WO2013073814A1 - 급탕열교환기 - Google Patents

급탕열교환기 Download PDF

Info

Publication number
WO2013073814A1
WO2013073814A1 PCT/KR2012/009559 KR2012009559W WO2013073814A1 WO 2013073814 A1 WO2013073814 A1 WO 2013073814A1 KR 2012009559 W KR2012009559 W KR 2012009559W WO 2013073814 A1 WO2013073814 A1 WO 2013073814A1
Authority
WO
WIPO (PCT)
Prior art keywords
adapter
water
diaphragm
direct
heat exchanger
Prior art date
Application number
PCT/KR2012/009559
Other languages
English (en)
French (fr)
Inventor
민태식
Original Assignee
주식회사 경동나비엔
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 경동나비엔 filed Critical 주식회사 경동나비엔
Priority to CA2855767A priority Critical patent/CA2855767A1/en
Priority to EP12850564.1A priority patent/EP2781841A1/en
Priority to JP2014540962A priority patent/JP5882491B2/ja
Priority to EA201490964A priority patent/EA201490964A1/ru
Priority to CN201280056529.4A priority patent/CN103946636A/zh
Priority to US14/355,499 priority patent/US20140262176A1/en
Publication of WO2013073814A1 publication Critical patent/WO2013073814A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/08Hot-water central heating systems in combination with systems for domestic hot-water supply
    • F24D3/087Tap water heat exchangers specially adapted therefore
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D9/00Central heating systems employing combinations of heat transfer fluids covered by two or more of groups F24D1/00 - F24D7/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0251Massive connectors, e.g. blocks; Plate-like connectors
    • F28F9/0253Massive connectors, e.g. blocks; Plate-like connectors with multiple channels, e.g. with combined inflow and outflow channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/06Heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations

Definitions

  • the present invention relates to a hot water supply heat exchanger, and more particularly, to a hot water supply heat exchanger for supplying hot water by heat exchange between heated water and direct water heated in a main heat exchanger of a boiler.
  • FIG. 1 is a schematic view showing a general heating / hot water combined use boiler.
  • the circulation pump 10 When the heating mode is activated, the circulation pump 10 is operated to transfer the heating water.
  • the heating water is heated in the main heat exchanger 20 by the combustion heat of the burner 21 and then transferred to the heating requirements through the three-way valve 30 to be heated.
  • the heat exchange is reduced in temperature due to heat exchange at the heating point is transferred to the main heat exchanger 20 through the expansion tank 50 and the circulation pump 10 to be reheated.
  • Reference numeral 22 denotes a blower.
  • the three-way valve 30 shuts off the path connected to the heating source side and opens the path connected to the hot water supply heat exchanger 40 side to supply the heating water heated in the main heat exchanger 20 to the hot water heat exchanger 40. To the side.
  • the hot water supply heat exchanger (40) heat exchange is performed between direct water and heating water to supply heated hot water to a hot water source.
  • the hot water supply heat exchanger 40 is connected to a pipe 41 through which heating water flows, a pipe 42 through which heating water is discharged, a pipe 43 through which direct water flows, and a pipe 44 through which hot water is discharged.
  • a hot water supply heat exchanger of the Republic of Korea Patent Registration 10-1002382 filed and registered by the present applicant.
  • the hot water supply heat exchanger of Patent Registration 10-1002382 is a heat exchanger that exchanges heat while the heating water and the direct water flows into a space between the diaphragm overlapping a plurality of diaphragms, the inlet through which the heating water flows and inside the heat exchanger.
  • a discharge port for discharging the finished heating water is integrally formed, and the first adapter coupled to the heat exchanger unit is integrated with the inlet port through which the direct water flows and the discharge port for discharging hot water heated by heat exchange between the heating water in the heat exchange unit. Is formed of a second adapter coupled to the heat exchanger.
  • a flow path of heating water and a direct water is formed by a space between neighboring diaphragms.
  • the flow path formed in this way has a longer flow path than a hot water supply heat exchanger, and the cross-sectional area of the flow path decreases, so that the flow resistance in the heat exchange part is reduced. There was a problem that became very large.
  • the present invention has been made to solve the above-mentioned problems, to simplify the pipe structure connected to the hot water supply heat exchanger and to provide a hot water heat exchanger that can minimize the flow resistance by minimizing the length of the flow path inside the hot water heat exchanger.
  • the purpose is to.
  • Hot water supply heat exchanger of the present invention for realizing the object as described above, the heat exchange between the heating water and the direct water supplied from the main heat exchanger to the spaces (131, 132, 133, 134) formed by overlapping a plurality of diaphragm (101 ⁇ 113).
  • the heat exchange part 100 is formed, the inlet 211 through which the heating water is introduced, and the discharge port 212 through which the heated water is discharged from the inside of the heat exchange part are integrally formed and coupled to the heat exchange part 100.
  • An adapter 210, an inlet 221 through which the direct water flows, and a discharge port 222 through which heat water is heated due to heat exchange with the heating water in the heat exchange part are integrally formed to the heat exchange part 100.
  • the first adapter (210) and the second adapter (220) is connected to the diaphragm (101) forming one side of the heat exchange part (100);
  • a first heating water circulation path 131 is formed in a space between the diaphragm 101 and the diaphragm 102 adjacent to the diaphragm 101 and the heating water flowing from the inlet 211 of the first adapter 210 flows;
  • the first direct circulation in which the direct water flowing from the inlet 221 of the second adapter 220 flows in the space between the diaphragm 113 and the diaphragm 112 adjacent to the diaphragm 113 forming the other side surface of the heat exchange part 100.
  • a path 133 is formed; Between the first heating water environment path 131 and the first direct water environment path 133, a plurality of second heating water environment path 132 and the heating water flowing through the first heating water environment path 131 and In addition, a plurality of second direct environmental paths 134 flowing through the first straight environmental path 133 may be alternately formed.
  • the heating water introduced through the first adapter is introduced into the first heating water circulation path formed at one end of the heat exchanger, and the direct water introduced through the second adapter is the first direct water formed at the other end of the heat exchanger.
  • the flow path resistance can be reduced by forming a heating water passing portion that extends the flow passage cross-sectional area in the diaphragm at one end of the heat exchanger, and a direct passing portion extending the flow passage cross-sectional area in the diaphragm at the other end of the heat exchange portion.
  • FIG. 1 is a schematic view showing a general heating / hot water combined use boiler
  • FIG. 2 is a perspective view showing the hot water supply heat exchanger of the present invention
  • FIG. 3 is an exploded perspective view of the hot water heat exchanger of FIG.
  • FIG. 4 is a cross-sectional view schematically showing the A-A cross section of the heat exchanger in the hot water supply heat exchanger of FIG.
  • FIG. 5 is a cross-sectional view schematically showing the B-B section of the heat exchanger in the hot water heat exchanger of FIG.
  • FIG. 6 is a cross-sectional view showing a state in which the first connection member and the second connection member are coupled to the first adapter of the present invention
  • FIG. 7 is a cross-sectional view showing a state in which the third connection member and the fourth connection member are coupled to the second adapter of the present invention
  • FIG. 8 is a cross-sectional view showing a flow path of heating water and hot water, respectively, in a state in which a first adapter and a second adapter of the present invention are coupled to a heat exchange unit;
  • first direct environmental road 134 second direct environmental road
  • first adapter 211 inlet
  • heating return connector 220 the second adapter
  • Figure 2 is a perspective view showing a hot water supply heat exchanger of the present invention.
  • Hot water heat exchanger (1) of the present invention a plurality of diaphragm overlapping the heat between the heating water and direct water flows into the space between the diaphragm heat exchanger 100 and the heat exchanger 100 is coupled to the heating line and It consists of a first adapter 210 and a second adapter 220 connecting the piping of the hot water supply line (reference numerals 41, 42, 43, 44 of FIG. 1) and the heat exchange part 100.
  • Figure 3 is an exploded perspective view of the hot water supply heat exchanger of Figure 2
  • Figure 4 is a cross-sectional view schematically showing a cross-section AA of the heat exchanger in the hot water supply heat exchanger of Figure 2
  • Figure 5 is a schematic cross-sectional view of the BB cross section of the heat exchanger in the hot water supply heat exchanger of Figure 2 It is sectional drawing to show.
  • the heat exchange part 100 of the present invention has, for example, a structure in which thirteen diaphragms 101 to 113 overlap.
  • the diaphragms 101 to 113 serve as heat transfer surfaces in which heat and water are directly exchanged with each other, thereby forming a laminated structure by bending the edges of the thin plates and welding the edges of neighboring diaphragms 101 to 113 to each other. do.
  • Unevenness is formed in the plates 102 to 112 to enlarge the heat transfer area.
  • illustration of the unevenness is omitted.
  • the heating water through holes 101a to 112a, 102b to 111b and the direct through holes 101c to 112c are provided in the plates 102 to 112 so that the heating water and the hot water are not mixed with each other, so that the water can flow in the heat exchanger 100. , 103d to 112d are formed.
  • the heating water through holes 101a to 112a, 102b to 111b and the straight through holes 101c to 112c and 103d to 112d are bent to form a flange at the same time as protruding the flat portions of the diaphragms 101 to 113. It is possible to combine the heating and through holes and the direct through holes of the neighboring diaphragm to communicate with each other. 4 and 5, the neighboring diaphragm may be formed by forming a protruding flange shape around the heating water passage hole and the direct passage hole, respectively, and one diaphragm may form only a hole and The diaphragm may be configured to protrude a hole so that a flange is formed.
  • the heating water through holes 101a to 112a, 102b to 111b connected as described above form a path through which the heating water flows, and the direct through holes 101c to 112c and 103d to 112d form a path through which the direct water flows.
  • the spaces formed between the plates 101 to 113 form the heating water environment paths 131 and 132 and the direct water environment paths 133 and 134.
  • the heating water introduced into the heat exchange unit 100 through the first adapter 210 sequentially passes through the first heating water environment path 131 and the second heating water environment path 132, and the first direct water environment path 133.
  • heat exchange with the direct water passing through the second direct pure environment path 134 is discharged to the heating return side through the first adapter 210.
  • the direct water flowing into the heat exchange unit 100 through the second adapter 220 passes through the first direct environmental path 133 and the second direct environmental path 134 in order, and the first heating sequence environmental path 131.
  • heat exchange with the heating water passing through the second heating and cooling environment path 132 is supplied to the hot water source through the second adapter 220.
  • a heating water passing portion 101e is formed to cross in a diagonal direction so as to protrude in an outward direction of the heat exchange part 100.
  • the space between the diaphragm 101 formed with the heating water passing portion 101e and the diaphragm 102 adjacent thereto forms the first heating water circulation path 131. Unevenness is formed on the surface of the diaphragm 102. In this case, except for the portion where the heating water passing portion 101e is formed in the first diaphragm 101, the flat plate portion contacts the unevenness formed on the neighboring diaphragm 102, or As the distance becomes very narrow, the flow resistance can be greatly increased when the heating water passes through this part.
  • the heating water passage 101e is formed so as to protrude in an outward direction, and the heating water passage hole 101a through which the heating water flows in is formed at one end of the heating water passage 101e.
  • a straight through part 113e having a shape crossing the diagonal direction so as to protrude in the outward direction of the heat exchange part 100. Is formed.
  • the space between the diaphragm 113 in which the direct passage part 113e is formed and the diaphragm 112 adjacent thereto forms the first direct environmental path 133. As the flow path is extended by the direct passage part 113e, flow resistance is reduced when the direct water passes through the first direct environment path 133.
  • FIG. 6 is a cross-sectional view showing a state in which the first connection member and the second connection member are coupled to the first adapter of the present invention
  • FIG. 7 is a state in which the third connection member and the fourth connection member are coupled to the second adapter of the present invention. It is a cross-sectional view showing.
  • the end of the first connecting member 231 is inserted into and coupled to the heating water passage 101a formed in the first diaphragm 101.
  • the first connection member 231 is formed of a cylindrical body, and after bending the upper end of the body is inserted into the bent portion of the heating water through hole (101a) and then welded.
  • the second connection member 232 is inserted into the first connection member 231.
  • the second connection member 232 has a portion of the body protruding upward from the first connection member 231, and the upper end of the protruding portion has heating passage holes 102b and 103b of the second and third diaphragms 102 and 103. Inserted and joined).
  • the inner circumferential surface of the first connecting member 231 and the outer circumferential surface of the second connecting member 232 are spaced apart from each other to allow the heating water introduced through the inlet 211 to the space 231a formed therebetween.
