WO2013069932A1 - 영상의 부호화 방법 및 장치, 및 복호화 방법 및 장치 - Google Patents

영상의 부호화 방법 및 장치, 및 복호화 방법 및 장치 Download PDF

Info

Publication number
WO2013069932A1
WO2013069932A1 PCT/KR2012/009180 KR2012009180W WO2013069932A1 WO 2013069932 A1 WO2013069932 A1 WO 2013069932A1 KR 2012009180 W KR2012009180 W KR 2012009180W WO 2013069932 A1 WO2013069932 A1 WO 2013069932A1
Authority
WO
WIPO (PCT)
Prior art keywords
prediction unit
interpolation
divided
length
split
Prior art date
Application number
PCT/KR2012/009180
Other languages
English (en)
French (fr)
Inventor
이배근
권재철
Original Assignee
주식회사 케이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2014005606A priority Critical patent/MX2014005606A/es
Priority to MX2016014328A priority patent/MX359052B/es
Application filed by 주식회사 케이티 filed Critical 주식회사 케이티
Priority to MX2016014332A priority patent/MX367994B/es
Priority to GB1408808.2A priority patent/GB2510759B/en
Priority to MX2016007503A priority patent/MX349891B/es
Priority to CA2855027A priority patent/CA2855027C/en
Priority to BR112014012594A priority patent/BR112014012594A8/pt
Priority to RU2014119544A priority patent/RU2610296C2/ru
Priority to AU2012336598A priority patent/AU2012336598A1/en
Priority to CN201280066253.8A priority patent/CN104067613B/zh
Priority to MX2016014331A priority patent/MX364027B/es
Priority to US14/357,056 priority patent/US9432683B2/en
Priority to PL409213A priority patent/PL231918B1/pl
Publication of WO2013069932A1 publication Critical patent/WO2013069932A1/ko
Priority to US14/605,999 priority patent/US9432684B2/en
Priority to AU2016201932A priority patent/AU2016201932B2/en
Priority to US15/218,403 priority patent/US9497477B1/en
Priority to US15/292,424 priority patent/US9554140B1/en
Priority to US15/292,478 priority patent/US9578338B1/en
Priority to AU2016253621A priority patent/AU2016253621B2/en
Priority to AU2016253619A priority patent/AU2016253619B2/en
Priority to AU2016253620A priority patent/AU2016253620B2/en
Priority to US15/393,826 priority patent/US9729893B2/en
Priority to AU2018202366A priority patent/AU2018202366B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/117Filters, e.g. for pre-processing or post-processing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/119Adaptive subdivision aspects, e.g. subdivision of a picture into rectangular or non-rectangular coding blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/124Quantisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/174Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a slice, e.g. a line of blocks or a group of blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • H04N19/198Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters including smoothing of a sequence of encoding parameters, e.g. by averaging, by choice of the maximum, minimum or median value
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • H04N19/45Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder performing compensation of the inverse transform mismatch, e.g. Inverse Discrete Cosine Transform [IDCT] mismatch
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/80Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation
    • H04N19/82Details of filtering operations specially adapted for video compression, e.g. for pixel interpolation involving filtering within a prediction loop
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/129Scanning of coding units, e.g. zig-zag scan of transform coefficients or flexible macroblock ordering [FMO]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/167Position within a video image, e.g. region of interest [ROI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/172Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a picture, frame or field
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/40Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using video transcoding, i.e. partial or full decoding of a coded input stream followed by re-encoding of the decoded output stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/436Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation using parallelised computational arrangements

