WO2013073590A1 - 酸素吸収性樹脂組成物、酸素吸収多層体、および酸素吸収中空容器 - Google Patents

酸素吸収性樹脂組成物、酸素吸収多層体、および酸素吸収中空容器 Download PDF

Info

Publication number
WO2013073590A1
WO2013073590A1 PCT/JP2012/079544 JP2012079544W WO2013073590A1 WO 2013073590 A1 WO2013073590 A1 WO 2013073590A1 JP 2012079544 W JP2012079544 W JP 2012079544W WO 2013073590 A1 WO2013073590 A1 WO 2013073590A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
layer
absorbing
resin
thermoplastic resin
Prior art date
Application number
PCT/JP2012/079544
Other languages
English (en)
French (fr)
Inventor
章宏 増田
清智 道場
芳樹 伊東
新見 健一
辰雄 岩井
孝史 久保
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP12850570.8A priority Critical patent/EP2749604B1/en
Priority to KR1020137015736A priority patent/KR101373356B1/ko
Priority to US14/236,452 priority patent/US9199778B2/en
Priority to JP2013503685A priority patent/JP5288079B1/ja
Priority to CN201280010083.1A priority patent/CN103384703B/zh
Publication of WO2013073590A1 publication Critical patent/WO2013073590A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0207Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features
    • B65D1/0215Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by material, e.g. composition, physical features multilayered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • B65D81/26Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators
    • B65D81/266Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants
    • B65D81/267Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants with provision for draining away, or absorbing, or removing by ventilation, fluids, e.g. exuded by contents; Applications of corrosion inhibitors or desiccators for absorbing gases, e.g. oxygen absorbers or desiccants the absorber being in sheet form
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • B32B2307/7242Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/74Oxygen absorber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/60Bottles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/70Food packaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/80Medical packaging
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0856Iron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0862Nickel