  • the first adapter 210 is a place where the inflow and outflow of the heating water is made by interconnecting the heating pipe and the heat exchanger 100, and the inlet 211, the outlet 212, and the connector 213, 214 are formed by injection molding. It is formed integrally.
  • the inlet 211 is connected to the heating line pipe 41 of FIG. 1 to introduce the heating water
  • the outlet 212 is connected to the heating line pipe 42 of FIG. 1 to heat the inside of the heat exchanger 100. Water is discharged through the outlet 212.
  • the connectors 213 and 214 may include an external connector 213 inserted into and coupled to a lower end of the first connection member 231 and an internal connector 214 inserted into and coupled to a lower end of the second connection member 232.
  • the inner connector 214 is positioned inside the outer connector 213 to form a concentric structure.
  • the heating water introduced through the inlet 211 passes through the space 215 between the outer connector 213 and the inner connector 214, and then the first connection member 231 and the second connection member 232. It is discharged through the space 231a between and flows into the first heating and cooling environment path 131.
  • the heating water circulated through the heat exchange part 100 is discharged through the outlet 212 through the inner space of the second connection member 232 and the internal connector 214.
  • the portion where the first connector 231 and the external connector 213 are coupled, and the portion where the second connector 232 and the internal connector 214 are coupled, have an O-ring for maintaining airtightness. It is preferable to insert each.
  • the outer connector 213 and the first connector (213) and the outer connector 213 and the inner connector 214 are inserted into the lower end of the first connector 231 and the second connector 232 via the O-ring.
  • the first adapter 210 can be attached or detached.
  • the upper end of the first connecting member 231 is welded to the circumference of the heating water passage hole 101c of the diaphragm 101, and the upper end of the second connecting member 232 of the diaphragm 102 and 103. Since each of the heating water through holes 102b and 103b is welded to each other, only the first adapter 210 can be separated from the first connection member 231 and the second connection member 232.
  • the first adapter 210 is preferably provided with a water supply valve connector 216 (see Fig. 8) connected to the water supply valve 300 (see Fig. 8) for replenishing the heating water in the heating pipe of the boiler.
  • the water supply valve is for supplying additional heating water when the heating water is insufficient in the heating line.
  • the piping structure is simplified by connecting the water supply valve to the water supply valve connector 216 integrally formed with the first adapter 210.
  • the first adapter 210 is preferably formed with a heating return connector 217 (see Fig. 8).
  • the heating return connector 216 is connected to the heating pipe side through which the heating return flows.
  • the heating return water introduced through the heating return connector 216 is supplied to the circulation pump 10 through the discharge port 212.
  • the third connecting member 241 is inserted into and coupled to the straight through holes 101c and 102c formed in the first and second diaphragms 101 and 102.
  • the third connection member 241 is formed of a cylindrical body, and after bending the upper end portion of the body is inserted into the straight through hole (101c, 102c) and then welded.
  • the fourth connection member 242 is inserted into the third connection member 241.
  • the fourth connection member 242 has a portion of the body protruding upward from the third connection member 241, and the upper end portion of the protruding portion has a straight through hole of the plates 110 and 111 located above the heat exchanger 100. 111c and 112c).
  • the inner circumferential surface of the third connecting member 241 and the outer circumferential surface of the fourth connecting member 242 are spaced apart from each other so that the space 241a and the outlet 222 formed therebetween communicate with each other.
  • the second adapter 220 is a place where the inflow and outflow of the direct / hot water is made by interconnecting the direct / hot water side pipes 43 and 44 and the heat exchange part 100, and the inlet 221 and the outlet are formed by injection molding. 222 and connector 223, 224 are integrally formed.
  • the inlet 221 is connected to the pipe 43 of FIG. 1 and direct water flows in, and the outlet 222 is connected to the pipe 44 of FIG. 1 and heated hot water is discharged through the heat exchanger 100. do.
  • the connectors 223 and 224 are formed of an external connector 224 inserted into and coupled to the lower end of the third connection member 241 and an internal connector 223 inserted into and coupled to the lower end of the fourth connection member 242.
  • the inner connector 223 is positioned inside the outer connector 224 to form a concentric structure.
  • Direct water flowing through the inlet 221 is introduced into the first direct environmental path 133 through the inner space of the inner connector 223 and the fourth connection member 242.
  • the direct water circulating in the heat exchange part 100 via the first direct environmental path 133 is a space 241a and the space 241a between the third connection member 241 and the second connection member 242. After passing through the space 225 between the outer connector 224 and the inner connector 223 in order to be discharged through the outlet 222.
  • the portion where the third connector 241 and the outer connector 224 are coupled and the portion where the fourth connector 242 and the inner connector 223 are coupled are O-rings for maintaining airtightness. It is preferable to insert each.
  • the second adapter 220 can be attached or detached.
  • the upper end of the third connecting member 241 is welded to the circumference of the through holes 101c and 102c of the diaphragm 101 and 102, and the upper end of the fourth connecting member 242 is of the diaphragm 111 and 112. Since each of the through holes 111c and 112c is welded to each other, only the second adapter 220 can be separated from the third connecting member 241 and the fourth connecting member 242.
  • first and second adapters 210 and 220 of the present invention are formed with inlets 211 and 221 and outlets 212 and 222 and connectors 213, 214, 223 and 224 integrally to simplify the piping structure connected thereto. Can be.
  • the second adapter 220 has a water supply valve connector 226 (see FIG. 8) connected to the water supply valve 300.
  • FIG. 8 is a cross-sectional view schematically illustrating a flow path of heating water and hot water in a state in which the first adapter and the second adapter of the present invention are coupled to a heat exchange unit.
  • the heat exchanger 100 is coupled to the first adapter 210 and the second adapter 220 to be connected to the heating pipe and the hot water pipe, the first adapter 210 and the heat exchanger 100 is a first connection member 231 and the second connection member 232 are coupled via a medium.
  • the heating water heated in the main heat exchanger 20 is cut off to the heating source side and supplied to the hot water supply heat exchanger 1 side to supply the inlet 211 of the first adapter 210. ) Flows inside.
  • the heating water introduced from the inlet 211 of the first adapter 210 is a space 215 between the outer connector 213 and the inner connector 214 and the first connector 231 of the first adapter 210. After passing through the space (231a) between the second connecting member 232 and the first partition 101 and the partition 102 adjacent to it is introduced into the first heating water circulation path (131).
  • the heating water introduced into the first heating water circulation path 131 is coupled such that the upper end of the second connection member 232 does not allow the heating water to flow into the heating water passage holes 102b and 103b of the diaphragms 102 and 103. Therefore, after the first heating flow environment path 131 flows in the horizontal direction, the heating flow environment of the upper side through the other heating water passage holes 102a and 103a formed in the diagonal direction of the heating water passage holes 102b and 103b. Flows into the furnace.
  • a heating water passing portion 101e having an enlarged flow path cross section is formed, and the heating water passing through the first heating flow environment path 131 is formed in the diaphragm 101.
  • the flow path resistance is not largely taken.
  • the heating water passing through the heating water passage holes 102a and 103a sequentially passes through the heating water passage holes 104a to 111a of the other diaphragm formed above the upper portion of the first heating water circulation path 131.
  • the heating water that has undergone heat exchange with the direct water passing through the second cooling water environment path 132 and passing through the direct water environment paths 133 and 134 is formed in a diagonally horizontal direction of the heating water passage holes 104a to 111a. After passing through the holes (111b ⁇ 104b) in order to enter the second connection member 232 through the inner connector 214 of the first adapter 210 while the temperature is reduced in the expansion tank (212) through the outlet (212) 50).
  • direct water flows into the inlet 221 of the second adapter 220.
  • the direct water flowing into the inlet 221 is the first straight water environment path formed on the opposite side to which the adapters 210 and 220 of the heat exchange unit 100 are coupled via the inner connector 223 and the fourth connection member 242. 133 is introduced.
  • the direct water flowing into the first straight environment path 133 flows in the horizontal direction and then flows into the downward straight environment path through the straight through holes 111d and 112d formed in the diaphragms 111 and 112.
  • a straight passage portion 113e having an extended flow path cross-sectional area is formed, and the flow path resistance is applied to the direct water passing through the first direct environmental path 133. It doesn't take much.
  • the heating water passing through the through-holes 111d and 112d sequentially passes through the straight through-holes 110d to 103d of the other diaphragm formed below the plurality of holes, and is formed at the lower portion of the first straight environment path 133.
  • the second direct environment path 134 flows in the horizontal direction opposite to the flow direction in the first direct environment path 133.
  • the direct flow through which the heat exchange with the heating water passing through the heating flow environment paths 131 and 132 while passing through the second straight environment path 134 is formed in a diagonal horizontal direction of the straight passage holes 110d to 103d.
  • the space 241a between the third connecting member 241 and the fourth connecting member 242 is introduced into the space 225 between the inner connector 223 and the outer connector 224.
  • the water is discharged to the hot water source side through the outlet 222 while the water is in sequence.
  • a fourth connecting member 242 is inserted into the straight through holes 110c to 103c, and the water is directly discharged through a gap formed between the outer circumferential surface of the fourth connecting member 242 and the straight through holes 110c to 103c. Will flow.
  • the present invention includes one first heating environment path 131, a plurality of second direct environment paths 134, a plurality of second heating environment paths 132, and one first direct environment path 133. ) Is sequentially stacked, and the flow path of the heating water and the direct water flowing in the heat exchange part 100 is short, so that the flow path resistance can be reduced.
  • the first heating water environment path 131 which is the first space into which the heating water flows into the heat exchange part 100 and the first direct water environment path 133 which is the first space into which the direct water flows into the heat exchange part 100 are included. Is formed on one side and the other side of the heat exchange unit 100 can shorten the flow path of the heating water and direct water.
  • the heating water supplied to the heating source is returned to the circulation pump 10 after the heat exchange process is performed.
  • the heating return water returned to the circulation pump 10 to the heating return connector 217 of the first adapter 210 through the outlet 212, through the expansion tank 50 to the circulation pump 10 side To be returned.
  • the water supply valve 300 is installed between the water supply valve connector 216 of the first adapter 210 and the water supply valve connector 226 of the second adapter 220. Therefore, when the water supply valve 300 is opened, some of the hot water in the second adapter 220 passes through the water supply valve connector 216 and the outlet 212 of the first adapter 210 through the water supply valve connector 226. It is then supplied to the heating pipe on the return side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Water Supply & Treatment (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