Definitions

  • the present invention relates to image processing, and more particularly, to an inter prediction method and apparatus.
  • HD images high definition (HD) images and ultra high definition (UHD) images
  • UHD images ultra high definition images
  • the data amount of the image data is increased. Accordingly, the transmission cost and the storage cost of the image data for providing a high resolution and high quality image are increased as compared with the conventional image data processing method.
  • High efficiency image compression techniques can be used to solve these problems caused by high resolution and high quality image data.
  • An entropy encoding / decoding method that performs encoding / decoding by assigning a shorter code to a signal having a higher frequency of occurrence or occurrence has been used.
  • An object of the present invention is to provide a video encoding method and apparatus that can improve the video encoding performance.
  • Another object of the present invention is to provide an image decoding method and apparatus capable of improving image decoding performance.
  • Still another object of the present invention is to provide an inter encoding method and apparatus capable of improving image encoding performance.
  • a method of decoding an image by entropy decoding a received bit stream to inversely quantize and inversely transform a residual value to restore the residual value Generating an final prediction unit by performing inter prediction on at least two divided prediction units by applying an asymmetric partition division scheme, wherein the divided prediction unit includes a first divided prediction unit and a second divided prediction unit ; And reconstructing the image by adding the residual value to the final prediction unit, wherein generating the final prediction unit comprises: so that pixels belonging to the second division prediction unit are not included in the interpolation.
  • the method may include performing interpolation using a filter tap having a variable length according to a length in a horizontal or vertical direction.
  • the generating of the final prediction unit may include performing interpolation between the first split prediction unit and the second split prediction unit using filter taps having different lengths according to lengths in a horizontal or vertical direction. .
  • the final prediction unit generating step may include generating a horizontal filter tap that is shorter than the filter tap length in the vertical direction with respect to the first split prediction unit when the first split prediction unit is asymmetric in the horizontal direction and shortly divided in the horizontal direction. And performing horizontal interpolation.
  • the final prediction unit generating step may further include generating a vertical filter tap that is shorter than a filter tap length in a horizontal direction with respect to the first split prediction unit when the first split prediction unit is asymmetric in the vertical direction and short in the vertical direction. And performing vertical interpolation.
  • the final prediction unit generating step may have a length shorter in the horizontal direction than the second division prediction unit in which the first split prediction unit is asymmetric in the horizontal direction and short in the horizontal direction. And performing horizontal interpolation using the filter tab having.
  • the final prediction unit generating step may have a length shorter in the horizontal direction than the second division prediction unit having a long length in the vertical direction when the first split prediction unit is asymmetric in the vertical direction and short in the vertical direction. And performing vertical interpolation using the filter tab having.
  • a 64 ⁇ 64 prediction unit when the shape of the divided prediction unit is 2N ⁇ nU or 2N ⁇ nD ⁇ N is a natural number, and 2N ⁇ nU is asymmetrically divided in the vertical direction, the width is divided into smaller portions at the upper side.
  • Shape, and 2N ⁇ nD denotes a form in which the width is smallly divided downwardly, wherein the first split prediction unit is a 4-tap filter in the vertical direction, and the second split prediction unit is a 6-tap filter in the vertical direction.
  • the width is smallly divided to the left.
  • nR ⁇ 2N means a form having a smaller width to the right.
  • the first division prediction unit is a 4-tap filter in a horizontal direction
  • the second division prediction unit is a 6-tap filter in a horizontal direction.
  • the sum of the lengths of the filter taps in the asymmetrical direction of the first and second split prediction units may be longer than the filter tap length in the non-symmetrical direction.
  • the received bit stream may include information about a prediction mode corresponding to a target block to be decoded and a shape of a prediction unit corresponding to the decoding target block.
  • the received bit stream may further include information about a length of an interpolation filter tap of a prediction unit corresponding to the decoding target block.
  • the generating of the final prediction unit may include obtaining information on which direction the divided prediction unit is asymmetrically divided in the bit stream; Determining whether the split prediction unit has a longer length in an asymmetric direction based on the obtained split related information; Determining a length of the filter tap to be used for interpolation based on the determination result; And performing interpolation using the determined filter tap.
  • an apparatus for decoding an image comprising: a residual value restoring unit for entropy decoding a received bit stream to inversely quantize and inversely transform a residual value to restore a residual value; A final unit performing inter prediction on at least two divided prediction units by applying an asymmetric partition division scheme, wherein the divided prediction unit includes a first divided prediction unit and a second divided prediction unit to generate a final prediction unit Prediction unit generation unit; And an image reconstruction unit configured to reconstruct an image by adding the residual value to the final prediction unit, wherein the final prediction unit generation unit is configured such that the pixels belonging to the second division prediction unit are not included in the interpolation. Interpolation may be performed using a filter tap having a variable length depending on the length in the horizontal or vertical direction.
  • a method of encoding an image the prediction unit being partitioned by applying an asymmetric partitioning scheme to the input image to predictively encode the input image.
  • the interpolation may be performed by using a filter tap having a variable length according to a length in the horizontal or vertical direction of the first split prediction unit, so that they are not included in the interpolation.
  • the performing of the inter prediction may include performing interpolation between the first split prediction unit and the second split prediction unit using filter taps having different lengths according to lengths in a horizontal or vertical direction.
  • the performing the inter prediction may use a horizontal filter tap that is shorter than the filter tap length in the vertical direction with respect to the first split prediction unit when the first split prediction unit is asymmetric in the horizontal direction and short in the horizontal direction. And performing horizontal interpolation.
  • the inter prediction performing step may have a shorter length in the horizontal direction than the second split prediction unit in which the first split prediction unit is asymmetric in the horizontal direction and short in the horizontal direction. And performing horizontal interpolation using the filter tab.
  • the sum of the lengths of the filter taps in the asymmetrical direction of the first and second split prediction units may be longer than the filter tap length in the non-symmetrical direction.
  • the performing of inter prediction may include obtaining information on which direction the divided prediction unit is asymmetrically divided in; Determining whether the divided prediction unit is longer in an asymmetric direction based on the obtained information; Determining a length of the filter tap to be used for interpolation based on the determination result; And performing interpolation using the determined filter tap.
  • the bit stream generated through entropy encoding may include information about the length of the interpolation filter tap of the prediction unit corresponding to the target block to be encoded.
  • an apparatus for encoding an image the prediction unit being split by applying an asymmetric partitioning scheme to the input image to predict-encode the input image.
  • An inter prediction unit for performing inter prediction on the second prediction unit;
  • an entropy encoding unit for transforming and quantizing a residual value, which is a difference between the prediction unit generated by the inter prediction and the current prediction unit, to entropy-encode, wherein the inter prediction unit includes pixels belonging to the second split prediction unit.
  • the interpolation may be performed using a filter tap having a variable length according to a length in the horizontal or vertical direction of the first split prediction unit so as not to be included in the interpolation.
  • image encoding performance may be improved.
  • image decoding performance can be improved.
  • image encoding / decoding performance may be improved.
  • FIG. 1 is a block diagram showing a configuration according to an embodiment of a video encoder to which the present invention is applied;
  • FIG. 2 is a block diagram illustrating a configuration of a video decoder according to an embodiment of the present invention
  • FIG. 4 is a diagram schematically illustrating an embodiment of using an interpolation filter tap when asymmetric partition division is used in a vertical direction in an image encoding apparatus according to an embodiment of the present invention
  • FIG. 5 is a diagram schematically illustrating an embodiment of using an interpolation filter tap when asymmetric partition division is used in a horizontal direction in an image encoding apparatus according to an embodiment of the present invention
  • FIG. 6 is a flowchart schematically illustrating a process of performing inter prediction on an asymmetrically divided prediction unit in an image encoding apparatus according to an embodiment of the present invention
  • FIG. 7 illustrates an embodiment of using an interpolation filter tap suitable for a length of a divided prediction unit in a vertical or horizontal direction when asymmetric partition division is used in a vertical direction in an image encoding apparatus according to an embodiment of the present invention.
  • FIG. 8 illustrates an embodiment of using an interpolation filter tap suitable for a length of a divided prediction unit in a vertical or horizontal direction when asymmetric partition division is used in a horizontal direction in an image encoding apparatus according to an embodiment of the present invention.
  • FIG. 9 is a flowchart schematically illustrating a video encoding method according to an embodiment of the present invention.
  • FIG. 10 is a flowchart schematically illustrating an image decoding method according to an embodiment of the present invention.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • the video encoder includes a picture splitter 110, an inter predictor 120, an intra predictor 125, a transformer 130, a quantizer 135, an inverse quantizer 140, The inverse transform unit 145, the filter unit 150, the memory 155, the reordering unit 160, and the entropy encoding unit 165 may be included.
  • the picture dividing unit 110 may divide the input current picture into one or more coding units.
  • a coding unit is a unit in which encoding is performed in a video encoder, and is hierarchically divided with depth information based on a quad tree structure. Can be.
  • the CU may have various sizes such as 8 ⁇ 8, 16 ⁇ 16, 32 ⁇ 32, and 64 ⁇ 64.
  • the largest size CU may be called LCU (Largest Coding Unit), and the smallest size CU may be called SCU (Smallest Coding Unit).
  • the picture dividing unit 110 may divide a CU to generate a prediction unit (PU) or a transform unit (TU).
  • the PU may be a block smaller than or equal to the CU, not necessarily square, or may be a rectangular block.
  • intra prediction may be performed in blocks of 2N * 2N or N * N size.
  • N is a natural number and represents the number of pixels
  • 2N * 2N and N * N may represent the size (and / or division mode) of the PU.
  • SDIP short distance intra prediction
  • hN * 2N / 2N * hN may be used as a prediction unit size in addition to the 2N * 2N prediction unit to increase the efficiency of intra prediction.
  • h 1/2).
  • the prediction unit of the size of hN * 2N / 2N * hN When the prediction unit of the size of hN * 2N / 2N * hN is used, the directionality of the boundary surface in the block can be better reflected, and as a result, the energy of the prediction error signal is reduced, thereby reducing the amount of bits required for encoding, thereby encoding efficiency. This can increase.
  • inter prediction may be performed in units of 2N * 2N, 2N * N, N * 2N, or N * N blocks.
  • N is a natural number and represents the number of pixels
  • 2N * 2N, 2N * N, N * 2N, and N * N may represent the size (and / or division mode) of the PU.
  • prediction may be performed in units of prediction units of 2NxnU, 2NxnD, nLx2N, or nRx2N in addition to 2N * 2N, 2N * N, N * 2N, or N * N prediction units.
  • 2NxnU, 2NxnD, nLx2N, and nRx2N may indicate the size (and / or split mode) of the PU.
  • the size of the PU In split mode of 2NxnU and 2NxnD, the size of the PU may be 2Nx (1/2) N or 2Nx (3/2) N, and in split mode of nLx2N and nRx2N, the size of the PU may be (1/2) Nx2N or (3 / 2) Nx2N.
  • the inter prediction unit 120 may perform motion estimation (ME) and motion compensation (MC).
  • the inter prediction unit 120 may generate a prediction block based on at least one picture information of a previous picture or a subsequent picture of the current picture.
  • the inter prediction unit 120 may perform motion estimation based on the divided prediction target block and at least one reference block stored in the memory unit 155.
  • the inter prediction unit 120 may generate motion information including a motion vector (MV), a reference block index, and a prediction mode as a result of the motion estimation.
  • MV motion vector
  • reference block index a reference block index
  • prediction mode a prediction mode as a result of the motion estimation.
  • the inter predictor 120 may perform motion compensation using the motion information and the reference block.
  • the inter prediction unit 120 may generate and output a prediction block corresponding to the input block from the reference block.
  • the intra prediction unit 125 may generate a prediction block based on pixel information in the current picture.
  • the intra predictor 125 may perform prediction on the current block based on the prediction target block and the reconstructed block that is previously transformed and quantized and then reconstructed.
  • the reconstruction block may be a reconstructed image before passing through the filter unit 150.
  • prediction of the prediction target block may be performed and a prediction block may be generated.
  • the residual block may be generated by the difference between the prediction target block and the generated prediction block.
  • the transformer 130 may generate transform coefficients by performing transform on the residual block for each TU.
  • the TU may have a tree structure within the range of the maximum size and the minimum size. Whether a current block is divided into sub-blocks for each TU may be indicated through a flag.
  • the transform unit 130 may perform a transformation based on a discrete cosine transform (DCT) and / or a discrete sine transform (DST).
  • DCT discrete cosine transform
  • DST discrete sine transform
  • the quantizer 135 may quantize the values converted by the transformer 130.
  • the quantization coefficient may change depending on the block or the importance of the image.
  • the quantized transform coefficient values may be provided to the reordering unit 160 and the inverse quantization unit 140.
  • the reordering unit 160 may align the transform coefficients of the quantized 2D block type into the transform coefficients of the 1D vector form through a scan in order to increase the efficiency of entropy encoding. In this case, the reordering unit 160 may increase the entropy coding efficiency by changing the scanning order based on the probabilistic statistics.
  • the entropy encoder 165 may entropy encode the values obtained by the reordering unit 160. In the entropy encoding process, a smaller number of codewords may be allocated to a syntax element value having a high frequency, and a larger number of codewords may be allocated to a syntax element value having a low frequency of occurrence. Accordingly, the size of the bit string for the symbols to be encoded may be reduced, thereby improving image encoding compression performance.
  • coding methods such as exponential golomb, context-adaptive variable length coding (CAVLC), and / or context-adaptive binary arithmetic coding (CABAC) may be used.
  • CABAC context-adaptive binary arithmetic coding
  • the encoded information forms a compressed bit stream and may be transmitted or stored through a network abstraction layer (NAL).
  • NAL network abstraction layer
  • the inverse quantizer 140 may inverse quantize transform coefficients quantized by the quantizer 135, and the inverse transformer 145 may inverse transform the inverse quantized transform coefficients to generate a reconstructed residual block.
  • the reconstructed residual block may be combined with the predicted block generated by the inter predictor 120 or the intra predictor 125 to generate a reconstructed block.
  • the reconstruction block may be provided to the intra predictor 125 and the filter 150.
  • the filter unit 150 may apply a deblocking filter, a sample adaptive offset (SAO), and / or an adaptive loop filter (ALF) to the reconstructed residual block.
  • the deblocking filter may filter the reconstructed block to remove distortion between block boundaries occurring in the encoding and decoding process.
  • SAO is a loop filter process that restores the offset difference from the original image on a pixel-by-pixel basis for the residual block to which the deblocking filter is applied. Offsets applied through the SAO may include a band offset, an edge offset, and the like.
  • the band offset may divide the pixel into 32 bands according to intensity, and apply the offset by dividing the 32 bands into two band groups of 16 bands at the edge and 16 bands at the center.
  • the ALF may perform filtering to minimize an error between the predicted block and the last reconstructed block.
  • the ALF may perform filtering based on a value obtained by comparing a reconstructed block filtered through a deblocking filter with a current predicted block, and the filter coefficient information of the ALF is included in a slice header and transmitted from the encoder to the decoder. Can be.
  • the memory 155 may store a final reconstructed block that has passed through the filter unit 150, and the stored final reconstructed block may be provided to the inter predictor 120 that performs inter prediction.
  • the video decoder includes an entropy decoder 210, a reordering unit 215, an inverse quantizer 220, an inverse transform unit 225, an inter predictor 230, an intra predictor 235, and a filter.
  • the unit 240 and the memory 245 may be included.
  • the entropy decoder 210 may receive a compressed bit stream from the NAL.
  • the entropy decoder 210 may entropy decode the received bit stream, and entropy decode the prediction bit, motion vector information, and the like when the bit stream is included in the bit stream.
  • fewer bits of codewords may be allocated to syntax element values having a high frequency, and more bits of codewords may be allocated to syntax element values with a low frequency of occurrence. Therefore, the size of the bit string for the symbols to be encoded may be reduced, thereby improving image decoding performance.
  • the entropy decoded transform coefficient or residual signal may be provided to the reordering unit 215.
  • the reordering unit 215 may inverse scan the decoded transform coefficients or the residual signal to generate transform coefficients in the form of a 2D block.
  • the inverse quantization unit 220 may inverse quantize the rearranged transform coefficients.
  • the inverse transform unit 225 may inverse transform the inverse quantized transform coefficients to generate a residual block.
  • the residual block may be combined with the prediction block generated by the inter predictor 230 or the intra predictor 235 to generate a reconstructed block.
