス光とし、刺激用のレーザ光(刺激光)を可視光とした場合について説明したが、励起光を可視光とし、刺激光をIRパルス光としても良いし、両方を可視光としても良いし、両方をIRパルス光としても良い。励起光を可視光とした場合、例えば脳細胞が標本20の場合、浅い部分しか励起(観察)できないが、刺激光をIRパルス光とすることにより、深いところまで刺激することができる。また、励起光及び刺激光をIRパルス光とすると、標本20の深部でも、励起(観察)及び刺激をすることができる。また、以上の説明では、第2の走査光学系200にのみ、ビーム整形光学系205を設けた場合について説明したが、第1の走査光学系100にもこのビーム整形光学系を設けることも可能である。また、対物レンズ304の焦点面と異なる面を中心に標本20を刺激する場合には、第2の走査光学系200に、刺激光の集光の中心が対物レンズ304の焦点面よりも標本側若しくは光源側にずれるように、結像位置を調整する光学系を設けても良い(例えば、略平行光である刺激光を、やや発散若しくは収斂させて対物レンズ304の焦点面よりも標本側若しくは像側に集光させる光学系を設ける)。もちろん、このビーム整形光学系は、上述の走査型顕微鏡10だけでなく、その他の顕微鏡における刺激光の光学系にも適用することができる。
 また、以上の説明では、第2の走査光学系200に配置されたビーム整形光学系205の光源側、すなわち、ビーム整形光学系205と第2の光源201(ファイバ射出端203)との間にビームエキスパンダ208を配置した場合について説明したが、このビームエキスパンダ208は、ビーム整形光学系205の標本側、すなわち、ビーム整形光学系205と対物レンズ304との間に配置しても良い。また、第1の走査光学系100にビーム整形光学系を設ける場合も、このビーム整形光学系と第1の光源101との間、或いは、ビーム整形光学系と対物レンズ304との間にビームエキスパンダを配置することができる。
 また、以上の説明では、可視光(刺激光)を輪帯状のレーザ光(ベッセルビーム)に変換した場合について説明したが、図10(a)に示すように、そのビーム形状IAは、輪帯の一部が欠けた形状でも良い。また、図10(b)に示すように、複数の光源からの光、若しくは、一つ以上の光源からの光を分割して、それぞれを輪帯状に配置しても良い。図10(a),(b)のいずれの例も、ビーム整形光学系205によって整形されたレーザ光(刺激光)は、光軸を含む所定の面による断面において光軸に対して所定の角度をなす2光束である。また、円錐レンズや円錐ミラーを使用せず、ビーム整形光学系205として、輪帯状の開口部が形成された絞りを配置しても良い。
 また、ビーム整形光学系205で整形されたレーザ光は、その輪帯状の瞳形状IMが、図11(a)に示すように、対物レンズ304の瞳Pの中心に略一致していても構わないし、図11(b)に示すように、瞳Pの中心にかかっていても構わないし、図11(c)に示すように、瞳Pの中心から外れていても構わない。
[第2の実施形態]
 次に、第2の実施形態に係るビーム整形光学系205の構成について図12~図21を用いて説明する。この第2の実施形態に係るビーム整形光学系205は、図12に示すように円盤状の光学部材として構成されている。このビーム整形光学系205の一方の面220aには、図12(a)の平面図及び(b)の縦断面図に示すように、ビーム整形光学系205の周面220cに開放し且つビーム整形光学系205の周方向に伸びる段部221が形成されている。この段部221の深さ寸法hは、ガラス基盤の屈折率をnとし、レーザ光の波長をλとすると、h(n-1)=λ/2の関係を満たすように設定されている。従って、例えばレーザ光の波長がλ=488nmであり、屈折率がn=1.5である場合、h=488nmとなる。また、段部221は、例えば従来よく知られたリソグラフィ技術を用いて形成することができる。この段部221の形成により、ビーム整形光学系205の中央部には円柱状をなした第一の透光部分222が形成され、ビーム整形光学系205の周縁部には第一の透光部分222の板厚寸法よりも小さい板厚寸法を有する環状の第二の透光部分223が形成されている。
 第一及び第二の各透光部分222,223は、それぞれレーザ光が入射する入射面222a,223aを有する。各入射面222a,223aの大きさは、該各入射面への入射光量がそれぞれ等しくなるように設定されている。図示の例では、各入射面222a,223aで構成されるビーム整形光学系205の他方の面220bにレーザ光が均一に照射されると考えて、各入射面222a,223aの面積が互いに等しくなるように段部221が形成されている。すなわち、ビーム整形光学系205の他方の面220bの半径をRとし、第一の透光部分222の半径をrとすると、R及びrは、R=r・21/2の関係を満たす。
 ビーム整形光学系205にその他方の面220b側からレーザ光(刺激光)が照射されると、レーザ光の半分は第一の透光部分222を透過し、レーザ光の残りの半分は第二の透光部分223を透過する。このとき、段部221の深さ寸法hが、前記したように、h(n-1)=λ/2の関係を満たすことから、第一及び第二の各透光部分222,223を透過した各レーザ光間に位相差πが付与される。位相差が生じた二つのレーザ光は、それぞれ第2の操作ユニット206及び第2の光路分割部材207を経た後、対物レンズ304で球面波に変換されて標本20に向けて集光される。なお、図12に示す位相差「0」及び「π」は一例であり逆でも良い。
 このときの対物レンズ304の光軸L上でのレーザ光の強度は、次式(8)で表される。この式(8)において、NAは、対物レンズ304の開口数である。式(8)は、このNAが小さいときの近似式であり、図13(a)で表される透過率を有する位相マスクをレーザ光が透過した後、対物レンズで集光されたときの光軸上の光強度分布を示している。(参考文献:M.Born and E.Wolf,Principles of Optics(5th.ed,Pergamon Press,1974))
Figure JPOXMLDOC01-appb-M000010
 図13(b)は、式(8)をプロットしたグラフである。図13(b)のグラフの縦軸はレーザ光の光強度を示し、横軸は光軸L上の座標を示す。この図13(b)から明らかなように、光軸L上には、光強度が最大になる二つのピークが対物レンズ304の幾何光学焦点の前後に現れている。すなわち、互いに位相が異なる二つのレーザ光が対物レンズ304を通過したとき、光軸L上には、図14に示すように、光強度の値が極大値をとる二つの集光点224,225が形成される。両集光点224,225の間隔は、図示の例では、レーザ光の波長をλとし、対物レンズ304の開口数をNAとすると、NAが小さいとき、例えばNA<0.3である場合は、4.6λ/NA2となる。NAが大きいとき、例えばNA=0.9である場合、両集光点224,225間の間隔は、約2λとなる。従って、例えばλ=488nmである場合、両集光点224,225間の間隔は約1μmである。なお、NAが大きいときは式(8)は成立せず、両集光点224,225の間隔は約2λ/NA2となる。すなわち、両集光点224,225の間隔(集光点の中心間の距離)をdとすると、次式(9)の関係がある。
d = A(NA)×λ/NA2           (9)
 但し、A(NA)は比例係数であり、NAの関数である。A(NA)は、NAが小さいとき値4.6となり、NA大きいとき値2となり、NAが中程度のとき2と4.6との間の値となる。つまり、比例係数A(NA)の範囲は、2≦A(NA)≦4.6である。
 また、各集光点224,225に対応する光学的伝達関数(Optical Transfer Function:以下、OTFと称す。)は略同程度になった。図15は、各集光点224,225のうち一方のOTFの結果を示す。図15の縦軸はXY平面内の空間周波数を示し、横軸は光軸方向の空間周波数を示す。この図15から明らかなように、十分な奥行き分解能を有することが分かる。奥行き分解能とは、従来よく知られているように、格子ベクトルを光軸方向にもつ三次元格子を分解する能力である。
 対物レンズ304を経た各レーザ光は、それぞれ標本20に照射される。なお、この第2の実施形態においても、集光点224,225は、第2の走査ユニット206により走査される。
 この第2の実施形態によれば、上述したように、ビーム整形光学系205の一方の透光部分222を透過した光束と、他方の透光部分223を透過した光束との間に位相差が生じている。このことから、ビーム整形光学系205を経たレーザ光が対物レンズ304により集光されたとき、対物レンズ304の光軸L上には、位相差を有する透光部分222,223の個数と同数の集光点224,225がそれぞれレーザ光の波長に応じて規定される間隔をおいて形成される。これにより、標本20の異なる高さ位置において対物レンズ304の光軸Lに直交する二つの断面上にそれぞれレーザ光を同時に照射することができる。
 また、両集光点224,225の間隔(集光点の中心間の光軸L上の距離)が、所定の距離d離れることにより、光軸方向のより深い領域を刺激することができる。
 また、上述したように、第一及び第二の各透光部分222,223の入射面222a,223aの大きさは、該各入射面への入射光量がそれぞれ等しくなるように設定されていることから、第一の透光部分222を透過するレーザ光の光量と第二の透光部分223を透過するレーザ光の光量とを等しくすることができる。これにより、各集光点224,225における標本20に対する刺激を同じ条件で行うことができる。なお、レーザ光の光量分布が、光軸に直交する断面の動径方向にガウス分布を有する場合は、このガウス分布の比率を乗じて第1及び第2の透光部分222,223に入射する光量が等しくなるように入射面222a,223aの大きさを決定する必要がある。第1及び第2の透光部分222,223の間の光量に差があると、2つの集光点224,225の間隔は変化しないが、これらの集光点224,225の光軸方向の外側に第3、第4の集光点が形成されて、また、2つの集光点224,225の光量のバランスも崩れてしまう。
 この第2の実施形態では、光軸L上に二つの集光点224,225が形成される例を示したが、これに代えて、三つ以上の集光点を光軸L上に形成することができる。例えば三つの集光点を光軸L上に形成する場合、図16(a)及び(b)に示すようなビーム整形光学系205を用いることができる。