본 발명은 급탕열교환기에 연결되는 배관 구조를 간단하게 하는 동시에 급탕열교환기 내부에서의 유로 길이를 최소화함으로써 유로 저항을 최소화시킬 수 있는 급탕열교환기를 제공하고자 함에 그 목적이 있다. 이를 구현하기 위한 본 발명은, 열교환부의 일측면을 형성하는 격판에는 제1어댑터와 제2어댑터가 연결되고; 상기 격판과 인접하는 격판 사이의 공간에는 상기 제1어댑터의 유입구로부터 유입된 난방수가 흐르는 제1난방수순환경로가 형성되고; 상기 열교환부의 타측면을 형성하는 격판과 그에 인접하는 격판 사이의 공간에는 상기 제2어댑터의 유입구로부터 유입된 직수가 흐르는 제1직수순환경로가 형성되며; 상기 제1난방수순환경로와 제1직수순환경로 사이에는, 상기 제1난방수순환경로를 통과한 난방수가 흐르는 복수의 제2난방수순환경로와, 상기 제1직수순환경로를 통과한 직수가 흐르는 복수의 제2직수순환경로가 형성된 것을 특징으로 한다.

Description

급탕열교환기
본 발명은 급탕열교환기에 관한 것으로, 보다 상세하게는 보일러의 주열교환기에서 가열된 난방수와 직수와의 사이에 열교환을 하여 온수를 공급하기 위한 급탕열교환기에 관한 것이다.
도 1은 일반적인 난방/온수 겸용 순간식 보일러를 개략적으로 보여주는 구성도이다.
난방모드가 작동되면, 순환펌프(10)가 작동되어 난방수가 이송된다. 난방수는 버너(21)의 연소열에 의해 주열교환기(20)에서 가열된 후 삼방밸브(30)를 거쳐 난방소요처로 이송되어 난방이 이루어진다. 난방소요처에서 열교환이 이루어져 온도가 하락된 난방환수는 팽창탱크(50) 및 순환펌프(10)를 거쳐 주열교환기(20)로 이송되어 재가열이 이루어진다. 미설명부호 22는 송풍기를 나타낸다.
온수모드가 작동되면, 삼방밸브(30)에서 난방소요처측으로 연결되는 경로를 차단하고 급탕열교환기(40)측으로 연결되는 경로를 개방시켜 주열교환기(20)에서 데워진 난방수를 급탕열교환기(40)측으로 이송시킨다. 상기 급탕열교환기(40)에서는 직수와 난방수 사이에 열교환이 이루어져 가열된 온수를 온수소요처로 공급하게 된다.
이와 같은 급탕열교환기(40)에는 난방수가 유입되는 배관(41), 난방수가 배출되는 배관(42), 직수가 유입되는 배관(43) 및 온수가 배출되는 배관(44)이 연결된다. 이러한 배관(41,42,43,44) 구조를 간단하게 하기 위해 본 출원인에 의해 출원되어 등록된 대한민국 특허등록 10-1002382의 급탕열교환기가 개시되어 있다.
위 특허등록 10-1002382의 급탕열교환기는, 다수의 격판을 겹쳐 격판 사이사이의 공간으로 상기 난방수와 직수가 흐르면서 열교환이 이루어지는 열교환부와, 상기 난방수가 유입되는 유입구와 상기 열교환부 내부에서 열교환을 마친 난방수가 배출되는 배출구가 일체로 형성되어 상기 열교환부에 결합된 제1어댑터와, 상기 직수가 유입되는 유입구와 상기 열교환부 내부에서 난방수와의 열교환으로 인해 가열된 온수가 배출되는 배출구가 일체로 형성되어 상기 열교환부에 결합된 제2어댑터로 이루어진다.
상기 열교환부 내부에는 이웃하는 격판 사이의 공간에 의해 난방수와 직수의 유로가 형성되어 있는데, 이와 같이 형성된 유로는 일반적인 급탕열교환기보다 유로길이는 늘어나고, 유로 단면적은 줄어들어 열교환부에서의 유로저항이 매우 커지는 문제점이 있었다.
본 발명은 상술한 제반 문제점을 해결하기 위해 안출된 것으로, 급탕열교환기에 연결되는 배관 구조를 간단하게 하는 동시에 급탕열교환기 내부에서의 유로 길이를 최소화함으로써 유로 저항을 최소화시킬 수 있는 급탕열교환기를 제공하고자 함에 그 목적이 있다.
상기한 바와 같은 목적을 구현하기 위한 본 발명의 급탕열교환기는, 다수의 격판(101~113)을 겹쳐 형성된 격판 사이의 공간(131,132,133,134)으로 주열교환기로부터 공급된 난방수와 직수가 교대로 흐르면서 열교환이 이루어지는 열교환부(100)와, 상기 난방수가 유입되는 유입구(211)와 상기 열교환부 내부에서 열교환을 마친 난방수가 배출되는 배출구(212)가 일체로 형성되어 상기 열교환부(100)에 결합된 제1어댑터(210)와, 상기 직수가 유입되는 유입구(221)와 상기 열교환부 내부에서 난방수와의 열교환으로 인해 가열된 온수가 배출되는 배출구(222)가 일체로 형성되어 상기 열교환부(100)에 결합된 제2어댑터(220)로 이루어진 급탕열교환기에 있어서, 상기 열교환부(100)의 일측면을 형성하는 격판(101)에는 상기 제1어댑터(210)와 제2어댑터(220)가 연결되고; 상기 격판(101)과 인접하는 격판(102) 사이의 공간에는 상기 제1어댑터(210)의 유입구(211)로부터 유입된 난방수가 흐르는 제1난방수순환경로(131)가 형성되고; 상기 열교환부(100)의 타측면을 형성하는 격판(113)과 그에 인접하는 격판(112) 사이의 공간에는 상기 제2어댑터(220)의 유입구(221)로부터 유입된 직수가 흐르는 제1직수순환경로(133)가 형성되며; 상기 제1난방수순환경로(131)와 제1직수순환경로(133) 사이에는, 상기 제1난방수순환경로(131)를 통과한 난방수가 흐르는 복수의 제2난방수순환경로(132)와, 상기 제1직수순환경로(133)를 통과한 직수가 흐르는 복수의 제2직수순환경로(134)가 교대로 형성된 것을 특징으로 한다.
본 발명에 의하면, 제1어댑터를 통해 유입된 난방수는 열교환부의 일측단에 형성된 제1난방수순환경로로 유입되도록 하고, 제2어댑터를 통해 유입된 직수는 열교환부의 타측단에 형성된 제1직수순환경로로 유입되도록 함으로써 열교환부 내부에 형성된 난방수와 직수의 유로 길이를 단축시킬 수 있다.
또한 열교환부의 일측단의 격판에 유로 단면적을 확장시키는 난방수통과부를 형성시키고, 열교환부의 타측단의 격판에 유로 단면적을 확장시키는 직수통과부를 형성시킴으로써 유로 저항을 감소시킬 수 있다.
도 1은 일반적인 난방/온수 겸용 순간식 보일러를 개략적으로 보여주는 구성도,
도 2는 본 발명의 급탕열교환기를 보여주는 사시도,
도 3은 도 2의 급탕열교환기의 분해 사시도,
도 4는 도 2의 급탕열교환기에서 열교환부의 A-A단면을 개략적으로 나타내는 단면도,
도 5는 도 2의 급탕열교환기에서 열교환부의 B-B단면을 개략적으로 나타내는 단면도,
도 6은 본 발명의 제1어댑터에 제1연결부재와 제2연결부재가 결합된 상태를 보여주는 단면도,
도 7은 본 발명의 제2어댑터에 제3연결부재와 제4연결부재가 결합된 상태를 보여주는 단면도,
도 8은 본 발명의 제1어댑터와 제2어댑터가 열교환부에 결합된 상태에서 난방수와 온수의 유로를 각각 보여주는 단면도.
** 부호의 설명 **
1 : 급탕열교환기 100 : 열교환부
101 ~ 113 : 격판
101a ~ 111a, 102b ~ 111b : 난방수통과구멍
101c ~ 112c, 103d ~ 112d : 직수통과구멍
131 : 제1난방수순환경로 132 : 제2난방수순환경로
133 : 제1직수순환경로 134 : 제2직수순환경로
210 : 제1어댑터 211 : 유입구
212 : 배출구 213 : 외부연결구
214 : 내부연결구 216 : 급수밸브연결구
217 : 난방환수연결구 220 : 제2어댑터
221 : 유입구 222 : 배출구
223 : 내부연결구 224 : 외부연결구
226 : 급수밸브연결구 231 : 제1연결부재
232 : 제2연결부재 233 : 제3연결부재
234 : 제4연결부재 300 : 급수밸브
이하 첨부한 도면을 참조하여 본 발명의 바람직한 실시예에 대한 구성 및 작용을 상세히 설명하면 다음과 같다.
도 2는 본 발명의 급탕열교환기를 보여주는 사시도이다.
본 발명의 급탕열교환기(1)는, 다수의 격판을 겹쳐 격판 사이사이의 공간으로 난방수와 직수가 흐르면서 열교환이 이루어지는 열교환부(100)와, 상기 열교환부(100)에 결합되어 난방라인 및 급탕라인의 배관(도 1의 도면부호 41,42,43,44)과 열교환부(100)를 연결시켜주는 제1어댑터(210)와 제2어댑터(220)로 이루어진다.
도 3은 도 2의 급탕열교환기의 분해 사시도, 도 4는 도 2의 급탕열교환기에서 열교환부의 A-A단면을 개략적으로 나타내는 단면도, 도 5는 도 2의 급탕열교환기에서 열교환부의 B-B단면을 개략적으로 나타내는 단면도이다.
본 발명의 열교환부(100)는 일례로, 13개의 격판(101~113)이 겹쳐진 구조로 이루어진다. 상기 격판(101~113)은 난방수와 직수의 열교환이 이루어지는 전열면이 되는 것으로 박판(薄板)의 가장자리부를 절곡시키고 이웃하는 격판(101~113)의 가장자리부를 서로 용접결합함으로써 적층구조를 형성하게 된다.
상기 격판(102~112)에는 전열면적 확대를 위해 요철이 형성되어 있다. 도 4와 도 5에서는 상기 요철의 도시가 생략되어 있다.