Definitions

  • the present invention relates to an oxygen-absorbing resin composition containing an oxygen absorbent composed of an oxygen-absorbing metal and a thermoplastic resin. Specifically, the present invention relates to an oxygen-absorbing resin composition that can absorb and remove oxygen even in a low-humidity atmosphere. Furthermore, the present invention also relates to an oxygen-absorbing multilayer body and an oxygen-absorbing hollow container using such an oxygen-absorbing resin composition.
  • oxygen absorbers deoxygenating agents
  • an oxygen scavenger that removes oxygen in the atmosphere is placed inside the sealed package together with the object, and the inside of the sealed package is made oxygen-free, thereby causing oxidative degradation, mold, This technology suppresses discoloration and the like.
  • oxygen absorbers that remove oxygen in the atmosphere have been proposed from various inorganic materials and organic materials.
  • metal powder such as iron, sulfite, bisulfite, nitrite, etc.
  • inorganic main ingredients L-ascorbic acid, erythorbic acid and their salts, sugars such as glucose, etc.
  • organic main ingredients examples include those using reducing polyhydric alcohols such as catechol and pyrogallol.
  • oxygen absorbers that do not require moisture during oxygen absorption have been demanded in these applications.
  • oxygen absorbers that can meet such requirements include (a) oxygen scavengers based on cerium oxide using soot oxygen defects (Patent No. 4001614 (Patent Document 1)), and (b) soot oxygen defects.
  • An oxygen scavenger containing titanium oxide as a main ingredient Japanese Patent No. 4248986 (Patent Document 2)
  • Patent Document 2 Japanese Patent No. 4248986
  • a oxygen scavenger containing a metal subjected to hydrogen reduction Japanese Patent Laid-Open No. Sho 62-277148 (patent No. 2) References 3
  • oxygen scavengers utilizing autoxidation of organic substances have been reported.
  • the metal used as a raw material for these oxygen scavengers is a rare metal, and is therefore rare and expensive.
  • imports from overseas must be relied on, and depending on the situation, purchases may fluctuate and stable production may not be expected. For this reason, it was not necessarily satisfactory from the viewpoint of cost and stable supply.
  • it is necessary to attach a large-scale hydrogen reduction facility to the above (c) it is not a simple method and it cannot be said that it is easy to handle in the atmosphere.
  • the above (d) uses an organic oxidation reaction as a main agent, there is a problem of by-products generated after oxygen absorption.
  • hollow containers mainly composed of polyester such as polyethylene terephthalate (PET) having a high gas barrier property are used for tea, fruit juice drinks, carbonated drinks and the like.
  • PET polyethylene terephthalate
  • gas barrier resins exemplified by polymetaxylylene adipamide resin (hereinafter also referred to as “MXD6 resin”), ethylene-vinyl alcohol copolymer resin (hereinafter also referred to as “EVOH resin”), etc.
  • MXD6 resin polymetaxylylene adipamide resin
  • EVOH resin ethylene-vinyl alcohol copolymer resin
  • Hollow containers made of polyester resin which have been used especially for beverages that have been growing rapidly, have been downsized due to the convenience of carrying them, and many have a capacity of less than 500 mL. It is used for various contents such as green tea, sports drinks, carbonated drinks, tea, fruit juice drinks, persimmons, vegetable drinks, and many of these contents are susceptible to deterioration by light and oxygen. Many.
  • hollow containers made of polyolefin resin with a small volume of about 100 mL are increasingly used for tablet gum, cosmetics, functional supplements, and tablet-type pharmaceuticals. Since the ratio of the surface area per unit volume increases as the size of the hollow container is reduced, the quality deterioration of the contents tends to be accelerated and the quality assurance period tends to be shortened when the size is reduced.
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2002-320662
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2002-320662
  • a technique for suppressing oxidative degradation of an oxidative drug is described.
  • the contents of the hollow container are liquid, it is impossible to enclose the sachet-shaped oxygen absorber, it is necessary to install a machine that encloses the oxygen absorber, and the number of work steps during manufacturing increases. There were problems such as a lot of waste after use.
  • Patent Document 7 includes a bag, a bottle tube, or the like in which an oxygen absorbing layer is formed by blending an oxygen-permeable resin with a deoxidizer mainly composed of reducing iron.
  • Deoxygenated multilayer construction techniques are described.
  • this invention is not a simple method because it requires iron oxide as a raw material and a large-scale hydrogen reduction facility.
  • water is required for the oxidation reaction, and the content that can be accommodated in the multilayer structure is limited to being a hydrated material.
  • Patent Document 8 uses an oxidizable polyamide resin and a transition metal catalyst to absorb oxygen permeating from the outside to the inside of the hollow container over time.
  • a technology that has high barrier properties and absorbs oxygen dissolved in the liquid from the inner wall of the container to suppress and reduce oxidative deterioration of the contents is described, and it can be suitably used for applications containing beer and tea Things are described.
  • the present invention uses an organic oxidation reaction, and there is a problem that a by-product is generated due to the oxidation reaction, and the strength of the hollow container is reduced due to the oxidation reaction.
  • the present inventors have found that the metal in which only aluminum is removed using an aqueous solution of sodium hydroxide from an alloy of aluminum and iron or an alloy of aluminum and nickel is 30% RH (25 ° C.) or less. It has been found that oxygen in the atmosphere can be absorbed and removed at a level equivalent to that of a conventional oxygen scavenger, even in an atmosphere with little or no oxygen.
  • the alloy used is a specific type of transition metal (in the range of component (A)) and one selected from the group consisting of aluminum, zinc, tin, lead, magnesium and silicon ( Can be used as long as it is an alloy containing the component (B), and at least part of the component (B) is eluted (leached) from the alloy by being subjected to an aqueous solution treatment with acid or alkali.
  • an oxygen absorbent composed of the target metal can be obtained.
  • the oxygen-absorbing resin composition was able to be obtained by kneading this oxygen absorbent and the thermoplastic resin.
  • an oxygen-absorbing multilayer body and an oxygen-absorbing hollow container capable of absorbing oxygen even in a low humidity atmosphere have been successfully obtained.
  • the present invention is based on these findings.
  • the present invention provides an oxygen-absorbing resin composition having an ability to absorb oxygen in the atmosphere even in an atmosphere with little or no moisture, and the raw material is relatively inexpensive and stable.
  • An object of the present invention is to provide an oxygen-absorbing resin composition that has almost no biological problems and does not require a large-scale apparatus as in the case of hydrogen reduction.
  • Another object of the present invention is to provide an oxygen-absorbing multilayer body and an oxygen-absorbing hollow container using such an oxygen-absorbing resin composition.
  • the following inventions (1) to (33) are provided.
  • An oxygen absorbent resin composition comprising an oxygen absorbent comprising a metal (metal of (I)) obtained by elution and removal, and (II) a thermoplastic resin.
  • the oxygen-absorbing resin composition according to (1) which can absorb oxygen even in a low humidity atmosphere of 30% RH (25 ° C.) or less.
  • Composition (4) The oxygen-absorbing resin composition according to any one of (1) to (3), wherein the metal (I) has a porous shape.
  • thermoplastic resin of (II) is at least one selected from the group consisting of polyolefin resin, polyester resin, polyamide resin, polyvinyl alcohol resin, ethylene-vinyl alcohol copolymer, and chlorine resin.
  • an oxygen absorbing layer (a layer) comprising the oxygen absorbing resin composition according to any one of (1) to (11);
  • An oxygen-absorbing multilayer body comprising a thermoplastic resin layer (b layer) made of a thermoplastic resin composition containing a thermoplastic resin on one side or both sides of the oxygen-absorbing layer (a layer).
  • thermoplastic resin used for the thermoplastic resin layer (b layer) is selected from the group consisting of a polyolefin resin, a polyester resin, a polyamide resin, a polyvinyl alcohol resin, an ethylene vinyl alcohol copolymer resin, and a chlorine resin.
  • the oxygen-absorbing multilayer body is at least one selected from the group consisting of pellets, films, sheets, trays, cups, PTP containers, bottles, tubes, blocks, and caps. (13) to (17) The oxygen-absorbing multilayer body according to any one of the above. (19) A preform for an oxygen-absorbing packaging container, comprising the oxygen-absorbing multilayer body according to any one of (13) to (17). (20) An oxygen-absorbing packaging container in which the oxygen-absorbing multilayer body according to any one of (13) to (18) is used in at least a part of the packaging container. (21) An oxygen-absorbing hollow container comprising an oxygen-absorbing layer (a layer) comprising the oxygen-absorbing resin composition according to any one of (1) to (11).
  • the innermost layer and / or outermost layer of the oxygen-absorbing hollow container is a thermoplastic resin layer (b layer) made of a thermoplastic resin composition containing a thermoplastic resin.
  • thermoplastic resin layer (b layer), the gas barrier layer (c layer), the oxygen absorbing layer (a layer), and the thermoplastic resin layer (b layer) are arranged in this order.
  • thermoplastic resin layer (b layer), adhesive layer (d layer), gas barrier layer (c layer), adhesive layer (d layer), oxygen absorbing layer (a layer), thermoplastic From outer side to inner side, thermoplastic resin layer (b layer), adhesive layer (d layer), gas barrier layer (c layer), adhesive layer (d layer), oxygen absorbing layer (a layer), thermoplastic The oxygen-absorbing hollow container according to (27), which is arranged in the order of the resin layer (b layer).
  • thermoplastic resin layer (b layer) disposed outside the oxygen absorbing layer (a layer) comprises a white pigment.
  • the thermoplastic resin used for the thermoplastic resin layer (b layer) is selected from the group consisting of a polyolefin resin, a polyester resin, a polyamide resin, a polyvinyl alcohol resin, an ethylene vinyl alcohol copolymer resin, and a chlorine resin.
  • the oxygen-absorbing multilayer body according to any one of (13) to (18), the oxygen-absorbing packaging container according to (20), or the oxygen-absorbing hollow body according to any one of (21) to (32) A method for storing articles, wherein a storage object is stored using a container.
  • the oxygen-absorbing resin composition according to the present invention has oxygen in the atmosphere at a level equivalent to that of an oxygen-absorbing resin composition containing a conventional oxygen scavenger, even in an atmosphere with little or no moisture. It can be absorbed and removed. Therefore, it can also be suitably used for applications such as deoxidizing the atmosphere of a package of dried foods, pharmaceuticals, and electronic materials that are difficult to apply conventional oxygen scavengers. Furthermore, the oxygen-absorbing multilayer body and the oxygen-absorbing hollow container according to the present invention, by using such an oxygen-absorbing resin composition, can convert oxygen in the atmosphere even in an atmosphere with little or no moisture. It is possible to absorb and remove at a level equivalent to that of an oxygen-absorbing resin composition containing an oxygen scavenger.
  • oxygen-absorbing resin composition comprises (I) an oxygen absorbent and (II) a thermoplastic resin.
  • oxygen absorptivity means that oxygen can be selectively absorbed from the ambient atmosphere where the resin composition is installed.
  • oxygen absorbent used in the present invention is composed of the following two components: (A) at least one transition metal selected from the group consisting of manganese group, iron group, platinum group and copper group; B) An alloy containing at least one selected from the group consisting of amphoteric metals, magnesium and silicon is subjected to an acid or alkali aqueous solution treatment, and at least part of the component (B) is eluted and removed. It is made of metal that can be used.
  • the “oxygen absorber” refers to an agent that can selectively absorb oxygen from the ambient atmosphere in which the agent is installed.
  • (I) Metal “(I) Metal” contained in the oxygen-absorbing resin composition of the present invention is as described above.
  • (B) An alloy containing at least one selected from the group consisting of aluminum, zinc, tin, lead, magnesium and silicon is subjected to an acid or alkali aqueous solution treatment, and at least a part of the component (B) Is obtained by elution removal.
  • Transition metals that can be used as the component (A) constituting the oxygen absorber are manganese group (manganese, technetium, rhenium), iron group (iron, cobalt, nickel), platinum group (ruthenium, rhodium, palladium, osmium, iridium). , Platinum) or a copper group (copper, silver, gold). For this reason, two or more kinds may be used in combination. For example, when iron and nickel are selected, an Fe—Ni alloy may be used as the component (A).
  • the component (A) is preferably manganese, iron, cobalt, nickel, or copper, more preferably iron, cobalt, nickel, or copper, still more preferably iron, nickel, Preferably, it is iron. Among these, iron is preferable because it is safe and inexpensive.
  • the component (B) constituting the oxygen absorbent is at least one selected from aluminum, zinc, tin, lead, magnesium and silicon.
  • Component (B) is preferably one or more selected from aluminum, zinc, magnesium or silicon, more preferably aluminum, zinc, magnesium or silicon, and still more preferably aluminum. Of these, aluminum is preferable because it is inexpensive.
  • ingredient (C) In the present invention, an alloy containing the component (A) and the component (B) is prepared. At this time, molybdenum, chromium, titanium, vanadium, tungsten, or the like may be further added to the alloy as an additive metal. . It may further contain additional components such as cyanic acids.
  • an alloy containing the component (A) and the component (B) is prepared by a melting method.
  • the composition ratio of the component (A) and the component (B) in the alloy (component (A): component (B)) is preferably 20:80 to 80:20, more preferably 30:70 to 70:30.
  • the component (A) is iron or nickel and the component (B) is aluminum
  • the total amount of the component (A) and the component (B) is 100 parts by mass of iron or nickel.
  • the proportion is preferably 30 to 55 parts by mass, and the proportion of aluminum is preferably 45 to 70 parts by mass.
  • alloy may be directly subjected to an acid or alkali aqueous solution treatment, but is usually subjected to an acid or alkali aqueous solution treatment after being finely pulverized.
  • alloy means not only a single composition having a specific crystal structure but also a mixture thereof and a mixture of metals themselves.
  • a conventional method for crushing and pulverizing metals can be used as appropriate, for example, pulverizing with a jaw crusher, a roll crusher, a hammer mill, etc. It can be finely pulverized with a ball mill.
  • the molten alloy may be pulverized by a rapid solidification method such as an atomizing method.
  • the atomizing method when used, it is preferably performed in an inert gas such as an argon gas.
  • a method described in JP-A-5-23597 can be used.
  • the particle size of the obtained alloy powder is preferably in the range of 5 to 200 ⁇ m, and the particle size distribution is preferably as narrow as possible. From the viewpoint of eliminating particles having a large particle size or aligning the particle size distribution, sieving (classification) may be appropriately performed using a commercially available mesh sieve (for example, a 200 mesh sieve). In the case of the atomizing method, the powder tends to be nearly spherical and the particle size distribution tends to be narrow.
  • the obtained alloy or alloy powder is subjected to an acid or alkali aqueous solution treatment to elute and remove at least part of the component (B) from the alloy. That is, in this invention, the metal obtained after eluting and removing at least one part of a component (B) from an alloy is used.
  • the aqueous solution of acid or alkali used here is one that does not dissolve or hardly dissolve component (A), but can dissolve and remove component (B), that is, component (B) from the alloy. There is no particular limitation as long as it can be leached, and any of them can be used.
  • the acid in the acid aqueous solution include hydrochloric acid, sulfuric acid, and nitric acid.
  • alkali in the alkali aqueous solution examples include sodium hydroxide, potassium hydroxide, Na 2 CO 3 , K 2 CO 3 , and ammonia. Etc. can be used. About these acid and alkali aqueous solution, you may use it in combination of 2 or more type as needed.
  • the acid or alkali aqueous solution is an alkaline aqueous solution, more preferably a sodium hydroxide aqueous solution.
  • an alkaline aqueous solution more preferably a sodium hydroxide aqueous solution.
  • sodium hydroxide when aluminum is used as the component (B), when sodium hydroxide is used as the alkaline aqueous solution, excess sodium hydroxide can be easily removed by washing with water, and the eluted aluminum can be easily removed. The effect of reducing the number of washings can be expected.
  • the alloy powder In the aqueous solution treatment of acid or alkali, usually, if it is an alloy powder, the alloy powder is gradually added to the above aqueous solution while stirring, but the alloy powder is put in water and concentrated acid or alkali is added here. May be dropped.
  • the concentration of the acid or alkali aqueous solution used is, for example, 5 to 60% by mass, and more specifically, for example, 10 to 40% by mass in the case of sodium hydroxide.
  • the aqueous solution in the acid or alkali aqueous solution treatment, it is preferable to use the aqueous solution at a temperature of, for example, about 20 to 120 ° C.
  • the temperature of the alkaline aqueous solution is 25 to 100 ° C.
  • the treatment time for which the alloy or alloy powder is subjected to the acid or alkali aqueous solution treatment may vary depending on the shape, state, and amount of the alloy used, the concentration of the acid or alkali aqueous solution, the temperature at which the alloy is treated, and the like. Usually, it may be about 30 to 300 minutes. By adjusting the treatment time, the elution amount of the component (B) from the alloy can be adjusted.
  • At least a part of the component (B) is eluted and removed from the alloy by treatment with an aqueous solution of acid or alkali.
  • “leaving and removing at least a part of the component (B)” means to elute and remove a part of the component (B) from the alloy containing the component (A) and the component (B), It also includes the case where all of component (B) is eluted and removed from the alloy. In the elution process, the possibility that a part of the component (A) is dissolved as a result cannot be denied. Therefore, the “at least part of the component (B)” includes an aqueous solution containing only the component (B) as an acid or an alkali. There is no need to interpret it only when it is eluted by processing.
  • the component (B) for example, aluminum
  • the elution ratio of the component (B) from the alloy can be indicated by the content (mass basis) (residual rate) of the component (B) in the metal obtained by elution removal.
  • the content of component (B) is preferably 0.1 to 50% by mass, more preferably 1 to 40% by mass. More specifically, for example, when the alloy is an Al—Fe alloy, the aluminum content in the metal obtained by elution removal of aluminum by treatment with an aqueous solution of acid or alkali is preferably 0.1 to 50% by mass. More preferably, it is 1 to 40% by mass.
  • the content rate of the component (B) (for example, aluminum) in the metal of (I) contained in an oxygen absorptive resin composition can be measured by ICP method, for example.
  • the metal (I) used as an oxygen absorbent when the alloy containing the component (A) and the component (B) is subjected to an acid or alkali aqueous solution treatment, the metal and the alloy are treated after that treatment. However, it is necessary to consider not to let oxygen come into contact as much as possible. For this reason, it is desirable to perform a series of these treatments in an aqueous solution and water and store them as they are, or to perform them under oxygen-free conditions or under an inert gas. In use, when it is necessary to remove the metal from the water, it is desirable to dry and hold the material under conditions where the influence of oxygen is eliminated as much as possible by means such as vacuum drying. .
  • the metal (I) obtained as described above has a porous shape (or a porous body).
  • the porous shape means a state having a large number of pores on the surface and inside that can be confirmed with an electron microscope.
  • the degree of the porous shape of the metal can be expressed by its specific surface area.
  • the specific surface area by the BET method of the metal used in the oxygen-absorbing resin composition according to the present invention is at least 10 m 2 / g, preferably at least 20 m 2 / g.
  • the specific surface area (by the BET method) of the obtained porous metal is, for example, 20 to 40 m 2.
  • the specific surface area is about 0.07 to 0.13 m 2 / g, It is clear whether there is.
  • the degree of the porous shape which a metal has can also be represented by a bulk density.
  • the bulk density of the metal (I) used as the oxygen absorbent is 2 g / cm 3 or less, preferably 1.5 g / cm 3 or less.
  • the bulk density is greater than 2 and about 3 g / cm 3 or less.
  • the average particle size of the obtained porous metal powder (I) is usually 1 to 1,000 ⁇ m.
  • the thickness is preferably 10 to 500 ⁇ m.
  • the “average particle size” is a value calculated from the particle size distribution obtained by measuring the particle size by the laser diffraction method, for example, a laser diffraction scattering type particle size distribution measuring device (manufactured by Seishin Enterprise Co., Ltd.). It can be measured using an SK laser micron sizer LMS-2000e).
  • the porous metal (I) used as an oxygen absorbent has a high oxygen absorption activity, it is an atmosphere under a low humidity condition (for example, a condition of 30% RH (relative humidity) (25 ° C.) or lower). Even if it is below, the performance as an oxygen absorber can be exhibited suitably.
  • the oxygen absorbent contained in the oxygen-absorbing resin composition according to the present invention absorbs oxygen even in a low humidity atmosphere of 30% RH (25 ° C.) or less. More specifically, in a low humidity atmosphere of 30% RH (relative humidity) (25 ° C.) or less, the metal of (I) used as an oxygen absorbent is at least 5 mL / g oxygen, more preferably 10 mL / g oxygen. Absorbs.
  • the oxygen absorption amount of the metal (I) can be, for example, 5 to 150 mL / g in a low humidity atmosphere of 30% RH (relative humidity) (25 ° C.) or less.
  • the content of the metal (I) in the oxygen-absorbing resin composition is 1 to The amount is preferably 80% by mass, preferably 5 to 70% by mass, particularly preferably 10 to 65% by mass. If the metal content of (I) is 1% by mass or more, there is an advantage that higher oxygen absorption performance can be obtained, and if the metal content of (I) is 80% by mass or less, the metal content increases. As a result, it is possible to suppress an increase in the viscosity of the entire resin and maintain good resin processability.
  • thermoplastic resin is not particularly limited as long as the effects of the present invention are not essentially impaired, and a conventionally known thermoplastic resin can be used.
  • the thermoplastic resin is preferably at least one selected from the group consisting of polyolefin resin, polyester resin, polyamide resin, polyvinyl alcohol resin, ethylene vinyl alcohol copolymer resin, and chlorine resin.
  • a conventionally known polyolefin resin can be used as the polyolefin resin.
  • various polyethylenes such as high density polyethylene, medium density polyethylene, low density polyethylene, linear low density polyethylene, ultra low density polyethylene, polyethylene by metallocene catalyst, polystyrene, polymethylpentene, propylene homopolymer, propylene -Polypropylenes such as ethylene block copolymer and propylene-ethylene random copolymer may be used alone or in combination.
  • polyolefin resins include high-density polyethylene, medium-density polyethylene, low-density polyethylene, linear low-density polyethylene, various polyethylenes such as polyethylene using a metallocene catalyst, and propylene-ethylene block copolymers. Various polypropylenes such as propylene-ethylene random copolymer are particularly preferably used.
  • These polyolefin resins include ethylene-vinyl acetate copolymer, ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, ethylene-methacrylic acid copolymer as necessary.
  • a polymer, ethylene-methyl methacrylate copolymer, and thermoplastic elastomer may be added.
  • polyester resin a conventionally known polyester resin can be used.
  • aromatic polyester and aliphatic polyester can be mentioned, and specifically, polyethylene terephthalate (PET) can be mentioned.
  • PET polyethylene terephthalate
  • polyamide resin a conventionally known polyamide resin can be used.
  • examples include aromatic polyamides and aliphatic polyamides.
  • a conventionally known polyvinyl alcohol resin can be used as the polyvinyl alcohol resin.
  • the polyvinyl alcohol resin is a resin obtained by saponifying a vinyl ester polymer or a copolymer of a vinyl ester and another monomer using an alkali catalyst.
  • the saponification degree of the vinyl ester component of the polyvinyl alcohol resin is preferably 90% or more, more preferably 95% or more, and even more preferably 99% or more.
  • the polyvinyl alcohol resin may be a blend of two or more types of polyvinyl alcohol resins having different degrees of saponification.
  • the ethylene vinyl alcohol copolymer resin a conventionally known ethylene vinyl alcohol copolymer resin can be used.
  • the ethylene-vinyl alcohol copolymer resin is a resin obtained by saponifying an ethylene-vinyl ester copolymer. Among them, an ethylene-vinyl alcohol copolymer having an ethylene content of 5 to 60 mol% and a saponification degree of 85% or more is preferable.
  • the lower limit of the ethylene content of the ethylene-vinyl alcohol copolymer resin is preferably 20 mol% or more, more preferably 25 mol% or more.
  • the upper limit of the ethylene content is preferably 55 mol% or less, more preferably 50 mol%.
  • the saponification degree of the vinyl ester component is preferably 85% or more, more preferably 90% or more, and still more preferably 99% or more.
  • chlorine-based resin conventionally known chlorine-based resins can be used.
  • a block copolymer, a graft copolymer mainly composed of polyvinyl chloride or polyvinylidene chloride (PVDC), and a polymer blend mainly composed of vinyl chloride resin can be mentioned.
  • comonomers copolymerized with vinyl chloride include vinyl acetate, vinylidene chloride, acrylic acid, methacrylic acid and esters thereof, acrylonitriles, olefins such as ethylene and propylene, maleic acid and anhydrides thereof, etc. Can do.
  • thermoplastic resins in view of oxygen absorption, polyethylene, polypropylene, ethylene-vinyl acetate copolymer, elastomer, or a mixture thereof is preferably used.
  • the thermoplastic resin includes a dispersant such as a wax and a surfactant, a color pigment such as titanium oxide, an antioxidant, a slip agent, an antistatic agent, and a stabilizer.
  • a dispersant such as a wax and a surfactant
  • a color pigment such as titanium oxide
  • an antioxidant such as an antioxidant, a slip agent
  • an antistatic agent such as an antioxidant, a stabilizer.
  • Additives such as calcium carbonate, clay, mica, silica, desiccants, deodorants, phenolic antioxidants, phosphorus antioxidants, lactone antioxidants, flame retardants, light stabilizers, UV absorbers
  • Optional components such as an agent, a lubricant, a deodorant, an antistatic agent, an anti-tacking agent, an antifogging agent and a surface treatment agent can be blended.
  • a blending method is not particularly limited, but is generally melt kneaded with a resin.
  • an oxygen absorbing resin composition can be prepared by mixing (I) an oxygen absorbent and (II) a thermoplastic resin.
  • concentration of the metal (I) in the oxygen-absorbing resin composition is 1 to 80% by mass, preferably 5 to 70% by mass, and particularly preferably 10 to 65% by mass. Is preferred.
  • the metal concentration is in the above range, there is an advantage that a higher oxygen absorption performance can be obtained compared to the case where the amount of added metal is small, and the total amount accompanying the increase in the metal content compared to the case where the amount of added metal is too large. Since the increase in viscosity can be suppressed, the resin processability can be maintained well.
  • the oxygen-absorbing resin composition according to the present invention for example, a masterbatch containing a metal (I) and (II) a thermoplastic resin is melt-kneaded and, if necessary, molded into a desired shape. By cooling, the oxygen-absorbing resin composition of the present invention can be obtained.
  • the form of the oxygen-absorbing resin composition of the present invention is not particularly limited, and can be used in various forms such as a film form, a sheet form, a pellet form, and a powder form.
  • a film form There are no restrictions on the shape of the pellets and powder. Among these, the shape of a sheet, film or powder is preferable because the surface area per unit mass is increased and the oxygen absorption rate can be improved.
  • the thickness of the film is usually 10 ⁇ m or more and less than 250 ⁇ m, and the thickness of the sheet is usually 250 ⁇ m or more and less than 3 mm.
  • the average particle diameter of the powder is usually 1 to 1,000 ⁇ m, preferably 10 to 500 ⁇ m.
  • the form of the oxygen-absorbing resin composition of the present invention is not particularly limited.
  • all of various packaging forms such as a pouch, a container lid, a tray, a cup, a laminated tube container, a paper container, a bottle, or a blister container. Or it can be used as a part.
  • the method for forming the oxygen-absorbing resin composition of the present invention into a desired shape is not particularly limited, and a conventionally known method can be adopted.
  • a sheet or a film for example, it can be formed by a solution casting method or by extrusion through a die having a predetermined shape such as a T-die or a circular die using a single-screw or multi-screw melt extruder.
  • a compression molding method, an injection molding method, or the like can be employed.
  • a powdery oxygen absorbent is obtained by pulverizing the oxygen-absorbing resin composition in a temperature atmosphere lower than Tg of the thermoplastic resin contained in the oxygen-absorbing resin composition. be able to.
  • a pellet for example, it can be obtained by pelletizing a strand discharged from an extruder. In particular, fine pellets can be obtained by thinning the strands. By filling the obtained powder or pellet into a sachet or canister, a sachet or canister-like oxygen absorbent can be obtained. Furthermore, it can be formed into a desired shape using a blow molding method, an injection molding method, a vacuum molding method, a pressure forming method, a stretch molding method, a plug assist molding method, and a powder molding method.
  • the oxygen-absorbing resin composition of the present invention is in the form of a sheet or film. According to another preferred embodiment of the present invention, the oxygen-absorbing resin composition of the present invention is in the form of pellets or powder. According to still another preferred aspect of the present invention, the oxygen-absorbing resin composition of the present invention comprises a pouch, a container lid, a tray, a cup, a laminated tube container, a paper container, a bottle, a deep-drawn container, and a vacuum-molded container. Or used as all or part of various packaging forms such as blister containers.