  • the reconstruction block may be provided to the intra predictor 235 and the filter 240. Since the operations of the inter predictor 230 and the intra predictor 235 are the same as or similar to the operations of the inter predictor 120 and the intra predictor 125 in the video encoder, they will be omitted here.
  • the filter unit 240 may apply a deblocking filter, SAO and / or ALF to the reconstruction block.
  • the deblocking filter may filter the reconstructed block to remove distortion between block boundaries occurring in the encoding and decoding process.
  • SAO is applied to the deblocking filtered reconstructed block on a pixel basis to reduce the difference from the original image.
  • the ALF may perform filtering on the reconstructed block on which the SAO process is performed in order to minimize an error between the prediction target block and the last reconstructed block.
  • the memory 245 may store a final reconstruction block obtained through the filter unit 240, and the stored final reconstruction block may be provided to the inter prediction unit 230 that performs inter prediction.
  • a block may mean a unit of image encoding and decoding. Accordingly, in the present specification, a block may mean a coding unit (CU), a prediction unit (PU), a transform unit (TU), or the like, in some cases.
  • the encoding / decoding object block may be used in the present specification to include both a transform / inverse transform object block when the transform / inverse transform is performed and a predictive block when prediction is performed.
  • FIG. 3 is a diagram schematically illustrating an embodiment of interpolation in inter prediction. As illustrated in FIG. 3, when the encoding apparatus (and / or the decoding apparatus) generates a signal of the prediction unit by using motion information for inter prediction, an 8 tap interpolation filter may be used.
  • interpolation may be performed in a horizontal direction or a vertical direction for each position to predict a pixel value (a pixel value includes luminance and color difference values).
  • a pixel value includes luminance and color difference values.
  • using an 8-tap interpolation filter means that if the prediction unit is any 4 ⁇ 4 block (representing the current block 310), it is horizontally horizontal to the 4 ⁇ 4 block, or vertical to the 4 ⁇ 4 block. This means that the pixel values of the current block 310 are predicted by appropriately interpolating eight pixel values.
  • the drawing illustrates only the case where an 8 tap filter is used, it is not necessarily limited to an 8 tap filter.
  • 8 tap interpolation may be used in the vertical direction.
  • the pixel value for the leftmost pixel of each 4x4 block is known
  • the pixel value of the pixel a 0,0 immediately adjacent to the right of the leftmost top is three 4x4 blocks to the left. It is possible to predict by interpolating the pixel value of the left top pixel of the pixel and the pixel value of the left top pixel of the four 4x4 blocks to the right. This is expressed as an equation.
  • shift1 BitDepthY (bit depth of Y component)-8.
  • Equation 2 the remaining three top pixels and three left pixels except the top left pixel of the current block 310 are based on the pixel values of the left top left pixels of adjacent 4x4 blocks in a vertical or horizontal direction.
  • the remaining pixels can be predicted by performing vertical or horizontal interpolation based on pixel values of the top pixels of seven 4x4 blocks adjacent to each other in the vertical or horizontal direction.
  • the method of Equation 1 or 2 may calculate a pixel value of a prediction unit to be predicted at present, and generate a prediction signal related to the prediction unit.
  • FIG. 4 illustrates an embodiment using an interpolation filter tap when an asymmetric partition partition (AMP) is used in a vertical direction in an image encoding apparatus according to an embodiment of the present invention.
  • Figure is a schematic diagram.
  • the prediction unit when the prediction unit is asymmetric partitioned and uses a long filter tap such as 8 taps with a shorter length in the asymmetric partitioning, pixels belonging to other partitions must also be interpolated. If the partitions are different, the correlation is weakened, which increases the probability of lowering the efficiency of interpolation. That is, since the correlation between the blocks 412 and 414 is weak, the efficiency is lowered when the interpolation is performed together. The same applies to blocks 422 and 424.
  • the prediction unit is asymmetric partitioned, and when performing interpolation in an asymmetrical direction with respect to a short prediction unit by asymmetric partitioning, a smaller filter tap may be used.
  • interpolation for short prediction units by asymmetric partitioning may be performed using filter taps less than 8 taps.
  • the shape of the prediction unit in the inter mode may be 2N * 2N, 2N * N, N * 2N, N * N, 2NxnU, 2NxnD, nLx2N or nRx2N.
  • Interpolation may be performed using an 8 tap filter on symmetric partitioned prediction units such as 2N * 2N, 2N * N, N * 2N, and N * N.
  • the 2N ⁇ nU block 410 when the shape of the prediction unit is a 2N ⁇ nU block 410, the 2N ⁇ nU block 410 is asymmetrically partitioned in the vertical direction, and the length of the upper block 412 is It means a short divided block.
  • the block 410 may include an upper block 412 and a lower block 414, and the vertical lengths of the upper block 412 and the lower block 414 may be 16 to 48.
  • the shape of the prediction unit when the shape of the prediction unit is a 2N ⁇ nD block 420, the 2N ⁇ nD block 420 is asymmetrically partitioned in the vertical direction, and the length of the lower block 424. Denotes a shortly divided block.
  • the block 420 may include an upper block 422 and a lower block 424, and the vertical lengths of the upper block 422 and the lower block 424 may be 48 to 16.
  • the upper block 412 of the 2N ⁇ nU block 410 and the lower block 424 of the 2N ⁇ nD block 420 use tabs smaller than the horizontal direction in the vertical direction. Can be interpolated. For example, when an 8 tap filter is used as the horizontal tap, a number smaller than 8 taps can be used in the vertical direction.
  • FIG. 5 is a diagram schematically illustrating an embodiment of using an interpolation filter tap when asymmetric partition division is used in a horizontal direction in an image encoding apparatus according to an embodiment of the present invention.
  • the nL ⁇ 2N block 510 when the shape of the prediction unit is nL ⁇ 2N block 510, the nL ⁇ 2N block 510 is asymmetrically partitioned in the horizontal direction, and the length of the left block 512 is short. It means a divided block.
  • the block 510 may include an upper block 512 and a lower block 514, and the vertical length of the left block 512 and the right block 514 is constant at 64, but the horizontal length is 16 to 48.
  • Can be. 5 when the shape of the prediction unit is nR ⁇ 2N block 520, the nR ⁇ 2N block 520 is asymmetrically partitioned in the horizontal direction, and the length of the right block 524 is shown. Denotes a shortly divided block.
  • the block 520 may include a left block 522 and a right block 524, and horizontal lengths of the left block 522 and the right block 524 may be 48 to 16.
  • the left block 512 of the nL ⁇ 2N block 510 and the right block 524 of the nR ⁇ 2N block 520 use tabs smaller than the vertical direction in the horizontal direction. Can be interpolated. That is, it is possible to use a filter tap having a length smaller than 8 taps in the horizontal direction.
  • 4 and 5 illustrate an embodiment of a 64 ⁇ 64 block size, but may also be applied to blocks having a size or shape other than the 64 ⁇ 64 block size.
  • the inter prediction process may include obtaining segmentation related information (S610), determining a length in an asymmetric direction (S620), and determining a length of a filter tap (S630). And an interpolation step (S640).
  • S610 segmentation related information
  • S620 determining a length in an asymmetric direction
  • S630 determining a length of a filter tap
  • S640 interpolation step
  • the segmentation related information may be included in the motion information for the current prediction unit through motion prediction.
  • the motion information may include a motion vector, a reference picture index, a prediction direction index, a prediction mode, and shape related information of the prediction unit for the prediction unit.
  • the decoder may decode the received object from the received bit stream. Length related information of the interpolation filter tap of the prediction unit corresponding to the block may be obtained. In this case, the length determination step S620 and the filter tap length determination step S630 may be omitted. If the filter tap length related information is not included in the bit stream, the filter tap length may be determined through the length determination step (S620) and the filter tap length determination step (S630) by obtaining the shape related information of the prediction unit.
  • the encoding apparatus (and / or the decoding apparatus) may determine that the prediction unit corresponding to the target block to be encoded (and / or decoded) is based on the obtained segmentation related information.
  • the length in either the vertical or horizontal direction) is determined. That is, for a block asymmetrically partitioned in the horizontal direction, it is determined whether the block is a relatively long block or a short block.
  • step S630 of determining the length of the filter tap the length of the filter tap which has performed interpolation of the prediction unit corresponding to the target block to be encoded (or decoded) is determined based on the length-related determination result.
  • the length of the filter tap is determined based on the partition length in the asymmetrical direction, as described above. For example, an asymmetric partitioned block having a short length in the vertical direction has a filter tap length shorter than the horizontal direction, and an asymmetric partitioned block having a short length in the horizontal direction has a filter tap length shorter than the vertical direction. The length can be determined.
  • the encoding apparatus (and / or the decoding apparatus) performs interpolation based on the filter tap length determined in operation S630 of determining the length of the filter tap.
  • a bit stream may be generated including filter tap length related information.
  • FIG. 7 illustrates an embodiment of using an interpolation filter tap suitable for a length of a divided prediction unit in a vertical or horizontal direction when asymmetric partition division is used in a vertical direction in an image encoding apparatus according to an embodiment of the present invention. It is a figure which shows an example schematically.
  • interpolation may be performed for a wider partition in each asymmetric partition type by having a filter tap length longer than the number of taps in a smaller partition.
  • the sum of the lengths of the filter taps in the asymmetrical direction of the at least two partitioned blocks may be greater than the length of the filter taps in the non-symmetrical direction.
  • the 2N ⁇ nU block is asymmetrically partitioned in the vertical direction, and a block having a short length of the upper block 710.
  • the upper block 710 of the 2N ⁇ nU block may have a shorter length in the vertical direction than the lower block 720 and have a length of 16 to 48.
  • the wider lower block 720 may have a longer filter tap than the narrower upper block 710.
  • the sum of the lengths of the filter taps with respect to the vertical direction in the asymmetrical direction that is, the sum of the lengths of the vertical filter taps in the upper block 710 and the length of the vertical filter taps in the lower block 720 is the upper and lower blocks.
  • Horizontal filter taps 710 and 720 may be larger than the length.
  • the upper block 710 may perform interpolation using a four tap filter in the vertical direction
  • the lower block 720 may perform interpolation using a six tap filter in the vertical direction. That is, the sum of the filter tap lengths of the 4 tap filter and the 6 tap filter may be 10, which may be greater than 8, which is the length of the horizontal filter tap.
  • the same method may be applied to the 2N ⁇ nD block.
  • the upper block 710 may perform interpolation using a 6-tap filter in the vertical direction, and the lower block.
  • interpolation may be performed using a 4-tap filter in the vertical direction.
  • FIG. 8 illustrates an embodiment using an interpolation filter tap suitable for a length of a divided prediction unit in a vertical or horizontal direction when asymmetric partition division is used in a horizontal direction in an image encoding apparatus according to an embodiment of the present invention. It is a figure which shows an example schematically.
  • the nL ⁇ 2N block is asymmetrically partitioned in the horizontal direction, and the block of which the length of the left block 810 is shortly divided.
  • the left block 810 of the nL ⁇ 2N block may have a length shorter in the horizontal direction than the right block 820 and may have a length of 16 to 48.
  • the wider right block 820 may have a longer filter tap than the narrower upper block 810.
  • the sum of the lengths of the filter taps with respect to the horizontal direction in the asymmetrical direction that is, the sum of the lengths of the horizontal filter taps in the left block 810 and the lengths of the horizontal filter taps in the right block 820 are left and right blocks.
  • the vertical filter taps 810 and 820 may be larger than the length.
  • interpolation may be performed using a 4-tap filter in a horizontal direction
  • interpolation may be performed using a 6-tap filter in a horizontal direction
  • interpolation may be performed using a 6-tap filter in the horizontal direction, and the right block may be performed.
  • interpolation may be performed using a 4-tap filter in the vertical direction.
  • Table 1 shows the number of vertical and horizontal interpolation filter taps of each asymmetric block.
  • FIG. 9 is a flowchart schematically illustrating an image encoding method according to an embodiment of the present invention.
  • the encoder may calculate a motion prediction value of the current inter prediction unit (S910).
  • the motion information of the current prediction unit is not sent as it is, but the difference with the prediction value obtained from the space-time adjacent blocks to increase the compression efficiency.
  • the encoder may generate a merge candidate list and an adaptive motion vector prediction (AMVP) candidate list for the current inter prediction unit to obtain a motion prediction value.
  • AMVP adaptive motion vector prediction
  • the encoder generates a prediction unit using the motion information (S920).
  • interpolation may be performed using a small tap length in a direction in which the length of the partition is short. Since a specific embodiment of the interpolation method for the asymmetrically partitioned prediction unit has been described above, it will be omitted here.
  • the encoder encodes motion information of the current block (S930).
  • the current prediction unit In the case of the merge mode, if there are candidates having the same motion information as the current prediction unit among the merge candidates, the current prediction unit is declared as the merge mode, and a flag indicating that the merge mode is used and which candidate of the merge candidates are used.
  • Send merge index In the AMVP mode, a candidate for which a cost function is minimized is determined by comparing with motion vector information of a prediction unit to be currently encoded among AMVP candidates, and after motion compensation using a difference value between the determined candidate motion information and the AMVP candidate. , Acquire the residual signal.
  • the encoder may generate a residual block corresponding to the current block (S940).
  • the encoder may generate a prediction block corresponding to the current block by performing inter prediction and / or intra prediction on the current block.
  • the encoder may generate a residual signal, that is, a residual block by dividing the pixel value of the current block and the pixel value of the prediction block in units of pixels.
  • the encoder may perform transform on the residual signal, that is, the residual block (S950).
  • the encoder can transform code the residual signal by applying a transform kernel, and the size of the transform code kernel can be 2 * 2, 4 * 4, 8 * 8, 16 * 16, 32 * 32, or 64 * 64. have.
  • the transform coefficient C for the n * n block may be calculated as follows.
  • C (n, n) is a matrix of n * n transform coefficients
  • T (n, n) is an n * n transform kernel matrix
  • B (n, n) is n * n magnitude Matrix for the residual block.
  • the encoder may perform quantization on the generated transform coefficients.
  • the encoder can compare the cost function before and after the transform encoding, and can select a method of minimizing the cost. In this case, the encoder may transmit information on the type (residual signal or transform coefficient) of a signal transmitted for the current block to the decoding apparatus.
  • the encoder may perform scanning on transform coefficients (S960).
  • the encoder may perform entropy encoding on the scanned transform coefficients and the auxiliary information (eg, inter prediction mode information of the current block) (S1970).
  • the encoded information forms a compressed bit stream and may be transmitted or stored through a network abstraction layer (NAL).
  • NAL network abstraction layer
  • the encoding method is described based on a flowchart as a series of steps, but the present invention is not limited thereto. Some steps in the embodiment of FIG. 9 may occur in a different order or in parallel with other steps than described above. In addition, other steps may be included in the steps shown in the flowchart, and one or more steps in the flowchart of FIG. 9 may be deleted without affecting the scope of the present invention.
  • FIG. 10 is a flowchart schematically illustrating an image decoding method according to an embodiment of the present invention.
  • the decoder may perform entropy decoding on the bitstream received from the encoder (S1010).
  • the decoder may derive the prediction mode and the residual signal of the current block based on a variable length coding (VLC) table and / or CABAC.
  • VLC variable length coding
  • CABAC CABAC
  • the decoder can obtain information on whether the received signal for the current block is a residual signal or a transform coefficient, and obtain a transform signal in the form of a residual signal or a one-dimensional vector for the current block. If the received bitstream includes side information necessary for decoding, they may be entropy decoded together.
  • the decoder may generate a 2D block by performing inverse scanning on the entropy decoded residual signal or transform coefficients (S1020).
  • a residual block may be generated in the case of the residual signal
  • a transform coefficient in the form of a 2D block may be generated in the case of the transform coefficient.
  • the decoder may perform inverse quantization on the generated transform coefficients (S1030).
  • the decoder may generate a residual block by performing inverse transform on the inverse quantized transform coefficients (S1040).
  • the inverse transformation process can be represented by the following equation (4).
  • the decoder may perform inter prediction based on the generated residual block (S1050). Motion information is obtained by performing inter prediction through one of a merge mode and an AMVP mode.
  • the decoder may generate the prediction unit using the obtained motion information.
  • interpolation may be performed using a small tap length in a direction in which the length of the partition is short. Since a specific embodiment of the interpolation method for the asymmetrically partitioned prediction unit has been described above, it will be omitted here.
  • the decoder may generate a reconstruction block by adding a residual block and a signal of a previous frame.
  • the decoder may generate a prediction block corresponding to the decoding object block by performing inter prediction and / or intra prediction on the decoding object block.
  • the decoder may generate a reconstruction block by adding the pixel value of the prediction block and the pixel value of the residual block in units of pixels.
  • the decoding method is described based on a flowchart as a series of steps, but the present invention is not limited thereto. Some steps in the embodiment of FIG. 10 may occur in a different order or in parallel with other steps than described above. In addition, other steps may be included in the steps shown in the flowchart, and one or more steps in the flowchart of FIG. 10 may be deleted without affecting the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