상기 격판(102~112)에는 난방수와 온수가 서로 혼합되지 않으면서 열교환부(100) 내부에서 유동이 가능하도록 난방수통과구멍(101a~112a,102b~111b)과 직수통과구멍(101c~112c, 103d~112d)이 형성되어 있다.
상기 난방수통과구멍(101a~112a,102b~111b)과 직수통과구멍(101c~112c, 103d~112d)은 격판(101~113)의 평평한 부분을 돌출시킴과 동시에 플랜지가 형성되도록 절곡시킨 형상으로 이루어져 있어, 이웃하는 격판의 난방수통과구멍과 직수통과구멍을 상호 연통되게 결합하는 것이 가능하다. 도 4와 도 5에 도시된 바와 같이 이웃하는 격판에 각각 난방수통과구멍과 직수통과구멍의 주위를 돌출된 플랜지 형상으로 형성하는 것으로 구성할 수도 있고, 하나의 격판에는 구멍만 형성하고 그 이웃하는 격판에는 구멍을 돌출되게 하여 플랜지가 형성되도록 하는 것으로 구성할 수도 있다.
이와 같이 연결된 난방수통과구멍(101a~112a,102b~111b)은 난방수가 흐르는 경로를 형성하고, 직수통과구멍(101c~112c, 103d~112d)은 직수가 흐르는 경로를 형성하게 된다.
상기 격판(101~113) 사이에 형성된 공간은 도 4와 도 5에 도시된 바와 같이, 난방수순환경로(131,132)와 직수순환경로(133,134)를 형성한다. 제1어댑터(210)를 통해 열교환부(100) 내부로 유입된 난방수는 제1난방수순환경로(131) 및 제2난방수순환경로(132)를 순차 통과하면서 제1직수순환경로(133) 및 제2직수순환경로(134)를 통과하는 직수와 열교환이 이루어진 후 제1어댑터(210)를 통해 난방환수 측으로 배출된다. 또한 제2어댑터(220)를 통해 열교환부(100) 내부로 유입된 직수는 제1직수순환경로(133) 및 제2직수순환경로(134)를 순차로 통과하면서 제1난방수순환경로(131) 및 제2난방수순환경로(132)를 통과하는 난방수와 열교환이 이루어진 후 제2어댑터(220)를 통해 온수소요처로 공급된다.
상기 어댑터(210,220)가 결합되는 격판(101)에는 열교환부(100)의 외측 방향으로 돌출되도록 대각선 방향으로 가로지르는 형상의 난방수통과부(101e)가 형성되어 있다. 상기 난방수통과부(101e)가 형성된 격판(101)과 그에 인접하는 격판(102) 사이의 공간은 제1난방수순환경로(131)를 형성하게 된다. 상기 격판(102)의 표면에는 요철이 형성되어 있는데, 이 경우 첫 번째 격판(101)에서 난방수통과부(101e)가 형성된 부분을 제외한 나머지 평판 부분은 이웃하는 격판(102)에 형성된 요철과 접촉하거나 거리가 매우 좁아지게 되므로 난방수가 이 부분을 통과할 때 유로저항이 크게 걸릴 수 있다. 본 발명의 경우 외측 방향으로 돌출되도록 난방수통과부(101e)를 형성하고 상기 난방수통과부(101e)의 일측 단부에 난방수가 유입되는 난방수통과구멍(101a)이 형성되도록 함으로써 상기 난방수를 유로가 확장된 난방수통과부(101e)로 유도함으로써 난방수가 통과할 때 유로 저항이 적게 걸리도록 되어 있다.
한편, 첫 번째 격판(101)에 대향하는 열교환부(100)의 타측에 구비된 격판(113)에는 열교환부(100)의 외측 방향으로 돌출되도록 대각선 방향으로 가로지르는 형상의 직수통과부(113e)가 형성되어 있다. 상기 직수통과부(113e)가 형성된 격판(113)과 그에 인접하는 격판(112) 사이의 공간은 제1직수순환경로(133)를 형성하게 된다. 상기 직수통과부(113e)로 인해 유로가 확장됨으로써 직수가 제1직수순환경로(133)를 통과할 때 유로 저항이 적게 걸리게 된다.
도 6은 본 발명의 제1어댑터에 제1연결부재와 제2연결부재가 결합된 상태를 보여주는 단면도, 도 7은 본 발명의 제2어댑터에 제3연결부재와 제4연결부재가 결합된 상태를 보여주는 단면도이다.
도 6을 참조하여 열교환부(100)와 제1어댑터(210)가 결합되는 구조에 대해 설명한다.
첫 번째 격판(101)에 형성된 난방수통과구멍(101a)에는 제1연결부재(231)의 단부가 삽입되어 결합된다. 상기 제1연결부재(231)는 원통 형상의 몸체로 이루어지고, 몸체의 상단부를 절곡한 후 그 절곡된 부분을 난방수통과구멍(101a)에 삽입한 후 용접결합하게 된다.
상기 제1연결부재(231)의 내부에는 제2연결부재(232)가 삽입된다. 상기 제2연결부재(232)는 제1연결부재(231)의 상측으로 몸체 일부가 돌출되어 있고 그 돌출된 부분의 상단부가 두 번째와 세 번째 격판(102,103)의 난방수통과구멍(102b,103b)에 삽입되어 결합된다.
상기 제1연결부재(231)의 내주면과 제2연결부재(232)의 외주면은 서로 이격되어 있어 그 사이에 형성된 공간(231a)으로 유입구(211)를 통해 유입된 난방수가 통과하도록 되어 있다.
제1어댑터(210)는 난방배관과 열교환부(100) 사이를 상호 연결시킴으로써 난방수의 유입 및 유출이 이루어지는 곳으로서, 사출성형에 의해 유입구(211)와 배출구(212) 및 연결구(213,214)가 일체로 형성되어 있다.
상기 유입구(211)는 도 1의 난방라인 배관(41)과 연결되어 난방수가 유입되고, 배출구(212)는 도 1의 난방라인 배관(42)과 연결되어 열교환부(100) 내부를 경유한 난방수가 상기 배출구(212)를 통해 배출된다.
상기 연결구(213,214)는, 상기 제1연결부재(231)의 하단부에 삽입결합되는 외부연결구(213)와, 상기 제2연결부재(232)의 하단부에 삽입결합되는 내부연결구(214)로 이루어지고, 상기 내부연결구(214)는 외부연결구(213)의 내측에 위치되어 동심 구조를 이루게 된다.
상기 유입구(211)를 통해 유입된 난방수는, 상기 외부연결구(213)와 내부연결구(214) 사이의 공간(215)을 경유한 후 제1연결부재(231)과 제2연결부재(232) 사이의 공간(231a)을 통해 배출되어 상기 제1난방수순환경로(131)로 유입된다.
상기 열교환부(100) 내부를 순환한 난방수는 상기 제2연결부재(232)와 내부연결구(214)의 내부 공간을 거쳐 배출구(212)를 통해 배출된다.
상기 제1연결부재(231)와 외부연결구(213)가 결합된 부분과 상기 제2연결부재(232)와 내부연결구(214)가 결합된 부분은 기밀을 유지하기 위한 오링(O-ring)이 각각 삽입되는 것이 바람직하다.
상기 제1연결부재(231)와 제2연결부재(232)의 하단부에는 외부연결구(213)와 내부연결구(214)가 오링을 매개로 삽입된 상태에서 외부연결구(213)와 제1연결부재(231)의 외주면 돌출된 부분을 클램프(clamp) 등에 의해 고정하게 되면 제1어댑터(210)의 착탈이 가능하게 된다.
이 경우 상기 제1연결부재(231)의 상단부는 상기 격판(101)의 난방수통과구멍(101c)의 둘레에 용접결합하고, 상기 제2연결부재(232)의 상단부는 상기 격판(102,103)의 난방수통과구멍(102b,103b)의 둘레에 각각 용접결합되어 있으므로, 상기 제1어댑터(210)만 상기 제1연결부재(231)와 제2연결부재(232)로부터 분리가 가능하게 된다.
한편, 제1어댑터(210)에는 보일러의 난방배관 내부에 난방수를 보충하기 위한 급수밸브(300; 도 8 참조)와 연결되는 급수밸브연결구(216; 도 8 참조)가 형성되는 것이 바람직하다. 급수밸브는 난방라인 내부에 난방수가 부족할 때 난방수를 추가로 공급하기 위한 것이다. 상기 급수밸브를 제1어댑터(210)에 일체형으로 이루어진 급수밸브연결구(216)에 연결함으로써 배관구조가 간단해진다.
또한 상기 제1어댑터(210)에는 난방환수연결구(217; 도 8 참조)가 형성되는 것이 바람직하다. 상기 난방환수연결구(216)는 난방환수가 흐르는 난방배관 측에 연결된다. 난방환수연결구(216)를 통해 유입된 난방환수는 배출구(212)를 통해 순환펌프(10) 측으로 공급된다.
도 7을 참조하여 열교환부(100)와 제2어댑터(220)가 결합되는 구조에 대해 설명한다.
첫 번째와 두 번째 격판(101,102)에 형성된 직수통과구멍(101c,102c)에는 제3연결부재(241)가 삽입되어 결합된다. 상기 제3연결부재(241)는 원통 형상의 몸체로 이루어지고, 몸체의 상단부를 절곡한 후 그 절곡된 부분을 직수통과구멍(101c,102c)에 삽입한 후 용접결합하게 된다.
상기 제3연결부재(241)의 내부에는 제4연결부재(242)가 삽입된다. 상기 제4연결부재(242)는 제3연결부재(241)의 상측으로 몸체 일부가 돌출되어 있고 그 돌출된 부분의 상단부가 열교환부(100)의 상측에 위치한 격판(110,111)의 직수통과구멍(111c,112c) 둘레에 결합된다.
상기 제3연결부재(241)의 내주면과 제4연결부재(242)의 외주면은 서로 이격되어 있어 그 사이에 형성된 공간(241a)과 배출구(222)가 상호 연통하도록 되어 있다.