  • the shape of the oxygen-absorbing resin composition of the present invention is preferably a pellet and is not particularly limited as a production example.
  • it can be obtained by melting and kneading a master batch containing (I) an oxygen absorbent and (II) a thermoplastic resin, and pelletizing the strands discharged from the extruder.
  • a pellet-shaped oxygen-absorbing resin composition can be obtained by cutting after T-extruding into a sheet with a T-die.
  • an oxygen-absorbing material obtained by packaging a pellet, powder, sheet, or film-shaped oxygen-absorbing resin composition with a packaging material using all or part of a breathable packaging material.
  • a package is provided.
  • the packaging material two breathable packaging materials are bonded together to form a bag, or one breathable packaging material and one non-breathable packaging material are bonded together to form a bag. What was made into a bag shape by bend
  • a packaging material that transmits oxygen can be selected.
  • the breathable packaging material paper or non-woven fabric, or a plastic film provided with breathability can be used.
  • the oxygen-absorbing resin composition according to the present invention is applicable from a region having a high water activity to a region having a low water activity. Thereby, it can apply suitably to the articles
  • the relative humidity (RH) of the atmosphere in which the low moisture content articles are stored is preferably 0 to 70% RH, more preferably 0 to 50% RH. Particularly preferred is 0 to 30% RH.
  • the present invention can be applied to low-moisture-containing articles (packaged products) such as powdered and granular foods: (powder soup, powdered beverage, powdered confectionery, seasoning, cereal flour, nutritional food, health food, coloring, flavoring, Spices), powder, granular chemicals: (powdered powder, soap powder, toothpaste, industrial chemicals), molded products (tablet type) of these products, foods and chemicals that do not like the increase in moisture and need to avoid contamination It can be illustrated.
  • powdered and granular foods such as powdered and granular foods: (powder soup, powdered beverage, powdered confectionery, seasoning, cereal flour, nutritional food, health food, coloring, flavoring, Spices), powder, granular chemicals: (powdered powder, soap powder, toothpaste, industrial chemicals), molded products (tablet type) of these products, foods and chemicals that do not like the increase in moisture and need to avoid contamination It can be illustrated.
  • the oxygen-absorbing resin composition of the present invention can absorb oxygen regardless of the presence or absence of moisture in the object to be stored, powder seasonings, powdered coffee, coffee beans, rice, tea, beans, rice cakes, It can be suitably used for dried foods such as rice crackers and health foods such as pharmaceuticals and vitamins.
  • the sheet or film-shaped oxygen-absorbing resin composition of the present invention or the oxygen-absorbing resin composition in the form of pellets or powder, and all or part of the breathable packaging material.
  • An article storage method is provided in which an object to be stored is sealed together with an oxygen absorbing packaged body packaged by the packaging material used in the above, and the object to be stored is deoxygenated and stored.
  • the article to be stored is sealed inside the oxygen-absorbing resin composition in the form of a sheet or film of the present invention, and the article to be stored is deoxygenated and stored.
  • a storage method is provided.
  • the oxygen-absorbing multilayer body according to the present invention comprises at least an oxygen-absorbing layer (a layer) and a thermoplastic resin layer (b-layer) on one side or both sides of the oxygen-absorbing layer (a-layer). It is a multilayer body.
  • a layer oxygen-absorbing layer
  • b-layer thermoplastic resin layer
  • the oxygen absorbing layer (a layer, hereinafter also referred to as OA) is a layer made of an oxygen absorbing resin composition containing (I) an oxygen absorbent and (II) a thermoplastic resin.
  • the oxygen-absorbing resin composition the same one as described in the above-mentioned oxygen-absorbing resin composition can be used.
  • thermoplastic resin layer (b layer) is a layer which consists of a thermoplastic resin composition containing a thermoplastic resin.
  • thermoplastic resin the same one as described in “(II) Thermoplastic resin” of the oxygen-absorbing resin composition can be used.
  • the oxygen permeability of the thermoplastic resin is preferably 100 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or more, more preferably 1000 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or more. More preferably, it is 3000 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or more.
  • the oxygen permeability of the thermoplastic resin is preferably 100 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or less, more preferably 50 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or less. More preferably, it is 20 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or less.
  • thermoplastic resins having different oxygen permeability may be used.
  • a polyethylene resin having an oxygen transmission coefficient of 3000 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) is used as the thermoplastic resin used for the oxygen absorbing layer (a layer) and the thermoplastic resin layer (b layer), and the following gas barrier is used.
  • the thermoplastic resin used for the oxygen absorbing layer (a layer) and the thermoplastic resin layer (b layer) is used as the thermoplastic resin used for the oxygen absorbing layer (a layer) and the thermoplastic resin layer (b layer), and the following gas barrier is used.
  • an oxygen-absorbing multilayer body By using such an oxygen-absorbing multilayer body to produce a packaging container having the c layer on the outside, it can be quickly used as a packaging container in which the gas atmosphere in the packaging container is brought into a low-oxygen state and an oxygen-free state for a certain period of time. Can do.
  • a polyester resin having an oxygen permeability coefficient of 80 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) was used for the thermoplastic resin layer used for the oxygen absorbing layer (a layer) and the thermoplastic resin layer (b layer).
  • b layer / a layer / b using an oxygen-absorbing multilayer body having a configuration of b layer / a layer / b layer or a PVDC resin having an oxygen transmission coefficient of 5 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) as a thermoplastic resin.
  • An oxygen-absorbing multilayer body having a layer structure can be exemplified.
  • the oxygen-absorbing multilayer body according to the present invention may further include a gas barrier layer (c layer).
  • a gas barrier layer As the gas barrier layer, polymetaxylylene adipamide resin (hereinafter also referred to as “MXD6 resin”), ethylene-vinyl alcohol copolymer resin (hereinafter also referred to as “EVOH resin”), polyvinylidene chloride (hereinafter referred to as “PVDC”).
  • MXD6 resin polymetaxylylene adipamide resin
  • EVOH resin ethylene-vinyl alcohol copolymer resin
  • PVDC polyvinylidene chloride
  • it may be composed of a barrier resin using an amine-epoxy curing agent or the like, or may be composed of an inorganic or inorganic oxide vapor deposited film or a metal foil.
  • the gas barrier layer (c layer) may be made of a barrier resin.
  • the polymetaxylylene adipamide resin used for the barrier resin is a copolymer of metaxylylenediamine and adipic acid.
  • commercially available products can be suitably used.
  • Examples of the commercially available polymetaxylylene adipamide resin include MXD6 nylon (manufactured by Mitsubishi Gas Chemical Co., Ltd.).
  • an inorganic acid salt or an organic acid salt containing a transition metal catalyst may be contained.
  • the content of the inorganic acid salt or organic acid salt containing the transition metal catalyst is preferably 300 to 600 ppm, more preferably 350 to 500 ppm, as a mass ratio of the metal to the gas barrier layer. If the content of the transition metal catalyst is in the above range, not only the oxygen shielding action but also the dissolved oxygen contained in the contents filled in the plastic container manufactured using the oxygen absorbing multilayer body according to the present invention is absorbed. You can also That is, the content filled in the container has a reduced amount of dissolved oxygen over time, so that alteration or the like can be suppressed depending on the type of the content.
  • transition metal catalyst examples include a cobalt compound in a divalent or trivalent state, or a copper metal in a divalent state.
  • cobalt metal in a divalent or trivalent state is preferable.
  • the cobalt metal is preferably added to the polymetaxylylene adipamide resin as an organic acid salt, and more preferably added to the polymetaxylylene adipamide resin as cobalt stearate or cobalt neodecanoate. It is preferable.
  • the resin constituting the gas barrier layer may be used by mixing an inorganic acid salt or organic acid salt containing a transition metal catalyst with the polymetaxylylene adipamide resin so as to have the above addition amount.
  • a master batch having a high content may be prepared once, and the master batch may be diluted with a polymetaxylylene adipamide resin so as to be in the above range.
  • PVDC can also be used for the barrier resin. Since PVDC is excellent in water vapor barrier properties in addition to oxygen barrier properties, it is preferably used for storing contents that deteriorate due to oxygen and moisture.
  • a film of PVDC alone can be used, or a commercially available film (K coat film) obtained by coating PVDC on a base film made of a thermoplastic resin can also be used.
  • the base film include stretched polypropylene (OPP), stretched nylon (ONY) polyethylene terephthalate (PET), and the like.
  • the gas barrier layer or the thermoplastic resin layer constituting the packaging container preferably contains a compound having an ultraviolet shielding function. These compounds can be provided in the resin as an ultraviolet shielding layer, but are preferably added to the gas barrier layer or the thermoplastic resin layer in consideration of the recyclability and functionality of the container.
  • a commercially available ultraviolet absorber for example, tinuvin
  • these ultraviolet absorbers can be formed by adding them as a master batch or liquid injection to the molten polymer at the time of container molding.
  • a resin capable of shielding ultraviolet rays for example, polyethylene naphthalate (shielding at 380 nm or less) may be formed in multiple layers as a gas barrier layer.
  • various wavelengths can be shielded by adding not only ultraviolet rays but also black, red and sepia colorants.
  • the wall thickness of the gas barrier layer constituting the packaging container is preferably 0.01 to 0.2 mm. By setting it as this range, more excellent oxygen absorption ability can be realized.
  • the gas barrier layer (c layer) may be made of an inorganic or inorganic oxide deposited film or a metal foil.
  • a vapor deposition film can be formed by a conventionally known method using a conventionally known inorganic substance or inorganic oxide, and its composition and formation method are not particularly limited.
  • a vapor deposition film may be formed on a resin film and used in the form of a vapor deposition film.
  • Examples of the deposited film include silicon (Si), aluminum (Al), magnesium (Mg), calcium (Ca), potassium (K), tin (Sn), sodium (Na), boron (B), and titanium (Ti). ), Lead (Pb), zirconium (Zr), yttrium (Y) and other inorganic or inorganic oxide vapor deposition films can be used. Further, a DLC (Diamond Like Carbon) film may be used. In particular, an aluminum metal vapor-deposited film, or a silicon oxide or aluminum oxide vapor-deposited film is preferably used as a packaging material (bag) or the like.
  • M represents an inorganic element, the value of X, varies each of an inorganic element range.
  • M represents an inorganic element, the value of X, varies each of an inorganic element range.
  • silicon (Si) is 0 to 2
  • aluminum (Al) is 0 to 1.5
  • magnesium (Mg) is 0 to 1
  • calcium (Ca) is 0 to 1
  • 0 to 0.5 for potassium (K) 0 to 2 for tin (Sn), 0 to 0.5 for sodium (Na), 0 to 1, 5 for boron (B)
  • titanium (Ti) Can take values ranging from 0 to 2
  • lead (Pb) from 0 to 1, zirconium (Zr) from 0 to 2
  • yttrium (Y) from 0 to 1.5.
  • Silicon (Si) and aluminum (Al) are preferably used for the packaging material, with silicon (Si) in the range of 1.0 to 2.0 and aluminum (Al) in the range of 0.5 to 1.5. Can be used.
  • the film thickness of the inorganic or inorganic oxide deposited film as described above varies depending on the kind of the inorganic or inorganic oxide to be used, but is within the range of, for example, 50 to 2000 mm, preferably 100 to 1000 mm. It is desirable to select and form arbitrarily. More specifically, in the case of an aluminum deposited film, the film thickness is preferably about 50 to 600 mm, more preferably about 100 to 450 mm, and in the case of an aluminum oxide or silicon oxide deposited film, The film thickness is about 50 to 500 mm, more preferably about 100 to 300 mm.
  • Examples of the method for forming the deposited film include physical vapor deposition methods (Physical Vapor Deposition method, PVD method) such as vacuum deposition method, sputtering method, and ion plating method, plasma chemical vapor deposition method, thermochemistry, and the like. Examples thereof include a chemical vapor deposition method (Chemical Vapor Deposition method, CVD method) such as a vapor deposition method and a photochemical vapor deposition method.
  • Physical Vapor Deposition method PVD method
  • CVD method chemical vapor deposition method
  • the gas barrier layer (c layer) may be a metal foil obtained by rolling a metal.
  • a conventionally known metal foil can be used as the metal foil.
  • Aluminum foil or the like is preferable from the viewpoint of gas barrier properties that prevent the transmission of oxygen gas, water vapor, and the like, and light shielding properties that prevent the transmission of visible light, ultraviolet light, and the like.
  • the gas barrier layer (c layer)
  • a buffer layer such as polyolefin or nylon. In this case, the rigidity and puncture strength of the multilayer body can be improved.
  • the thicknesses of the oxygen absorbing layer (a layer), the thermoplastic resin layer (b layer), and the gas barrier layer (c layer) are not particularly limited. It is variable according to the required performance, and as an example, when it is desired to design an oxygen-absorbing multilayer body that requires a very high oxygen absorption rate, a thermoplastic resin layer (b layer) is arranged on the package side. When the package is designed, the thermoplastic resin layer (b layer) becomes an isolation layer between the oxygen absorption layer (a layer) and the gas that is the target of absorbing oxygen, so it is thin and has a large oxygen permeability coefficient. By using a plastic resin, a quick and good oxygen absorption rate can be obtained.
  • Adhesive layer (d layer) The oxygen absorbing multilayer body according to the present invention may further include an adhesive layer (d layer) between the oxygen absorbing layer (a layer) and the thermoplastic resin layer (b layer). Further, an adhesive layer (d layer) may be further included between the oxygen absorbing layer (a layer) and the gas barrier layer (c layer) or between the thermoplastic resin layer (b layer) and the gas barrier layer (c layer). Interlayer strength can be improved by providing an adhesive layer with an adhesive or an adhesive resin layer.
  • an adhesive for laminating can be suitably used.
  • adhesives for laminating such as solvent type, epoxy type, rubber type, etc., water type, or emulsion type.
  • the coating method for the adhesive include a direct gravure roll coating method, a gravure roll coating method, a kiss coating method, a reverse roll coating method, a fountain method, a transfer roll coating method, and other methods.
  • the coating amount is preferably about 0.1 g / m 2 to 10 g / m 2 (dry state), and more preferably about 1 g / m 2 to 5 g / m 2 (dry state).
  • the adhesive resin layer a resin layer made of a thermoplastic resin is used.
  • the material of the adhesive resin layer includes a low density polyethylene resin, a medium density polyethylene resin, a high density polyethylene resin, a linear low density polyethylene resin, and ethylene / ⁇ -olefin polymerized using a metallocene catalyst.
  • Copolymer resin ethylene / polypropylene copolymer resin, ethylene / vinyl acetate copolymer resin, ethylene / acrylic acid copolymer resin, ethylene / ethyl acrylate copolymer resin, ethylene / methacrylic acid copolymer resin, Graft polymerization of unsaturated carboxylic acid, unsaturated carboxylic acid, unsaturated carboxylic acid anhydride, ester monomer to ethylene / methyl methacrylate copolymer resin, ethylene / maleic acid copolymer resin, ionomer resin, polyolefin resin, Or graft copolymerized resin, maleic anhydride to polyolefin resin It can be used sexual resin or the like. These materials may be used alone or in combination of two or more.
  • the oxygen-absorbing multilayer body according to the present invention may further include other layers.
  • a protective layer made of a thermoplastic resin can be provided inside or outside the gas barrier layer (c layer).
  • the resin used for the protective layer include polyethylenes such as high density polyethylene, polypropylenes such as propylene homopolymer, propylene-ethylene random copolymer, propylene-ethylene block copolymer, nylon 6, nylon 6,6 Polyamides (NY) such as PET, polyesters such as PET, and combinations thereof.
  • Each layer of the oxygen-absorbing multilayer body according to the present invention has a heat stabilizer, a reinforcing agent, a filler, a flame retardant, a colorant, a plasticizer, an ultraviolet absorber, a lubricant, a deodorant, unless the effects of the present invention are essentially impaired.
  • Additives such as an agent, an antistatic agent, an anti-tacking agent, an antifogging agent and a surface treatment agent can be further blended. These additives can be appropriately selected and blended in an appropriate amount from those conventionally known in the field of oxygen absorbers according to the purpose.
  • the method of blending the additive is not particularly limited, and can be performed by melting and kneading each component constituting the oxygen-absorbing multilayer body or mixing the solution in a solution state and then removing the solvent.
  • a desiccant layer containing a desiccant may be laminated, or any of the above layers may contain a desiccant.
  • a desiccant is not specifically limited, A conventionally well-known desiccant can be used.
  • molecular sieve calcined meteorite, clay mineral, zeolite, activated carbon, activated alumina, silica gel, calcium oxide, barium oxide, strontium oxide, magnesium oxide, lithium sulfate, sodium sulfate, calcium sulfate, magnesium sulfate, cobalt sulfate, gallium sulfate , Titanium sulfate, nickel sulfate and the like, and molecular sieves are particularly preferable.
  • FIG. 1 and 2 are schematic cross-sectional views of an example of the oxygen-absorbing multilayer body according to the present invention.
  • An oxygen-absorbing multilayer body 2 shown in FIG. 1 has a layer structure in which a thermoplastic resin layer (b layer) 4 is laminated on both sides of an oxygen-absorbing layer (a layer) 3.
  • An oxygen-absorbing multilayer body 5 shown in FIG. 2 is formed by laminating a thermoplastic resin layer (b layer) 7 on both sides of an oxygen-absorbing layer (a layer) 6, and one of the thermoplastic resin layers (b layer) 7.
  • a gas barrier layer (c layer) 8 is laminated.
  • Examples of the layer configuration other than the above include a layer configuration in which a gas barrier layer (c layer), an oxygen absorption layer (a layer), and a thermoplastic resin layer (b layer) are stacked in this order.
  • the method for forming the oxygen-absorbing multilayer body according to the present invention into a desired shape is not particularly limited, and conventionally known methods can be used.
  • it is molded by the solution casting method, it is extruded through a die of a predetermined shape such as a T-die or a circular die using a single or multi-axial melt extruder, or it is molded by a calendar method using a calendar roll.
  • it can be formed by laminating two or more kinds of films and sheets by dry lamination or extrusion lamination.
  • the form of the oxygen-absorbing multilayer body according to the present invention is not particularly limited.
  • it can be used in various forms as a pellet, a film, a sheet, a tray, a cup, a PTP (Press Through Package) container, a bottle, a tube, a block, a deep drawing container, a vacuum forming container, and a cap.
  • PTP Pressure Through Package
  • the oxygen-absorbing multilayer body according to the present invention may be in the form of an oxygen-absorbing packaging container preform (also called a preform).
  • a co-injection molding method can be used for molding the preform.
  • An oxygen-absorbing packaging container can be produced by a method in which the preform is subjected to biaxial stretch blow molding.
  • Oxygen-absorbing packaging containers manufactured using an oxygen-absorbing multilayer body can be used for the temperature at which the packaging container is used by appropriately selecting the temperature characteristics of the thermoplastic resin blended in the oxygen-absorbing layer and thermoplastic resin layer. Is possible.
  • the oxygen-absorbing multilayer body according to the present invention as an oxygen-absorbing packaging body by using the thermoplastic resin layer (b layer) inside or part of the sealing packaging container as the inner side, it slightly enters from the outside of the container. In addition to oxygen, oxygen in the container can be absorbed, and alteration of the contents stored in the container due to oxygen can be prevented.
  • an oxygen absorbing multilayer body is used only on one side of a trunk part of a standing bouch, and an oxygen absorbing multilayer body is used on the other side or bottom part of the trunk part.
  • a configuration using a barrier resin is used.
  • a layer configuration in which the oxygen-absorbing multilayer body is silica-deposited PET / NY / OA / PE and the portion having the barrier resin is silica-deposited PET / NY / PE can be exemplified.
  • the oxygen-absorbing multilayer body is used as a part of the sealing packaging container
  • a laminated body having a barrier resin such as EVOH resin is used for the deep-drawn container body, and the oxygen-absorbing multilayer body is used for the lid.
  • the structure used is mentioned.
  • a layer configuration in this case a layer configuration in which the deep-drawn container body is PE / AL / PE / EVOH / PE and the lid is PE / AL / OA / easy peel layer can be exemplified.
  • a layer configuration in which the container body is PVC / EVOH / PVC, a white pigment is added to the PVC layer outside the container, and the lid material is NY / AL / OA / PVC can be exemplified.
  • examples of preferable layer structure of the oxygen absorbing multilayer body include NY / PE / AL / PE / OA / easy peel layer and PE / AL / OA / easy peel layer. can do.
  • the oxygen absorbing multilayer body and the article to be packaged can be put in a packaging container and sealed to make the inside of the packaging body into a low oxygen state or an oxygen-free state.
  • the package can be sealed in a low oxygen state or an oxygen-free state by sealing the package.
  • the oxygen-absorbing multilayer body according to the present invention absorbs oxygen regardless of water activity and can be applied from a region having a high water activity to a region having a low water activity. Further, it can be suitably applied to articles that have low water activity and need to be stored under dry conditions of low humidity.
  • the oxygen-absorbing multilayer body according to the present invention alone is aluminum, alumina-deposited film, silica-deposited film, PVDC-coated film, EVOH-based barrier film for a certain period until the capability of the blended oxygen absorbent is completely expired. It can also be used as an oxygen barrier packaging material such as. Further, this multilayer body is used in combination with an oxygen barrier layer (c layer), and the oxygen barrier property of the oxygen barrier layer (c layer) is maintained for a certain period until the capability of the blended oxygen absorbent is completely expired. Can also be used for the purpose of providing (improving) higher oxygen barrier properties.
  • the oxygen-absorbing multilayer body of the present invention can absorb oxygen regardless of the presence or absence of moisture in the preserved item, medical products, pharmaceuticals (atorvastatin, levothyroxine, etc.), infusion preparations, electronic parts, granular foods Class: (powder soup, powdered drink, powdered confectionery, seasoning, grain powder, nutritional food, health food, coloring, flavoring, spice), powdered coffee, coffee beans, rice, tea, beans, rice crackers, rice crackers, etc. Dried foods, granular drugs: (powdered powders, powder soaps, toothpastes, industrial chemicals), and molded articles (tablets) of these products can be suitably used.
  • the object to be stored can be deoxygenated even in a low humidity atmosphere of 30% RH (25 ° C.) or less.
  • a method for storing an article that can be stored can be provided.
  • the oxygen-absorbing hollow container according to the present invention is a container comprising at least an oxygen-absorbing layer (a layer).
  • a layer an oxygen-absorbing layer
  • the oxygen absorbing layer (a layer) is a layer made of an oxygen absorbing resin composition containing (I) an oxygen absorbent and (II) a thermoplastic resin.
  • the oxygen-absorbing resin composition the same one as described in the above-mentioned oxygen-absorbing resin composition can be used.
  • thermoplastic resin layer (b layer) In the oxygen-absorbing hollow container according to the present invention, the innermost layer and / or the outermost layer is preferably a thermoplastic resin layer (b layer).
  • a thermoplastic resin layer (b layer) is a layer which consists of a thermoplastic resin composition containing a thermoplastic resin.
  • the thermoplastic resin layer (b layer) the same material as described in “(II) Thermoplastic resin” of the oxygen-absorbing resin composition can be used.
  • thermoplastic resins may be used as the thermoplastic resin used for the oxygen absorbing layer (a layer) and the thermoplastic resin layer (b layer) of the oxygen-absorbing hollow container according to the present invention.
  • the thermoplastic resin may be selected according to the purpose.For example, when a speed for absorbing oxygen inside the hollow container is required, a thermoplastic resin having a large oxygen permeability coefficient is placed in a layer near the inside of the hollow container. Use it.
  • the oxygen permeability of the thermoplastic resin is preferably 200 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or more, more preferably 1000 cc ⁇ 20 ⁇ m / (m. 2 ⁇ day ⁇ atm) (23 ° C., dry) or more. More preferably, it is 3000 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or more.
  • polyethylene resins and polypropylene resins are practically useful.
  • the oxygen permeability of the thermoplastic resin is preferably 100 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or less, more preferably 50 cc ⁇ 20 ⁇ m / (m. 2 ⁇ day ⁇ atm) (23 ° C., dry) or less. More preferably, it is 10 cc ⁇ 20 ⁇ m / (m 2 ⁇ day ⁇ atm) (23 ° C., dry) or less.
  • polyester resins and chlorine resins are practically useful.
  • the thermoplastic resin layer (b layer) disposed outside the oxygen absorbing layer (a layer) preferably contains a white pigment.
  • a white pigment By adding a white pigment, the outer appearance of the container can be whitened while having high light-shielding properties, and a hollow container that does not feel uncomfortable when a product label or printing is applied to the outermost layer of the hollow container.
  • a known substance can be used as the white pigment.
  • An example of a preferable substance is titanium oxide.
  • the content of the white pigment is preferably 5 to 30 parts by mass and more preferably 10 to 20 parts by mass with respect to 100 parts by mass of the thermoplastic resin in the thermoplastic resin layer (b layer).
  • a sufficient coloring effect can be obtained even if the thickness of the b layer is reduced compared to the case of less than 5 parts by mass.
  • strength of a hollow container can be raised compared with the case where it exceeds 30 mass parts, it is preferable.
  • the oxygen-absorbing hollow container according to the present invention may further include a gas barrier layer (c layer).
  • a gas barrier layer c layer
  • the same one as described for the gas barrier layer (c layer) of the oxygen-absorbing multilayer body can be used.
  • Adhesive layer (d layer) may further include an adhesive layer (d layer) between any of the oxygen absorbing layer (a layer), the thermoplastic resin layer (b layer), and the gas barrier layer (c layer).
  • an adhesive layer (d layer) between any of the oxygen absorbing layer (a layer), the thermoplastic resin layer (b layer), and the gas barrier layer (c layer).
  • the adhesive layer (d layer) the same materials as those described above for the adhesive layer (d layer) of the oxygen-absorbing multilayer can be used.
  • the oxygen-absorbing hollow container according to the present invention can be separately provided with a recycled resin layer containing a recycled material (crushed material) of the hollow container in order to eliminate waste in the manufacturing process. In that case, it is preferable to arrange
  • the light shielding material of the present invention is not particularly limited as long as it is a substance that can reduce the transmittance of ultraviolet light or visible light.
  • a known pigment can be used.
  • the color of the pigment is not particularly limited, and can be appropriately selected depending on the application.
  • black pigments include organic black pigments such as carbon black, aniline black, and perylene black, inorganic black containing copper, iron, chromium, manganese, cobalt, etc., titanium black, black interference aluminum pigments, etc. Examples thereof include titanium oxide, zinc oxide, zirconia oxide, alumina powder, magnesium oxide, and zinc sulfide.
  • black pigments and / or white pigments are preferably used, and carbon black, titanium black, and titanium oxide are particularly preferable.
  • said light-shielding material can be used individually by 1 type or in mixture of 2 or more types. By using a light shielding material, it is possible to store for a long time contents that are easily deteriorated by ultraviolet rays or visible rays.
  • the light shielding material of the present invention can be blended in any layer constituting the hollow container, but is preferably blended in the oxygen absorbing layer (a layer).
  • the light shielding property can be imparted to the hollow container, and at the same time, the discoloration due to the oxidation of the metal (I) as an oxygen absorbent can be masked to the extent that it cannot be visually detected. Therefore, it is possible to provide a hollow container having a good aesthetic appearance that does not change the color of the entire hollow container, particularly the end face of the opening, before and after oxygen absorption.
  • the content of the light-shielding material is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight, and 1.0 to 4.0 parts by weight with respect to 100 parts by weight of the thermoplastic resin (II). Particularly preferred.
  • the light shielding property can be improved as compared with the case of less than 0.1 part by mass.
  • the moldability can be further improved as compared with the case of larger than 10 parts by mass.
  • the light shielding property of the hollow container can be further enhanced by using a compound having a function of shielding ultraviolet rays and visible light in combination.
  • a commercially available ultraviolet absorber for example, tinuvin
  • These ultraviolet absorbers can be formed by adding them as a master batch or liquid injection to the molten polymer at the time of container molding.