본 발명은 영상의 부호화 방법 및 장치, 및 복호화 방법 및 장치를 개시하고 있다. 영상 복호화 방법은 수신된 비트 스트림을 엔트로피 복호화하여 잔여값을 역양자화 및 역변환하여 잔여값을 복원하는 단계; 비대칭 파티션 분할 방식을 적용하여 적어도 2개로 분할된 예측 유닛 - 상기 분할된 예측 유닛은 제 1 분할 예측 유닛 및 제 2 분할 예측 유닛을 포함함 - 에 대해 인터 예측을 수행하여 최종 예측 유닛을 생성하는 단계; 및 상기 최종 예측 유닛에 상기 잔여값을 더하여 영상을 복원하는 단계를 포함하되, 상기 최종 예측 유닛 생성 단계는 상기 제 2 분할 예측 유닛에 속하는 픽셀들이 인터폴레이션에 포함되지 않도록, 상기 제 1 분할 예측 유닛의 수평 또는 수직 방향으로의 길이에 따라 가변적인 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함할 수 있다.

Description

영상의 부호화 방법 및 장치, 및 복호화 방법 및 장치
본 발명은 영상 처리에 관한 것으로서, 보다 상세하게는 인터 예측 방법 및 장치에 관한 것이다.
최근 다양한 분야에서 HD(High Definition) 영상 및 UHD(Ultra High Definition) 영상과 같은 고해상도, 고품질의 영상에 대한 수요가 증가하고 있다.
고해상도, 고품질의 영상을 제공하기 위해서는 영상 데이터의 데이터량이 증가한다. 따라서, 기존의 영상 데이터 처리 방식과 비교할 때 고해상도, 고품질의 영상을 제공하기 위한 영상 데이터의 전송 비용과 저장 비용은 증가하게 된다. 영상 데이터가 고해상도, 고품질화 됨에 따라 발생하는 이러한 문제들을 해결하기 위해서는 고효율의 영상 압축 기술들이 활용될 수 있다.
영상 데이터를 압축하는 기술로서 현재 픽쳐에 포함된 픽셀 값을 다른 픽처로부터 예측하는 인터 예측(Inter Prediction) 방법, 현재 픽쳐 픽셀 값을 현재 픽쳐의 다른 픽셀의 정보를 이용해서 예측하는 인트라 예측(Intra Prediction) 방법, 발생 빈도 혹은 출현 빈도가 높은 신호일수록 짧은 부호를 할당해서 부호화/복호화를 수행하는 엔트로피 부호화/복호화 방법 등 다양한 기술이 이용되고 있다.
본 발명의 목적은 영상 부호화 성능을 향상시킬 수 있는 영상 부호화 방법 및 장치를 제공함에 있다.
본 발명의 다른 목적은 영상 복호화 성능을 향상시킬 수 있는 영상 복호화 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 목적은 영상 부호화 성능을 향상시킬 수 있는 인터 부호화 방법 및 장치를 제공함에 있다.
상기한 목적을 달성하기 위한 본 발명의 영상의 복호화 방법은 수신된 비트 스트림을 엔트로피 복호화하여 잔여값을 역양자화 및 역변환하여 잔여값을 복원하는 단계; 비대칭 파티션 분할 방식을 적용하여 적어도 2개로 분할된 예측 유닛 - 상기 분할된 예측 유닛은 제 1 분할 예측 유닛 및 제 2 분할 예측 유닛을 포함함 - 에 대해 인터 예측을 수행하여 최종 예측 유닛을 생성하는 단계; 및 상기 최종 예측 유닛에 상기 잔여값을 더하여 영상을 복원하는 단계를 포함하되, 상기 최종 예측 유닛 생성 단계는 상기 제 2 분할 예측 유닛에 속하는 픽셀들이 인터폴레이션에 포함되지 않도록, 상기 제 1 분할 예측 유닛의 수평 또는 수직 방향으로의 길이에 따라 가변적인 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기 최종 예측 유닛 생성 단계는 상기 제 1 분할 예측 유닛 및 상기 제 2 분할 예측 유닛은 수평 또는 수직 방향으로의 길이에 따라 서로 다른 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기 최종 예측 유닛 생성 단계는 상기 제 1 분할 예측 유닛이 수평 방향으로 비대칭이고 수평 방향으로 길이가 짧게 분할되었을 경우, 상기 제 1 분할 예측 유닛에 대해 수직 방향의 필터 탭 길이보다 짧은 수평 방향 필터 탭을 사용하여 수평 방향 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기 최종 예측 유닛 생성 단계는 상기 제 1 분할 예측 유닛이 수직 방향으로 비대칭이고 수직 방향으로 길이가 짧게 분할되었을 경우, 상기 제 1 분할 예측 유닛에 대해 수평 방향의 필터 탭 길이보다 짧은 수직 방향 필터 탭을 사용하여 수직 방향 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기 최종 예측 유닛 생성 단계는 상기 제 1 분할 예측 유닛이 수평 방향으로 비대칭이고 수평 방향으로 길이가 짧게 분할되었을 경우, 수평 방향으로 길이가 길게 분할된 상기 제 2 분할 예측 유닛보다 수평 방향으로 짧은 길이를 갖는 필터 탭을 사용하여 수평 방향 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기 최종 예측 유닛 생성 단계는 상기 제 1 분할 예측 유닛이 수직 방향으로 비대칭이고 수직 방향으로 길이가 짧게 분할되었을 경우, 수직 방향으로 길이가 길게 분할된 상기 제 2 분할 예측 유닛보다 수평 방향으로 짧은 길이를 갖는 필터 탭을 사용하여 수직 방향 인터폴레이션을 수행하는 단계를 포함할 수 있다.
64×64 크기의 예측 유닛에 대해, 상기 분할된 예측 유닛의 형태가 2N×nU 또는 2N×nD -N은 자연수이고, 2N×nU는 수직방향으로 비대칭 분할될 때, 상측으로 넓이가 작게 분할된 형태이고, 2N×nD는 하측으로 넓이가 작게 분할된 형태를 의미함 - 인 경우, 상기 제 1 분할 예측 유닛은 수직 방향으로 4 탭 필터를, 상기 제 2 분할 예측 유닛은 수직 방향으로 6 탭 필터를 사용하여 수직 방향 인터폴레이션이 수행되고, 상기 분할된 예측 유닛의 형태가 nL×2N 또는 nR×2N -N은 자연수이고, nL×2N는 수평방향으로 비대칭 분할될 때, 좌측으로 넓이가 작게 분할된 형태이고, nR×2N은 우측으로 넓이가 작게 분할된 형태를 의미함 - 인 경우, 상기 제 1 분할 예측 유닛은 수평 방향으로 4 탭 필터를, 상기 제 2 분할 예측 유닛은 수평 방향으로 6 탭 필터를 사용하여 수평 방향 인터폴레이션이 수행될 수 있다.
상기 제 1 및 제 2 분할 예측 유닛의 비대칭 방향에서의 필터 탭의 길이의 합이 상기 비대칭 방향이 아닌 방향에서의 필터 탭 길이보다 길 수 있다.
상기 수신된 비트 스트림은, 복호화하고자 하는 대상 블록에 대응되는 예측 모드 및 상기 복호화 대상 블록에 대응되는 예측 유닛의 형태에 관한 정보를 포함할 수 있다.
상기 수신된 비트 스트림은, 상기 복호화 대상 블록에 대응되는 예측 유닛의 인터폴레이션 필터 탭의 길이에 관한 정보를 더 포함할 수 있다.
상기 최종 예측 유닛 생성 단계는 상기 비트 스트림으로부터 상기 분할된 예측 유닛이 어느 방향으로 비대칭적으로 분할되었는지에 대한 정보를 획득하는 단계; 상기 획득된 분할 관련 정보를 기반으로 상기 분할된 예측 유닛이 비대칭인 방향에서 길이가 긴 쪽인지 판단하는 단계; 상기 판단 결과를 기반으로 인터폴레이션에 사용될 필터 탭의 길이를 결정하는 단계; 및 상기 결정된 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기한 목적을 달성하기 위한 본 발명의 영상의 복호화 장치는 수신된 비트 스트림을 엔트로피 복호화하여 잔여값을 역양자화 및 역변환하여 잔여값을 복원하는 잔여값 복원부; 비대칭 파티션 분할 방식을 적용하여 적어도 2개로 분할된 예측 유닛 - 상기 분할된 예측 유닛은 제 1 분할 예측 유닛 및 제 2 분할 예측 유닛을 포함함 - 에 대해 인터 예측을 수행하여 최종 예측 유닛을 생성하는 최종 예측 유닛 생성부; 및 상기 최종 예측 유닛에 상기 잔여값을 더하여 영상을 복원하는 영상 복원부를 포함하되, 상기 최종 예측 유닛 생성부는 상기 제 2 분할 예측 유닛에 속하는 픽셀들이 인터폴레이션에 포함되지 않도록, 상기 제 1 분할 예측 유닛의 수평 또는 수직 방향으로의 길이에 따라 가변적인 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행할 수 있다.
상기한 목적을 달성하기 위한 본 발명의 영상의 부호화 방법은 입력 영상을 예측 부호화하기 위해 상기 입력 영상을 비대칭 파티션 분할 방식을 적용하여 분할된 예측 유닛 - 상기 분할된 예측 유닛은 제 1 분할 예측 유닛 및 제 2 분할 예측 유닛을 포함함 - 에 인터 예측을 수행하는 단계; 및 상기 인터 예측에 의해 생성된 예측 유닛과 현재 예측 유닛 간의 차이인 잔여값(residue)을 변환 및 양자화하여 엔트로피 부호화하는 단계를 포함하되, 상기 인터 예측 수행 단계는 상기 제 2 분할 예측 유닛에 속하는 픽셀들이 인터폴레이션에 포함되지 않도록, 상기 제 1 분할 예측 유닛의 수평 또는 수직 방향으로의 길이에 따라 가변적인 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기 인터 예측 수행 단계는 상기 제 1 분할 예측 유닛 및 상기 제 2 분할 예측 유닛은 수평 또는 수직 방향으로의 길이에 따라 서로 다른 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기 인터 예측 수행 단계는 상기 제 1 분할 예측 유닛이 수평 방향으로 비대칭이고 수평 방향으로 길이가 짧게 분할되었을 경우, 상기 제 1 분할 예측 유닛에 대해 수직 방향의 필터 탭 길이보다 짧은 수평 방향 필터 탭을 사용하여 수평 방향 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기 인터 예측 수행 단계는 상기 제 1 분할 예측 유닛이 수평 방향으로 비대칭이고 수평 방향으로 길이가 짧게 분할되었을 경우, 수평 방향으로 길이가 길게 분할된 상기 제 2 분할 예측 유닛보다 수평 방향으로 짧은 길이를 갖는 필터 탭을 사용하여 수평 방향 인터폴레이션을 수행하는 단계를 포함할 수 있다.
상기 제 1 및 제 2 분할 예측 유닛의 비대칭 방향에서의 필터 탭의 길이의 합이 상기 비대칭 방향이 아닌 방향에서의 필터 탭 길이보다 길 수 있다.
상기 인터 예측 수행 단계는 상기 분할된 예측 유닛이 어느 방향으로 비대칭적으로 분할되었는지에 대한 정보를 획득하는 단계; 상기 획득된 정보를 기반으로 상기 분할된 예측 유닛이 비대칭인 방향에서 길이가 긴 쪽인지 판단하는 단계; 상기 판단 결과를 기반으로 인터폴레이션에 사용될 필터 탭의 길이를 결정하는 단계; 및 상기 결정된 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함할 수 있다.
엔트로피 부호화를 통해 생성된 비트 스트림은 부호화하고자 하는 대상 블록에 대응되는 예측 유닛의 인터폴레이션 필터 탭의 길이에 관한 정보를 포함할 수 있다.
상기한 목적을 달성하기 위한 본 발명의 영상의 부호화 장치는 입력 영상을 예측 부호화하기 위해 상기 입력 영상을 비대칭 파티션 분할 방식을 적용하여 분할된 예측 유닛 - 상기 분할된 예측 유닛은 제 1 분할 예측 유닛 및 제 2 분할 예측 유닛을 포함함 - 에 인터 예측을 수행하는 인터 예측부; 및 상기 인터 예측에 의해 생성된 예측 유닛과 현재 예측 유닛 간의 차이인 잔여값(residue)을 변환 및 양자화하여 엔트로피 부호화하는 엔트로피 부호화부를 포함하되, 상기 인터 예측부는 상기 제 2 분할 예측 유닛에 속하는 픽셀들이 인터폴레이션에 포함되지 않도록, 상기 제 1 분할 예측 유닛의 수평 또는 수직 방향으로의 길이에 따라 가변적인 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행할 수 있다.
본 발명에 따른 영상 부호화 방법 및 장치에 의하면, 영상 부호화 성능이 향상될 수 있다.
본 발명에 따른 영상 복호화 방법 및 장치에 의하면, 영상 복호화 성능이 향상될 수 있다.
본 발명에 따른 인터 예측 부호화 방법 및 장치에 의하면, 영상 부호화/복호화 성능이 향상될 수 있다.
도 1은 본 발명이 적용되는 비디오 부호화기의 일 실시예에 따른 구성을 나타내는 블록도,
도 2는 비디오 복호화기의 일 실시예에 따른 구성을 나타내는 블록도,
도 3은 인터(inter) 예측에서의 인터폴레이션의 실시예를 개략적으로 나타내는 도면,
도 4는 본 발명의 일 실시예에 따른 영상 부호화 장치에서의 수직 방향으로 비대칭적 파티션 분할이 사용된 경우, 인터폴레이션 필터 탭을 사용하는 일 실시예를 개략적으로 나타낸 도면,
도 5는 본 발명의 일 실시예에 따른 영상 부호화 장치에서의 수평 방향으로 비대칭적 파티션 분할이 사용된 경우, 인터폴레이션 필터 탭을 사용하는 일 실시예를 개략적으로 나타낸 도면,
도 6은 본 발명의 일 실시예에 따른 영상 부호화 장치에서 비대칭적으로 분할된 예측 유닛에 대해 인터 예측을 수행하는 과정을 개략적으로 나타낸 흐름도,
도 7은 본 발명의 일 실시예에 따른 영상 부호화 장치에서의 수직 방향으로 비대칭적 파티션 분할이 사용된 경우, 분할된 예측 유닛의 수직 또는 수평 방향으로의 길이에 적합한 인터폴레이션 필터 탭을 사용하는 일 실시예를 개략적으로 나타낸 도면,
도 8은 본 발명의 일 실시예에 따른 영상 부호화 장치에서의 수평 방향으로 비대칭적 파티션 분할이 사용된 경우, 분할된 예측 유닛의 수직 또는 수평 방향으로의 길이에 적합한 인터폴레이션 필터 탭을 사용하는 일 실시예를 개략적으로 나타낸 도면,
도 9는 본 발명의 실시예에 따른 영상 부호화 방법을 개략적으로 나타내는 흐름도,
도 10은 본 발명의 실시예에 따른 영상 복호화 방법을 개략적으로 나타내는 흐름도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세하게 설명하고자 한다.
그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제 1, 제 2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 본 발명을 설명함에 있어 전체적인 이해를 용이하게 하기 위하여 도면상의 동일한 구성요소에 대해서는 동일한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.
도 1은 본 발명이 적용되는 비디오 부호화기의 일 실시예에 따른 구성을 나타내는 블록도이다. 도 1을 참조하면, 상기 비디오 부호화기는 픽쳐 분할부(110), 인터 예측부(120), 인트라 예측부(125), 변환부(130), 양자화부(135), 역양자화부(140), 역변환부(145), 필터부(150), 메모리(155), 재정렬부(160) 및 엔트로피 부호화부(165)를 포함할 수 있다.
픽쳐 분할부(110)는 입력된 현재 픽쳐를 하나 이상의 부호화 단위로 분할할 수 있다. 부호화 유닛(Coding Unit: CU, 이하 'CU'라 함)은 비디오 부호화기에서 부호화가 수행되는 하나의 단위로서, 쿼드 트리 구조(Quad Tree Structure)를 기초로 깊이(depth) 정보를 가지고 계층적으로 분할될 수 있다. CU는 8×8, 16×16, 32×32, 64×64 등 다양한 크기를 가질 수 있다. 가장 큰 크기의 CU는 LCU(Largest Coding Unit)로 불릴 수 있으며, 가장 작은 크기의 CU는 SCU(Smallest Coding Unit)로 불릴 수 있다.
또한 픽쳐 분할부(110)는 CU를 분할하여 예측 유닛(Prediction Unit: PU, 이하 'PU'라 함)과 변환 유닛(Transdorm Unit: TU, 이하 'TU'라 함)을 생성할 수 있다. PU는 CU보다 작거나 같은 블록일 수 있고, 반드시 정방형일 필요는 없으며, 직사각형 형태의 블록일 수도 있다.
통상 인트라 예측은 2N*2N 또는 N*N 크기의 블록 단위로 수행될 수 있다. 여기서 N은 자연수로서 픽셀의 수를 나타내며, 2N*2N 및 N*N은 PU의 크기(및/또는 분할 모드)를 나타낼 수 있다. 그러나, SDIP(Short Distance Intra Prediction: 단거리 인트라 예측) 방법에서는, 인트라 예측의 효율을 높이기 위해 2N*2N의 예측 유닛 외에 이를 더 세분화한 예측 유닛 크기로서 hN*2N/2N*hN이 사용될 수 있다(여기서 h=1/2임). hN*2N/2N*hN의 크기의 예측 단위가 사용되는 경우, 블록 내의 경계면의 방향성이 보다 잘 반영될 수 있으며, 따라서 결과적으로 예측 오차 신호의 에너지가 감소되어 부호화에 필요한 비트량이 절감되어 부호화 효율이 증가할 수 있다.
또한, 인터 예측은 2N*2N, 2N*N, N*2N 또는 N*N 크기의 블록 단위로 수행될 수 있다. 여기서 N은 자연수로서 픽셀의 수를 나타내며, 2N*2N, 2N*N, N*2N 및 N*N은 PU의 크기(및/또는 분할 모드)를 나타낼 수 있다. 또한, 인터 예측에서는 인터 예측의 효율을 높이기 위해 2N*2N, 2N*N, N*2N 또는 N*N의 예측 유닛 외에 2NxnU, 2NxnD, nLx2N 또는 nRx2N의 예측 유닛 단위로 예측이 수행될 수도 있다. 여기서, 2NxnU, 2NxnD, nLx2N 및 nRx2N는 PU의 크기(및/또는 분할 모드)를 나타낼 수 있다. 2NxnU 및 2NxnD의 분할 모드에서는 PU의 크기가 2Nx(1/2)N 또는 2Nx(3/2)N일 수 있고, nLx2N 및 nRx2N의 분할 모드에서는 PU의 크기가 (1/2)Nx2N 또는 (3/2)Nx2N일 수 있다.
인터 예측(Inter Prediction) 모드에 있는 경우, 인터 예측부(120)는 움직임 추정(ME: Motion Estimation) 및 움직임 보상(MC: Motion Compensation)을 수행할 수 있다. 인터 예측부(120)는 현재 픽쳐의 이전 픽쳐 또는 이후 픽쳐 중 적어도 하나의 픽쳐 정보를 기초로 예측 블록을 생성할 수 있다.
인터 예측부(120)는 분할된 예측 대상 블록 및 메모리부(155)에 저장된 적어도 하나의 참조 블록을 기반으로 움직임 추정을 수행할 수 있다. 인터 예측부(120)는 움직임 추정의 결과로서 움직임 벡터(MV: Motion Vector), 참조 블록 인덱스 및 예측 모드 등을 포함한 움직임 정보(motion information)를 생성할 수 있다.
또한 인터 예측부(120)는 상기 움직임 정보 및 참조 블록을 이용하여 움직임 보상을 수행할 수 있다. 이 때, 인터 예측부(120)는 상기 참조 블록으로부터 입력 블록에 대응하는 예측 블록을 생성하여 출력할 수 있다.
인트라 예측(Intra Prediction) 모드의 경우, 인트라 예측부(125)는 현재 픽쳐 내의 픽셀 정보를 기초로 예측 블록을 생성할 수 있다. 인트라 예측 모드의 경우, 인트라 예측부(125)는 예측 대상 블록과 이전에 변환 및 양자화된 후 복원된 복원 블록을 기반으로 현재 블록에 대한 예측을 수행할 수 있다. 상기 복원 블록은 필터부(150)를 거치기 전의 복원된 영상일 수 있다.
상술한 바와 같이 인터 모드 또는 인트라 모드에서는 예측 대상 블록에 대한 예측이 수행되고 예측 블록이 생성될 수 있다. 이 때, 예측 대상 블록 및 생성된 예측 블록의 차분에 의해 잔차 블록이 생성될 수 있다.
변환부(130)는 TU 별로 잔차 블록에 대해 변환을 수행하여 변환 계수를 생성할 수 있다. TU는 최대 크기와 최소 크기의 범위 내에서 트리 구조(tree structure)를 가질 수 있다. TU 별로 현재 블록이 하위 블록(sub-block)으로 나누어지는지는 지시자(flag)를 통해 지시될 수 있다. 변환부(130)는 DCT(Discrete Cosine Transform) 및/또는 DST(Discrete Sine Transform) 등을 기반으로 변환을 수행할 수 있다.
양자화부(135)는 변환부(130)에서 변환된 값들을 양자화할 수 있다. 블록에 따라 또는 영상의 중요도에 따라 양자화 계수는 변할 수 있다. 양자화된 변환 계수 값은 재정렬부(160) 및 역양자화부(140)에 제공될 수 있다.
재정렬부(160)는, 엔트로피 부호화의 효율을 높이기 위해, 스캔(scan)을 통하여 상기 양자화된 2차원 블록 형태의 변환 계수를 1차원 벡터 형태의 변환 계수로 정렬할 수 있다. 이때, 재정렬부(160)는 확률적 통계를 기초로 스캔 순서를 달리 하여 엔트로피 부호화 효율을 높일 수 있다.
엔트로피 부호화부(165)는 재정렬부(160)에서 얻어진 값들을 엔트로피 부호화할 수 있다. 엔트로피 부호화 과정에서는 발생 빈도가 높은 구문 요소 값에 더 적은 비트수의 코드워드가 할당될 수 있고, 발생 빈도가 낮은 구문 요소 값에 더 많은 비트수의 코드워드가 할당될 수 있다. 따라서, 부호화 대상 심볼들에 대한 비트열의 크기가 감소되어 영상 부호화 압축 성능이 높아질 수 있다. 엔트로피 부호화를 위해서는 지수 골룸(exponential golomb), CAVLC(Context-Adaptive Variable Length Coding) 및/또는 CABAC(Context-Adaptive Binary Arithmetic Coding) 등과 같은 부호화 방법이 사용될 수 있다. 부호화된 정보들은 압축된 비트 스트림을 형성하여 네트워크 추상 계층(NAL: Network Abstraction Layer)을 통해 전송되거나 저장될 수 있다.
역양자화부(140)는 양자화부(135)에서 양자화된 변환 계수를 역양자화할 수 있고, 역변환부(145)는 역양자화된 변환 계수를 역변환해서 복원된 잔차 블록을 생성할 수 있다. 복원된 잔차 블록은 인터 예측부(120) 또는 인트라 예측부(125)에서 생성된 예측 블록과 합쳐져 복원 블록이 생성될 수 있다. 복원 블록은 인트라 예측부(125) 및 필터부(150)에 제공될 수 있다.
필터부(150)는 복원된 잔차 블록에 디블록킹 필터(Deblocking Filter), SAO(Sample Adaptive Offset) 및/또는 ALF(Adaptive Loop Filter) 등을 적용할 수 있다. 디블록킹 필터는 부호화 및 복호화 과정에서 발생하는 블록 경계 사이의 왜곡을 제거하기 위해, 복원 블록을 필터링할 수 있다. SAO는 디블록킹 필터가 적용된 잔차 블록에 대하여, 픽셀 단위로 원본 영상과의 오프셋 차이를 복원해주는 루프 필터 처리 과정이다. SAO를 통해서 적용되는 오프셋으로는 밴드 오프셋(Band Offset), 에지 오프셋(Edge Offset) 등이 있을 수 있다. 밴드 오프셋은 픽셀을 세기(intensity)에 따른 32개의 밴드로 구분하고, 32 개 밴드를 가장 자리의 16개 밴드와 중심부 16개 밴드의 두 밴드 그룹으로 나누어 오프셋을 적용할 수 있다. ALF는 예측 대상 블록과 최종 복원 블록 사이의 에러를 최소화하기 위해 필터링을 수행할 수 있다. ALF는 디블록킹 필터를 통해 필터링된 복원 블록과 현재의 예측 대상 블록을 비교한 값을 기초로 필터링을 수행할 수 있으며, ALF의 필터 계수 정보는 슬라이스 헤더(slice header)에 실려 부호화기로부터 복호화기로 전송될 수 있다.
메모리(155)는 필터부(150)를 거친 최종 복원 블록을 저장할 수 있고, 저장된 최종 복원 블록은 인터 예측을 수행하는 인터 예측부(120)에 제공될 수 있다.
도 2는 비디오 복호화기의 일 실시예에 따른 구성을 나타내는 블록도이다. 도 2를 참조하면, 비디오 복호화기는 엔트로피 복호화부(210), 재정렬부(215), 역양자화부(220), 역변환부(225), 인터 예측부(230), 인트라 예측부(235), 필터부(240) 및 메모리(245)를 포함할 수 있다.
엔트로피 복호화부(210)는 NAL로부터 압축된 비트 스트림을 수신할 수 있다. 엔트로피 복호화부(210)는 수신된 비트 스트림을 엔트로피 복호화할 수 있고, 예측 모드, 움직임 벡터 정보 등이 비트 스트림에 포함되는 경우 이를 함께 엔트로피 복호화할 수 있다. 엔트로피 복호화 방법이 적용되는 경우, 발생 빈도가 높은 구문 요소 값에 더 적은 비트수의 코드워드가 할당될 수 있고, 발생 빈도가 낮은 구문 요소 값에 더 많은 비트수의 코드워드가 할당될 수 있다. 따라서, 부호화 대상 심볼들에 대한 비트열의 크기가 감소되어 영상 복호화 성능이 높아질 수 있다.
엔트로피 복호화된 변환 계수 또는 잔차 신호는 재정렬부(215)에 제공될 수 있다. 재정렬부(215)는 복호화된 변환 계수 또는 잔차 신호를 역스캔(inverse scan)하여 2차원 블록 형태의 변환 계수를 생성할 수 있다.
역양자화부(220)는 재정렬된 변환 계수를 역양자화할 수 있다. 역변환부(225)는 역양자화된 변환 계수를 역변환하여 잔차 블록을 생성할 수 있다.
잔차 블록은 인터 예측부(230) 또는 인트라 예측부(235)에서 생성된 예측 블록과 합쳐져 복원 블록이 생성될 수 있다. 복원 블록은 인트라 예측부(235) 및 필터부(240)에 제공될 수 있다. 인터 예측부(230) 및 인트라 예측부(235)의 동작은 각각 비디오 부호화기에서의 인터 예측부(120) 및 인트라 예측부(125)의 동작과 동일하거나 유사하므로, 여기서는 생략하기로 한다.
필터부(240)는 복원 블록에 디블록킹 필터, SAO 및/또는 ALF 등을 적용할 수 있다. 디블록킹 필터는 부호화 및 복호화 과정에서 발생하는 블록 경계 사이의 왜곡을 제거하기 위해, 복원 블록을 필터링할 수 있다. SAO는 디블록킹 필터링된 복원 블록에 픽셀 단위로 적용되어 원본 영상과의 차이를 줄일 수 있다. 또한, ALF는 예측 대상 블록과 최종 복원 블록 사이의 에러를 최소화하기 위해 SAO 과정이 수행된 복원 블록에 필터링을 수행할 수 있다.
메모리(245)는 필터부(240)를 통해 얻어진 최종 복원 블록을 저장할 수 있고, 저장된 최종 복원 블록은 인터 예측을 수행하는 인터 예측부(230)에 제공될 수 있다.
이하, 블록은 영상 부호화 및 복호화의 단위를 의미할 수 있다. 따라서, 본 명세서에서 블록은 경우에 따라 부호화 유닛(CU: Coding Unit), 예측 유닛(PU: Prediction Unit), 변환 유닛(TU: Transform Unit) 등을 의미할 수도 있다. 또한, 본 명세서에서 부호화/복호화 대상 블록은, 변환/역변환이 수행되는 경우의 변환/역변환 대상 블록 및 예측이 수행되는 경우의 예측 대상 블록 등을 모두 포함하는 의미로 사용될 수 있다.
도 3은 인터(inter) 예측에서의 인터폴레이션의 실시예를 개략적으로 나타내는 도면이다. 도 3에 도시된 바와 같이, 부호화 장치(및/또는 복호화 장치)가 인터 예측에 대한 모션 정보를 이용하여 예측 유닛의 신호를 생성하는 경우에, 8 탭(tap) 인터폴레이션 필터를 사용할 수 있다.
도 3을 참조하면, 각 위치 별로 수평 방향 또는 수직 방향으로 인터폴레이션이 수행되어 픽셀 값(픽셀 값은 휘도 및 색차 값을 포함함)을 예측할 수 있다. 전술한 바와 같이, 8 탭 인터폴레이션 필터를 사용한다는 것은 예측 유닛이 임의의 4×4 블록(현재 블록(310)을 나타냄)인 경우, 상기 4×4 블록에 대해 수평 방향으로 좌우로, 또는 수직 방향으로 상하로, 8개의 픽셀 값을 적절히 인터폴레이션하여 현재 블록(310)의 픽셀 값을 예측하는 것을 의미한다. 도면에서는 8 탭 필터를 사용한 경우만을 예시하고 있으나, 반드시 8 탭 필터로만 국한되지 않는다.
본 발명의 실시예에 따르면, 수평 방향으로 8 탭 인터폴레이션을 수행한 후, 수직 방향으로 8 탭 인터폴레이션을 사용할 수 있다. 먼저, 각각의 4×4 블록의 좌측 최상단 픽셀에 대한 픽셀 값은 알고 있다고 가정하였을 때, 상기 좌측 최상단의 우측에 바로 인접한 픽셀(a0,0)의 픽셀 값은 좌측으로 3 개의 4×4 블록의 좌측 최상단 픽셀의 픽셀 값과 우측으로 4개의 4×4 블록의 좌측 최상단 픽셀의 픽셀 값을 인터폴레이션하여 예측할 수 있다. 이를 수학식으로 표현하면 다음과 같다.
수학식 1
Figure PCTKR2012009180-appb-M000001
여기서, shift1 = BitDepthY(Y 컴포넌트의 비트 깊이) - 8 을 나타낸다. 이런 방식으로 현재 블록(310) 내의 다른 픽셀에 대한 픽셀 값을 인터폴레이션을 통해 예측할 수 있다. 이를 수학식으로 표현하면 다음과 같다.
수학식 2
Figure PCTKR2012009180-appb-M000002
여기서, shift2 = 8을 의미한다. 수학식 2에 도시된 바와 같이, 현재 블록(310)의 좌측 최상단 픽셀을 제외한 나머지 3개의 상단 픽셀 및 3개의 좌측 픽셀은 수직 또는 수평 방향으로 인접한 4×4 블록의 좌측 좌상단 픽셀의 픽셀 값을 기반으로 수평 방향 또는 수직 방향 인터폴레이션을 수행하여 예측할 수 있고, 나머지 픽셀은 수직 또는 수평 방향으로 인접한 7 개의 4×4 블록의 상단 픽셀의 픽셀 값을 기반으로 수직 또는 수평 방향 인터폴레이션을 수행하여 예측할 수 있다. 상기한 수학식 1 또는 2의 방법을 통해 현재 예측하고자 하는 예측 유닛의 픽셀 값을 산출할 수 있고, 예측 유닛과 관련된 예측 신호를 생성할 수 있다.
도 4는 본 발명의 일 실시예에 따른 영상 부호화 장치에서의 수직 방향으로 비대칭적 파티션 분할(AMP: Asymmetric Motion Partition(비대칭적 모션 파티션))이 사용된 경우, 인터폴레이션 필터 탭을 사용하는 일 실시예를 개략적으로 나타낸 도면이다.
도 4를 참조하면, 예측 유닛이 비대칭적 파티션 분할되었고, 비대칭적 파티션 분할에서 길이가 짧은 쪽으로 8 탭과 같은 긴 필터 탭을 사용하는 경우, 다른 파티션에 속하는 픽셀들도 같이 인터폴레이션을 수행해야 하는데, 파티션이 서로 다른 경우 상관도도 약해지기 때문에, 인터폴레이션의 효율이 낮아질 확률이 높아지게 된다. 즉, 블록(412)과 블록(414)는 상관도(correlation)가 약하기 때문에 같이 인터폴레이션을 수행하면 효율이 낮아진다. 블록(422)과 블록(424)도 마찬가지이다.
본 발명의 일 실시예에 따르면, 예측 유닛이 비대칭적 파티션 분할되었고, 비대칭적 파티션 분할에 의해 길이가 짧은 예측 유닛에 대해 비대칭인 방향으로 인터폴레이션을 수행할 때는 종래보다 작은 필터 탭을 사용할 수 있다. 예컨대, 비대칭적 파티션 분할에 의해 길이가 짧은 예측 유닛에 대한 인터폴레이션은 8 탭보다 작은 필터 탭을 사용하여 수행될 수 있다. 인터 모드에서 예측 유닛의 형태는 2N*2N, 2N*N, N*2N, N*N, 2NxnU, 2NxnD, nLx2N 또는 nRx2N이 될 수 있다. 2N*2N, 2N*N, N*2N, N*N과 같이 대칭적 파티션 분할된 예측 유닛에 대해서는 8 탭 필터를 사용하여 인터폴레이션을 수행할 수 있다.
도 4의 좌측 도면을 참조하면, 예측 유닛의 형태가 2N×nU 블록(410)인 경우, 상기 2N×nU 블록(410)은 수직 방향으로 비대칭적 파티션 분할되며, 상부 블록(412)의 길이가 짧게 분할된 블록을 의미한다. 상기 블록(410)은 상부 블록(412)과 하부 블록(414)을 포함할 수 있고, 상부 블록(412)과 하부 블록(414)의 수직 방향 길이는 16 대 48일 수 있다. 또한, 도 4의 우측 도면을 참조하면, 예측 유닛의 형태가 2N×nD 블록(420)인 경우, 2N×nD 블록(420)은 수직 방향으로 비대칭적 파티션 분할되며, 하부 블록(424)의 길이가 짧게 분할된 블록을 의미한다. 상기 블록(420)은 상부 블록(422)과 하부 블록(424)을 포함할 수 있고, 상부 블록(422)과 하부 블록(424)의 수직 방향 길이는 48 대 16일 수 있다. 이렇게 수직 방향으로 비대칭적으로 분할된 경우, 2N×nU 블록(410)의 상부 블록(412)과 2N×nD 블록(420)의 하부 블록(424)은 수직 방향으로는 수평 방향보다 작은 탭을 사용하여 인터폴레이션될 수 있다. 예컨대, 수평 방향 탭을 8 탭 필터를 사용한 경우, 수직 방향으로는 8 탭보다 작은 수를 사용할 수 있다.
도 5는 본 발명의 일 실시예에 따른 영상 부호화 장치에서의 수평 방향으로 비대칭적 파티션 분할이 사용된 경우, 인터폴레이션 필터 탭을 사용하는 일 실시예를 개략적으로 나타낸 도면이다.
도 5의 좌측 도면을 참조하면, 예측 유닛의 형태가 nL×2N 블록(510)인 경우, nL×2N 블록(510)은 수평 방향으로 비대칭적 파티션 분할되며, 좌측 블록(512)의 길이가 짧게 분할된 블록을 의미한다. 상기 블록(510)은 상부 블록(512)과 하부 블록(514)을 포함할 수 있고, 좌측 블록(512)과 우측 블록(514)의 수직 방향 길이는 64로 일정하나 수평 방향 길이는 16 대 48일 수 있다. 또한, 도 5의 우측 도면을 참조하면, 예측 유닛의 형태가 nR×2N 블록(520)인 경우, nR×2N 블록(520)은 수평 방향으로 비대칭적 파티션 분할되며, 우측 블록(524)의 길이가 짧게 분할된 블록을 의미한다. 상기 블록(520)은 좌측 블록(522)과 우측 블록(524)을 포함할 수 있고, 좌측 블록(522)과 우측 블록(524)의 수평 방향 길이는 48 대 16일 수 있다. 이렇게 수평 방향으로 비대칭적으로 분할된 경우, nL×2N 블록(510)의 좌측 블록(512)과 nR×2N 블록(520)의 우측 블록(524)은 수평 방향으로는 수직 방향보다 작은 탭을 사용하여 인터폴레이션될 수 있다. 즉, 수평 방향으로 8 탭보다 작은 길이의 필터 탭을 사용할 수 있다.
도 4 및 도 5의 실시예는 64×64 블록 사이즈에 대한 실시예를 도시하고 있으나, 64×64 블록 사이즈 이외의 다른 크기 또는 형태의 블록에 대해서도 적용할 수 있다.
도 6은 본 발명의 일 실시예에 따른 영상 부호화 장치에서 비대칭적으로 분할된 예측 유닛에 대해 인터 예측을 수행하는 과정을 개략적으로 나타낸 흐름도이다. 도 6에 도시된 바와 같이, 본 발명의 일 실시예에 따른 인터 예측 수행 과정은 분할 관련 정보 획득 단계(S610), 비대칭 방향에서의 길이 판단 단계(S620), 필터 탭의 길이 결정 단계(S630) 및 인터폴레이션 수행 단계(S640)를 포함할 수 있다.
도 6을 참조하면, 분할 관련 정보 획득 단계(S610)에서, 비대칭적 파티션 분할된 블록의 분할과 관련된 정보를 획득한다. 부호화 과정에 있어서, 상기 분할 관련 정보는 모션 예측을 통한 현재 예측 유닛에 대한 모션 정보에 포함되어 있을 수 있다. 모션 정보는 예측 유닛에 대한 모션 벡터, 참조 픽처 인덱스, 예측 방향 인덱스, 예측 모드, 예측 유닛의 형태 관련 정보를 포함할 수 있다.
또한, 본 발명의 실시예에 따르면, 부호화 과정에서 부호화 대상 블록에 대응되는 예측 유닛의 인터폴레이션 필터 탭의 길이 관련 정보를 포함하여 비트 스트림을 생성할 수 있기 때문에, 복호화기는 수신된 비트 스트림으로부터 복호화 대상 블록에 대응되는 예측 유닛의 인터폴레이션 필터 탭의 길이 관련 정보를 획득할 수 있다. 이러한 경우, 길이 판단 단계(S620) 및 필터 탭 길이 결정 단계(S630)를 생략할 수 있다. 비트 스트림에 필터 탭 길이 관련 정보가 포함되어 있지 않는 경우, 예측 유닛의 형태 관련 정보를 획득하여 길이 판단 단계(S620) 및 필터 탭 길이 결정 단계(S630)를 거쳐 필터 탭 길이를 결정할 수 있다.
비대칭 방향에서의 길이 판단 단계(S620)에서, 획득된 분할 관련 정보를 기반으로 부호화 장치(및/또는 복호화 장치)는 부호화(및/또는 복호화)하고자 하는 대상 블록과 대응되는 예측 유닛이 비대칭 방향(수직 또는 수평 방향 중 어느 하나)에서의 길이를 판단한다. 즉, 수평 방향으로 비대칭적 파티션 분할된 블록에 대해서는 상대적으로 길이가 긴 블록인지 길이가 짧은 블록인지 판단한다.
그리고는, 필터 탭의 길이 결정 단계(S630)에서, 상기 길이 관련 판단 결과를 기반으로 상기 부호화(또는 복호화)하고자 하는 대상 블록과 대응되는 예측 유닛의 인터폴레이션을 수행한 필터 탭의 길이를 결정한다. 필터 탭의 길이는 전술한 바와 같이, 비대칭 방향에서의 파티션 길이를 기반으로 결정된다. 예컨대, 수직 방향으로 짧은 길이를 갖는 비대칭 파티션 분할된 블록은 수평 방향보다 짧은 필터 탭 길이를 갖고, 수평 방향으로 짧은 길이를 갖는 비대칭 파티션 분할된 블록은 수직 방향보다 짧은 필터 탭 길이를 갖도록 필터 탭의 길이를 결정할 수 있다.
인터폴레이션 수행 단계(S640)에서, 부호화 장치(및/또는 복호화 장치)는 필터 탭의 길이 결정 단계(S630)에서 결정된 필터 탭 길이를 기반으로 인터폴레이션을 수행한다.
본 발명의 실시예에 따르면, 부호화 과정에서는 상기 결정된 필터 탭 길이를 기반으로 인터폴레이션을 수행 후, 필터 탭 길이 관련 정보를 포함하여 비트 스트림을 생성할 수 있다.
도 7은 본 발명의 일 실시예에 따른 영상 부호화 장치에서의 수직 방향으로 비대칭적 파티션 분할이 사용된 경우, 분할된 예측 유닛의 수직 또는 수평 방향으로의 길이에 적합한 인터폴레이션 필터 탭을 사용하는 일 실시예를 개략적으로 나타낸 도면이다.
도 7을 참조하면, 비대칭적 파티션 분할된 각 파티션 타입에서 파티션의 넓이가 넓은 쪽에 대해서는 넓이가 작은 파티션에서 탭 수보다 긴 필터 탭 길이를 갖도록 하여 인터폴레이션을 수행할 수 있다. 또한, 적어도 두 개의 파티션 분할된 블록의 비대칭 방향에서의 필터 탭의 길이의 합은 비대칭 방향이 아닌 방향의 필터 탭의 길이보다 클 수 있다.
도 7의 좌측 도면을 참조하면, 2N×nU 블록은 수직 방향으로 비대칭적 파티션 분할되며, 상부 블록(710)의 길이가 짧게 분할된 블록이다. 상기 2N×nU 블록의 상부 블록(710)은 하부 블록(720)보다 수직 방향으로 짧은 길이를 갖고, 16 대 48의 길이를 가질 수 있다. 이러한 경우, 넓이가 넓은 하부 블록(720)은 넓이가 좁은 상부 블록(710)보다 긴 길이의 필터 탭이 사용될 수 있다. 또한, 비대칭 방향인 수직 방향에 대한 필터 탭의 길이의 합, 즉, 상부 블록(710)의 수직 방향 필터 탭의 길이 및 하부 블록(720)의 수직 방향 필터 탭의 길이의 합은 상부 및 하부 블록(710, 720)의 수평 방향 필터 탭을 길이보다 클 수 있다.
예컨대, 상부 블록(710)에서는 수직 방향으로 4 탭 필터를 사용하여 인터폴레이션을 수행할 수 있고, 하부 블록(720)에서는 수직 방향으로 6 탭 필터를 사용하여 인터폴레이션을 수행할 수 있다. 즉, 4 탭 필터와 6 탭 필터의 필터 탭 길이의 합은 10으로 수평 방향 필터 탭의 길이인 8보다 클 수 있다.
도 7의 우측 도면을 참조하면, 동일한 방식으로 2N×nD 블록에 대해서도 적용할 수 있고, 이 경우, 상부 블록(710)에서는 수직 방향으로 6 탭 필터를 사용하여 인터폴레이션을 수행할 수 있고, 하부 블록(720)에서는 수직 방향으로 4 탭 필터를 사용하여 인터폴레이션을 수행할 수 있다.
도 8은 본 발명의 일 실시예에 따른 영상 부호화 장치에서의 수평 방향으로 비대칭적 파티션 분할이 사용된 경우, 분할된 예측 유닛의 수직 또는 수평 방향으로의 길이에 적합한 인터폴레이션 필터 탭을 사용하는 일 실시예를 개략적으로 나타낸 도면이다.
도 8의 좌측 도면을 참조하면, nL×2N 블록은 수평 방향으로 비대칭적 파티션 분할되며, 좌측 블록(810)의 길이가 짧게 분할된 블록이다. 상기 nL×2N 블록의 좌측 블록(810)은 우측 블록(820)보다 수평 방향으로 짧은 길이를 갖고, 16 대 48의 길이를 가질 수 있다. 이러한 경우, 넓이가 넓은 우측 블록(820)은 넓이가 좁은 상부 블록(810)보다 긴 길이의 필터 탭이 사용될 수 있다. 또한, 비대칭 방향인 수평 방향에 대한 필터 탭의 길이의 합, 즉, 좌측 블록(810)의 수평 방향 필터 탭의 길이 및 우측 블록(820)의 수평 방향 필터 탭의 길이의 합은 좌측 및 우측 블록(810, 820)의 수직 방향 필터 탭을 길이보다 클 수 있다.
예컨대, 좌측 블록(810)에서는 수평 방향으로 4 탭 필터를 사용하여 인터폴레이션을 수행할 수 있고, 우측 블록(820)에서는 수평 방향으로 6 탭 필터를 사용하여 인터폴레이션을 수행할 수 있다.
도 8의 우측 도면을 참조하면, 동일한 방식으로 nR×2N 블록에 대해서도 적용할 수 있고, 이 경우, 좌측 블록(830)에서는 수평 방향으로 6 탭 필터를 사용하여 인터폴레이션을 수행할 수 있고, 우측 블록(840)에서는 수직 방향으로 4 탭 필터를 사용하여 인터폴레이션을 수행할 수 있다.
표 1은 각각의 비대칭적 블록의 수직 및 수평 인터폴레이션 필터 탭 수를 나타낸 표이다.
표 1
Figure PCTKR2012009180-appb-T000001
도 9는 본 발명의 실시예에 따른 영상 부호화 방법을 개략적으로 나타내는 흐름도이다.
도 9를 참조하면, 부호화기는 현재 인터 예측 유닛의 모션 예측값을 산출할 수 있다(S910). 현재 예측 유닛의 모션 정보는 그대로 보내지 않고, 압축 효율을 높이기 위해 시공간적으로 인접한 블록들로부터 얻은 예측값과의 차이를 보낸다. 부호화기는 모션 예측 값을 구하기 위해 현재 인터 예측 유닛에 대해 병합(Merge) 후보 리스트와 AMVP(Adaptive Motion Vector Prediction) 후보 리스트를 작성할 수 있다.
부호화기는 상기 모션 정보를 이용하여 예측 유닛을 생성한다(S920). 특히, 비대칭적 파티션 분할된 예측 유닛에 대해서는 파티션의 길이가 짧은 방향에 작은 탭 길이를 사용하여 인터폴레이션을 수행할 수 있다. 비대칭적으로 파티션 분할된 예측 유닛에 대한 인터폴레이션 방법의 구체적인 실시예는 상술한 바 있으므로, 여기서는 생략하기로 한다.
부호화기는 현재 블록의 모션 정보를 부호화한다(S930). 병합 모드의 경우, 병합 후보들 중, 현재 예측 유닛과 같은 모션 정보를 가진 후보가 존재하면, 현재 예측 유닛을 병합 모드로 선언하고, 병합 모드를 사용했음을 알리는 플래그와 병합 후보들 중 어느 후보를 사용했는지 알리는 병합 인덱스를 보낸다. AMVP 모드의 경우, AMVP 후보들 중 현재 부호화할 예측 유닛의 모션 벡처 정보와 비교하여 코스트 함수가 최소화되는 후보를 결정하고, 상기 결정된 후보의 모션 정보와의 차이값과 상기 AMVP 후보를 이용하여 모션 보상 후, 잔여 신호를 획득한다.
이후, 부호화기는 현재 블록에 대응되는 잔차 블록을 생성할 수 있다(S940). 상술한 바와 같이, 부호화기는 현재 블록에 대해 인터 예측 및/또는 인트라 예측을 수행함으로써, 현재 블록에 대응되는 예측 블록을 생성할 수 있다. 이 때, 부호화기는 현재 블록의 픽셀 값과 예측 블록의 픽셀 값을 픽셀 단위로 차분하여 잔차(residual) 신호, 즉 잔차 블록을 생성할 수 있다.
다시 도 9를 참조하면, 부호화기는 잔차 신호, 즉 잔차 블록에 대해 변환을 수행할 수 있다(S950). 부호화기는 변환 커널(kernel)을 적용하여 잔차 신호를 변환 부호화할 수 있으며, 변환 부호화 커널의 크기는 2*2, 4*4, 8*8, 16*16, 32*32 또는 64*64일 수 있다. 일 실시예로 n*n 블록에 대한 변환 계수 C는 다음과 같이 계산될 수 있다.
[수학식 3]
C(n,n)=T(n,n) x B(n,n) x T(n,n)T
여기서, C(n,n)은 n*n 크기의 변환 계수에 대한 행렬이고, T(n,n)은 n*n 크기의 변환 커널 행렬이고, B(n,n)은 n*n 크기의 잔차 블록에 대한 행렬이다.
변환 과정에 의해 변환 계수가 생성되면, 부호화기는 생성된 변환 계수에 대한 양자화를 수행할 수 있다.
잔차 블록과 변환 계수 중 어떤 것이 전송되는 지는 RDO를 통해 결정될 수 있다. 예측이 잘 된 경우에는 변환 부호화 없이 잔차 블록, 즉 잔차 신호가 그대로 전송될 수 있다. 부호화기는 변환 부호화 전/후의 비용 함수(cost function)를 비교할 수 있으며, 비용이 최소화되는 방법을 선택할 수 있다. 이 때, 부호화기는 현재 블록에 대해 전송하는 신호의 타입(잔차 신호 또는 변환 계수)에 대한 정보를 복호화 장치로 전송할 수 있다.
다시 도 9를 참조하면, 부호화기는 변환 계수에 대한 스캐닝을 수행할 수 있다(S960).
스캐닝이 수행되면, 부호화기는 스캐닝된 변환 계수 및 보조 정보(예를 들어, 현재 블록의 인터 예측 모드 정보)에 대한 엔트로피 부호화를 수행할 수 있다(S1970). 부호화된 정보들은 압축된 비트 스트림을 형성하여 네트워크 추상 계층(NAL: Network Abstraction Layer)을 통해 전송되거나 저장될 수 있다.
도 9의 실시예에서, 부호화 방법은 일련의 단계로서 흐름도를 기초로 설명되고 있으나, 본 발명은 이에 한정되는 것은 아니다. 도 9의 실시예에서 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 병렬적으로 발생할 수도 있다. 또한, 흐름도에 나타내어진 단계들에 다른 단계가 포함될 수도 있으며, 도 9의 흐름도에서 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수도 있다.
도 10은 본 발명의 실시예에 따른 영상 복호화 방법을 개략적으로 나타내는 흐름도이다.
도 10을 참조하면, 복호화기는 부호화기로부터 수신된 비트스트림에 대해 엔트로피 복호화를 수행할 수 있다(S1010). 일례로, 복호화기는 VLC(variable length coding) 테이블 및/또는 CABAC을 기반으로 현재 블록의 예측 모드 및 잔차 신호를 도출할 수 있다. 복호화기는 현재 블록에 대해 수신된 신호가 잔차 신호인지 아니면 변환 계수인지에 관한 정보를 얻을 수 있고, 현재 블록에 대해 잔차 신호나 1차원 벡터 형태의 변환 계수를 얻을 수 있다. 수신된 비트스트림에 복호화에 필요한 보조 정보(side information)가 포함되는 경우, 이들이 함께 엔트로피 복호화될 수도 있다.
다시 도 10을 참조하면, 복호화기는 엔트로피 복호화된 잔차 신호나 변환 계수에 대해 역스캐닝을 수행함으로써, 2차원 블록을 생성할 수 있다(S1020). 이 때, 잔차 신호의 경우 잔차 블록이 생성되고, 변환 계수의 경우 2차원 블록 형태의 변환 계수가 생성될 수 있다. 변환 계수가 생성된 경우 복호화기는 생성된 변환 계수에 대해 역양자화를 수행할 수 있다(S1030).
복호화기는 역양자화된 변환 계수에 대해 역변환을 수행함으로써 잔차 블록을 생성할 수 있다(S1040). 역변환 과정은 다음 수학식 4에 의해 나타내어질 수 있다.
[수학식 4]
B(n,n)=T(n,n) x C(n,n) x T(n,n)T
잔차 블록이 생성되면, 복호화기는 생성된 잔차 블록을 기반으로 인터 예측을 수행할 수 있다(S1050). 병합 모드와 AMVP 모드 중 어느 하나의 모드를 통해 인터 예측을 수행하여 모션 정보를 획득한다.
복호화기는 획득된 모션 정보를 이용하여 예측 유닛을 생성할 수 있다. 특히, 비대칭적 파티션 분할된 예측 유닛에 대해서는 파티션의 길이가 짧은 방향에 작은 탭 길이를 사용하여 인터폴레이션을 수행할 수 있다. 비대칭적으로 파티션 분할된 예측 유닛에 대한 인터폴레이션 방법의 구체적인 실시예는 상술한 바 있으므로, 여기서는 생략하기로 한다.
그리고는, 복호화기는 잔차 블록과 이전 프레임의 신호를 더하여 복원 블록을 생성하여 영상을 재생할 수 있다(S1070). 상술한 바와 같이, 복호화기는 복호화 대상 블록에 대해 인터 예측 및/또는 인트라 예측을 수행함으로써, 복호화 대상 블록에 대응되는 예측 블록을 생성할 수 있다. 이 때, 복호화기는 예측 블록의 픽셀값과 잔차 블록의 픽셀값을 픽셀 단위로 더하여 복원 블록을 생성할 수 있다.
도 10의 실시예에서, 복호화 방법은 일련의 단계로서 흐름도를 기초로 설명되고 있으나, 본 발명은 이에 한정되는 것은 아니다. 도 10의 실시예에서 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 병렬적으로 발생할 수도 있다. 또한, 흐름도에 나타내어진 단계들에 다른 단계가 포함될 수도 있으며, 도 10의 흐름도에서 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수도 있다.
상술한 실시예들에서, 방법들은 일련의 단계 또는 블록으로써 흐름도 또는 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 병렬적으로 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도 또는 흐름도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
이상 도면 및 실시예를 참조하여 설명하였지만, 본 발명의 보호범위가 상기 도면 또는 실시예에 의해 한정되는 것을 의미하지는 않으며 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.

Claims (20)

  1. 수신된 비트 스트림을 엔트로피 복호화하여 잔여값을 역양자화 및 역변환하여 잔여값을 복원하는 단계;
    비대칭 파티션 분할 방식을 적용하여 적어도 2개로 분할된 예측 유닛 - 상기 분할된 예측 유닛은 제 1 분할 예측 유닛 및 제 2 분할 예측 유닛을 포함함 - 에 대해 인터 예측을 수행하여 최종 예측 유닛을 생성하는 단계; 및
    상기 최종 예측 유닛에 상기 잔여값을 더하여 영상을 복원하는 단계를 포함하되,
    상기 최종 예측 유닛 생성 단계는 상기 제 2 분할 예측 유닛에 속하는 픽셀들이 인터폴레이션에 포함되지 않도록, 상기 제 1 분할 예측 유닛의 수평 또는 수직 방향으로의 길이에 따라 가변적인 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 복호화 방법.
  2. 제 1 항에 있어서, 상기 최종 예측 유닛 생성 단계는
    상기 제 1 분할 예측 유닛 및 상기 제 2 분할 예측 유닛은 수평 또는 수직 방향으로의 길이에 따라 서로 다른 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 복호화 방법.
  3. 제 1 항에 있어서, 상기 최종 예측 유닛 생성 단계는
    상기 제 1 분할 예측 유닛이 수평 방향으로 비대칭이고 수평 방향으로 길이가 짧게 분할되었을 경우,
    상기 제 1 분할 예측 유닛에 대해 수직 방향의 필터 탭 길이보다 짧은 수평 방향 필터 탭을 사용하여 수평 방향 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 복호화 방법.
  4. 제 1 항에 있어서, 상기 최종 예측 유닛 생성 단계는
    상기 제 1 분할 예측 유닛이 수직 방향으로 비대칭이고 수직 방향으로 길이가 짧게 분할되었을 경우,
    상기 제 1 분할 예측 유닛에 대해 수평 방향의 필터 탭 길이보다 짧은 수직 방향 필터 탭을 사용하여 수직 방향 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 복호화 방법.
  5. 제 1 항에 있어서, 상기 최종 예측 유닛 생성 단계는
    상기 제 1 분할 예측 유닛이 수평 방향으로 비대칭이고 수평 방향으로 길이가 짧게 분할되었을 경우,
    수평 방향으로 길이가 길게 분할된 상기 제 2 분할 예측 유닛보다 수평 방향으로 짧은 길이를 갖는 필터 탭을 사용하여 수평 방향 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 복호화 방법.
  6. 제 1 항에 있어서, 상기 최종 예측 유닛 생성 단계는
    상기 제 1 분할 예측 유닛이 수직 방향으로 비대칭이고 수직 방향으로 길이가 짧게 분할되었을 경우,
    수직 방향으로 길이가 길게 분할된 상기 제 2 분할 예측 유닛보다 수평 방향으로 짧은 길이를 갖는 필터 탭을 사용하여 수직 방향 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 복호화 방법.
  7. 제 1 항에 있어서,
    64×64 크기의 예측 유닛에 대해, 상기 분할된 예측 유닛의 형태가 2N×nU 또는 2N×nD -N은 자연수이고, 2N×nU는 수직방향으로 비대칭 분할될 때, 상측으로 넓이가 작게 분할된 형태이고, 2N×nD는 하측으로 넓이가 작게 분할된 형태를 의미함 - 인 경우, 상기 제 1 분할 예측 유닛은 수직 방향으로 4 탭 필터를, 상기 제 2 분할 예측 유닛은 수직 방향으로 6 탭 필터를 사용하여 수직 방향 인터폴레이션이 수행되고,
    상기 분할된 예측 유닛의 형태가 nL×2N 또는 nR×2N -N은 자연수이고, nL×2N는 수평방향으로 비대칭 분할될 때, 좌측으로 넓이가 작게 분할된 형태이고, nR×2N은 우측으로 넓이가 작게 분할된 형태를 의미함 - 인 경우, 상기 제 1 분할 예측 유닛은 수평 방향으로 4 탭 필터를, 상기 제 2 분할 예측 유닛은 수평 방향으로 6 탭 필터를 사용하여 수평 방향 인터폴레이션이 수행되는 것을 특징으로 하는 영상의 복호화 방법.
  8. 제 1 항에 있어서,
    상기 제 1 및 제 2 분할 예측 유닛의 비대칭 방향에서의 필터 탭의 길이의 합이 상기 비대칭 방향이 아닌 방향에서의 필터 탭 길이보다 긴 것을 특징으로 하는 영상의 복호화 방법.
  9. 제 1 항에 있어서, 상기 수신된 비트 스트림은,
    복호화하고자 하는 대상 블록에 대응되는 예측 모드 및 상기 복호화 대상 블록에 대응되는 예측 유닛의 형태에 관한 정보를 포함하는 것을 특징으로 하는 영상 복호화 방법.
  10. 제 9 항에 있어서, 상기 수신된 비트 스트림은,
    상기 복호화 대상 블록에 대응되는 예측 유닛의 인터폴레이션 필터 탭의 길이에 관한 정보를 더 포함하는 것을 특징으로 하는 영상 복호화 방법.
  11. 제 1 항에 있어서, 상기 최종 예측 유닛 생성 단계는
    상기 비트 스트림으로부터 상기 분할된 예측 유닛이 어느 방향으로 비대칭적으로 분할되었는지에 대한 정보를 획득하는 단계;
    상기 획득된 분할 관련 정보를 기반으로 상기 분할된 예측 유닛이 비대칭인 방향에서 길이가 긴 쪽인지 판단하는 단계;
    상기 판단 결과를 기반으로 인터폴레이션에 사용될 필터 탭의 길이를 결정하는 단계; 및
    상기 결정된 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 복호화 방법.
  12. 수신된 비트 스트림을 엔트로피 복호화하여 잔여값을 역양자화 및 역변환하여 잔여값을 복원하는 잔여값 복원부;
    비대칭 파티션 분할 방식을 적용하여 적어도 2개로 분할된 예측 유닛 - 상기 분할된 예측 유닛은 제 1 분할 예측 유닛 및 제 2 분할 예측 유닛을 포함함 - 에 대해 인터 예측을 수행하여 최종 예측 유닛을 생성하는 최종 예측 유닛 생성부; 및
    상기 최종 예측 유닛에 상기 잔여값을 더하여 영상을 복원하는 영상 복원부를 포함하되,
    상기 최종 예측 유닛 생성부는 상기 제 2 분할 예측 유닛에 속하는 픽셀들이 인터폴레이션에 포함되지 않도록, 상기 제 1 분할 예측 유닛의 수평 또는 수직 방향으로의 길이에 따라 가변적인 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 것을 특징으로 하는 영상의 복호화 장치.
  13. 입력 영상을 예측 부호화하기 위해 상기 입력 영상을 비대칭 파티션 분할 방식을 적용하여 분할된 예측 유닛 - 상기 분할된 예측 유닛은 제 1 분할 예측 유닛 및 제 2 분할 예측 유닛을 포함함 - 에 인터 예측을 수행하는 단계; 및
    상기 인터 예측에 의해 생성된 예측 유닛과 현재 예측 유닛 간의 차이인 잔여값(residue)을 변환 및 양자화하여 엔트로피 부호화하는 단계를 포함하되,
    상기 인터 예측 수행 단계는 상기 제 2 분할 예측 유닛에 속하는 픽셀들이 인터폴레이션에 포함되지 않도록, 상기 제 1 분할 예측 유닛의 수평 또는 수직 방향으로의 길이에 따라 가변적인 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상 부호화 방법.
  14. 제 13 항에 있어서, 상기 인터 예측 수행 단계는
    상기 제 1 분할 예측 유닛 및 상기 제 2 분할 예측 유닛은 수평 또는 수직 방향으로의 길이에 따라 서로 다른 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 부호화 방법.
  15. 제 13 항에 있어서, 상기 인터 예측 수행 단계는
    상기 제 1 분할 예측 유닛이 수평 방향으로 비대칭이고 수평 방향으로 길이가 짧게 분할되었을 경우,
    상기 제 1 분할 예측 유닛에 대해 수직 방향의 필터 탭 길이보다 짧은 수평 방향 필터 탭을 사용하여 수평 방향 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 부호화 방법.
  16. 제 13 항에 있어서, 상기 인터 예측 수행 단계는
    상기 제 1 분할 예측 유닛이 수평 방향으로 비대칭이고 수평 방향으로 길이가 짧게 분할되었을 경우,
    수평 방향으로 길이가 길게 분할된 상기 제 2 분할 예측 유닛보다 수평 방향으로 짧은 길이를 갖는 필터 탭을 사용하여 수평 방향 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 부호화 방법.
  17. 제 13 항에 있어서,
    상기 제 1 및 제 2 분할 예측 유닛의 비대칭 방향에서의 필터 탭의 길이의 합이 상기 비대칭 방향이 아닌 방향에서의 필터 탭 길이보다 긴 것을 특징으로 하는 영상의 복호화 방법.
  18. 제 13 항에 있어서, 상기 인터 예측 수행 단계는
    상기 분할된 예측 유닛이 어느 방향으로 비대칭적으로 분할되었는지에 대한 정보를 획득하는 단계;
    상기 획득된 정보를 기반으로 상기 분할된 예측 유닛이 비대칭인 방향에서 길이가 긴 쪽인지 판단하는 단계;
    상기 판단 결과를 기반으로 인터폴레이션에 사용될 필터 탭의 길이를 결정하는 단계; 및
    상기 결정된 필터 탭을 사용하여 인터폴레이션을 수행하는 단계를 포함하는 것을 특징으로 하는 영상의 부호화 방법.
  19. 제 13 항에 있어서,
    엔트로피 부호화를 통해 생성된 비트 스트림은 부호화하고자 하는 대상 블록에 대응되는 예측 유닛의 인터폴레이션 필터 탭의 길이에 관한 정보를 포함하는 것을 특징으로 하는 영상의 부호화 방법.
  20. 입력 영상을 예측 부호화하기 위해 상기 입력 영상을 비대칭 파티션 분할 방식을 적용하여 분할된 예측 유닛 - 상기 분할된 예측 유닛은 제 1 분할 예측 유닛 및 제 2 분할 예측 유닛을 포함함 - 에 인터 예측을 수행하는 인터 예측부; 및
    상기 인터 예측에 의해 생성된 예측 유닛과 현재 예측 유닛 간의 차이인 잔여값(residue)을 변환 및 양자화하여 엔트로피 부호화하는 엔트로피 부호화부를 포함하되,
    상기 인터 예측부는 상기 제 2 분할 예측 유닛에 속하는 픽셀들이 인터폴레이션에 포함되지 않도록, 상기 제 1 분할 예측 유닛의 수평 또는 수직 방향으로의 길이에 따라 가변적인 길이를 갖는 필터 탭을 사용하여 인터폴레이션을 수행하는 것을 특징으로 하는 영상 부호화 장치.
PCT/KR2012/009180 2011-11-08 2012-11-02 영상의 부호화 방법 및 장치, 및 복호화 방법 및 장치 WO2013069932A1 (ko)

Priority Applications (23)

Application Number Priority Date Filing Date Title
MX2016014328A MX359052B (es) 2011-11-08 2012-11-02 Metodo y aparato para codificar imagenes, y metodo y aparato para decodificar imagenes.
US14/357,056 US9432683B2 (en) 2011-11-08 2012-11-02 Method and apparatus for encoding image, and method and apparatus for decoding image
MX2016014332A MX367994B (es) 2011-11-08 2012-11-02 Método y aparato para codificar imágenes, y método y aparato para decodificar imágenes.
PL409213A PL231918B1 (pl) 2011-11-08 2012-11-02 Sposoby dekodowania sygnału wideo
MX2016007503A MX349891B (es) 2011-11-08 2012-11-02 Metodo y aparato para codificar imagenes, y metodo y aparato para decodificar imagenes.
CA2855027A CA2855027C (en) 2011-11-08 2012-11-02 A technique for encoding and decoding video by interpolating a reference picture block by applying different interpolation tap filters in vertical and horizontal directions to thereference block
BR112014012594A BR112014012594A8 (pt) 2011-11-08 2012-11-02 método de decodificação de vídeo
RU2014119544A RU2610296C2 (ru) 2011-11-08 2012-11-02 Способ и устройство для кодирования видеоданных и способ и устройство для декодирования видеоданных
AU2012336598A AU2012336598A1 (en) 2011-11-08 2012-11-02 Method and apparatus for encoding image, and method and apparatus for decoding image
CN201280066253.8A CN104067613B (zh) 2011-11-08 2012-11-02 图像编码方法和装置以及图像解码方法和装置
MX2016014331A MX364027B (es) 2011-11-08 2012-11-02 Metodo y aparato para codificar imagenes, y metodo y aparato para decodificar imagenes.
MX2014005606A MX2014005606A (es) 2011-11-08 2012-11-02 Metodo y aparato para codificar imagenes, y metodo y aparato para decodificar imagenes.
GB1408808.2A GB2510759B (en) 2011-11-08 2012-11-02 Method and apparatus for encoding image, and method and apparatus for decoding image
US14/605,999 US9432684B2 (en) 2011-11-08 2015-01-26 Method and apparatus for encoding image, and method and apparatus for decoding image
AU2016201932A AU2016201932B2 (en) 2011-11-08 2016-03-29 Method and apparatus for encoding image and method and apparatus for decoding image
US15/218,403 US9497477B1 (en) 2011-11-08 2016-07-25 Method and apparatus for encoding image, and method and apparatus for decoding image
US15/292,424 US9554140B1 (en) 2011-11-08 2016-10-13 Method and apparatus for encoding image, and method and apparatus for decoding image
US15/292,478 US9578338B1 (en) 2011-11-08 2016-10-13 Method and apparatus for encoding image, and method and apparatus for decoding image
AU2016253621A AU2016253621B2 (en) 2011-11-08 2016-11-03 Method and apparatus for encoding image and method and apparatus for decoding image
AU2016253619A AU2016253619B2 (en) 2011-11-08 2016-11-03 Method and apparatus for encoding image and method and apparatus for decoding image
AU2016253620A AU2016253620B2 (en) 2011-11-08 2016-11-03 Method and apparatus for encoding image and method and apparatus for decoding image
US15/393,826 US9729893B2 (en) 2011-11-08 2016-12-29 Method and apparatus for encoding image, and method and apparatus for decoding image
AU2018202366A AU2018202366B2 (en) 2011-11-08 2018-04-04 Method and apparatus for encoding image and method and apparatus for decoding image

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR20110116130 2011-11-08
KR10-2011-0116130 2011-11-08
KR10-2012-0123519 2012-11-02

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/357,056 A-371-Of-International US9432683B2 (en) 2011-11-08 2012-11-02 Method and apparatus for encoding image, and method and apparatus for decoding image
US14/605,999 Continuation US9432684B2 (en) 2011-11-08 2015-01-26 Method and apparatus for encoding image, and method and apparatus for decoding image
US15/218,403 Continuation US9497477B1 (en) 2011-11-08 2016-07-25 Method and apparatus for encoding image, and method and apparatus for decoding image

Publications (1)

Publication Number Publication Date
WO2013069932A1 true WO2013069932A1 (ko) 2013-05-16

Family

ID=48661122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009180 WO2013069932A1 (ko) 2011-11-08 2012-11-02 영상의 부호화 방법 및 장치, 및 복호화 방법 및 장치

Country Status (11)

Country Link
US (6) US9432683B2 (ko)
KR (10) KR101569725B1 (ko)
CN (10) CN107959852A (ko)
AU (6) AU2012336598A1 (ko)
BR (1) BR112014012594A8 (ko)
CA (1) CA2855027C (ko)
GB (5) GB2561515B (ko)
MX (6) MX367994B (ko)
PL (1) PL231918B1 (ko)
RU (6) RU2647704C1 (ko)
WO (1) WO2013069932A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768012A (zh) * 2014-01-03 2015-07-08 华为技术有限公司 非对称运动分割方式编码的方法和编码设备

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120035096A (ko) * 2010-10-04 2012-04-13 한국전자통신연구원 쿼드 트리 변환 구조에서 부가 정보의 시그널링 방법 및 장치
US9961369B2 (en) * 2012-06-28 2018-05-01 Hfi Innovation Inc. Method and apparatus of disparity vector derivation in 3D video coding
EP2908530A4 (en) * 2012-10-12 2016-04-13 Korea Electronics Telecomm IMAGE ENCODING / DECODING METHOD AND DEVICE USING THE SAME
US9426465B2 (en) 2013-08-20 2016-08-23 Qualcomm Incorporated Sub-PU level advanced residual prediction
KR102250088B1 (ko) * 2013-10-24 2021-05-10 삼성전자주식회사 비디오 스트림을 복호화하는 방법 및 장치
CN104918050B (zh) * 2014-03-16 2019-11-08 上海天荷电子信息有限公司 使用动态排列重组的参考像素样值集的图像编解码方法
KR102124714B1 (ko) 2015-09-03 2020-06-19 미디어텍 인크. 비디오 코딩에서의 신경망 기반 프로세싱의 방법 및 장치
EP3355581A4 (en) * 2015-09-23 2019-04-17 LG Electronics Inc. BILDCODING / DECODING METHOD AND DEVICE THEREFOR
KR101752848B1 (ko) * 2015-12-30 2017-06-30 씨제이포디플렉스 주식회사 영상 움직임 검출을 이용한 모션 제어 시스템 및 방법
WO2018066958A1 (ko) * 2016-10-04 2018-04-12 주식회사 케이티 비디오 신호 처리 방법 및 장치
WO2018174617A1 (ko) * 2017-03-22 2018-09-27 한국전자통신연구원 블록 형태에 기반한 예측 방법 및 장치
KR20230124092A (ko) * 2017-03-31 2023-08-24 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 화상 부호화 장치, 화상 복호 장치, 화상 부호화 방법및 화상 복호 방법
KR20180111378A (ko) * 2017-03-31 2018-10-11 주식회사 칩스앤미디어 병렬 처리를 위한 움직임 정보를 처리하는 영상 처리 방법, 그를 이용한 영상 복호화, 부호화 방법 및 그 장치
US10728548B2 (en) * 2017-04-04 2020-07-28 Futurewei Technologies, Inc. Processing reference samples used for intra-prediction of a picture block
KR102257829B1 (ko) * 2017-04-13 2021-05-28 엘지전자 주식회사 영상의 부호화/복호화 방법 및 이를 위한 장치
CN115442606A (zh) * 2017-07-31 2022-12-06 韩国电子通信研究院 对图像编码和解码的方法及存储比特流的计算机可读介质
CN111133756B (zh) * 2017-10-12 2022-04-19 联发科技股份有限公司 用于视频编码的神经网络方法和装置
EP3701721A1 (en) * 2017-10-27 2020-09-02 Huawei Technologies Co., Ltd. Apparatus and method for picture coding with asymmetric partitioning
CN111602393B (zh) * 2018-01-15 2022-10-21 三星电子株式会社 编码方法及其设备以及解码方法及其设备
CN110198440B (zh) * 2018-03-29 2022-11-18 腾讯科技(深圳)有限公司 编码预测信息的确定及视频编码的方法、装置及可读介质
WO2019204212A1 (en) * 2018-04-18 2019-10-24 Futurewei Technologies, Inc. Block partitioning in video coding
KR20210016581A (ko) 2018-06-05 2021-02-16 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 Ibc 및 atmvp 간의 상호 작용
CN113115046A (zh) 2018-06-21 2021-07-13 北京字节跳动网络技术有限公司 分量相关的子块分割
TWI739120B (zh) 2018-06-21 2021-09-11 大陸商北京字節跳動網絡技術有限公司 合併仿射模式與非合併仿射模式的統一拘束
BR112021004679A2 (pt) * 2018-09-16 2021-06-01 Huawei Technologies Co., Ltd. método e aparelho para predição
CN110944193B (zh) 2018-09-24 2023-08-11 北京字节跳动网络技术有限公司 视频编码和解码中的加权双向预测
WO2020094151A1 (en) 2018-11-10 2020-05-14 Beijing Bytedance Network Technology Co., Ltd. Rounding in pairwise average candidate calculations
US10778977B2 (en) * 2018-12-05 2020-09-15 Qualcomm Incorporated Triangle motion information for video coding
WO2020130714A1 (ko) 2018-12-21 2020-06-25 주식회사 엑스리스 영상 신호 부호화/복호화 방법 및 이를 위한 장치
WO2020141849A1 (ko) * 2019-01-01 2020-07-09 엘지전자 주식회사 화면간 예측을 사용하여 비디오 신호를 처리하기 위한 방법 및 장치
CN113785569B (zh) 2019-01-25 2023-09-08 寰发股份有限公司 视频编码的非线性适应性环路滤波方法和装置
JP2020150340A (ja) * 2019-03-11 2020-09-17 キヤノン株式会社 画像符号化装置、画像符号化方法、及びプログラム
JP2020150338A (ja) * 2019-03-11 2020-09-17 キヤノン株式会社 画像復号装置、画像復号方法、及びプログラム
TWI739386B (zh) 2019-04-11 2021-09-11 聯發科技股份有限公司 具有適應性參數集之適應性迴路濾波器
CN113767623B (zh) * 2019-04-16 2024-04-02 北京字节跳动网络技术有限公司 用于视频编解码的自适应环路滤波
WO2020258024A1 (zh) * 2019-06-25 2020-12-30 北京大学 视频处理方法和装置
CN110557592B (zh) * 2019-09-16 2021-12-17 瑞芯微电子股份有限公司 一种hdmi多媒体数据质量评测方法、装置和***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007337A (ja) * 2002-04-25 2004-01-08 Sony Corp 画像処理装置およびその方法
KR20050018948A (ko) * 2002-07-09 2005-02-28 노키아 코포레이션 비디오 부호화에서 보간 필터 유형을 선택하기 위한 방법및 장치
JP2011082725A (ja) * 2009-10-06 2011-04-21 Nippon Telegr & Teleph Corp <Ntt> 映像符号化方法,映像符号化装置,映像復号方法,映像復号装置,映像符号化・復号方法,およびプログラム
KR20110061468A (ko) * 2009-12-01 2011-06-09 (주)휴맥스 고해상도 영상의 부호화/복호화 방법 및 이를 수행하는 장치
KR20110084121A (ko) * 2010-01-15 2011-07-21 삼성전자주식회사 예측 부호화를 위해 가변적인 파티션을 이용하는 비디오 부호화 방법 및 장치, 예측 부호화를 위해 가변적인 파티션을 이용하는 비디오 복호화 방법 및 장치