제2어댑터(220)는 직수/온수측 배관(43,44)과 열교환부(100) 사이를 상호 연결시킴으로써 직수/온수의 유입 및 유출이 이루어지는 곳으로서, 사출성형에 의해 유입구(221)와 배출구(222) 및 연결구(223,224)가 일체로 형성되어 있다.
상기 유입구(221)는 도 1의 배관(43)과 연결되어 직수가 유입되고, 배출구(222)는 도 1의 배관(44)과 연결되어 열교환부(100) 내부를 경유하면서 가열된 온수가 배출된다.
상기 연결구(223,224)는, 상기 제3연결부재(241)의 하단부에 삽입결합되는 외부연결구(224)와, 상기 제4연결부재(242)의 하단부에 삽입결합되는 내부연결구(223)로 이루어지고, 상기 내부연결구(223)는 외부연결구(224)의 내측에 위치되어 동심 구조를 이루게 된다.
상기 유입구(221)을 통해 유입된 직수는, 상기 내부연결구(223)와 제4연결부재(242)의 내부 공간을 거쳐 제1직수순환경로(133)로 유입된다.
상기 제1직수순환경로(133)를 거쳐 열교환부(100) 내부를 순환한 직수는, 상기 제3연결부재(241)와 제2연결부재(242) 사이의 공간(241a) 및 상기 공간(241a)에 연통하는 상기 외부연결구(224)와 내부연결구(223) 사이의 공간(225)을 순차 경유한 후 배출구(222)를 통해 배출된다.
상기 제3연결부재(241)와 외부연결구(224)가 결합된 부분과 상기 제4연결부재(242)와 내부연결구(223)가 결합된 부분은 기밀을 유지하기 위한 오링(O-ring)이 각각 삽입되는 것이 바람직하다.
상기 제3연결부재(241)와 제2연결부재(242)의 하단부에는 외부연결구(224)와 내부연결구(223)가 오링을 매개로 삽입된 상태에서 외부연결구(224)와 제3연결부재(241)의 외주면 돌출된 부분을 클램프(clamp) 등에 의해 고정하게 되면 제2어댑터(220)의 착탈이 가능하게 된다.
이 경우 상기 제3연결부재(241)의 상단부는 상기 격판(101,102)의 통과구멍(101c,102c)의 둘레에 용접결합하고, 상기 제4연결부재(242)의 상단부는 상기 격판(111,112)의 통과구멍(111c,112c)의 둘레에 각각 용접결합되어 있으므로, 상기 제2어댑터(220)만 상기 제3연결부재(241)와 제4연결부재(242)로부터 분리가 가능하게 된다.
상기한 바와 같이 본 발명의 제1어댑터(210)와 제2어댑터(220)에는 유입구(211,221)와 배출구(212,222) 및 연결구(213,214,223,224)가 일체로 형성되어 있어 이에 연결되는 배관구조를 간단하게 할 수 있다.
상기 제2어댑터(220)에는 급수밸브(300)와 연결되는 급수밸브연결구(226; 도 8 참조)가 형성되는 것이 바람직하다.
도 8은 본 발명의 제1어댑터와 제2어댑터가 열교환부에 결합된 상태에서 난방수와 온수의 유로를 개략적으로 보여주는 단면도이다.
열교환부(100)에는 난방배관 및 온수배관과 연결시키기 위한 제1어댑터(210)와 제2어댑터(220)가 결합되고, 상기 제1어댑터(210)와 열교환부(100)는 제1연결부재(231)와 제2연결부재(232)를 매개로 결합된다.
삼방밸브(30)가 온수모드로 전환되면, 주열교환기(20)에서 가열된 난방수는 난방소요처 측으로 흐름이 차단되고 급탕열교환기(1) 측으로 공급되어 제1어댑터(210)의 유입구(211) 내부로 유입된다.
상기 제1어댑터(210)의 유입구(211)로부터 유입된 난방수는, 제1어댑터(210)의 외부연결구(213)와 내부연결구(214) 사이의 공간(215)과 제1연결부재(231)와 제2연결부재(232) 사이의 공간(231a)을 순차 경유한 후 첫 번째 격판(101)과 그에 인접하는 격판(102) 사이에 형성된 제1난방수순환경로(131)로 유입된다.
상기 제1난방수순환경로(131)로 유입된 난방수는, 제2연결부재(232)의 상단부가 격판(102,103)의 난방수통과구멍(102b,103b)으로는 난방수가 유입되지 못하도록 결합되어 있으므로, 상기 제1난방수순환경로(131)를 수평방향으로 흐른 후 상기 난방수통과구멍(102b,103b)의 대각선 방향에 형성된 다른 난방수통과구멍(102a,103a)을 통해 상측의 난방수순환경로로 유입된다.
상기 제1난방수순환경로(131)를 형성하는 격판(101)에는 유로 단면적이 확장된 난방수통과부(101e)가 형성되어 있어, 상기 제1난방수순환경로(131)를 통과하는 난방수에는 유로 저항이 크게 걸리지 않게 된다.
상기 난방수통과구멍(102a,103a)을 통과한 난방수는 그 직상방에 형성된 다른 격판의 난방수통과구멍(104a~111a)을 순차 통과한 후 상기 제1난방수순환경로(131)의 상부에 형성된 복수의 제2난방수순환경로(132)를 통해 상기 제1난방수순환경로(131)에서의 흐름방향과 반대방향인 수평방향으로 흐르게 된다.
상기 제2난방수순환경로(132)를 통과하면서 직수순환경로(133,134)를 통과하는 직수와 열교환이 이루어진 난방수는, 상기 난방수통과구멍(104a~111a)의 대각선 수평방향에 형성된 난방수통과구멍(111b~104b)을 순차 통과한 후 제2연결부재(232)로 유입되어 제1어댑터(210)의 내부연결구(214)를 거치면서 온도가 하락한 상태에서 배출구(212)를 통해 팽창탱크(50)로 배출된다.
이와 동시에 직수는 제2어댑터(220)의 유입구(221)로 유입된다. 상기 유입구(221)로 유입된 직수는 내부연결구(223) 및 제4연결부재(242)의 내부를 경유하여 열교환부(100)의 어댑터(210,220)가 결합된 반대측면에 형성된 제1직수순환경로(133)로 유입된다.
상기 제1직수순환경로(133)로 유입된 직수는 수평방향으로 흐른 후 격판(111,112)에 형성된 직수통과구멍(111d,112d)을 통해 하측의 직수순환경로로 유입된다.
상기 제1직수순환경로(133)를 형성하는 격판(113)에는 유로 단면적이 확장된 직수통과부(113e)가 형성되어 있어, 상기 제1직수순환경로(133)를 통과하는 직수에는 유로 저항이 크게 걸리지 않게 된다.
상기 통과구멍(111d,112d)을 통과한 난방수는 그 직하방에 형성된 다른 격판의 직수통과구멍(110d~103d)을 순차 통과한 후 상기 제1직수순환경로(133)의 하부에 형성된 복수의 제2직수순환경로(134)를 통해 상기 제1직수순환경로(133)에서의 흐름방향과 반대방향인 수평방향으로 흐르게 된다.
상기 제2직수순환경로(134)를 통과하면서 난방수순환경로(131,132)를 통과하는 난방수와 열교환이 이루어진 직수는, 상기 직수통과구멍(110d~103d)의 대각선 수평방향에 형성된 직수통과구멍(110c~103c)을 순차 통과한 후 제3연결부재(241)와 제4연결부재(242) 사이의 공간(241a)으로 유입되어 내부연결구(223)와 외부연결구(224) 사이 공간(225)을 순차 거치면서 온수가 된 상태에서 배출구(222)를 통해 온수소요처 측으로 배출된다.
이 경우 상기 직수통과구멍(110c~103c)에는 제4연결부재(242)가 삽입되어 있고, 제4연결부재(242)의 외주면과 상기 직수통과구멍(110c~103c) 사이에 형성된 틈을 통해 직수가 유동하게 된다.
상기와 같이 본 발명은 하나의 제1난방수순환경로(131), 복수의 제2직수순환경로(134), 복수의 제2난방수순환경로(132) 및 하나의 제1직수순환경로(133)이 순차 적층형성되어 있어, 열교환부(100) 내부를 유동하는 난방수와 직수의 유동경로가 짧아 유로 저항을 적게 받을 수 있다.
즉, 난방수가 열교환부(100) 내부로 유입되는 첫 번째 공간인 제1난방수순환경로(131)와 직수가 열교환부(100) 내부로 유입되는 첫 번째 공간인 제1직수순환경로(133)가 열교환부(100)의 일측과 타측에 각각 형성되어 있음으로 인해 난방수와 직수의 유동경로를 단축시킬 수 있게 된다.
한편 삼방밸브(30)가 난방모드로 전환되면 난방소요처로 공급된 난방수는 열교환과정이 이루어진 후 순환펌프(10) 측으로 환수된다. 본 발명에서는 순환펌프(10) 측으로 환수되는 난방환수를 제1어댑터(210)의 난방환수연결구(217)로 유입시켜 배출구(212)를 거쳐, 팽창탱크(50)를 통해 순환펌프(10) 측으로 환수되도록 하였다.
만약 난방배관 내부에 난방수가 부족한 경우 급수밸브(300)를 개방시켜 난방수를 보충하게 된다. 급수밸브(300)는 제1어댑터(210)의 급수밸브연결구(216)와 제2어댑터(220)의 급수밸브연결구(226) 사이에 설치된다. 따라서 급수밸브(300)를 개방시키면 제2어댑터(220) 내부의 온수 중 일부가 급수밸브연결구(226)를 통해 제1어댑터(210)의 급수밸브연결구(216)와 배출구(212)를 순차 경유한 후 환수 측의 난방배관으로 공급된다.

Claims (6)

  1. 다수의 격판(101~113)을 겹쳐 형성된 격판 사이의 공간(131,132,133,134)으로 주열교환기로부터 공급된 난방수와 직수가 교대로 흐르면서 열교환이 이루어지는 열교환부(100)와, 상기 난방수가 유입되는 유입구(211)와 상기 열교환부 내부에서 열교환을 마친 난방수가 배출되는 배출구(212)가 일체로 형성되어 상기 열교환부(100)에 결합된 제1어댑터(210)와, 상기 직수가 유입되는 유입구(221)와 상기 열교환부 내부에서 난방수와의 열교환으로 인해 가열된 온수가 배출되는 배출구(222)가 일체로 형성되어 상기 열교환부(100)에 결합된 제2어댑터(220)로 이루어진 급탕열교환기에 있어서,
    상기 열교환부(100)의 일측면을 형성하는 격판(101)에는 상기 제1어댑터(210)와 제2어댑터(220)가 연결되고;
    상기 격판(101)과 인접하는 격판(102) 사이의 공간에는 상기 제1어댑터(210)의 유입구(211)로부터 유입된 난방수가 흐르는 제1난방수순환경로(131)가 형성되고;
    상기 열교환부(100)의 타측면을 형성하는 격판(113)과 그에 인접하는 격판(112) 사이의 공간에는 상기 제2어댑터(220)의 유입구(221)로부터 유입된 직수가 흐르는 제1직수순환경로(133)가 형성되며;
    상기 제1난방수순환경로(131)와 제1직수순환경로(133) 사이에는, 상기 제1난방수순환경로(131)를 통과한 난방수가 흐르는 복수의 제2난방수순환경로(132)와, 상기 제1직수순환경로(133)를 통과한 직수가 흐르는 복수의 제2직수순환경로(134)가 교대로 형성된 것을 특징으로 하는 급탕열교환기.
  2. 제1항에 있어서,
    상기 열교환부(100)의 일측면을 형성하는 격판(101)에는 열교환부(100)의 외측 방향으로 돌출되어 격판(101)의 대각선 방향으로 가로지르도록 난방수통과부(101e)가 형성되어 상기 제1난방수순환경로(131)의 유로 단면적이 확장된 것을 특징으로 하는 급탕열교환기.
  3. 제2항에 있어서,
    상기 열교환부(100)의 타측면을 형성하는 격판(113)에는 열교환부(100)의 외측 방향으로 돌출되어 격판(113)의 대각선 방향으로 가로지르도록 직수통과부(113e)가 형성되어 상기 제1직수순환경로(133)의 유로 단면적이 확장된 것을 특징으로 하는 급탕열교환기.
  4. 제2항 또는 제3항에 있어서,
    상기 제1어댑터(210)에는, 상기 격판(101)의 일측에 형성된 통과구멍(101a)에 연결되는 외부연결구(213)와, 상기 외부연결구(213)의 내측에 삽입되어 상기 외부연결구(213)와 동심 구조를 이루며 상기 격판(101)에 인접하는 격판(102,103)의 난방수통과구멍(102b,103b)에 연결되는 내부연결구(214)가 일체로 형성되어 있고;
    상기 유입구(211)로 유입된 난방수는, 상기 외부연결구(213)와 내부연결구(214) 사이의 공간(215)을 통해 상기 제1난방수순환경로(131)로 유입되고;
    상기 제2어댑터(220)에는, 상기 격판(101)의 타측에 형성된 직수통과구멍(101c)에 연결되는 외부연결구(224)와, 상기 외부연결구(224)의 내측에 삽입되어 상기 외부연결구(224)와 동심 구조를 이루며 상기 격판(113)에 인접하는 격판(111,112)에 형성된 직수통과구멍(111c,112c)에 연결되는 내부연결구(223)가 일체로 형성되어 있으며;
    상기 유입구(221)로 유입된 직수는, 상기 외부연결구(224)과 내부연결구(223) 사이의 공간(225)을 통해 상기 제1직수순환경로(133)로 유입되는 것을 특징으로 하는 급탕열교환기.
  5. 제4항에 있어서,
    상기 제1어댑터(210)의 외부연결구(213)와 상기 난방수통과구멍(101a)은, 제1연결부재(231)를 매개로 연결되고;
    상기 제1어댑터(210)의 내부연결구(214)와 상기 난방수통과구멍(102b,103b)은, 상기 제1연결부재(231) 외측으로 단부가 더 돌출되어 상기 제1연결부재(231)와의 사이에 난방수가 유동하는 공간(231a)이 형성된 제2연결부재(232)를 매개로 연결되고;
    상기 제2어댑터(220)의 외부연결구(224)와 상기 직수통과구멍(101c,102c)은, 제3연결부재(241)를 매개로 연결되고;
    상기 제2어댑터(220)의 내부연결구(223)와 상기 직수통과구멍(111c,112c)은, 상기 제3연결부재(241) 외측으로 단부가 더 돌출되어 상기 제3연결부재(241)와의 사이에 직수가 유동하는 공간(241a)이 형성된 제4연결부재(242)를 매개로 연결되는 것을 특징으로 하는 급탕열교환기.
  6. 제5항에 있어서,
    상기 제1연결부재(231)의 상단부는 상기 격판(101)의 직수통과구멍(101c)의 둘레에, 상기 제2연결부재(232)의 상단부는 상기 격판(102,103)의 난방수통과구멍(102b,103b)의 둘레에 각각 용접결합되고;
    상기 제3연결부재(241)의 상단부는 상기 격판(101,102)의 직수통과구멍(101c,102c)의 둘레에, 상기 제4연결부재(242)의 상단부는 상기 격판(111,112)의 직수통과구멍(111c,112c) 둘레에 각각 용접결합되고;
    상기 제1어댑터(210)의 외부연결부(213)의 상단은 상기 제1연결부재(231)의 하단 내측에, 상기 제1어댑터(210)의 내부연결구(214)의 상단은 상기 제2연결부재(232)의 하단 내측에, 오링에 의해 기밀이 유지된 상태로 각각 삽입되며;
    상기 제2어댑터(220)의 외부연결구(224)의 상단은 상기 제3연결부재(241)의 하단 내측에, 상기 제2어댑터(220)의 내부연결구(223)의 상단은 상기 제4연결부재(242)의 하단 내측에, 오링에 의해 기밀이 유지된 상태로 각각 삽입되는 것을 특징으로 하는 급탕열교환기.
PCT/KR2012/009559 2011-11-16 2012-11-13 급탕열교환기 WO2013073814A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2855767A CA2855767A1 (en) 2011-11-16 2012-11-13 Hot water heat exchanger
EP12850564.1A EP2781841A1 (en) 2011-11-16 2012-11-13 Hot-water heat exchanger
JP2014540962A JP5882491B2 (ja) 2011-11-16 2012-11-13 給湯熱交換器
EA201490964A EA201490964A1 (ru) 2011-11-16 2012-11-13 Теплообменник для горячей воды
CN201280056529.4A CN103946636A (zh) 2011-11-16 2012-11-13 热水热交换器
US14/355,499 US20140262176A1 (en) 2011-11-16 2012-11-13 Hot water heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0119708 2011-11-16
KR1020110119708A KR101336090B1 (ko) 2011-11-16 2011-11-16 급탕열교환기