  • a resin capable of shielding ultraviolet rays for example, polyethylene naphthalate (shielding at 380 nm or less) may be formed in multiple layers as a gas barrier layer.
  • various wavelengths can be shielded by adding not only ultraviolet rays but also black, red and sepia colorants.
  • Desiccant The oxygen-absorbing hollow container according to the present invention preferably contains at least one desiccant when the contents filled in the hollow container dislike water.
  • a desiccant is not specifically limited, A conventionally well-known desiccant can be used.
  • the layer to be blended is a thermoplastic resin layer (b layer), or the oxygen absorbent used in the present invention absorbs oxygen without requiring moisture, so it is blended in the oxygen absorbing layer (a layer). It is preferable.
  • each layer of the oxygen-absorbing hollow container of the present invention can be appropriately selected depending on the layer configuration, container form, container application, required physical properties, and the like.
  • the thickness of the oxygen absorbing layer (a layer) is preferably 5 ⁇ m to 500 ⁇ m, more preferably 10 ⁇ m to 200 ⁇ m.
  • the thickness of the thermoplastic resin layer (b layer) when disposed on the outermost side of the oxygen-absorbing hollow container is preferably 300 ⁇ m to 2000 ⁇ m, more preferably 500 ⁇ m to 1000 ⁇ m.
  • the thickness of the thermoplastic resin layer (b layer) when disposed on the innermost side of the oxygen-absorbing hollow container is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m.
  • the thickness of the gas barrier layer (c layer) is preferably 5 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m.
  • the thickness of the adhesive layer (d layer) is preferably 5 ⁇ m to 200 ⁇ m, more preferably 20 ⁇ m to 100 ⁇ m.
  • the ratio of the thickness of the gas barrier containing layer to the total thickness of the oxygen-absorbing hollow container according to the present invention is not particularly limited.
  • the thickness of the gas barrier layer (c layer) is preferably 1 to 20%, more preferably 1.5 to 15%, and further preferably 2 to 10% with respect to the total thickness of all layers. If the ratio of the thickness of the gas barrier layer (c layer) is 1% or more, the gas barrier property can be further improved, and if it is 20% or less, the impact resistance can be further improved.
  • the thickness of the entire layer of the oxygen-absorbing hollow container according to the present invention is not particularly limited, and can be appropriately selected depending on the layer configuration, container form, container application, required physical properties, and the like.
  • FIG. 3 the typical schematic diagram of the oxygen absorption hollow container by this invention is shown.
  • 4 to 9 are schematic sectional views showing examples of the oxygen-absorbing hollow container according to the present invention.
  • the oxygen-absorbing hollow container 10 shown in FIG. 4 is a single layer and has only an oxygen-absorbing layer (a layer) 11.
  • the oxygen-absorbing hollow container 30 shown in FIG. 6 has an oxygen-absorbing layer (a layer) 31 as an intermediate layer, and has a thermoplastic resin layer (b-layer) 32 on both sides of the oxygen-absorbing layer (a layer) 31. .
  • An oxygen-absorbing hollow container 40 shown in FIG. 7 includes a thermoplastic resin layer (b layer) 42, a gas barrier layer (c layer) 43, an oxygen-absorbing layer (a layer) 41, a thermoplastic resin layer from the outer surface to the inner surface. Layers are arranged in the order of (b layer) 42.
  • the oxygen-absorbing hollow container 50 shown in FIG. 8 includes a thermoplastic resin layer (b layer) 52, an adhesive layer (d layer) 54, a gas barrier layer (c layer) 53, an adhesive layer (d layer) from the outer surface to the inner surface. ) 54, an oxygen absorption layer (a layer) 51, and a thermoplastic resin layer (b layer) 52.
  • An oxygen-absorbing hollow container 60 shown in FIG. 9 includes a thermoplastic resin layer (b layer) 62, an adhesive layer (d layer) 64, a gas barrier layer (c layer) 63, an adhesive layer (d layer) from the outer surface to the inner surface. ) 64, a recycling layer 65, an oxygen absorption layer (a layer) 61, and a thermoplastic resin layer (b layer) 62.
  • the production method of the oxygen-absorbing hollow container according to the present invention is not particularly limited, and a conventionally known method can be used. Examples thereof include extrusion hollow molding in which a parison is formed by melt extrusion molding and blown to perform molding, and injection hollow molding in which a preform is formed by injection molding and blown to perform molding. Further, for example, a production method of forming a bottle from a multilayer film / multilayer sheet can be used using a production machine possessed by AGAMI, France.
  • the multilayer sheet is cut into strips, each strip is formed into a tube around the blow pipe, then each strip is welded in the longitudinal direction, and the plastic tube thus formed is heated Then, the manufacturing method is illustrated by blow molding in a mold to make a bottle.
  • the oxygen-absorbing hollow container according to the present invention can be applied from a region having a high water activity to a region having a low water activity. Thereby, it can apply suitably to the articles
  • the oxygen-absorbing hollow container according to the present invention can absorb oxygen regardless of the presence or absence of moisture in the object to be stored.
  • the contents of the hollow container are 0-30% RH from water such as mineral water. It is possible to store even a low moisture content that is preferably preserved and a product that does not contain moisture.
  • Low-moisture content powders, granular foods (powder soup, powdered beverages, powdered confectionery, seasonings, cereal flour, nutritional foods, health foods, colorings, flavorings, spices), powders, granular chemicals: (powdered powder Foods and chemicals that dislike the increase in moisture, such as powders, soaps, toothpastes, industrial chemicals), and molded products (tablet type) of these. Examples of products that do not contain water include industrial parts and pharmaceuticals (atorvastatin, levothyroxine, etc.).
  • Example 1 Al (aluminum) powder and Fe (iron) powder were mixed at a ratio of 50% by mass and dissolved in nitrogen to obtain an Al—Fe alloy.
  • the obtained Al—Fe alloy was pulverized using a jaw crusher, a roll crusher and a ball mill, and the pulverized product was classified using a 200 mesh (0.075 mm) mesh to obtain an Al—Fe alloy of 200 mesh or less. It was. After 150 g of the obtained Al—Fe alloy powder was stirred and mixed in an aqueous 30% by mass sodium hydroxide solution at 50 ° C. for 1 hour, the mixed solution was allowed to stand and the upper layer liquid was removed. The remaining precipitate was washed with distilled water until the pH became 10 or less to obtain an Al—Fe porous metal powder. The porous metal powder was obtained by a reaction in an aqueous solution to avoid contact with oxygen.
  • the obtained porous metal powder was vacuum-dried at 200 Pa or less and 80 ° C. to a moisture content of 1% by mass or less, and dried Al—Fe porous metal powder (hereinafter referred to as “Al-Fe porous metal powder dried product”).
  • Metal powder 1 was obtained.
  • the bulk density of the obtained metal powder 1 was 1.3 g / cm 3 (measured according to JIS Z2504). 1 g of this is packed in a breathable sachet, placed in a gas barrier bag (Al foil laminated plastic bag) with a desiccant, filled with 500 mL of air (oxygen concentration 20.9%), sealed, and at 25 ° C. for 1 day saved.
  • the oxygen concentration in the gas barrier bag was 4.1% by volume, and the oxygen absorption amount was calculated from the reduced oxygen concentration in the gas barrier bag. As a result, the oxygen absorption amount was 87.6 mL / g.
  • the average particle size of the metal powder 1 was 31 ⁇ m.
  • LLDPE linear low density polyethylene
  • metal powder 1 The mixture was melt-kneaded with a twin screw extruder so that the ratio was 50:50 to obtain “oxygen-absorbing resin composition pellet A”.
  • the density of the oxygen-absorbing resin composition pellet A was 1.62 g / cm 3 .
  • Raw materials were fed into the twin-screw extruder through two types of feeders, a main feeder and a side feeder each replaced with nitrogen gas. LLDPE was charged by the main feeder, and metal powder 1 was charged by the side feeder to the melted LLDPE.
  • the obtained oxygen-absorbing resin composition pellet A was pressed at 180 ° C. using a press in nitrogen to obtain an oxygen-absorbing resin film having an average thickness of about 200 ⁇ m.
  • the obtained oxygen-absorbing resin film was cut into 10 cm ⁇ 10 cm.
  • the mass of the cut film was 3.25 g.
  • the mass of metal powder 1 contained in the film was 1.62 g.
  • the film was placed in a gas barrier bag (Al foil laminated plastic bag) together with a desiccant, filled with 400 mL of air (oxygen concentration 20.9%), sealed, and stored at 25 ° C. for 30 days.
  • the oxygen concentration in the gas barrier bag was 5.5% by volume, and the oxygen absorption amount was calculated from the reduced oxygen concentration in the gas barrier bag.
  • the oxygen absorption amount of the resin composition was 40.2 mL / g per unit mass of the metal powder 1 contained in the oxygen-absorbing resin. The results were as shown in Table 2.
  • Example 2 Except for using Ni (nickel) instead of Fe, the same procedure as in Example 1 was performed, and the dried Al—Ni porous metal powder (hereinafter referred to as the “Al—Ni porous metal powder dried product” was referred to as “metal powder 2”). Notation).
  • the bulk density of the obtained metal powder 2 was 1.4 g / cm 3 .
  • the oxygen concentration in the gas barrier bag was 5.8%, the oxygen absorption was 80.1 mL / g, the average The particle size was 18 ⁇ m and the specific surface area was 80.0 m 2 / g.
  • the obtained oxygen-absorbing resin composition pellet B was pulverized by a pulverizer (Turbo Disc Mill manufactured by Freund Turbo) to obtain an oxygen-absorbing resin powder. 3.0 g of the obtained oxygen-absorbing resin powder was weighed. The mass of the metal powder 2 contained in 3.0 g of oxygen-absorbing resin powder was 0.90 g.
  • the oxygen-absorbing resin powder is packaged in a breathable sachet, placed in a gas barrier bag (Al foil laminated plastic bag) together with a desiccant, and stored in a gas barrier bag at 25 ° C. for 30 days in the same manner as in Example 1. As a result, the oxygen concentration in the gas barrier bag was 15.1% by volume, and the oxygen absorption amount per unit mass of the metal powder 2 contained in the oxygen-absorbing resin powder was 30.4 mL / g.
  • the density of the oxygen absorbing resin film was 2.67 g / cm 3 .
  • the appearance of the obtained oxygen-absorbing resin film was “ ⁇ ” according to the evaluation criteria described in the column of Example 1. That is, although the appearance was almost good, it was recognized that the film was brittle and slightly perforated.
  • the oxygen-absorbing resin film was cut into a size of 10 cm ⁇ 10 cm, put into a gas barrier bag (Al foil laminated plastic bag) together with a desiccant, and stored at 25 ° C. for 30 days.
  • the mass of the cut film was 5.34 g, and the mass of the metal powder 1 contained in the cut film was 4.00 g.
  • the oxygen concentration in the gas barrier bag was 0.1% by volume or less, and per unit mass of the metal powder 1 contained in the oxygen-absorbing resin film.
  • the oxygen absorption was 20.8 mL / g.
  • Comparative Example 1 200 kg of iron powder with an average particle size of 35 ⁇ m is put in a closed ribbon mixer with a heating jacket, mixed with 150 kg of calcium chloride at 45 ° C. under a reduced pressure of 1.5 kPa, sprayed with 70 kg of 45% by weight aqueous solution of calcium chloride, dried, and sieved Then, an iron-based oxygen absorbent having an average particle size of 35 ⁇ m was obtained except for the coarse particles (hereinafter referred to as “metal powder 3”). The bulk density of the obtained metal powder 3 was 2.7 g / cm 3 .
  • the oxygen concentration in the gas barrier bag was 20.5% by volume
  • the oxygen absorption amount was 2.5 mL / g
  • the specific surface area was 0.00. 1 m 2 / g.
  • the density of the oxygen-absorbing resin film was 1.24 g / cm 3 .
  • the appearance of the obtained oxygen-absorbing resin film was “ ⁇ ” (good) according to the evaluation criteria described in the column of Example 1.
  • the oxygen-absorbing resin film was cut into a size of 10 cm ⁇ 10 cm, put into a gas barrier bag (Al foil laminated plastic bag) together with a desiccant, and stored at 25 ° C. for 30 days.
  • the mass of the cut film was 2.48 g, and the mass of the metal powder 3 contained in the cut film was 0.75 g.
  • the oxygen concentration in the gas barrier bag was 20.7% by volume, and oxygen per unit mass of the metal powder 3 contained in the oxygen-absorbing resin film The amount absorbed was 1.4 mL / g.
  • Example 1 was used except that Ni powder (made by Toho Titanium, bulk density 3.5 g / cm 3 , hereinafter referred to as metal powder 4) was used instead of metal powder 1.
  • metal powder 4 Ni powder (made by Toho Titanium, bulk density 3.5 g / cm 3 , hereinafter referred to as metal powder 4) was used instead of metal powder 1.
  • the oxygen concentration in the gas barrier bag was 20.8% by volume
  • the oxygen absorption amount was 1.0 mL / g or less
  • the specific surface area was 2.0 m 2 / g. there were.
  • the density of the oxygen-absorbing resin film was 1.25 g / cm 3 .
  • the appearance of the obtained oxygen-absorbing resin film was “ ⁇ ” (good) according to the evaluation criteria described in the column of Example 1.
  • the oxygen-absorbing resin film was cut into a size of 10 cm ⁇ 10 cm, put into a gas barrier bag (Al foil laminated plastic bag) together with a desiccant, and stored at 25 ° C. for 30 days.
  • the mass of the cut film was 2.49 g, and the mass of the metal powder 4 contained in the cut film was 0.75 g.
  • the oxygen concentration in the gas barrier bag was 20.8% by volume, and oxygen per unit mass of the metal powder 4 contained in the oxygen-absorbing resin film The amount absorbed was 1.0 mL / g or less.
  • the oxygen-absorbing resin composition of the present invention is an oxygen-absorbing resin composition having excellent oxygen-absorbing performance even in an atmosphere having almost no moisture with a relative humidity of 3% RH. Met.
  • Example 4 Al (aluminum) powder and Fe (iron) powder were mixed at a ratio of 50% by mass and melted in nitrogen using a high-frequency induction melting furnace to obtain an Al—Fe alloy.
  • the obtained Al—Fe alloy was pulverized using a jaw crusher, a roll crusher and a ball mill, and the pulverized product was classified using a 200 mesh (0.075 mm) mesh to obtain an Al—Fe alloy of 200 mesh or less. It was.
  • 400 g of the obtained Al—Fe alloy powder was stirred and mixed in a 30 mass% sodium hydroxide aqueous solution at 55 ° C. for 1 hour, the mixed solution was allowed to stand and the upper layer liquid was removed. The remaining precipitate was washed with distilled water until the pH became 10 or less to obtain an Al—Fe porous metal powder.
  • the porous metal powder was obtained by a reaction in an aqueous solution to avoid contact with oxygen.
  • the obtained porous metal powder was vacuum-dried at 200 Pa or less and 100 ° C. to a moisture content of 1% by mass or less, and dried Al—Fe porous metal powder (hereinafter referred to as “Al-Fe porous metal powder dried product”).
  • Metal powder 5 was obtained.
  • the bulk density of the obtained metal powder 5 was 1.3 g / cm 3 (measured according to JIS Z2504).
  • 1 g of metal powder 5 is put in a gas barrier bag (Al foil laminated plastic bag) together with a desiccant packaged in a breathable sachet, filled with 650 mL of air (oxygen concentration 20.9% by volume) and sealed at 25 ° C. Stored for 1 day.
  • the relative humidity was 3% RH or less.
  • the oxygen concentration was 9.7% by volume, and the oxygen absorption amount of the bulk powder was 80.6 mL / g.
  • the average particle size of the metal powder 5 was 35 ⁇ m.
  • LLDPE2 linear low density polyethylene
  • LLDPE2 Metal powder 5 and linear low density polyethylene (available from Nippon Polyethylene Co., Ltd., MFR 10.5 g / 10 min (measured in accordance with JIS K7210), hereinafter referred to as “LLDPE2”)
  • LLDPE2 Metal
  • the density of the oxygen-absorbing resin composition A was 1.40 g / cm 3 .
  • Raw materials were fed into the twin-screw extruder through two types of feeders, a main feeder and a side feeder each replaced with nitrogen gas. LLDPE2 was charged by the main feeder, and metal powder 5 was charged by the side feeder to the melted LLDPE2.
  • a two-kind two-layer film (thickness; oxygen absorbing layer 40 ⁇ m / thermoplastic resin layer 20 ⁇ m) in which the obtained oxygen-absorbing resin composition A was an oxygen-absorbing layer and LLDPE2 was a thermoplastic resin layer (b layer)
  • the oxygen absorbing layer surface was subjected to corona discharge treatment at a width of 450 mm and 30 m / min to produce a film roll.
  • the film roll had no uneven thickness such as bumps, and the appearance of the obtained film was good.
  • a 15 cm ⁇ 20 cm three-sided seal bag was produced.
  • the mass of the oxygen absorption layer of the produced three-side seal bag and the mass of the metal powder 5 contained in the three-side seal bag are calculated, the mass of the oxygen absorption layer is 3.37 g and is contained in the three-side seal bag.
  • the mass of the metal powder 5 was 1.35 g.
  • the prepared three-sided seal bag was sealed with 100 mL of air (oxygen concentration 20.9 vol%) together with a desiccant packaged in a breathable sachet and stored at 25 ° C. for 30 days.
  • the relative humidity was 3% RH or less.
  • Example 5 The conditions for obtaining the Al—Fe porous metal powder were stirred and mixed in a 30% by mass aqueous sodium hydroxide solution at 45 ° C. for 30 minutes, and then the mixed solution was allowed to stand, the upper layer liquid was removed, and the remaining precipitate was adjusted to a pH of 10
  • the dried Al—Fe porous metal powder (hereinafter, the dried Al—Fe porous metal powder was referred to as “metal powder 6” in the same manner as in Example 4 except that it was washed with distilled water until Notation).
  • the bulk density of the obtained metal powder 6 was 1.4 g / cm 3 .
  • a two-type three-layer film (thickness: 20 ⁇ m / 30 ⁇ m / 20 ⁇ m) having an oxygen-absorbing resin composition B as a core layer and a skin layer as LLDPE3 was produced at a width of 600 mm and 70 m / min. The appearance of the obtained film was good.
  • the obtained two kinds of three-layer films were cut into 15 cm ⁇ 15 cm, and two pieces of the two kinds of three-layer films thus cut were put into a gas barrier bag (Al foil laminated plastic bag) together with a desiccant packaged in a breathable sachet. It was filled with air (oxygen concentration 20.9% by volume), sealed, and stored at 25 ° C. for 30 days.
  • a gas barrier bag Al foil laminated plastic bag
  • air oxygen concentration 20.9% by volume
  • the mass of the oxygen absorbing layer of the cut film and the mass of the metal powder 6 contained in the film are calculated, the mass of the oxygen absorbing layer is 1.66 g, and the mass of the metal powder 6 contained in the film is It was 0.50 g.
  • the relative humidity was 3% RH or less.
  • Example 6 Except for using Ni (nickel) instead of Fe, the same procedure as in Example 4 was performed, and the Al—Ni porous metal powder dried material (hereinafter, the Al—Ni porous metal powder dried material was referred to as “metal powder 7”). Notation).
  • the bulk density of the obtained metal powder 7 was 1.2 g / cm 3 .
  • the oxygen concentration in the gas barrier bag was 10.1% by volume
  • the oxygen absorption amount was 78.1 mL / g
  • the average particle size was 21 ⁇ m and the specific surface area was 85.0 m 2 / g.
  • the density of the oxygen-absorbing resin composition C was 1.24 g / cm 3 .
  • the appearance of the obtained film was good.
  • the mass of the oxygen absorbing layer of the film cut out in the same manner as in Example 5 and the mass of the metal powder 7 contained in the film were calculated, the mass of the oxygen absorbing layer was 1.68 g and contained in the film.
  • the metal powder 7 had a mass of 0.50 g.
  • the density of the oxygen-absorbing resin composition D was 2.41 g / cm 3 . Although the appearance of the obtained film was almost good, it was recognized that the film was brittle and slightly perforated.
  • the mass of the oxygen absorbing layer of the cut film and the mass of the metal powder 7 contained in the film were calculated in the same manner as in Example 6, the mass of the oxygen absorbing layer was 3.26 g and contained in the film.
  • the mass of the metal powder 7 was 2.28 g.
  • the oxygen concentration in the gas barrier bag stored for 30 days at 25 ° C. is 0.1% by volume or less, and is included in the two-type three-layer film.
  • the amount of oxygen absorbed per unit mass of the metal powder 7 was 18.2 mL / g.
  • Comparative Example 3 100 kg of iron powder with an average particle size of 50 ⁇ m was put into a closed ribbon mixer with a heating jacket, mixed with 160 kg at a reduced pressure of 10 mmHg at 160 ° C., sprayed with 35 kg of a 40% by weight aqueous solution of calcium chloride, dried, sieved and coarsened Except for the grains, an iron-based oxygen absorbent having an average particle diameter of 50 ⁇ m was obtained (hereinafter referred to as “metal powder 8”). The bulk density of the obtained metal powder 8 was 2.8 g / cm 3 .
  • a two-kind three-layer film was produced in the same manner as in Example 5 except that the functional resin composition E was used as the core layer.
  • the density of the oxygen-absorbing resin composition E was 1.24 g / cm 3 .
  • the appearance of the obtained film was good.
  • the mass of the oxygen absorbing layer of the cut film and the mass of the metal powder 8 contained in the film were calculated in the same manner as in Example 5, the mass of the oxygen absorbing layer was 1.67 g and contained in the film.
  • the mass of the metal powder 8 was 0.50 g.
  • Comparative Example 4 The same as Comparative Example 3 except that Ni powder (made by Toho Titanium, bulk density 4.0 g / cm 3 , hereinafter referred to as “metal powder 9”) was used instead of metal powder 8.
  • metal powder 9 Ni powder (made by Toho Titanium, bulk density 4.0 g / cm 3 , hereinafter referred to as “metal powder 9”) was used instead of metal powder 8.
  • the oxygen concentration in the gas barrier bag was 20.7% by volume
  • the oxygen absorption amount was 1.0 mL / g or less
  • the specific surface area was 2.4 m 2 / g.
  • the density of the oxygen-absorbing resin composition F was 1.25 g / cm 3 .
  • the appearance of the obtained film was good.
  • the mass of the oxygen absorbing layer of the cut film and the mass of the metal powder 9 contained in the film were calculated in the same manner as in Example 5, the mass of the oxygen absorbing layer was 1.68 g and contained in the film.
  • the mass of the metal powder 9 was 0.50 g.
  • the oxygen-absorbing multilayer body according to the present invention exhibits oxygen-absorbing performance even in an atmosphere having a low humidity of 30% RH (25 ° C.) or less and almost no moisture. It is an oxygen-absorbing multilayer body, and by using this multilayer body, it is possible to deoxidize and preserve the object to be stored even under low humidity.
  • Example 8 Al (aluminum) powder and Fe (iron) powder were mixed at a ratio of 50% by mass and dissolved in nitrogen to obtain an Al—Fe alloy.
  • the obtained Al—Fe alloy was pulverized using a jaw crusher, a roll crusher and a ball mill, and the pulverized product was classified using a 200 mesh (0.075 mm) mesh to obtain an Al—Fe alloy of 200 mesh or less. It was. After 150 g of the obtained Al—Fe alloy powder was stirred and mixed in an aqueous 30% by mass sodium hydroxide solution at 50 ° C. for 1 hour, the mixed solution was allowed to stand and the upper layer liquid was removed. The remaining precipitate was washed with distilled water until the pH became 10 or less to obtain an Al—Fe porous metal powder. The porous metal powder was obtained by a reaction in an aqueous solution to avoid contact with oxygen.
  • Al-Fe porous metal powder dried product dried Al—Fe porous metal powder (hereinafter referred to as “Al-Fe porous metal powder dried product”). It was expressed as “metal powder 10”).
  • the bulk density of the obtained metal powder 10 was 1.3 g / cm 3 (measured according to JIS Z2504). 1 g of this is packed in a breathable sachet, put in a gas barrier bag (Al foil laminated plastic bag) together with a desiccant, filled with 500 mL of air (oxygen concentration 20.9 vol%), sealed, and sealed at 25 ° C. Saved the day.
  • the oxygen concentration in the gas barrier bag was 4.1% by volume, and the oxygen absorption amount was calculated from the reduced oxygen concentration in the gas barrier bag. As a result, the oxygen absorption amount was 87.6 mL / g.
  • the average particle size of the metal powder 10 was 31 ⁇ m.
  • the specific surface area of the metal powder 10 was 37.0 m 2 / g. Are shown in Table 5.
  • Metal powder 10 and high-density polyethylene manufactured by Ube Maruzen Polyethylene Co., Ltd., trade name: UBE polyethylene “B300H”, MFR 1.0 g / 10 min (measured according to JIS K7210), hereinafter referred to as “HDPE1”)
  • HDPE1 was charged by a main feeder, and metal powder 10 was charged by molten side HDPE1 by a side feeder.
  • the density of the oxygen-absorbing resin composition pellet C was about 1.5 g / cm 3 .
  • the MFR was 0.4 g / 10 min (measured according to JIS K7210).
  • Oxygen-absorbing resin composition pellet C is used for the oxygen-absorbing layer (a layer), HDPE1 is also used for the thermoplastic resin layer (b-layer), and ethylene vinyl alcohol copolymer resin (Nippon Synthetic Co., Ltd.) is used as the gas barrier layer (c-layer) resin.
  • a container with a capacity of 100 mL was prepared with a direct blow molding machine of 4 types and 6 layers.
  • the dimensions were a height of 83.5 mm, a container bottom outer diameter of 48 mm, and a mouth inner diameter of 25.2 mm.
  • the surface area of the innermost layer was 0.013 m 2 .
  • the production temperature was 200 ° C.
  • the layer structure of the oxygen-absorbing hollow container is from the outer surface to the inner surface, thermoplastic resin layer (b layer) / adhesive resin layer (d layer) / barrier layer (b layer) / adhesive resin layer (d layer) / Oxygen absorbing layer (a layer) / thermoplastic resin layer (b layer).
  • the thickness of each layer was 600 ⁇ m / 100 ⁇ m / 100 ⁇ m / 100 ⁇ m / 100 ⁇ m / 200 ⁇ m / 100 ⁇ m from the outer surface to the inner surface.
  • the hollow container was ashed and the metal content of (I) was measured to confirm that it contained 1.5 g.
  • the oxygen absorption amount of the obtained oxygen absorption hollow container was evaluated.
  • the hollow container is placed in a gas barrier bag (Al foil laminated plastic bag) together with a desiccant and adjusted so that 500 mL of air (oxygen concentration 20.9% by volume) is filled in the gas barrier bag. Then, it was sealed and stored at 25 ° C. for 60 days.
  • the relative humidity was 3% RH or less.
  • the oxygen concentration in the gas barrier bag was 10.0% by volume, and the oxygen absorption amount was calculated from the reduced oxygen concentration in the gas barrier bag.
  • the amount of oxygen absorbed per unit mass of the metal powder 10 contained in the oxygen-absorbing hollow container was 40.2 mL / g.
  • the oxygen absorbed by the oxygen-absorbing hollow container at 25 ° C. for 60 days was 60.3 mL.
  • Comparative Example 5 200 kg of reduced iron powder having an average particle size of 35 ⁇ m was put into a closed ribbon mixer with a heating jacket, and mixed with 150 kg of calcium chloride at 45 ° C. under a reduced pressure of 1.5 kPa. The coarse particles were separated and a reduced iron-based oxygen absorbent having an average particle size of 35 ⁇ m was obtained (hereinafter referred to as “metal powder 11”). The bulk density of the obtained metal powder 11 was 2.7 g / cm 3 . As a result of measuring the oxygen absorption performance and specific surface area of the metal powder 11 in the same manner as in Example 8, the oxygen concentration in the gas barrier bag was 20.5% by volume, the oxygen absorption amount was 2.5 mL / g, and the specific surface area was 0.00. 1 m 2 / g. These results are shown in Table 5.
  • Example 8 A hollow container similar to Example 8 was prepared except that the metal powder 11 was used.
  • the hollow container was placed in a barrier bag (Al foil laminated plastic bag) together with a desiccant and stored at 25 ° C. for 60 days.
  • the oxygen concentration in the gas barrier bag was 20.7% by volume, and the oxygen absorption amount was calculated from the reduced oxygen concentration in the gas barrier bag.
  • the amount of oxygen absorbed per unit mass of the metal powder 11 contained in the oxygen-absorbing hollow container was 1.4 mL / g.
  • the oxygen absorbed by the hollow container at 25 ° C. for 60 days was 2.1 mL.
  • HDPE2 high-density polyethylene
  • HDPE2 was introduced through a main feeder, and metal powder 10 was introduced into the melted HDPE2 through a side feeder.
  • the density of the oxygen-absorbing resin composition pellet D was about 1.5 g / cm 3 .
  • the MFR was 0.4 g / 10 min (measured according to JIS K7210).
  • Layer structure is from outer surface to inner surface, thermoplastic resin outer layer (b1 layer) / adhesive resin layer (d layer) / gas barrier layer (c layer) / adhesive resin layer (d layer) / light-shielding oxygen absorbing layer (A layer) / inner layer of thermoplastic resin (b2 layer).
  • the thickness ( ⁇ m) of each layer was 600/100/100/100/100/200/100 from the outer surface to the inner surface.
  • a carboxylic acid-modified polyolefin resin (trade name: Zelas “MC735” manufactured by Mitsubishi Chemical Corporation) was used.
  • the resin for the gas barrier layer (c layer) an ethylene vinyl alcohol copolymer resin (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name: Soarnol “DT2904”) was used.
  • HDPE2 was used as the resin for the thermoplastic resin inner layer (b2 layer).
  • a container with a capacity of 100 mL was molded at a production temperature of 200 ° C. with a direct blow molding machine.
  • the dimensions were a height of 83.5 mm, a container bottom outer diameter of 48 mm, a mouth inner diameter of 25.2 mm, and the surface area of the innermost layer was 0.013 m 2 .
  • the metal powder 10 contained about 1.5 g.
  • the oxygen absorption amount of the obtained oxygen absorption hollow container was evaluated.
  • the hollow container is placed in a gas barrier bag (Al foil laminated plastic bag) together with a desiccant and adjusted so that 500 mL of air (oxygen concentration 20.9% by volume) is filled in the gas barrier bag. Then, it was sealed and stored at 25 ° C. for 60 days.
  • the relative humidity was 3% RH or less.
  • the oxygen concentration in the gas barrier bag was 10.0% by volume, and the oxygen absorption amount was calculated from the reduced oxygen concentration in the gas barrier bag.
  • the amount of oxygen absorbed per unit mass of the metal powder 10 contained in the oxygen-absorbing hollow container was 40.2 mL / g.
  • the oxygen absorbed by the oxygen-absorbing hollow container at 25 ° C. for 60 days was 60.3 mL. From the above results, it was shown that the container has an oxygen absorption capacity that can sufficiently absorb oxygen (20.9 mL) in the container (capacity 100 mL).
  • the light-shielding oxygen-absorbing hollow container thus obtained was measured for light transmittance in a wavelength region of 200 to 800 nm using an ultraviolet / visible spectrophotometer (“U-3500” manufactured by Hitachi, Ltd.) to determine the light-shielding property of the bottle. evaluated.
  • U-3500 ultraviolet / visible spectrophotometer
  • the ultraviolet and visible light transmittance of this hollow container was 0.1% or less, and it had sufficient light shielding properties.
  • the appearance was white and had a good aesthetic appearance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • Food Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Packages (AREA)
  • Laminated Bodies (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[課題]低湿度の雰囲気下においても該雰囲気中の酸素を吸収可能な酸素吸収性樹脂組成物、酸素吸収多層体、および酸素吸収中空容器の提供。 [解決手段]本発明による酸素吸収性樹脂組成物は、(I)(A)マンガン族、鉄族、白金族および銅族からなる群より選択される少なくとも1種の遷移金属と、(B)アルミニウム、亜鉛、スズ、鉛、マグネシウムおよびケイ素からなる群より選択される少なくとも1種とを含む合金を、酸またはアルカリの水溶液処理に供して、該成分(B)の少なくとも一部を溶出除去して得られる金属((I)の金属)からなる酸素吸収剤、及び(II)熱可塑性樹脂とを含んでなるものである。

