WO2013077324A1 - 乗員検知装置 - Google Patents

乗員検知装置 Download PDF

Info

Publication number
WO2013077324A1
WO2013077324A1 PCT/JP2012/080081 JP2012080081W WO2013077324A1 WO 2013077324 A1 WO2013077324 A1 WO 2013077324A1 JP 2012080081 W JP2012080081 W JP 2012080081W WO 2013077324 A1 WO2013077324 A1 WO 2013077324A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitance
state
seating
value
seating state
Prior art date
Application number
PCT/JP2012/080081
Other languages
English (en)
French (fr)
Inventor
佑一郎 山口
武 戸倉
Original Assignee
株式会社フジクラ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジクラ filed Critical 株式会社フジクラ
Publication of WO2013077324A1 publication Critical patent/WO2013077324A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/08Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices
    • G01V3/088Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with magnetic or electric fields produced or modified by objects or geological structures or by detecting devices operating with electric fields
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2/00Seats specially adapted for vehicles; Arrangement or mounting of seats in vehicles
    • B60N2/002Seats provided with an occupancy detection means mounted therein or thereon
    • B60N2/0021Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement
    • B60N2/0024Seats provided with an occupancy detection means mounted therein or thereon characterised by the type of sensor or measurement for identifying, categorising or investigation of the occupant or object on the seat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/015Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting the presence or position of passengers, passenger seats or child seats, and the related safety parameters therefor, e.g. speed or timing of airbag inflation in relation to occupant position or seat belt use
    • B60R21/01512Passenger detection systems
    • B60R21/0153Passenger detection systems using field detection presence sensors
    • B60R21/01532Passenger detection systems using field detection presence sensors using electric or capacitive field sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60NSEATS SPECIALLY ADAPTED FOR VEHICLES; VEHICLE PASSENGER ACCOMMODATION NOT OTHERWISE PROVIDED FOR
    • B60N2210/00Sensor types, e.g. for passenger detection systems or for controlling seats
    • B60N2210/10Field detection presence sensors
    • B60N2210/12Capacitive; Electric field

