WO2013084601A1 - 静電霧化装置 - Google Patents

静電霧化装置 Download PDF

Info

Publication number
WO2013084601A1
WO2013084601A1 PCT/JP2012/077046 JP2012077046W WO2013084601A1 WO 2013084601 A1 WO2013084601 A1 WO 2013084601A1 JP 2012077046 W JP2012077046 W JP 2012077046W WO 2013084601 A1 WO2013084601 A1 WO 2013084601A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
heat
electrostatic
air
circuit board
Prior art date
Application number
PCT/JP2012/077046
Other languages
English (en)
French (fr)
Inventor
祐花里 中野
矢野 武志
豊 裏谷
英聖 上垣
誠之 鈴木
小幡 健二
須川 晃秀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013084601A1 publication Critical patent/WO2013084601A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/053Arrangements for supplying power, e.g. charging power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/057Arrangements for discharging liquids or other fluent material without using a gun or nozzle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0075Nozzle arrangements in gas streams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/46Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
    • H01L23/467Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to an electrostatic atomizer.
  • the electrostatic atomizer shown in the above document generates an electrostatic field in order to electrostatically atomize the water supplied to the discharge electrode and the electrostatic atomization unit including the discharge electrode and the heat exchange means.
  • the high voltage application part, the ventilation part for cooling the thermal radiation part of a heat exchange means, and a ventilation and water supply control part are provided.
  • the blower and water supply control unit controls the blower unit and controls the operation of the Peltier unit that constitutes the heat exchange means, and includes a booster circuit for controlling the operation of the Peltier unit.
  • a heating circuit component such as a diode that generates heat when current is applied is provided.
  • the heat generating circuit component When the heat generating circuit component generates heat, the heat may heat the air around the discharge electrode. When the air around the discharge electrode is warmed, water is effectively supplied to the discharge electrode based on the moisture in the air. It becomes difficult to do.
  • the electrostatic atomization unit, the high voltage application unit, the air blowing unit, the air blowing and the water supply control unit are each made into a block and separately incorporated in the case, and the blocks are separated from each other. The influence on the block is controlled.
  • the electrostatic atomization unit, the high voltage application unit, the air blowing unit, the air blowing and the water supply control unit are separately incorporated in the case and fixed separately from each other, Assembling is complicated, the manufacturing cost is increased, and the apparatus is increased in size.
  • an object of the present invention is to provide an electrostatic atomizer that can be miniaturized, is easy to assemble, and can suppress the influence of heat of the heat generating circuit components on the discharge electrode.
  • the electrostatic atomization device of the present invention includes an electrostatic atomization unit having a discharge electrode and heat exchange means for generating condensed water based on moisture in the air and supplying water to the discharge electrode; A high voltage application unit for generating a strong electric field to electrostatically atomize water supplied to the discharge electrode, a power supply unit for supplying power to the heat exchange unit, and the heat exchange unit A blower for supplying and cooling wind; and a case for housing the electrostatic atomizer, the high voltage application unit, the power supply unit, and the blower in the electrostatic fog.
  • the high voltage application unit, the power supply unit, and the air blowing unit are mounted on the same circuit board, the circuit board is disposed in the case, and the electrostatic atomization is performed on the case.
  • An air intake port through which air for supplying air to the unit is sucked, and the charged fine particles generated by the electrostatic atomizer
  • a discharge part for discharging the child water is provided, and the air blowing part is disposed between the air suction port and the electrostatic atomizing part on the circuit board, and the air is sucked by the air blowing by the air blowing part.
  • a blowing path through which air flows is formed in the order of the mouth, the blowing section, the electrostatic atomizing section, and the discharging section, and a large current flows through the power supply section during operation of the electrostatic atomizing section.
  • the heat generating circuit component that generates heat is included, and the heat generating circuit component is disposed on the circuit board at a position away from the air blowing path.
  • a heat dissipating part is provided near the heat generating circuit component.
  • one or a plurality of heat radiating portions are provided in the middle of a heat conduction path between the heat generating circuit component and the electrostatic atomizing portion.
  • the electrostatic atomizer and the blower are provided on the front side of the circuit board, and the heat generating circuit component is provided on the back side of the circuit board.
  • one or a plurality of heat dissipating portions are provided along a straight line connecting the heat generating circuit component and the electrostatic atomizing portion. preferable.
  • the inside of the case is divided into a first region and a second region by the circuit board, and the air blowing path is formed on the first region side, and the heating circuit
  • the part is preferably arranged on the second region side.
  • the electrostatic atomization unit, the high voltage application unit, the power supply unit for heat exchange means, and the air blowing unit are configured on the same circuit board, and the circuit board is provided in the case.
  • the downsizing device can be miniaturized and assembly is facilitated.
  • the heat generating circuit components are arranged at positions away from the air flow path even though each component is configured on the same circuit board. Can suppress the influence on the discharge electrode, and can stably generate condensed water.
  • the electrostatic atomizer 1 of this embodiment includes an electrostatic atomizer 4, a high voltage application unit 5, a power supply unit 6 that supplies power to a heat exchange unit (heat exchange means) 3 to be described later, and heat
  • exchange part 3, and cooling it, the circuit board 8, and the case 13 are provided.
  • the circuit board 8 is mounted with the electrostatic atomization unit 4, the high voltage application unit 5, the power supply unit 6 and the air blowing unit 7, and the circuit board 8 is housed in the case 13. *
  • the electrostatic atomization unit 4 includes a discharge electrode 2, a heat exchange unit (heat exchange means) 3 for generating condensed water based on moisture in the air and supplying water to the discharge electrode 2, and the discharge electrode 2. And an atomizing casing 15 in which the heat exchanging unit 3 is incorporated.
  • the heat exchange unit 3 is composed of a Peltier unit.
  • the atomizing casing 15 is made of a synthetic resin and includes a counter electrode 20 as shown in FIG. 3C.
  • the counter electrode 20 is formed in a ring shape, and the center of the ring is located on the extension line of the axis of the discharge electrode 2.
  • the Peltier unit constituting the heat exchanging unit 3 includes a plurality of thermoelectric elements 16. 3A to 3C, as the thermoelectric element 16, a P-type Peltier element and an N-type Peltier element are used. The end portion of the P-type Peltier element and the end portion of the N-type Peltier element are fixed to the back surface of the connecting portion 17 made of a flat conductive material, and the end portion on the connecting portion 17 side of the Peltier element ( The upper end portion in FIG. 3C is the cooling side, and the end portion (the lower end portion in FIG. 3C) opposite to the connecting portion 17 of the Peltier element is the heat dissipation side.
  • a heat-dissipating current-carrying portion 23 that dissipates current and heat is joined to the end (the lower end in FIG. 3C) on the heat-dissipation side of the thermoelectric element 16 that forms a pair of P-type and N-type. As shown in 3 ⁇ / b> C, the heat-dissipating energizing part 23 projects outside the atomizing casing 15.
  • the heat-dissipating energizing section 23 has a heat-dissipating function and a function of energizing the thermoelectric element 16.
  • the heat-dissipating current-carrying portion 23 protrudes in an L shape from the side surface of the atomizing casing 15, thereby ensuring a wide heat-dissipating area while minimizing the side protrusion length from the side surface as much as possible. I can do it.
  • the distal end portion of the heat radiation energizing portion 23 is a connection terminal portion 22.
  • the atomizing casing 15 has an opening at a first end 15a (a right end in FIG. 3A and an upper end in FIGS. 3B and 3C) on the side where the counter electrode 20 is located, and a second end 15b ( An air inflow opening 25 is provided at the upper end in FIG. 3A and at the rear end in FIGS. 3B and 3C. *
  • the electrostatic atomization unit 4, the high voltage application unit 5, the power supply unit 6, and the air blowing unit 7 of the present embodiment are all held on the same circuit board 8 as a single unit. Composed.
  • a power input unit (not shown) is held on the circuit board 8, and a power line having a connector for inputting power from outside is connected to the power input unit.
  • the power input unit held on the circuit board 8 is electrically connected to the high voltage application unit 5, the power supply unit 6, the air blowing unit 7, and the like held on the circuit board 8 through a circuit formed on the circuit board 8.
  • the circuit board 8 holds an electrically insulating cover 30 made of synthetic resin.
  • the cover 30 covers the electrostatic atomizer 4 including the discharge electrode 2 and the heat exchange unit 3.
  • An air intake port 31 is opened in the first end surface 30a (left end surface in FIG. 1) of the cover 30, and the second end surface 30b (right end surface in FIG. 1) opposite to the first end surface 30a. Is provided with a cylindrical part 24 constituting the discharge part 10.
  • the space 33 surrounded by the cover 30 and the circuit board 8 is substantially sealed except for the air intake port 31 and the discharge unit 10, and the electrostatic atomizing unit 4. Are arranged in the space 33.
  • the first end face 30 a of the cover 30 faces the one end face of the air blowing unit 7 in a contact state, and the air intake port 31 faces the air blowing part 7.
  • the circuit board 8 on which the electrostatic atomizer 4, the high voltage application unit 5, the power supply unit 6, and the air blowing unit 7 are held is incorporated in the case 13 and housed therein.
  • the cylindrical portion 24 provided on the second end surface 30 b of the cover 30 protrudes from one end surface (the right end surface in FIG. 1) of the case 13.
  • the case 13 is provided with an air inlet 9 (approximately the center of the upper side in the case 13 of FIG. 1).
  • the power supply unit 6 for supplying power to the heat exchanging unit 3 made of a Peltier unit has a booster circuit, and this booster circuit includes a heating circuit component 12 such as a diode that generates heat when a large current is applied.
  • the heat generating circuit component 12 is disposed at a position away from the air blowing path 11 of the circuit board 8.
  • thermoelectric elements 16 When the electrostatic atomizer 1 having the above-described configuration is energized from the power supply unit 6 to the thermoelectric elements 16, heat is transferred in the same direction in each thermoelectric element 16, and the cooling unit side of the thermoelectric elements 16 is cooled. The discharge electrode 2 is cooled, the heat radiation side becomes high temperature, and the heat radiation energizing portion 23 becomes high temperature.
  • the discharge electrode 2 When the discharge electrode 2 is cooled, the air around the discharge electrode 2 is cooled, the moisture in the air is liquefied by condensation or the like, and condensed water is generated at the tip of the discharge electrode 2.
  • the air blowing unit 7 is energized, the air blowing unit 7 is operated, and the air flows along the air blowing path 11 indicated by the one-dot chain line in FIGS. Flowing.