 図16に示す例では、ビーム整形光学系205の一方の面220aには、このビーム整形光学系205の周面220cに開放し且つビーム整形光学系205の周方向に伸びる段部234に加えて、ビーム整形光学系205の中央部で凹部235が形成されている。段部234の深さ寸法h1と凹部235の深さ寸法h2とは互いに等しい。深さ寸法h1及びh2は、それぞれh1・(n-1)=λ/2及びh2・(n-1)=λ/2の関係を満たすように設定されている。この段部234及び凹部235の形成により、ビーム整形光学系205には、その周縁部に第一の透光部分236が形成され、中央部に該第一の透光部分236の板厚寸法と等しい板厚寸法を有する第二の透光部分237が形成され、更に、第一及び第二の透光部分236,237間に該各透光部分の板厚寸法よりも大きい板厚寸法を有する環状の第三の透光部分238が形成されている。
 ここで、第一~第三の各透光部分236,237,238の入射面236a,237a,238aの面積は、それぞれ等しい。すなわち、レーザ光の光量が光軸に直交する断面で均一である場合、第一~第三の透光部分236,237,238を透過する光量は等しくなる。
 また、入射面の面積が等しい必要は必ずしも無く、具体的には、このビーム整形光学系205の全体の半径、すなわち、第一の透光部分236の外周の半径をRとし、凹部235の半径、すなわち、第二の透光部分237の外周の半径をr1とし、第三の透光部分238の外周の半径をr2としたとき、次式(10)、(11)が成り立つように、第一~第三の透光部分236,237,238の大きさを決定すると、よりコントラストが上がる。
r1=17×R/25               (10)
r2=20×R/25               (11)
 図16に示す例によれば、第一の透光部分236を透過したレーザ光と第二の透光部分237を透過したレーザ光との間に位相差πが付与され、第二の透光部分237を透過したレーザ光と第三の透光部分238を透過したレーザ光との間に位相差πが付与される。なお、図16に示す位相差「0」、「π」及び「0」は一例であり逆でも良い。
 この場合、上述した式(8)を用いて光軸方向に沿った光強度の分布を求めると、図17に示す結果が得られる。この図17から明らかなように、光軸L上には、対物レンズ304の幾何光学焦点上と該焦点の前後とにそれぞれ光強度の値が極大値をとる集光点239,240,241が現れている。すなわち、図16に示すビーム整形光学系205を通過したレーザ光が対物レンズ304を通過したとき、光強度の値が極大値をとる三つの集光点239,240,241を光軸L上に形成することができる。従って、標本20の三つの異なる高さ位置において対物レンズ304の光軸Lに直交する三つの断面上にそれぞれ光束を同時に照射することができる。なお、この場合も、上述したように、ビーム整形光学系205の第一~第三の透光部分236,237,238を透過する光量が等しくなるように構成されているため、3つの集光点239,240,241の光量もほぼ等しくなる。また、この集光点239,240,241も、第2の走査ユニット206により走査される。
 また、図16に示すビーム整形光学系205の場合、対物レンズ304の開口数NAが小さいときは3つの集光点が形成されない。一方、NAが大きいときは、3つの集光点239,240,241の隣接する2つの集光点の間隔はそれぞれ、1.75λ/NA2となる。ここで、3つの集光点239,240,241のうち、隣接する2つの集光点の間隔(集光点の中心間の距離)をdとすると(換言すると、3つの集光点239,240,241のそれぞれの間隔dは)、前述の式(9)の関係となり、比例係数A(NA)は、NAが大きいとき値1.75となり、NAが中くらいのとき1.75と4.6との間の値となるので、比例係数A(NA)の範囲は、1.75≦A(NA)≦4.6となる。
 なお、距離dは、集光点が2つの場合の集光点の中心間の距離4.6λ/NA2より大きくなることはない。従って、集光点を結んだ直線全体の距離2dは、レーザ光の波長をλとすると、次式(12)となる。
2d = 2×A(NA)×λ/NA2        (12)
 また、集光点が4つ以上あっても、各集光点の中心間の距離は、集光点が2つの場合の集光点の中心間の距離4.6λ/NA2より大きくなることはない。
 もちろん、レーザ光の光量がガウス分布を有する場合は、このガウス分布の比率を考慮する必要がある。なお、この図16の構成の場合も、第一~第三の透光部分236,237,238の間の光量に差があると、第一~第三の集光点239,240,241の間隔は変化しないが、これらの集光点239,240,241の光軸方向の外側に第4、第5の集光点が形成され、また、3つの集光点239,240,241の光量のバランスも崩れてしまう。
 以上のように、この第2の実施形態に係るビーム整形光学系205において、第2の光源201からのレーザ光の光束径φを絞ると、対物レンズ304の焦点距離fとすると、φ=2×f×NAから、標本20に照射されるレーザ光のNAが小さくなる。この場合、集光点の光軸方向間隔は、上述した式(9)、(12)から明らかなように、レーザ光のNAに比例するので、集光点の間隔は第2の光源201からのレーザ光の光束径に比例する。すなわち、ビーム整形光学系205により広がるレーザ光の集光領域(対物レンズ304の焦点面を中心光軸方向に広がる集光領域)は、第2の光源201からのレーザ光の光束径に比例することになる。
 また、図12(a)及び(b)に示す例では、ビーム整形光学系205の周縁部に段部221を形成することによりこのビーム整形光学系205に板厚寸法が異なる二つの透光部分222,223を形成した例を示した。これに代えて、例えば図18(a)及び(b)に示すように、ビーム整形光学系205の一方の面220aの中央部に凹部242を形成することにより、このビーム整形光学系205に板厚寸法が異なる二つの透光部分243,244を形成することもできる。
 また、以上の説明では、ビーム整形光学系205に段部221,234及び凹部235を形成することにより、このビーム整形光学系205に板厚寸法が異なる複数の透光部分222,223,236,237,238を形成した例を示した。これに代えて、互いに大きさが異なる複数のガラス板を重ね合わせることより、板厚寸法が異なる複数の透光部分をビーム整形光学系205に形成することもできる。この場合、例えば図19(a)及び(b)に示すように、二つの集光点を形成すべく二つの透光部分をビーム整形光学系205に形成する場合、互いに径が異なる二つのガラス板245,246をそれぞれの間に間隔をおいて配置することもできる。
 また、この場合、図16(a)及び(b)に示す例では、三つの集光点239,240,241を光軸L上に形成するためにビーム整形光学系205に段部234及び凹部235を形成することにより三つの透光部分236,237,238を形成した例を示したが、これに代えて、例えば図20(a)及び(b)に示すように、径がそれぞれ異なる三つのガラス板247,248,249をその径の大きさに関係なく重ね合わせることにより、ビーム整形光学系205に三つの透光部分を形成することもできる。
 なお、図19及び図20に示したように複数のガラス板245,246,247,248,249を重ね合わせる場合、屈折力がそれぞれ等しいガラス板を用いることが好ましい。
 更に、以上に示す例では、ビーム整形光学系205が円盤状をなした例を示したが、これに代えて、例えば図21(a)及び(b)に示すように、矩形状をなすビーム整形光学系205を用いることも可能である。
 なお、ビーム整形光学系205として、ガラス板によって、入射したレーザ光に位相差を付与する例を説明したが、これに限らず、各透光部分における光の光学的光路長を任意に切り替えることにより、任意に位相差を付与可能な、いわゆる空間光変調素子を用いることが可能である。
 本実施形態に係る走査型顕微鏡10は、ビーム整形光学系205に上述したガラス板を、切替制御する、或いは空間光変調素子を制御する制御部40でその作動を制御することにより、標本20の所望の領域をレーザ光で刺激することができる。この場合、第2の光源201からのレーザ光が対物レンズ304を介して集光される領域の大きさを入力部50を用いて制御部40に設定し、制御部40が上述したビーム整形光学系205のアクチュエータやビームエキスパンダ208の作動を制御することにより設定された領域を刺激する(照明する)ように構成される。なお、ビーム整形光学系205の作動を制御するときの制御量(例えば、隣接する2つの集光点の間隔(集光点の中心間の距離d)は、上述した式等を用いて制御部40で演算して求めても良いし、予め記憶部70にこれらの関係をテーブルとして記憶しておき、制御部40でその値を読み出しても良い。
 上述の式(9)、(12)から、複数の集光点を結んだ直線全体の距離ΔDは、対物レンズ304の開口数をNAとし、レーザ光の波長をλとすると、次式(13)のようになる。
ΔD = (N-1)×A(NA)×λ/NA2    (13)
 但し、A(NA)は比例係数であり、NAの関数であり、Nは集光点の数であり、比例係数A(NA)の範囲は、1.5≦A(NA)≦4.6である。
 例えば、NA=0.9とし、λ=488nmとすると、ΔD=1.20μmとなる。
 一方、対物レンズ304に入射するビームの径をビームエキスパンダにより可変にする場合、刺激光の集光領域の光軸方向の距離、つまり、集光された光の最大強度の8割以上の強度を有する領域の光軸方向の距離ΔDSは、波長をλとすると次式(14)のようになる。
Figure JPOXMLDOC01-appb-M000011
 例えば、NA=0.9とし、λ=488nmとすると、ΔDS=0.43μmとなる。
 ここで、上述した複数の集光点を結んだ直線全体の距離ΔDを刺激光の集光領域の最大距離とすると、ΔDは、次式(15)の関係を有していると言える。
Figure JPOXMLDOC01-appb-M000012
 なお、浸液がある対物レンズ304が液浸対物レンズの場合は、浸液の屈折率をnとすると、上述の式(13)~(15)において、λをλ/nに置き換え、NAをNA/nに置き換える必要がある。
 また、上述の各実施形態の要件は、適宜組み合わせることができる。また、一部の構成要素を用いない場合もある。また、法令で許容される限りにおいて、上述の各実施形態及び変形例で引用した装置などに関する全ての公開公報及び米国特許の開示を援用して本文の記載の一部とする。
10 走査型顕微鏡(顕微鏡)  20 標本
40 制御部  50 入力部
100 第1の走査光学系(第1の光学系)  101 第1の光源
200 第2の走査光学系(第2の光学系)  201 第2の光源
205 ビーム整形光学系
205a,205b,225a,225b,235a 円錐レンズ
215a,215b 円錐ミラー  235b 平面ミラー
235c 中空ミラー(光路切換部材)  208 ビームエキスパンダ
300 結像光学系  304 対物レンズ

Claims (24)

  1.  第1の光源からの光を、対物レンズを介して標本に照射して前記標本からの光を受光する第1の光学系と、
     前記第1の光源からの光、又は前記第1の光源とは異なる第2の光源からの光を、前記対物レンズを介して前記標本に照射して特異現象を発現させる第2の光学系と、を有し、
     前記第2の光学系は、前記対物レンズを介して集光される、前記第1の光源からの前記光、又は前記第2の光源からの前記光の集光領域が、以下の条件を満たすように、前記第1の光源からの前記光、又は前記第2の光源からの前記光を整形するビーム整形光学系を有することを特徴とする顕微鏡。
    Figure JPOXMLDOC01-appb-M000001
     但し、
      ΔD:前記第1の光源からの前記光、又は前記第2の光源からの前記光の前記集光領域の最大距離
      λ :前記第1の光源からの前記光、又は前記第2の光源からの前記光の波長
      NA:前記対物レンズの開口数
  2.  前記ビーム整形光学系は、前記第1の光源からの前記光、又は前記第2の光源からの前記光が、前記対物レンズを介して、前記第2の光学系の光軸を含む所定の断面内において互いに所定の距離離れ、互いに所定の角度をなす2光束となって集光されるように前記光を整形することを特徴とする請求項1に記載の顕微鏡。
  3.  前記ビーム整形光学系は、前記第1の光源からの前記光、又は前記第2の光源からの前記光が、前記対物レンズの瞳において前記光軸から所定の距離離れた領域を通過して前記対物レンズを介して集光されるように前記光の前記光軸に直交する面における形状を整形することを特徴とする請求項2に記載の顕微鏡。
  4.  前記ビーム整形光学系は、前記光の前記光軸に直交する面における形状を輪帯形状に整形することを特徴とする請求項3に記載の顕微鏡。
  5.  前記ビーム整形光学系は、互いの頂点が対向するように配置された2枚の円錐レンズで構成されることを特徴とする請求項4に記載の顕微鏡。
  6.  前記ビーム整形光学系は、互いの頂点が逆方向を向くように配置された2枚の円錐レンズで構成されることを特徴とする請求項4に記載の顕微鏡。
  7.  前記ビーム整形光学系は、円錐面がすり鉢状に形成された凹型の円錐レンズと、前記円錐面と対向するように円錐面が配置された凸型の円錐レンズと、から構成されることを特徴とする請求項4に記載の顕微鏡。
  8.  前記円錐レンズ間の光軸方向の間隔を変化させて前記輪帯形状の光の外径を変化させることを特徴とする請求項5~7のいずれか一項に記載の顕微鏡。
  9.  前記ビーム整形光学系は、光を反射する円錐面がすり鉢状に形成されるとともに、光軸上に貫通孔が形成された凹型の円錐ミラーと、光を反射する円錐面が形成され、前記貫通孔と位置整合して配置された凸型の円錐ミラーと、を有し、前記光源からの前記光を、前記貫通孔を通過させて前記凸型の円錐ミラーで反射させ、さらに、前記凹型の円錐ミラーで反射させるように構成されることを特徴とする請求項4に記載の顕微鏡。
  10.  前記円錐ミラー間の光軸方向の間隔を変化させて前記輪帯形状の光の外径を変化させることを特徴とする請求項9に記載の顕微鏡。
  11.  前記ビーム整形光学系は、光源側から順に、円錐レンズと、前記円錐レンズを透過した前記光を反射し、さらに前記円錐レンズに入射させる平面ミラーと、前記光源からの光を前記円錐レンズに導き、前記円錐レンズからの光を標本に導く光路切換部材と、から構成されることを特徴とする請求項4に記載の顕微鏡。
  12.  前記円錐レンズと前記平面ミラーとの光軸方向の間隔を変化させて前記輪帯形状の光の外径を変化させることを特徴とする請求項11に記載の顕微鏡。
  13.  前記第1の光源又は前記第2の光源と前記ビーム整形光学系との間、或いは前記ビーム整形光学系と前記対物レンズとの間に配置され、前記光の径を変化させることにより、前記輪帯形状の光の輪帯幅を変化させるビームエキスパンダを有することを特徴とする請求項5~12のいずれか一項に記載の顕微鏡。
  14.  前記ビーム整形光学系は、前記第1の光源からの前記光、及び前記第2の光源からの前記光のいずれか一方の前記光の一部と残りの前記光の少なくとも一部とに位相差を付与し、前記対物レンズを介して当該対物レンズの光軸上に複数の集光点を形成することを特徴とする請求項1に記載の顕微鏡。
  15.  前記ビーム整形光学系は、前記光を透過させる複数の透光部分を有し、該各透光部分のうち少なくとも一つの該透光部分を透過した前記光に他の前記透光部分を透過した前記光との間で位相差を付与することを特徴とする請求項14に記載の顕微鏡。
  16.  前記ビーム整形光学系は、板状部材であり、前記各透光部分における前記光の光学的光路長がそれぞれ異なるように形成されていることを特徴とする請求項15に記載の顕微鏡。
  17.  前記ビーム整形光学系は、空間光変調素子であり、前記各透光部分における前記光の光学的光路長が任意に切り替え可能であることを特徴とする請求項15に記載の顕微鏡。
  18.  前記各透光部分はそれぞれ前記光が入射する入射面を有し、該各入射面の面積は、該各入射面への入射光量がそれぞれ等しくなるように設定されていることを特徴とする請求項16又は17に記載の共焦点顕微鏡。
  19.  前記光が前記対物レンズを介して集光される前記集光領域の大きさを入力する入力部と、
     前記集光領域の大きさに対応させて、前記ビーム整形光学系を制御する制御部と、を有することを特徴とする請求項1~18のいずれか一項に記載の顕微鏡。
  20.  前記光が前記対物レンズを介して集光される前記集光領域の大きさを入力する入力部と、
     前記集光領域の大きさに対応させて、前記円錐レンズ位置、前記円錐ミラー位置の少なくとも1つを制御する制御部と、を有することを特徴とする請求項5~11のいずれか一項に記載の顕微鏡。
  21.  前記光が前記対物レンズを介して集光される前記集光領域の大きさを入力する入力部と、
     前記集光領域の大きさに対応させて、前記円錐レンズの位置と前記平面ミラーの位置とを制御する制御部と、を有することを特徴とする請求項12に記載の顕微鏡。
  22.  前記光が前記対物レンズを介して集光される前記集光領域の大きさを入力する入力部と、
     前記集光領域の大きさに対応させて、前記ビームエキスパンダを制御する制御部と、を有することを特徴とする請求項13に記載の顕微鏡。
  23.  前記光が前記対物レンズを介して集光される前記集光領域の大きさを入力する入力部と、
     前記集光領域の大きさに対応させて、前記板状部材の切替を制御する、或いは前記空間光変調素子を制御する制御部と、を有することを特徴とする請求項16又は17に記載の顕微鏡。
  24.  対物レンズを介して励起光を標本に照射し、前記標本で発生した蛍光を集光する集光光学系を備えた顕微鏡に装着される刺激装置であって、
     前記励起光を出射した第1の光源からの光、又は前記第1の光源とは異なる第2の光源からの光を、前記対物レンズを介して前記標本に照射して特異現象を発現させる刺激光学系を有し、
     前記刺激光学系は、前記対物レンズを介して集光される、前記第1の光源からの前記光、又は前記第2の光源からの前記光の集光領域が、以下の条件を満たすように、前記第1の光源からの前記光、又は前記第2の光源からの前記光を整形するビーム整形光学系を有することを特徴とする刺激装置。
    Figure JPOXMLDOC01-appb-M000002
     但し、
      ΔD:前記第1の光源からの前記光、又は前記第2の光源からの前記光の前記集光領域の最大距離
      λ :前記第1の光源からの前記光、又は前記第2の光源からの前記光の波長
      NA:前記対物レンズの開口数
PCT/JP2012/082584 2011-12-15 2012-12-15 顕微鏡及び刺激装置 WO2013089258A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/298,135 US20140327960A1 (en) 2011-12-15 2014-06-06 Microscope and stimulating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-274161 2011-12-15
JP2011274161 2011-12-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/298,135 Continuation US20140327960A1 (en) 2011-12-15 2014-06-06 Microscope and stimulating apparatus

Publications (1)

Publication Number Publication Date
WO2013089258A1 true WO2013089258A1 (ja) 2013-06-20

Family

ID=48612697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/082584 WO2013089258A1 (ja) 2011-12-15 2012-12-15 顕微鏡及び刺激装置

Country Status (3)

Country Link
US (1) US20140327960A1 (ja)
JP (2) JPWO2013089258A1 (ja)
WO (1) WO2013089258A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042122A (ja) * 2014-08-15 2016-03-31 三星電子株式会社Samsung Electronics Co.,Ltd. 照明装置、光学検査装置及び光学顕微鏡
JP2016145980A (ja) * 2015-01-30 2016-08-12 アスフェリコン ゲゼルシャフト ミット ベシュレンクテル ハフツング ほぼコリメートされたビームを焦束するための光学素子の配置構造
CN106959517A (zh) * 2017-05-26 2017-07-18 北京华岸科技有限公司 光束变换装置和激光加工装置
JP2019537486A (ja) * 2016-11-21 2019-12-26 クレストオプティクス ソチエタ ペル アチオニ 眼底の蛍光分析のための空間的超解像装置
CN111220625A (zh) * 2020-01-18 2020-06-02 哈尔滨工业大学 表面及亚表面一体化共焦显微测量装置和方法
CN111239154A (zh) * 2020-01-18 2020-06-05 哈尔滨工业大学 一种横向差动暗场共焦显微测量装置及其方法
CN111239155A (zh) * 2020-01-18 2020-06-05 哈尔滨工业大学 一种轴向差动暗场共焦显微测量装置及其方法
CN111239153A (zh) * 2020-01-18 2020-06-05 哈尔滨工业大学 一种轴向差动暗场共焦显微测量装置及其方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180078129A1 (en) * 2015-02-25 2018-03-22 Nanyang Technological University Imaging device and method for imaging specimens
CN107906470A (zh) * 2017-11-29 2018-04-13 马瑞利汽车零部件(芜湖)有限公司 环形照射的汽车信号灯***
CN112496528A (zh) * 2020-11-03 2021-03-16 深圳市韵腾激光科技有限公司 光路组件、激光切割头及激光切割设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121749A (ja) * 2005-10-28 2007-05-17 Nikon Corp 顕微鏡
JP2007233241A (ja) * 2006-03-03 2007-09-13 Olympus Corp 走査型レーザ顕微鏡
JP2010054601A (ja) * 2008-08-26 2010-03-11 Olympus Corp 顕微鏡

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04215622A (ja) * 1990-12-14 1992-08-06 Sumitomo Electric Ind Ltd 光源装置
JPH0815156A (ja) * 1993-06-03 1996-01-19 Hamamatsu Photonics Kk レーザスキャン光学系及びレーザスキャン光学装置
US5923466A (en) * 1993-10-20 1999-07-13 Biophysica Technologies, Inc. Light modulated confocal optical instruments and method
JP4845279B2 (ja) * 2001-02-09 2011-12-28 オリンパス株式会社 生体機能測定方法
US7196843B2 (en) * 2002-03-27 2007-03-27 Olympus Optical Co., Ltd. Confocal microscope apparatus
JP3992591B2 (ja) * 2002-11-05 2007-10-17 オリンパス株式会社 走査型光学顕微鏡
TWI512335B (zh) * 2003-11-20 2015-12-11 尼康股份有限公司 光束變換元件、光學照明裝置、曝光裝置、以及曝光方法
US8040597B2 (en) * 2006-05-16 2011-10-18 Olympus Corporation Illuminating device
JP5006694B2 (ja) * 2006-05-16 2012-08-22 オリンパス株式会社 照明装置
JP5307439B2 (ja) * 2007-04-23 2013-10-02 オリンパス株式会社 レーザ顕微鏡
JP5532193B2 (ja) * 2008-04-10 2014-06-25 株式会社ニコン 共焦点顕微鏡
US8194170B2 (en) * 2009-06-02 2012-06-05 Algonquin College Axicon lens array

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121749A (ja) * 2005-10-28 2007-05-17 Nikon Corp 顕微鏡
JP2007233241A (ja) * 2006-03-03 2007-09-13 Olympus Corp 走査型レーザ顕微鏡
JP2010054601A (ja) * 2008-08-26 2010-03-11 Olympus Corp 顕微鏡

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016042122A (ja) * 2014-08-15 2016-03-31 三星電子株式会社Samsung Electronics Co.,Ltd. 照明装置、光学検査装置及び光学顕微鏡
JP2016145980A (ja) * 2015-01-30 2016-08-12 アスフェリコン ゲゼルシャフト ミット ベシュレンクテル ハフツング ほぼコリメートされたビームを焦束するための光学素子の配置構造
US9625623B2 (en) 2015-01-30 2017-04-18 Asphericon Gmbh Arrangement of optical elements for focusing approximately collimated beams
JP2017102474A (ja) * 2015-01-30 2017-06-08 アスフェリコン ゲゼルシャフト ミット ベシュレンクテル ハフツング ほぼコリメートされたビームを焦束するための光学素子の配置構造
JP7016361B2 (ja) 2016-11-21 2022-02-04 クレストオプティクス ソチエタ ペル アチオニ 眼底の蛍光分析のための空間的超解像装置
JP2019537486A (ja) * 2016-11-21 2019-12-26 クレストオプティクス ソチエタ ペル アチオニ 眼底の蛍光分析のための空間的超解像装置
CN106959517A (zh) * 2017-05-26 2017-07-18 北京华岸科技有限公司 光束变换装置和激光加工装置
CN111220625A (zh) * 2020-01-18 2020-06-02 哈尔滨工业大学 表面及亚表面一体化共焦显微测量装置和方法
CN111239155A (zh) * 2020-01-18 2020-06-05 哈尔滨工业大学 一种轴向差动暗场共焦显微测量装置及其方法
CN111239153A (zh) * 2020-01-18 2020-06-05 哈尔滨工业大学 一种轴向差动暗场共焦显微测量装置及其方法
CN111239154A (zh) * 2020-01-18 2020-06-05 哈尔滨工业大学 一种横向差动暗场共焦显微测量装置及其方法
CN111220625B (zh) * 2020-01-18 2023-04-07 哈尔滨工业大学 表面及亚表面一体化共焦显微测量装置和方法
CN111239155B (zh) * 2020-01-18 2023-06-23 哈尔滨工业大学 一种轴向差动暗场共焦显微测量装置及其方法
CN111239153B (zh) * 2020-01-18 2023-09-15 哈尔滨工业大学 一种轴向差动暗场共焦显微测量装置及其方法

Also Published As

Publication number Publication date
US20140327960A1 (en) 2014-11-06
JPWO2013089258A1 (ja) 2015-04-27
JP2016122218A (ja) 2016-07-07

Similar Documents

Publication Publication Date Title
WO2013089258A1 (ja) 顕微鏡及び刺激装置
US10054780B2 (en) Microscope
JP5900515B2 (ja) 構造化照明装置、構造化照明顕微鏡装置、構造化照明方法
JP6553631B2 (ja) 光シート顕微鏡検査のための方法および装置
US10698225B2 (en) Microscope and method for SPIM microscopy
JP5259154B2 (ja) 走査型レーザ顕微鏡
JP5878207B2 (ja) 照明された試料を光学的に捕捉するための方法および装置
US9764424B2 (en) Method and arrangement for forming a structuring on surfaces of components by means of a laser beam
US9720222B2 (en) Calibration targets for microscope imaging
JP7109423B2 (ja) ライトシート顕微鏡
JP7021190B2 (ja) ライトシート顕微鏡
JP6512667B2 (ja) 側方照明顕微鏡システム及び顕微方法
US20160363752A1 (en) Sheet illumination microscope and illumination method for sheet illumination microscope
CN108292034B (zh) 用于利用结构化的光片照射检查试样的方法和设备
JP2010015026A (ja) 超解像顕微鏡およびこれに用いる空間変調光学素子
JP5532193B2 (ja) 共焦点顕微鏡
JPWO2016056147A1 (ja) 結像光学系、照明装置および観察装置
WO2016117415A1 (ja) 画像取得装置および画像取得方法
WO2018182526A1 (en) Apparatus for analysing a specimen
JP6537153B2 (ja) 光学情報検知装置及び顕微鏡システム
JP6761267B2 (ja) 顕微鏡照明システム及びサンプルを照明する装置を動作させる方法
JP5521901B2 (ja) 非線形顕微鏡及び非線形観察方法
Stenau et al. Diffractive lenses with overlapping aperture a new tool in scanning microscopy
EP3627205A1 (en) Confocal laser scanning microscope configured for generating line foci
CN112567281A (zh) 用于显微镜的照明总成、显微镜和用于照明显微镜中的样本空间的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12858473

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013549341

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12858473

Country of ref document: EP

Kind code of ref document: A1