Publications (1)

Publication Number Publication Date
WO2013073814A1 true WO2013073814A1 (ko) 2013-05-23

Family

ID=48429832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009559 WO2013073814A1 (ko) 2011-11-16 2012-11-13 급탕열교환기

Country Status (8)

Country Link
US (1) US20140262176A1 (ko)
EP (1) EP2781841A1 (ko)
JP (1) JP5882491B2 (ko)
KR (1) KR101336090B1 (ko)
CN (1) CN103946636A (ko)
CA (1) CA2855767A1 (ko)
EA (1) EA201490964A1 (ko)
WO (1) WO2013073814A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101339250B1 (ko) * 2012-06-11 2013-12-09 현대자동차 주식회사 차량용 열교환기
KR101878247B1 (ko) * 2016-08-30 2018-07-13 케이티씨 주식회사 세대형 열교환기 장치 및 그 설치방법
JP2018044710A (ja) * 2016-09-14 2018-03-22 カルソニックカンセイ株式会社 熱交換器
JP2018109481A (ja) * 2017-01-06 2018-07-12 株式会社ノーリツ 暖房給湯装置
JP2018109482A (ja) * 2017-01-06 2018-07-12 株式会社ノーリツ 暖房給湯装置
DE102020203892A1 (de) * 2019-03-29 2020-10-01 Dana Canada Corporation Tauschermodul mit einem adaptermodul zum direkten anbau an einer fahrzeugkomponente

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257877A (ja) * 1998-03-16 1999-09-24 Nippon Climate Systems Corp 積層型熱交換器
JP2005326074A (ja) * 2004-05-13 2005-11-24 Hisaka Works Ltd プレート式熱交換器
KR100645734B1 (ko) * 2005-12-14 2006-11-15 주식회사 경동나비엔 난방/온수 겸용 콘덴싱 보일러의 열교환기
KR20100007546A (ko) * 2008-07-14 2010-01-22 주식회사 경동나비엔 급탕열교환기

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3423736A1 (de) * 1984-06-28 1986-01-02 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8900 Augsburg Kreuzstrom-plattenwaermetauscher
GB8910966D0 (en) * 1989-05-12 1989-06-28 Du Pont Canada Panel heat exchangers formed from thermoplastic polymers
JPH0590185U (ja) * 1992-04-13 1993-12-07 石川島播磨重工業株式会社 プレートフィン熱交換器
JPH09113176A (ja) * 1995-09-07 1997-05-02 Modine Mfg Co アダプター付熱交換器
JP2006336890A (ja) * 2005-05-31 2006-12-14 Calsonic Kansei Corp インタークーラ
US8240367B2 (en) * 2007-06-28 2012-08-14 Exxonmobil Research And Engineering Company Plate heat exchanger port insert and method for alleviating vibrations in a heat exchanger
DE102010012869A1 (de) * 2009-03-26 2010-09-30 Modine Manufacturing Co., Racine Wärmetauschermodul
KR101164717B1 (ko) * 2009-09-28 2012-07-12 주식회사 경동나비엔 믹싱밸브가 구비된 급탕열교환기 및 믹싱밸브 일체형 어댑터
CN101793471A (zh) * 2010-01-19 2010-08-04 无锡宏盛换热器制造有限责任公司 叠置式板翅式换热器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11257877A (ja) * 1998-03-16 1999-09-24 Nippon Climate Systems Corp 積層型熱交換器
JP2005326074A (ja) * 2004-05-13 2005-11-24 Hisaka Works Ltd プレート式熱交換器
KR100645734B1 (ko) * 2005-12-14 2006-11-15 주식회사 경동나비엔 난방/온수 겸용 콘덴싱 보일러의 열교환기
KR20100007546A (ko) * 2008-07-14 2010-01-22 주식회사 경동나비엔 급탕열교환기
KR101002382B1 (ko) 2008-07-14 2010-12-17 주식회사 경동나비엔 급탕열교환기

Also Published As

Publication number Publication date
JP2014535031A (ja) 2014-12-25
KR20130053964A (ko) 2013-05-24
KR101336090B1 (ko) 2013-12-03
US20140262176A1 (en) 2014-09-18
CA2855767A1 (en) 2013-05-23
JP5882491B2 (ja) 2016-03-09
CN103946636A (zh) 2014-07-23
EP2781841A1 (en) 2014-09-24
EA201490964A1 (ru) 2014-08-29

Similar Documents

Publication Publication Date Title
WO2013073814A1 (ko) 급탕열교환기
WO2011037339A2 (ko) 믹싱밸브가 구비된 급탕열교환기 및 믹싱밸브 일체형 어댑터
WO2015141995A1 (ko) 온수난방 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러
WO2018079978A1 (ko) 디스크 번들타입의 판형 열교환기
WO2017171276A1 (ko) 관체형 열교환기
WO2013105736A1 (ko) 바닥 난방용 패널 및 바닥 난방용 패널 어셈블리
WO2017116128A1 (ko) 전기소자 냉각용 열교환기
WO2013165106A1 (ko) 난방효율을 향상시킨 난방 및 온수의 동시 사용이 가능한 보일러
WO2017200362A1 (en) Double tube for heat-exchange
WO2022255769A1 (ko) 통합 쿨링 모듈
WO2013094912A1 (en) Disassemblable and washable primary surface heat exchanger
WO2017014499A1 (ko) 열교환기
WO2017135730A1 (ko) 열교환기
WO2015141991A1 (ko) 온수난방 다중유로 잠열열교환기 및 이를 포함하는 콘덴싱 가스보일러
WO2015105261A1 (ko) 모듈형 열교환기 및 그 열교환기를 이용한 열교환 방법
WO2017039172A1 (ko) 열교환기
WO2010147288A1 (ko) 열교환기
WO2011083911A2 (ko) 열교환기
WO2016080715A1 (ko) 수배관 관로 일체형 체크밸브를 구비한 보일러
WO2017039173A1 (ko) 열교환기
WO2020111592A1 (ko) 안정적인 온수공급이 가능한 보일러
KR101002382B1 (ko) 급탕열교환기
WO2023128143A1 (ko) 온수기
WO2017014497A1 (ko) 열교환기
WO2017014498A1 (ko) 열교환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850564

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14355499

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012850564

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014540962

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2855767

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201490964

Country of ref document: EA