Description

酸素吸収性樹脂組成物、酸素吸収多層体、および酸素吸収中空容器
 本発明は、酸素吸収性金属からなる酸素吸収剤と熱可塑性樹脂とを含む酸素吸収性樹脂組成物に関する。詳しくは、低湿度の雰囲気中でも酸素を吸収、除去することができる酸素吸収性樹脂組成物に関する。さらに、このような酸素吸収性樹脂組成物を用いた酸素吸収多層体および酸素吸収中空容器にも関する。
 食品や医薬品などの保存技術の一つとして酸素吸収剤(脱酸素剤)による保存技術がある。具体的には、雰囲気中の酸素を除去する脱酸素剤を対象物と共に密閉包装体の内部に入れて、密閉包装体の内部を無酸素状態にすることによって、対象物の酸化劣化、カビ、変色などを抑制する技術である。
 これまでに雰囲気中の酸素を除去する脱酸素剤として、各種無機系材料からなるもの及び有機系材料からなるものが提案されている。例えば、無機系主剤として鉄などの金属粉、亜硫酸塩、亜硫酸水素塩、亜ニチオン酸塩などを用いたもの、有機系主剤としてL-アスコルビン酸、エリソルビン酸及びそれらの塩、グルコースなどの糖類、カテコール、ピロガロールなどの還元性多価アルコール類を用いたものなどがあげられる。
 しかしながら、これら従来の脱酸素剤は、使用時に水もしくは水分を供給するものがないと実用的な脱酸素能を得ることができないという問題点があった。すなわち、従来の脱酸素剤は、使用する際に水もしくは水分を保持させた物質、例えば、結晶水を持った化合物を混合するか、あるいは保存しようとする食品などから出てくる水蒸気を利用することによってはじめて実用的な脱酸素能を得ることができるものであった。このため、従来の脱酸素剤を、乾燥条件下にて使用または保存する必要のある医薬品または乾燥食品や、水もしくは水分の存在を嫌う金属製品の防錆保存について適用することは困難であった。
 このため、これらの用途においては、酸素吸収の際に水分を必要としない酸素吸収剤が求められていた。このような要求に応えうる酸素吸収剤としては、例えば、(a) 酸素欠陥を利用した酸化セリウムを主剤とした脱酸素剤(特許第4001614号(特許文献1))、(b) 酸素欠陥を有した酸化チタンを主剤とした脱酸素剤(特許第4248986号(特許文献2))、および(c) 水素還元を行った金属を主剤とした脱酸素剤(特開昭62-277148号(特許文献3))、および(d) 有機物の自動酸化を利用した脱酸素剤などが報告されている。
 しかしながら、このうち、上記の(a)および(b)については、これらの脱酸素剤の原料となる金属はレアメタルであるため、希少で高価である。また海外からの輸入に頼らざるを得ず、情勢によっては仕入れが変動し安定した生産量が望めなくなる場合もある。このため、コストと安定供給の観点から必ずしも満足しうるものとは言えなかった。また、上記の(c)については、大がかりな水素還元設備を付帯する必要があるため、簡便な手法ではなく、大気中での取り扱い性が良いとも言えない。さらに上記の(d)は主剤として有機物の酸化反応を利用しているため、酸素吸収後に発生する副生物の問題がある。
 このため、水分が無いか殆ど無い雰囲気下であっても雰囲気中の酸素を吸収する能力をもつ酸素吸収性樹脂組成物であって、原料が比較的安価で安定しており、副生物の問題も殆ど無く、水素還元を行う場合のような大規模な装置を付帯する必要のないものが、依然として望まれていた。
 近年、脱酸素剤を樹脂と混練してシート状又はフィルム状にしたシート状包装材を用いて被保存物を包装することが行われている(例えば、特許第3496427号(特許文献4)及び国際公開公報WO2010/147097(特許文献5))。乾燥条件下にて使用または保存する必要のある医薬品または乾燥食品や、水もしくは水分の存在を嫌う金属製品の防錆保存においても、シート状の包装材を使用することが望まれていた。すなわち、シート状又はフィルム状にした酸素吸収性のシート状包装材の場合にも、水分が無いか殆ど無い雰囲気下であっても雰囲気中の酸素を吸収する能力をもつものが望まれていた。
 また、食品や医薬品などの保存技術には様々な形態がある。例えば、ガスバリア性の高いポリエチレンテレフタレート(PET)等のポリエステルを主体とする中空容器が、お茶、果汁飲料、炭酸飲料等に使用されている。また飲料以外にも、ポリメタキシリレンアジパミド樹脂(以下、「MXD6樹脂」ともいう)やエチレン-ビニルアルコール共重合樹脂(以下、「EVOH樹脂」ともいう)などに例示されるガスバリア性樹脂を使用した中空容器が食品や医薬品の保存に広く利用されている。
 特に急成長をとげてきた飲料用途に使用されているポリエステル系樹脂製の中空容器は、携行できる利便性から小型化が進み、内容量500mL未満のものが数多くみられる。緑茶、スポーツドリンク、炭酸飲料、お茶、果汁飲料、珈琲、野菜系飲料等様々な内容物に使用されており、これらの内容物の多くは光や酸素に対して劣化の影響を受けやすいものが多い。
 飲料用途以外においては、タブレットガム、化粧品、機能性サプリメント、錠剤型医薬品に内容量100mL程度の小容量のポリオレフィン系樹脂製の中空容器の採用が多くなっている。中空容器は、小型化するに従い単位体積当たりの表面積の割合が大きくなるため、小型化した場合には、中身の品質劣化は早くなり品質保証期間は短くなる傾向にある。
 そのため、中空容器の中身の賞味期限を伸ばすために様々な技術が提案され実施されている。中空容器の中身の賞味期限を伸ばす基本的な技術の一つの例として、特開2002-320662(特許文献6)に、酸素透過性の良い密閉容器と小袋状の脱酸素剤を組み合わせて、易酸化性薬物の酸化劣化を抑制するという技術が記載されている。しかしながら、この発明には、中空容器の中身が液体であると、小袋状の脱酸素剤が封入できないこと、脱酸素剤を封入する機械の設置が必要なこと、製造時の作業工程が増えること、使用後の廃棄物が多いこと等の課題があった。
 別の例として、特許出願公告昭和62-1824(特許文献7)には、酸素透過性樹脂に還元性鉄を主剤とする脱酸素剤を配合し酸素吸収層を形成した、袋、ボトルチューブ等の脱酸素多層構造物の技術が記載されている。しかしながら、この発明には、酸化鉄を原料に大規模な水素還元設備を付帯する必要があるため、簡便な手法ではなかった。また酸化反応に水が必要であり、この多層構造物に収容できる内容物は含水物であることに限定されているという課題があった。
 更に別の例として、例えば特許第4501044(特許文献8)には、被酸化性のポリアミド樹脂と遷移金属触媒を使用し経時で中空容器の外側から内側に透過してくる酸素を吸収する事で高いバリア性をもたせ、かつ容器内壁から液体に溶存している酸素を吸収して中身の酸化劣化を抑制、低減する技術が記載されており、ビールやお茶を収容する用途に好適に使用できるという事が記載されている。しかしながら、この発明には、有機物の酸化反応を利用しており、酸化反応にともなう副生成物の発生があり、酸化反応に伴う中空容器の強度低下が起きるという課題があった。
特許第4001614号公報 特許第4248986号公報 特開昭62-277148号公報 特許第3496427号 国際公開公報WO2010/147097 特開2002-320662号 特許出願公告昭和62-1824号 特許第4501044号
 本発明者らは、アルミニウムと鉄からなる合金、または、アルミニウムとニッケルからなる合金から水酸化ナトリウム水溶液を用いてアルミニウムのみを取り除いた金属が、30%RH(25℃)以下であるような水分が無いか殆ど無い雰囲気中であっても、雰囲気中の酸素を、従来の脱酸素剤と同等のレベルで、吸収・除去し得ることを見出した。さらなる検討の結果、使用する合金としては、特定の種類の遷移金属(成分(A)の範囲のもの)と、アルミニウム、亜鉛、スズ、鉛、マグネシウムおよびケイ素からなる群より選択される1種(成分(B)の範囲のもの)とを含む合金であれば使用でき、また、酸またはアルカリの水溶液処理に供することによって、合金から、成分(B)の少なくとも一部を溶出(浸出)し除去することによって、目的の金属からなる酸素吸収剤を得ることができることがわかった。そして、この酸素吸収剤と熱可塑性樹脂とを混練することにより、酸素吸収性樹脂組成物を得ることができた。さらに、このような酸素吸収性樹脂組成物を用いることで、低湿度雰囲気下においても酸素吸収可能な酸素吸収多層体および酸素吸収中空容器を得ることに成功した。本発明はこれら知見に基づくものである。
 よって、本発明は、水分が無いか殆ど無い雰囲気下であっても雰囲気中の酸素を吸収する能力をもつ酸素吸収性樹脂組成物であって、原料が比較的安価で安定しており、副生物の問題も殆ど無く、水素還元を行う場合のような大規模な装置を付帯する必要のない酸素吸収性樹脂組成物の提供をその目的とする。さらに、このような酸素吸収性樹脂組成物を用いた酸素吸収多層体および酸素吸収中空容器の提供も目的とする。
 すなわち、本発明によれば、以下の(1)~(33)の発明が提供される。
(1) (I)(A)マンガン族、鉄族、白金族および銅族からなる群より選択される少なくとも1種の遷移金属と、
    (B)アルミニウム、亜鉛、スズ、鉛、マグネシウムおよびケイ素からなる群より選択される少なくとも1種と
を含む合金を、酸またはアルカリの水溶液処理に供して、前記成分(B)の少なくとも一部を溶出除去して得られる金属((I)の金属)からなる酸素吸収剤、及び
 (II)熱可塑性樹脂
を含んでなる、酸素吸収性樹脂組成物。
(2) 30%RH(25℃)以下の低湿度の雰囲気においても酸素を吸収しうる、(1)に記載の酸素吸収性樹脂組成物。
(3) 30%RH(25℃)以下の低湿度の雰囲気において、前記(I)の金属が少なくとも5mL/gの酸素を吸収しうる、(1)または(2)に記載の酸素吸収性樹脂組成物。
(4) 前記(I)の金属が、多孔質形状である、(1)~(3)のいずれかに記載の酸素吸収性樹脂組成物。
(5) 前記成分(A)が、鉄、コバルト、ニッケル、および銅からなる群より選択される少なくとも1種である、(1)~(4)のいずれかに記載の酸素吸収性樹脂組成物。
(6) 前記成分(B)が、アルミニウムである、(1)~(5)のいずれかに記載の酸素吸収性樹脂組成物。
(7) 前記(I)の金属の、前記成分(B)の含有率が、0.1~50質量%である、(1)~(6)のいずれかに記載の酸素吸収性樹脂組成物。
(8) 前記(I)の金属の、BET法により測定される比表面積が、少なくとも10m/gである、(1)~(7)のいずれかに記載の酸素吸収性樹脂組成物。
(9) 前記合金が粉末状であり、前記(I)の金属が粉末状である、(1)~(8)のいずれかに記載の酸素吸収性樹脂組成物。
(10) 前記水溶液処理において、水酸化ナトリウム水溶液が用いられる、(1)~(9)のいずれかに記載の酸素吸収性樹脂組成物。
(11) 前記(II)の熱可塑性樹脂が、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、エチレン-ビニルアルコール共重合体、及び塩素系樹脂からなる群より選択される少なくとも1種である、(1)~(10)のいずれかに記載の酸素吸収性樹脂組成物。
(12) (1)~(11)のいずれかに記載の酸素吸収性樹脂組成物を、通気性包装材を全部又は一部に用いた包装材で包装してなる、酸素吸収包装体。
(13) (1)~(11)のいずれかに記載の酸素吸収性樹脂組成物からなる酸素吸収層(a層)と、
 前記酸素吸収層(a層)の片側もしくは両側に、熱可塑性樹脂を含む熱可塑性樹脂組成物からなる熱可塑性樹脂層(b層)と
を含んでなる、酸素吸収多層体。
(14) ガスバリア層(c層)をさらに含んでなる、(13)に記載の酸素吸収多層体。
(15) 前記酸素吸収層(a層)と前記熱可塑性樹脂層(b層)の間に、接着層(d)をさらに含んでなる、(13)または(14)に記載の酸素吸収多層体。
(16) 前記酸素吸収層(a層)と前記ガスバリア層(c層)の間、及び/又は前記熱可塑性樹脂層(b層)と前記ガスバリア層(c層)の間に、接着層(d)をさらに含んでなる、(14)に記載の酸素吸収多層体。
(17) 前記熱可塑性樹脂層(b層)に用いられる熱可塑性樹脂が、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合樹脂、および塩素系樹脂からなる群から選択される少なくとも1種である、(13)~(16)のいずれかに記載の酸素吸収多層体。
(18) 酸素吸収多層体が、ペレット、フィルム、シート、トレイ、カップ、PTP容器、ボトル、チューブ、ブロック、およびキャップからなる群から選択される少なくとも1種である、(13)~(17)のいずれかに記載の酸素吸収多層体。
(19) (13)~(17)のいずれかに記載の酸素吸収多層体からなる、酸素吸収性包装容器用予備成形体。
(20) (13)~(18)のいずれかに記載の酸素吸収多層体が、包装容器の少なくとも一部に使用されている、酸素吸収性包装容器。
(21) (1)~(11)のいずれかに記載の酸素吸収性樹脂組成物からなる酸素吸収層(a層)を含んでなる、酸素吸収中空容器。
(22) 前記酸素吸収中空容器の少なくとも一層が、遮光材をさらに含んでなる、(21)に記載の酸素吸収中空容器。
(23) 前記遮光材が、カーボンブラック、チタンブラック、および酸化チタンからなる群から選択される少なくとも1種を含む、(22)に記載の酸素吸収中空容器。
(24) 前記酸素吸収中空容器の最内層および/または最外層が、熱可塑性樹脂を含む熱可塑性樹脂組成物からなる熱可塑性樹脂層(b層)である、(21)~(23)のいずれかに記載の酸素吸収中空容器。
(25) ガスバリア層(c層)をさらに含んでなる、(21)~(24)のいずれかに記載の酸素吸収中空容器。
(26) 外側面から内側面へ、熱可塑性樹脂層(b層)、ガスバリア層(c層)、酸素吸収層(a層)、および熱可塑性樹脂層(b層)の順に配置されてなる、(25)に記載の酸素吸収中空容器。
(27) 接着層(d層)をさらに含んでなる、(21)~(26)のいずれかに記載の酸素吸収中空容器。
(28) 外側面から内側面へ、熱可塑性樹脂層(b層)、接着層(d層)、ガスバリア層(c層)、接着層(d層)、酸素吸収層(a層)、熱可塑性樹脂層(b層)の順に配置されてなる、(27)に記載の酸素吸収中空容器。
(29)  酸素吸収層(a層)よりも外側に配置された熱可塑性樹脂層(b層)が、白色顔料を含んでなる、24~28のいずれかに記載の酸素吸収中空容器。
(30) 前記熱可塑性樹脂層(b層)に用いられる熱可塑性樹脂が、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合樹脂、および塩素系樹脂からなる群から選択される少なくとも1種である、(24)~(29)のいずれかに記載の酸素吸収中空容器。
(31) 前記酸素吸収中空容器の最内層の厚みが200μm以下である、(21)~(30)のいずれかに記載の酸素吸収中空容器。
(32) 前記酸素吸収中空容器の少なくとも一層が乾燥剤を含有する、(21)~(31)のいずれかに記載の酸素吸収中空容器。
(33) (13)~(18)のいずれかに記載の酸素吸収多層体、(20)に記載の酸素吸収性包装容器、または(21)~(32)のいずれかに記載の酸素吸収中空容器を用いて被保存物を保存する、物品の保存方法。
 本発明による酸素吸収性樹脂組成物は、水分が無いか殆ど無い雰囲気中であっても、雰囲気中の酸素を、従来の脱酸素剤を含む酸素吸収性の樹脂組成物と同等のレベルで、吸収・除去し得ることが可能である。そのため、従来の脱酸素剤の適用の難しかった水分を嫌う乾燥食品、医薬品、電子材料のパッケージの雰囲気中を脱酸素状態にするなどの用途にも好適に使用することができる。さらに、本発明による酸素吸収多層体および酸素吸収中空容器は、このような酸素吸収性樹脂組成物を用いることで、水分が無いか殆ど無い雰囲気中であっても、雰囲気中の酸素を、従来の脱酸素剤を含む酸素吸収性の樹脂組成物と同等のレベルで、吸収・除去し得ることが可能である。
本発明による酸素吸収多層体の一例を示す模式断面図である。 本発明による酸素吸収多層体の一例を示す模式断面図である。 本発明による酸素吸収中空容器の一例を示す模式断面図である。 本発明による酸素吸収中空容器の一例を示す模式断面図である。 本発明による酸素吸収中空容器の一例を示す模式断面図である。 本発明による酸素吸収中空容器の一例を示す模式断面図である。 本発明による酸素吸収中空容器の一例を示す模式断面図である。 本発明による酸素吸収中空容器の一例を示す模式断面図である。 本発明による酸素吸収中空容器の一例を示す模式断面図である。 本発明による酸素吸収中空容器の酸素量吸収量を測定する試験装置の模式図である。
酸素吸収性樹脂組成物
 本発明による酸素吸収性樹脂組成物は、(I)酸素吸収剤と、(II)熱可塑性樹脂とを含んでなるものである。ここで酸素吸収性とは、かかる樹脂組成物を設置した周囲の雰囲気中から酸素を選択的に吸収することができることをいう。
酸素吸収剤
 本発明において用いられる酸素吸収剤は、下記の2成分、即ち、(A)マンガン族、鉄族、白金族および銅族からなる群より選択される少なくとも1種の遷移金属と、(B)両性金属、マグネシウムおよびケイ素からなる群より選択される少なくとも1種とを含む合金を、酸またはアルカリの水溶液処理に供して、上記の成分(B)の少なくとも一部を溶出除去して得られる金属からなるものである。なお、本明細書において、「酸素吸収剤」とは、かかる剤を設置した周囲の雰囲気中から酸素を選択的に吸収することができるものをいう。
(I)の金属
 本発明の酸素吸収性樹脂組成物に含まれる「(I)の金属」は、上記したように、
 (A)マンガン族、鉄族、白金族および銅族からなる群より選択される少なくとも1種の遷移金属と、
 (B)アルミニウム、亜鉛、スズ、鉛、マグネシウムおよびケイ素からなる群より選択される少なくとも1種
とを含む合金を、酸またはアルカリの水溶液処理に供して、上記の成分(B)の少なくとも一部を溶出除去して得られるものである。
成分(A)
 酸素吸収剤を構成する成分(A)として使用可能な遷移金属は、マンガン族(マンガン、テクネチウム、レニウム)、鉄族(鉄、コバルト、ニッケル)、白金族(ルテニウム、ロジウム、パラジウム、オスミウム、イリジウム、白金)、銅族(銅、銀、金)から選択される1種以上のものである。このため、2種以上を組み合わせて用いても良く、例えば、鉄とニッケルが選択される場合、成分(A)として、Fe-Ni合金を使用しても良い。
 成分(A)としては、好ましくは、マンガン、鉄、コバルト、ニッケル、または銅であり、より好ましくは、鉄、コバルト、ニッケル、または銅であり、さらに好ましくは、鉄、またはニッケルであり、特に好ましくは、鉄である。このうち、鉄は、安全性が高く安価であるため好ましい。
成分(B)
 酸素吸収剤を構成する成分(B)は、アルミニウム、亜鉛、スズ、鉛、マグネシウムおよびケイ素から選択される1種以上のものである。成分(B)としては、好ましくは、アルミニウム、亜鉛、マグネシウムまたはケイ素から選択される一種以上のものであり、より好ましくは、アルミニウム、亜鉛、マグネシウムまたはケイ素であり、さらに好ましくはアルミニウムである。このうち、アルミニウムは安価であるため好ましい。
成分(C)
 本発明においては、成分(A)と成分(B)とを含む合金を調製するが、このとき、合金には、添加金属としてさらに、モリブデン、クロム、チタン、バナジウム、タングステンなどを加えても良い。シアン酸類等の添加成分をさらに含有していても良い。
 本発明においては、成分(A)と成分(B)とを含む合金を、溶融法により調製する。このとき、合金中の成分(A)と成分(B)の組成比(成分(A):成分(B))は、好ましくは20:80~80:20であり、より好ましくは30:70~70:30である。より具体的な例を挙げると、成分(A)が鉄またはニッケル、成分(B)がアルミニウムである場合、成分(A)と成分(B)の合計100質量部に対して、鉄またはニッケルの割合は30~55質量部、アルミニウムの割合は45~70質量部であることが好ましい。
 得られる合金は、そのまま、酸またはアルカリの水溶液処理に供してもよいが、通常は、微粉砕した後に、酸またはアルカリの水溶液処理に供する。本明細書において、「合金」とは、特定の結晶構造を有している単一組成のもののみならず、それらの混合物及び金属自体の混合物を含むものをいう。
 合金を微粉砕する方法としては、慣用の金属の解砕・粉砕のための方法を適宜使用することができ、例えば、ジョークラッシャーや、ロールクラッシャー、ハンマーミル等で粉砕し、さらに必要に応じてボールミルで微粉砕することができる。あるいは、上記の合金の溶湯をアトマイズ法等の急冷凝固法により微粉化してもよい。ここでアトマイズ法による場合には、アルゴンガス等の不活性ガス中で行なうのが好ましい。アトマイズ法としては、例えば特開平5-23597号公報に記載の方法を使用することができる。
 得られる合金粉末の粒径は、5~200μmの範囲内となることが好ましく、またこの粒径分布はできるだけ狭いことが好ましい。粒径の大きなものを排除したり、粒径分布をそろえたりする観点から、市販のメッシュ篩(例えば、200メッシュ篩など)を使用して篩い分け(分級)を適宜行っても良い。なお、アトマイズ法による場合、粉末は球状に近くなる傾向にあり、また、粒径分布を狭くできる傾向にある。
 本発明においては、得られた合金または合金粉末を、酸またはアルカリの水溶液処理に供して、合金から、成分(B)の少なくとも一部を溶出させ除去する。すなわち、本発明では、合金から成分(B)の少なくとも一部を溶出させ除去した後に得られる金属を使用する。ここで使用する酸またはアルカリの水溶液としては、成分(A)を溶解しないか殆ど溶解しないものである一方で、成分(B)分を、溶解し、除去できるもの、すなわち合金から成分(B)を浸出させることができるものであれば特に制限はなく、いずれのものも使用可能である。酸水溶液における酸としては、例えば、塩酸、硫酸、硝酸などを使用することができ、アルカリ水溶液におけるアルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、NaCO、KCO、アンモニアなどを使用することができる。これら酸およびアルカリ水溶液についてはそれぞれついて、必要に応じて2種以上を組み合わせて用いても良い。
 本発明の好ましい態様によれば、上記の酸またはアルカリの水溶液は、アルカリ水溶液であり、より好ましくは、水酸化ナトリウム水溶液である。例えば、成分(B)としてアルミニウムを用いた場合、アルカリ水溶液として水酸化ナトリウムを用いると、水洗により過剰量の水酸化ナトリウムを除去し、また溶出したアルミニウムを除去することが容易であり、このため、水洗回数を削減できるという効果が期待できる。
 酸またはアルカリの水溶液処理において、通常は、合金粉末であれば、合金粉末を上記の水溶液中へ攪拌しながら少しずつ投入するが、合金粉末を水中にいれておき、ここに濃厚な酸またはアルカリを滴下しても良い。
 酸またはアルカリの水溶液処理において、使用する酸またはアルカリ水溶液の濃度は、例えば、5~60質量%であり、より具体的には、例えば水酸化ナトリウムの場合、10~40質量%が好ましい。
 酸またはアルカリの水溶液処理においては、該水溶液の温度を、例えば、20~120℃程度に加温して使用することが好ましい。好ましくは、アルカリ水溶液の温度は25~100℃である。
 合金または合金粉末を酸またはアルカリの水溶液処理に供しておく処理時間は、使用する合金の形状、状態、およびその量、酸またはアルカリの水溶液の濃度、処理する際の温度等により変化し得るが、通常は、30~300分間程度で良い。処理時間を調整することで、合金からの成分(B)の溶出量を調節することもできる。
 本発明においては、酸またはアルカリの水溶液処理によって、合金から、成分(B)の少なくとも一部を溶出除去する。ここで、「成分(B)の少なくとも一部」を溶出除去するとは、成分(A)および成分(B)を含む合金から、成分(B)の一部を溶出させ除去することに加えて、成分(B)の全部を合金から溶出させ除去する場合も包含する意味である。なお、溶出の過程では、結果として成分(A)の一部が溶解する可能性も否定できないので、「成分(B)の少なくとも一部」には、成分(B)のみが酸またはアルカリの水溶液処理によって溶出される場合に限定して解釈する必要はない。
 酸またはアルカリの水溶液処理によって、成分(B)(例えば、アルミニウム)の少なくとも一部、好ましくはその大部分が合金から溶出する。合金からの成分(B)の溶出の割合は、溶出除去によって得られる金属における成分(B)の含有率(質量基準)(残存率)で示すことができる。
 酸素吸収剤として用いられる(I)の金属において、成分(B)の含有率は、好ましくは0.1~50質量%であり、より好ましくは1~40質量%である。より具体的には、例えば、合金が、Al-Fe合金である場合、酸またはアルカリの水溶液処理によるアルミニウムの溶出除去によって得られる金属におけるアルミニウムの含有率は、好ましくは0.1~50質量%であり、より好ましくは1~40質量%である。なお、酸素吸収性樹脂組成物に含まれる(I)の金属中の成分(B)(例えば、アルミニウム)の含有率は、例えば、ICP法により測定することができる。
 溶出除去処理を行った後、通常は水洗を行う。このようにして得られた金属または金属粉末は、通常、大気中では直ちに酸化劣化してしまうため、必要に応じて、水中で保存することができる。
 酸素吸収剤として用いられる(I)の金属を得るにあたっては、成分(A)と成分(B)を含む合金を、酸またはアルカリの水溶液処理に付す際に、その処理以降については、金属および合金が、酸素に極力触れさせないように配慮する必要がある。このため、これら一連の処理を、水溶液中および水中で行ってそのまま保存したり、無酸素条件下、または不活性ガス下において行ったりすることが望ましい。また、使用に際しては、水中から出して金属を乾燥させる必要がある場合には、例えば、真空乾燥などの手段により、酸素による影響をできるだけ排除した条件にて、乾燥を行い、保持することが望ましい。
 上記のようにして得られた(I)の金属は、多孔質形状(または多孔体)である。ここで、多孔質形状とは、電子顕微鏡にて確認できる程度の多数の細孔を表面および内部に有している状態をいう。本発明においては、金属が有する多孔質形状の程度は、その比表面積にて表すことができる。具体的には、本発明による酸素吸収性樹脂組成物に用いられる金属のBET法による比表面積は少なくとも10m/gであり、好ましくは、少なくとも20m/gである。
 例えば、本発明において、成分(A)として鉄を用い、成分(B)としてアルミニウムを用いた場合、得られる多孔質形状の金属の比表面積(BET法によるもの)は、例えば、20~40m/g程度である一方で、多孔質ではない通常の鉄粉(還元鉄粉またはアトマイズ鉄粉)の場合、その比表面積は0.07~0.13m/g程度であり、多孔質形状であるか否かは明らかである。
 また、金属が有する多孔質形状の程度は、かさ密度で表すこともできる。酸素吸収剤として用いられる(I)の金属のかさ密度は、2g/cm以下であり、好ましくは、1.5g/cm以下である。因みに、多孔質ではない通常の鉄粉(還元鉄粉またはアトマイズ鉄粉)の場合、そのかさ密度は、2より大きく3g/cm以下程度である。
 本発明において、成分(A)として鉄を用い、成分(B)としてアルミニウムを用いた場合、得られる多孔質形状の(I)の金属粉体の平均粒子径は、通常、1~1,000μm、好ましくは10~500μmである。本明細書において、「平均粒子径」は、レーザー回折法によって粒子径を測定し、得られた粒度分布から算出した値であり、例えば、レーザー回折散乱式粒度分布測定器(株式会社セイシン企業製SKレーザーマイクロンサイザーLMS-2000e)を用いて測定することができる。
 酸素吸収剤として用いられる多孔質の(I)の金属は、高い酸素吸収活性を有しているため、低湿度条件(例えば、30%RH(相対湿度)(25℃)以下の条件)の雰囲気下であっても、酸素吸収剤としての性能を好適に発揮することができる。
 本発明による酸素吸収性樹脂組成物に含まれる酸素吸収剤は、30%RH(25℃)以下の低湿度の雰囲気においても酸素を吸収するものである。より詳しくは、30%RH(相対湿度)(25℃)以下の低湿度の雰囲気において、酸素吸収剤として用いられる(I)の金属が少なくとも5mL/gの酸素、より好ましくは10mL/gの酸素を吸収する。上記の(I)の金属の酸素吸収量は、例えば、30%RH(相対湿度)(25℃)以下の低湿度の雰囲気において、5~150mL/gであることができる。
 本発明による酸素吸収性樹脂組成物において、(I)の金属を、下記の(II)熱可塑性樹脂と混合するとき、酸素吸収性樹脂組成物中の(I)の金属の含有量は1~80質量%であり、好ましくは5~70質量%、特に好ましくは10~65質量%となるように添加することが好ましい。(I)の金属の含有量が1質量%以上であれば、より高い酸素吸収性能が得られる利点があり、(I)の金属の含有量が80質量%以下であれば、金属含有量増加に伴う全体の粘度上昇を抑制出来るので樹脂加工性等を良好に維持できる。
(II)熱可塑性樹脂
 (II)熱可塑性樹脂は、本発明の効果を本質的に損なわない限り特に限定されず、従来公知の熱可塑性樹脂を用いることができる。例えば、熱可塑性樹脂は、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合樹脂、および塩素系樹脂からなる群より選択される少なくとも1種であることが好ましい。
 ポリオレフィン樹脂としては、従来公知のポリオレフィン樹脂を用いることができる。例えば、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、超低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類(PE)、ポリスチレン、ポリメチルペンテン、プロピレンホモポリマー、プロピレン-エチレンブロック共重合体、プロピレン-エチレンランダム共重合体等のポリプロピレン類を、単独で、または組み合わせが挙げられる。酸素吸収性能やフィルム加工性から、ポリオレフィン樹脂としては、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、直鎖状低密度ポリエチレン、メタロセン触媒によるポリエチレン等の各種ポリエチレン類やプロピレン-エチレンブロック共重合体、プロピレン-エチレンランダム共重合体等の各種ポリプロピレン類が特に好ましく用いられる。これらポリオレフィン樹脂には、必要に応じて、エチレン-酢酸ビニル共重合体、エチレン-アクリル酸メチル共重合体、エチレン-アクリル酸エチル共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、エチレン-メタクリル酸メチル共重合体、熱可塑性エラストマーを添加してもよい。
 ポリエステル樹脂としては、従来公知のポリエステル樹脂を用いることができる。例えば、芳香族ポリエステルや脂肪族ポリエステルを挙げることができ、具体的にはポリエチレンテレフタレート(PET)を挙げることができる。
 ポリアミド樹脂としては、従来公知のポリアミド樹脂を用いることができる。例えば、芳香族ポリアミドや脂肪族ポリアミドが挙げられ、具体的にはナイロン-6、ナイロン-6,6、ナイロン-6,12、ポリメタキシリレンアジパミド(例えば、三菱ガス化学株式会社製MXナイロン)等を挙げることができる。
 ポリビニルアルコール樹脂としては、従来公知のポリビニルアルコール樹脂を用いることができる。ポリビニルアルコール樹脂とは、ビニルエステル重合体、またはビニルエステルと他の単量体との共重合体を、アルカリ触媒を用いてケン化して得られる樹脂である。ポリビニルアルコール樹脂のビニルエステル成分のケン化度は好適には90%以上であり、より好適には95%以上であり更に好適には99%以上である。ポリビニルアルコール樹脂は、ケン化度の異なる2種類以上のポリビニルアルコール樹脂の配合物であってもよい。
 エチレンビニルアルコール共重合樹脂(EVOH)としては、従来公知のエチレンビニルアルコール共重合樹脂を用いることができる。エチレン-ビニルアルコール共重合樹脂とは、エチレン-ビニルエステル共重合体をケン化して得られる樹脂である。その中でもエチレン含量5~60モル%、ケン化度85%以上のエチレン-ビニルアルコール共重合体が好ましい。エチレン-ビニルアルコール共重合樹脂のエチレン含量の下限は好ましくは20モル%以上であり、より好ましくは25モル%以上である。エチレン含量の上限は好ましくは55モル%以下であり、より好ましくは50モル%である。ビニルエステル成分のケン化度は85%以上がこのましく、より好ましくは90%以上、さらに好ましくは99%以上である。
 塩素系樹脂としては、従来公知の塩素系樹脂を用いることができる。例えば、ポリ塩化ビニルやポリ塩化ビニリデン(PVDC)を主体とするブロック共重合体、グラフト共重合体、更には塩化ビニル樹脂を主体とするポリマーブレンドをあげることができる。塩化ビニルと共重合されるコモノマーとしては、酢酸ビニル、塩化ビニリデン、アクリル酸、メタアクリル酸及びそのエステル類、アクリロニトリル類、エチレン、プロピレン等のオレフィン類、マレイン酸及びその無水物などを例示することができる。
 上記の熱可塑性樹脂の中でも、酸素吸収性を考慮すると、好ましくは、ポリエチレン、ポリプロピレン、エチレン-酢酸ビニル共重合体、エラストマー、またはこれらの混合物が用いられる。
 熱可塑性樹脂には、本発明の効果を本質的に損なわない限り、ワックス、界面活性剤等の分散剤、酸化チタン等の着色顔料、酸化防止剤、スリップ剤、帯電防止剤、安定剤等の添加剤、炭酸カルシウム、クレー、マイカ、シリカ等の充填剤、乾燥剤、消臭剤、フェノール系酸化防止剤、リン系酸化防止剤、ラクトン系酸化防止剤、難燃剤、光安定剤、紫外線吸収剤、滑剤、脱臭剤、帯電防止剤、粘着防止剤、防曇剤、表面処理剤等の任意成分を配合することができる。特に、酸素吸収剤の分散を向上させるためには分散剤を添加するのが良い。また、製造中に発生した端材をリサイクルし、再加工するためには、酸化防止剤を添加するのが良い。配合方法は、特に制限されないが、樹脂と溶融混練することが一般的である。
酸素吸収性樹脂組成物の製造および用途
 本発明において、(I)酸素吸収剤と、(II)熱可塑性樹脂とを混合して、酸素吸収性樹脂組成物を作成することができる。このとき、酸素吸収性樹脂組成物中の(I)の金属の濃度は1~80質量%であり、好ましくは5~70質量%、特に好ましくは10~65質量%となるように添加することが好ましい。金属の濃度が上記範囲にあると、金属添加量が少ない場合に比べより高い酸素吸収性能が得られる利点があり、また、金属添加量が多すぎる場合に比べ、金属含有量増加に伴う全体の粘度上昇を抑制出来るので樹脂加工性等を良好に維持できる。
 本発明による酸素吸収性樹脂組成物の製造例としては、例えば、(I)の金属と(II)熱可塑性樹脂とを含むマスターバッチを溶融混練し、これを、必要により所望の形状に成形後、冷却することで、本発明の酸素吸収性樹脂組成物とすることができる。
 本発明の酸素吸収性樹脂組成物の形態は、特に限定されず、フィルム状、シート状、ペレット状、粉体状等各種の形態で使用することができる。ペレット及び粉体の形状にも制限はない。中でも、シート、フィルム又は粉体の形状であると、単位質量当たりの表面積が大きくなり、酸素吸収速度を向上することができるので好ましい。フィルムの厚みは、通常、10μm以上、250μm未満であり、シートの厚みは、通常、250μm以上、3mm未満である。粉体の平均粒子径は、通常、1~1,000μm、好ましくは10~500μmである。
 本発明の酸素吸収性樹脂組成物の形態は、特に限定されず、例えば、パウチ、容器用蓋材、トレー、カップ、ラミネートチューブ容器、紙容器、ボトル、またはブリスター容器等各種の包装形態の全部または一部として用いることができる。
 本発明の酸素吸収性樹脂組成物を所望の形状にする方法は、特に限定されず、従来公知の方法を採用できる。シート又はフィルムの場合、例えば、溶液キャスト法により成形したり、単軸又は多軸の溶融押出機を用い、T-ダイ、サーキュラーダイ等所定形状のダイを通して押出成形したりすることによって成形できる。勿論、圧縮成形法、射出成形法等を採用することも可能である。粉体の場合、例えば、酸素吸収性樹脂組成物に含有される熱可塑性樹脂のTg未満の温度雰囲気下で、酸素吸収性樹脂組成物を粉砕することにより、粉体状の酸素吸収剤を得ることができる。ペレットの場合、例えば、押し出し機から吐出されるストランドをペレット化することで取得できる。特にストランドを細くすることで、細かなペレットが取得できる。得られた粉体やペレットを小袋やキャニスターに充填することで小袋状やキャニスター状の酸素吸収剤が得られる。更に、ブロー成形法、射出成形法、真空成形法、圧空成形法、張出成形法、プラグアシスト成形法、粉体成形法を用いて、所望の形状に成形することもできる。
 本発明の好ましい態様によれば、本発明の酸素吸収性樹脂組成物は、シート又はフィルム状の形態である。本発明の別の好ましい態様によれば、本発明の酸素吸収性樹脂組成物は、ペレット又は粉体の形態である。本発明の更に別の好ましい様態によれば、本発明の酸素吸収性樹脂組成物は、パウチ、容器用蓋材、トレー、カップ、ラミネートチューブ容器、紙容器、ボトル、深絞り容器、真空成型容器、またはブリスター容器等各種の包装形態の全部または一部として用いられる。
 本発明の酸素吸収性樹脂組成物の形状はペレット状が好ましく、製造例としては特に限定されない。例えば、(I)酸素吸収剤と(II)熱可塑性樹脂とを含むマスターバッチを溶融混練し、これを押出機から吐出されるストランドをペレット化することで取得できる。または別の例としては、Tダイでシート状にT押し出したあとに裁断することでペレット状の酸素吸収性樹脂組成物を得る事ができる。
 本発明の別の態様によれば、ペレット、粉体、シート又はフィルム状の酸素吸収性樹脂組成物を、通気性包装材を全部又は一部に用いた包装材で包装してなる、酸素吸収包装体が提供される。ここで、包装材としては、2枚の通気性包装材を貼り合わせて袋状としたものや、1枚の通気性包装材と1枚の非通気性包装材とを貼り合わせて袋状としたもの、1枚の通気性包装材を折り曲げ、折り曲げ部を除く縁部同士をシールして袋状としたものが挙げられる。また、通気性包装材としては、酸素を透過する包装材が選択されうる。上記通気性包装材としては、紙や不織布の他、プラスチックフィルムに通気性を付与したものが用いられうる。
 本発明による酸素吸収性樹脂組成物は、水分活性の高い領域から低い領域まで適用可能である。これにより、水分活性が低く、低湿度の乾燥条件での保存が必要とされる物品に好適に適用できる。なお、水分活性とは物品中の自由水含有量を示す尺度で、0~1の数字で示され、水分のない物品は0、純水は1となる。すなわち、ある物品の水分活性Awは、その物品を密封し平衡状態に到達した後の空間内の水蒸気圧をP、純水の水蒸気圧をP、同空間内の相対湿度をRH(%)、とした場合、
  Aw=P/P=RH/100
と定義される。
 低湿度で保存を必要とする低水分含有物品を保存するためには、低水分含有物品を保存する雰囲気の相対湿度(RH)が好ましくは0~70%RH、より好ましくは0~50%RHであり、特に好ましくは0~30%RHである。特に本発明を適用できる低水分含有物品(被包装物)として粉末、顆粒食品類:(粉末スープ、粉末飲料、粉末菓子、調味料、穀物粉、栄養食品、健康食品、着色料、着香料、香辛料)、粉末,顆粒薬品:(散薬類、粉石鹸、歯磨粉、工業薬品)、これらのものの成形体(錠剤型)等水分の増加を嫌い、異物の混入を避ける必要のある食品、薬品を例示することができる。
 さらに、本発明の酸素吸収性樹脂組成物は、被保存物の水分の有無によらず、酸素吸収することができるため、粉末調味料、粉末コーヒー、コーヒー豆、米、茶、豆、おかき、せんべい等の乾燥食品や医薬品、ビタミン剤等の健康食品に好適に使用することができる。
 本発明の別の態様によれば、本発明のシート若しくはフィルム状の酸素吸収性樹脂組成物、又はペレット若しくは粉体の形態の酸素吸収性樹脂組成物を、通気性包装材を全部又は一部に用いた包装材で包装してなる、酸素吸収包装体と共に、被保存物を密閉し、被保存物を脱酸素保存する、物品の保存方法が提供される。本発明のさらに別の好ましい態様によれば、本発明のシート又はフィルム状の形態の酸素吸収性樹脂組成物の内側に、被保存物を密閉し、被保存物を脱酸素保存する、物品の保存方法が提供される。
酸素吸収多層体
 本発明による酸素吸収多層体は、少なくとも、酸素吸収層(a層)と、酸素吸収層(a層)の片側もしくは両側に、熱可塑性樹脂層(b層)とを含んでなる多層体である。以下、本発明による酸素吸収多層体の各層およびその成分について、詳細を説明する。
酸素吸収層(a層)
 酸素吸収層(a層、以下、OAともいう)は、(I)酸素吸収剤と、(II)熱可塑性樹脂とを含む酸素吸収性樹脂組成物からなる層である。酸素吸収性樹脂組成物については、上記の酸素吸収性樹脂組成物で説明したものと同様のものを用いることができる。
熱可塑性樹脂層(b層)
 熱可塑性樹脂層(b層)は、熱可塑性樹脂を含む熱可塑性樹脂組成物からなる層である。熱可塑性樹脂については、上記の酸素吸収性樹脂組成物の「(II)熱可塑性樹脂」で説明したものと同様のものを用いることができる。
 本発明の多層体に酸素吸収速度が求められる場合は、酸素吸収層(a層)および熱可塑性樹脂層(b層)に用いる熱可塑性樹脂として酸素透過性の高い熱可塑性樹脂を用いることで、酸素が速やかに酸素吸収を行う(I)の金属に到達し、酸素吸収が行われる多層体を得ることができる。その場合の熱可塑性樹脂の酸素透過性としては好ましくは、酸素透過係数が100cc・20μm/(m・日・atm)(23℃、dry)以上であり、より好ましくは1000cc・20μm/(m・日・atm)(23℃、dry)以上である。更に好ましくは3000cc・20μm/(m・日・atm)(23℃、dry)以上である。
 酸素吸収層(a層)および熱可塑性樹脂層(b層)に用いる熱可塑性樹脂を酸素透過性の低い熱可塑性樹脂を使用する事で、酸素の侵入を抑えつつ酸素吸収層で酸素を吸収することで高い酸素バリア性を有する多層体を得ることもできる。その場合の熱可塑性樹脂の酸素透過性としては好ましくは、酸素透過係数が100cc・20μm/(m・日・atm)(23℃、dry)以下であり、より好ましくは50cc・20μm/(m・日・atm)(23℃、dry)以下である。更に好ましくは20cc・20μm/(m・日・atm)(23℃、dry)以下である。
 本発明による酸素吸収多層体の、酸素吸収層(a層)および熱可塑性樹脂層(b層)に用いる熱可塑性樹脂として、それぞれ酸素透過性の違う熱可塑性樹脂を用いてもよい。
 例えば、酸素吸収層(a層)および熱可塑性樹脂層(b層)に用いられる熱可塑性樹脂として、酸素透過係数3000cc・20μm/(m・日・atm)のポリエチレン樹脂を用い、下記のガスバリア層(c層)にPE/EVOH/PEの構成からなる酸素バリア層を用いたc層/a層/b層の酸素吸収多層体(PE/EVOH/PE/OA/PE)を例示することができる。このような酸素吸収多層体を用いて、c層を外側にもつ包装容器を製造することで、速やかに包装容器内のガス雰囲気を一定期間低酸素状態・無酸素状態にする包装容器として用いることができる。
 また、例えば、酸素吸収層(a層)および熱可塑性樹脂層(b層)に用いられる熱可塑性樹脂層に酸素透過係数80cc・20μm/(m・日・atm)のポリエステル系樹脂を用いたb層/a層/b層の構成の酸素吸収多層体や、熱可塑性樹脂として酸素透過係数が5cc・20μm/(m・日・atm)のPVDC樹脂を用いたb層/a層/b層の構成の酸素吸収多層体を例示することができる。
ガスバリア層(c層)
 本発明による酸素吸収多層体は、ガスバリア層(c層)をさらに含んでもよい。ガスバリア層としては、ポリメタキシリレンアジパミド樹脂(以下、「MXD6樹脂」ともいう)、エチレン-ビニルアルコール共重合樹脂(以下、「EVOH樹脂」ともいう)、ポリ塩化ビニリデン(以下、「PVDC」ともいう)、アミン-エポキシ硬化剤等を用いたバリア性樹脂からなるものであってもよいし、無機物もしくは無機酸化物の蒸着膜または金属箔からなるものであってもよい。以下、各態様について詳述する。
 ガスバリア層(c層)は、バリア性樹脂からなるものであってよい。バリア性樹脂に用いられるポリメタキシリレンアジパミド樹脂は、メタキシリレンジアミンとアジピン酸との共重合体であり、本発明においては、市販されているものを好適に使用できる。市販されているポリメタキシリレンアジパミド樹脂としては、例えばMXD6ナイロン(三菱ガス化学(株)製)等が挙げられる。
 上記ポリメタキシリレンアジパミド樹脂中に遷移金属系触媒を含む無機酸塩または有機酸塩が含有されてもよい。遷移金属系触媒を含む無機酸塩または有機酸塩の含有量は、ガスバリア層に対する金属の質量割合で、300~600ppmであることが好ましく、350~500ppmであることがより好ましい。遷移金属系触媒の含有量が上記範囲程度であれば、酸素の遮蔽作用だけでなく、本発明による酸素吸収多層体を用いて製造したプラスチック容器中に充填された内容物中の溶存酸素を吸収することもできる。すなわち、容器に充填された内容物は、経時的に溶存酸素量が減少するため、内容物の種類によっては変質等を抑制することができる。
 遷移金属系触媒としては、2価または3価の状態にあるコバルト化合物、または2価の状態にある銅金属等を挙げることができる。特に、2価または3価の状態にあるコバルト金属が好ましい。また、このコバルト金属は、有機酸塩としてポリメタキシリレンアジパミド樹脂中に添加されることが好ましく、より好ましくは、ステアリン酸コバルトまたはネオデカン酸コバルトとして、ポリメタキシリレンアジパミド樹脂に添加されることが好ましい。
 ガスバリア層を構成する樹脂は、遷移金属系触媒を含む無機酸塩または有機酸塩が、上記の添加量となるようにポリメタキシリレンアジパミド樹脂に混合して用いてもよく、また、より高含有量のマスターバッチを一旦作製しておいて、上記範囲になるように、当該マスターバッチをポリメタキシリレンアジパミド樹脂で希釈して用いてもよい。
 バリア性樹脂にはPVDCを用いることも出来る。PVDCは酸素バリア性に加え水蒸気バリア性にも優れる為、酸素と水分によって劣化する内容物を保存する場合に好ましく用いられる。ガスバリア層としては、PVDC単独のフィルムを用いることもできるし、熱可塑性樹脂からなる基材フィルムにPVDCをコートした市販のフィルム(Kコートフィルム)を用いることもできる。上記基材フィルムとしては、延伸ポリプロピレン(OPP)、延伸ナイロン(ONY)ポリエチレンテレフタレート(PET)等を挙げる事が出来る。
 本発明による酸素吸収多層体を用いて酸素吸収性包装容器を製造する場合、容器に充填する内容物の種類によっては、紫外線により変質等するものもある。特に、医薬品や医薬部外品等を充填する場合においては、紫外線による充填物の変質が問題となる。そこで、包装容器を構成するガスバリア層又は熱可塑性樹脂層は、紫外線遮蔽機能を有する化合物を含有していることが好ましい。これらの化合物は、紫外線遮蔽層として樹脂中に設けることも可能であるが、容器のリサイクル性および機能性を考慮すると、ガスバリア層又は熱可塑性樹脂層に添加することが好ましい。
 紫外線遮蔽機能を有する化合物としては、一般的に市販されている紫外線吸収剤(例えば、チヌビン等)が好適に用いられる。これら紫外線吸収剤は、容器成型時の溶融ポリマーにマスターバッチまたは液体注入として添加することにより形成できる。また、紫外線を遮蔽できる樹脂、例えばポリエチレンナフタレート(380nm以下を遮蔽)をガスバリア層として多層形成してもよい。さらに、紫外線のみならず、黒、赤、セピア色の色剤を添加することによって、種々の波長を遮蔽することができる。
 包装容器を構成するガスバリア層の肉厚は、0.01~0.2mmであることが好ましい。この範囲とすることで、より優れた酸素吸収能を実現できる。
 また、ガスバリア層(c層)は、無機物もしくは無機酸化物の蒸着膜または金属箔からなるものであってもよい。蒸着膜は、従来公知の無機物または無機酸化物を用いて、従来公知の方法により形成することができ、その組成および形成方法は特に限定されない。蒸着膜を樹脂フィルム上に形成し、蒸着フィルムの形態で用いてもよい。ガスバリア層を有することで、酸素ガスおよび水蒸気等の透過を阻止するガスバリア性を付与し、可視光および紫外線等の透過を阻止する遮光性をさらに付与ないし向上させることもできる。なお、ガスバリア層を2層以上有してもよい。バリア層を2層以上有する場合、それぞれが、同一の組成であってもよいし、異なる組成であってもよい。
 蒸着膜としては、例えば、ケイ素(Si)、アルミニウム(Al)、マグネシウム(Mg)、カルシウム(Ca)、カリウム(K)、スズ(Sn)、ナトリウム(Na)、ホウ素(B)、チタン(Ti)、鉛(Pb)、ジルコニウム(Zr)、イットリウム(Y)等の無機物または無機酸化物の蒸着膜を使用することができる。また、DLC(Diamond Like Carbon)膜を用いてもよい。特に、包装用材料(袋)等に適するものとしては、アルミニウム金属の蒸着膜、あるいは、ケイ素酸化物またはアルミニウム酸化物の蒸着膜を用いるのがよい。
 無機酸化物の表記は、例えば、SiO、AlO等のようにMO(ただし、式中、Mは、無機元素を表し、Xの値は、無機元素によってそれぞれ範囲がことなる。)で表される。Xの値の範囲としては、ケイ素(Si)は、0~2、アルミニウム(Al)は、0~1.5、マグネシウム(Mg)は、0~1、カルシウム(Ca)は、0~1、カリウム(K)は、0~0.5、スズ(Sn)は、0~2、ナトリウム(Na)は、0~0.5、ホウ素(B)は、0~1、5、チタン(Ti)は、0~2、鉛(Pb)は、0~1、ジルコニウム(Zr)は0~2、イットリウム(Y)は、0~1.5の範囲の値をとることができる。上記において、X=0の場合、完全な無機単体(純物質)であり、透明ではなく、また、Xの範囲の上限は、完全に酸化した値である。包装用材料には、ケイ素(Si)、アルミニウム(Al)が好適に使用され、ケイ素(Si)は、1.0~2.0、アルミニウム(Al)は、0.5~1.5の範囲の値のものを使用することができる。
 上記のような無機物または無機酸化物の蒸着膜の膜厚としては、使用する無機物または無機酸化物の種類等によって異なるが、例えば、50~2000Å位、好ましくは、100~1000Å位の範囲内で任意に選択して形成することが望ましい。さらに具体的に説明すると、アルミニウムの蒸着膜の場合には、膜厚50~600Å位、さらに、好ましくは、100~450Å位が望ましく、また、酸化アルミニウムあるいは酸化珪素の蒸着膜の場合には、膜厚50~500Å位、さらに、好ましくは、100~300Å位が望ましいものである。
 蒸着膜の形成方法としては、例えば、真空蒸着法、スパッタリング法、およびイオンプレ-ティング法等の物理気相成長法(Physical Vapor Deposition法、PVD法)、あるいは、プラズマ化学気相成長法、熱化学気相成長法、および光化学気相成長法等の化学気相成長法(Chemical Vapor Deposition法、CVD法)等を挙げることができる。
 また、ガスバリア層(c層)は、金属を圧延して得られた金属箔であってもよい。金属箔としては、従来公知の金属箔を用いることができる。酸素ガスおよび水蒸気等の透過を阻止するガスバリア性や、可視光および紫外線等の透過を阻止する遮光性の点からは、アルミニウム箔等が好ましい。
 ガスバリア層(c層)に、無機物もしくは無機酸化物の蒸着膜または金属箔を用いる場合、ポリオレフィンやナイロンなどの緩衝層を入れることが好ましい。この場合、多層体の剛性や突き刺し強度を向上させることが出来る。
 酸素吸収層(a層)、熱可塑性樹脂層(b層)、およびガスバリア層(c層)の厚みは、特に限定されない。もとめられる性能に応じて可変であり、ひとつの例示として、極めて高い酸素吸収速度を必要とする酸素吸収多層体を設計したい場合で、熱可塑性樹脂層(b層)を被包装物側に配置した包装体を設計した場合には、熱可塑性樹脂層(b層)が酸素吸収層(a層)と酸素を吸収する対象であるガスとの隔離層になるため、薄くかつ酸素透過係数が大きい熱可塑性樹脂を用いることで、素早い良好な酸素吸収速度を得ることができる。
接着層(d層)
 本発明による酸素吸収多層体は、酸素吸収層(a層)と熱可塑性樹脂層(b層)の間に、接着層(d層)をさらに含んでもよい。また、酸素吸収層(a層)とガスバリア層(c層)の間や熱可塑性樹脂層(b層)とガスバリア層(c層)の間に、接着層(d層)をさらに含んでもよい。接着剤や接着性樹脂層により接着層を設けることで、層間強度を向上させることができる。
 接着剤としては、ラミネート用接着剤が好適に使用でき、例えば、1液あるいは2液型の硬化ないし非硬化タイプのビニル系、(メタ)アクリル系、ポリアミド系、ポリエステル系、ポリエーテル系、ポリウレタン系、エポキシ系、ゴム系、その他等の溶剤型、水性型、あるいは、エマルジョン型等のラミネート用接着剤を使用することができる。上記の接着剤のコーティング方法としては、例えば、ダイレクトグラビアロールコート法、グラビアロールコート法、キスコート法、リバースロールコート法、フォンテン法、トランスファーロールコート法、その他の方法で塗布することができる。その塗布量としては、0.1g/m~10g/m(乾燥状態)位が好ましく、1g/m~5g/m(乾燥状態)位がより好ましい。
 また、接着樹脂層としては、熱可塑性樹脂からなる樹脂層が用いられる。具体的には、接着樹脂層の材料としては、低密度ポリエチレン樹脂、中密度ポリエチレン樹脂、高密度ポリエチレン樹脂、直鎖状低密度ポリエチレン樹脂、メタロセン触媒を利用して重合したエチレン・αオレフィンとの共重合体樹脂、エチレン・ポリプロピレン共重合体樹脂、エチレン・酢酸ビニル共重合体樹脂、エチレン・アクリル酸共重合体樹脂、エチレン・アクリル酸エチル共重合体樹脂、エチレン・メタクリル酸共重合体樹脂、エチレン・メタクリル酸メチル共重合体樹脂、エチレン・マレイン酸共重合体樹脂、アイオノマー樹脂、ポリオレフィン樹脂に不飽和カルボン酸、不飽和カルボン酸、不飽和カルボン酸無水物、エステル単量体をグラフト重合、または、共重合した樹脂、無水マレイン酸をポリオレフィン樹脂にグラフト変性した樹脂等を使用することができる。これらの材料は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
その他の層
 本発明による酸素吸収多層体は、その他の層をさらに含んでもよい。例えば、ガスバリア層(c層)の内側や外側に、熱可塑性樹脂からなる保護層を設けることもできる。保護層に用いられる樹脂としては、例えば、高密度ポリエチレン等のポリエチレン類、プロピレンホモポリマー、プロピレン-エチレンランダム共重合体、プロピレン-エチレンブロック共重合体等のポリプロピレン類、ナイロン6、ナイロン6,6等のポリアミド類(NY)、さらに、PET等のポリエステル類およびこれらの組合せが挙げられる。
 本発明による酸素吸収多層体の各層には、本発明の効果を本質的に損なわない限り、熱安定剤、補強剤、充填剤、難燃剤、着色剤、可塑剤、紫外線吸収剤、滑剤、脱臭剤、帯電防止剤、粘着防止剤、防曇剤、表面処理剤等の添加剤をさらに配合することができる。これらの添加剤は、酸素吸収剤の分野で従来公知のものの中から、目的に応じて、適宜選択し、適量配合することができる。また、添加剤の配合方法は、特に制限されず、酸素吸収多層体を構成する各成分を、溶融混練したり、溶液状態で混合した後に溶媒を除去したりすることにより行なうことができる。
 本発明の酸素吸収多層体には必要に応じて、乾燥剤を含有する乾燥剤層を積層しても良いし、上記のいずれかの層に乾燥剤を含有させてもよい。乾燥剤は、特に限定されず、従来公知の乾燥剤を用いることができる。例えば、モレキュラーシーブ、焼明礬石、粘土鉱物、ゼオライト、活性炭、活性アルミナ、シリカゲル、酸化カルシウム、酸化バリウム、酸化ストロンチウム、酸化マグネシウム、硫酸リチウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト、硫酸ガリウム、硫酸チタン、及び硫酸ニッケル等が挙げられ、特にモレキュラーシーブが好ましい。
酸素吸収多層体の層構成
 本発明による酸素吸収多層体の具体的な層構成を以下に例示する。図1および図2に、本発明による酸素吸収多層体の一例の模式断面図を示す。図1に示される酸素吸収多層体2は、酸素吸収層(a層)3の両側に、熱可塑性樹脂層(b層)4が積層されてなる層構成を有する。図2に示される酸素吸収多層体5は、酸素吸収層(a層)6の両側に、熱可塑性樹脂層(b層)7が積層されてなり、熱可塑性樹脂層(b層)7の一方に、ガスバリア層(c層)8が積層されてなる層構成を有する。上記以外の層構成としては、ガスバリア層(c層)、酸素吸収層(a層)、熱可塑性樹脂層(b層)の順に積層されてなる層構成が挙げられる。
酸素吸収多層体の製造および用途
 本発明による酸素吸収多層体を所望の形状にする方法は、特に限定されず従来公知の方法を用いることができる。例えば、溶液キャスト法により成形したり、単軸又は多軸の溶融押出機を用い、T-ダイ、サーキュラーダイ等所定形状のダイを通して押出成形したり、カレンダーロールを使用してカレンダー法にて成形することによって成形できる。また、真空成形、圧空成形、またはプラグアシスト成形等の成形方法によっても成形できる。他にも、2種類以上のフィルムやシートをドライラミネートや押出ラミネートにより積層することによって成形できる。
 本発明による酸素吸収多層体の形態は特に限定されない。例えば、ペレット、フィルム、シート、トレイ、カップ、PTP(Press Through Package)容器、ボトル、チューブ、ブロック、深絞り容器、真空成型容器およびキャップとして様々な形態で使用できる。
 また、本発明による酸素吸収多層体は、酸素吸収性包装容器用予備成形体(プリフォームとも呼ばれる)の形態であってもよい。例えば、予備成形体の成形には共射出成形法を用いることができる。予備成形体を2軸延伸ブロー成形に付す方法によって、酸素吸収性包装容器を製造することができる。
 酸素吸収多層体を用いて製造した酸素吸収性包装容器は、酸素吸収層や熱可塑性樹脂層に配合する熱可塑性樹脂の温度特性を適切に選択する事で、包装容器の使用される温度に対応が可能である。
 本発明による酸素吸収多層体を、熱可塑性樹脂層(b層)を内側として密封用包装容器の一部または全部に使用して、酸素吸収包装体とすることにより、容器外からわずかに侵入する酸素の他、容器内の酸素を吸収して、酸素による容器内収納物の変質等を防止することができる。
 酸素吸収多層体を密封用包装容器の一部に用いる具体例としては、スタンディングバウチの胴部の片面のみに酸素吸収多層体を用い、胴部のもう一面や底部には酸素吸収多層体を用いずバリア性樹脂を用いる構成が挙げられる。この場合、酸素吸収多層体をシリカ蒸着PET/NY/OA/PEとし、バリア性樹脂を有する部分をシリカ蒸着PET/NY/PEとする層構成を例示することができる。
 また、酸素吸収多層体を密封用包装容器の一部に用いる別の具体例としては、深絞り容器本体にEVOH樹脂等のバリア性樹脂を有する積層体を用い、蓋材に酸素吸収多層体を用いる構成が挙げられる。この場合の層構成としては、深絞り容器本体をPE/AL/PE/EVOH/PEとし、蓋材をPE/AL/OA/イージーピール層とする層構成を例示することができる。また、容器本体をPVC/EVOH/PVCとし、容器外側のPVC層に白色顔料を添加し、蓋材をNY/AL/OA/PVCとする層構成を例示することができる。
 密封用包装容器にイージーピール層を設ける場合、酸素吸収多層体の好ましい層構成としては、NY/PE/AL/PE/OA/イージーピール層や、PE/AL/OA/イージーピール層、を例示することができる。
 包装容器に、この酸素吸収多層体と被包装物とを入れて密封し包装体の中を低酸素状態もしくは無酸素状態にすることもできるし、この酸素吸収多層体を一部に有する包装容器にし、被包装物をいれ密封する事で、包装体の中を低酸素状態もしくは無酸素状態にすることができる。
 本発明による酸素吸収多層体は、水分活性に無関係に酸素吸収を行い、水分活性の高い領域から低い領域まで適用可能である。また、水分活性が低く、低湿度の乾燥条件での保存が必要とされる物品に好適に適用できる。なお、水分活性とは物品中の自由水含有量を示す尺度で、0~1の数字で示され、水分のない物品は0、純水は1となる。すなわち、ある物品の水分活性Awは、その物品を密封し平衡状態に到達した後の空間内の水蒸気圧をP、純水の水蒸気圧をP、同空間内の相対湿度をRH(%)、とした場合、
  Aw=P/P=RH/100
と定義される。
 本発明による酸素吸収多層体は、配合された酸素吸収剤の能力が完全に失効するまでの一定期間の間は、単独でアルミ、アルミナ蒸着フィルム、シリカ蒸着フィルム、PVDCコートフィルム、EVOH系バリアフィルムなどのような酸素バリア包装材としても使用することができる。またこの多層体は酸素バリア層(c層)と組み合わせて使用し、配合された酸素吸収剤の能力が完全に失効するまでの一定期間の間は、酸素バリア層(c層)の酸素バリア性をより高い酸素バリア性をもたせる(改善する)目的で使用こともできる。
 本発明の酸素吸収多層体は、被保存物の水分の有無によらず、酸素吸収することができるため、医療品、医薬品類(アトルバスタチン、レボチロキシン、など)、輸液製剤、電子部品、顆粒食品類:(粉末スープ、粉末飲料、粉末菓子、調味料、穀物粉、栄養食品、健康食品、着色料、着香料、香辛料)、粉末コーヒー、コーヒー豆、米、茶、豆、おかき、せんべい等の乾燥食品、顆粒薬品:(散薬類、粉石鹸、歯磨粉、工業薬品)、またこれらのものの成形体(錠剤型)に好適に使用することができる。
 本発明による酸素吸収多層体または該多層体を用いて製造した酸素吸収性包装容器を用いることで、30%RH(25℃)以下の低湿度の雰囲気であっても、被保存物を脱酸素し、保存することのできる物品の保存方法が提供できる。
酸素吸収中空容器
 本発明による酸素吸収中空容器は、少なくとも、酸素吸収層(a層)を含んでなる容器である。以下、本発明による酸素吸収中空容器の各層およびその成分について、詳細を説明する。
酸素吸収層(a層)
 酸素吸収層(a層)は、(I)酸素吸収剤と、(II)熱可塑性樹脂とを含む酸素吸収性樹脂組成物からなる層である。酸素吸収性樹脂組成物については、上記の酸素吸収性樹脂組成物で説明したものと同様のものを用いることができる。
熱可塑性樹脂層(b層)
 本発明による酸素吸収中空容器は、最内層および/または最外層が熱可塑性樹脂層(b層)であることが好ましい。熱可塑性樹脂層(b層)は、熱可塑性樹脂を含む熱可塑性樹脂組成物からなる層である。熱可塑性樹脂層(b層)は、上記の酸素吸収性樹脂組成物の「(II)熱可塑性樹脂」で説明したものと同様のものを用いることができる。
 本発明による酸素吸収中空容器の、酸素吸収層(a層)および熱可塑性樹脂層(b層)に用いる熱可塑性樹脂として、それぞれ異なる種類の熱可塑性樹脂を用いてもよい。
 熱可塑性樹脂は目的に応じて選定すればよく、例えば中空容器の内部の酸素を吸収する速度を必要とする場合には、中空容器の内側に近い層に、酸素透過係数の大きな熱可塑性樹脂を使用すればよい。その場合、熱可塑性樹脂の酸素透過性としては好ましくは、酸素透過係数が200cc・20μm/(m・日・atm)(23℃、dry)以上であり、より好ましくは1000cc・20μm/(m・日・atm)(23℃、dry)以上である。更に好ましくは3000cc・20μm/(m・日・atm)(23℃、dry)以上である。特に、ポリエチレン系樹脂及びポリプロピレン系樹脂が実用上有用である。
 上とは逆に、中空容器の外側に近い層に、酸素透過係数の小さな熱可塑性樹脂を使用する事で、内部への酸素透過を抑えることができる。その場合、熱可塑性樹脂の酸素透過性としては好ましくは、酸素透過係数が100cc・20μm/(m・日・atm)(23℃、dry)以下であり、より好ましくは50cc・20μm/(m・日・atm)(23℃、dry)以下である。更に好ましくは10cc・20μm/(m・日・atm)(23℃、dry)以下である。特に、ポリエステル系樹脂や塩素系樹脂が実用上有用である。
 酸素吸収層(a層)よりも外側に配置された熱可塑性樹脂層(b層)は、白色顔料を含んでなることが好ましい。白色顔料を加えることで、高い遮光性を有しながら、容器外観を白くすることができ、中空容器の最外層に製品ラベルや印刷を施したりした際に違和感の無い中空容器とすることができる。白色顔料は公知の物質を用いることが出来る。好ましい物質として、酸化チタンを挙げることが出来る。
 白色顔料の含有量は、熱可塑性樹脂層(b層)中の熱可塑性樹脂100質量部に対し、5~30質量部が好ましく、10~20質量部がより好ましい。前記範囲とした場合、5質量部未満の場合に比べ、b層の厚みを薄くしても十分な着色効果が得られるので、層構成の設計自由度を確保できるため好ましい。また、30質量部を超えた場合に比べ中空容器の強度を高めることが出来る為、好ましい。
ガスバリア層(c層)
 本発明による酸素吸収中空容器は、ガスバリア層(c層)をさらに含んでもよい。ガスバリア層(c層)は、上記の酸素吸収多層体のガスバリア層(c層)で説明したものと同様のものを用いることができる。
接着層(d層)
 本発明による中空容器は、酸素吸収層(a層)、熱可塑性樹脂層(b層)、およびガスバリア層(c層)の各層間のいずれかに、接着層(d層)をさらに含んでもよい。接着層(d層)は、上記の酸素吸収多層体の接着層(d層)で説明したものと同様のものを用いることができる。
その他の層
 本発明による酸素吸収中空容器は、製造工程上の無駄を省くため、中空容器のリサイクル材(粉砕物)を含むリサイクル樹脂層を別途設けることもできる。その場合は衛生性の観点から、最内層以外の層に配置することが好ましい。
遮光材
 本発明による酸素吸収中空容器は、少なくとも一層が遮光材を含有することが好ましい。本発明の遮光材は、紫外光や可視光線の透過率を低減できる物質であれば、特に限定されない。例えば、公知の顔料を用いる事ができる。顔料の色は特に限定されず、用途に応じ適宜選択することができる。例えば、黒色顔料としては、カーボンブラック、アニリンブラック、ペリレンブラック等の有機黒顔料、銅・鉄・クロム・マンガン・コバルト等を含有した無機系ブラック、チタンブラック、黒色干渉アルミニウム顔料等、白色顔料としては、酸化チタン、酸化亜鉛、酸化ジルコニア、アルミナ粉末、酸化マグネシウム、硫化亜鉛等が、挙げられる。上記遮光材の中でも、黒色顔料及び又は白色顔料が好ましく用いられ、特に好ましくはカーボンブラック、チタンブラック、酸化チタンである。また、上記の遮光材は1種を単独で、又は2種以上を混合して用いることが出来る。遮光材を用いることで、紫外線や可視光線により劣化しやすい内容物を長期間保存することが出来る。本発明の遮光材は中空容器を構成するどの層にでも配合することが可能であるが、酸素吸収層(a層)に配合することが好ましい。この場合、中空容器に遮光性を付与すると同時に、酸素吸収剤である前記(I)の金属の酸化による変色を目視で検知できない程度までマスキングできる。従って、酸素吸収の前後で、中空容器全体、特に開口部端面の色味の変化がない、良好な美観を有する中空容器を提供することが出来る。
 遮光材の含有量は前記(II)熱可塑性樹脂100質量部に対し、0.1~10質量部が好ましく、0.5~5質量部がより好ましく、1.0~4.0質量部が特に好ましい。前記範囲とした場合、0.1質量部未満である場合に比べ遮光性を高めることが出来る。また10質量部より大きい場合に比べ、成形性をより高めることが出来る。
 また、前記遮光材に加え、紫外線や可視光線を遮蔽する機能を有する化合物を併用することで、中空容器の遮光性を更に高めることが出来る。一般的に市販されている紫外線吸収剤(例えば、チヌビン等)が好適に用いられる。これら紫外線吸収剤は、容器成型時の溶融ポリマーにマスターバッチまたは液体注入として添加することにより形成できる。紫外線を遮蔽できる樹脂、例えばポリエチレンナフタレート(380nm以下を遮蔽)をガスバリア層として多層形成してもよい。さらに、紫外線のみならず、黒、赤、セピア色の色剤を添加することによって、種々の波長を遮蔽することができる。
乾燥剤
 本発明による酸素吸収中空容器は、中空容器に充填する内容物が水を嫌うものであった場合には、少なくとも一層が乾燥剤を含有することが好ましい。乾燥剤は、特に限定されず、従来公知の乾燥剤を用いることができる。例えば、モレキュラーシーブ、焼明礬石、粘土鉱物、ゼオライト、活性炭、活性アルミナ、シリカゲル、酸化カルシウム、酸化バリウム、酸化ストロンチウム、酸化マグネシウム、硫酸リチウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム、硫酸コバルト、硫酸ガリウム、硫酸チタン、及び硫酸ニッケル等が挙げられ、特にモレキュラーシーブが好ましい。乾燥剤の配合する層については、ガスバリア層(c層)に配合すると、ガスバリア層(c層)のバリア性能劣化をまねく恐れがあるため、避けた方が好ましい。接着層(d層)に配合すると、層間強度の低下をまねく恐れがあるため、避けた方が好ましい。そのため、配合する層は、熱可塑性樹脂層(b層)か、もしくは、本発明で用いられる酸素吸収剤は水分を必要とせず酸素吸収するものであるから酸素吸収層(a層)に配合することが好ましい。
酸素吸収中空容器の各層の厚み
 本発明の酸素吸収中空容器の各層の厚みは、層構成、容器形態や容器の用途、要求される物性などにより適宜選択することができる。酸素吸収層(a層)の厚みは、好ましくは5μm~500μmであり、より好ましくは10μm~200μmである。酸素吸収中空容器の最外側に配置される場合の熱可塑性樹脂層(b層)の厚みは、好ましくは300μm~2000μmであり、より好ましくは500μm~1000μmである。一方、酸素吸収中空容器の最内側に配置される場合の熱可塑性樹脂層(b層)厚みは、好ましくは5μm~200μmであり、より好ましくは10μm~100μmである。ガスバリア層(c層)の厚みは、好ましくは5μm~200μmであり、より好ましくは20μm~100μmである。接着層(d層)の厚みは、好ましくは5μm~200μmであり、より好ましくは20μm~100μmである。
 本発明による酸素吸収中空容器の全層の厚みに対するガスバリア含有層の厚みの比率については特に限定されない。ガスバリア層(c層)の厚みは、全層の総厚みに対して、好ましくは1~20%であり、より好ましくは1.5~15%であり、さらに好ましくは2~10%である。ガスバリア層(c層)の厚みの比率が、1%以上であればガスバリア性をより向上させることができ、20%以下であれば耐衝撃性をより向上させることができる。
 本発明による酸素吸収中空容器の全層の厚みも特に限定されず、層構成、容器形態や容器の用途、要求される物性などにより、適宜選択することができる。
酸素吸収中空容器の層構成
 本発明による酸素吸収中空容器の具体的な層構成を以下に例示する。図3には、本発明による酸素吸収中空容器の代表的な模式図を示す。以下、図4~図9に、本発明による酸素吸収中空容器の一例の模式断面図を示す。
 図4に示される酸素吸収中空容器10は、単層であり、酸素吸収層(a層)11のみを有する。
 図5に示される酸素吸収中空容器20は、最内側に酸素吸収層(a層)21を有し、最外側に熱可塑性樹脂層(b層)22を有する。
 図6に示される酸素吸収中空容器30は、中間層として酸素吸収層(a層)31を有し、該酸素吸収層(a層)31の両側に熱可塑性樹脂層(b層)32を有する。
 図7に示される酸素吸収中空容器40は、外側面から内側面へ、熱可塑性樹脂層(b層)42、ガスバリア層(c層)43、酸素吸収層(a層)41、熱可塑性樹脂層(b層)42の順に層が配置されてなる。
 図8に示される酸素吸収中空容器50は、外側面から内側面へ、熱可塑性樹脂層(b層)52、接着層(d層)54、ガスバリア層(c層)53、接着層(d層)54、酸素吸収層(a層)51、熱可塑性樹脂層(b層)52の順に層が配置されてなる。
 図9に示される酸素吸収中空容器60は、外側面から内側面へ、熱可塑性樹脂層(b層)62、接着層(d層)64、ガスバリア層(c層)63、接着層(d層)64、リサイクル層65、酸素吸収層(a層)61、熱可塑性樹脂層(b層)62の順に層が配置されてなる。
酸素吸収中空容器の製造
 本発明による酸素吸収中空容器の製造方法は、従来公知の方法を用いることができ、特に限定されない。例えば、溶融押出成形によりパリソンを成形しこれをブローして成形を行う押出中空成形と、射出成型によりプリフォームを成形し、これをブローして成形を行う射出中空成形などが例示される。また例えば、フランスのAGAMI社の有する製造機を用いて、多層フィルム/多層シートからボトルを成形する製造法を使用する事ができる。この製造機によって、多層シートを条片に切断し、各条をブローパイプのまわりで管状に成形させ、次に、各条片を長手方向に溶着し、このように成形されたプラスチックチューブを加熱させてから、金型の中でブロー成形しボトルにする製造法が例示される。
酸素吸収中空容器の用途
 本発明による酸素吸収中空容器は、水分活性の高い領域から低い領域まで適用可能である。これにより、水分活性が低く、低湿度の乾燥条件での保存が必要とされる物品に好適に適用できる。なお、水分活性とは物品中の自由水含有量を示す尺度で、0~1の数字で示され、水分のない物品は0、純水は1となる。すなわち、ある物品の水分活性Awは、その物品を密封し平衡状態に到達した後の空間内の水蒸気圧をP、純水の水蒸気圧をP、同空間内の相対湿度をRH(%)、とした場合、
  Aw=P/P=RH/100
と定義される。
 本発明による酸素吸収中空容器は、被保存物の水分の有無によらず、酸素吸収することができるものであり、中空容器の中身としては、ミネラルウオーターのような水から、0~30%RHで保存されることが好ましいような低水分含有物や、水分を含まない物まで収容できる。低水分含有物としては粉末、顆粒食品類:(粉末スープ、粉末飲料、粉末菓子、調味料、穀物粉、栄養食品、健康食品、着色料、着香料、香辛料)、粉末,顆粒薬品:(散薬類、粉石鹸、歯磨粉、工業薬品)、これらのものの成形体(錠剤型)等水分の増加を嫌う食品、薬品を例示することができる。水分を含まない物の例としては、工業部品や医薬品類(アトルバスタチン、レボチロキシン、など)が例示される。
 以下に、実施例と比較例を挙げて本発明をさらに詳細に説明するが、本発明は以下の実施例の内容に限定して解釈されるものではない。
実施例1
 Al(アルミニウム)粉とFe(鉄)粉をそれぞれ50質量%の割合で混合し、窒素中で溶解して、Al-Fe合金を得た。得たAl-Fe合金はジョークラッシャー、ロールクラッシャー及びボールミルを用いて粉砕し、粉砕物を目開き200メッシュ(0.075mm)の網を用いて分級し、200メッシュ以下のAl-Fe合金を得た。得られたAl-Fe合金粉150gを、50℃の30質量%水酸化ナトリウム水溶液中で1時間攪拌混合した後、混合溶液を静置し、上層液を取り除いた。残った沈殿物をpHが10以下になるまで蒸留水で洗浄し、Al-Fe多孔質金属粉を得た。多孔質金属粉は、酸素に接触させることを回避すべく、水溶液中での反応により得た。
 得られた多孔質金属粉を、200Pa以下、80℃で水分量1質量%以下まで真空乾燥してAl-Fe多孔質金属粉乾燥物(以下、当該Al-Fe多孔質金属粉乾燥物を「金属粉1」と表記する)を得た。得られた金属粉1のかさ密度は1.3g/cm3であった(JIS Z2504に準拠して測定)。この1gを、通気性小袋内に包装し、乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、500mLの空気(酸素濃度20.9%)を充填して密封し、25℃で1日保存した。
 25℃で1日保存したガスバリア袋内の酸素濃度をガスクロマトグラフにより測定した結果、ガスバリア袋内の酸素濃度は4.1容量%であり、ガスバリア袋内の減少した酸素濃度から酸素吸収量を算出した結果、酸素吸収量は87.6mL/gであった。
 金属粉1の平均粒径を粒度・形状分布測定器(株式会社セイシン企業製「PITA-2」)を使用して測定した結果、金属粉1の平均粒径は31μmであった。
 金属粉1の比表面積を自動比表面積測定装置(株式会社島津製作所製「ジェミニVII2390」)を使用して測定した結果、金属粉1の比表面積は37.0m/gであった。結果は表1に示した通りであった。
 金属粉1と、直鎖低密度ポリエチレン(宇部丸善ポリエチレンより入手可、MFR4.0g/10min(JIS K7210に準拠して測定)、以下「LLDPE」と表記する)とを、LLDPE:金属粉1=50:50となるように二軸押出機にて溶融混練して「酸素吸収性樹脂組成物ペレットA」を得た。酸素吸収性樹脂組成物ペレットAの密度は1.62g/cmであった。二軸押出機にはそれぞれ窒素ガスで置換したメインフィーダとサイドフィーダの2種類のフィーダにより原料を投入した。LLDPEはメインフィーダにより投入し、溶融したLLDPEにサイドフィーダにより金属粉1を投入した。
 得られた酸素吸収性樹脂組成物ペレットAを、窒素中でプレス機を用いて180℃でプレスすることにより、平均厚み約200μmの酸素吸収性樹脂フィルムを得た。
 得られた酸素吸収性樹脂フィルムの外観を、下記の基準に従って評価したところ、結果は「◎」(良好)であった。
 ・フィルム外観の評価基準:
  ◎:フィルム外観が良好、すなわち、フィルムは滑らかで、かつ強度も適切である。
  ○:フィルム外観は良好、フィルムは滑らかである。
  △:フィルム外観は許容できるものの、フィルムが脆く、一部に穴が開いていることが認められる。
  ×:フィルムとして不十分であり、外観も良好とはいえない。
 得られた酸素吸収性樹脂フィルムを10cm×10cmに切り取った。切り取ったフィルムの質量は3.25gであり、該フィルム中のLLDPEと金属粉1の質量比から算出すると、該フィルム中に含有される金属粉1の質量は1.62gであった。該フィルムを乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、400mLの空気(酸素濃度20.9%)を充填して密封し、25℃で30日保存した。
 25℃で30日保存したガスバリア袋内の酸素濃度をガスクロマトグラフにより測定した結果、ガスバリア袋内の酸素濃度は5.5容量%であり、ガスバリア袋内の減少した酸素濃度から酸素吸収量を算出した結果、樹脂組成物の酸素吸収量は酸素吸収性樹脂に含まれる金属粉1の単位質量当たりの酸素吸収量は40.2mL/gであった。
 結果は表2に示した通りであった。
実施例2
 Feの代わりにNi(ニッケル)を使用した以外は実施例1と同様にして、Al-Ni多孔質金属粉乾燥物(以下、当該Al-Ni多孔質金属粉乾燥物を「金属粉2」と表記する)を得た。得られた金属粉2のかさ密度は1.4g/cm3であった。実施例1と同様にして金属粉2の酸素吸収性能、平均粒径、および比表面積を測定した結果、ガスバリア袋内の酸素濃度は5.8%、酸素吸収量は80.1mL/g、平均粒径は18μm、比表面積は80.0m/gであった。
 金属粉2とエチレン-プロピレンランダム共重合体(日本ポリプロ株式会社より入手可、MFR1.3g/10分、以下PPと表記する)とをPP:金属粉2=70:30となるように溶融混練して「酸素吸収性樹脂組成物ペレットB」を得た。酸素吸収性樹脂組成物ペレットBの密度は1.24g/cm3であった。
 得られた酸素吸収性樹脂組成物ペレットBを粉砕機(フロイント・ターボ社製ターボディスクミル)にて粉砕し、酸素吸収性樹脂粉末を得た。得られた酸素吸収性樹脂粉末3.0gを量りとった。酸素吸収性樹脂粉末3.0g中に含有される金属粉2の質量は0.90gであった。該酸素吸収性樹脂粉末を通気性小袋内に包装し、乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、実施例1と同様にして25℃で30日保存したガスバリア袋内の酸素濃度を測定した結果、ガスバリア袋内の酸素濃度は15.1容量%であり、該酸素吸収性樹脂粉末に含まれる金属粉2の単位質量当たりの酸素吸収量は30.4mL/gであった。
実施例3
 溶融混練時の質量比をLLDPE:金属粉1=25:75とした以外は、実施例1と同様にして、平均厚み約200μmの酸素吸収性樹脂フィルムを得た。該酸素吸収性樹脂フィルムの密度は2.67g/cm3であった。得られた酸素吸収性樹脂フィルムの外観は、実施例1の欄に記載した評価基準によれば、「○」であった。すなわち、外観はほぼ良好であったが、フィルムは脆く、若干穴が開いているのが認められた。
 実施例1と同様にして、該酸素吸収性樹脂フィルムを10cm×10cmの大きさに切り取り、乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、25℃で30日保存した。切り取ったフィルムの質量は5.34gであり、切り取ったフィルム中に含有される金属粉1の質量は4.00gであった。25℃で30日保存したガスバリア袋内の酸素濃度を測定した結果、ガスバリア袋内の酸素濃度は0.1容量%以下であり、酸素吸収性樹脂フィルムに含まれる金属粉1の単位質量当たりの酸素吸収量は20.8mL/gであった。
比較例1
 平均粒径35μmの鉄粉200kgを加熱ジャケット付き密閉型リボンミキサーに投入し、1.5kPaの減圧下150℃で混合しつつ、塩化カルシウム45質量%水溶液70kgを噴霧し、乾燥した後、篩分けし粗粒を除き、平均粒径35μmの鉄系酸素吸収剤を得た(以下、「金属粉3」と表記する)。得られた金属粉3のかさ密度は2.7g/cm3であった。実施例1と同様にして金属粉3の酸素吸収性能および比表面積を測定した結果、ガスバリア袋内の酸素濃度は20.5容量%、酸素吸収量は2.5mL/g、比表面積は0.1m/gであった。
 金属粉3とLLDPEとをLLDPE:金属粉3=70:30となるように溶融混練した以外は、実施例1と同様に平均厚み約200μmの酸素吸収性樹脂フィルムを得た。該酸素吸収性樹脂フィルムの密度は1.24g/cm3であった。得られた酸素吸収性樹脂フィルムの外観は、実施例1の欄に記載した評価基準によれば、「◎」(良好)であった。
 実施例1と同様にして、該酸素吸収性樹脂フィルムを10cm×10cmの大きさに切り取り、乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、25℃で30日保存した。切り取ったフィルムの質量は2.48gであり、切り取ったフィルム中に含有される金属粉3の質量は0.75gであった。25℃で30日保存したガスバリア袋内の酸素濃度を測定した結果、ガスバリア袋内の酸素濃度は20.7容量%であり、酸素吸収性樹脂フィルムに含まれる金属粉3の単位質量当たりの酸素吸収量は1.4mL/gであった。
比較例2
 金属粉1の代わりに平均粒径0.6μmのNi粉(東邦チタニウム製、かさ密度3.5g/cm3、以下、金属粉4と表記する)を使用した以外は実施例1と同様にして、金属粉4の酸素吸収性能および比表面積を測定した結果、ガスバリア袋内の酸素濃度は20.8容量%、酸素吸収量は1.0mL/g以下、比表面積は2.0m/gであった。
 金属粉4とLLDPEとをLLDPE:金属粉4=70:30となるように溶融混練した以外は、実施例1と同様に平均厚み約200μmの酸素吸収性樹脂フィルムを得た。該酸素吸収性樹脂フィルムの密度は1.25g/cmであった。得られた酸素吸収性樹脂フィルムの外観は、実施例1の欄に記載した評価基準によれば、「◎」(良好)であった。
 実施例1と同様にして、該酸素吸収性樹脂フィルムを10cm×10cmの大きさに切り取り、乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、25℃で30日保存した。切り取ったフィルムの質量は2.49gであり、切り取ったフィルム中に含有される金属粉4の質量は0.75gであった。25℃で30日保存したガスバリア袋内の酸素濃度を測定した結果、ガスバリア袋内の酸素濃度は20.8容量%であり、酸素吸収性樹脂フィルムに含まれる金属粉4の単位質量当たりの酸素吸収量は1.0mL/g以下であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1~3から明らかなように、本発明の酸素吸収性樹脂組成物は、相対湿度3%RHの水分が殆ど無い雰囲気下であっても酸素吸収性能に優れた酸素吸収性樹脂組成物であった。
実施例4
 Al(アルミニウム)粉とFe(鉄)粉をそれぞれ50質量%の割合で混合し、窒素中で高周波誘導溶解炉を用いて溶解して、Al-Fe合金を得た。得たAl-Fe合金はジョークラッシャー、ロールクラッシャー及びボールミルを用いて粉砕し、粉砕物を目開き200メッシュ(0.075mm)の網を用いて分級し、200メッシュ以下のAl-Fe合金を得た。得られたAl-Fe合金粉400gを、55℃の30質量%水酸化ナトリウム水溶液中で1時間攪拌混合した後、混合溶液を静置し、上層液を取り除いた。残った沈殿物をpHが10以下になるまで蒸留水で洗浄し、Al-Fe多孔質金属粉を得た。多孔質金属粉は、酸素に接触させることを回避すべく、水溶液中での反応により得た。
 得られた多孔質金属粉を、200Pa以下、100℃で水分量1質量%以下まで真空乾燥してAl-Fe多孔質金属粉乾燥物(以下、当該Al-Fe多孔質金属粉乾燥物を「金属粉5」と表記する)を得た。得られた金属粉5のかさ密度は1.3g/cmであった(JIS Z2504に準拠して測定)。1gの金属粉5を通気性小袋内に包装した乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、650mLの空気(酸素濃度20.9容量%)を充填して密封し、25℃で1日保存した。保存中にガスバリア袋内の相対湿度をガスクロマトグラフにより測定した結果、相対湿度は3%RH以下であった。
 25℃で1日保存したガスバリア袋内の酸素濃度をガスクロマトグラフにより測定した結果、酸素濃度は9.7容量%であり、原末の酸素吸収量は80.6mL/gであった。
 金属粉5の平均粒径をレーザー回折散乱式粒度分布測定器(株式会社セイシン企業製SKレーザーマイクロンサイザーLMS-2000e)により測定した結果、金属粉5の平均粒径は35μmであった。
 金属粉5の比表面積を自動比表面積測定装置(株式会社島津製作所製「ジェミニVII2390」)を使用して測定した結果、金属粉5の比表面積は41.0m/gであった。これらの結果を表3に示した。
 金属粉5と直鎖低密度ポリエチレン(日本ポリエチレン(株)より入手可、MFR10.5g/10min(JIS K7210に準拠して測定)、以下、「LLDPE2」と表記する。)とを、LLDPE2:金属粉5=60:40(質量比)となるように二軸押出機にて溶融混練して「酸素吸収性樹脂組成物A」を得た。酸素吸収性樹脂組成物Aの密度は1.40g/cmであった。二軸押出機にはそれぞれ窒素ガスで置換したメインフィーダとサイドフィーダの2種類のフィーダにより原料を投入した。LLDPE2はメインフィーダにより投入し、溶融したLLDPE2にサイドフィーダにより金属粉5を投入した。
 得られた酸素吸収性樹脂組成物Aを酸素吸収層とし、LLDPE2を熱可塑性樹脂層(b層)とした、2種2層フィルム(厚さ;酸素吸収層40μm/熱可塑性樹脂層20μm)を、幅450mmで、30m/分で、酸素吸収層面をコロナ放電処理し、フィルムロールを作製した。フィルムロールにコブ等の偏肉はなく、得られたフィルムの外観は良好であった。作製した2種2層フィルムにコロナ処理面側にウレタン系ドライラミネート用接着剤(東洋モートン株式会社製)を用いて、PET(東洋紡績株式会社製、片面コロナ処理済、12)/接着剤(3)/アルミ箔(9)/接着剤(3)/ナイロン(東洋紡績株式会社製、両面コロナ処理済、15)/接着剤(3)/酸素吸収層(40)/LLDPE2(20)の酸素吸収多層フィルムを得た。当該酸素吸収多層フィルムを「酸素吸収多層フィルム1」と表記する。尚、括弧内の数字は各層の厚さ(単位:μm)を意味する。
 酸素吸収多層フィルム1を用いて、15cm×20cmの三方シール袋を作製した。作製した三方シール袋の酸素吸収層の質量、および該三方シール袋に含有される金属粉5の質量を算出すると、酸素吸収層の質量は3.37gであり、該三方シール袋に含有される金属粉5の質量は1.35gであった。作製した三方シール袋中に通気性小袋内に包装した乾燥剤と共に100mLの空気(酸素濃度20.9容量%)を充填して密封し、25℃で30日保存した。保存中にガスバリア袋内の相対湿度をガスクロマトグラフにより測定した結果、相対湿度は3%RH以下であった。
 25℃で30日保存したガスバリア袋内の酸素濃度をガスクロマトグラフにより測定した結果、酸素濃度は0.1容量%以下であり、酸素吸収多層フィルム1に含まれる金属粉5の単位質量当たりの酸素吸収量は15.5mL/gであった。これらの結果を表4に示した。
実施例5
 Al-Fe多孔質金属粉を得る条件を45℃の30質量%水酸化ナトリウム水溶液中で30分攪拌混合した後、混合溶液を静置し、上層液を取り除き、残った沈殿物をpHが10以下になるまで蒸留水で洗浄、とした以外は実施例4と同様にして、Al-Fe多孔質金属粉乾燥物(以下、当該Al-Fe多孔質金属粉乾燥物を「金属粉6」と表記する)を得た。得られた金属粉6のかさ密度は1.4g/cmであった。実施例4と同様にして金属粉6の酸素吸収性能、平均粒径、および比表面積を測定した結果、ガスバリア袋内の酸素濃度は15.6容量%、酸素吸収量は40.8mL/g、平均粒径は35μm、比表面積は20.5m/gであった。これらの結果を表3に示した。
 金属粉6と直鎖低密度ポリエチレン((株)プライムポリマーより入手可、MFR3.8g/10min(JIS K7210に準拠して測定)、以下、「LLDPE3」と表記する。)とを、LLDPE3:金属粉6=70:30(質量比)となるように二軸押出機にて溶融混練して「酸素吸収性樹脂組成物B」を得た。酸素吸収性樹脂組成物Bの密度は1.23g/cmであった。二軸押出機にはそれぞれ窒素ガスで置換したメインフィーダとサイドフィーダの2種類のフィーダにより原料を投入した。LLDPE3はメインフィーダにより投入し、溶融したLLDPE3にサイドフィーダにより金属粉6を投入した。
 酸素吸収性樹脂組成物Bをコア層とし、スキン層をLLDPE3とした、2種3層フィルム(厚み;20μm/30μm/20μm)を、幅600mmで、70m/分で、作製した。得られたフィルムの外観は良好であった。
 得られた2種3層フィルムを15cm×15cmに切り取り、切り取った2種3層フィルム2枚を、通気性小袋内に包装した乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、200mLの空気(酸素濃度20.9容量%)を充填して密封し、25℃で30日保存した。切り取ったフィルムの酸素吸収層の質量、および該フィルムに含有される金属粉6の質量を算出すると、酸素吸収層の質量は1.66gであり、該フィルムに含有される金属粉6の質量は0.50gであった。保存中にガスバリア袋内の相対湿度をガスクロマトグラフにより測定した結果、相対湿度は3%RH以下であった。
 25℃で30日保存したガスバリア袋内の酸素濃度をガスクロマトグラフにより測定した結果、酸素濃度は16.0容量%であり、2種3層フィルムに含まれる金属粉6の単位質量当たりの酸素吸収量は23.5mL/gであった。これらの結果を表4に示した。
実施例6
 Feの代わりにNi(ニッケル)を使用した以外は実施例4と同様にして、Al-Ni多孔質金属粉乾燥物(以下、当該Al-Ni多孔質金属粉乾燥物を「金属粉7」と表記する)を得た。得られた金属粉7のかさ密度は1.2g/cmであった。実施例4と同様にして金属粉7の酸素吸収性能、平均粒径、および比表面積を測定した結果、ガスバリア袋内の酸素濃度は10.1容量%、酸素吸収量は78.1mL/g、平均粒径は21μm、比表面積は85.0m/gであった。これらの結果を表3に示した。
 金属粉7とLLDPE3とを、LLDPE3:金属粉7=70:30(質量比)となるように二軸押出機にて溶融混練して「酸素吸収性樹脂組成物C」を得て、酸素吸収性樹脂組成物Cをコア層とした以外は、実施例5と同様にして2種3層フィルムを作製した。酸素吸収性樹脂組成物Cの密度は1.24g/cmであった。得られたフィルムの外観は良好であった。実施例5と同様にして切り取ったフィルムの酸素吸収層の質量、および該フィルムに含有される金属粉7の質量を算出すると、酸素吸収層の質量は1.68gであり、該フィルムに含有される金属粉7の質量は0.50gであった。25℃で30日後の2種3層フィルムの酸素吸収性能を測定した結果、25℃で30日保存したガスバリア袋内の酸素濃度は12.6容量%であり、2種3層フィルムに含まれる金属粉7の単位質量当たりの酸素吸収量は37.8mL/gであった。これらの結果を表4に示した。
実施例7
 金属粉7とLLDPE3とを、LLDPE3:金属粉7=30:70(質量比)となるように二軸押出機にて溶融混練して「酸素吸収性樹脂組成物D」を得て、酸素吸収性樹脂組成物Dをコア層とした以外は、実施例5と同様にして2種3層フィルムを作製した。酸素吸収性樹脂組成物Dの密度は2.41g/cmであった。得られたフィルムの外観はほぼ良好であったが、フィルムは脆く、若干穴が開いているのが認められた。実施例6と同様にして、切り取ったフィルムの酸素吸収層の質量、および該フィルムに含有される金属粉7の質量を算出すると、酸素吸収層の質量は3.26gであり、該フィルムに含有される金属粉7の質量は2.28gであった。25℃で30日後の2種3層フィルムの酸素吸収性能を測定した結果、25℃で30日保存したガスバリア袋内の酸素濃度は0.1容量%以下であり、2種3層フィルムに含まれる金属粉7の単位質量当たりの酸素吸収量は18.2mL/gであった。これらの結果を表4に示した。
比較例3
 平均粒径50μmの鉄粉100kgを加熱ジャケット付き密閉型リボンミキサーに投入し、10mmHgの減圧下160℃で混合しつつ、塩化カルシウム40質量%水溶液35kgを噴霧し、乾燥した後、篩分けし粗粒を除き、平均粒径50μmの鉄系酸素吸収剤を得た(以下、「金属粉8」と表記する)。得られた金属粉8のかさ密度は2.8g/cmであった。酸素吸収性能測定時にガスバリア袋に3gの金属粉8を通気性小袋内に包装した乾燥剤と共に入れた以外は実施例4と同様にして、金属粉8の酸素吸収性能および比表面積を測定した結果、ガスバリア袋内の酸素濃度は20.1容量%、酸素吸収量は2.2mL/g、比表面積は0.1m/gであった。これらの結果を表3に示した。
 金属粉8とLLDPE3とを、LLDPE3:金属粉8=70:30(質量比)となるように二軸押出機にて溶融混練して「酸素吸収性樹脂組成物E」を得て、酸素吸収性樹脂組成物Eをコア層とした以外は、実施例5と同様にして、2種3層フィルムを作製した。酸素吸収性樹脂組成物Eの密度は1.24g/cmであった。得られたフィルムの外観は良好であった。実施例5と同様にして、切り取ったフィルムの酸素吸収層の質量、および該フィルムに含有される金属粉8の質量を算出すると、酸素吸収層の質量は1.67gであり、該フィルムに含有される金属粉8の質量は0.50gであった。25℃で30日保存した2種3層フィルムの酸素吸収性能を測定した結果、25℃で30日保存したガスバリア袋内の酸素濃度は20.7容量%であり、2種3層フィルムに含まれる金属粉8の単位質量当たりの酸素吸収量は1.0mL/gであった。これらの結果を表4に示した。
比較例4
 金属粉8の代わりに平均粒径0.3μmのNi粉(東邦チタニウム製、かさ密度4.0g/cm、以下、「金属粉9」と表記する)を使用した以外は比較例3と同様にして、金属粉9の酸素吸収性能および比表面積を測定した結果、ガスバリア袋内の酸素濃度は20.7容量%、酸素吸収量は1.0mL/g以下、比表面積は2.4m/gであった。これらの結果を表3に示した。
 金属粉9とLLDPE3とを、LLDPE3:金属粉9=70:30(質量比)となるように二軸押出機にて溶融混練して「酸素吸収性樹脂組成物F」を得て、酸素吸収性樹脂組成物Fをコア層とした以外は、実施例5と同様にして、2種3層フィルムを作製した。酸素吸収性樹脂組成物Fの密度は1.25g/cmであった。得られたフィルムの外観は良好であった。実施例5と同様にして、切り取ったフィルムの酸素吸収層の質量、および該フィルムに含有される金属粉9の質量を算出すると、酸素吸収層の質量は1.68gであり、該フィルムに含有される金属粉9の質量は0.50gであった。25℃で30日保存した2種3層フィルムの酸素吸収性能を測定した結果、25℃で30日保存したガスバリア袋内の酸素濃度は20.8容量%であり、2種3層フィルムに含まれる金属粉9の単位質量当たりの酸素吸収量は1.0mL/g以下であった。これらの結果を表4に示した。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 実施例4~7から明らかなように、本発明による酸素吸収多層体は、30%RH(25℃)以下の低湿度の雰囲気という水分が殆ど無い雰囲気下であっても、酸素吸収性能を示す酸素吸収多層体であり、この多層体を用いることで、低湿度下であっても被保存物を脱酸素保存することが可能である。
実施例8
 Al(アルミニウム)粉とFe(鉄)粉をそれぞれ50質量%の割合で混合し、窒素中で溶解して、Al-Fe合金を得た。得たAl-Fe合金はジョークラッシャー、ロールクラッシャー及びボールミルを用いて粉砕し、粉砕物を目開き200メッシュ(0.075mm)の網を用いて分級し、200メッシュ以下のAl-Fe合金を得た。得られたAl-Fe合金粉150gを、50℃の30質量%水酸化ナトリウム水溶液中で1時間攪拌混合した後、混合溶液を静置し、上層液を取り除いた。残った沈殿物をpHが10以下になるまで蒸留水で洗浄し、Al-Fe多孔質金属粉を得た。多孔質金属粉は、酸素に接触させることを回避すべく、水溶液中での反応により得た。
 得られた多孔質金属粉を、200Pa以下、80℃で水分量1質量%以下まで真空乾燥してAl-Fe多孔質金属粉乾燥物(以下、当該Al-Fe多孔質金属粉乾燥物を「金属粉10」と表記する)を得た。得られた金属粉10のかさ密度は1.3g/cm3であった(JIS Z2504に準拠して測定)。この1gを、通気性小袋内に包装し、乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、500mLの空気(酸素濃度20.9容量%)を充填して密封し、25℃で1日保存した。
 25℃で1日保存したガスバリア袋内の酸素濃度をガスクロマトグラフにより測定した結果、ガスバリア袋内の酸素濃度は4.1容量%であり、ガスバリア袋内の減少した酸素濃度から酸素吸収量を算出した結果、酸素吸収量は87.6mL/gであった。
 金属粉10の平均粒径をレーザー回折散乱式粒度分布測定器(株式会社セイシン企業製SKレーザーマイクロンサイザーLMS-2000e)により測定した結果、金属粉10の平均粒径は31μmであった。
 金属粉10の比表面積を自動比表面積測定装置(株式会社島津製作所製「ジェミニVII2390」を使用して測定した結果、金属粉10の比表面積は37.0m/gであった。これらの結果を表5に示した。
 金属粉10と、高密度ポリエチレン(宇部丸善ポリエチレン(株)製、商品名:UBEポリエチレン「B300H」、MFR1.0g/10min(JIS K7210に準拠して測定)、以下「HDPE1」と表記する)とを、HDPE1:金属粉10=60:40(質量比)となるように、窒素ガスで置換したメインフィーダとサイドフィーダの2種類のフィーダを有する二軸押出機で溶融混練してストランド状に押出した後、ペレタイザーで裁断し、「酸素吸収性樹脂組成物ペレットC」を得た。HDPE1はメインフィーダにより投入し、溶融したHDPE1にサイドフィーダにより金属粉10を投入した。酸素吸収性樹脂組成物ペレットCの密度は約1.5g/cmであった。MFR0.4g/10min(JIS K7210に準拠して測定)であった。
 次に以下の様にして酸素吸収中空容器を得た。酸素吸収層(a層)に酸素吸収性樹脂組成物ペレットCを、熱可塑性樹脂層(b層)にもHDPE1を用い、ガスバリア層(c層)の樹脂としてエチレンビニルアルコール共重合樹脂(日本合成化学工業株式会社製、商品名:ソアノール「DC3203RB」)を用い、接着性樹脂層(d)の樹脂として、カルボン酸変性ポリオレフィン樹脂(三菱化学(株)製、商品名:ゼラス「MC721AP」)を使用し。4種6層のダイレクトブロー成形機で容量100mLの容器を作成した。寸法は高さ83.5mm、容器底外径48mm、口部内径25.2mmであった。最内層の表面積は0.013mであった。製造温度は200℃で成形した。酸素吸収中空容器の層構成は、外側面から内側面へ、熱可塑性樹脂層(b層)/接着性樹脂層(d層)/バリア層(b層)/接着性樹脂層(d層)/酸素吸収層(a層)/熱可塑性樹脂層(b層)であり、各層の厚みは、外側面から内側面へ、600μm/100μm/100μm/100μm/100μm/200μm/100μmであった。中空容器を灰化させ、(I)の金属の含有量を測定し、1.5g含有していることを確認した。
 得られた酸素吸収中空容器の酸素吸収量を評価した。図10に示すように、該中空容器を乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、ガスバリア袋中に500mLの空気(酸素濃度20.9容量%)が充填されるよう調整し充填したあと密封し、25℃で60日保存した。保存中にガスバリア袋内の相対湿度をガスクロマトグラフにより測定した結果、相対湿度は3%RH以下であった。
 25℃で60日保存したガスバリア袋内の酸素濃度をガスクロマトグラフにより測定した結果、ガスバリア袋内の酸素濃度は10.0容量%であり、ガスバリア袋内の減少した酸素濃度から酸素吸収量を算出した結果、酸素吸収中空容器に含まれる金属粉10の単位質量当たりの酸素吸収量は40.2mL/gであった。該酸素吸収中空容器が25℃60日で吸収した酸素は60.3mLであった。これらの結果を表6に示した。以上の結果から、該容器(容量100mL)内の酸素(20.9mL)を十分に吸収出来る酸素吸収能力を有していることが示された。
比較例5
 平均粒径35μmの還元鉄粉200kgを加熱ジャケット付き密閉型リボンミキサーに投入し、1.5kPaの減圧下150℃で混合しつつ、塩化カルシウム45質量%水溶液70kgを噴霧し、乾燥した後、篩分けし粗粒を除き、平均粒径35μmの還元鉄系酸素吸収剤を得た(以下、「金属粉11」と表記する)。得られた金属粉11のかさ密度は2.7g/cmであった。実施例8と同様にして金属粉11の酸素吸収性能および比表面積を測定した結果、ガスバリア袋内の酸素濃度は20.5容量%、酸素吸収量は2.5mL/g、比表面積は0.1m/gであった。これらの結果を表5に示した。
 金属粉11を使用した以外は、実施例8と同様の中空容器を作成した。実施例8と同様にして、該中空容器を乾燥剤と共にバリア袋(Al箔ラミネートプラスチック袋)に入れ、25℃で60日保存した。25℃で60日保存したガスバリア袋内の酸素濃度をガスクロマトグラフにより測定した結果、ガスバリア袋内の酸素濃度は20.7容量%であり、ガスバリア袋内の減少した酸素濃度から酸素吸収量を算出した結果、酸素吸収中空容器に含まれる金属粉11の単位質量当たりの酸素吸収量は1.4mL/gであった。該中空容器が25℃60日で吸収した酸素は2.1mLであった。これらの結果を表6に示した。これは該容器内の酸素(20.9mL)の10%に留まり、十分な酸素吸収能力を有していないことが示された。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
実施例9
 金属粉10と、高密度ポリエチレン(宇部丸善ポリエチレン(株)製、商品名:UBEポリエチレン「B120H」、MFR1.0g/10min(JIS K7210に準拠して測定)、以下「HDPE2」と表記する)とを、HDPE2:金属粉10=60:40(質量比)となるように、窒素ガスで置換したメインフィーダとサイドフィーダの2種類のフィーダを有する二軸押出機で溶融混練してストランド状に押出した後、ペレタイザーで裁断し、「酸素吸収性樹脂組成物ペレットD」を得た。HDPE2はメインフィーダにより投入し、溶融したHDPE2にサイドフィーダにより金属粉10を投入した。酸素吸収性樹脂組成物ペレットDの密度は約1.5g/cmであった。MFR0.4g/10min(JIS K7210に準拠して測定)であった。
 次に以下の4種6層の遮光性酸素吸収中空容器を作製した。層構成は、外側面から内側面へ、熱可塑性樹脂外層(b1層)/接着性樹脂層(d層)/ガスバリア層(c層)/接着性樹脂層(d層)/遮光性酸素吸収層(a層)/熱可塑性樹脂内層(b2層)とした。各層の厚み(μm)は、外側面から内側面へ、600/100/100/100/100/200/100とした。
 熱可塑性樹脂外層(b1層)の樹脂には、90質量部のHDPE2に対し、白マスターバッチ(東京インキ株式会社製、商品名 PEX 6860 White;LDPE/酸化チタン=40質量部/60質量部)を10質量部添加したものを使用した。接着性樹脂層(d層)の樹脂には、カルボン酸変性ポリオレフィン樹脂(三菱化学株式会社製、商品名:ゼラス「MC735」)を用いた。ガスバリア層(c層)の樹脂には、エチレンビニルアルコール共重合樹脂(日本合成化学工業株式会社製、商品名:ソアノール「DT2904」)を用いた。遮光性酸素吸収層(a層)の樹脂としては、酸素吸収性樹脂組成物ペレット10を95質量部に対し、黒マスターバッチ(東京インキ株式会社製、商品名 PEX 3286 3S Black;LDPE/カーボンブラック=70質量部/30質量部)を5質量部添加したものを使用した。熱可塑性樹脂内層(b2層)の樹脂には、HDPE2を用いた。
 これらの材料を用いて、ダイレクトブロー成形機で容量100mLの容器を、製造温度200℃で成形した。寸法は高さ83.5mm、容器底外径48mm、口部内径25.2mmで、最内層の表面積は0.013mであった。得られた遮光性酸素吸収中空容器を灰化させ、金属粉10の含有量を測定したところ、金属粉10を約1.5g含有していた。
 得られた酸素吸収中空容器の酸素吸収量を評価した。図10に示すように、該中空容器を乾燥剤と共にガスバリア袋(Al箔ラミネートプラスチック袋)に入れ、ガスバリア袋中に500mLの空気(酸素濃度20.9容量%)が充填されるよう調整し充填したあと密封し、25℃で60日保存した。保存中にガスバリア袋内の相対湿度をガスクロマトグラフにより測定した結果、相対湿度は3%RH以下であった。
 25℃で60日保存したガスバリア袋内の酸素濃度をガスクロマトグラフにより測定した結果、ガスバリア袋内の酸素濃度は10.0容量%であり、ガスバリア袋内の減少した酸素濃度から酸素吸収量を算出した結果、酸素吸収中空容器に含まれる金属粉10の単位質量当たりの酸素吸収量は40.2mL/gであった。該酸素吸収中空容器が25℃60日で吸収した酸素は60.3mLであった。以上の結果から、該容器(容量100mL)内の酸素(20.9mL)を十分に吸収出来る酸素吸収能力を有していることが示された。
 得られた遮光性酸素吸収中空容器の波長領域200~800nmの光線透過率を、紫外・可視分光光度計(株式会社日立製作所製「U-3500」)を用いて測定し、ボトルの遮光性を評価した。その結果、本中空容器の紫外・可視光透過率は0.1%以下であり、十分な遮光性を有していた。さらに、最外層に白色顔料を添加したことで、外観は白色であり、良好な美観を有していた。
 2 酸素吸収多層体
 3 酸素吸収層(a層)
 4 熱可塑性樹脂層(b層)
 5 酸素吸収多層体
 6 酸素吸収層(a層)
 7 熱可塑性樹脂層(b層)
 8 ガスバリア層(c層)
 1  酸素吸収中空容器
 10 酸素吸収中空容器
 11 酸素吸収層(a層)
 20 酸素吸収中空容器
 21 酸素吸収層(a層)
 22 熱可塑性樹脂層(b層)
 30 酸素吸収中空容器
 31 酸素吸収層(a層)
 32 熱可塑性樹脂層(b層)
 40 酸素吸収中空容器
 41 酸素吸収層(a層)
 42 熱可塑性樹脂層(b層)
 43 ガスバリア層(c層)
 50 酸素吸収中空容器
 51 酸素吸収層(a層)
 52 熱可塑性樹脂層(b層)
 53 ガスバリア層(c層)
 54 接着層(d層)
 60 酸素吸収中空容器
 61 酸素吸収層(a層)
 62 熱可塑性樹脂層(b層)
 63 ガスバリア層(c層)
 64 接着層(d層)
 65 リサイクル層

Claims (33)

  1.  (I)(A)マンガン族、鉄族、白金族および銅族からなる群より選択される少なくとも1種の遷移金属と、
        (B)アルミニウム、亜鉛、スズ、鉛、マグネシウムおよびケイ素からなる群より選択される少なくとも1種と
    を含む合金を、酸またはアルカリの水溶液処理に供して、前記成分(B)の少なくとも一部を溶出除去して得られる金属((I)の金属)からなる酸素吸収剤、及び
     (II)熱可塑性樹脂
    を含んでなる、酸素吸収性樹脂組成物。
  2.  30%RH(25℃)以下の低湿度の雰囲気においても酸素を吸収しうる、請求項1に記載の酸素吸収性樹脂組成物。
  3.  30%RH(25℃)以下の低湿度の雰囲気において、前記(I)の金属が少なくとも5mL/gの酸素を吸収しうる、請求項1または2に記載の酸素吸収性樹脂組成物。
  4.  前記(I)の金属が、多孔質形状である、請求項1~3のいずれか一項に記載の酸素吸収性樹脂組成物。
  5.  前記成分(A)が、鉄、コバルト、ニッケル、および銅からなる群より選択される少なくとも1種である、請求項1~4のいずれか一項に記載の酸素吸収性樹脂組成物。
  6.  前記成分(B)が、アルミニウムである、請求項1~5のいずれか一項に記載の酸素吸収性樹脂組成物。
  7.  前記(I)の金属の、前記成分(B)の含有率が、0.1~50質量%である、請求項1~6のいずれか一項に記載の酸素吸収性樹脂組成物。
  8.  前記(I)の金属の、BET法により測定される比表面積が、少なくとも10m/gである、請求項1~7のいずれか一項に記載の酸素吸収性樹脂組成物。
  9.  前記合金が粉末状であり、前記(I)の金属が粉末状である、請求項1~8のいずれか一項に記載の酸素吸収性樹脂組成物。
  10.  前記水溶液処理において、水酸化ナトリウム水溶液が用いられる、請求項1~9のいずれか一項に記載の酸素吸収性樹脂組成物。
  11.  前記(II)の熱可塑性樹脂が、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、エチレン-ビニルアルコール共重合体、及び塩素系樹脂からなる群より選択される少なくとも1種である、請求項1~10のいずれか一項に記載の酸素吸収性樹脂組成物。
  12.  請求項1~11のいずれか一項に記載の酸素吸収性樹脂組成物を、通気性包装材を全部又は一部に用いた包装材で包装してなる、酸素吸収包装体。
  13.  請求項1~11のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層(a層)と、
     前記酸素吸収層(a層)の片側もしくは両側に、熱可塑性樹脂を含む熱可塑性樹脂組成物からなる熱可塑性樹脂層(b層)と
    を含んでなる、酸素吸収多層体。
  14.  ガスバリア層(c層)をさらに含んでなる、請求項13に記載の酸素吸収多層体。
  15.  前記酸素吸収層(a層)と前記熱可塑性樹脂層(b層)の間に、接着層(d)をさらに含んでなる、請求項13または14に記載の酸素吸収多層体。
  16.  前記酸素吸収層(a層)と前記ガスバリア層(c層)の間、及び/又は前記熱可塑性樹脂層(b層)と前記ガスバリア層(c層)の間に、接着層(d)をさらに含んでなる、請求項14に記載の酸素吸収多層体。
  17.  前記熱可塑性樹脂層(b層)に用いられる熱可塑性樹脂が、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合樹脂、および塩素系樹脂からなる群から選択される少なくとも1種である、請求項13~16のいずれか一項に記載の酸素吸収多層体。
  18.  酸素吸収多層体が、ペレット、フィルム、シート、トレイ、カップ、PTP容器、ボトル、チューブ、ブロック、およびキャップからなる群から選択される少なくとも1種である、請求項13~17のいずれか一項に記載の酸素吸収多層体。
  19.  請求項13~17のいずれか一項に記載の酸素吸収多層体からなる、酸素吸収性包装容器用予備成形体。
  20.  請求項13~18のいずれか一項に記載の酸素吸収多層体が、包装容器の少なくとも一部に使用されている、酸素吸収性包装容器。
  21.  請求項1~11のいずれか一項に記載の酸素吸収性樹脂組成物からなる酸素吸収層(a層)を含んでなる、酸素吸収中空容器。
  22.  前記酸素吸収中空容器の少なくとも一層が、遮光材をさらに含んでなる、請求項21に記載の酸素吸収中空容器。
  23.  前記遮光材が、カーボンブラック、チタンブラック、および酸化チタンからなる群から選択される少なくとも1種を含んでなる、請求項22に記載の酸素吸収中空容器。
  24.  前記酸素吸収中空容器の最内層および/または最外層が、熱可塑性樹脂を含む熱可塑性樹脂組成物からなる熱可塑性樹脂層(b層)である、請求項21~23のいずれか一項に記載の酸素吸収中空容器。
  25.  ガスバリア層(c層)をさらに含んでなる、請求項21~24のいずれか一項に記載の酸素吸収中空容器。
  26.  外側面から内側面へ、熱可塑性樹脂層(b層)、ガスバリア層(c層)、酸素吸収層(a層)、および熱可塑性樹脂層(b層)の順に配置されてなる、請求項25に記載の酸素吸収中空容器。
  27.  接着層(d層)をさらに含んでなる、請求項21~26のいずれか一項に記載の酸素吸収中空容器。
  28.  外側面から内側面へ、熱可塑性樹脂層(b層)、接着層(d層)、ガスバリア層(c層)、接着層(d層)、酸素吸収層(a層)、熱可塑性樹脂層(b層)の順に配置されてなる、請求項27に記載の酸素吸収中空容器。
  29.  酸素吸収層(a層)よりも外側に配置された熱可塑性樹脂層(b層)が、白色顔料を含んでなる、請求項24~28のいずれか一項に記載の酸素吸収中空容器。
  30.  前記熱可塑性樹脂層(b層)に用いられる熱可塑性樹脂が、ポリオレフィン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂、エチレンビニルアルコール共重合樹脂、および塩素系樹脂からなる群から選択される少なくとも1種である、請求項24~29のいずれか一項に記載の酸素吸収中空容器。
  31.  前記酸素吸収中空容器の最内層の厚みが200μm以下である、請求項21~30のいずれか一項に記載の酸素吸収中空容器。
  32.  前記酸素吸収中空容器の少なくとも一層が乾燥剤を含有する、請求項21~31のいずれか一項に記載の酸素吸収中空容器。
  33.  請求項13~18のいずれか一項に記載の酸素吸収多層体、請求項20に記載の酸素吸収性包装容器、または請求項21~32のいずれか一項に記載の酸素吸収中空容器を用いて被保存物を保存する、物品の保存方法。
PCT/JP2012/079544 2011-11-15 2012-11-14 酸素吸収性樹脂組成物、酸素吸収多層体、および酸素吸収中空容器 WO2013073590A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12850570.8A EP2749604B1 (en) 2011-11-15 2012-11-14 Oxygen-absorbing resin composition, oxygen-absorbing multilayer laminate, and oxygen-absorbing hollow container
KR1020137015736A KR101373356B1 (ko) 2011-11-15 2012-11-14 산소 흡수성 수지 조성물, 산소 흡수 다층체 및 산소 흡수 중공 용기
US14/236,452 US9199778B2 (en) 2011-11-15 2012-11-14 Oxygen absorbing resin composition, oxygen absorbing multilayered body, and oxygen absorbing hollow container
JP2013503685A JP5288079B1 (ja) 2011-11-15 2012-11-14 酸素吸収性樹脂組成物、酸素吸収多層体、および酸素吸収中空容器
CN201280010083.1A CN103384703B (zh) 2011-11-15 2012-11-14 吸氧性树脂组合物、吸氧多层体及吸氧中空容器

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011-249459 2011-11-15
JP2011249459 2011-11-15
JP2011-281885 2011-12-22
JP2011281885 2011-12-22
JP2011-286138 2011-12-27
JP2011286138 2011-12-27
JP2012247116 2012-11-09
JP2012-247116 2012-11-09

Publications (1)

Publication Number Publication Date
WO2013073590A1 true WO2013073590A1 (ja) 2013-05-23

Family

ID=48429645

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/079544 WO2013073590A1 (ja) 2011-11-15 2012-11-14 酸素吸収性樹脂組成物、酸素吸収多層体、および酸素吸収中空容器

Country Status (7)

Country Link
US (1) US9199778B2 (ja)
EP (1) EP2749604B1 (ja)
JP (1) JP5288079B1 (ja)
KR (1) KR101373356B1 (ja)
CN (1) CN103384703B (ja)
TW (1) TWI471373B (ja)
WO (1) WO2013073590A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007148A (ja) * 2013-06-24 2015-01-15 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物
CN105658320A (zh) * 2013-10-22 2016-06-08 三菱瓦斯化学株式会社 吸氧剂的保存方法
JP2016202290A (ja) * 2015-04-16 2016-12-08 三菱瓦斯化学株式会社 貼付剤包装体、及び貼付剤の保存方法
JP2017148117A (ja) * 2016-02-22 2017-08-31 三菱瓦斯化学株式会社 医薬品類の保存方法
WO2017169036A1 (ja) 2016-03-30 2017-10-05 三菱瓦斯化学株式会社 酸素吸収剤組成物、酸素吸収性多層体、酸素吸収性包装容器、及び物品の保存方法
JP2017214143A (ja) * 2016-05-31 2017-12-07 共同印刷株式会社 ブリスターパック用積層体、及びそれを用いたブリスターパック
JP6439084B1 (ja) * 2018-02-22 2018-12-19 協和機電工業株式会社 吸着体、および吸着体の製造方法
JP2019025681A (ja) * 2017-07-26 2019-02-21 東洋製罐グループホールディングス株式会社 耐変色性に優れた樹脂成形体

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8420140B2 (en) * 2010-09-15 2013-04-16 Del Monte Corporation Galvanic package for fruits and vegetables and preservation method
KR101327637B1 (ko) 2011-01-31 2013-11-12 미츠비시 가스 가가쿠 가부시키가이샤 산소 흡수제 및 그의 보존 방법
EP2749604B1 (en) 2011-11-15 2016-10-05 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition, oxygen-absorbing multilayer laminate, and oxygen-absorbing hollow container
US20130126462A1 (en) * 2011-11-17 2013-05-23 Wisys Technology Foundation, Inc. Ultraviolet-Blocking Recyclable Plastic Container
US9387973B2 (en) 2012-08-08 2016-07-12 Mitsubishi Gas Chemical Company, Inc. Oxygen absorbing agent
WO2016204733A1 (en) * 2015-06-16 2016-12-22 Multisorb Technologies, Inc. Solid oxygen absorbing film
EP3184577A1 (de) * 2015-12-23 2017-06-28 Ems-Patent Ag Verfahren und behälter für die lagerung und den transport von polyamidgranulaten und entsprechend gelagertes oder transportiertes polyamidgranulat sowie hieraus hergestellte formkörper
CN106739335A (zh) * 2016-12-15 2017-05-31 厦门长塑实业有限公司 一种超高阻隔尼龙薄膜及其制备方法
EP3693283A4 (en) * 2017-10-06 2021-10-20 Kikkoman Corporation MULTI-LAYER BOTTLE IN SYNTHETIC RESIN
KR102369779B1 (ko) * 2018-08-09 2022-03-03 주식회사 엘지화학 수처리 모듈의 보관 방법 및 이를 이용한 수처리 모듈팩
CN109057620A (zh) * 2018-09-26 2018-12-21 德清科宝防火保险柜有限公司 一种低氧保藏保险柜
US11021312B2 (en) * 2018-12-21 2021-06-01 Altria Client Services Llc Pouch with oxygen scavenger and method of forming pouch with oxygen scavenger
GB201903576D0 (en) * 2019-03-15 2019-05-01 Smith Sean Ronald Detectable refill for a writing implement
JP7422515B2 (ja) * 2019-10-31 2024-01-26 株式会社吉野工業所 合成樹脂製容器
CN113734624A (zh) * 2020-05-28 2021-12-03 内蒙古蒙牛乳业(集团)股份有限公司 一种包装容器
CN113306865A (zh) * 2021-07-05 2021-08-27 合肥江丰电子材料有限公司 一种铜靶材的密封包装方法
CN116872537B (zh) * 2023-07-17 2024-01-26 广东瑞远新材料有限公司 一种高阻氧复合软管及其制备方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621824A (ja) 1985-06-27 1987-01-07 Kawasaki Steel Corp 冷間塊成鉱の製造方法
JPS62277148A (ja) 1986-05-23 1987-12-02 Toray Ind Inc 脱酸素剤
JPH0523597A (ja) 1991-07-23 1993-02-02 Nikko Rika Kk 触媒用球状ラネ−合金の製造方法
JPH11240095A (ja) * 1998-02-24 1999-09-07 Mitsubishi Gas Chem Co Inc 脱酸素性多層フィルム
JP2002320662A (ja) 2001-03-16 2002-11-05 Pfizer Prod Inc 酸素感受性薬物用医薬キット
JP3496427B2 (ja) 1996-02-03 2004-02-09 三菱瓦斯化学株式会社 脱酸素樹脂組成物及びこれを用いた包装材、多層包装材、包装体、又は包装方法
JP2004201640A (ja) * 2002-12-26 2004-07-22 Japan Science & Technology Agency 品質保持剤
JP4001614B2 (ja) 2005-12-15 2007-10-31 三井金属鉱業株式会社 脱酸素剤及びその製造方法
JP4248986B2 (ja) 2003-10-01 2009-04-02 凸版印刷株式会社 酸素吸収性積層体、これを用いた包装体およびこれを用いた内容物の充填方法
JP4501044B2 (ja) 1999-03-31 2010-07-14 東洋紡績株式会社 ガスバリヤー性に優れた成形体
WO2010147097A1 (ja) 2009-06-15 2010-12-23 三菱瓦斯化学株式会社 酸素吸収樹脂組成物
WO2012105457A1 (ja) * 2011-01-31 2012-08-09 三菱瓦斯化学株式会社 酸素吸収剤およびその保存方法

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5499092A (en) 1978-01-23 1979-08-04 Fujishima Daishiro Oxygen scavenger primarily made of reformed iron powder
JPS6041986B2 (ja) 1980-01-21 1985-09-19 三菱瓦斯化学株式会社 酸素吸収剤
JPH0424863Y2 (ja) * 1986-11-28 1992-06-12
US5026594A (en) * 1988-02-18 1991-06-25 Fuji Photo Film Co., Ltd. Packaging material for photosensitive materials
EP0370802B1 (en) * 1988-11-24 1994-03-23 Sumitomo Chemical Company Limited Oxygen absorbing thermoplastic resin sheet
US6369148B2 (en) 1993-07-16 2002-04-09 Ciba Specialty Chemicals Corporation Oxygen-scavenging compositions and articles
JPH08238081A (ja) 1995-03-03 1996-09-17 Toppan Printing Co Ltd 鮮度保持剤
ES2143008T3 (es) 1995-09-07 2000-05-01 Nanopowders Ind Israel Limited Procedimiento para la produccion de polvo metalico ultrafino de elevada pureza por lixiviacion.
JP3449104B2 (ja) 1996-03-22 2003-09-22 ソニー株式会社 脱酸素剤及びその製造方法
CN1123381C (zh) 2001-06-26 2003-10-08 广州番禺凯德食品科技有限责任公司 一种化学吸氧剂及其制备方法
US7687124B2 (en) * 2001-07-26 2010-03-30 M&G Usa Corporation Oxygen-scavenging containers having low haze
EP1592735A1 (en) 2003-01-31 2005-11-09 M & G Polimeri Italia S.P.A. Oxygen-scavenging articles devoid of visual spots upon oxidation and a method of their preparation
US7622153B2 (en) * 2004-08-13 2009-11-24 M&G Usa Corporation Method of making vapour deposited oxygen-scavenging particles
JP2007038523A (ja) 2005-08-03 2007-02-15 Mitsubishi Gas Chem Co Inc 酸素吸収性ラミネートフィルム
EP1974808A4 (en) * 2005-12-15 2009-07-22 Mitsui Mining & Smelting Co OXYGEN DEACTIVATOR AND PROCESS FOR THE PRODUCTION OF AN OXYGEN DEACTIVATOR
WO2007109824A1 (en) 2006-03-24 2007-10-04 Ian Simon Tracton Stable packaged dosage form and process therefor
JP2008055320A (ja) 2006-08-31 2008-03-13 Asahi Kasei Chemicals Corp 酸素吸収剤
US8110261B2 (en) * 2007-03-29 2012-02-07 Multisorb Technologies, Inc. Oxygen absorbing plastic structure
RU2516268C2 (ru) * 2007-12-21 2014-05-20 Басф Се Смеси, акцептирующие кислород
US8101005B2 (en) 2007-12-21 2012-01-24 Cima Nanotech Israel Ltd. Process of making metal nanoparticles
JP5133094B2 (ja) 2008-03-06 2013-01-30 株式会社クラレ 酸素吸収性樹脂組成物
JP5133096B2 (ja) 2008-03-10 2013-01-30 株式会社クラレ 酸素吸収性樹脂組成物
EP2749604B1 (en) 2011-11-15 2016-10-05 Mitsubishi Gas Chemical Company, Inc. Oxygen-absorbing resin composition, oxygen-absorbing multilayer laminate, and oxygen-absorbing hollow container

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS621824A (ja) 1985-06-27 1987-01-07 Kawasaki Steel Corp 冷間塊成鉱の製造方法
JPS62277148A (ja) 1986-05-23 1987-12-02 Toray Ind Inc 脱酸素剤
JPH0523597A (ja) 1991-07-23 1993-02-02 Nikko Rika Kk 触媒用球状ラネ−合金の製造方法
JP3496427B2 (ja) 1996-02-03 2004-02-09 三菱瓦斯化学株式会社 脱酸素樹脂組成物及びこれを用いた包装材、多層包装材、包装体、又は包装方法
JPH11240095A (ja) * 1998-02-24 1999-09-07 Mitsubishi Gas Chem Co Inc 脱酸素性多層フィルム
JP4501044B2 (ja) 1999-03-31 2010-07-14 東洋紡績株式会社 ガスバリヤー性に優れた成形体
JP2002320662A (ja) 2001-03-16 2002-11-05 Pfizer Prod Inc 酸素感受性薬物用医薬キット
JP2004201640A (ja) * 2002-12-26 2004-07-22 Japan Science & Technology Agency 品質保持剤
JP4248986B2 (ja) 2003-10-01 2009-04-02 凸版印刷株式会社 酸素吸収性積層体、これを用いた包装体およびこれを用いた内容物の充填方法
JP4001614B2 (ja) 2005-12-15 2007-10-31 三井金属鉱業株式会社 脱酸素剤及びその製造方法
WO2010147097A1 (ja) 2009-06-15 2010-12-23 三菱瓦斯化学株式会社 酸素吸収樹脂組成物
WO2012105457A1 (ja) * 2011-01-31 2012-08-09 三菱瓦斯化学株式会社 酸素吸収剤およびその保存方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2749604A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015007148A (ja) * 2013-06-24 2015-01-15 三菱瓦斯化学株式会社 酸素吸収性樹脂組成物
CN105658320A (zh) * 2013-10-22 2016-06-08 三菱瓦斯化学株式会社 吸氧剂的保存方法
JP2016202290A (ja) * 2015-04-16 2016-12-08 三菱瓦斯化学株式会社 貼付剤包装体、及び貼付剤の保存方法
JP2017148117A (ja) * 2016-02-22 2017-08-31 三菱瓦斯化学株式会社 医薬品類の保存方法
WO2017169036A1 (ja) 2016-03-30 2017-10-05 三菱瓦斯化学株式会社 酸素吸収剤組成物、酸素吸収性多層体、酸素吸収性包装容器、及び物品の保存方法
JP2017214143A (ja) * 2016-05-31 2017-12-07 共同印刷株式会社 ブリスターパック用積層体、及びそれを用いたブリスターパック
JP2019025681A (ja) * 2017-07-26 2019-02-21 東洋製罐グループホールディングス株式会社 耐変色性に優れた樹脂成形体
JP7115827B2 (ja) 2017-07-26 2022-08-09 東洋製罐グループホールディングス株式会社 耐変色性に優れた樹脂成形体
JP6439084B1 (ja) * 2018-02-22 2018-12-19 協和機電工業株式会社 吸着体、および吸着体の製造方法

Also Published As

Publication number Publication date
KR20130099176A (ko) 2013-09-05
US9199778B2 (en) 2015-12-01
TW201336911A (zh) 2013-09-16
US20140291178A1 (en) 2014-10-02
EP2749604A1 (en) 2014-07-02
CN103384703A (zh) 2013-11-06
EP2749604B1 (en) 2016-10-05
TWI471373B (zh) 2015-02-01
KR101373356B1 (ko) 2014-03-25
JPWO2013073590A1 (ja) 2015-04-02
EP2749604A4 (en) 2015-05-27
CN103384703B (zh) 2015-04-01
JP5288079B1 (ja) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5288079B1 (ja) 酸素吸収性樹脂組成物、酸素吸収多層体、および酸素吸収中空容器
US5820956A (en) Multi-layer structural body
JP6198182B1 (ja) 多層体、包装容器、及び食品の保存方法
WO2017169036A1 (ja) 酸素吸収剤組成物、酸素吸収性多層体、酸素吸収性包装容器、及び物品の保存方法
EP0818505B1 (en) Oxygen absorbing resin deoxidizing multi-layer structure using resin, and packaging container
JP4441195B2 (ja) 脱酸素性蓋材及び脱酸素性密封容器
JP2015007148A (ja) 酸素吸収性樹脂組成物
JP2011126270A (ja) 酸素吸収多層体
JP2003088344A (ja) 酸素吸収及び炭酸ガス吸収多層体
JP2010013638A (ja) 酸素吸収樹脂組成物
JP6194635B2 (ja) 酸素吸収中空容器
JPH11240095A (ja) 脱酸素性多層フィルム
JP2008126441A (ja) 酸素吸収多層フィルム及び包装容器
JPH0872941A (ja) 脱酸素性多層構造体及びこれよりなる包装体
JP5574174B2 (ja) 樹脂組成物、シーラントフィルム、積層フィルム、包装袋及びチューブ容器
JP2002238521A (ja) 食品の保存方法
JP5601118B2 (ja) 酸素吸収多層体および容器
JP2002052655A (ja) 酸素吸収性多層体及びこれを用いた低水分含有物品の保存方法
JP2000273328A (ja) 酸素吸収性樹脂組成物及び脱酸素性多層体
JP4186035B2 (ja) 脱酸素性密封容器
JP2011136552A (ja) 酸素吸収多層体
JP2001139067A (ja) 脱酸素性多層ペレット
JP4492762B2 (ja) 酸素吸収性多層フィルム及び包装容器
JP2002249174A (ja) 脱酸素性成形容器及びそれを利用した脱酸素性密閉容器
JP4492763B2 (ja) 酸素吸収性多層フィルム及び包装容器

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013503685

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137015736

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12850570

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012850570

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14236452

Country of ref document: US

Ref document number: 2012850570

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE