WO2013081064A1 - 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子 - Google Patents

液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子 Download PDF

Info

Publication number
WO2013081064A1
WO2013081064A1 PCT/JP2012/080975 JP2012080975W WO2013081064A1 WO 2013081064 A1 WO2013081064 A1 WO 2013081064A1 JP 2012080975 W JP2012080975 W JP 2012080975W WO 2013081064 A1 WO2013081064 A1 WO 2013081064A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
aligning agent
weight
crystal aligning
crystal alignment
Prior art date
Application number
PCT/JP2012/080975
Other languages
English (en)
French (fr)
Inventor
拓郎 小田
皇晶 筒井
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2013547215A priority Critical patent/JP6206187B2/ja
Priority to KR1020147014360A priority patent/KR102044049B1/ko
Priority to CN201280058354.0A priority patent/CN103959153B/zh
Publication of WO2013081064A1 publication Critical patent/WO2013081064A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D251/00Heterocyclic compounds containing 1,3,5-triazine rings
    • C07D251/02Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
    • C07D251/12Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D251/14Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom
    • C07D251/24Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with hydrogen or carbon atoms directly attached to at least one ring carbon atom to three ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/0644Poly(1,3,5)triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1085Polyimides with diamino moieties or tetracarboxylic segments containing heterocyclic moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation

Definitions

  • the present invention relates to a liquid crystal alignment treatment agent, a liquid crystal alignment film obtained by using the liquid crystal alignment treatment agent, and a liquid crystal display element using the same.
  • liquid crystal alignment film of a liquid crystal display element a so-called polyimide-based liquid crystal alignment film, which is obtained by applying and baking a liquid crystal alignment treatment agent mainly composed of a polyimide precursor such as polyamic acid or a soluble polyimide solution, is mainly used. It has been.
  • the liquid crystal alignment film is used for the purpose of controlling the alignment state of the liquid crystal.
  • the characteristics required of the liquid crystal alignment film are that the alignment of the liquid crystal can be controlled, that the voltage holding ratio (hereinafter also referred to as VHR) is excellent, that the charge accumulated by the DC voltage is quickly relaxed, the amount of ions in the liquid crystal cell There are few things.
  • liquid crystal display elements that can withstand long-term use have been demanded.
  • the characteristics do not change even if light from the backlight unit or sunlight including ultraviolet rays is irradiated for a long period.
  • a liquid crystal alignment film whose display characteristics do not change greatly by backlight light or ultraviolet irradiation.
  • Non-Patent Document 1 a process for aligning liquid crystals by irradiating ultraviolet rays has been adopted in recent liquid crystal display element manufacturing processes (see, for example, Non-Patent Document 1).
  • a process of irradiating ultraviolet rays has been introduced by a liquid crystal dropping method (ODF), a PSA (Polymer Sustained Alignment) process, and the like.
  • ODF liquid crystal dropping method
  • PSA Polymer Sustained Alignment
  • Patent Documents 1 and 2 As an effort to increase the light resistance of liquid crystal display elements, for example, in Patent Documents 1 and 2, additives such as benzotriazole-based UV absorbers and benzophenone-based UV absorbers are added to the liquid crystal alignment treatment agent to increase the lifetime of the liquid crystal. There are attempts to make it longer. In Patent Document 3, an attempt is made to extend the life of the liquid crystal by further adding an antioxidant to the benzotriazole ultraviolet absorber or the benzophenone ultraviolet absorber.
  • Patent Document 4 discloses that the addition of a benzotriazole-based ultraviolet absorber, a benzophenone-based ultraviolet absorber, a dialkyldithiocarbamic acid metal salt, or the like to a liquid crystal alignment treatment agent prevents the resulting alignment film from being decomposed by ultraviolet rays. It is reported that it can be done. Furthermore, Patent Documents 5 and 6 report a method for producing a liquid crystal panel having excellent light resistance by adding a benzotriazole compound or a hindered amine compound to a liquid crystal alignment treatment agent. However, these additives have a problem that the VHR of the liquid crystal alignment film itself is lowered although there is an effect of suppressing the reduction of VHR caused by UV (ultraviolet) irradiation.
  • Patent Document 7 a diamine having a triazine skeleton has been proposed.
  • Japanese Unexamined Patent Publication No. 56-1116012 Japanese Unexamined Patent Publication No. 57-84429 Japanese Unexamined Patent Publication No. 57-108828 Japanese Unexamined Patent Publication No. 10-148835 Japanese Unexamined Patent Publication No. 2003-215592 Japanese Unexamined Patent Publication No. 2004-53685 Japanese Unexamined Patent Publication No. 2011-128597
  • an object of the present invention is to provide a liquid crystal alignment treatment agent that can obtain a liquid crystal alignment film having good rubbing resistance and high light resistance.
  • a liquid crystal aligning agent having a compound having a triazine skeleton and a hydroxyl group (hereinafter also referred to as a specific compound). I found what I could achieve. That is, the present invention has the following gist. 1.
  • a liquid crystal aligning agent comprising a compound represented by the general formula (1). (Wherein R 1 to R 14 are each independently a hydrogen atom or a divalent organic group, and any one or more of R 1 to R 14 is an alkyl group having 4 or more carbon atoms) An organic group containing 2.
  • the content of the compound represented by the formula (1) is 0 with respect to 100 parts by weight of at least one polymer selected from the group consisting of the polyimide precursor and a polyimide obtained by imidizing the polyimide precursor.
  • the weight average molecular weight of at least one polymer selected from the group consisting of the polyimide precursor and a polyimide obtained by imidizing the polyimide precursor is 10,000 to 150,000, Liquid crystal aligning agent.
  • liquid crystal aligning agent according to any one of 1 to 4 above, wherein the liquid crystal aligning agent contains 92 to 99% by weight of an organic solvent. 6). 6. The liquid crystal aligning agent according to 5 above, wherein the organic solvent contains 5 to 80% by weight of a poor solvent. 7). 7. A liquid crystal alignment film obtained from the liquid crystal alignment treatment agent according to any one of 1 to 6 above. 8). 8. The liquid crystal alignment film as described in 7 above, wherein the film thickness is 10 to 200 ⁇ m. 9. 9. 9. A liquid crystal display device comprising the liquid crystal alignment film according to 7 or 8 above.
  • liquid crystal aligning agent capable of obtaining a liquid crystal alignment film having good rubbing resistance and high light resistance.
  • each of R 1 to R 14 is independently a hydrogen atom or a monovalent organic group, and any one or more of R 1 to R 14 is an alkyl group having 4 or more carbon atoms. Contains organic groups. By including an alkyl group having 4 or more carbon atoms, there is an effect of increasing the solubility of the specific compound in the organic solvent. Furthermore, the specific compound is effectively gathered on the surface of the fired coating film, and there is an effect that the deterioration of the resin component (liquid crystal alignment film) in the vicinity of the surface that affects the VHR characteristics can be effectively suppressed. Further, it is possible to impart a pretilt expression ability to the liquid crystal alignment film by lengthening the alkyl group.
  • the alkyl group may be directly bonded to the phenyl group, but is preferably bonded through a group such as —O—, —NHCO— or —COO— from the viewpoint of solubility.
  • the substituent other than the alkyl group is not particularly limited, but a phenyl group is preferable from the viewpoint of heat resistance of the specific compound.
  • —OH group, —NH 2 , —COOH, A polar group such as —NHR (R is a monovalent organic group) is preferred, and an alkyl group is particularly preferred from the viewpoint of ease of migration of the specific compound to the membrane surface.
  • Preferred specific structural examples include 2- [4,6-bisC2,4-dimethylphenyl) -1,3,5-triazin-2-yl] -5- (octyloxy) phenol, Ciba Japan Tinuvin (R) 400, Tinuvin (R) 405 (generic name: 2- [4-[(2-hydroxy-3- (2′-ethyl) hexyl) oxy] -2-hydroxyphenyl] -4,6- Bis (2,4-dimethylphenyl) -1,3,5-triazine), tinuvin (R) 460 (generic name: 2,4-bis (2-hydroxy-4-butyloxyphenyl) -6- (2, 4-bis-butyloxyphenyl) -1,3,5-triazine), tinuvin (R) 477, tinuvin (R) 479 (generic name: 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] Phenyl)
  • the polyimide precursor contained in the liquid crystal alignment treatment agent of the present invention and the polyimide imidized from the polyimide precursor are used.
  • the amount is preferably 0.5 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of at least one polymer (polymer compound) selected from the group consisting of
  • the addition method to the liquid crystal alignment treatment agent is not particularly limited, but a predetermined amount of the specific compound is directly added to the liquid crystal alignment treatment agent and dissolved by stirring, or about 0.5 to 10% by weight of the specific compound is previously added to the organic solvent. It may be dissolved and added to the liquid crystal aligning agent.
  • the polyimide precursor contained in the liquid crystal aligning agent of the present invention refers to polyamic acid (also referred to as polyamic acid) and polyamic acid ester.
  • a polyamic acid is obtained by reaction of a diamine component and tetracarboxylic dianhydride.
  • the polyamic acid ester is obtained by reacting the diamine component and tetracarboxylic acid diester dichloride in the presence of a base, or reacting the tetracarboxylic acid diester and diamine in the presence of a suitable condensing agent or base.
  • the polyimide of the present invention can be obtained by dehydrating and ring-closing this polyamic acid or by heating and ring-closing the polyamic acid ester. Any of such polyamic acid, polyamic acid ester, and polyimide is useful as a polymer for obtaining a liquid crystal alignment film.
  • the diamine component used is not particularly limited. Specific examples are as follows. Examples of alicyclic diamines include 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, 4,4′-diaminodicyclohexylmethane, 4,4′-diamino-3,3′-dimethyldicyclohexylamine, isophorone Examples include diamines.
  • aromatic diamines examples include o-phenylenediamine, m-phenylenediamine, p-phenylenediamine, 2,4-diaminotoluene, 2,5-diaminotoluene, 3,5-diaminotoluene, 1,4-diamino -2-methoxybenzene, 2,5-diamino-p-xylene, 1,3-diamino-4-chlorobenzene, 3,5-diaminobenzoic acid, 1,4-diamino-2,5-dichlorobenzene, 4,4 '-Diamino-1,2-diphenylethane, 4,4'-diamino-2,2'-dimethylbibenzyl, 4,4'-diaminodiphenylmethane, 3,3'-diaminodiphenylmethane, 3,4'-diaminodiphenylmethane 4,4′-diamin
  • aromatic-aliphatic diamines include 3-aminobenzylamine, 4-aminobenzylamine, 3-amino-N-methylbenzylamine, 4-amino-N-methylbenzylamine, 3-aminophenethylamine, 4-aminobenzylamine, Aminophenethylamine, 3-amino-N-methylphenethylamine, 4-amino-N-methylphenethylamine, 3- (3-aminopropyl) aniline, 4- (3-aminopropyl) aniline, 3- (3-methylaminopropyl) Aniline, 4- (3-methylaminopropyl) aniline, 3- (4-aminobutyl) aniline, 4- (4-aminobutyl) aniline, 3- (4-methylaminobutyl) aniline, 4- (4-methyl Aminobutyl) aniline, 3- (5-aminopentyl) aniline, 4- (5-aminopentyl) Aniline, 3- (5-methyl)
  • heterocyclic diamines examples include 2,6-diaminopyridine, 2,4-diaminopyridine, 2,4-diamino-1,3,5-triazine, 2,7-diaminodibenzofuran, 3,6-diamino
  • examples thereof include carbazole, 2,4-diamino-6-isopropyl-1,3,5-triazine, 2,5-bis (4-aminophenyl) -1,3,4-oxadiazole.
  • aliphatic diamines examples include 1,2-diaminoethane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,3-diamino-2,2-dimethylpropane, 1,6-diamino-2,5-dimethylhexane, 1,7 -Diamino-2,5-dimethylheptane, 1,7-diamino-4,4-dimethylheptane, 1,7-diamino-3-methylheptane, 1,9-diamino-5-methylheptane, 1,12-diamino Examples include dodecane, 1,18-diaminoocta
  • diamine compound which has an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring, a heterocyclic ring, and the macrocyclic substituent which consists of them in a side chain.
  • diamines represented by the following formulas [DA1] to [DA26] can be exemplified.
  • R 6 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • S 5 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO—, or —NH—.
  • R 6 represents an alkyl group having 1 to 22 carbon atoms or a fluorine-containing alkyl group.
  • S 6 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • R 7 represents the number of carbon atoms.
  • S 7 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 — or —CH 2 —, wherein R 8 is an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • S 8 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, — OCH 2 —, —CH 2 —, —O— or —NH—, wherein R 9 is a fluorine group, a cyano group, a trifluoromethyl group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or It is a hydroxyl group.)
  • R 10 is an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • n is an integer of 1 to 5.
  • [DA-27] and [DA-28] can improve the voltage holding ratio (also referred to as VHR) of the liquid crystal display element by using these.
  • [DA-29] to [DA-34] It is effective because it is effective in reducing the accumulated charge of the liquid crystal display element.
  • diaminosiloxanes represented by the following formula [DA35] can also be exemplified.
  • m is an integer of 1 to 10.
  • Said diamine compound can also be used 1 type or in mixture of 2 or more types according to characteristics, such as a liquid crystal aligning property at the time of setting it as a liquid crystal aligning film, a voltage holding characteristic, and an accumulation charge.
  • the tetracarboxylic dianhydride made to react with a diamine component is not specifically limited. Specific examples are given below. Examples of the tetracarboxylic dianhydride having an alicyclic structure or an aliphatic structure include 1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2-dimethyl-1,2,3,4-cyclobutane.
  • Tetracarboxylic dianhydride 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic Acid dianhydride, 3,4-dicarboxy-1-cyclohexylsuccinic dianhydride, 3,4-dicarboxy-1,2,3,4-tetrahydro-1-naphthalene succinic dianhydride, 1, , 3,4-Butanetetracarboxylic dianhydride, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclo
  • the liquid crystal alignment is improved and the accumulated charge of the liquid crystal cell is reduced. Since it can reduce, it is preferable.
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic acid Dianhydride, 2,3,3 ′, 4-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 2,3,3 ′, 4-benzophenonetetra Carboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride And 2,3,6,7-naphthalenetetracarboxylic dianhydride and the like.
  • the tetracarboxylic dianhydride
  • the tetracarboxylic-acid dialkyl ester made to react with a diamine component is not specifically limited. Specific examples are given below. Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2 , 3,4-cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-benzophenone tetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7- Naphthalenetetracarboxylic acid dialkyl
  • a method of adding by dispersing or dissolving a method of adding a diamine component to a solution in which tetracarboxylic dianhydride is dispersed or dissolved in an organic solvent, and alternately adding a tetracarboxylic dianhydride and a diamine component.
  • the method etc. are mentioned. Any of these methods may be used.
  • the tetracarboxylic dianhydride or diamine component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually.
  • the body may be mixed and reacted to form a high molecular weight body.
  • the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. Therefore, the total concentration of the tetracarboxylic dianhydride and the diamine component in the reaction solution is preferably 1 to 50% by weight, more preferably 5 to 30% by weight.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of tetracarboxylic dianhydride to the total number of moles of the diamine component is preferably 0.8 to 1.2, preferably 0.9 to 1.1. More preferred. Similar to the normal polycondensation reaction, the closer the molar ratio is to 1.0, the higher the molecular weight of the polyamic acid produced.
  • the polyimide contained in the liquid crystal aligning agent of the present invention is a polyimide obtained by dehydrating and ring-closing the above polyamic acid, and is useful as a polymer for obtaining a liquid crystal alignment film.
  • the dehydration cyclization rate (imidation rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose. .
  • Examples of the method for imidizing the polyamic acid include thermal imidization in which the polyamic acid solution is heated as it is, and catalytic imidization in which a catalyst is added to the polyamic acid solution.
  • the temperature at which the polyamic acid is thermally imidized in the solution is 100 to 400 ° C., preferably 120 to 250 ° C., and the method is preferably performed while removing water generated by the imidization reaction from the system.
  • Catalytic imidation of polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to a polyamic acid solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times the amidic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol times the amido group. 30 mole times.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Among them, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is easy.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • polyamic acid ester As a method of synthesizing polyamic acid ester, it is a kind of polyimide precursor by reacting tetracarboxylic acid diester dichloride and diamine, or reacting tetracarboxylic acid diester and diamine in the presence of a suitable condensing agent and base. A certain polyamic acid ester can be obtained. Alternatively, it can also be obtained by polymerizing a polyamic acid in advance and esterifying the carboxylic acid in the amic acid using a polymer reaction.
  • tetracarboxylic acid diester dichloride and diamine are mixed in the presence of a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C. for 30 minutes to 24 hours, preferably 1 to 4 hours. It can be synthesized by reacting.
  • a base pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times mol, preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. More preferred.
  • examples of the condensing agent include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0.1 to 1.0 times the molar amount relative to the condensing agent, and more preferably 0.3 to 0.8 times the molar amount.
  • the solvent used in the above reaction can be a solvent used when polymerizing polyamic acid, but N-methyl-2-pyrrolidone, ⁇ -butyrolactone and the like are preferable from the viewpoint of the solubility of the monomer and polymer, and these are You may use 1 type or in mixture of 2 or more types.
  • the concentration at the time of synthesis is preferably 1 to 30% by weight, and more preferably 5 to 20% by weight from the viewpoint that polymer precipitation is unlikely to occur and a high molecular weight product is easily obtained.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably performed in a nitrogen atmosphere while preventing external air from being mixed. .
  • the reaction solution may be poured into a poor solvent and precipitated.
  • the poor solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. Of these, methanol is preferable.
  • the polymer precipitated in a poor solvent and collected by filtration can be dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the molecular weight of the polyamic acid and the polyimide contained in the liquid crystal aligning agent of the present invention is determined by considering the strength of the coating film obtained therefrom, the workability at the time of forming the coating film, and the uniformity of the coating film.
  • the weight average molecular weight measured by Permeation Chromatography is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • the liquid crystal alignment treatment agent of the present invention is a coating liquid for forming a liquid crystal alignment film, and at least one polymer selected from the group consisting of the polyimide precursor and polyimide described above and the additive of the present invention are organic. It is a solution dissolved in a solvent.
  • the solid content concentration in the liquid crystal alignment treatment agent of the present invention can be appropriately changed depending on the thickness of the liquid crystal alignment film to be formed, but is preferably 0.5 to 10% by weight, and preferably 1 to 8% by weight. More preferably. If the solid content concentration is less than 0.5% by weight, it is difficult to form a uniform and defect-free coating film, and if it exceeds 10% by weight, the storage stability of the solution may be deteriorated.
  • solid content refers to a component obtained by removing the solvent from the liquid crystal aligning agent, and at least one polymer selected from the group consisting of the polyimide precursor and polyimide described above, the additive of the present invention, and the above description. Means various additives.
  • the manufacturing method of the liquid-crystal aligning agent of this invention is not specifically limited. Usually, it manufactures by mixing the solution of the said polyimide precursor, the solution of a polyimide, or the solution of a polyimide, and the solution of a polyimide precursor.
  • the polyamic acid reaction solution obtained by polycondensation may be used as it is, or once the polyamic acid is obtained, it is redissolved in an organic solvent to obtain a polyamic acid solution. Can be used.
  • the polyamic acid solution may be used after diluted to a desired concentration.
  • the reaction solution of soluble polyimide obtained by imidization may be used as it is, or once polyimide powder is obtained, it is redissolved in an organic solvent as a polyimide solution. Can be used.
  • the polyimide solution may be used after diluting to a desired concentration.
  • the organic solvent used for the liquid-crystal aligning agent of this invention will not be specifically limited if it is an organic solvent in which a resin component is dissolved. Specific examples are given below. N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea Pyridine, dimethyl sulfone, hexamethyl sulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ket
  • the content of the organic solvent in the liquid crystal aligning agent is 80 to 99.5% by weight, preferably 90 to 99.5% by weight. From the viewpoint of storage stability of the solution and formation of a uniform coating film, More preferably, it is 92 to 99% by weight.
  • the liquid crystal aligning agent of the present invention may contain components other than those described above. Examples include solvents and compounds that improve film thickness uniformity and surface smoothness when a liquid crystal alignment treatment agent is applied, compounds that improve the adhesion between the liquid crystal alignment film and the substrate, and oxidation that improves thermal stability. Inhibitors, light stabilizers that improve light resistance, and the like.
  • isopropyl alcohol methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoacetate Isopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipro Lenglycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) ), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by weight, more preferably 0.01 to 1 part by weight with respect to 100 parts by weight of the resin component contained in the liquid crystal aligning agent. .
  • the compound that improves the adhesion between the liquid crystal alignment film and the substrate include the following functional silane-containing compounds and epoxy group-containing compounds.
  • the compound that improves the thermal stability include the following phenol compounds.
  • the liquid crystal aligning agent of the present invention can be preferably formed into a coating film by filtering before applying to the substrate, applying to the substrate, drying and baking.
  • the coating film surface is used as a liquid crystal alignment film of the present invention by performing an alignment process such as rubbing or light irradiation.
  • the substrate to be used is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used.
  • an opaque substrate such as a silicon wafer can be used as long as only one substrate is used. In this case, a material that reflects light such as aluminum can be used for the electrode.
  • Examples of the method for applying the liquid crystal alignment treatment agent include spin coating, printing, and ink jet methods. From the standpoint of productivity, the flexographic printing method is widely used industrially, and the liquid crystal alignment of the present invention. It is also preferably used in the treatment agent.
  • the drying process after applying the liquid crystal alignment treatment agent is not necessarily required, but if the time from application to baking is not constant for each substrate, or if baking is not performed immediately after application, the drying process is performed. Preferably included.
  • the drying is not particularly limited as long as the solvent is evaporated to such an extent that the shape of the coating film is not deformed by transporting the substrate or the like.
  • a method of drying on a hot plate at 50 to 150 ° C., preferably 80 to 120 ° C., for 0.5 to 30 minutes, preferably 1 to 5 minutes is employed.
  • the substrate coated with the liquid crystal aligning agent can be baked at an arbitrary temperature of 100 to 350 ° C., preferably 150 to 300 ° C., more preferably 180 to 250 ° C.
  • the polyamic acid contained in the liquid crystal aligning agent changes the conversion rate from polyamic acid to imide by this firing, but the polyamic acid does not necessarily need to be 100% imidized.
  • baking is preferably performed at a temperature higher by 10 ° C. or more than the heat treatment temperature required for the manufacturing process of the liquid crystal cell, such as curing of the sealant.
  • the thickness of the coating film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered, so it is preferably 10 to 200 nm, more preferably 50 to 100 nm.
  • An existing rubbing apparatus can be used for rubbing the coating surface formed on the substrate as described above. Examples of the material of the rubbing cloth at this time include cotton, rayon, and nylon.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method.
  • a pair of substrates on which a liquid crystal alignment film is formed is preferably an arbitrary rubbing direction of 0 to 270 ° with a spacer of preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the angle is set so that the angle is fixed, the periphery is fixed with a sealant, and the liquid crystal is injected and sealed.
  • the method for enclosing the liquid crystal is not particularly limited, and examples thereof include a vacuum method of injecting liquid crystal after reducing the pressure inside the produced liquid crystal cell, and a dropping method of sealing after dropping the liquid crystal.
  • the liquid crystal display element thus obtained can be reduced in electrical characteristics due to backlight or ultraviolet light irradiation and can be a highly reliable liquid crystal display device.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 mL / L) Flow rate: 1.0 mL / minute standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30000) manufactured by Tosoh Corporation, and polyethylene glycol (molecular weight: about 12,000, 4000, 1000) manufactured by Polymer Laboratories .
  • TSK standard polyethylene oxide molecular weight: about 900,000, 150,000, 100,000, 30000
  • polyethylene glycol molecular weight: about
  • the imidization ratio of the polyimide was measured by dissolving the polyimide in d6-DMSO (dimethylsulfoxide-d6, TMS (tetramethylsilane) mixed product) and using 400 MHz 1 H NMR (manufactured by Varian). That is, a proton derived from a structure that does not change before and after imidation is determined as a reference proton, and a peak integrated value of this proton and a proton peak integrated value derived from NH group of amic acid appearing in the vicinity of 9.5 to 10.0 ppm was obtained by the following equation.
  • Imidization rate (%) (1 ⁇ ⁇ x / y) ⁇ 100
  • x is a proton peak integrated value derived from NH group of amic acid
  • y is a peak integrated value of reference proton
  • is one NH group proton of amic acid in the case of polyamic acid (imidation rate is 0%) Is the number ratio of the reference proton to.
  • the reaction solution was cooled to about room temperature and then poured into 2000 ml of methanol to recover the precipitated solid.
  • the solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder of polyimide.
  • the number average molecular weight of this polyimide was 12,500, and the weight average molecular weight was 34,100.
  • the imidation ratio was 90%.
  • 6 g of the obtained powder was dissolved in a mixed solution of 74 g of ⁇ -BL and 20 g of BS by stirring at 50 ° C. for 24 hours to obtain a polymer solution P-2 having a resin component of 6% by weight. .
  • the reaction solution was cooled to about room temperature and then poured into 2000 ml of methanol to recover the precipitated solid.
  • the solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder.
  • the number average molecular weight of this polyimide was 10,500, and the weight average molecular weight was 27,600.
  • the imidation ratio was 83%.
  • 6 g of the obtained powder was dissolved in 94 g of ⁇ -BL by stirring at 50 ° C. for 24 hours to obtain a polymer solution P-5 having a resin component of 6% by weight.
  • the reaction solution was cooled to about room temperature and then poured into 1600 ml of methanol to recover the precipitated solid.
  • the solid was washed several times with methanol and then dried under reduced pressure at 100 ° C. to obtain a white powder.
  • the number average molecular weight of this polyimide was 11,500, and the weight average molecular weight was 38,100.
  • the imidation ratio was 58%.
  • 6 g of the obtained powder was dissolved in 94 g of ⁇ -BL by stirring at 50 ° C. for 24 hours to obtain a polymer solution P-6 having a resin component of 6% by weight.
  • This coating film surface was rubbed with a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm to obtain a substrate with a liquid crystal alignment film.
  • a rubbing apparatus having a roll diameter of 120 mm using a rayon cloth under the conditions of a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm to obtain a substrate with a liquid crystal alignment film.
  • a 6 ⁇ m spacer manufactured by JGC Catalysts & Chemicals, AW-II 6.0
  • another substrate was laminated so that the liquid crystal alignment film faces each other and the rubbing direction was orthogonal, and then the sealing agent was cured to produce an empty cell.
  • Liquid crystal MLC-2003 (C080) (manufactured by Merck) was injected into
  • pretilt angle (°) of the twisted nematic liquid crystal cell produced by the method described in ⁇ Preparation of Liquid Crystal Cell> below was measured by “Axo Scan” manufactured by Axo Metrix, using the Mueller matrix method.
  • VHR initial voltage holding ratio
  • the voltage holding ratio of the twisted nematic liquid crystal cell manufactured by the following method is measured by applying a voltage of 4 V for 60 ⁇ s at a temperature of 60 ° C., measuring the voltage after 16.67 msec, and determining how much the voltage can be held.
  • the voltage holding ratio (%) was calculated.
  • the voltage holding ratio was measured using a VHR-1 voltage holding ratio measuring device manufactured by Toyo Technica.
  • ⁇ UV irradiation> The twisted nematic liquid crystal cell produced by the method described in ⁇ Preparation of Liquid Crystal Cell> below was irradiated with light for 83 seconds using a tabletop UV curing device HCT3B28HEX-1 manufactured by Sen Special Light Source Co., Ltd. At that time, when the illuminance was measured using a luminometer (UV Light MEASUREMODEL UV-M02 manufactured by CRC) and a UV-35 sensor, the illuminance was 60.0 mW / cm 2 .
  • VHR voltage holding ratio after UV irradiation>
  • the measurement of the voltage holding ratio of the twisted nematic liquid crystal cell processed by the method of ⁇ UV irradiation> described above was performed by applying a voltage of 4 V for 60 ⁇ s at a temperature of 60 ° C., measuring the voltage after 16.67 msec, The voltage holding ratio (%) was calculated as how much was held.
  • the voltage holding ratio was measured using a VHR-1 voltage holding ratio measuring device manufactured by Toyo Technica.
  • Example 1 Ciba Japan's hydroxyphenyltriazine-based UV absorber Tinuvin (R) 400 was added so that the added amount of the specific compound was 2 parts by weight with respect to 100 parts by weight of the resin of the polymer solution P-1. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, the rubbing resistance was evaluated by the following method. As a result, no rubbing residue or scratches were observed. Further, a liquid crystal cell was prepared by the following method, and pre-tilt angle, VHR, and VHR after UV irradiation were measured. As a result, it was found that VHR after UV irradiation was higher than that of a liquid crystal alignment material to which no specific compound was added. . The results are shown in Table 1.
  • Example 2 The hydroxyphenyltriazine-based UV absorber Tinuvin (R) 400 manufactured by Ciba Japan Co., Ltd. was added so that the added amount of the specific compound was 5 parts by weight with respect to 100 parts by weight of the resin of the polymer solution P-1. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. By adding the specific compound, VHR after UV irradiation was increased and the pretilt angle was also increased.
  • Example 3 The hydroxyphenyltriazine-based ultraviolet absorber Tinuvin (R) 400 manufactured by Ciba Japan Co., Ltd. was added so that the added amount of the specific compound was 10 parts by weight with respect to 100 parts by weight of the resin of the polymer solution P-1. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. By adding the specific compound, VHR after UV irradiation was increased and the pretilt angle was also increased.
  • Example 4 A hydroxyphenyltriazine-based UV absorber Tinuvi (479) manufactured by Ciba Japan Co., Ltd. was added so that the added amount of the specific compound was 2 parts by weight with respect to 100 parts by weight of the resin of the polymer solution P-1. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. VHR after UV irradiation became high by adding a specific compound.
  • Example 5 A hydroxyphenyltriazine-based UV absorber Tinuvi (479) manufactured by Ciba Japan Co., Ltd. was added so that the amount of the specific compound added was 5 parts by weight with respect to 100 parts by weight of the resin of the polymer solution P-1. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. By adding the specific compound, VHR after UV irradiation was increased and the pretilt angle was also increased.
  • Example 6 The hydroxyphenyltriazine-based ultraviolet absorber Tinuvin (R) 479 manufactured by Ciba Japan Co., Ltd. was added so that the added amount of the specific compound was 10 parts by weight with respect to 100 parts by weight of the resin of the polymer solution P-1. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. By adding the specific compound, VHR after UV irradiation was increased and the pretilt angle was also increased.
  • Example 7 The hydroxyphenyltriazine-based UV absorber Tinuvin (R) 1577ED manufactured by Ciba Japan Co., Ltd. was added so that the amount of the specific compound added was 1 part by weight with respect to 100 parts by weight of the resin of the polymer solution P-1. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. VHR after UV irradiation became high by adding a specific compound.
  • Example 8 The hydroxyphenyl triazine-based ultraviolet absorber Tinuvin (R) 400 manufactured by Ciba Japan Co., Ltd. was added so that the amount of the specific compound added was 5 parts by weight with respect to 100 parts by weight of the resin of the polymer solution P-2. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. By adding the specific compound, VHR after UV irradiation was increased and the pretilt angle was also increased.
  • Example 9 The hydroxyphenyltriazine-based ultraviolet absorber Tinuvin (R) 479 manufactured by Ciba Japan Co., Ltd. was added so that the added amount of the specific compound was 5 parts by weight with respect to 100 parts by weight of the resin of the polymer solution P-2. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. By adding the specific compound, VHR after UV irradiation was increased, but the pretilt angle was also increased.
  • R hydroxyphenyltriazine-based ultraviolet absorber Tinuvin
  • Example 10 Hydroxyltriazine UV absorber Tinuvin (R) 1577ED manufactured by Ciba Japan Co., Ltd. was added so that the amount of the specific compound added was 1 part by weight with respect to 100 parts by weight of the resin of polymer solution P-2. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. VHR after UV irradiation became high by adding a specific compound.
  • Example 11 Ciba Japan's hydroxyphenyltriazine-based UV absorber Tinuvin (R) 400 was added so that the amount of the specific compound added was 5 parts by weight per 100 parts by weight of the polymer solution P-4 resin. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. VHR after UV irradiation became high by adding a specific compound.
  • Example 12 The hydroxyphenyltriazine-based ultraviolet absorber Tinuvin (R) 479 manufactured by Ciba Japan Co., Ltd. was added so that the added amount of the specific compound was 5 parts by weight with respect to 100 parts by weight of the resin of the polymer solution P-4. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. VHR after UV irradiation became high by adding a specific compound.
  • Example 13 80 g of polymer solution P-1 and 20 g of polymer solution P-5 were mixed and stirred at room temperature for 20 hours.
  • Ciba Japan's hydroxyphenyltriazine-based UV absorber Tinuvin (R) 479 is added to 100 parts by weight of the resin of the polymer solution so that the specific compound is added in an amount of 5 parts by weight.
  • Stirring to obtain a liquid crystal aligning agent Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. VHR after UV irradiation became high by adding a specific compound.
  • Example 14 Hydroxyltriazine UV absorber Tinuvin (R) 1577ED manufactured by Ciba Japan Co., Ltd. was added so that the added amount of the specific compound was 1 part by weight with respect to 100 parts by weight of the resin of the polymer solution P-7. The mixture was stirred for 1 hour to obtain a liquid crystal aligning agent. Using this liquid crystal alignment material, a liquid crystal cell was prepared in the same manner as in Example 1 and pre-tilted in the same manner as in Example 1, and the same evaluation was performed using this liquid crystal alignment treatment agent. The results are shown in Table 1. VHR after UV irradiation became high by adding a specific compound.
  • Example 15 20 g of polymer solution P-6 and 80 g of polymer solution P-7 were mixed and stirred at room temperature for 20 hours.
  • Ciba Japan's hydroxyphenyltriazine-based UV absorber Tinuvin (R) 400 was added to 100 parts by weight of the resin of the polymer solution so that the specific compound was added in an amount of 5 parts by weight, and the mixture was stirred at room temperature for 1 hour. Stirring to obtain a liquid crystal aligning agent. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. VHR after UV irradiation became high by adding a specific compound.
  • Example 16 20 g of polymer solution P-6 and 80 g of polymer solution P-7 were mixed and stirred at room temperature for 20 hours.
  • Ciba Japan's hydroxyphenyltriazine-based UV absorber Tinuvin (R) 479 is added to 100 parts by weight of the resin of the polymer solution so that the specific compound is added in an amount of 5 parts by weight.
  • Stirring to obtain a liquid crystal aligning agent Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. VHR after UV irradiation became high by adding a specific compound.
  • Example 1 A liquid crystal cell was produced in the same manner as in Example 1 using the polymer solution P-1 as a liquid crystal alignment treatment agent, and the same evaluation was performed. The results are shown in Table 1. The VHR after UV irradiation was low compared to the system to which the specific compound was added.
  • Example 2 A benzotriazole UV absorber JF-83 manufactured by Johoku Chemical Industry Co., Ltd. was added to 100 parts by weight of the resin of the polymer solution P-1 so that the addition amount was 5 parts by weight, and the mixture was stirred at room temperature for 1 hour, An alignment treatment agent was obtained. Using this liquid crystal aligning agent, a liquid crystal cell was prepared in the same manner as in Example 1 and evaluated in the same manner. The results are shown in Table 1. Both the initial VHR and the VHR after UV irradiation were low.
  • Example 3 (Comparative Example 3) Using the polymer solution P-3 as a liquid crystal alignment agent, the pretilt angle, rubbing resistance, VHR, and VHR after UV irradiation were evaluated in the same manner as in Example 1. The results are shown in Table 1. The rubbing resistance was poor and VHR was lower than the specific compound of the present invention.
  • the liquid crystal alignment treatment agent of the present invention has a light resistance property, a rubbing resistance property, etc., and can form a liquid crystal alignment film having an effect of not greatly increasing the amount of ions in the liquid crystal cell.
  • the film is industrially useful as a TN element, an STN element, a TFT liquid crystal element, and a vertical alignment type liquid crystal display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 ラビング耐性が良好で、かつ、近年の液晶表示素子の作製プロセスにおいてみられる、紫外線を照射して液晶を配向させるプロセスに対する耐性の高い液晶配向膜を得ることの出来る液晶配向処理剤を提供する。 トリアジン骨格及びヒドロキシル基を含有する特定化合物を含有する液晶配向処理剤。(式[1]中、R1~R14は、それぞれ独立して、水素原子、又は一価の有機基であり、かつ、R1~R14のうちいずれか一つ以上は、炭素数4以上のアルキル基を含む有機基である。)

Description

液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子
 本発明は、液晶配向処理剤、該液晶配向処理剤を用いて得られる液晶配向膜及びそれを用いた液晶表示素子に関するものである。
 現在、液晶表示素子の液晶配向膜としては、ポリアミック酸などのポリイミド前駆体や可溶性ポリイミドの溶液を主成分とする液晶配向処理剤を塗布し、焼成した、いわゆるポリイミド系の液晶配向膜が主として用いられている。液晶配向膜は、液晶の配向状態を制御する目的で使用される。
 液晶配向膜に求められる特性として、液晶の配向を制御できること、電圧保持率(以下、VHRとも言う)が優れていること、直流電圧により蓄積した電荷の緩和が早いこと、液晶セル内のイオン量が少ないこと、などが挙げられる。
 さらに近年、液晶表示素子の大型化に伴い、長期間の使用に耐えうる液晶表示素子が求められるようになってきた。長期間使用できるためには、バックライトユニットからの光や、紫外線を含む太陽光を長期間照射しても、特性が変化しないことが求められる。そのため、バックライト光や紫外線照射によって、表示特性が大きく変化しない液晶配向膜が求められるようになってきた。
 これらの特性以外にも、近年の液晶表示素子の作製プロセスでは、紫外線を照射して液晶を配向させるプロセスが取り入れられるようになってきた(例えば、非特許文献1参照)。
 また、近年の液晶表示素子の作製プロセスにおいて、液晶滴下工法(ODF)やPSA(Polimer Sustained Alignment)処理などで、紫外線を照射するプロセスが取り入れられるようになり、紫外線に対して耐性のある材料が求められるようになってきた(例えば、非特許文献2参照)。
 液晶表示素子の光耐性を高める取り組みとして、例えば、特許文献1及び2には、液晶配向処理剤にベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤等の添加剤を添加し、液晶の寿命を長くする試みが行われている。
 また、特許文献3には、ベンゾトリアゾール系紫外線吸収剤やベンゾフェノン系紫外線吸収剤に、さらに酸化防止剤を添加して、液晶の寿命を長くする試みが行われている。
 また、特許文献4には、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ジアルキルジチオカルバミン酸金属塩等を液晶配向処理剤に添加することにより、得られる配向膜の紫外線による分解を防ぐことが出来ることが報告されている。
 さらに、特許文献5及び6には、ベンゾトリアゾール系化合物やヒンダードアミン化合物を液晶配向処理剤に添加して、耐光性に優れる液晶パネルを製造する方法が報告されている。
 しかし、これら添加剤は、UV(紫外線)照射することによるVHR低下の抑制効果はあるものの、液晶配向膜自体のVHRが低下してしまう問題点があった。また焼成温度が高い場合、これら添加剤が昇華もしくは熱分解してしまうため、その効果が低減してしまう問題があった。
 これら問題を解決するために、トリアジン骨格を有するジアミンが提案されている(特許文献7)。
日本特開昭56-116012号公報 日本特開昭57-84429号公報 日本特開昭57-108828号公報 日本特開平10-148835号公報 日本特開2003-215592号公報 日本特開2004-53685号公報 日本特開2011-128597号公報
液晶便覧、丸善株式会社、液晶便覧編集委員会編、第233頁 液晶、第14巻、第3号、2010、175(27)
 しかし、トリアジン骨格を有するジアミンを用いてポリイミド前駆体を製造する場合、UV照射後のVHRが高くなるが、トリアジン骨格を有するジアミンは酸二無水物との反応性が悪く、導入量を多くすることができない。多く導入した場合、VHR低下は抑制されるものの、高分子量体が得られず、得られた液晶配向膜のラビング耐性が悪くなることが判明した。
 上記の状況を鑑み、本発明は、ラビング耐性が良好で、かつ光耐性の高い液晶配向膜を得ることの出来る液晶配向処理剤を提供することを目的とする。
 本発明者は、上記の目的を達成する為に鋭意研究を行った結果、トリアジン骨格とヒドロキシル基を有する化合物(以下、特定化合物とも言う)を有する液晶配向処理剤を用いることで、上記目的を達成出来ることを見出した。
 すなわち、本発明は、以下の要旨を有するものである。
1.一般式(1)で表される化合物を含有することを特徴とする液晶配向処理剤。
Figure JPOXMLDOC01-appb-C000002
(式中、R1~R14は、それぞれ独立して、水素原子、又は二価の有機基であり、かつR1~R14のうちいずれか一つ以上は、炭素数4以上のアルキル基を含む有機基である。)
2.前記式(1)で表される化合物と、ポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群より選ばれる少なくとも1種のポリマーとを含有する上記1に記載の液晶配向処理剤。
3.前記式(1)で表される化合物の含有量が、前記ポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群より選ばれる少なくとも1種のポリマーの量100重量部に対して、0.5~10重量部である上記1又は2に記載の液晶配向処理剤。
4.前記ポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群より選ばれる少なくとも1種のポリマーの重量平均分子量が、10,000~150,000である上記1~3のいずれかに記載の液晶配向処理剤。
5.液晶配向処理剤中に92~99重量%の有機溶媒を含有する上記1~4のいずれかに記載の液晶配向処理剤。
6.前記有機溶媒が、5~80重量%の貧溶媒を含有する上記5に記載の液晶配向処理剤。
7.上記1~6のいずれかに記載の液晶配向処理剤から得られる液晶配向膜。
8.膜厚が、10~200μmである上記7に記載の液晶配向膜。
9.上記7又は8に記載の液晶配向膜を具備する液晶表示素子。
 本発明によれば、ラビング耐性が良好で、かつ光耐性の高い液晶配向膜を得ることの出来る液晶配向処理剤を提供することが可能となる。
[特定化合物]
 本発明の液晶配向処理剤に含有される特定化合物は、下記式〔1〕で表される化合物である。
Figure JPOXMLDOC01-appb-C000003
 式中、R~R14は、それぞれ独立して、水素原子、又は一価の有機基であり、かつR~R14のうちいずれか一つ以上が、炭素数4以上のアルキル基を含む有機基である。
 炭素数4以上のアルキル基を含むことで、特定化合物の有機溶媒への溶解性が高まる効果がある。さらに、焼成した塗膜表面に特定化合物が効果的に集まり、VHR特性に影響を及ぼす表面近傍の樹脂成分(液晶配向膜)の劣化を、効果的に抑制できる効果もある。
 また、アルキル基を長くすることで、液晶配向膜にプレチルト発現能を付与させることも可能である。
 アルキル基は、フェニル基と直接結合していても良いが、-O-、-NHCO-、-COO-等の基を介して結合するのが、溶解性の観点から好ましい。
 アルキル基以外の他の置換基は特に限定されないが、特定化合物の耐熱性の観点からは、フェニル基が好ましく、有機溶媒への溶解性の観点では、-OH基、-NH、-COOH、-NHR(Rは1価の有機基)等の極性基が好ましく、特定化合物の途膜表面への移行しやすさの観点からは、アルキル基が特に好ましい。
 好ましい具体的な構造例としては、2-[4,6-ビスC2,4-ジメチルフェニル)-1,3,5-トリアジン-2-イル]-5-(オクチルオキシ)フェノール、チバ・ジャパン社製チヌビン(R)400、チヌビン(R)405(一般名:2-[4-[(2-ヒドロキシ-3-(2‘-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン)、チヌビン(R)460(一般名:2,4-ビス(2-ヒドロキシ-4-ブチルオキシフェニル)-6-(2,4-ビス-ブチルオキシフェニル)-1,3,5-トリアジン)、チヌビン(R)477、チヌビン(R)479(一般名:2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン)、チヌビン(R)1577ED(一般名:2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-(ヘキシルオキシ)フェノール)などが挙げられる。このうち、有機溶媒への溶解性、表面への移行性の観点から、チヌビン(R)400、チヌビン(R)479が特に好ましい。
 トリアジン骨格を含有する特定化合物の導入量としては、特定化合物の溶媒に対する溶解性の観点から、本発明の液晶配向処理剤に含有される、ポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群より選ばれる少なくとも1種のポリマー(高分子化合物)の量100重量部に対して、0.5~10重量部が好ましく、0.5~5重量部がより好ましい。
 液晶配向処理剤への添加方法は特に限定されないが、液晶配向処理剤に、直接所定量の特定化合物を加え、攪拌溶解させるか、予め有機溶媒に0.5~10重量%程度の特定化合物を溶解させ、液晶配向処理剤に加えてもよい。
[ポリイミド及びポリイミド前駆体]
 本発明の液晶配向処理剤に含有されるポリイミド前駆体とは、ポリアミック酸(ポリアミド酸とも言う)及びポリアミック酸エステルを指す。
 ポリアミック酸は、ジアミン成分とテトラカルボン酸二無水物との反応によって得られる。
 ポリアミック酸エステルは、ジアミン成分とテトラカルボン酸ジエステルジクロリドを塩基存在下で反応させる、又はテトラカルボン酸ジエステルとジアミンを適当な縮合剤、塩基の存在下にて反応させることによって得られる。
 本発明のポリイミドは、このポリアミック酸を脱水閉環させる、あるいはポリアミック酸エステルを加熱閉環させることにより得られる。かかるポリアミック酸、ポリアミック酸エステル及びポリイミドのいずれも液晶配向膜を得るための重合体として有用である。
 使用されるジアミン成分は、特に限定されない。その具体例を挙げると、以下の通りである。
 脂環式ジアミン類の例としては、1,4-ジアミノシクロヘキサン、1,3-ジアミノシクロヘキサン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノ-3,3’-ジメチルジシクロヘキシルアミン、イソホロンジアミン等が挙げられる。
 芳香族ジアミン類の例としては、o-フェニレンジアミン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,5-ジアミノトルエン、3,5-ジアミノトルエン、1,4-ジアミノ-2-メトキシベンゼン、2,5-ジアミノ-p-キシレン、1,3-ジアミノ-4-クロロベンゼン、3,5-ジアミノ安息香酸、1,4-ジアミノ-2,5-ジクロロベンゼン、4,4’-ジアミノ-1,2-ジフェニルエタン、4,4’-ジアミノ-2,2’-ジメチルビベンジル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’―ジメチルジフェニルメタン、2,2’-ジアミノスチルベン、4,4’-ジアミノスチルベン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルフィド、4,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノベンゾフェノン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、4,4’-ビス(4-アミノフェノキシ)ビベンジル、2,2-ビス[(4-アミノフェノキシ)メチル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフロロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、1,1-ビス(4-アミノフェニル)シクロヘキサン、α、α’-ビス(4-アミノフェニル)-1,4-ジイソプロピルベンゼン、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(3-アミノフェニル)ヘキサフロロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフロロプロパン、4,4’-ジアミノジフェニルアミン、2,4-ジアミノジフェニルアミン、1,8-ジアミノナフタレン、1,5-ジアミノナフタレン、1,5-ジアミノアントラキノン、1,3-ジアミノピレン、1,6-ジアミノピレン、1,8―ジアミノピレン、2,7-ジアミノフルオレン、1,3-ビス(4-アミノフェニル)テトラメチルジシロキサン、ベンジジン、2,2’-ジメチルベンジジン、1,2-ビス(4-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,5-ビス(4-アミノフェニル)ペンタン、1,6-ビス(4-アミノフェニル)ヘキサン、1,7-ビス(4-アミノフェニル)ヘプタン、1,8-ビス(4-アミノフェニル)オクタン、1,9-ビス(4-アミノフェニル)ノナン、1,10-ビス(4-アミノフェニル)デカン、1,3-ビス(4-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)ヘキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、ジ(4-アミノフェニル)プロパン-1,3-ジオエート、ジ(4-アミノフェニル)ブタン-1,4-ジオエート、ジ(4-アミノフェニル)ペンタン-1,5-ジオエート、ジ(4-アミノフェニル)ヘキサン-1,6-ジオエート、ジ(4-アミノフェニル)ヘプタン-1,7-ジオエート、ジ(4-アミノフェニル)オクタン-1,8-ジオエート、ジ(4-アミノフェニル)ノナン-1,9-ジオエート、ジ(4-アミノフェニル)デカン-1,10-ジオエート、1,3-ビス〔4-(4-アミノフェノキシ)フェノキシ〕プロパン、1,4-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ブタン、1,5-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ペンタン、1,6-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘキサン、1,7-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ヘプタン、1,8-ビス〔4-(4-アミノフェノキシ)フェノキシ〕オクタン、1,9-ビス〔4-(4-アミノフェノキシ)フェノキシ〕ノナン、1,10-ビス〔4-(4-アミノフェノキシ)フェノキシ〕デカン等が挙げられる。
 芳香族-脂肪族ジアミンの例としては、3-アミノベンジルアミン、4-アミノベンジルアミン、3-アミノ-N-メチルベンジルアミン、4-アミノ-N-メチルベンジルアミン、3-アミノフェネチルアミン、4-アミノフェネチルアミン、3-アミノ-N-メチルフェネチルアミン、4-アミノ-N-メチルフェネチルアミン、3-(3-アミノプロピル)アニリン、4-(3-アミノプロピル)アニリン、3-(3-メチルアミノプロピル)アニリン、4-(3-メチルアミノプロピル)アニリン、3-(4-アミノブチル)アニリン、4-(4-アミノブチル)アニリン、3-(4-メチルアミノブチル)アニリン、4-(4-メチルアミノブチル)アニリン、3-(5-アミノペンチル)アニリン、4-(5-アミノペンチル)アニリン、3-(5-メチルアミノペンチル)アニリン、4-(5-メチルアミノペンチル)アニリン、2-(6-アミノナフチル)メチルアミン、3-(6-アミノナフチル)メチルアミン、2-(6-アミノナフチル)エチルアミン、3-(6-アミノナフチル)エチルアミン等が挙げられる。
 複素環式ジアミン類の例としては、2,6-ジアミノピリジン、2,4-ジアミノピリジン、2,4-ジアミノ-1,3,5-トリアジン、2,7-ジアミノジベンゾフラン、3,6-ジアミノカルバゾール、2,4-ジアミノ-6-イソプロピル-1,3,5-トリアジン、2,5-ビス(4-アミノフェニル)-1,3,4-オキサジアゾール等が挙げられる。
 脂肪族ジアミン類の例としては、1,2-ジアミノエタン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,3-ジアミノ-2,2-ジメチルプロパン、1,6-ジアミノ-2,5-ジメチルヘキサン、1,7-ジアミノ-2,5-ジメチルヘプタン、1,7-ジアミノ-4,4-ジメチルヘプタン、1,7-ジアミノ-3-メチルヘプタン、1,9-ジアミノ-5-メチルヘプタン、1,12-ジアミノドデカン、1,18-ジアミノオクタデカン、1,2-ビス(3-アミノプロポキシ)エタン等が挙げられる。
 側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環、複素環、並びにそれらからなる大環状置換体を有するジアミン化合物を併用してもよい。具体的には、下記の式[DA1]~式[DA26]で示されるジアミンを例示することができる。
Figure JPOXMLDOC01-appb-C000004
(式[DA1]~式[DA5]中、Rは、炭素数1~22のアルキル基又はフッ素含有アルキル基である。)
Figure JPOXMLDOC01-appb-C000005
(式[DA6]~式[DA9]中、Sは、-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-、又は-NH-を示し、Rは炭素数1~22のアルキル基又はフッ素含有アルキル基を示す。)
Figure JPOXMLDOC01-appb-C000006
(式[DA10]及び式[DA11]中、Sは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000007
(式[DA12]~式[DA14]中、Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を示し、Rは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基である。)
Figure JPOXMLDOC01-appb-C000008
(式[DA15]及び式[DA16]中、Sは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を示し、Rはフッ素基、シアノ基、トリフルオロメチル基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基である。)
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
(式[DA17]~[DA20]中、R10は炭素数3~12のアルキル基であり、1,4-シクロへキシレンのシス-トランス異性は、それぞれトランス体である。)
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
 また、以下のジアミンを併用させても良い。
Figure JPOXMLDOC01-appb-C000014
(式[DA31]中、mは0~3の整数である。式[DA34]中、nは1~5の整数である。)
 [DA-27]や[DA-28]は、これらを用いることにより、液晶表示素子の電圧保持率(VHRとも言う)を向上させることができ、[DA-29]~[DA-34]は、液晶表示素子の蓄積電荷低減に効果があり、好ましい。
 加えて、下記の式[DA35]で示されるようなジアミノシロキサンなども挙げることができる。
Figure JPOXMLDOC01-appb-C000015
(式[DA35]中、mは、1から10の整数である。)
 上記のジアミン化合物は、液晶配向膜とした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 本発明の液晶配向処理剤に含有されるポリアミド酸を得るために、ジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。その具体例を以下に挙げる。
 脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物としては、1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物、2,3,4,5-テトラヒドロフランテトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、3,4-ジカルボキシ-1-シクロヘキシルコハク酸二無水物、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸二無水物、2,3,5-トリカルボキシシクロペンチル酢酸二無水物、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸二無水物、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-二無水物、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボン酸無水物などが挙げられる。
 更には、上記脂環式構造又は脂肪族構造を有するテトラカルボン酸二無水物に加えて、芳香族テトラカルボン酸二無水物を使用すると、液晶配向性が向上し、かつ液晶セルの蓄積電荷を低減させることができるので好ましい。
 芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物などが挙げられる。
 テトラカルボン酸二無水物は、液晶配向膜にした際の液晶配向性、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用することができる。
 本発明のポリアミック酸エステルを得るために、ジアミン成分と反応させるテトラカルボン酸ジアルキルエステルは特に限定されない。その具体例を以下に挙げる。
 脂肪族テトラカルボン酸ジエステルの具体的な例としては、1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボンジアルキルエステルなどが挙げられる。
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。
[ポリアミック酸の合成]
 テトラカルボン酸二無水物とジアミン成分との反応により、本発明の液晶配向処理剤に含有されるポリアミック酸を得るにあたっては、公知の合成手法を用いることができる。一般的にはテトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる方法である。テトラカルボン酸二無水物とジアミンとの反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 テトラカルボン酸二無水物とジアミンとの反応に用いる有機溶媒としては、生成したポリアミック酸が溶解するものであれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミドなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリアミック酸を溶解させない溶媒であっても、生成したポリアミド酸が析出しない範囲で、上記溶媒に混合して使用してもよい。
 また、有機溶媒中の水分は、重合反応を阻害し、さらには生成したポリアミド酸を加水分解させる原因となるので、有機溶媒はなるべく脱水乾燥させたものを用いることが好ましい。
 テトラカルボン酸二無水物とジアミン成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられる。これらのいずれの方法を用いても良い。また、テトラカルボン酸二無水物又はジアミン成分が、複数種の化合物からなる場合は、あらかじめ混合した状態で反応させても良く、個別に順次反応させても良く、さらに個別に反応させた低分子量体を混合反応させ高分子量体としても良い。
 その際の重合温度は、-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。
 また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となるので、テトラカルボン酸二無水物とジアミン成分の反応溶液中での合計濃度が、好ましくは1~50重量%、より好ましくは5~30重量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。
 ポリアミド酸の重合反応においては、テトラカルボン酸二無水物の合計モル数と、ジアミン成分の合計モル数の比は0.8~1.2であることが好ましく、0.9~1.1がより好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど、生成するポリアミド酸の分子量は大きくなる。
 本発明の液晶配向処理剤に含有されるポリイミドは、前記のポリアミド酸を脱水閉環させて得られるポリイミドであり、液晶配向膜を得るための重合体として有用である。
 本発明の液晶配向処理剤に含有されるポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。
[ポリイミドの合成]
 ポリアミック酸をイミド化させる方法としては、ポリアミック酸の溶液をそのまま加熱する熱イミド化、ポリアミック酸の溶液に触媒を添加する触媒イミド化が挙げられる。
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方法が好ましい。
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量は、アミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミド酸基の1~50モル倍、好ましくは3~30モル倍である。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると、反応終了後の精製が容易となるので好ましい。
 触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
[ポリアミック酸エステルの合成]
 ポリアミック酸エステルを合成する方法としては、テトラカルボン酸ジエステルジクロリドとジアミンとの反応や、テトラカルボン酸ジエステルとジアミンを適当な縮合剤、塩基の存在下に反応させることによりポリイミドの前駆体の一種であるポリアミック酸エステルを得ることができる。又は、予めポリアミック酸を重合し、高分子反応を利用して、アミック酸中のカルボン酸をエステル化することでも得ることができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶剤の存在下で、-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましく、2~3倍モルがより好ましい。
 縮合剤の存在下に縮重合を行なう場合、縮合剤としては、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリド n-水和物などが使用できる。
 また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量は、上記縮合剤に対して0.1~1.0倍モル量であることが好ましく、0.3~0.8倍モル量がより好ましい。
 上記の反応に用いる溶媒は、ポリアミック酸を重合する際に用いられる溶媒で行なうことができるが、モノマー及びポリマーの溶解性から、N-メチル-2-ピロリドン、γ-ブチロラクトン等が好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時の濃度は、ポリマーの析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30重量%が好ましく、5~20重量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒は、できるだけ脱水されていることが好ましく、反応は窒素雰囲気中で、外気の混入を防いで行うのが好ましい。
[ポリマーの回収]
 ポリアミド酸、ポリアミック酸エステル、ポリイミドを含む反応溶液から、生成したポリアミド酸、ポリアミック酸エステル、ポリイミド等を回収する場合には、反応溶液を貧溶媒に投入して沈殿させれば良い。
 沈殿に用いる貧溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。中でも、メタノールが好ましい。
 貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒としては、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 本発明の液晶配向処理剤に含有されるポリアミド酸及びポリイミドの分子量は、そこから得られる塗膜の強度、塗膜形成時の作業性、及び塗膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。
<液晶配向処理剤>
 本発明の液晶配向処理剤は、液晶配向膜を形成するための塗布液であり、上記したポリイミド前駆体及びポリイミドからなる群より選ばれる少なくとも1種の重合体と本発明の添加剤が、有機溶媒に溶解した溶液である。
 本発明の液晶配向処理剤中の固形分濃度は、形成する液晶配向膜の厚みの設定によって適宜変更することができるが、0.5~10重量%とすることが好ましく、1~8重量%とすることがより好ましい。固形分濃度が0.5重量%未満では、均一で欠陥のない塗膜を形成させることが困難となり、10重量%よりも多いと、溶液の保存安定性が悪くなる場合がある。
 ここで言う固形分とは、液晶配向処理剤から溶媒を除いた成分を言い、上記したポリイミド前駆体及びポリイミドからなる群より選ばれる少なくとも1種の重合体、本発明の添加剤、及び上記した各種の添加剤を意味する。
 本発明の液晶配向処理剤の製造方法は特に限定されない。通常は、上記ポリイミド前駆体の溶液、ポリイミドの溶液、又はポリイミドの溶液とポリイミド前駆体の溶液とを混合することにより製造される。ポリアミック酸の場合、重縮合にて得られたポリアミック酸の反応溶液をそのまま使用してもよいし、また、一旦、ポリアミック酸を得てから、これを有機溶媒に再溶解させてポリアミック酸溶液として使用することができる。ポリアミック酸溶液は、所望の濃度まで希釈して使用してもよい。
 一方、可溶性ポリイミドの場合、イミド化して得られた可溶性ポリイミドの反応溶液をそのまま使用してもよいし、また、一旦、ポリイミド粉末を得てから、これを有機溶媒に再溶解させてポリイミド溶液として使用することができる。ポリイミド溶液は、所望の濃度まで希釈して使用してもよい。
 本発明の液晶配向処理剤に用いる有機溶媒は、樹脂成分を溶解させる有機溶媒であれば特に限定されない。その具体例を以下に挙げる。
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。
 有機溶媒の液晶配向処理剤中における含有量は、80~99.5重量%であり、90~99.5重量%が好ましく、溶液の保存安定性、均一な塗膜の形成の点からは、より好ましくは92~99重量%である。
 本発明の液晶配向処理剤は、上記以外の成分を含有してもよい。その例としては、液晶配向処理剤を塗布した際の膜厚均一性や表面平滑性を向上させる溶媒や化合物、液晶配向膜と基板との密着性を向上させる化合物、熱安定性を向上させる酸化防止剤、光耐性を向上させる光安定剤などである。
 膜厚均一性や表面平滑性を向上させる溶媒(貧溶媒)の具体例としては、次のものが挙げられる。
 例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、1-ヘキサノール、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステルなどの低表面張力を有する溶媒などが挙げられる。
 これらの貧溶媒は、1種類でも複数種類を混合して用いてもよい。上記のような溶媒を用いる場合は、液晶配向処理剤に含まれる溶媒全体の5~80重量%であることが好ましく、より好ましくは20~60重量%である。
 膜厚均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。
 より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製))、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)などが挙げられる。
 これらの界面活性剤の使用割合は、液晶配向処理剤に含有される樹脂成分の100重量部に対して、好ましくは0.01~2重量部、より好ましくは0.01~1重量部である。
 液晶配向膜と基板との密着性を向上させる化合物の具体例としては、次に示す官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。
 例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどが挙げられる。
 これらの密着性を向上させる化合物の使用割合は、液晶配向処理剤に含有される樹脂成分の100重量部に対して、好ましくは0.1~10重量部、より好ましくは1~5重量部である。
 熱安定性を向上させる化合物の具体例としては、以下に示すフェノール系化合物などが挙げられる。
 例えば、2,6-ジ-tert-ブチル-p-クレゾール、2,6-ジ-tert-ブチル-フェノール、2,4,6-トリス(3’,5’-ジ-tert-ブチル-4’-ヒドロキシベンジル)メシチレン、ペンタエリスリトールテトラキス[3-(3’,5’-ジ-tert-ブチル-4’-ヒドロキシフェニル)プロピオネート]、アセトンビス(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)メルカプトール、4,4’-メチレンビス(2,6-ジ-tert-ブチルフェノール)、3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオン酸メチル、4,4’-チオジ(2,6-ジ-tert-ブチルフェノール)、トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)イソシアヌル酸、ビス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)スルフィド等が挙げられる。
 これらの熱安定性を向上させる化合物の使用割合は、液晶配向処理剤に含有される樹脂成分の100重量部に対して、好ましくは1~20重量部、より好ましくは2~10重量部である。
[液晶配向膜]
 本発明の液晶配向処理剤は、好ましくは、基板に塗布する前に濾過した後、基板に塗布し、乾燥、焼成することで塗膜とすることができる。この塗膜面をラビング処理や光照射などの配向処理をすることにより、本発明の液晶配向膜として使用される。
 この際、用いる基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、アクリル基板やポリカーボネート基板などのプラスチック基板などを用いることができる。また、液晶駆動のためのITO電極などが形成された基板を用いることが、プロセスの簡素化の観点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な基板でも使用でき、この場合の電極は、アルミ等の光を反射する材料も使用できる。
 液晶配向処理剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられるが、生産性の面から、工業的にはフレキソ印刷法が広く用いられており、本発明の液晶配向処理剤においても好適に用いられる。
 液晶配向処理剤を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合や、塗布後ただちに焼成されない場合には、乾燥工程を含めることが好ましい。
 乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が蒸発していればよく、乾燥手段については特に限定されない。具体例を挙げるならば、50~150℃、好ましくは80~120℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法がとられる。
 液晶配向処理剤を塗布した基板の焼成は、100~350℃の任意の温度で行うことができるが、好ましくは150~300℃であり、さらに好ましくは180~250℃である。
 液晶配向処理剤中に含有されるポリアミック酸は、この焼成によって、ポリアミック酸からイミドへの転化率が変化するが、ポリアミック酸は、必ずしも100%イミド化させる必要は無い。ただし、液晶セルの製造工程で必要とされる、シール剤硬化などの熱処理温度より、10℃以上高い温度で焼成することが好ましい。
 焼成後の塗膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは10~200nm、より好ましくは50~100nmである。
 上記のようにして基板上に形成された塗膜面のラビング処理は、既存のラビング装置を使用することができる。この際のラビング布の材質としては、コットン、レーヨン、ナイロンなどが挙げられる。
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。
 液晶セル作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を、好ましくは1~30μm、より好ましくは2~10μmのスペーサーを挟んで、ラビング方向が0~270°の任意の角度となるように設置して、周囲をシール剤で固定し、液晶を注入して封止する方法が一般的である。液晶封入の方法については特に制限されず、作製した液晶セル内を減圧にした後液晶を注入する真空法、液晶を滴下した後封止を行う滴下法などが例示できる。
 このようにして得られた液晶表示素子は、バックライト光や紫外光照射に伴う電気特性の低下が軽減され、信頼性の高い液晶表示デバイスとすることができる。
 以下に実施例を示し、本発明をさらに詳細に説明するが、本発明はこれらに限定して解釈されるものではない。
 使用する略号の説明
<テトラカルボン酸二無水物>
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
PMDA:ピロメリット酸二無水物
TDA:3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸二無水物
TCA:2,3,5-トリカルボキシシクロペンチル酢酸-1,4:2,3-二無水物
<ジアミン>
DDM:4,4’-ジアミノジフェニルメタン
2,4-DAA:2,4-ジアミノ-N,N-ジアリルアミン
4-ABA:4-アミノベンジルアミン
C12DAB:4-ドデシルオキシ-1,3-ジアミノベンゼン
C18DAB:4-オクタデシルオキシ-1,3-ジアミノベンゼン
DAPBA:3,5-ジアミノ-N-(ピリジン-3イルメチル)ベンズアミド(3AMPDA)
PDA:p-フェニレンジアミン
BAPU:1,3-ビス(4-アミノフェネチル)ウレア
DABFr:3,5-ジアミノベンジル-2-フロイレート
3-MAMA:3-((N-メチルアミノ)メチル)アニリン(Me-3ABA)
PCBADA:4-(トランス-4-ペンチルシクロヘキシル)ベンズアミド-2’,4’-フェニレンジアミン(CAB-2)
DDE:4,4’-ジアミノジフェニルエーテル
DTT:2,4-ジアミノ-6-フェニル-1,3,5-トリアジン
<有機溶媒>
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン(γ-BL)
BS:ブチルセロソルブ
<分子量の測定>
 ポリイミドの分子量は、該ポリイミドをGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、ポリエチレンオキシド換算値として数平均分子量と重量平均分子量を算出した。
GPC装置:(株)Shodex社製 (GPC-101)
カラム:Shodex社製 (KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
流速:1.0mL/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900000、150000、100000、30000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12000、4000、1000)。
<イミド化率の測定>
 ポリイミドのイミド化率は、該ポリイミドをd6-DMSO(ジメチルスルホキシド-d6、TMS(テトラメチルシラン)混合品)に溶解させ、400MHzのH NMR(バリアン社製)を用いて測定した。すなわち、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
  イミド化率(%)=(1-α・x/y)×100
 上記式において、xはアミド酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
[ポリマー溶液の製造(ポリアミック酸及びポリイミドの製造]
(製造例1)
 500ml四口フラスコにDDMを39.6g、NMPを222g、γ-BLを222g加えて溶解し、CBDAを19.6g、及びPMDAを19.2g添加した。窒素雰囲気下、室温で5時間反応させて、ポリマー溶液を調製した。このポリマーの数平均分子量は10,900、重量平均分子量は27,300であった。得られたポリマー溶液400gにγ-BLを450g、BSを150g加え、室温で2時間攪拌し、ポリマー溶液P-1を得た。
(製造例2)
 1Lセパラブルフラスコに2,4-DAAを40.6g、4-ABAを18.4g、C12DABを43.9g、NMPを813g加え溶解し、CBDAを67.7g、PMDAを32.7g添加した。窒素雰囲気下、室温で22時間反応させてポリマー溶液を調製した。
 得られたポリマー溶液192gに、NMPを345g加えて希釈し、無水酢酸28.4gとピリジン12.1gを加えて、50℃にて3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール2000ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、ポリイミドの白色粉末を得た。このポリイミドの数平均分子量は12,500、重量平均分子量は34,100であった。またイミド化率は90%であった。
 さらに得られたパウダー6gを、74gのγ-BL、20gのBSとの混合溶液に50℃にて24時間攪拌して溶解させ、樹脂成分が6重量%であるポリマー溶液P-2を得た。
(製造例3)
 500ml四口フラスコにDDMを33.7g、DTTを3.7g、NMPを222g、γ-BLを222g加えて溶解し、CBDAを19.6g、PMDAを19.2g添加した。窒素雰囲気下、室温で5時間反応させて、ポリマー溶液を調製した。このポリマーの数平均分子量は7,300、重量平均分子量は14,300であった。得られたポリマー溶液400gにγ-BLを450g、BSを150g加え、室温で2時間攪拌し、ポリマー溶液P-3を得た。
(製造例4)
 500ml四口フラスコにPDAを13.0g、DAPBAを14.5g、C12DABを5.8g、NMPを407g加えて溶解し、CBDAを38.4g添加した。窒素雰囲気下、室温で5時間反応させて、ポリマー溶液を調製した。このポリマーの数平均分子量は9,800、重量平均分子量は18,100であった。得られたポリマー溶液400gにNMPを400g、BSを200g加え、室温で2時間攪拌し、ポリマー溶液P-4を得た。
(製造例5)
 1LセパラブルフラスコにPDAを22.7g、BAPUを17.9g、C18DABを11.3g、NMPを803g加え溶解し、TDAを89.8g、添加した。窒素雰囲気下、50℃で24時間反応させてポリマー溶液を調製した。
 得られたポリマー溶液200gに、NMPを300g加えて希釈し、無水酢酸64.7gとピリジン30.1gを加えて、50℃にて3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール2000ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、白色粉末を得た。このポリイミドの数平均分子量は10,500、重量平均分子量は27,600であった。またイミド化率は83%であった。
 さらに得られたパウダー6gを、94gのγ-BLに50℃にて24時間攪拌して溶解させ、樹脂成分が6重量%であるポリマー溶液P-5を得た。
(製造例6)
 500mLセパラブルフラスコにDABFrを9.3g、3-MAMAを20.4g、PCBADAを4.1g、NMPを412g加え溶解し、CBDAを38.8g、添加した。窒素雰囲気下、室温で24時間反応させてポリマー溶液を調製した。
 得られたポリマー溶液300gに、NMPを75g加えて希釈し、無水酢酸62.9gとピリジン19.5gを加えて、70℃にて3時間反応させてイミド化した。この反応溶液を室温程度まで冷却後、メタノール1600ml中に投入し、沈殿した固形物を回収した。さらに、この固形物をメタノールで数回洗浄した後、100℃で減圧乾燥して、白色粉末を得た。このポリイミドの数平均分子量は11,500、重量平均分子量は38,100であった。またイミド化率は58%であった。
 さらに得られたパウダー6gを、94gのγ-BLに50℃にて24時間攪拌して溶解させ、樹脂成分が6重量%であるポリマー溶液P-6を得た。
(製造例7)
 500ml四口フラスコにDDEを28.0g、NMPを334g加えて溶解し、TCAを30.8g添加した。窒素雰囲気下、室温で20時間反応させて、ポリマー溶液を調製した。このポリマーの数平均分子量は9,200、重量平均分子量は20,800であった。得られたポリマー溶液200gにNMPを200g、BSを100g加え、室温で2時間攪拌し、ポリマー溶液P-7を得た。
[液晶配向処理剤の調製と各種評価]
 実施例1~16、及び比較例1~3には、各液晶配向処理剤の調製、該液晶配向処理剤を用いた各液晶配向膜の調製、得られた液晶配向膜のラビング耐性の評価、該液晶配向膜を有する各液晶セルの作製及び各液晶セルの評価について示した。
 実施例及び比較例で得られた各液晶セルのラビング耐性の評価、プレチルト角の測定、初期電圧保持率(VHR)の測定評価、並びにUV照射後の電圧保持率の測定評価は、以下のように行った。
[液晶配向処理剤の評価]
<液晶セルの作製>
 液晶配向処理剤を透明電極付きガラス基板(ミネルヴァ電子社製、縦×横=40mm×30mm、厚さ1.1mm)にスピンコートし、80℃のホットプレート上で70秒間乾燥させた後、250℃のホットプレート上で10分間焼成を行い、膜厚100nmの塗膜を形成した。この塗膜面をロール径120mmのラビング装置でレーヨン布を用いて、ロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmの条件でラビングし、液晶配向膜付き基板を得た。液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサー(日揮触媒化成社製、AW-II6.0)を散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合いラビング方向が直行するようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2003(C080)(メルク社製)を注入し、注入口を封止して、ツイストネマティック液晶セルを得た。
<ラビング耐性の評価>
 下記の<液晶セルの作製>に記載の方法で液晶配向膜付き基板を作製する際、ラビング条件の押し込み量を0.5mmに変更して行い、ラビング耐性評価用の液晶配向膜を作製し、表面を共焦点レーザー顕微鏡(レーザーテック社製、1LM21D)にて観察し、下記の評価を行った。
 ○:削れカスやラビング傷が観察されない。
 ×:膜が剥離する又は目視でラビング傷が観察される。
<プレチルト角の測定>
 下記の<液晶セルの作製>に記載の方法で作製したツイストネマティック液晶セルのプレチルト角(°)は、Axo Metrix社製の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。
<初期電圧保持率(VHR)の測定>
 下記方法で作製したツイストネマティック液晶セルの電圧保持率の測定は、60℃の温度下で4Vの電圧を60μs間印加し、16.67msec後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(%)として計算した。なお、電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。
<UV照射>
 下記の<液晶セルの作製>に記載の方法で作製したツイストネマティック液晶セルに、セン特殊光源社製、卓上用UV硬化装置HCT3B28HEX-1を用いて、光照射を83sec行った。そのとき、照度を、照度計(CRC社製UV Light MEASUREMODEL UV-M02)を用い、UV-35のセンサーを用い測定すると、照度が60.0mW/cmであった。
<UV照射後の電圧保持率(VHR)の測定>
 上記の<UV照射>の方法で処理したツイストネマティック液晶セルの電圧保持率の測定は、60℃の温度下で4Vの電圧を60μs間印加し、16.67msec後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率(%)として計算した。なお、電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。
(実施例1)
 ポリマー溶液P-1の樹脂100重量部に対して、特定化合物の添加量が2重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)400を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、以下の方法でラビング耐性を評価したところ、ラビングカス、傷の付着は見られなかった。さらに以下の方法で液晶セルを作成し、プレチルト角、VHR、UV照射後のVHRを測定したところ、特定化合物を加えない液晶配向材と比較して、UV照射後のVHRが高いことが判明した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000016
(実施例2)
 ポリマー溶液P-1の樹脂100重量部に対して、特定化合物の添加量が5重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)400を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなり、プレチルト角も高くなった。
(実施例3)
 ポリマー溶液P-1の樹脂100重量部に対して、特定化合物の添加量が10重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)400を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなり、プレチルト角も高くなった。
(実施例4)
 ポリマー溶液P-1の樹脂100重量部に対して、特定化合物の添加量が2重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビ(R)479を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなった。
(実施例5)
 ポリマー溶液P-1の樹脂100重量部に対して、特定化合物の添加量が5重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビ(R)479を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなり、プレチルト角も高くなった。
(実施例6)
 ポリマー溶液P-1の樹脂100重量部に対して、特定化合物の添加量が10重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)479を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなり、プレチルト角も高くなった。
(実施例7)
 ポリマー溶液P-1の樹脂100重量部に対して、特定化合物の添加量が1重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)1577EDを加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなった。
(実施例8)
 ポリマー溶液P-2の樹脂100重量部に対して、特定化合物の添加量が5重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)400を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなり、プレチルト角も高くなった。
(実施例9)
 ポリマー溶液P-2の樹脂100重量部に対して、特定化合物の添加量が5重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)479を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRも高くなるが、プレチルト角も高くなった。
(実施例10)
 ポリマー溶液P-2の樹脂100重量部に対して、特定化合物の添加量が1重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)1577EDを加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなった。
(実施例11)
 ポリマー溶液P-4の樹脂100重量部に対して、特定化合物の添加量が5重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)400を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなった。
(実施例12)
 ポリマー溶液P-4の樹脂100重量部に対して、特定化合物の添加量が5重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)479を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなった。
(実施例13)
 ポリマー溶液P-1を80g、ポリマー溶液P-5を20g混合させ、室温にて20時間攪拌した。このポリマー溶液の樹脂100重量部に対して、特定化合物の添加量が5重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)479を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなった。
(実施例14)
 ポリマー溶液P-7の樹脂100重量部に対して、特定化合物の添加量が1重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)1577EDを加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向材を用いて、実施例1と同様の方法で、プレチルトこの液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなった。
(実施例15)
 ポリマー溶液P-6を20g、ポリマー溶液P-7を80g混合させ、室温にて20時間攪拌した。このポリマー溶液の樹脂100重量部に対して、特定化合物の添加量が5重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)400を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなった。
(実施例16)
 ポリマー溶液P-6を20g、ポリマー溶液P-7を80g混合させ、室温にて20時間攪拌した。このポリマー溶液の樹脂100重量部に対して、特定化合物の添加量が5重量部になるように、チバ・ジャパン社製ヒドロキシフェニルトリアジン系紫外線吸収剤チヌビン(R)479を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。特定化合物を加えることでUV照射後のVHRが高くなった。
(比較例1)
 ポリマー溶液P-1を液晶配向処理剤として用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。UV照射後のVHRは、特定化合物を加えた系と比較すると低かった。
(比較例2)
 ポリマー溶液P-1の樹脂100重量部に対して、添加量が5重量部になるように、城北化学工業社製ベンゾトリアゾール系紫外線吸収剤JF-83を加え、室温で1時間攪拌し、液晶配向処理剤を得た。この液晶配向処理剤を用いて、実施例1と同様の方法で液晶セルの作製し同様の評価を行った。結果を表1に示す。初期のVHR、UV照射後のVHRともに低かった。
(比較例3)
 ポリマー溶液P-3を液晶配向処理剤として用いて、実施例1と同様の方法で、プレチルト角、ラビング耐性、VHR、UV照射後のVHRを評価した。結果を表1に示す。ラビング耐性が悪く、VHRも本発明の特定化合物よりも低かった。
 本発明の液晶配向処理剤は、光耐性特性、ラビング耐性特性等を有し、さらに液晶セル内のイオン量を大きく増大しない効果を有する液晶配向膜の形成が可能であり、得られた液晶配向膜は、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などとして産業上、有用である。
 なお、2011年11月29日に出願された日本特許出願2011-260179号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (9)

  1.  一般式(1)で表される化合物を含有することを特徴とする液晶配向処理剤。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1~R14は、それぞれ独立して、水素原子、又は二価の有機基であり、かつR1~R14のうちいずれか一つ以上は、炭素数4以上のアルキル基を含む有機基である。)
  2.  前記式(1)で表される化合物と、ポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群より選ばれる少なくとも1種のポリマーとを含有する請求項1に記載の液晶配向処理剤。
  3.  前記式(1)で表される化合物の含有量が、前記ポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群より選ばれる少なくとも1種のポリマーの量100重量部に対して、0.5~10重量部である請求項1又は請求項2に記載の液晶配向処理剤。
  4.  前記ポリイミド前駆体及び該ポリイミド前駆体をイミド化したポリイミドからなる群より選ばれる少なくとも1種のポリマーの重量平均分子量が、10,000~150,000である請求項1~3のいずれか一項に記載の液晶配向処理剤。
  5.  液晶配向処理剤中に92~99重量%の有機溶媒を含有する請求項1~4のいずれか一項に記載の液晶配向処理剤。
  6.  前記有機溶媒が、5~80重量%の貧溶媒を含有する請求項5に記載の液晶配向処理剤。
  7.  請求項1~6のいずれか一項に記載の液晶配向処理剤から得られる液晶配向膜。
  8.  膜厚が、10~200μmである請求項7に記載の液晶配向膜。
  9.  請求項7又は8に記載の液晶配向膜を具備する液晶表示素子。
PCT/JP2012/080975 2011-11-29 2012-11-29 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子 WO2013081064A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013547215A JP6206187B2 (ja) 2011-11-29 2012-11-29 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子
KR1020147014360A KR102044049B1 (ko) 2011-11-29 2012-11-29 액정 배향 처리제, 액정 배향막 및 그것을 사용한 액정 표시 소자
CN201280058354.0A CN103959153B (zh) 2011-11-29 2012-11-29 液晶取向处理剂、液晶取向膜及使用该液晶取向膜的液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-260179 2011-11-29
JP2011260179 2011-11-29

Publications (1)

Publication Number Publication Date
WO2013081064A1 true WO2013081064A1 (ja) 2013-06-06

Family

ID=48535512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080975 WO2013081064A1 (ja) 2011-11-29 2012-11-29 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子

Country Status (5)

Country Link
JP (1) JP6206187B2 (ja)
KR (1) KR102044049B1 (ja)
CN (1) CN103959153B (ja)
TW (1) TWI596157B (ja)
WO (1) WO2013081064A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015046373A1 (ja) * 2013-09-26 2015-04-02 日産化学工業株式会社 液晶配向処理剤及びそれを用いた液晶表示素子
WO2015046374A1 (ja) * 2013-09-26 2015-04-02 日産化学工業株式会社 液晶配向処理剤およびそれを用いた液晶表示素子
WO2017115818A1 (ja) * 2015-12-28 2017-07-06 宇部興産株式会社 ポリイミド材料、その製造方法およびその製造に用いられるポリイミド前駆体組成物
WO2019073970A1 (ja) * 2017-10-11 2019-04-18 株式会社カネカ ポリイミド樹脂組成物、ポリイミドフィルムおよびその製造方法
EP3550357A4 (en) * 2016-11-29 2020-07-08 Boe Technology Group Co. Ltd. ALIGNMENT MATERIAL COMPOSITION AND LIQUID CRYSTAL DISPLAY PANEL AND PRODUCTION METHOD THEREFOR, AND DISPLAY DEVICE WITH USE THEREOF

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111574467B (zh) * 2020-06-12 2021-11-30 江苏三月科技股份有限公司 一种多胺基化合物及其制备方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100197186A1 (en) * 2009-02-03 2010-08-05 Samsung Electronics Co., Ltd. Photoalignment material and method of manufacturing display substrate using the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56116012A (en) 1980-02-19 1981-09-11 Sharp Corp Liquid-crystal cell
JPS5784429A (en) 1980-11-14 1982-05-26 Casio Comput Co Ltd Liquid crystal display device
JPS57108828A (en) 1980-12-25 1982-07-07 Casio Comput Co Ltd Displaying device of guest-host type liquid crystal
JPH10148835A (ja) 1996-11-19 1998-06-02 Hitachi Chem Co Ltd 液晶配向膜
KR20010024326A (ko) * 1998-07-29 2001-03-26 고토 기치 신규한 디아미노 화합물, 폴리암산, 폴리이미드, 당해폴리이미드 막으로부터 제조된 액정 배향막 및 당해배향막을 함유하는 액정 표시소자
JP2003215592A (ja) 2002-01-25 2003-07-30 Seiko Epson Corp 液晶パネルおよび液晶表示装置
JP2004053685A (ja) 2002-07-16 2004-02-19 Seiko Epson Corp 液晶パネルおよび液晶表示装置
JP5403261B2 (ja) * 2007-03-19 2014-01-29 Jsr株式会社 液晶配向剤および液晶表示素子
KR101738330B1 (ko) * 2008-01-25 2017-05-19 닛산 가가쿠 고교 가부시키 가이샤 디아민 화합물, 액정 배향 처리제, 및 그것을 사용한 액정 표시 소자
KR101059138B1 (ko) * 2008-03-21 2011-08-25 짓쏘 세끼유 가가꾸 가부시키가이샤 광 배향제, 액정 배향막, 이것을 이용한 액정 표시 소자 및 액정 배향막의 제조 방법
JP5609483B2 (ja) 2009-11-18 2014-10-22 Jnc株式会社 液晶配向剤、液晶配向膜および液晶表示素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100197186A1 (en) * 2009-02-03 2010-08-05 Samsung Electronics Co., Ltd. Photoalignment material and method of manufacturing display substrate using the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102250028B1 (ko) 2013-09-26 2021-05-10 닛산 가가쿠 가부시키가이샤 액정 배향 처리제 및 그것을 사용한 액정 표시 소자
WO2015046374A1 (ja) * 2013-09-26 2015-04-02 日産化学工業株式会社 液晶配向処理剤およびそれを用いた液晶表示素子
KR20160060733A (ko) * 2013-09-26 2016-05-30 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제 및 그것을 사용한 액정 표시 소자
KR20160060732A (ko) * 2013-09-26 2016-05-30 닛산 가가쿠 고교 가부시키 가이샤 액정 배향 처리제 및 그것을 사용한 액정 표시 소자
CN105765453A (zh) * 2013-09-26 2016-07-13 日产化学工业株式会社 液晶取向处理剂和使用了其的液晶表示元件
CN105765452A (zh) * 2013-09-26 2016-07-13 日产化学工业株式会社 液晶取向处理剂和使用了其的液晶表示元件
JPWO2015046374A1 (ja) * 2013-09-26 2017-03-09 日産化学工業株式会社 液晶配向処理剤およびそれを用いた液晶表示素子
JPWO2015046373A1 (ja) * 2013-09-26 2017-03-09 日産化学工業株式会社 液晶配向処理剤及びそれを用いた液晶表示素子
WO2015046373A1 (ja) * 2013-09-26 2015-04-02 日産化学工業株式会社 液晶配向処理剤及びそれを用いた液晶表示素子
KR102255769B1 (ko) 2013-09-26 2021-05-27 닛산 가가쿠 가부시키가이샤 액정 배향 처리제 및 그것을 사용한 액정 표시 소자
CN105765453B (zh) * 2013-09-26 2019-04-12 日产化学工业株式会社 液晶取向处理剂和使用了其的液晶表示元件
CN105765452B (zh) * 2013-09-26 2019-04-12 日产化学工业株式会社 液晶取向处理剂和使用了其的液晶表示元件
WO2017115818A1 (ja) * 2015-12-28 2017-07-06 宇部興産株式会社 ポリイミド材料、その製造方法およびその製造に用いられるポリイミド前駆体組成物
JPWO2017115818A1 (ja) * 2015-12-28 2018-12-13 宇部興産株式会社 ポリイミド材料、その製造方法およびその製造に用いられるポリイミド前駆体組成物
JP7262924B2 (ja) 2015-12-28 2023-04-24 Ube株式会社 ポリイミド材料、その製造方法およびその製造に用いられるポリイミド前駆体組成物
EP3550357A4 (en) * 2016-11-29 2020-07-08 Boe Technology Group Co. Ltd. ALIGNMENT MATERIAL COMPOSITION AND LIQUID CRYSTAL DISPLAY PANEL AND PRODUCTION METHOD THEREFOR, AND DISPLAY DEVICE WITH USE THEREOF
WO2019073970A1 (ja) * 2017-10-11 2019-04-18 株式会社カネカ ポリイミド樹脂組成物、ポリイミドフィルムおよびその製造方法

Also Published As

Publication number Publication date
KR20140099460A (ko) 2014-08-12
JP6206187B2 (ja) 2017-10-04
TWI596157B (zh) 2017-08-21
TW201339245A (zh) 2013-10-01
KR102044049B1 (ko) 2019-11-12
CN103959153A (zh) 2014-07-30
CN103959153B (zh) 2017-04-12
JPWO2013081064A1 (ja) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6152914B2 (ja) 新規なジカルボン酸無水物及びその製造方法
WO2009093709A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6083388B2 (ja) 液晶配向剤の製造方法
JP6206187B2 (ja) 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子
JP5900328B2 (ja) 液晶配向剤、それを用いた液晶配向膜及び液晶表示素子
WO2013115228A1 (ja) 新規ジアミン、重合体、液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
KR20150068445A (ko) 액정 배향제, 액정 배향막 및 액정 표시 소자
JP6065074B2 (ja) ジアミン化合物、ポリイミド前駆体及びポリイミド
JP6146576B2 (ja) 液晶配向処理剤、液晶配向膜及びそれを用いた液晶表示素子
WO2018043326A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2018043325A1 (ja) 液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
JP6330662B2 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
WO2014092170A1 (ja) 液晶配向剤、液晶配向膜及び液晶表示素子
JP6056754B2 (ja) 液晶配向処理剤及びそれを用いた液晶表示素子
JP6384663B2 (ja) 重合体、液晶配向剤、液晶配向膜及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853722

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013547215

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147014360

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853722

Country of ref document: EP

Kind code of ref document: A1