  • the air flow sent to the space 33 through the air blowing portion 7 in the middle of the air blowing path 11 flows along the outer peripheral wall of the atomizing casing 15, hits the heat radiating current energizing portion 23, and the heat radiating current energizing portion 23 passes through. Cooling promotes heat dissipation and flows toward the second end face 30 b of the cover 30.
  • the charged fine particle water generated by electrostatic atomization in the atomization casing 15 is an ion wind generated at the time of electrostatic atomization, and a small amount of air flowing into the atomization casing 15 from the air inflow opening 25. Thus, it is carried outside through the first end portion 15a where the atomizing casing 15 opens.
  • the charged fine particle water carried outside the first end portion 15a of the atomizing casing 15 merges with the air flow flowing outside the atomizing casing 15, and rides on this to be discharged from the discharge portion 10 to the outside. . Thereby, it becomes possible to fly the charged fine particle water far.
  • the amount of air flowing into the atomization casing 15 from the air inflow opening 25 is set so as not to hinder the generation of moisture in the air as dew condensation water at the discharge electrode 2. As a result, the dew condensation time can be shortened and the dew condensation water can be generated stably.
  • the electrostatic atomizer 1 having the above configuration holds an electrostatic atomizer 4 having a discharge electrode 2 and a heat exchange unit 3, a high voltage application unit 5, a power supply unit 6, a blower unit 7 and the like on a circuit board 8.
  • the configuration is simplified and the size can be reduced.
  • the electrostatic atomizer 1 can be downsized.
  • the heat generating circuit component 12 since the heat generating circuit component 12 is disposed at a position away from the air blowing path 11, the heat of the heat generating circuit component 12 directly heats the discharge electrode 2 or blows air. It is possible to suppress the air around the discharge electrode 2 from being heated by the heated air by heating the air flow flowing through the path 11.
  • the heat radiation energization unit 23 that serves as both energization to the heat exchange unit 3 and heat radiation of the heat exchange unit 3 is mounted on the circuit board 8, heat exchange is performed.
  • a harness for energizing the portion 3 is not required, the configuration is simplified, and the assembly is simplified.
  • a heat dissipating part (heat dissipating contact part) 14 is provided near the heat generating circuit component 12.
  • the heat dissipation part 14 is provided on the circuit board 8.
  • the heat radiating part 14 is formed of a member having high thermal conductivity and thermally connects the case 13 and the circuit board 8.
  • the heat radiating part 14 is fastened to a screw hole to fix the circuit board 8 to the case 13. It is a fixed fixing screw.
  • a heat radiating portion 14 is provided near one end portion (right end portion in FIG. 1) of the heat generating circuit component 12 on the discharge electrode 2 side.
  • the heat radiation part 14 near the heat generating circuit component 12
  • the heat of the heat generating circuit component 12 is effectively radiated at a position away from the discharge electrode 2, and the influence of the heat on the discharge electrode 2 side. Is further suppressed.
  • FIG. 4 shows an electrostatic atomizer 1 according to another embodiment of the present invention.
  • the heat radiating portion 14 is provided near the heat generating circuit component 12.
  • the width of the one side end portion of the heat generating circuit component 12 on the discharge electrode 2 side is substantially equal to or longer than the width of the one side end portion of the heat generating circuit component 12 on the discharge electrode 2 side.
  • a heat radiating portion 14 is provided. Thereby, the heat of the heat generating circuit component 12 can be radiated more effectively by the heat radiating portion 14.
  • FIG. 5 shows an electrostatic atomizer 1 according to still another embodiment of the present invention.
  • the heat radiating unit 14 is provided in the middle of the heat conduction path 40 in the circuit board 8 between the heat generating circuit component 12 and the electrostatic atomizing unit 4.
  • the heat conduction path 40 from the heat generating circuit component 12 to the electrostatic atomizing unit 4 is indicated by a broken line, and one or more heat conduction paths 40 from the heat generating circuit component 12 to the electrostatic atomizing unit 4 are provided.
  • a heat radiating portion 14 is provided. That is, when the circuit board 8 is viewed in plan, the plurality of heat radiating portions 14 are arranged along a substantially straight line connecting the heat generating circuit component 12 and the electrostatic atomizing portion 4.
  • the heat radiating portion 14 in the heat conduction path 40 from the heat generating circuit component 12 to the electrostatic atomizing portion 4 the heat of the heat generating circuit component 12 is radiated more effectively, and the discharge electrode 2. The influence of heat on the side is further suppressed.
  • the ground part 21 may also serve as the heat radiating part 14.
  • the ground portion 21 is electrically connected to the circuit board 8 side and the metal case 13 side.
  • the ground portion 21 is formed of a material having high thermal conductivity, and the heat of the heat generating circuit component 12 is effectively collected at the end of the ground portion 21 on the circuit board 8 side, and is effectively passed through the ground portion 21. Heat is transferred to the case 13.
  • the electrostatic atomization unit 4, the air blowing unit 7, and the high voltage application unit 5 are provided on the front surface side (the upper surface side in FIG. 2) of the circuit board 8.
  • the heating circuit component 12 is preferably provided on the lower surface side in FIG.
  • the air blowing path 11 is formed on the surface side of the circuit board 8 as shown in FIG. More specifically, as shown in FIG. 2, when the inside of the case 13 is divided into a first region 41 and a second region 42 by the circuit board 8, Preferably, the heat generating circuit component 12 is disposed on the second region 42 side. In this case, the air inlet 9 and the discharge part 10 are formed on the first region 41 side of the case 13.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

静電霧化部(4)と、高電圧印加部(5)と、熱交換手段用電源供給部(6)と、送風部(7)とが同一の回路基板(8)上に構成されて、ケース(13)内に備えられた静電霧化装置において、ケース(13)に、空気を吸入する空気吸入口(9)と、静電霧化部(4)で生成された帯電微粒子水が放出される放出部(10)とを設け、送風部(7)による送風で、空気吸入口(9)、送風部(7)、静電霧化部(4)、放出部(10)の順に空気が流れる送風経路(11)が形成されように構成されており、熱交換手段用電源供給部(6)の発熱回路部品(12)が、送風経路(11)から外れた位置に配置されたものである。当該構成により、静電霧化装置を小型化できるとともに、静電霧化部に対する発熱回路部品の熱による影響を抑制できる。

Description

静電霧化装置
 本発明は、静電霧化装置に関するものである。
 従来より、たとえば日本国特許公開2007-117971号公報に開示されているような静電霧化装置がある。
 上記文献に示された静電霧化装置は、放電極と熱交換手段を備えた静電霧化部と、放電極に供給された水を静電霧化するために強電界を発生させるための高電圧印加部と、熱交換手段の放熱部を冷却するための送風部と、送風及び水供給制御部とを備える。
 送風及び水供給制御部は、送風部の制御及び熱交換手段を構成するペルチェユニットの運転制御を行うもので、ペルチェユニットの運転制御のために昇圧回路を備えており、この昇圧回路には大電流が印加されると発熱するダイオード等の発熱回路部品が備えられる。 
 発熱回路部品が発熱すると、その熱が放電極の周囲の空気を暖めるおそれがあり、放電極の周囲の空気が暖められると、空気中の水分を基にして放電極に水を効果的に供給でき難くなる。
 このため、上記文献は、静電霧化部、高電圧印加部、送風部、送風及び水供給制御部をそれぞれブロック化してケース内に別々に組み込み、ブロック相互を離間させることで、ブロックが他のブロックに与える影響を抑制されるようにしている。
 これにより、送風及び水供給制御部に備えらえた発熱回路部品の熱が放電極に影響を与え難いようにされている。
 しかし、この従来例は、静電霧化部、高電圧印加部、送風部、送風及び水供給制御部のブロックが、それぞれケース内に別々に組込まれ、相互に離間して固定されるため、組込みが複雑で、製造コストがアップし、装置が大型化するという問題がある。
 そこで、本発明の目的は、小型化が可能で、組立が容易で、しかも、発熱回路部品の熱が放電極に影響を与えるのを抑制できる静電霧化装置を提供することにある。
 本発明の静電霧化装置は、放電極と空気中の水分を基に結露水を生成して前記放電極に水を供給するための熱交換手段とを有した静電霧化部と、前記放電極に供給された水を静電霧化するために強電界を発生させるための高電圧印加部と、前記熱交換手段に電源を供給するための電源供給部と、前記熱交換手段に風を供給して冷却するための送風部と、前記前記静電霧化部、前記高電圧印加部、前記電源供給部および前記送風部を内部に収納するケースと、を備え、前記静電霧化部と、前記高電圧印加部と、前記電源供給部と、前記送風部は、同一の回路基板上に実装され、前記回路基板が前記ケース内に配置され、前記ケースに前記静電霧化部に空気を供給するための空気が吸入される空気吸入口と、前記静電霧化部で生成された帯電微粒子水が放出される放出部が設けられ、前記送風部は、前記回路基板上において前記空気吸入口と前記静電霧化部との間に配置されて、前記送風部による送風で前記空気吸入口、前記送風部、前記静電霧化部、前記放出部の順に空気が流れる送風経路が形成され、前記電源供給部には、前記静電霧化部の運転の際に大電流が流れることで発熱する発熱回路部品が含まれており、前記発熱回路部品は、前記回路基板上において前記送風経路から外れた位置に配置されることを特徴とする。
 この静電霧化装置において、前記発熱回路部品の近くに放熱部が設けられることが好ましい。
 この静電霧化装置において、前記発熱回路部品と前記静電霧化部との間の熱伝導経路の途中に1または複数の放熱部が設けられることが好ましい。
 この静電霧化装置において、前記静電霧化部、および前記送風部が前記回路基板の表面側に設けられ、前記発熱回路部品が前記回路基板の裏面側に設けられることが好ましい。
 この静電霧化装置において、前記回路基板を平面視したときに、前記発熱回路部品と前記静電霧化部とを結ぶ直線上に沿って1または複数の放熱部が設けられていることが好ましい。
 この静電霧化装置において、前記ケースの内部は、前記回路基板によって第1の領域と第2の領域とに区分けされ、前記送風経路は、前記第1の領域側に形成され、前記発熱回路部品は、前記第2の領域側に配置されていることが好ましい。
 本発明は、静電霧化部と、高電圧印加部と、熱交換手段用電源供給部と、送風部が同一回路基板上に構成され、この回路基板がケースに備えられるので、静電霧化装置の小型化が可能で、組立てが容易となる。また、小型化を可能とするため、各部品が同一回路基板上に構成されたものであるにもかかわらず、発熱回路部品が送風経路から外れた位置に配置されるので、発熱回路部品の熱が放電極に影響を与えるのを抑制し、安定して結露水を生成することが可能となる。
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
本発明の実施形態に係る静電霧化装置の平断面図である。 本発明の実施形態に係る静電霧化装置の縦断面図である。 本発明の実施形態に係る静電霧化装置における静電霧化部、送風部、カバーが回路基板に保持されている状態の断面図である。 本発明の実施形態に係る静電霧化装置の静電霧化部の斜視図である。 本発明の実施形態に係る静電霧化装置の静電霧化部の断面図である。 本発明の他の実施形態に係る静電霧化装置の断面図である。 本発明の更に他の実施形態に係る静電霧化装置の断面図である。
 以下、本発明の実施形態に係る静電霧化装置1を添付図面に基づいて説明する。
 本実施形態の静電霧化装置1は、静電霧化部4と、高電圧印加部5と、後述する熱交換部(熱交換手段)3へ電源を供給する電源供給部6と、熱交換部3に風を供給して冷却するための送風部7と、回路基板8と、ケース13と、を備える。回路基板8には、静電霧化部4、高電圧印加部5、電源供給部6および送風部7が実装され、回路基板8がケース13に内装される。 
 静電霧化部4は、放電極2と、空気中の水分を基に結露水を生成して放電極2に水を供給するための熱交換部(熱交換手段)3と、放電極2および熱交換部3が内部に組み込まれる霧化ケーシング15と、を備える。
 熱交換部3は、ペルチェユニットにより構成される。
 霧化ケーシング15は合成樹脂により構成され、図3Cに示されるように、対向電極20を備えている。
 対向電極20は環状に形成され、環状の中心が放電極2の軸芯の延長線上に位置する。
 熱交換部3を構成するペルチェユニットは、複数の熱電素子16を備える。図3A~図3Cにおいては、熱電素子16としてはP型のペルチェ素子とN型のペルチェ素子が用いられる。そしてP型のペルチェ素子の端部と、N型のペルチェ素子の端部が、平板状の導電材よりなる連結部17の裏面に固着してあり、ペルチェ素子の連結部17側の端部(図3Cでは上端部)が冷却側となり、ペルチェ素子の連結部17と反対側の端部(図3Cでは下端部)が放熱側となる。
 連結部17の表面側には先端が尖った放電極2が突設してあり、熱交換部3の冷却側が冷却されることで放電極2が冷却される。
 P型とN型で対をなす熱電素子16の放熱側の端部(図3Cでは下端部)には、それぞれ通電と熱を放熱する放熱用通電部23が接合してあり、図3Bおよび図3Cに示すように放熱用通電部23が霧化ケーシング15の外側に突出している。
 放熱用通電部23は、放熱の機能と、熱電素子16への通電の機能を備えている。
 図3Bに示すように、放熱用通電部23が霧化ケーシング15の側面からL状に突設されており、これにより側面からの側方への突出長をできるだけ短くしながら放熱面積を広く確保できるようにしている。この放熱用通電部23の先端部は接続用端子部22となっている。
 霧化ケーシング15は、対向電極20が位置する側の第1の端部15a(図3Aでは右端部で、図3Bや図3Cでは上端部)が開口し、また、第2の端部15b(図3Aでは上端部で、図3Bや図3Cでは後端部)に空気流入用開口25が設けられる。 
 図2に示されるように、本実施形態の静電霧化部4、高電圧印加部5、電源供給部6、送風部7は全て同一の回路基板8上に保持されて、一つのユニットとして構成される。
 また、回路基板8には電源入力部(図示せず)が保持され、この電源入力部には外部から電源を入力するためのコネクターを有する電源線が接続される。回路基板8に保持された電源入力部は、回路基板8に形成した回路を通して回路基板8に保持する高電圧印加部5、電源供給部6、送風部7等と電気的に接続される。
 回路基板8には合成樹脂製の電気的絶縁性を有するカバー30が保持される。カバー30は、放電極2と熱交換部3を備えた静電霧化部4を覆う。
 カバー30の第1の端面30a(図1では左端面)には空気取入れ口31が開口しており、第1の端面30aとは反対側の第2の端面30b(図1では右端面)には放出部10を構成する筒部24が設けられる。
 このようにしてカバー30を回路基板8に保持させることで、カバー30と回路基板8で囲まれた空間33が空気取入れ口31と放出部10を除いて略密閉され、静電霧化部4はこの空間33内に配置される。
 図1に示されるように、カバー30の第1の端面30aが送風部7の一端面に当接状態で対向しており、空気取入れ口31が送風部7と対向している。
 静電霧化部4、高電圧印加部5、電源供給部6、送風部7が保持された回路基板8は、ケース13内に組み込まれて内装される。回路基板8をケース13に内装した状態で、カバー30の第2の端面30bに設けた筒部24がケース13の一端面(図1では右端面)から突出される。
 ケース13には(図1のケース13では上側面の略中央)空気吸入口9が設けられる。
 ケース13内には、送風部7による送風で、図1や図2中の一点鎖線で示されるように、空気吸入口9、送風部7、静電霧化部4を配置した空間33、放出部10の順に空気が流れる送風経路11が形成される。
 ペルチェユニットよりなる熱交換部3に電源を供給するための電源供給部6は昇圧回路を有し、この昇圧回路は大電流が印加されると発熱するダイオード等の発熱回路部品12を備える。
 この発熱回路部品12は回路基板8の送風経路11から外れた位置に配置される。
 前記構成の静電霧化装置1は、電源供給部6から熱電素子16に対し通電すると、各熱電素子16内において同一方向への熱の移動が生じ、熱電素子16の冷却部側が冷却されて放電極2が冷却され、放熱側が高温となって放熱用通電部23が高温となる。
 放電極2が冷却されると放電極2の周囲の空気が冷却され、空気中の水分が結露等により液化されて放電極2の先端部に結露水が生成される。
 前記のようにして放電極2を冷却して放電極2の先端部に結露水が保持された状態で、高電圧印加部5により高電圧を印加して、放電極2の周りに強電界を発生させる。これにより放電極2の先端部に保持されている水がマイナス又はプラスに帯電し、帯電した水にクーロン力が働き、該水の液面が局所的に円錐形状に盛り上がってテイラーコーンが形成される。すると、円錐形状となった水の先端に電荷が集中して電荷の密度が高密度となり、高密度の電荷の反発力ではじけるようにして水が***・飛散(レーリー***)して静電霧化を行い、ラジカルを有するナノメータサイズの帯電微粒子水を発生させる。
 一方、放熱用通電部23から熱が放出される。
 ここで、電源供給部6から熱電素子16への通電と同時に送風部7に通電され、送風部7が運転され、図1や図2中の一点鎖線で示される送風経路11に沿って空気が流れる。
 送風経路11の途中の送風部7を通過して空間33に送られた空気流は、霧化ケーシング15の外周壁に沿って流れ、放熱用通電部23に当って、放熱用通電部23を冷却して放熱を促進させカバー30の第2の端面30b側に流れる。
 一方、霧化ケーシング15内で静電霧化により生成された帯電微粒子水は静電霧化時に発生するイオン風、及び、空気流入用開口25から霧化ケーシング15内に流れ込む少量の空気の流れにより、霧化ケーシング15の開口する第1の端部15aを通じて外に運ばれる。霧化ケーシング15の第1の端部15aの外に運ばれた帯電微粒子水は霧化ケーシング15の外側を流れてきた空気流と合流してこれに乗って放出部10から外部に放出される。これにより、帯電微粒子水を遠くまで飛ばすことが可能となる。
 空気流入用開口25から霧化ケーシング15内に流れ込む空気の風量は、放電極2における空気中の水分を結露水として生成することの妨げとならないような風量となるようにする。これにより、結露時間を短く且つ安定して結露水を生成することが可能となる。
 前記構成の静電霧化装置1は、放電極2と熱交換部3を備えた静電霧化部4、高電圧印加部5、電源供給部6、送風部7等を回路基板8に保持して一つのユニットとして構成してあるので、構成が簡略化され、小型化が可能となる。
 しかも、熱交換部3への通電と熱を放熱する機能を有する放熱用通電部23を備えるので、熱交換部3への通電と放熱を別部材で構成する必要がなく、構成が簡略化され、この点でも静電霧化装置1の小型化が可能となる。
 本実施形態の静電霧化装置1は、発熱回路部品12が、送風経路11から外れた位置に配置されるので、発熱回路部品12の熱が、放電極2を直接加熱したり、あるいは送風経路11を流れる空気流を加熱して、加熱された空気により放電極2周囲の空気が加熱されるのを抑制できる。
 これにより、同一の回路基板8に各部品を保持して装置のコンパクト化を可能としたにもかかわらず、熱交換部3の冷却により放電極2周囲の空気中の水分を基にして安定した結露水の生成が可能となる。
 また、本実施形態の静電霧化装置1は、熱交換部3への通電と熱交換部3の放熱とを兼ねた放熱用通電部23が回路基板8に実装されているので、熱交換部3に通電するためのハーネスが必要でなく、構成が簡略化され、且つ、組立が簡略化される。
 ここで、本実施形態の静電霧化装置1では、図1に示すように、発熱回路部品12の近くに放熱部(放熱用の接点部)14が設けられている。放熱部14は、回路基板8に設けられる。放熱部14は、熱伝導性の高い部材により形成されて、ケース13と回路基板8とを熱的に接続するものであり、例えば、回路基板8をケース13に固定するためにねじ穴に留められた固定用ねじである。この図1では、発熱回路部品12の放電極2側の一側端部(図1では右側端部)の近くに放熱部14が設けられる。
 このように、発熱回路部品12の近くに放熱部14が設けられることで、発熱回路部品12の熱が放電極2から離れた位置で効果的に放熱され、放電極2側への熱の影響がよりいっそう抑制される。
 図4には、本発明の他の実施形態の静電霧化装置1が示されている。この静電霧化装置1でも、発熱回路部品12の近くに放熱部14が設けられる。この例では、発熱回路部品12の放電極2側の前記一側端部の近くに、発熱回路部品12の放電極2側の一側端部の幅と略同じ幅又はこれよりも長い幅の放熱部14が設けられている。これにより、発熱回路部品12の熱を放熱部14でより効果的に放熱可能となる。
 上述した2つの実施形態では、放熱部14を一つ設けた例が示されているが、放熱部14を回路基板8に複数設けてもよい。
 図5には、本発明の更に他の実施形態の静電霧化装置1が示されている。この静電霧化装置1では、放熱部14が発熱回路部品12と静電霧化部4との間の回路基板8における熱伝導経路40の途中に設けられる。
 図5において発熱回路部品12から静電霧化部4への熱伝導経路40が破線により示されており、発熱回路部品12から静電霧化部4への熱伝導経路40に1乃至複数の放熱部14が設けられている。つまり、回路基板8を平面視したときに、発熱回路部品12と静電霧化部4とを結ぶ略直線上に沿って複数の放熱部14が配置されている。
 この実施形態のように発熱回路部品12から静電霧化部4への熱伝導経路40に放熱部14が設けられることで、発熱回路部品12の熱がより効果的に放熱され、放電極2側への熱の影響がよりいっそう抑制される。
 また、図2に示されるように、静電霧化部4、高電圧印加部5、電源供給部6、送風部7が保持された回路基板8からの電気的ノイズの影響を低減させるためのアース部21が放熱部14を兼用してもよい。
 アース部21は回路基板8側と金属製のケース13側を電気的に接続される。このアース部21は熱伝導率の高い材料で形成され、発熱回路部品12の熱がアース部21の回路基板8側の端部で効果的に集熱され、アース部21を介して効果的にケース13に伝熱される。
 また、図2に示されるように、回路基板8の表面側(図2では上面側)に静電霧化部4、送風部7、高電圧印加部5が設けられ、回路基板8の裏面側(図2では下面側)に発熱回路部品12が設けられるのが好ましい。
 この場合、送風経路11は図2のように、回路基板8の表面側に形成される。より具体的に説明すると、図2に示されるように、ケース13の内部が、回路基板8によって第1の領域41と第2の領域42とに区分けされるとき、送風経路11は、第1の領域41側に形成され、発熱回路部品12は、第2の領域42側に配置されているのが好ましい。この場合、ケース13の第1の領域41側に空気吸入口9および放出部10が形成される。
 したがって、回路基板8の裏面側に発熱回路部品12が送風経路11を流れる空気流を加熱するのを効果的に抑制可能となり、また、発熱回路部品12と静電霧化部4とが回路基板8を挟んで表裏に隔離される。
 これにより、本実施形態においては、放電極2側への発熱回路部品12の熱の影響がよりいっそう抑制される。
 本発明を幾つかの好ましい実施形態について記述したが、この発明の本来の精神および範囲、即ち請求の範囲を逸脱することなく、当業者によって様々な修正および変形が可能である。

Claims (6)

  1.  放電極と空気中の水分を基に結露水を生成して前記放電極に水を供給するための熱交換手段とを有した静電霧化部と、
     前記放電極に供給された水を静電霧化するために強電界を発生させるための高電圧印加部と、
     前記熱交換手段に電源を供給するための電源供給部と、
     前記熱交換手段に風を供給して冷却するための送風部と、
     前記前記静電霧化部、前記高電圧印加部、前記電源供給部および前記送風部を内部に収納するケースと、を備え、
     前記静電霧化部と、前記高電圧印加部と、前記電源供給部と、前記送風部は、同一の回路基板上に実装され、
     前記回路基板が前記ケース内に配置され、
     前記ケースに前記静電霧化部に空気を供給するための空気が吸入される空気吸入口と、前記静電霧化部で生成された帯電微粒子水が放出される放出部が設けられ、
     前記送風部は、前記回路基板上において前記空気吸入口と前記静電霧化部との間に配置されて、前記送風部による送風で前記空気吸入口、前記送風部、前記静電霧化部、前記放出部の順に空気が流れる送風経路が形成され、
     前記電源供給部には、前記静電霧化部の運転の際に大電流が流れることで発熱する発熱回路部品が含まれており、
     前記発熱回路部品は、前記回路基板上において前記送風経路から外れた位置に配置されることを特徴とする静電霧化装置。
  2.  前記発熱回路部品の近くに放熱部が設けられることを特徴とする請求項1記載の静電霧化装置。
  3.  前記発熱回路部品と前記静電霧化部との間の熱伝導経路の途中に1または複数の放熱部が設けられることを特徴とする請求項1記載の静電霧化装置。
  4.  前記静電霧化部、および前記送風部が前記回路基板の表面側に設けられ、前記発熱回路部品が前記回路基板の裏面側に設けられることを特徴とする請求項1乃至請求項3のいずれか一項に記載の静電霧化装置。
  5.  前記回路基板を平面視したときに、前記発熱回路部品と前記静電霧化部とを結ぶ直線上に沿って1または複数の放熱部が設けられていることを特徴とする請求項1記載の静電霧化装置。
  6.  前記ケースの内部は、前記回路基板によって第1の領域と第2の領域とに区分けされ、
     前記送風経路は、前記第1の領域側に形成され、前記発熱回路部品は、前記第2の領域側に配置されていることを特徴とする請求項1記載の静電霧化装置。
PCT/JP2012/077046 2011-12-08 2012-10-19 静電霧化装置 WO2013084601A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-269338 2011-12-08
JP2011269338A JP2013119076A (ja) 2011-12-08 2011-12-08 静電霧化装置

Publications (1)

Publication Number Publication Date
WO2013084601A1 true WO2013084601A1 (ja) 2013-06-13

Family

ID=48573984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077046 WO2013084601A1 (ja) 2011-12-08 2012-10-19 静電霧化装置

Country Status (2)

Country Link
JP (1) JP2013119076A (ja)
WO (1) WO2013084601A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018016A (ja) * 2019-07-18 2021-02-15 パナソニックIpマネジメント株式会社 有効成分発生装置
CN114173935A (zh) * 2019-06-26 2022-03-11 松下知识产权经营株式会社 有效成分产生装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130455A (ja) * 1993-11-05 1995-05-19 Techno Res Kk 空中イオン発生装置
JPH0982488A (ja) * 1995-09-11 1997-03-28 Kasuga Denki Kk 携帯型帯電除電器
JP2006127855A (ja) * 2004-10-27 2006-05-18 Sharp Corp イオン発生装置およびそれを備えた電気機器
JP2008123917A (ja) * 2006-11-14 2008-05-29 Sharp Corp イオン発生装置及びイオン発生装置の製造方法
JP2010227776A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 静電霧化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07130455A (ja) * 1993-11-05 1995-05-19 Techno Res Kk 空中イオン発生装置
JPH0982488A (ja) * 1995-09-11 1997-03-28 Kasuga Denki Kk 携帯型帯電除電器
JP2006127855A (ja) * 2004-10-27 2006-05-18 Sharp Corp イオン発生装置およびそれを備えた電気機器
JP2008123917A (ja) * 2006-11-14 2008-05-29 Sharp Corp イオン発生装置及びイオン発生装置の製造方法
JP2010227776A (ja) * 2009-03-26 2010-10-14 Panasonic Electric Works Co Ltd 静電霧化装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114173935A (zh) * 2019-06-26 2022-03-11 松下知识产权经营株式会社 有效成分产生装置
EP3993187A4 (en) * 2019-06-26 2022-08-17 Panasonic Intellectual Property Management Co., Ltd. EFFICIENT COMPONENT GENERATION DEVICE
CN114173935B (zh) * 2019-06-26 2023-09-15 松下知识产权经营株式会社 有效成分产生装置
JP2021018016A (ja) * 2019-07-18 2021-02-15 パナソニックIpマネジメント株式会社 有効成分発生装置
JP7241316B2 (ja) 2019-07-18 2023-03-17 パナソニックIpマネジメント株式会社 有効成分発生装置

Also Published As

Publication number Publication date
JP2013119076A (ja) 2013-06-17

Similar Documents

Publication Publication Date Title
JP5887530B2 (ja) 静電霧化装置
JP4765556B2 (ja) 静電霧化装置
EP1810592B1 (en) Hot-air blower
US7874503B2 (en) Electrostatcially atomizing device
JP4600247B2 (ja) 静電霧化装置
JP4442444B2 (ja) 静電霧化装置
JP4877173B2 (ja) 静電霧化装置およびそれを備えた加熱送風装置
JP4862779B2 (ja) 静電霧化装置及びこれを備えたヘアドライヤー
WO2013084601A1 (ja) 静電霧化装置
JP5027594B2 (ja) 静電霧化装置
WO2012043389A1 (ja) 静電霧化装置
JP5879519B2 (ja) 静電霧化装置
JP2010213739A (ja) 静電霧化装置を備えたヘアドライヤー
US9667039B2 (en) Device and method for injecting ions into a stream of air
JP2008029813A (ja) 加熱送風装置
WO2013042481A1 (ja) 静電霧化装置
JP2015136372A (ja) 静電霧化装置
JP2012066219A (ja) 静電霧化装置
JP2009160176A (ja) 髪ケア装置
EP3041095A1 (en) Device for injecting ions into a stream of air
JP2013081646A (ja) イオン生成装置および当該イオン生成装置を備える髪ケア装置
JP2008200670A (ja) 静電霧化装置
WO2011162092A1 (ja) 静電霧化装置
JP2010227807A (ja) 静電霧化装置
JP2008087637A (ja) 静電微粒子水供給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12855956

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12855956

Country of ref document: EP

Kind code of ref document: A1