Definitions

  • the present invention relates to an occupant detection device that detects an occupant of a vehicle seat in order to perform deployment control of an airbag mounted on a vehicle such as an automobile.
  • the airbag deployment control may require measures to limit deployment even if an accident occurs, for example, when a passenger is not riding, when a child seat is installed, or when a child rides.
  • a method for controlling the deployment of the airbag as described above for example, a method for detecting and controlling various states of a vehicle seat occupant as disclosed in the following Patent Documents 1 to 4 is known.
  • Patent Document 1 has a means for detecting a load at the lower part of the seat, and detects information (occupant's physique information) that restricts the deployment of the airbag based on the load. is doing.
  • Patent Document 1 it is necessary to dispose a large sensor over a wide range on the seating surface, which is not only costly but also impairs the riding comfort of the seat. There is a problem that the passenger may feel uncomfortable.
  • the present invention aims to provide an occupant detection device capable of detecting the occupant with a configuration that does not impair the riding comfort, in order to eliminate the above-described problems caused by the prior art, to reduce costs and save space. To do.
  • An occupant detection device is disposed on an upper side of a backrest portion of a vehicle seat, and includes a first sensor electrode that detects a capacitance in front of the backrest portion, and the first sensor electrode more than the first sensor electrode.
  • a second sensor electrode that is disposed on the lower side of the vehicle seat and detects a capacitance in front of the backrest, and a first capacitance value detected by the first sensor electrode.
  • a seating state determination means for determining a seating state of the vehicle seat, wherein the seating state determination means includes: (1) an adult seated; (2) a child Either sitting or (3) no seating Or it determines, and outputs to the deployment control means for an air bag mounted the determination result to the vehicle.
  • the first sensor electrode disposed on the upper side of the backrest portion of the vehicle seat, and the second sensor electrode disposed on the lower side of the vehicle seat than this Based on the first and second capacitance values indicating the respective capacitances detected by step (1), it is determined whether the seating state of the vehicle seat is one of the states (1) to (3). Thereby, cost reduction and space saving can be achieved. Moreover, since it can be comprised with two sensor electrodes, it becomes possible to detect a passenger
  • the seating state determination means determines the seating state based on a difference value between the first capacitance value and the second capacitance value.
  • the seating state determination means determines the seating state based on a variation value of the difference value within a predetermined time.
  • the seating state determination means determines the seating state based on an average value of the difference values within a predetermined time.
  • the vehicle further includes input means for inputting vehicle state information indicating the state of the vehicle, and the seating state determination means is based on the vehicle state information input to the input means.
  • the seating state is determined by calculating the difference value at a predetermined timing.
  • the seating state determination means determines the seating state by using at least one of the first and second capacitance values together with the difference value.
  • first and second sensor electrodes are preferably formed on the same substrate.
  • the second sensor electrode may be disposed on a seating portion of the vehicle seat.
  • FIG. 1 is a side view showing a vehicle seat to which a part of an occupant detection device according to a first embodiment of the present invention is applied. It is a front view of the vehicle seat. It is a block diagram which shows the circuit structure of the passenger detection apparatus. It is a flowchart which shows the passenger
  • FIG. 1 is a side view showing a vehicle seat to which a part of an occupant detection device according to a first embodiment of the present invention is applied.
  • FIG. 2 is a front view of the vehicle seat
  • FIG. 3 is a block diagram showing a circuit configuration of the occupant detection device.
  • the vehicle seat 10 is a seat mounted on a vehicle (not shown), and includes a seat portion 11 on which a passenger (occupant) 8 sits.
  • the vehicle seat 10 includes a backrest (seat back) 12 that rises from the back side of the seat 11 and supports the back of the occupant 8, and a headrest 13 that is provided on the upper end side of the backrest 12. ing.
  • the occupant detection device includes a capacitance sensor unit 20 built in the upper portion of the front surface side of the backrest unit 12, and a circuit unit 30 that processes a signal from the capacitance sensor unit 20. It is configured with.
  • the capacitance sensor unit 20 includes a first sensor electrode 21 and a second sensor electrode 22 formed on the same surface on the same substrate 29 such as a flexible printed board, a membrane board, and a rigid printed board in this example. .
  • the first and second sensor electrodes 21 and 22 are made of a conductive material such as Cu, copper alloy, or Al patterned on a substrate 29 made of an insulating base material such as PET, PEN, PA, or PI. Each of these sensor electrodes 21 and 22 is formed in a rectangular strip shape having a longitudinal direction along the width direction (left-right direction) of the backrest portion 12. Each sensor electrode 21, 22 is formed so that the width in the height direction (vertical direction) of the backrest 12 that intersects the longitudinal direction thereof is, for example, 20 mm. Moreover, the space
  • the first sensor electrode 21 is arranged on the upper side of the backrest portion 12, and the second sensor electrode 22 is arranged 30 mm below the first sensor electrode 21. Further, the second sensor electrode 22 is disposed 50 cm to 80 cm above the seating surface of the seating portion 11. Therefore, the capacitance sensor unit 20 including the first and second sensor electrodes 21 and 22 is disposed above the center point P of the backrest 12 as shown in FIG.
  • the first and second sensor electrodes 21 and 22 detect the capacitance in front of the backrest 12 respectively. Therefore, for example, as shown in FIG. 1, when the occupant 8 is seated on the vehicle seat 10, the capacitance between the occupant 8 and the occupant 8 is detected.
  • the first sensor electrode 21 is desirably set to have higher sensitivity than the second sensor electrode 22.
  • the circuit unit 30 includes a first capacitance detection circuit 31 and a second static capacitance detection circuit 31 that detect first and second capacitance values C1 and C2 based on capacitances from the first and second sensor electrodes 21 and 22, respectively.
  • a capacitance detection circuit 32 is provided.
  • the circuit unit 30 includes a seating state determination circuit 33 that determines the seating state of the occupant 8 in the vehicle seat 10 based on the detection values from the first and second capacitance detection circuits 31 and 32.
  • the circuit unit 30 includes an input unit 34 as an interface that inputs vehicle state information indicating the state of the vehicle from various sensors 9 mounted on the vehicle and outputs the vehicle state information to the seating state determination circuit 33, for example.
  • the seating state determination circuit 33 indicates that the seating state of the occupant 8 is, for example, (1) a state where an adult is seated, (2) a state where a child is seated, (3) no seating (or a child seat) ) Is determined.
  • the seating state determination circuit 33 outputs the determination result to an airbag control unit (such as an airbag unit) that controls the deployment of the airbag mounted on the vehicle.
  • the airbag control unit determines that, for example, a normal deployment force for an adult, a weak deployment force for a child, and no seating (or a child seat) according to the physique of the occupant 8 based on the transmitted determination result. In this case, it is possible to individually control the deployment of the airbag according to the physique and the presence / absence of sitting, such as no deployment.
  • the various sensors 9 are, for example, an ignition sensor that detects the state of the ignition switch of the vehicle, a vehicle speed sensor that detects the speed of the vehicle, a gear sensor that detects the state of the vehicle gear, a seat belt buckle sensor that detects the wearing state of the seat belt, and the like. Consists of.