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1467569A4 (en) * 2002-01-18 2007-11-14 Toshiba Kk METHOD AND APPARATUS FOR ENCODING IMAGES IN MOTION, DECODING METHOD AND APPARATUS
AU2003246987A1 (en) 2002-07-09 2004-01-23 Nokia Corporation Method and system for selecting interpolation filter type in video coding
JP4183993B2 (ja) * 2002-07-16 2008-11-19 シャープ株式会社 フィルタ装置
EP2461590A3 (en) * 2005-04-13 2012-08-29 NTT DoCoMo, Inc. Image prediction on the basis of a frequency band analysis of the to be predicted image
EP1886502A2 (en) * 2005-04-13 2008-02-13 Universität Hannover Method and apparatus for enhanced video coding
US9014280B2 (en) * 2006-10-13 2015-04-21 Qualcomm Incorporated Video coding with adaptive filtering for motion compensated prediction
CN101399991B (zh) * 2007-09-26 2010-11-10 华为技术有限公司 一种视频解码的方法和装置
CN101453646B (zh) * 2007-12-04 2012-02-22 华为技术有限公司 图像插值方法、装置及插值系数的获取方法
KR101279573B1 (ko) 2008-10-31 2013-06-27 에스케이텔레콤 주식회사 움직임 벡터 부호화 방법 및 장치와 그를 이용한 영상 부호화/복호화 방법 및 장치
KR20110060105A (ko) * 2009-11-30 2011-06-08 엘지전자 주식회사 인트라 예측을 이용한 비디오 신호 처리 방법 및 장치
CN104768005B (zh) 2009-12-01 2018-07-31 数码士有限公司 用于编码/解码高分辨率图像的方法和设备
KR20110071047A (ko) * 2009-12-20 2011-06-28 엘지전자 주식회사 비디오 신호 디코딩 방법 및 장치
CN104768007A (zh) 2010-06-07 2015-07-08 数码士控股有限公司 编码/解码高分辨率图像的方法和执行该方法的装置
CN104853201A (zh) 2010-07-02 2015-08-19 数码士控股有限公司 用于帧内预测的编码/解码图像的装置和方法
ES2868133T3 (es) * 2010-09-27 2021-10-21 Lg Electronics Inc Método para partición de bloque y dispositivo de decodificación
US20120134425A1 (en) * 2010-11-29 2012-05-31 Faouzi Kossentini Method and System for Adaptive Interpolation in Digital Video Coding
EP2664144A1 (en) * 2011-01-14 2013-11-20 Motorola Mobility LLC Temporal block merge mode
ES2770320T3 (es) * 2011-06-28 2020-07-01 Samsung Electronics Co Ltd Interpolación de imágenes usando un filtro asimétrico de interpolación
US9055304B2 (en) * 2011-07-01 2015-06-09 Qualcomm Incorporated Reduced resolution pixel interpolation
US9462298B2 (en) * 2011-10-21 2016-10-04 Qualcomm Incorporated Loop filtering around slice boundaries or tile boundaries in video coding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004007337A (ja) * 2002-04-25 2004-01-08 Sony Corp 画像処理装置およびその方法
KR20050018948A (ko) * 2002-07-09 2005-02-28 노키아 코포레이션 비디오 부호화에서 보간 필터 유형을 선택하기 위한 방법및 장치
JP2011082725A (ja) * 2009-10-06 2011-04-21 Nippon Telegr & Teleph Corp <Ntt> 映像符号化方法,映像符号化装置,映像復号方法,映像復号装置,映像符号化・復号方法,およびプログラム
KR20110061468A (ko) * 2009-12-01 2011-06-09 (주)휴맥스 고해상도 영상의 부호화/복호화 방법 및 이를 수행하는 장치
KR20110084121A (ko) * 2010-01-15 2011-07-21 삼성전자주식회사 예측 부호화를 위해 가변적인 파티션을 이용하는 비디오 부호화 방법 및 장치, 예측 부호화를 위해 가변적인 파티션을 이용하는 비디오 복호화 방법 및 장치

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104768012A (zh) * 2014-01-03 2015-07-08 华为技术有限公司 非对称运动分割方式编码的方法和编码设备
CN104768012B (zh) * 2014-01-03 2018-04-20 华为技术有限公司 非对称运动分割方式编码的方法和编码设备

Also Published As

Publication number Publication date
GB2560083A (en) 2018-08-29
GB2561515A (en) 2018-10-17
CA2855027C (en) 2017-01-24
CN107071436A (zh) 2017-08-18
GB2561782A (en) 2018-10-24
GB2561514A8 (en) 2018-12-12
CN107920249A (zh) 2018-04-17
KR20180109815A (ko) 2018-10-08
CA2855027A1 (en) 2013-05-16
KR20130050883A (ko) 2013-05-16
CN104378632A (zh) 2015-02-25
RU2643573C1 (ru) 2018-02-02
MX2014005606A (es) 2014-08-01
CN107835411A (zh) 2018-03-23
AU2012336598A8 (en) 2016-04-21
GB2560083B (en) 2019-01-16
MX359052B (es) 2018-09-13
KR20140134253A (ko) 2014-11-21
AU2016253619A1 (en) 2016-11-24
AU2016253619B2 (en) 2018-06-07
KR101550719B1 (ko) 2015-09-07
PL231918B1 (pl) 2019-04-30
MX364027B (es) 2019-04-11
CN107835412A (zh) 2018-03-23
MX349891B (es) 2017-08-18
RU2017100994A (ru) 2018-12-19
KR101550717B1 (ko) 2015-09-07
AU2018202366B2 (en) 2019-10-03
CN107071435A (zh) 2017-08-18
RU2718230C2 (ru) 2020-03-31
US20160337653A1 (en) 2016-11-17
KR101905159B1 (ko) 2018-11-21
US20150139317A1 (en) 2015-05-21
KR20140139454A (ko) 2014-12-05
MX339846B (es) 2016-06-14
CN107959852A (zh) 2018-04-24
GB2561514A (en) 2018-10-17
RU2017100994A3 (ko) 2020-01-28
KR101550718B1 (ko) 2015-09-07
KR101550720B1 (ko) 2015-09-07
GB2510759B (en) 2018-09-12
KR20140134254A (ko) 2014-11-21
US9432683B2 (en) 2016-08-30
AU2018202366A1 (en) 2018-05-10
CN104067613A (zh) 2014-09-24
KR20140131903A (ko) 2014-11-14
US20170111647A1 (en) 2017-04-20
CN104378632B (zh) 2018-02-09
US9729893B2 (en) 2017-08-08
KR20180109814A (ko) 2018-10-08
AU2016253621B2 (en) 2018-06-07
GB2561515A8 (en) 2018-12-12
KR20180109816A (ko) 2018-10-08
GB2561782B (en) 2019-01-16
GB2510759A (en) 2014-08-13
GB2561514B (en) 2019-01-16
KR20140131902A (ko) 2014-11-14
KR101569725B1 (ko) 2015-11-17
RU2647703C1 (ru) 2018-03-16
GB2510759A9 (en) 2017-11-29
US20170041618A1 (en) 2017-02-09
AU2012336598A1 (en) 2014-06-19
GB2561515B (en) 2019-01-16
KR20180109817A (ko) 2018-10-08
BR112014012594A2 (pt) 2017-06-13
RU2610296C2 (ru) 2017-02-08
US9432684B2 (en) 2016-08-30
RU2014119544A (ru) 2015-12-20
CN107071434A (zh) 2017-08-18
MX367994B (es) 2019-09-13
GB201812008D0 (en) 2018-09-05
GB201721828D0 (en) 2018-02-07
GB201812007D0 (en) 2018-09-05
US9554140B1 (en) 2017-01-24
KR101986588B1 (ko) 2019-06-10
RU2647705C1 (ru) 2018-03-16
KR101986586B1 (ko) 2019-06-10
AU2016253620B2 (en) 2018-06-07
RU2647704C1 (ru) 2018-03-16
US20170041619A1 (en) 2017-02-09
US9578338B1 (en) 2017-02-21
AU2016201932B2 (en) 2018-05-31
GB201408808D0 (en) 2014-07-02
US20140307784A1 (en) 2014-10-16
US9497477B1 (en) 2016-11-15
AU2016201932A1 (en) 2016-05-05
PL409213A1 (pl) 2015-07-20
CN107835413A (zh) 2018-03-23
AU2016253620A1 (en) 2016-11-24
KR101986587B1 (ko) 2019-06-10
GB201812009D0 (en) 2018-09-05
BR112014012594A8 (pt) 2021-06-22
AU2016253621A1 (en) 2016-11-24
CN104067613B (zh) 2018-01-02
KR101986589B1 (ko) 2019-06-10

Similar Documents

Publication Publication Date Title
WO2013069932A1 (ko) 영상의 부호화 방법 및 장치, 및 복호화 방법 및 장치
WO2017052000A1 (ko) 영상 코딩 시스템에서 움직임 벡터 정제 기반 인터 예측 방법 및 장치
WO2017069419A1 (ko) 비디오 코딩 시스템에서 인트라 예측 방법 및 장치
WO2016204360A1 (ko) 영상 코딩 시스템에서 조도 보상에 기반한 블록 예측 방법 및 장치
WO2016200043A1 (ko) 비디오 코딩 시스템에서 가상 참조 픽처 기반 인터 예측 방법 및 장치
WO2013069975A1 (ko) 예측 단위의 파티션 모드에 기초한 계수 스캔 방법 및 장치
WO2013062193A1 (ko) 영상 복호화 방법 및 장치
WO2011068331A2 (ko) 비디오 인코딩 장치 및 그 인코딩 방법, 비디오 디코딩 장치 및 그 디코딩 방법, 및 거기에 이용되는 방향적 인트라 예측방법
WO2011149291A2 (ko) 비디오 신호의 처리 방법 및 장치
WO2013157820A1 (ko) 고속 에지 검출을 이용하는 비디오 부호화 방법 및 장치, 그 비디오 복호화 방법 및 장치
WO2019194500A1 (ko) 인트라 예측에 기반한 영상 코딩 방법 및 그 장치
WO2019112071A1 (ko) 영상 코딩 시스템에서 크로마 성분의 효율적 변환에 기반한 영상 디코딩 방법 및 장치
WO2020185009A1 (ko) 잔차블록을 효율적으로 코딩하는 방법 및 장치
WO2013062194A1 (ko) 복원 블록을 생성하는 방법 및 장치
WO2018062699A1 (ko) 영상 코딩 시스템에서 영상 디코딩 방법 및 장치
WO2017052272A1 (ko) 비디오 코딩 시스템에서 인트라 예측 방법 및 장치
WO2018128222A1 (ko) 영상 코딩 시스템에서 영상 디코딩 방법 및 장치
WO2018212430A1 (ko) 영상 코딩 시스템에서 주파수 도메인 필터링 방법 및 그 장치
WO2022114742A1 (ko) 비디오 부호화 및 복호화를 위한 장치 및 방법
WO2018084344A1 (ko) 영상 코딩 시스템에서 영상 디코딩 방법 및 장치
WO2019135628A1 (ko) 영상을 부호화 또는 복호화하는 방법 및 장치
WO2013069976A1 (ko) 영상의 부호화 방법 및 장치, 그리고 영상의 복호화 방법 및 장치
WO2020185050A1 (ko) 인트라 블록 복사를 이용하는 영상 부호화 및 복호화
WO2018159987A1 (ko) 프리 스캔을 이용한 블록 기반 동영상 복호화 방법 및 그 장치
WO2016204372A1 (ko) 영상 코딩 시스템에서 필터 뱅크를 이용한 영상 필터링 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12846852

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2855027

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14357056

Country of ref document: US

Ref document number: P.409213

Country of ref document: PL

Ref document number: 409213

Country of ref document: PL

Ref document number: MX/A/2014/005606

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 1408808

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20121102

WWE Wipo information: entry into national phase

Ref document number: 1408808.2

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 2014119544

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012336598

Country of ref document: AU

Date of ref document: 20121102

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014012594

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 12846852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: IDP00201507897

Country of ref document: ID

WWE Wipo information: entry into national phase

Ref document number: IDP00201607595

Country of ref document: ID

Ref document number: IDP00201607597

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 112014012594

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140508

ENPW Started to enter national phase and was withdrawn or failed for other reasons

Ref document number: 112014012594

Country of ref document: BR

Kind code of ref document: A8

ENPZ Former announcement of the withdrawal of the entry into the national phase was wrong

Ref document number: 112014012594

Country of ref document: BR

Kind code of ref document: A8

Free format text: ANULADA A PUBLICACAO DE DESPACHO 1.2 NA RPI 2424, POR TER SIDO INDEVIDA

Ref document number: 112014012594

Country of ref document: BR

Kind code of ref document: A8