  • the seating state determination circuit 33 determines whether the vehicle is in a specific state based on the vehicle state information from the input unit 34.
  • the capacitance sensor unit 20 and the circuit unit 30 may be formed separately as shown in FIG. 1, but the circuit unit 30 may be formed on the substrate 29.
  • the first and second capacitance detection circuits 31 and 32 include a CV conversion circuit and an A / D conversion circuit
  • the seating state determination circuit 33 includes a CPU, a RAM, a ROM, and the like.
  • the seating state determination circuit 33 includes, for example, a subtraction circuit inside, and calculates a difference value (detection comparison value) by subtracting the detection values from the capacitance detection circuits 31 and 32.
  • the subtraction circuit various configurations such as an IC, a logic circuit, and software processing can be adopted.
  • an occupant detection process is mainly performed as shown in FIG. First, based on the outputs from the first and second sensor electrodes 21 and 22, the first and second capacitance detection circuits 31 and 32 detect the first and second capacitance values C1 and C2, respectively ( Step S100).
  • the seating state determination circuit 33 determines the seating state of the occupant 8 on the vehicle seat 10 (step S102). Specifically, the seating state is determined by comparing the detected values of C1 and C2 with a predetermined threshold value.
  • the determination result is output to the airbag control unit (step S104), and the determination result is stored and maintained in a storage means (not shown) ( Step S106), the occupant detection process is terminated. The maintenance of the determination result is continued until, for example, the next process is performed. Thereby, it is possible to avoid waste of frequently performing the occupant detection process.
  • the seating state is determined using only the detection values of C1 and C2 has been described.
  • these detection comparison values may be used or may be determined using these detection comparison values in combination. Is possible.
  • various other known determination modes can be employed. Here, the determination process when the detection comparison value is used will be described.
  • the transition of the detection value and the detection comparison value in the occupant detection device when the physique of the occupant 8 changes is as shown in FIG. 5, for example.
  • the transition of the detection values of the first and second capacitance values C1 and C2 and the transition of the detection comparison value, for example, the difference value (C1-C2) thereof are as follows. expressed.
  • the detection comparison value is 0.
  • the case where there is no occupant 8 will be described below as a representative, but naturally this includes cases where a child seat is installed.
  • the detection value of C1 is larger on the + side than the detection value of C2, and the detection comparison value is shifted to the + side.
  • the detected value of C2 is larger on the + side than the detected value of C1, and the detected comparison value is shifted to the-side.
  • the values that can be taken for each physique of the detected comparison value that changes in this way are as shown in FIG. 6, for example.
  • the double circled column in FIG. 6 indicates the value of the detection comparison value that can be taken most frequently
  • the circled column indicates the value that can be normally taken
  • the triangular column indicates the value that cannot be taken the most.
  • the most possible value of the detected comparison value is “ ⁇ ”, the normal possible value is “0”, and the most unacceptable value is “ ⁇ (none)”.
  • the transition of the detection comparison value is “+”, “0”, and “ ⁇ ” in the same order as in the case of an adult.
  • the absolute value of “+” is much smaller than that for adults.
  • Such a detection comparison value changes as shown in FIG. 7, for example, with the passage of time.
  • the detection comparison value does not stabilize and changes to the + side or the ⁇ side within a predetermined time from the time t0 when the detection process is started.
  • the occupant detection device compares the fluctuation value or average value of the detected comparison value during the predetermined period t1 to t2 after the predetermined time t1 has elapsed with the predetermined comparison values th1 and th2, and the occupant 8 It can also be configured to determine the seating state.
  • the seating state is determined after the predetermined time t1 has elapsed.
  • the occupant detection device may perform the occupant detection process as follows. 8 and 9 are flowcharts showing a part of the occupant detection process in the occupant detection device.
  • the input unit 34 acquires vehicle state information from the various sensors 9 (step S94), and based on the acquired vehicle state information, the seating state determination circuit 33 determines whether the vehicle It is determined whether or not it is in a specific state (step S96).
  • the process start trigger can be set in the specific state. That is, for example, when the ignition switch is ON, when the vehicle speed is higher than a predetermined speed, when the gear is in a predetermined gear state, when the seat belt is attached, or any of these This is the case when combined. In this way, the process start trigger can be set in the specific state.
  • step S96 If it is determined that the vehicle is not in the specific state (No in step S96), the process returns to the vehicle state information acquisition process in step S94, but if it is determined that the vehicle is in the specific state (Yes in step S96), the predetermined time. Is waited for (No in step S98). Thereby, the seating determination can be performed while avoiding the time when the detection comparison value is not stable.
  • the predetermined time has elapsed (Yes in step S98)
  • step S100 In the process of step S98, waiting for the detection value and the detection comparison value to stabilize is performed.
  • step S108 vehicle state information is acquired again as shown in FIG. 9 (step S108). For example, whether the vehicle is not in a specific state and the process is terminated is determined. Determination is made (step S110). If the process is not terminated (No in step S110), the process proceeds to step S108. If the process is terminated (Yes in step S110), the series of occupant detection processes is terminated. If processing is performed in this manner, the physique of the occupant 8 can be detected more reliably.
  • the occupant detection device according to the second embodiment has the same configuration as the occupant detection device according to the first embodiment, but is processed so as to improve the determination accuracy of an adult or a child in the sitting state determination processing. Is different. That is, in the second embodiment, the seating state is determined by using at least one of the detection values of C1 and C2 and the detection comparison value in combination.
  • the detection comparison value continuously changes below a predetermined negative threshold, May be continuously changed, and in that case, it may be erroneously determined that the occupant 8 is not a child or present.
  • the detection value of C1 is compared with a predetermined threshold value to determine the seating state.
  • the detection value of C1 is equal to or greater than the threshold value, it is determined that the adult is leaning against the backrest portion 12, and the determination result based on the detection comparison value is less than the threshold value and there is no child. In this case, it is possible to improve the determination accuracy of an adult by determining that there is no occupant 8.
  • the detection value of C2 may be used.
  • the process may be performed by combining the detection value of C1, the detection value of C2, and the detection comparison value.
  • FIG. 10 is a side view showing a vehicle seat to which a part of an occupant detection device according to a third embodiment of the present invention is applied.
  • the second and second sensor electrodes 22 of the capacitance sensor unit 20 are arranged on the seating unit 11 on the lower side of the first sensor electrode 21. This is different from the occupant detection device according to the second embodiment.
  • the presence / absence of seating may be detected based on the detection value C2 of the second sensor electrode 22, and the physique of the occupant 8 may be detected based on the detection value C1 of the first sensor electrode 21.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Environmental & Geological Engineering (AREA)
  • Electromagnetism (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Seats For Vehicles (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

 乗員検知装置は、背もたれ部12の前面側における上部側に内蔵された静電容量センサ部20と、この静電容量センサ部20からの信号を処理する回路部30とを備える。静電容量センサ部20は、第1センサ電極21及び第2センサ電極22を備える。回路部30は、第1及び第2静電容量値C1,C2をそれぞれ検出する第1静電容量検出回路31及び第2静電容量検出回路32と、これらからの検出値に基づいて、車両用シート10における乗員8の着座状態を判定する着座状態判定回路33とを備える。着座状態判定回路33は、乗員8の着座状態が、(1)大人が着座している状態、(2)子供が着座している状態、(3)着座なしの状態のいずれであるかを判定する。

Description

乗員検知装置
 この発明は、自動車等の車両に搭載されたエアバッグの展開制御を行うために車両用シートの乗員を検知する乗員検知装置に関する。
 エアバッグの展開制御は、例えば乗員の非乗車時、チャイルドシート装着時、或いは子供の乗車時などに、例え事故があったとしても展開を制限する措置が必要な場合がある。このようにエアバッグの展開を制御するものとして、例えば下記特許文献1~4に開示されているような、車両用シートの乗員の種々の状態を検出して制御する方法が知られている。
 これらの方法のうち、例えば特許文献1に開示されたものでは、座席の下部に荷重を検出する手段を設置し、荷重に基づいてエアバッグの展開を制限する情報(乗員の体格情報)を検出している。
特開2010-173441号公報
 しかしながら、上記特許文献1に開示された従来の方法では、座面に大型のセンサを広範囲にわたって配置したりすることを要し、多大なコストがかかるだけではなく、座席の乗心地を損なってしまい乗員に不快感を与える場合があるという問題がある。
 この発明は、上述した従来技術による問題点を解消するため、コストの低減及び省スペース化を図り、乗心地を損なわない構成で乗員を検知することができる乗員検知装置を提供することを目的とする。
 本発明に係る乗員検知装置は、車両用シートの背もたれ部の上部側に配置され、前記背もたれ部の前方の静電容量を検知する第1のセンサ電極と、前記第1のセンサ電極よりも前記車両用シートの下方側に配置され、前記背もたれ部の前方の静電容量を検知する第2のセンサ電極と、前記第1のセンサ電極により検知された第1の静電容量値を検出する第1の静電容量検出手段と、前記第2のセンサ電極により検知された第2の静電容量値を検出する第2の静電容量検出手段と、前記第1及び第2の静電容量値に基づいて、前記車両用シートの着座状態を判定する着座状態判定手段とを備え、前記着座状態判定手段は、前記着座状態が、(1)大人が着座している状態、(2)子供が着座している状態、(3)着座なしの状態のいずれであるかを判定し、判定結果を車両に搭載されたエアバッグの展開制御手段に出力することを特徴とする。
 本発明に係る乗員検知装置によれば、車両用シートの背もたれ部の上部側に配置された第1のセンサ電極と、これよりも車両用シートの下方側に配置された第2のセンサ電極とによりそれぞれ検知された静電容量を示す第1及び第2の静電容量値に基づき、車両用シートの着座状態が、上記(1)~(3)の状態のいずれであるかを判定する。これにより、コストの低減及び省スペース化を図ることができる。また、2つのセンサ電極で構成することができるので、従来のものと比べて車両用シートの乗心地を損なわずに乗員を検知することが可能となる。
 本発明の一つの実施形態においては、前記着座状態判定手段が、前記第1の静電容量値と前記第2の静電容量値との差分値に基づいて、前記着座状態を判定する。
 また、本発明の他の実施形態においては、前記着座状態判定手段が、前記差分値の所定時間内における変動値に基づき、前記着座状態を判定する。
 本発明の更に他の実施形態においては、前記着座状態判定手段が、前記差分値の所定時間内における平均値に基づき、前記着座状態を判定する。
 また、本発明の更に他の実施形態においては、車両の状態を示す車両状態情報を入力する入力手段を更に備え、前記着座状態判定手段が、前記入力手段に入力された前記車両状態情報に基づき、前記差分値を所定のタイミングで算出して前記着座状態を判定する。
 本発明の更に他の実施形態においては、前記着座状態判定手段が、前記差分値と共に前記第1及び第2の静電容量値の少なくとも1つを併用して前記着座状態を判定する。
 なお、前記第1及び第2のセンサ電極は、同一基材上に形成されていると良い。また、前記第2のセンサ電極は、前記車両用シートの着座部に配置されていても良い。
 本発明によれば、コストの低減及び省スペース化を図り、乗心地を損なわない構成で乗員を検知することができる。
本発明の第1の実施形態に係る乗員検知装置の一部が適用された車両用シートを示す側面図である。 同車両用シートの正面図である。 同乗員検知装置の回路構成を示すブロック図である。 同乗員検知装置での乗員検知処理を示すフローチャートである。 同乗員検知装置における検出値と検出比較値の推移を示す図である。 同乗員検知装置における乗員の体格に応じた検出比較値の取り得る状態を示す図である。 同乗員検知装置における検出比較値の時間経過における推移を示す図である。 同乗員検知装置での乗員検知処理の一部を示すフローチャートである。 同乗員検知装置での乗員検知処理の一部を示すフローチャートである。 本発明の第3の実施形態に係る乗員検知装置の一部が適用された車両用シートを示す側面図である。
 以下、添付の図面を参照して、この発明の実施の形態に係る乗員検知装置を詳細に説明する。
[第1の実施形態]
 図1は、本発明の第1の実施形態に係る乗員検知装置の一部が適用された車両用シートを示す側面図である。図2は車両用シートの正面図、図3は乗員検知装置の回路構成を示すブロック図である。図1及び図2に示すように、車両用シート10は、図示しない車両に搭載された座席であり、搭乗者(乗員)8が着座する着座部11を備えている。また、車両用シート10は、この着座部11の背面側から立ち上がり、乗員8の背面を支持する背もたれ部(シートバック)12と、この背もたれ部12の上端側に設けられたヘッドレスト13とを備えている。
 乗員検知装置は、図3に示すように、背もたれ部12の前面側における上部側に内蔵された静電容量センサ部20と、この静電容量センサ部20からの信号を処理する回路部30とを備えて構成されている。静電容量センサ部20は、本例ではフレキシブルプリント基板、メンブレン基板、リジッドプリント基板等の同一の基板29上の同一面に形成された第1センサ電極21及び第2センサ電極22を備えている。
 第1及び第2センサ電極21,22は、例えばPET、PEN、PA、PI等の絶縁基材からなる基板29上にパターン形成されたCu、銅合金、Al等の導電材からなる。これら各センサ電極21,22は、それぞれ背もたれ部12の幅方向(左右方向)に沿った長手方向を有する矩形短冊状に形成されている。各センサ電極21,22は、その長手方向に交差する背もたれ部12の高さ方向(上下方向)の幅が、例えば20mmとなるように形成されている。また、第1センサ電極21と第2センサ電極22との間の間隔は、例えば10mmとなるように配置されている。
 すなわち、本例では第1センサ電極21は、背もたれ部12の上部側に配置され、第2センサ電極22は、第1センサ電極21よりも30mm下方側に配置される。また、第2センサ電極22は、着座部11の座面から高さ50cmから80cm上方に配置されている。従って、第1及び第2センサ電極21,22を備える静電容量センサ部20は、図2に示すように、背もたれ部12の中心点Pよりも上方側に配置されることとなる。
 第1及び第2センサ電極21,22は、それぞれ背もたれ部12の前方の静電容量を検知する。従って、例えば図1に示すように、乗員8が車両用シート10に着座している場合は、乗員8との間の静電容量を検知する。なお、例えば第1センサ電極21は、第2センサ電極22よりも高感度となるように設定されていることが望ましい。
 回路部30は、第1及び第2センサ電極21,22からの静電容量に基づく第1及び第2静電容量値C1,C2をそれぞれ検出する第1静電容量検出回路31及び第2静電容量検出回路32を備える。また、回路部30は、これら第1及び第2静電容量検出回路31,32からの検出値に基づいて、車両用シート10における乗員8の着座状態を判定する着座状態判定回路33を備える。更に、回路部30は、例えば車両に搭載された各種センサ9からの車両の状態を示す車両状態情報を入力して、着座状態判定回路33に出力するインタフェースとしての入力部34を備える。
 着座状態判定回路33は、具体的には乗員8の着座状態が、例えば(1)大人が着座している状態、(2)子供が着座している状態、(3)着座なし(若しくはチャイルドシートあり)の状態のいずれであるかを判定する。そして、着座状態判定回路33は、判定結果を車両に搭載されたエアバッグの展開等を制御するエアバッグ制御部(エアバッグユニットなど)に出力する。これにより、エアバッグ制御部は、送信された判定結果による乗員8の体格に応じて、例えば大人の場合は通常の展開力、子供の場合は弱めの展開力、着座なし(若しくはチャイルドシートあり)の場合は展開なし等、エアバッグの展開を体格や着座の有無に応じて個別に制御することが可能となる。
 各種センサ9は、例えば車両のイグニッションスイッチの状態を検知するイグニッションセンサ、車両の速度を検知する車速センサ、車両のギアの状態を検知するギアセンサ、シートベルトの装着状態を検知するシートベルトバックルセンサなどにより構成される。そして、着座状態判定回路33は、入力部34からの車両状態情報に基づいて、車両が特定状態であるか否かを判定する。
 なお、静電容量センサ部20と回路部30は、図1に示すように別体に形成されても良いが、回路部30が基板29上に形成されていても良い。また、第1及び第2静電容量検出回路31,32は、C-V変換回路やA/D変換回路を備えて構成され、着座状態判定回路33は、CPU、RAM、ROMなどからなる。着座状態判定回路33は、例えば内部に引き算回路を備え、各静電容量検出回路31,32からの検出値を引き算して差分値(検出比較値)を算出する。引き算回路の態様は、IC、ロジック回路、ソフトウェア処理等、種々の構成を採用することができる。
 このように構成された第1の実施形態に係る乗員検知装置では、主に図4に示すように乗員検知処理が行われる。まず、第1及び第2センサ電極21,22からの出力に基づき、第1及び第2静電容量検出回路31,32にて第1及び第2静電容量値C1,C2をそれぞれ検出する(ステップS100)。
 次に、第1及び第2静電容量値C1,C2の検出値に基づき、着座状態判定回路33にて車両用シート10への乗員8の着座状態を判定する(ステップS102)。具体的には、C1,C2のそれぞれの検出値と予め決められたしきい値とを比較して、着座状態を判定する。そして、上記(1)~(3)のいずれかの着座状態を判定したら、判定結果をエアバッグ制御部に出力し(ステップS104)、判定結果を図示しない記憶手段などに記憶して維持し(ステップS106)、乗員検知処理を終了する。判定結果の維持は、例えば次の処理が行われるまで継続される。これにより、乗員検知処理を頻繁に行う無駄を避けることができる。
 このようにすれば、乗員検知装置を構成する上で、全体のセンサ電極の数を少なくして小型化を促進することができる。また、背もたれ部12に配置した2つのセンサ電極で構成することができるので、コストの低減及び省スペース化を図り、乗心地を損なわない構成で乗員を検知することが可能となる。
 なお、上記処理では、C1,C2の検出値のみを用いて着座状態を判定する場合について説明したが、これらの検出比較値を用いたり、これらと検出比較値とを併用して判定することも可能である。また、ステップS102の着座状態の判定処理においては、その他公知の種々の判定態様を採用することが可能である。ここで、検出比較値を用いた場合の判定処理について説明する。
 まず、乗員8の体格が変化した場合の乗員検知装置における検出値と検出比較値の推移は、例えば図5に示すようになる。図5に示すように、第1及び第2の静電容量値C1,C2の検出値の推移と、例えばこれらの差分値(C1-C2)である検出比較値の推移は、次のように表される。
 すなわち、乗員8の体格が第1及び第2センサ電極21,22の中間点CPの辺りにある場合、C1及びC2の検出値は+側のある値で同等となり、検出比較値は0となる。その他、検出比較値が0となるケースとしては、着座なし(乗員8が居ない)の場合(乗員の体格=0)やチャイルドシートが搭載されている場合が該当する。これら2つの場合は、似たような検出比較値の推移を示すため、以降においては乗員8が居ない場合のみを代表して説明するが、チャイルドシートが搭載されている場合も当然にこれに含まれていることとする。
 一方、乗員8の体格が第1センサ電極21よりも高い位置にある場合、C1の検出値はC2の検出値よりも+側で大きくなり、検出比較値は+側へ推移する。反対に、乗員8の体格が第2センサ電極22よりも低い位置にある場合、C2の検出値はC1の検出値よりも+側で大きくなり、検出比較値は-側へ推移する。
 このように推移する検出比較値の体格毎に取り得る値は、例えば図6に示すようになる。なお、図6における二重丸印の欄は、最も多く取り得る検出比較値の値を示し、丸印の欄は通常取り得る値、三角印の欄は最も取り得ない値を示している。乗員8の体格が大人である場合、検出比較値の最も多く取り得る値は「+」となり、通常取り得る値は「0」、最も取り得ない値は「-」となる。
 一方、乗員8の体格が子供である場合、検出比較値の最も多く取り得る値は「-」となり、通常取り得る値は「0」、最も取り得ない値は「×(なし)」となる。更に、乗員8が居ない場合、検出比較値の推移は、大人である場合と同様に順に「+」、「0」、「-」となる。ただし、「+」の絶対値は大人の場合よりも格段に小さい。
 そして、このような検出比較値は、時間経過に伴って、例えば図7に示すように変化する。図7に示すように、乗員8が大人或いは子供である場合は、検知処理が開始された時点t0から所定時間内は、検出比較値が安定せずに+側或いは-側に変動する。
 一方、例えば所定時間が経過した後の時点t1から時点t2までの所定期間においては、大人である場合は+側に、子供である場合は-側にて安定する。これは、乗員8が車両用シート10に着座した直後は身体が動くことが多く、所定時間が経過した後は身体が動かないことが多いことを示している。
 すなわち、このような検出比較値の推移を乗員8の体格別に表すと、大人の場合は殆どが予め決められたしきい値th1以上のプラスの値を示し、時々しきい値th1を下回る値となることが分かる。また、子供の場合は殆どが予め決められたしきい値th2以下のマイナスの値を示し、時々0近傍の値となることが分かる。更に、居ない場合は0近傍のノイズレベルの値が継続して現われることが分かる。
 従って、乗員検知装置は、例えば所定時間t1が経過した後の所定期間t1~t2の間の検出比較値の変動値や平均値と所定の比較値th1,th2とを比較して、乗員8の着座状態を判定するように構成することもできる。次に、上記所定時間t1が経過した後に着座状態を判定する場合について説明する。
 上記のような検出比較値の推移を踏まえて、乗員検知装置は、次のように乗員検知処理を行うようにしてもよい。図8及び図9は、乗員検知装置での乗員検知処理の一部を示すフローチャートである。まず、図8に示すように、処理がスタートしたら、各種センサ9から入力部34が車両状態情報を取得し(ステップS94)、取得した車両状態情報に基づいて、着座状態判定回路33が車両が特定状態であるか否かを判定する(ステップS96)。
 ここで、車両が特定状態であると判定される場合は、例えば次のような状態の時をいう。すなわち、例えばイグニッションスイッチがONの状態であるとき、車速が所定速度以上の状態であるとき、ギアが所定のギアの状態であるとき、シートベルトが装着された状態であるとき、或いはこれらを任意に組み合わせた状態であるときなどが該当する。このようにすれば、特定状態のときを処理の開始トリガとすることができる。
 車両が特定状態でないと判定された場合(ステップS96のNo)は、ステップS94の車両状態情報の取得処理に戻るが、特定状態であると判定された場合(ステップS96のYes)は、所定時間が経過するまで待つ(ステップS98のNo)。これにより、検出比較値が安定しない時間を避けて着座判定をすることができる。所定時間が経過したら(ステップS98のYes)、図4に示した上記ステップS100に移行して処理を継続する。このステップS98の処理では、検出値や検出比較値が安定するのを待つことが行われる。
 そして、図4に示したステップS106にて判定結果を維持したら、図9に示すように再度車両状態情報を取得し(ステップS108)、例えば車両が特定状態ではなく処理を終了するか否かを判定する(ステップS110)。処理を終了しない場合(ステップS110のNo)は、ステップS108に移行するが、処理を終了する場合(ステップS110のYes)は、一連の乗員検知処理を終了する。このように処理を行えば、より確実に乗員8の体格を検知することができる。
[第2の実施形態]
 第2の実施形態に係る乗員検知装置は、第1の実施形態に係る乗員検知装置とその構成は同様であるが、着座状態の判定処理において、大人或いは子供の判定精度を向上させるように処理が行われる点が相違している。すなわち、第2の実施形態においては、C1,C2の検出値の少なくとも1つと、検出比較値とを併用して、着座状態を判定することとしている。
 具体的には、例えば大人が着座して背もたれ部12にもたれた状態で余り動かない状態のときに、検出比較値が予め定めた負のしきい値以下を継続して推移したり、0近傍を継続して推移したりすることがあり、その場合に乗員8が子供或いは居ないと誤って判定してしまうことがある。
 従って、図4に示したステップS102での判定処理において、検出比較値の推移に加えて、例えばC1の検出値と所定のしきい値とを比較して着座状態を判定することを行う。この場合、C1の検出値がしきい値以上であれば大人が背もたれ部12にもたれかかっていると判定し、しきい値未満であり且つ検出比較値による判定結果が子供あるいは居ないとなった場合は乗員8が居ないと判定することで、大人の判定精度を向上させることができる。反対に、子供の判定精度を向上させる場合は、C2の検出値を利用すればよい。その他、判定精度を向上させるために、C1の検出値、C2の検出値及び検出比較値をそれぞれ組み合わせて処理を行ってもよい。
[第3の実施形態]
 図10は、本発明の第3の実施形態に係る乗員検知装置の一部が適用された車両用シートを示す側面図である。第3の実施形態に係る乗員検知装置は、静電容量センサ部20の第2センサ電極22が、第1センサ電極21の下方側の着座部11に配置されている点が、第1及び第2の実施形態に係る乗員検知装置と相違している。この場合、第2センサ電極22のC2の検出値で着座の有無を検知し、第1センサ電極21のC1の検出値で乗員8の体格を検知するようにすればよい。
 8     乗員
 9     各種センサ
 10    車両用シート
 11    着座部
 12    背もたれ部(シートバック)
 13    ヘッドレスト
 20    静電容量センサ部
 21    第1センサ電極
 22    第2センサ電極
 29    基板
 30    回路部
 31    第1静電容量検出回路
 32    第2静電容量検出回路
 33    着座状態判定回路
 34    入力部

Claims (8)

  1.  車両用シートの背もたれ部の上部側に配置され、前記背もたれ部の前方の静電容量を検知する第1のセンサ電極と、
     前記第1のセンサ電極よりも前記車両用シートの下方側に配置され、前記背もたれ部の前方の静電容量を検知する第2のセンサ電極と、
     前記第1のセンサ電極により検知された第1の静電容量値を検出する第1の静電容量検出手段と、
     前記第2のセンサ電極により検知された第2の静電容量値を検出する第2の静電容量検出手段と、
     前記第1及び第2の静電容量値に基づいて、前記車両用シートの着座状態を判定する着座状態判定手段とを備え、
     前記着座状態判定手段は、前記着座状態が、(1)大人が着座している状態、(2)子供が着座している状態、(3)着座なしの状態のいずれであるかを判定し、判定結果を車両に搭載されたエアバッグの展開制御手段に出力する
     ことを特徴とする乗員検知装置。
  2.  前記着座状態判定手段は、前記第1の静電容量値と前記第2の静電容量値との差分値に基づいて、前記着座状態を判定する
     ことを特徴とする請求項1記載の乗員検知装置。
  3.  前記着座状態判定手段は、前記差分値の所定時間内における変動値に基づき、前記着座状態を判定する
     ことを特徴とする請求項2記載の乗員検知装置。
  4.  前記着座状態判定手段は、前記差分値の所定時間内における平均値に基づき、前記着座状態を判定する
     ことを特徴とする請求項2記載の乗員検知装置。
  5.  車両の状態を示す車両状態情報を入力する入力手段を更に備え、
     前記着座状態判定手段は、前記入力手段に入力された前記車両状態情報に基づき、前記差分値を所定のタイミングで算出して前記着座状態を判定する
     ことを特徴とする請求項2~4のいずれか1項記載の乗員検知装置。
  6.  前記着座状態判定手段は、前記差分値と共に前記第1及び第2の静電容量値の少なくとも1つを併用して前記着座状態を判定する
     ことを特徴とする請求項2~5のいずれか1項記載の乗員検知装置。
  7.  前記第1及び第2のセンサ電極は、同一基材上に形成されている
     ことを特徴とする請求項1~6のいずれか1項記載の乗員検知装置。
  8.  前記第2のセンサ電極は、前記車両用シートの着座部に配置されている
     ことを特徴とする請求項1~6のいずれか1項記載の乗員検知装置。  
PCT/JP2012/080081 2011-11-22 2012-11-20 乗員検知装置 WO2013077324A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-254550 2011-11-22
JP2011254550 2011-11-22

Publications (1)

Publication Number Publication Date
WO2013077324A1 true WO2013077324A1 (ja) 2013-05-30

Family

ID=48469768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080081 WO2013077324A1 (ja) 2011-11-22 2012-11-20 乗員検知装置

Country Status (1)

Country Link
WO (1) WO2013077324A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018046019A1 (en) * 2016-09-12 2018-03-15 Suzhou Swandoo Children's Articles Co., Ltd. Occupancy sensing for a child transportation system
CN110072730A (zh) * 2016-09-12 2019-07-30 苏州纪宝儿童用品有限公司 儿童安全座椅中的事故监测

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334451A (ja) * 1998-01-12 1999-12-07 Honda Motor Co Ltd 乗員検知装置
JP2000025559A (ja) * 1998-07-13 2000-01-25 Nec Corp 乗員検知システム及び乗員検知方法
JP2001074541A (ja) * 1999-09-03 2001-03-23 Toyota Motor Corp 着座乗員検知装置及び着座乗員検知方法
JP3287314B2 (ja) * 1998-08-31 2002-06-04 日本電気株式会社 乗員検知システム及び乗員検知方法
JP2004123087A (ja) * 2002-08-02 2004-04-22 Honda Elesys Co Ltd 乗員判別装置及び乗員判別方法
JP2009050462A (ja) * 2007-08-27 2009-03-12 Fujikura Ltd ヘッドレスト位置調整装置およびヘッドレスト位置調整方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11334451A (ja) * 1998-01-12 1999-12-07 Honda Motor Co Ltd 乗員検知装置
JP2000025559A (ja) * 1998-07-13 2000-01-25 Nec Corp 乗員検知システム及び乗員検知方法
JP3287314B2 (ja) * 1998-08-31 2002-06-04 日本電気株式会社 乗員検知システム及び乗員検知方法
JP2001074541A (ja) * 1999-09-03 2001-03-23 Toyota Motor Corp 着座乗員検知装置及び着座乗員検知方法
JP2004123087A (ja) * 2002-08-02 2004-04-22 Honda Elesys Co Ltd 乗員判別装置及び乗員判別方法
JP2009050462A (ja) * 2007-08-27 2009-03-12 Fujikura Ltd ヘッドレスト位置調整装置およびヘッドレスト位置調整方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018046019A1 (en) * 2016-09-12 2018-03-15 Suzhou Swandoo Children's Articles Co., Ltd. Occupancy sensing for a child transportation system
CN110072730A (zh) * 2016-09-12 2019-07-30 苏州纪宝儿童用品有限公司 儿童安全座椅中的事故监测

Similar Documents

Publication Publication Date Title
US7177746B2 (en) Occupant-classifying system
JP3570629B2 (ja) 荷重センサを用いる乗員判定装置
WO2010104105A1 (ja) ヘッドレスト位置調整装置およびヘッドレスト位置調整方法
JP2006010490A (ja) 静電容量式センサおよび乗員検知システム
JP5561562B2 (ja) 静電容量式乗員センサ装置
JP2007055556A (ja) 乗員検知装置
JP2005088738A (ja) 着座検知装置
WO2013077324A1 (ja) 乗員検知装置
JP6089777B2 (ja) シート乗員判定装置
JP2008056040A (ja) 車両用シートの乗員判別装置
JP2017144783A (ja) 乗員検知方法及び乗員検知装置
US20140305713A1 (en) Occupant classification apparatus using load sensor
JP5499491B2 (ja) 乗員検知センサ及び乗員検知システム
KR101743448B1 (ko) 벤딩센서가 구비된 시트 감지장치 및 그 감지방법
JP6149439B2 (ja) シート荷重検出装置
JP6031395B2 (ja) 荷重センサを用いる乗員判定装置
JP5986944B2 (ja) 荷重センサを用いる乗員判定装置
KR20180083573A (ko) 후석 센터의 승객 감지를 위한 sbr mat 센서
JP6028623B2 (ja) シート乗員判定装置
JP2009220727A (ja) シート着座センサ、着座検出装置、及び車両用シート
JP4258931B2 (ja) チャイルドシート検知装置およびチャイルドシート検知方法
JP2002087132A (ja) 着座検知装置
JP4522224B2 (ja) 乗員検知装置
JP2001180354A (ja) 着座検知装置
JP4441861B2 (ja) 乗員検知システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12852325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12852325

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP