WO2013067945A1 - 发光二极管灯芯和采用发光二极管作为光源的照明装置 - Google Patents

发光二极管灯芯和采用发光二极管作为光源的照明装置 Download PDF

Info

Publication number
WO2013067945A1
WO2013067945A1 PCT/CN2012/084280 CN2012084280W WO2013067945A1 WO 2013067945 A1 WO2013067945 A1 WO 2013067945A1 CN 2012084280 W CN2012084280 W CN 2012084280W WO 2013067945 A1 WO2013067945 A1 WO 2013067945A1
Authority
WO
WIPO (PCT)
Prior art keywords
emitting diode
light emitting
substrate
diode unit
insulating
Prior art date
Application number
PCT/CN2012/084280
Other languages
English (en)
French (fr)
Inventor
赵依军
李文雄
Original Assignee
Zhao Yijun
Li Wenxiong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhao Yijun, Li Wenxiong filed Critical Zhao Yijun
Publication of WO2013067945A1 publication Critical patent/WO2013067945A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/238Arrangement or mounting of circuit elements integrated in the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/005Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate is supporting also the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/02Globes; Bowls; Cover glasses characterised by the shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2107/00Light sources with three-dimensionally disposed light-generating elements
    • F21Y2107/30Light sources with three-dimensionally disposed light-generating elements on the outer surface of cylindrical surfaces, e.g. rod-shaped supports having a circular or a polygonal cross section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2107/00Light sources with three-dimensionally disposed light-generating elements
    • F21Y2107/40Light sources with three-dimensionally disposed light-generating elements on the sides of polyhedrons, e.g. cubes or pyramids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to semiconductor lighting technology, and more particularly to a light emitting diode wick and a lighting device using a light emitting diode as a light source. Background technique
  • LEDs Light-emitting diodes
  • the semiconductor wafer includes a PN structure. When a current passes, electrons are pushed toward the P region. In the P region, electrons recombine with holes, and then emit energy in the form of photons, and the wavelength of the light is formed by the material forming the PN structure. decided.
  • LEDs Compared with incandescent lamps and fluorescent energy-saving lamps, LEDs have many advantages such as environmental protection, recyclability, high luminous efficiency, rich color and dimming. Therefore, with the improvement of manufacturing processes, LED-based illumination sources will gradually become a mainstream light source.
  • heat dissipation can generally be improved by increasing the chip size and changing the material structure.
  • Cree uses a silicon carbide substrate that is nearly 20 times more thermally conductive than sapphire.
  • the substrate is a multi-layer structure, and the intermediate layer uses an insulating layer material having a high thermal conductivity, so that the thermal energy of the LED chip passes through the lower layer.
  • the aluminum plate spreads quickly and passes out.
  • the common heat dissipation strategy is to configure the LED fixture with heat dissipation components (such as fins, heat pipes, temperature equalization plates, loop heat pipes, and piezoelectric fans), so that the heat generated by the LEDs can be quickly dissipated by its rapid heat dissipation capability. In the surrounding environment.
  • heat dissipation components such as fins, heat pipes, temperature equalization plates, loop heat pipes, and piezoelectric fans
  • the application date and application number of the Chinese patent application "Light-emitting diode lamp heat dissipation structure" of November 9, 2004 and 200410052114.7 respectively disclose a light-emitting diode lamp heat dissipation structure including a line
  • the road driving illuminating board and the line control board, the line driving illuminating board is integrated with the LED array;
  • the line driving illuminating board is provided with a heat dissipating reflective aluminum plate, the lower part of which is coupled with a guiding heat dissipating layer, and the other side of the guiding heat dissipating layer is coupled with a heat dissipating Aluminum plate.
  • the above line control board may be wrapped with a conductive heat sink to further dissipate the heat generated when the line control board operates.
  • a light-emitting diode wick comprising:
  • At least one light emitting diode unit disposed on the first surface of the substrate to form heat conduction with the substrate;
  • a driving controller disposed on the second surface of the substrate, electrically connected to the at least one light emitting diode unit to provide a required operating current or operating voltage to the at least one light emitting diode unit, wherein the first The surface is the same or opposite to the second surface.
  • the insulating and thermally conductive substrate is composed of a ceramic material or a thermally conductive insulating polymer composite material.
  • a wiring layer formed on the first and second surfaces and electrically connected to the light emitting diode unit and the drive controller is further included.
  • the wiring layer is formed on the first and second surfaces by a printed circuit process.
  • the light-emitting diode unit is a light-emitting diode die that is fixed on the first surface and passes through a bonding process or a flip-chip on board (FCOB) process with the wiring layer Achieve electrical connections.
  • FCOB flip-chip on board
  • the light-emitting diode unit is a light-emitting diode unit electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light-emitting diode units are connected in series, parallel, hybrid or cross-array.
  • the driving controller is in the form of a semiconductor wafer, which is fixed on the second surface and is implemented by a bonding process or a flip-chip (FCOB) process with the wiring layer. Electrical connections.
  • the drive controller is in the form of a package chip that is fixed to the second surface and electrically connected to the wiring layer by soldering.
  • At least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • At least one of the circuits is integrated with the drive controller in the same semiconductor wafer or packaged chip.
  • the circuit is in the form of a semiconductor wafer fixed to the first or second surface of the substrate and passed through a bonding process or a flip chip (FCOB) on the wiring layer.
  • FCOB flip chip
  • the circuit is in the form of a package chip that is fixed to the first or second surface of the substrate and electrically connected to the wiring layer by a soldering process.
  • Still another object of the present invention is to provide an illumination device using a light-emitting diode as a light source, which has the advantages of excellent heat dissipation effect and low manufacturing cost.
  • a lighting device using a light emitting diode as a light source comprising:
  • a lamp housing including a heat sink
  • LED wick including:
  • An insulated thermally conductive substrate fixed to the heat dissipating member to form heat conduction between the substrate and the heat dissipating member;
  • At least one light emitting diode unit disposed on the first surface of the substrate to form heat conduction with the substrate;
  • a driving controller disposed on the second surface of the substrate, electrically connected to the at least one light emitting diode unit to provide a required operating voltage or operating current to the at least one light emitting diode unit, wherein the first Same as the second surface Or the opposite surface.
  • the substrate is fixed to the heat sink by means of a thermal conductive adhesive or a thermally conductive double-sided film.
  • the heat dissipating member is made of metal
  • the lamp housing further includes a lamp cap, and the heat dissipating member is connected to the lamp cap via an insulating member.
  • the heat dissipating member is made of a ceramic material or a thermally conductive insulating polymer composite material.
  • the insulating and thermally conductive substrate is made of a ceramic material or a heat conductive insulating polymer composite material.
  • a wiring layer formed on the first and second surfaces and electrically connected to the light emitting diode unit and the driving controller is further included.
  • the wiring layer is formed on the first and second surfaces by a printed circuit process.
  • the light emitting diode unit is a light emitting diode die fixed to the first surface and implemented by a bonding process or a flip chip (FCOB) process with the wiring layer Electrical connections.
  • FCOB flip chip
  • the light emitting diode unit is a light emitting diode unit electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light emitting diode units are connected in series, in parallel, in a mixture or in a cross array.
  • the driving controller is in the form of a semiconductor wafer fixed to the second surface and electrically connected to the wiring layer by a bonding process or a flip chip (FCOB) process connection.
  • FCOB flip chip
  • the drive controller is in the form of a package chip that is fixed to the second surface and electrically connected to the wiring layer by soldering.
  • At least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • At least one of the circuits is integrated in the same semiconductor wafer or package chip as the drive controller.
  • the circuit is in the form of a semiconductor wafer fixed to the first or second surface of the substrate and passed through a bonding process or board with the wiring layer
  • FCOB upper flip chip
  • the circuit is in the form of a packaged chip which is fixed to the first or second surface of the substrate and is electrically connected to the wiring layer by a soldering process.
  • the above object of the present invention can also be achieved by the following technical solutions:
  • a lighting device using a light emitting diode as a light source comprising:
  • a lamp housing including a heat sink
  • An insulating thermally conductive substrate fixed to the heat dissipating member to form heat conduction between the substrate and the heat dissipating member;
  • At least one light emitting diode unit disposed on a surface of the substrate to form heat conduction with the substrate;
  • a driving power supply module disposed in the lamp housing
  • the substrate is fixed to the heat sink by means of a thermal conductive adhesive or a thermally conductive double-sided film.
  • the substrate and the heat sink are integrally formed.
  • the heat dissipating member is made of metal
  • the lamp housing further includes a lamp cap, and the heat dissipating member is connected to the lamp cap via an insulating member.
  • the heat dissipating member is made of a ceramic material or a thermally conductive insulating polymer composite material.
  • the substrate is composed of a ceramic material or a thermally conductive insulating high molecular composite material.
  • the wiring layer is formed on a surface of the heat sink by a printed circuit process.
  • the light emitting diode unit is a light emitting diode die that is fixed on a surface of the heat sink and passes through a bonding process or a flip chip (FCOB) process with the wiring layer. Achieve electrical connections.
  • FCOB flip chip
  • the light emitting diode unit is a light emitting diode unit electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light emitting diode units are connected in series, in parallel, in a hybrid or in a cross array.
  • the driving power supply module includes a power conversion circuit and a drive control circuit.
  • the driving power supply module further includes a dimming control circuit and a power factor correction circuit.
  • the above lighting device further comprising a sensing circuit and a communication circuit disposed inside the lamp housing or on the surface of the substrate.
  • a sensing circuit and a communication circuit disposed inside the lamp housing or on the surface of the substrate.
  • a lighting device using a light emitting diode as a light source comprising:
  • a lamp housing comprising an insulated heat conducting portion
  • At least one light emitting diode unit disposed on an outer surface of the insulated thermally conductive portion to form heat conduction with the insulated thermally conductive portion;
  • a drive power module disposed within the lamp housing
  • the insulating and thermally conductive portion is composed of a ceramic material or a heat conductive insulating polymer composite material.
  • the light emitting diode unit is a light emitting diode die fixed to an outer surface of the insulating heat conducting portion and passed through a bonding process or a flip chip (FCOB) on the wiring layer The process achieves an electrical connection.
  • FCOB flip chip
  • the light emitting diode unit is a light emitting diode unit electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light emitting diode units are connected in series, in parallel, in a mixture or in a cross array.
  • the driving power supply module includes a power conversion circuit and a drive control circuit.
  • the driving power supply module further includes a dimming control circuit and a power factor correction circuit.
  • the above lighting device further comprising a sensing circuit and a communication circuit disposed inside the lamp housing or on an outer surface of the insulating and thermally conductive portion.
  • a sensing circuit and a communication circuit disposed inside the lamp housing or on an outer surface of the insulating and thermally conductive portion.
  • a lighting device using a light emitting diode as a light source comprising:
  • a lamp housing including a heat sink
  • a columnar body extending along a longitudinal axis of the lamp envelope, which is composed of an insulating and thermally conductive material and one of which is fixed to the heat dissipating member to form heat conduction between the columnar body and the heat dissipating member;
  • At least one light emitting diode unit disposed on an outer surface of the columnar body to form heat conduction with the columnar body;
  • a drive power module disposed within the lamp housing
  • a wiring layer formed on the outer surface of the columnar body electrically connects the light emitting diode unit to the driving power source module.
  • the insulating heat conductive material is a ceramic material or a heat conductive insulating polymer composite material.
  • one of the ends of the columnar body is adhered to the heat sink by a heat transfer adhesive.
  • the columnar body is integrally formed with the heat sink.
  • the light emitting diode unit is a light emitting diode die that is fixed on an outer surface of the column and passes through a bonding process or a flip chip (FCOB) on the wiring layer. The process achieves an electrical connection.
  • the light emitting diode unit is a light emitting diode unit electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light emitting diode units are connected in series, in parallel, in a mixture or in a cross array.
  • the driving power supply module includes a power conversion circuit and a drive control circuit.
  • the driving power supply module further includes a dimming control circuit and a power factor correction circuit.
  • the above lighting device further comprising a sensing circuit and a communication circuit disposed inside the lamp housing or the columnar body to the outer surface. It is still another object of the present invention to provide a light emitting diode wick suitable for use with a light
  • the shells are assembled together to provide a lighting device that is excellent in heat dissipation and low in manufacturing cost.
  • a light-emitting diode wick comprising:
  • a printed wiring board comprising an insulating layer and a wiring layer formed on the first and second surfaces of the insulating layer;
  • At least one light emitting diode unit disposed on the first surface of the insulating layer and electrically connected to the wiring layer;
  • a drive controller disposed on the second surface of the substrate, electrically coupled to the at least one light emitting diode unit via the wiring layer to provide a desired operating voltage or operating current to the at least one light emitting diode unit.
  • the light-emitting diode unit is a light-emitting diode die that is fixed on the first surface and passes through a bonding process or a flip-chip on board (FCOB) process with the wiring layer Achieve electrical connections.
  • FCOB flip-chip on board
  • the light-emitting diode unit is a light-emitting diode unit that is fixed to the first surface and electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light-emitting diode units are connected in series, parallel, hybrid or cross-array.
  • the driving controller is in the form of a semiconductor wafer, which is fixed on the second surface and is implemented by a bonding process or a flip-chip (FCOB) process with the wiring layer. Electrical connections.
  • the drive controller is in the form of a package chip that is fixed to the second surface and electrically connected to the wiring layer by soldering.
  • At least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • At least one of the circuits is integrated with the drive controller in the same semiconductor wafer or packaged chip.
  • the circuit is in the form of a semiconductor wafer, which is fixed on the first or second surface and is implemented by a bonding process or a flip-chip (FCOB) process with the wiring layer. Electrical connections.
  • the circuit is in the form of a package chip, It is fixed to the first or second surface and is electrically connected to the wiring layer by a soldering process.
  • Still another object of the present invention is to provide an illumination device using a light-emitting diode as a light source, which has the advantages of excellent heat dissipation effect and low manufacturing cost.
  • a lighting device using a light emitting diode as a light source comprising:
  • a lamp housing including a heat sink
  • LED wick including:
  • a printed wiring board comprising an insulating layer and a wiring layer formed on the first and second surfaces of the insulating layer, the insulating layer being fixed to the heat sink to be between the substrate and the heat sink Forming heat conduction;
  • At least one light emitting diode unit disposed on the first surface of the insulating layer and electrically connected to the wiring layer;
  • a drive controller disposed on the second surface of the insulating layer is electrically coupled to the at least one light emitting diode unit through the wiring layer to provide a desired operating voltage or operating current to the at least one light emitting diode unit.
  • the insulating layer is fixed to the heat sink by means of a thermal conductive adhesive or a thermally conductive double-sided film.
  • the heat dissipating member is made of metal
  • the lamp housing further includes a lamp cap, and the heat dissipating member is connected to the lamp cap via an insulating member.
  • the heat dissipating member is made of a ceramic material or a thermally conductive insulating polymer composite material.
  • the light emitting diode unit is a light emitting diode die fixed to the first surface and implemented by a bonding process or a flip chip (FCOB) process with the wiring layer Electrical connections.
  • FCOB flip chip
  • the light emitting diode unit is a light emitting diode unit that is fixed to the first surface and electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light emitting diode units are connected in series, in parallel, in a hybrid or in a cross array.
  • the driving controller is in the form of a semiconductor wafer fixed to the second surface and electrically connected to the wiring layer by a bonding process or a flip chip (FCOB) process connection.
  • FCOB flip chip
  • the drive controller is in the form of a package chip that is fixed to the second surface and electrically connected to the wiring layer by soldering.
  • At least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • At least one of the circuits is integrated with the drive controller in the same semiconductor wafer or packaged chip.
  • the circuit is in the form of a semiconductor wafer fixed to the first or second surface and electrically connected to the wiring layer by a bonding process or a flip chip (FCOB) process connection.
  • FCOB flip chip
  • the circuit is in the form of a packaged chip which is fixed to the first or second surface and is electrically connected to the wiring layer by a soldering process. It is still another object of the present invention to provide an LED wick that is adapted to be assembled with a lamp housing to provide a lighting device that is excellent in heat dissipation and low in manufacturing cost.
  • a light-emitting diode wick comprising:
  • a printed wiring board comprising first and second insulating layers, a metal layer between the first and second insulating layers, and a wiring layer formed on surfaces of the first and second insulating layers; at least one light emitting diode unit Provided on the surface of the first insulating layer and electrically connected to the wiring layer;
  • a driving controller disposed on a surface of the second insulating layer is electrically connected to the at least one light emitting diode unit through the wiring layer to supply a required operating current or operating voltage to the at least one light emitting diode unit.
  • the light-emitting diode unit is a light-emitting diode die, which is fixed on the surface of the first insulating layer and is bonded to the wiring layer by a bonding process or a flip chip on the board (FCOB) The process achieves an electrical connection.
  • FCOB flip chip on the board
  • the light-emitting diode unit is a light-emitting diode unit that is fixed on a surface of the first insulating layer and is soldered to the wiring layer Connection mode is electrically connected.
  • the wiring layer is such that a plurality of the light-emitting diode units are connected in series, parallel, hybrid or cross-array.
  • the driving controller is in the form of a semiconductor wafer which is fixed on the surface of the second insulating layer and passes through a bonding process or a flip chip (FCOB) on the wiring layer. The process achieves an electrical connection.
  • FCOB flip chip
  • the drive controller is in the form of a package chip which is fixed to the surface of the second insulating layer and electrically connected to the wiring layer by soldering.
  • At least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • At least one of the circuits is integrated with the drive controller in the same semiconductor wafer or packaged chip.
  • the circuit is in the form of a semiconductor wafer fixed to the surface of the first or second insulating layer and passed through a bonding process or a flip chip (FCOB) on the wiring layer.
  • FCOB flip chip
  • the circuit is in the form of a package chip which is fixed to the surface of the first or second insulating layer and electrically connected to the wiring layer by a soldering process.
  • Still another object of the present invention is to provide an illumination device using a light-emitting diode as a light source, which has the advantages of excellent heat dissipation effect and low manufacturing cost.
  • a lighting device using a light emitting diode as a light source comprising:
  • a lamp housing including a heat sink
  • LED wick including:
  • a printed wiring board comprising first and second insulating layers, a metal layer between the first and second insulating layers, and a wiring layer formed on surfaces of the first and second insulating layers, the metal layer and The heat dissipating members are fixed together to form heat conduction between the printed wiring board and the heat dissipating member;
  • At least one light emitting diode unit disposed on a surface of the first insulating layer and electrically connected to the wiring layer; a driving controller disposed on a surface of the second insulating layer, electrically connected to the at least one light emitting diode unit through the wiring layer to provide a required operating voltage or operating current to the at least one light emitting diode unit.
  • the edge of the metal layer is fixed to the heat sink by means of a thermal conductive adhesive or a heat-conductive double-sided film.
  • the heat dissipating member is made of metal
  • the lamp housing further includes a lamp cap, and the heat dissipating member is connected to the lamp cap via an insulating member.
  • the heat dissipating member is made of a ceramic material or a thermally conductive insulating polymer composite material.
  • the light emitting diode unit is a light emitting diode die that is fixed on the surface of the first insulating layer and passes through a bonding process or a flip chip (FCOB) on the wiring layer. The process achieves an electrical connection.
  • FCOB flip chip
  • the light emitting diode unit is a light emitting diode unit fixed to a surface of the first insulating layer and electrically connected to the wiring layer by soldering.
  • the wiring layer is such that a plurality of the light emitting diode units are connected in series, in parallel, in a mixture or in a cross array.
  • the driving controller is in the form of a semiconductor wafer which is fixed on the surface of the second insulating layer and passes through a bonding process or a flip chip (FCOB) process with the wiring layer. Achieve electrical connections.
  • FCOB flip chip
  • the drive controller is in the form of a package chip that is fixed to the surface of the second insulating layer and electrically connected to the wiring layer by soldering.
  • At least one of the following circuits is further included: a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit.
  • At least one of the circuits is integrated with the drive controller in the same semiconductor wafer or packaged chip.
  • the circuit is in the form of a semiconductor wafer fixed to the surface of the first or second insulating layer and passed through a bonding process or a flip chip (FCOB) process with the wiring layer Achieve electrical connections.
  • FCOB flip chip
  • the circuit is in the form of a packaged chip, which is fixed on the surface of the first or second insulating layer and is electrically connected to the wiring layer by a soldering process Gas connection.
  • the LED wick includes a light emitting diode unit, a drive controller and other circuits (such as a sensing circuit, a dimming control circuit, a communication circuit, and a power factor correction circuit) disposed on an insulating thermally conductive substrate.
  • a sensing circuit such as a dimming control circuit, a communication circuit, and a power factor correction circuit
  • Such as) or components such as capacitors and inductors, etc.
  • this highly integrated structure is very advantageous for large-scale production, can greatly reduce assembly and logistics costs in the luminaire manufacturing process, and also saves future upgrades and maintenance costs. .
  • the LED unit is integrated into the insulating and thermally conductive substrate in the form of an unpackaged die, and the insulating and thermally conductive substrate is directly connected to the heat sink of the lamp housing, and the die ⁇ bracket ⁇ aluminum substrate
  • the wiring layer ⁇ the insulating and thermally conductive material layer of the aluminum substrate ⁇ the metal plate of the aluminum substrate ⁇ the heat conduction path of the heat sink significantly reduces the heat conduction interface, thereby improving the heat conduction efficiency of the lighting device on the one hand, and reducing the manufacturing on the other hand. cost.
  • the insulating thermally conductive substrate and the heat sink are integrally formed, the heat transfer efficiency is further improved.
  • the insulating thermally conductive substrate is made of a ceramic material, and the structure has been improved because of good bonding between the wiring layer and the ceramic material, between the LED unit and the ceramic material and the wiring. reliability. Moreover, the low price of ceramic materials further drives down costs.
  • the wiring layer can be formed by a silver paste sintering process, which can avoid environmental pollution caused by the copper etching process.
  • the light emitting diode unit is directly disposed on the outer surface of the insulating and heat conducting portion of the lamp housing, so that the heat dissipation problem of the light emitting diode can be effectively solved without an additional heat sink, which greatly reduces the material cost. And manufacturing costs.
  • a columnar body extending along the longitudinal axis of the lamp envelope and composed of an insulating and thermally conductive material is used to carry the light emitting diode unit, so that a light-emitting space angle of approximately 360 degrees can be formed to meet special application requirements.
  • FIG. 1 is a schematic view showing an illumination device using a light-emitting diode as a light source according to a first embodiment of the present invention, showing the structure of a lamp envelope.
  • Figure 2 is an exploded perspective view of the lighting device of Figure 1.
  • Fig. 3 is a schematic view of an illumination device using a light emitting diode as a light source in accordance with a second embodiment of the present invention.
  • Fig. 4 is a schematic view of an illumination device using a light emitting diode as a light source in accordance with a third embodiment of the present invention.
  • Fig. 5 is a schematic view showing an illumination device using a light emitting diode as a light source in accordance with a fourth embodiment of the present invention.
  • Figure 6 is a schematic view of an illumination device using a light emitting diode as a light source in accordance with a fifth embodiment of the present invention.
  • FIG. 7A and 7B are schematic views of a light-emitting diode wick according to a sixth embodiment of the present invention, wherein Fig. 7A is a view of one surface of the light-emitting diode wick, and Fig. 7B is a view of the other surface of the light-emitting diode wick.
  • Fig. 8 is a schematic view of a substrate comprising a metal core material applicable to an embodiment of the present invention.
  • Fig. 9 is a schematic view of a substrate comprising a core material of an insulating material applicable to an embodiment of the present invention.
  • Figure 10 is a schematic view of a light-emitting diode wick in accordance with a seventh embodiment of the present invention.
  • Figure 11 is an exploded perspective view showing an illumination device using a light emitting diode as a light source in accordance with an eighth embodiment of the present invention.
  • Fig. 12 is an exploded perspective view showing an illumination device using a light emitting diode as a light source according to a ninth embodiment of the present invention. detailed description
  • the term "lighting device” should be understood broadly to mean all devices capable of providing practical or aesthetic effects by providing light, including but not limited to table lamps, wall lamps, spotlights, chandeliers, ceiling lamps, street lamps, flashlights. , stage set lights and city lights.
  • the term "light envelope” should be understood broadly to mean a physical structure for carrying or accommodating a light source, for example, which may be arranged in a completely enclosed or semi-closed space surrounded by a lamp housing or in a lamp housing. External or internal surface.
  • semiconductor wafer refers to a plurality of individual single circuits formed on a semiconductor material (eg, silicon, gallium arsenide, etc.), "semiconductor wafer” or “die” “refers to such a single circuit, and "packaged chip” refers to a physical structure formed by packaging a semiconductor wafer. In a typical such physical structure, a semiconductor wafer is mounted, for example, on a support and encapsulated with a sealing material.
  • semiconductor material eg, silicon, gallium arsenide, etc.
  • die refers to such a single circuit
  • packaged chip refers to a physical structure formed by packaging a semiconductor wafer. In a typical such physical structure, a semiconductor wafer is mounted, for example, on a support and encapsulated with a sealing material.
  • light emitting diode unit refers to a unit comprising an electroluminescent material, examples of which include, but are not limited to, P-N junction inorganic semiconductor light emitting diodes and organic light emitting diodes (OLEDs and polymer light emitting diodes (PLEDs)).
  • OLEDs organic light emitting diodes
  • PLEDs polymer light emitting diodes
  • the P-N junction inorganic semiconductor light emitting diodes can have different structural forms, such as, but not limited to, light emitting diode dies and light emitting diode cells.
  • light-emitting diode die refers to a semiconductor wafer having a PN structure and having electroluminescence capability
  • light-emitting diode cell refers to a physical structure formed by packaging a die, which is typical In a physical configuration, the die is mounted, for example, on a bracket and encapsulated with a sealing material.
  • wiring refers to conductive patterns disposed on an insulating surface for electrical connection between components, including but not limited to traces and holes (eg pads, Component holes, fastening holes, metallized holes, etc.).
  • traces and holes eg pads, Component holes, fastening holes, metallized holes, etc.
  • thermal conduction refers to the way heat is transferred from a higher temperature part to a lower temperature part in a solid.
  • the heat generated by the light emitting diode unit can be mainly transferred to the lamp housing in a thermally conductive manner and then to the outside of the lighting device (e.g., in the form of heat conduction, convection, and heat radiation).
  • ceramic material generally refers to non-metallic inorganic materials that require high temperature treatment or densification, including but not limited to silicates, oxides, carbides, nitrides, sulfides, borides, and the like.
  • thermally conductive insulating polymer composite material refers to a polymer material which has a high thermal conductivity by forming a thermally conductive network chain inside a metal or inorganic filler filled with a high thermal conductivity.
  • the thermally conductive insulating polymer composite material includes, for example, but not limited to, a polypropylene material to which alumina is added, a polycarbonate to which alumina, silicon carbide, and cerium oxide are added, and an acrylonitrile-butadiene-styrene terpolymer.
  • thermally conductive insulating polymer composite material For a detailed description of the thermally conductive insulating polymer composite material, see Li Li et al., "Research on Thermal Conductive and Insulating Polymer Materials of Polycarbonate and Polycarbonate Alloys” (Journal of Materials Heat Treatment, August 2007, Vol. 28, No.4, pp51-54 ) And Li Shui et al., “Application of Alumina in Thermal Conductive Insulating Polymer Composites"("PlasticAdditives", 2008, No. 3, ppl 4-16), these documents are hereby incorporated by reference in their entirety. .
  • Electrode connection should be understood to include situations where electrical energy or electrical signals are transmitted directly between two units, or where electrical energy or electrical signals are transmitted indirectly via one or more third units.
  • Drive power supply or “LED drive power supply” refers to an “electronic control device” between an alternating current (AC) or direct current (DC) power supply connected to the outside of the lighting device and a light emitting diode as a light source for providing the light emitting diode
  • AC alternating current
  • DC direct current
  • the current or voltage required eg constant current, constant voltage or constant power, etc.
  • Figure 1 is a schematic view of an illumination device using a light-emitting diode as a light source according to a first embodiment of the present invention, showing the structure of a lamp envelope.
  • the lamp housing 1 of the lighting device includes a lamp cap 110, a heat radiating member 120 (a cup-shaped member in Fig. 1), and a lamp army 130.
  • the base 110 can be used in the form of a threaded screw interface similar to an ordinary incandescent lamp and an energy-saving lamp to provide an electrical connection to an external power source (for example, a 220 volt AC power source), but can also be rotated.
  • the heat dissipating member 120 is disposed between the lamp cap 110 and the lamp arm 130, and can be made of various insulating heat dissipating materials, such as ceramic materials or thermally conductive insulating polymer composite materials, etc., which are used for carrying or The light source and various functional circuits are accommodated, and on the other hand, the heat generated by the light source and the functional circuit is transmitted to the outside of the lamp housing; the lamp army 130 is made of a light-transmitting material, and is mainly used for protecting the light source and the functional circuit and The light is softer and more evenly diverging into the space.
  • the heat sink is made of insulating and heat conductive materials, It is also possible to use a metal material.
  • an insulating member for example, ceramic or plastic may be added between the base 110 and the heat sink 120 to electrically insulate them.
  • FIG. 2 is an exploded perspective view of the lighting device of Figure 1.
  • the lamp housing 1 of the lighting device includes a lamp cap 110, a heat sink 120, and a lamp army 130.
  • the inner cavity of the heat dissipating member 120 is provided with a substrate 20 perpendicular to the longitudinal axis of the lamp housing and separating the inner space of the lamp housing.
  • the substrate is also made of an insulating and heat conductive material (for example, ceramic material or thermal insulation).
  • the molecular composite material or the like is configured to be integrally formed with the heat dissipating member 120, or the periphery thereof may be assembled by means of a thermal conductive adhesive, a thermally conductive double-sided film or a notch and a heat dissipating member 120 formed on an inner surface of the heat dissipating member 120.
  • a substrate made of a ceramic material can be produced by a die pressing method, and the substrate produced by this method is thick (e.g., 1.5-3 mm) and has a high hardness.
  • the light emitting diode unit 30 is disposed on the substrate 20.
  • a wiring 202 is formed on the surface 201A by a printed circuit process (for example, by forming a wiring layer by sintering a silver paste pattern on a ceramic material), which is divided into two segments, each of which is connected to the LED unit 30.
  • One of the electrodes is welded together.
  • Each trace contains a leading end, denoted by reference numerals 202A and 202B, respectively.
  • One end of the wire 203A is connected to the terminal 202A, and the other end is connected to the driving power module (not shown) provided in the inner space of the lamp housing through the through hole 204A, or is connected to the surface of the substrate 20 (for example, the same as the surface 201A or The driving power module on the opposite side; likewise, one end of the wire 203B is connected to the leading end 202B, and the other end is connected to the driving power supply module disposed in the inner space of the lamp housing through the through hole 204B, or is connected to the surface mounted on the substrate 20 The upper drive power module, thereby achieving an electrical connection between the LED unit 30 and the drive power module.
  • soldering is performed at the periphery where the wires 203A and 203B are in contact with the terminals 202A and 202B.
  • the LED unit 30 can be adhered to the surface 201A of the substrate 20 by means of an adhesive such as epoxy or silica gel. If it is necessary to adjust the wavelength of the light, the phosphor may be mixed in an epoxy resin or a silica gel, or the LED monomer 30 may be adhered to the surface 201A of the substrate 20 by means of an adhesive after the phosphor layer is coated on the surface of the LED unit 30. .
  • the embodiment shown in Figure 2 can also include a drive power source (not shown).
  • the driving power source of the embodiment includes a power conversion circuit and a driving circuit, wherein the power conversion circuit converts high-voltage alternating current (for example, 100-220 volts alternating current) into low-voltage direct current, and the driving circuit utilizes The low voltage direct current supplies a suitable current or voltage to the light emitting diode (eg constant voltage, constant current or constant power).
  • Appropriate buck mode can be adopted in the power conversion circuit according to actual application requirements, including but not limited to resistor and capacitor buck, resistor buck, conventional transformer buck, electronic transformer buck, RCC buck mode switching power supply, PWM Control mode switching power supply, etc.
  • the driving circuit can adopt various driving methods, such as constant voltage power supply, constant current power supply, and constant voltage constant current power supply.
  • the driving power supply may further include a control circuit for implementing luminous flux and optical tone control, power factor correction, and timing switching, and implementing overvoltage protection, overheat protection, short circuit protection, output open circuit protection, low voltage latching, electromagnetic interference suppression, Protection circuit for conducting noise, anti-static, lightning protection, surge protection, anti-harmonic oscillation, etc.
  • a control circuit for implementing luminous flux and optical tone control, power factor correction, and timing switching, and implementing overvoltage protection, overheat protection, short circuit protection, output open circuit protection, low voltage latching, electromagnetic interference suppression, Protection circuit for conducting noise, anti-static, lightning protection, surge protection, anti-harmonic oscillation, etc.
  • the driving power source may be implemented in the form of a physically independent circuit module (for example, molded as a separate component) disposed in the inner space of the lamp housing surrounded by the heat sink 120 and associated with the light emitting diode
  • the cells 30 are electrically connected together.
  • FIG. 2 only shows the electrical connection between the wiring 202 and the LED unit 30, alternatively, the substrate 20 may be used as a printed wiring board to form a certain wiring pattern or wiring on the surface thereof.
  • Layers and electrical components of various components are connected through a wiring layer to form Circuits that implement various functions, such as, but not limited to, power conversion, drive control, intelligent lighting control, communication, environmental state sensing, and dimming.
  • a suitable wiring pattern can be formed on one or both surfaces of the substrate 20 by a printed circuit process as in the case of a printed circuit board, and then the corresponding components are mounted on the surface.
  • the light emitting diode unit is shown in the form of a light emitting diode unit 30, a die form can also be used.
  • the LED die can be directly connected to the wiring 202 by means of a bonding machine in a gold or silver wire or alloy wire soldering process (i.e., a bonding process). More preferably, the LED die is electrically connected to the wiring using a flip-chip on board (FCOB) process.
  • FCOB flip-chip on board
  • FIG. 3 is a schematic illustration of an illumination device employing a light emitting diode as a light source in accordance with a second embodiment of the present invention, employing a plurality of light emitting diode units as a light source arrangement.
  • Fig. 3 only shows a heat sink made of an insulating heat conductive material or a metal material, and a member such as a substrate.
  • the inner cavity of the heat dissipating member 120 (the cup-shaped member in FIG. 3) is also provided with a substrate 20 perpendicular to the axial direction thereof, and the substrate may also be integrally formed with the heat dissipating member 120 or adhered thereto.
  • the mixture or notch is fixed together.
  • a plurality of LED cells 30 connected in series are disposed on the surface of the substrate 20.
  • a transparent epoxy or silicone paste is adhered to the surface 201A of the substrate 20 by means of a transparent epoxy or silicone paste.
  • the wiring 202 is divided into a plurality of segments, through which the individual LED cells 30 are sequentially connected in series.
  • a through hole 204 is defined in the center of the substrate 20, and two terminals 202A and 202B of the wiring 202 are disposed near the through hole 204, wherein one end of the wire 203A is soldered to the leading end 202A, and the other end passes through the through hole 204 and is disposed.
  • the driving power supply module is electrically connected in the inner space of the lamp housing or on the other surface of the substrate 20; likewise, one end of the wire 203B is soldered to the leading end 202B, and the other end passes through the through hole 204 and is disposed in the inner space of the lamp housing or is mounted on The drive power module on the surface of the substrate 20 is electrically connected.
  • the LED units are connected in series and then connected to the driving power supply module or circuit
  • the plurality of LED units may also adopt other connection methods, such as parallel, string. Connection methods such as parallel, hybrid or cross array.
  • Fig. 4 is a schematic view of an illumination device using a light emitting diode as a light source in accordance with a third embodiment of the present invention.
  • the lamp housing 1 of the lighting device according to the present embodiment also includes a lamp cap 110, a heat dissipating member 120, and a lamp army (not shown).
  • a lamp cap 110 As shown in Fig. 4, the lamp housing 1 of the lighting device according to the present embodiment also includes a lamp cap 110, a heat dissipating member 120, and a lamp army (not shown).
  • the difference between this embodiment and the above-mentioned embodiments shown in Figs. 1-3 is mainly in the structure of the heat sink that carries the light source and various functional circuits, which will be further described below.
  • a columnar body 40 is disposed inside the lamp housing, and the columnar body 40 extends along the longitudinal axis of the lamp housing and And also composed of an insulating heat conductive material, which can be integrally formed with the heat sink 120, or a support base 401 as shown in FIG. 4, which is assembled by means of a thermal conductive adhesive, a thermally conductive double-sided film or an inner surface of the heat sink 120.
  • the notch secures the support base 401 to the heat sink 120.
  • the interior of the columnar body 40 may have a cavity, and its cross section may be various shapes including, for example, but not limited to, a polygon, a circle, an ellipse, and the like.
  • a plurality of LED cells 30 are adhered to the outer surface of the column 40, for example, by means of a transparent epoxy resin or silica gel.
  • the silver paste pattern is formed in the columnar body 40 to form a wiring layer) which is divided into a plurality of traces to connect the light emitting diode cells 30 in series, parallel, hybrid or cross array.
  • a through hole 204 is formed in the top of the columnar body 40. One ends of the wires 203A and 203B are soldered to the leading end of the wiring 202, and the other end is electrically connected to the driving power source through the through hole 204.
  • the driving power supply for supplying power to the light emitting diode is not shown in the embodiment shown in FIG.
  • the driving power source may be implemented in the form of a physically separate circuit module (for example, molded as a separate component) disposed in the interior of the lamp envelope or in the cavity of the column 40 and illuminated
  • the diode cells 30 are electrically connected together.
  • the support substrate 401 as a printed wiring board, form a certain wiring pattern or wiring layer on one or both surfaces thereof, and place various components (for example, a microcontroller chip, a resistor) through the wiring layer. , capacitors, RF signal transceivers, temperature sensors, light intensity sensors and signal modulators/demodulators, etc.) Electrical components are connected to form circuits capable of performing various functions, such as but not limited to power conversion, driving Control, intelligent lighting control, communication, environmental status sensing and dimming.
  • a suitable wiring pattern can be formed on one or both surfaces of the support substrate 401 by a printed circuit process as in the case of a printed circuit board, and then the corresponding components are mounted on the surface. This will greatly increase integration, reduce manufacturing costs, and facilitate assembly and maintenance of LED lights.
  • the light emitting diode units can be uniformly distributed on the outer surface of the columnar body, an omnidirectional illumination of approximately 360 degrees can be realized, and the illumination light lines are more evenly hooked and soft.
  • Figure 5 is a lighting diagram using a light emitting diode as a light source in accordance with a fourth embodiment of the present invention. Schematic diagram of the device. In this embodiment, the illumination device is presented in the form of a spotlight.
  • the lamp housing 1 of the lighting device includes a lamp cap 110, a heat radiating member 120, and a lamp army 130.
  • the heat dissipating member 120 is disposed between the lamp cap 110 and the lamp body 130 and is also disposed in the inner cavity thereof with a substrate 20 perpendicular to the axial direction thereof.
  • the substrate is also composed of an insulating and heat conductive material, which is integrally formed with the heat dissipating member 120 or is thermally conductive.
  • a glue, a thermally conductive double-sided film or a notch formed on the inner surface of the heat sink 120 is fixed to the heat sink 120.
  • the heat sink may be made of an insulating heat conductive material or a metal material.
  • an insulating member such as ceramic or plastic may be added between the lamp cap 110 and the heat sink 120 to electrically insulate therebetween. .
  • three LED cells 30 are adhered to the surface 201A of the substrate 20 by means of a transparent epoxy or silica gel.
  • the wiring 202 is divided into a plurality of segments, and a plurality of LED cells 30 are sequentially connected in series by a plurality of them.
  • a through hole 204 is formed in the center of the substrate 20, and two terminals 202A and 202B of the wiring 202 are disposed near the through hole 204, wherein one end of the wire 203A is soldered to the leading end 202A, and the other end passes through the through hole 204 and is driven.
  • the power supply is electrically connected; likewise, one end of the wire 203B is soldered to the terminal 202B, and the other end is electrically connected to the driving power source through the through hole 204.
  • the driving power source can be implemented in the form of a physically independent circuit module (for example, molded as a separate component), the circuit module being disposed in the inner space of the lamp housing surrounded by the heat sink 120 and emitting light
  • the diode cells 30 are electrically connected together.
  • the power conversion circuit can be omitted, and the drive circuit supplies the external power source with a low voltage direct current output from the external power source to supply a constant current or voltage to the light emitting diode.
  • the dimming circuit and the corrected power factor circuit can also be integrated into the drive power source.
  • the substrate 20 can also be used as a printed wiring board, and a wiring layer is formed on a surface thereof (for example, a surface opposite to the surface 201A) and a component for driving the power source can be used. Mounted on the surface.
  • a wiring layer is formed on a surface thereof (for example, a surface opposite to the surface 201A) and a component for driving the power source can be used. Mounted on the surface.
  • Figure 6 is a schematic illustration of a lighting device using a light emitting diode as a light source in accordance with yet another embodiment of the present invention.
  • the lamp housing 1 of the illumination device includes a lamp cap 110, which is composed of an insulating heat conductive material (for example, a ceramic material and a thermally conductive insulating polymer composite material).
  • the heat sink 120 and the cover plate 140 are used for sealing the inner cavity of the lamp housing 1 to protect against dust, moisture, and the like.
  • This kind of lampless lighting method is more suitable for outdoor lighting applications such as landscape lighting and street lighting.
  • a plurality of LED cells 30 are adhered to the outer surface of the heat sink 120, for example, by means of a transparent epoxy or silicone.
  • a wiring 202 is also formed by a printed circuit process (for example, by forming a wiring layer by sintering a silver paste pattern on a ceramic material), which is divided into a plurality of traces to separate the light emitting diodes.
  • the 30s are connected in series, in parallel, in a hybrid or cross array, and are connected via wires 203 to a driving power source disposed inside the heat sink 120.
  • the driving power source can be implemented in the form of a physically independent circuit module (for example, molded as a separate component), the circuit module being disposed in the inner space of the lamp housing and electrically connected to the LED unit 30 connected.
  • a physically independent circuit module for example, molded as a separate component
  • the light emitting diode units are uniformly distributed on the outer surface of the heat sink 120, 360 degree omnidirectional illumination can be realized.
  • the light-emitting diode unit can directly dissipate heat to the external environment by means of heat radiation, in addition to transferring heat to the lamp housing portion of the heat-conductive insulating material by heat conduction.
  • FIG. 7A and 7B are schematic views of a light-emitting diode wick according to a sixth embodiment of the present invention, wherein Fig. 7A is a view of one surface of the light-emitting diode wick, and Fig. 7B is a view of the other surface of the light-emitting diode wick.
  • the light-emitting diode wick 2 includes a substrate 20, a plurality of light-emitting diode units 30, and a driving power source 50.
  • the substrate 20 is made of an insulating heat conductive material such as a ceramic material or a thermally conductive insulating polymer composite. Referring to FIG. 7A, wiring is formed on one surface 201A of the substrate 20 (for example, a wiring layer is formed by sintering a silver paste pattern on a ceramic material). Therefore, in the present embodiment, the substrate 20 is equivalent to a printed wiring board.
  • a support platform and an electrical connection are provided for the light emitting diode unit 30 and the driving power source 50, and on the other hand, it also functions to transfer heat generated by the light emitting diode unit 30 and the driving power source 50 to the outside.
  • the substrate made of a ceramic material can be produced by a die pressing method, and the substrate produced by this method is thick (e.g., 1.5-3 mm) and has a high hardness.
  • the substrate 20 described above is made of high insulation such as ceramics and heat conduction It is made of an insulating and heat conductive material such as a molecular composite material, but a metal core printed circuit board (MCPCB) including a metal base layer (for example, an aluminum substrate) and a substrate including an insulating core material (for example, a paper substrate, a glass fiber cloth) may also be used.
  • MCPCB metal core printed circuit board
  • a substrate and a composite substrate using a glass fiber cloth as a surface reinforcing material or the like are used as a substrate.
  • a substrate 20 having a multilayer structure includes a first insulating layer 207A, a metal base layer 208, and a second insulating layer 207B which are sequentially stacked, wherein the first and second insulating layers 207A, 207B are composed of a low thermal resistance thermally conductive insulating material.
  • a special polymer filled with a special ceramic which has excellent thermal resistance, excellent viscoelasticity and ability to withstand mechanical and thermal stresses, and is suitable for bonding to the metal base layer 208.
  • the metal base layer 208 can be made of a metal having good thermal conductivity such as aluminum, copper, iron, and an alloy containing at least two of these metals.
  • the wiring 202 may be formed on the surfaces of the first and second insulating layers 207A and 207B by a printed circuit process, thereby providing electrical connection between the light emitting diode unit 30 and the driving power source 50 on the one hand, and the light emitting diode unit 30 on the other hand.
  • the heat generated by the driving power source 50 is efficiently transferred to the metal base layer 208, and the heat is efficiently transferred from the metal base layer 208 to the outside of the substrate 20.
  • the edge of the metal substrate 208 can be bonded to the heat sink of the illumination device with an adhesive to dissipate heat to the exterior of the illumination device.
  • the substrate 20 can also use a printed circuit board including a core material of an insulating material.
  • Fig. 9 is a schematic view of a substrate comprising a core material of an insulating material which can be applied to an embodiment of the present invention.
  • the substrate 20 includes an insulating substrate 207 whose both surfaces can be formed into a wiring 202 by a printed circuit process to provide an electrical connection between the LED unit 30 and the driving power source 50.
  • the light emitting diode units 30 are in the form of a die which are disposed on the surface 201A of the substrate 20 by adhesion to form better heat conduction between the LED unit 30 and the substrate 20.
  • the wiring includes a plurality of pads 202C, and the LED units 30 are directly connected to the pads 202C through leads 206 (for example, gold wires, silver wires or alloy wires) to form a series of light emitting diode groups.
  • the terminal light emitting diode unit 30 is connected to the wiring traces 202D and 202E through the wiring 206, and the wiring lines 202D and 202E are connected to the driving power source 50 on the other surface of the substrate 20 via the wires 203A and 203B passing through the through hole 204.
  • the bonding of the LED die via the lead to the wiring can be achieved using a bonding process.
  • the light-emitting diode unit 30 may be adhered to the surface 201A by epoxy or silica gel mixed with phosphor, or the phosphor layer may be coated on the surface of the light-emitting diode unit 30, and then It is bonded to the surface 201A by means of epoxy or silica gel.
  • a driving power source 50 is disposed on the other surface 201B of the substrate 20.
  • the driving power supply can adopt various topology circuits, including but not limited to non-isolated buck topology circuit structure, flyback topology circuit structure and half bridge LLC topology circuit structure.
  • topology circuits including but not limited to non-isolated buck topology circuit structure, flyback topology circuit structure and half bridge LLC topology circuit structure.
  • a detailed description of the driving power supply circuit can be found in the book "LED Lighting Driver Power Supply and Luminaire Design", First Edition, May 201, 2011, which is included in the present specification.
  • the drive power supply can provide a suitable current or voltage to the LED unit 30 in a variety of drive modes (e.g., constant voltage supply, constant current supply, and constant voltage constant current supply), which can be comprised of one or more separate components.
  • one or more components of the driving power source are implemented in the form of a wafer or a packaged chip, and a component implemented in the form of a wafer or a packaged chip in the driving power source is hereinafter referred to as a "driving controller".
  • circuits for implementing other functions such as a dimming control circuit, a sensing circuit, a power factor correction circuit, an intelligent lighting control circuit, a communication circuit, and a protection circuit may be integrated in the driving power source 50.
  • These circuits may be integrated in the same semiconductor wafer or packaged chip as the drive controller, or these circuits may be provided separately in the form of semiconductor wafers or packaged chips, or some or all of these circuits may be combined together and on a semiconductor wafer or Available in the form of a packaged chip.
  • the external power source is connected to the rectifying circuit 520 via the terminals 510A and 510B (here implemented in the form of an integrated circuit package chip), and the driving circuit 530 (here implemented in the form of an integrated circuit package chip, for example, It is the MAX16820 LED driver manufactured by Maxim Integrated Products, the flyback driver SSL series control IC manufactured by NXP Semiconductors, the HB LED driver MXHV9910 manufactured by Clare, and the NCP1351 LED driver manufactured by ON Semiconductor.
  • the LED driver ACT355A manufactured by Active Semiconductor Co., Ltd., etc. is electrically connected to the rectifier circuit 520 via the wiring 202.
  • Driver 530 is also electrically coupled via wiring 202 to capacitors 540A and 540B and circuitry that implements other functions, here exemplified by wireless communication transceiver chip 550.
  • the output of the driving power source 50 is electrically connected to the light emitting diode unit 30 on the substrate surface 201A via the wires 203A and 203B that traverse the via 204.
  • a drive controller in the form of a packaged chip and a circuit for realizing other functions for example, it can be directly connected to the wiring 202 of the surface 201B by a soldering process, and the drive controller and other functions for the wafer form are realized.
  • the circuit for example, can be directly connected to the wiring 202 of the surface 201B using a bonding process or a flip-chip on board (FCOB) process. Further, alternatively, a configuration in which a power conversion component such as the rectifier circuit 520 is disposed outside the wick 2 or integrated in a package chip with the driver may be employed.
  • FCOB flip-chip on board
  • the LED unit 30 in the form of a die is directly connected to the wiring 202 by a bonding process.
  • the on-board flip chip (FCOB) process can also be used to electrically connect the LED die to the wiring.
  • the light emitting diode units 30 are connected together in series, they may be connected in parallel, hybrid or cross array.
  • the light emitting diode unit 30 and the driving power source 50 are disposed on different surfaces of the substrate 20, they may be disposed on the same surface. Seventh embodiment
  • Figure 10 is a schematic view of a light-emitting diode wick in accordance with a seventh embodiment of the present invention.
  • the main difference of the present embodiment is the form of the light emitting diode unit 30 as compared with the above-described embodiment shown by Figs. 7A, 7B, 8 and 9, and therefore only the view of the substrate surface on which the light emitting diode unit is disposed is shown here.
  • a wiring 202 is formed on the surface 201A of the substrate 20, and the light emitting diode unit 30 in the form of a package chip is soldered on the wiring 202 to form heat conduction with the substrate 20.
  • the LED unit 30 may be bonded to the surface 201A with an adhesive.
  • the wiring 202 is divided into a plurality of sections to sequentially connect the plurality of LED units 30 in series.
  • a through hole 204 is opened in the center of the substrate 20, and the wiring 202 is electrically connected to a drive controller of a driving power source provided on the other surface of the substrate 20 by wires 203A and 203B passing through the through hole 204.
  • Figure 11 is a perspective view of an illumination using a light emitting diode as a light source in accordance with an eighth embodiment of the present invention. An exploded view of the device.
  • the lighting device includes a lamp housing 1 and a light-emitting diode wick 2 disposed in the lamp housing 1.
  • the lamp housing 1 includes a lamp cap 110, a heat dissipating member 120 (a cup-shaped member in Fig. 11), and a lamp army 130.
  • the base 110 can be used in the form of a threaded screw interface similar to an ordinary incandescent lamp and an energy-saving lamp to provide an electrical connection to an external power source (for example, a 220 volt AC power source), but can also be rotated. Bayonet and other forms.
  • the heat dissipating member 120 is disposed between the lamp cap 110 and the lamp arm 130, and can be made of various insulating and heat conductive materials, such as a ceramic material or a thermally conductive insulating polymer composite material, etc., which is used for accommodating the LED wick 2 on the one hand, and the other
  • the aspect also functions to transfer heat generated by the light emitting diode and the driving power source to the outside of the lamp housing.
  • a plurality of ribs extending in the longitudinal direction of the lamp housing are disposed on the inner wall of the heat dissipation member 120 to increase the heat dissipation area.
  • the heat dissipation member 120 is made of an insulating and heat conductive material, the ribs can be in contact with the components of the driving power source. Increase the heat transfer area.
  • the Light Army 130 is made of a light-transmitting material and is mainly used to protect the light source and functional circuits and to make the light spread more gently and evenly to the space.
  • the heat dissipating material is made of an insulating and heat conductive material, it is also possible to use a metal material.
  • an insulating member such as ceramic or plastic may be added between the lamp cap 110 and the heat dissipating member 120 to make them Electrically insulated.
  • the wick 2 can adopt the structure of the embodiment described above with reference to Figs. 7-10.
  • the LED wick 2 includes a substrate 20, a plurality of light emitting diode units 30 in a die form disposed on one surface of the substrate, and a driving power source disposed on the other surface of the substrate.
  • the substrate 20 is composed of an insulating and heat conductive material (for example, a ceramic material or a thermally conductive insulating polymer composite material), and the periphery thereof can be assembled by means of a thermal conductive adhesive, a thermally conductive double-sided film or a notch formed on the inner surface of the heat dissipating member 120 and dissipating heat.
  • the pieces 120 are fixed together, whereby the heat generated by the LED wick 2 is better transmitted to the heat sink 120 and then to the surrounding environment.
  • a substrate made of a ceramic material can be produced by a die pressing method, and the substrate produced by this method is thick (e.g., 1.5-3 mm) and has a high hardness.
  • the substrate 20 described above is made of an insulating heat conductive material such as a ceramic and a thermally conductive insulating polymer composite
  • a metal core printed circuit board including a metal base layer (for example, aluminum) may also be used.
  • a substrate) and a printed circuit board comprising an insulating core material (eg, a paper substrate, a fiberglass cloth substrate, and a fiberglass cloth)
  • an insulating core material eg, a paper substrate, a fiberglass cloth substrate, and a fiberglass cloth
  • a composite substrate or the like which is a surface reinforcing material is used as a substrate.
  • a plurality of light emitting diode units disposed on the surface of the substrate are disposed on the surface of the substrate by adhesion to form better heat conduction between the LED unit and the substrate.
  • the light emitting diode unit can be connected to the wiring by a bonding process (e.g., by forming a wiring layer by sintering a silver paste pattern on the ceramic material) and thereby electrically connected to a driving power source disposed on the other surface.
  • the light-emitting diode unit can be adhered to the surface with epoxy or silica gel mixed with phosphor, or the fluorescent layer can be coated on the surface of the light-emitting diode unit, and then epoxy resin can be applied thereto. Or silica gel is bonded to the surface.
  • the driving power source can adopt the structures and principles described in the embodiments described with reference to Figs. 7A, 7B, 8 and 9, and will not be described again.
  • circuits for realizing other functions may be integrated in the driving power source.
  • These circuits may be integrated in the same semiconductor wafer or packaged chip as the drive controller, or these circuits may be provided separately in the form of semiconductor wafers or packaged chips, or some or all of these circuits may be combined together and on a semiconductor wafer or Available in the form of a packaged chip.
  • the drive controller in the form of a wafer and the circuit for realizing other functions can be directly connected to the wiring on the surface of the substrate by a bonding process or a flip-chip on board (FCOB) process.
  • FCOB flip-chip on board
  • the drive controller in the form of a packaged chip and the circuit for realizing other functions for example, it can be directly connected to the wiring on the surface of the substrate by a soldering process.
  • a structure in which a power conversion component such as a rectifier circuit is disposed outside the wick 2 (for example, in the lamp housing 1) may be used, or when a DC voltage is supplied from an external power source, the rectification may be omitted. The structure of the circuit.
  • the LED unit in the form of a die is directly connected to the wiring by a bonding process.
  • the on-board flip chip (FCOB) process can also be used to electrically connect the LED die to the wiring.
  • the light emitting diode units 30 are connected in series in the present embodiment, they may be connected in parallel, in a hybrid or in a cross array.
  • the light emitting diode unit and the driving power source are disposed on different surfaces of the substrate 20, they may be disposed on the same surface.
  • Fig. 12 is an exploded perspective view showing an illumination device using a light emitting diode as a light source according to a ninth embodiment of the present invention.
  • the heat dissipating member 120 of the lamp housing 1 is made of a metal material.
  • an insulating member 150 (for example, ceramic or plastic) is added between the lamp cap 110 and the heat dissipating member 120. Etc.) to electrically insulate them.
  • the lighting device includes a lamp housing 1 and a light-emitting diode wick 2 disposed in the lamp housing 1.
  • the lamp housing 1 includes a lamp cap 110, a heat dissipating member 120 (a cup-shaped member in Fig. 12), a lamp body 130, and an insulating member 150 disposed between the lamp cap 110 and the heat dissipating member 120.
  • a plurality of fins are disposed on the outer surface of the heat dissipation member 120 to increase the heat dissipation area.
  • the components and wiring on the substrate 20 should maintain a sufficient gap with the edge of the substrate.
  • the lamp cap 110 can be used in the form of a threaded screw interface similar to an ordinary incandescent lamp and an energy-saving lamp to provide an electrical connection to an external power source (for example, a 220 volt AC power source), but other forms such as a rotary bayonet can be used.
  • the heat dissipating member 120 is disposed between the lamp cap 110 and the lamp army 130, and can be made of various insulating heat dissipating materials, such as a ceramic material or a thermally conductive insulating polymer composite material, etc., which is used for accommodating the LED wick 2 on the one hand.
  • the lamp army 130 is made of a light-transmitting material, mainly for protecting the light source and the functional circuit and making the light softer and more uniform. Divergence to space.
  • the wick 2 can adopt the structure and principle described in the embodiment described with reference to Figs. 7-10, and details are not described herein again. While some aspects of the present invention have been shown and described, it will be appreciated by those skilled in the art that Equivalent content is limited.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光二极管灯芯(2)和采用发光二极管作为光源的照明装置。发光二极管灯芯包括绝缘导热基板(20);至少一个发光二极管单元(30),其设置于基板(20)的第一表面(201A)以与基板(20)形成热传导;设置于基板(20)的第二表面的驱动控制器,第一表面和第二表面为相同或相对的表面。发光二极管灯芯适于与灯壳(1)装配在一起以提供散热效果优良并制造成本低的照明装置。

Description

发光二极管灯芯和釆用发光二极管作为光源的照明装置 技术领域
本发明涉及半导体照明技术, 特别涉及发光二极管灯芯和采用发 光二极管作为光源的照明装置。 背景技术
目前在照明装置中用作光源的发光二极管 (LED )是一种固态半 导体器件, 其基本结构一般包括带引线的支架、 设置在支架上的半导 体晶片以及将该晶片四周密封起来的封装材料(例如荧光硅胶或环氧 树脂) 。 上述半导体晶片包含有 P-N结构, 当电流通过时, 电子被推 向 P区, 在 P区里电子跟空穴复合, 然后以光子的形式发出能量, 而 光的波长则是由形成 P-N结构的材料决定的。 与白炽灯和荧光节能灯 相比, 发光二极管具有环保、 可回收再利用、 高光效、 色彩丰富和可 调光等诸多优点, 因此随着制造工艺的日趋完善, 基于发光二极管的 照明光源将逐渐成为主流光源。
LED在工作过程中, 只有一部分电能被转换为热能, 其余部分都 转换成为热能, 从而导致 LED的温度升高, 这是其性能劣化和失效的 主要原因。 可以说, 散热问题已经成为当前半导体照明技术发展的技 术瓶颈。 为此, 业界已经从芯片、 电路板到***的每一个层面, 针对 散热问题提出了各种优化设计, 以获得最佳的散热效果。
就芯片层面而言, 一般可以通过增加芯片尺寸和改变材料结构来 提高散热能力。例如为了改善衬底的散热,科锐 (Cree)公司釆用碳化硅 衬底, 其导热性能比蓝宝石高近 20倍。
在电路板层面, 目前许多 LED灯具中都釆用铝基板作为印刷电路 板, 这种基板为多层结构, 中间层使用具有较高导热系数的绝缘层材 料, 从而使 LED芯片的热能透过下层的铝板快速扩散并传递出去。
对于***层面, 常用的散热策略是为 LED灯具配置散热组件(例 如鳍片、 热管、 均温板、 回路式热管及压电风扇) , 从而借助其快速 的散热能力将 LED产生的热量迅速散发到周围环境中。例如申请日和 申请号分别为 2004年 11月 9日和 200410052114.7的中国专利申请"发 光二极管灯散热结构" 公开了一种发光二极管灯散热结构, 其包括线 路驱动发光板和线路控制板, 线路驱动发光板上集成发光二极管阵列; 所述线路驱动发光板上面设置一散热反光铝板, 其下面接合一导散热 胶层, 导散热胶层另一面接合一散热铝板。 上述线路控制板可用导散 热胶包裹, 以进一步导散线路控制板工作时产生的热量。
但是需要指出的是, 上述散热设计方案的实施往往是以制造成本 的上升为代价的, 而这将导致用户使用意愿的下降, 不利于 LED照明 装置的普及推广。 发明内容
本发明的目的是提供一种发光二极管灯芯, 其适于与灯壳装配在 一起以提供散热效果优良并且制造成本低的照明装置。
本发明的发明目的可以通过下列技术方案实现:
一种发光二极管灯芯, 包括:
绝缘导热基板;
至少一个发光二极管单元, 其设置于所述基板的第一表面以与所 述基板之间形成热传导; 以及
设置于所述基板的第二表面的驱动控制器, 其与所述至少一个发 光二极管单元电气连接以向所述至少一个发光二极管单元提供所需的 工作电流或工作电压, 其中, 所述第一和第二表面为相同或相对的表 面。
优选地, 在上述发光二极管灯芯中, 所述绝缘导热基板由陶瓷材 料或导热绝缘高分子复合材料构成。
优选地, 在上述发光二极管灯芯中, 还包括形成于所述第一和第 二表面并且与所述发光二极管单元和所述驱动控制器电气连接的布线 层。
优选地, 在上述发光二极管灯芯中, 所述布线层通过印制电路工 艺形成于所述第一和第二表面。
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管管芯, 其被固定在所述第一表面并且与所述布线层通过绑定工 艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管单体, 其与所述布线层通过焊接方式电气连接。 优选地, 在上述发光二极管灯芯中, 所述布线层使得多个所述发 光二极管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述发光二极管灯芯中, 所述驱动控制器为半导体晶 片形式, 其被固定在所述第二表面并且与所述布线层通过绑定工艺或 板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述驱动控制器为封装芯片 形式, 其被固定在所述第二表面并且与所述布线层通过焊接方式电气 连接。
优选地, 在上述发光二极管灯芯中, 进一步包括下列电路中的至 少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。
优选地, 在上述发光二极管灯芯中, 所述电路的至少一种与所述 驱动控制器集成在同一半导体晶片或封装芯片内。
优选地, 在上述发光二极管灯芯中, 所述电路为半导体晶片形式, 其固定在所述基板的第一或第二表面并且与所述布线层通过绑定工艺 或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述电路为封装芯片形式, 其固定在所述基板的第一或第二表面并且与所述布线层通过焊接工艺 实现电气连接。 本发明的还有一个目的是提供一种釆用发光二极管作为光源的照 明装置, 其兼具散热效果优良和制造成本低的优点。
本发明的上述目的可通过下列技术方案实现:
一种釆用发光二极管作为光源的照明装置, 包括:
灯壳, 包含散热件;
发光二极管灯芯, 包括:
绝缘导热基板, 与所述散热件固定在一起以在所述基板与所 述散热件之间形成热传导;
至少一个发光二极管单元, 其设置于所述基板的第一表面以 与所述基板之间形成热传导; 以及
设置于所述基板的第二表面的驱动控制器, 其与所述至少一 个发光二极管单元电气连接以向所述至少一个发光二极管单元提 供所需的工作电压或工作电流,其中,所述第一和第二表面为相同 或相对的表面。
优选地, 在上述照明装置中, 所述基板借助导热胶或导热的双面 胶片固定于所述散热件。
优选地, 在上述照明装置中, 所述散热件由金属构成, 所述灯壳 还包括灯头, 所述散热件经绝缘件与所述灯头相连接。
优选地, 在上述照明装置中, 所述散热件由陶瓷材料或导热绝缘 高分子复合材料构成。
优选地, 在上述照明装置中, 所述绝缘导热基板由陶瓷材料或导 热绝缘高分子复合材料构成。
优选地, 在上述照明装置中, 还包括形成于所述第一和第二表面 并且与所述发光二极管单元和所述驱动控制器电气连接的布线层。
优选地, 在上述照明装置中, 所述布线层通过印制电路工艺形成 于所述第一和第二表面。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被固定在所述第一表面并且与所述布线层通过绑定工艺或板 上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 单体, 其与所述布线层通过焊接方式电气连接。
优选地, 在上述照明装置中, 所述布线层使得多个所述发光二极 管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述照明装置中, 所述驱动控制器为半导体晶片形式, 其被固定在所述第二表面并且与所述布线层通过绑定工艺或板上倒装 芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述驱动控制器为封装芯片形式, 其被固定在所述第二表面并且与所述布线层通过焊接方式电气连接。
优选地, 在上述照明装置中, 进一步包括下列电路中的至少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。
优选地, 在上述照明装置中, 所述电路的至少一种与所述驱动控 制器集成在同一半导体晶片或封装芯片内。 优选地, 在上述照明装置中, 所述电路为半导体晶片形式, 其固 定在所述基板的第一或第二表面并且与所述布线层通过绑定工艺或板 上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述电路为封装芯片形式, 其固定 在所述基板的第一或第二表面并且与所述布线层通过焊接工艺实现电 气连接。 本发明的上述目的还可通过下列技术方案实现:
一种釆用发光二极管作为光源的照明装置, 包括:
灯壳, 包含散热件;
绝缘导热基板, 与所述散热件固定在一起以在所述基板与所述散 热件之间形成热传导;
至少一个发光二极管单元, 其设置于所述基板的表面以与所述基 板之间形成热传导;
设置于所述灯壳内的驱动电源模块; 以及
形成于所述散热件表面的布线层, 用于使所述发光二极管单元电 气连接至所述驱动电源模块。
优选地, 在上述照明装置中, 所述基板借助导热胶或导热的双面 胶片固定于所述散热件。
优选地, 在上述照明装置中, 所述基板与所述散热件是一体成型 的。
优选地, 在上述照明装置中, 所述散热件由金属构成, 所述灯壳 还包括灯头, 所述散热件经绝缘件与所述灯头相连接。
优选地, 在上述照明装置中, 所述散热件由陶瓷材料或导热绝缘 高分子复合材料构成。
优选地, 在上述照明装置中, 所述基板由陶瓷材料或导热绝缘高 分子复合材料构成。
优选地, 在上述照明装置中, 所述布线层通过印制电路工艺形成 于所述散热件的表面。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被固定在所述散热件的表面并且与所述布线层通过绑定工艺 或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 单体, 其与所述布线层通过焊接方式电气连接。 优选地, 在上述照明装置中, 所述布线层使得多个所述发光二极 管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述照明装置中, 所述驱动电源模块包括电源变换电 路和驱动控制电路。
优选地, 在上述照明装置中, 所述驱动电源模块还包括调光控制 电路和功率因数校正电路。
优选地, 在上述照明装置中, 进一步包括设置在所述灯壳内部或 者所述基板表面的传感电路和通信电路。 本发明的上述目的还可通过下列技术方案实现:
一种釆用发光二极管作为光源的照明装置, 包括:
灯壳, 包含绝缘导热部分;
至少一个发光二极管单元, 其设置在所述绝缘导热部分的外表面 以与所述绝缘导热部分之间形成热传导;
设置在所述灯壳内的驱动电源模块; 以及
形成于所述绝缘导热部分表面的布线层, 用于使所述发光二极管 单元电气连接至所述驱动电源模块。
优选地, 在上述照明装置中, 所述绝缘导热部分由陶瓷材料或导 热绝缘高分子复合材料构成。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被固定在所述绝缘导热部分的外表面并且与所述布线层通过 绑定工艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 单体, 其与所述布线层通过焊接方式电气连接。
优选地, 在上述照明装置中, 所述布线层使得多个所述发光二极 管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述照明装置中, 所述驱动电源模块包括电源变换电 路和驱动控制电路。
优选地, 在上述照明装置中, 所述驱动电源模块还包括调光控制 电路和功率因数校正电路。
优选地, 在上述照明装置中, 进一步包括设置在所述灯壳内部或 者所述绝缘导热部分外表面的传感电路和通信电路。 本发明的上述目的还可通过下列技术方案实现:
一种釆用发光二极管作为光源的照明装置, 包括:
灯壳, 包含散热件;
沿所述灯壳纵轴延伸的柱状体, 其由绝缘导热材料构成并且其中 一个端部与所述散热件固定在一起以在所述柱状体与所述散热件之间 形成热传导;
至少一个发光二极管单元, 其设置在所述柱状体的外表面以与所 述柱状体之间形成热传导;
设置在所述灯壳内的驱动电源模块; 以及
形成于所述柱状体外表面的布线层, 其使所述发光二极管单元电 气连接至所述驱动电源模块。
优选地, 在上述照明装置中, 所述绝缘导热材料为陶瓷材料或导 热绝缘高分子复合材料。
优选地, 在上述照明装置中, 所述柱状体的其中一个端部通过导 热胶粘附到所述散热件上。
优选地, 在上述照明装置中, 所述柱状体与所述散热件一体成型。 优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被固定在所述柱状体的外表面并且与所述布线层通过绑定工 艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 单体, 其与所述布线层通过焊接方式电气连接。
优选地, 在上述照明装置中, 所述布线层使得多个所述发光二极 管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述照明装置中, 所述驱动电源模块包括电源变换电 路和驱动控制电路。
优选地, 在上述照明装置中, 所述驱动电源模块还包括调光控制 电路和功率因数校正电路。
优选地, 在上述照明装置中, 进一步包括设置在所述灯壳内部或 者所述柱状体到外表面的传感电路和通信电路。 本发明的还有一个目的是提供一种发光二极管灯芯, 其适于与灯 壳装配在一起以提供散热效果优良并且制造成本低的照明装置。
本发明的发明目的可以通过下列技术方案实现:
一种发光二极管灯芯, 包括:
印刷线路板, 包括绝缘层和形成于所述绝缘层的第一和第二表面 的布线层;
至少一个发光二极管单元, 其设置于所述绝缘层的第一表面并与 所述布线层电气连接; 以及
设置于所述基材的第二表面的驱动控制器, 其通过所述布线层与 所述至少一个发光二极管单元电气连接以向所述至少一个发光二极管 单元提供所需的工作电压或工作电流。
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管管芯, 其被固定在所述第一表面并且与所述布线层通过绑定工 艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管单体, 其被固定在所述第一表面并与所述布线层通过焊接方式 电气连接。
优选地, 在上述发光二极管灯芯中, 所述布线层使得多个所述发 光二极管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述发光二极管灯芯中, 所述驱动控制器为半导体晶 片形式, 其被固定在所述第二表面并且与所述布线层通过绑定工艺或 板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述驱动控制器为封装芯片 形式, 其被固定在所述第二表面并且与所述布线层通过焊接方式电气 连接。
优选地, 在上述发光二极管灯芯中, 进一步包括下列电路中的至 少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。
优选地, 在上述发光二极管灯芯中, 所述电路的至少一种与所述 驱动控制器集成在同一半导体晶片或封装芯片内。
优选地, 在上述发光二极管灯芯中, 所述电路为半导体晶片形式, 其固定在所述第一或第二表面并且与所述布线层通过绑定工艺或板上 倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述电路为封装芯片形式, 其固定在所述第一或第二表面并且与所述布线层通过焊接工艺实现电 气连接。 本发明的还有一个目的是提供一种釆用发光二极管作为光源的照 明装置, 其兼具散热效果优良和制造成本低的优点。
本发明的上述目的可通过下列技术方案实现:
一种釆用发光二极管作为光源的照明装置, 包括:
灯壳, 包含散热件;
发光二极管灯芯, 包括:
印刷线路板, 包括绝缘层和形成于所述绝缘层的第一和第二 表面的布线层,所述绝缘层与所述散热件固定在一起以在所述基材 与所述散热件之间形成热传导;
至少一个发光二极管单元, 其设置于所述绝缘层的第一表面 并与所述布线层电气连接; 以及
设置于所述绝缘层的第二表面的驱动控制器, 其通过所述布 线层与所述至少一个发光二极管单元电气连接以向所述至少一个 发光二极管单元提供所需的工作电压或工作电流。
优选地, 在上述照明装置中, 所述绝缘层借助导热胶或导热的双 面胶片固定于所述散热件。
优选地, 在上述照明装置中, 所述散热件由金属构成, 所述灯壳 还包括灯头, 所述散热件经绝缘件与所述灯头相连接。
优选地, 在上述照明装置中, 所述散热件由陶瓷材料或导热绝缘 高分子复合材料构成。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被固定在所述第一表面并且与所述布线层通过绑定工艺或板 上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 单体, 其被固定在所述第一表面并与所述布线层通过焊接方式电气连 接。 优选地, 在上述照明装置中, 所述布线层使得多个所述发光二极 管单元以串联、 并联、 混联或交叉阵列的形式相连。 优选地, 在上述照明装置中, 所述驱动控制器为半导体晶片形式, 其被固定在所述第二表面并且与所述布线层通过绑定工艺或板上倒装 芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述驱动控制器为封装芯片形式, 其被固定在所述第二表面并且与所述布线层通过焊接方式电气连接。
优选地, 在上述照明装置中, 进一步包括下列电路中的至少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。
优选地, 在上述照明装置中, 所述电路的至少一种与所述驱动控 制器集成在同一半导体晶片或封装芯片内。
优选地, 在上述照明装置中, 所述电路为半导体晶片形式, 其固 定在所述第一或第二表面并且与所述布线层通过绑定工艺或板上倒装 芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述电路为封装芯片形式, 其固定 在所述第一或第二表面并且与所述布线层通过焊接工艺实现电气连 接。 本发明的还有一个目的是提供一种发光二极管灯芯, 其适于与灯 壳装配在一起以提供散热效果优良并且制造成本低的照明装置。
本发明的发明目的可以通过下列技术方案实现:
一种发光二极管灯芯, 包括:
印刷线路板, 包括第一和第二绝缘层、 位于所述第一和第二绝缘 层之间的金属层以及形成于所述第一和第二绝缘层表面的布线层; 至少一个发光二极管单元, 其设置于所述第一绝缘层表面并与所 述布线层电气连接; 以及
设置于所述第二绝缘层表面的驱动控制器, 其通过所述布线层与 所述至少一个发光二极管单元电气连接以向所述至少一个发光二极管 单元提供所需的工作电流或工作电压。
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管管芯, 其被固定在所述第一绝缘层表面并且与所述布线层通过 绑定工艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述发光二极管单元为发光 二极管单体, 其被固定在所述第一绝缘层表面并与所述布线层通过焊 接方式电气连接。
优选地, 在上述发光二极管灯芯中, 所述布线层使得多个所述发 光二极管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述发光二极管灯芯中, 所述驱动控制器为半导体晶 片形式, 其被固定在所述第二绝缘层表面并且与所述布线层通过绑定 工艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述驱动控制器为封装芯片 形式, 其被固定在所述第二绝缘层表面并且与所述布线层通过焊接方 式电气连接。
优选地, 在上述发光二极管灯芯中, 进一步包括下列电路中的至 少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。
优选地, 在上述发光二极管灯芯中, 所述电路的至少一种与所述 驱动控制器集成在同一半导体晶片或封装芯片内。
优选地, 在上述发光二极管灯芯中, 所述电路为半导体晶片形式, 其固定在所述第一或第二绝缘层表面并且与所述布线层通过绑定工艺 或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述发光二极管灯芯中, 所述电路为封装芯片形式, 其固定在所述第一或第二绝缘层表面并且与所述布线层通过焊接工艺 实现电气连接。 本发明的还有一个目的是提供一种釆用发光二极管作为光源的照 明装置, 其兼具散热效果优良和制造成本低的优点。
本发明的上述目的可通过下列技术方案实现:
一种釆用发光二极管作为光源的照明装置, 包括:
灯壳, 包含散热件;
发光二极管灯芯, 包括:
印刷线路板, 包括第一和第二绝缘层、 位于所述第一和第二 绝缘层之间的金属层以及形成于所述第一和第二绝缘层表面的布 线层,所述金属层与所述散热件固定在一起以在所述印刷线路板与 所述散热件之间形成热传导;
至少一个发光二极管单元, 其设置于所述第一绝缘层表面并 与所述布线层电气连接; 以及 设置于所述第二绝缘层表面的驱动控制器, 其通过所述布线 层与所述至少一个发光二极管单元电气连接以向所述至少一个发 光二极管单元提供所需的工作电压或工作电流。
优选地, 在上述照明装置中, 所述金属层的边缘借助导热胶或导 热的双面胶片固定于所述散热件。
优选地, 在上述照明装置中, 所述散热件由金属构成, 所述灯壳 还包括灯头, 所述散热件经绝缘件与所述灯头相连接。
优选地, 在上述照明装置中, 所述散热件由陶瓷材料或导热绝缘 高分子复合材料构成。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 管芯, 其被固定在所述第一绝缘层表面并且与所述布线层通过绑定工 艺或板上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述发光二极管单元为发光二极管 单体, 其被固定在所述第一绝缘层表面并与所述布线层通过焊接方式 电气连接。
优选地, 在上述照明装置中, 所述布线层使得多个所述发光二极 管单元以串联、 并联、 混联或交叉阵列的形式相连。
优选地, 在上述照明装置中, 所述驱动控制器为半导体晶片形式, 其被固定在所述第二绝缘层表面并且与所述布线层通过绑定工艺或板 上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述驱动控制器为封装芯片形式, 其被固定在所述第二绝缘层表面并且与所述布线层通过焊接方式电气 连接。
优选地, 在上述照明装置中, 进一步包括下列电路中的至少一种: 传感电路、 调光控制电路、 通信电路和功率因数校正电路。
优选地, 在上述照明装置中, 所述电路的至少一种与所述驱动控 制器集成在同一半导体晶片或封装芯片内。
优选地, 在上述照明装置中, 所述电路为半导体晶片形式, 其固 定在所述第一或第二绝缘层表面并且与所述布线层通过绑定工艺或板 上倒装芯片(FCOB)工艺实现电气连接。
优选地, 在上述照明装置中, 所述电路为封装芯片形式, 其固定 在所述第一或第二绝缘层表面并且与所述布线层通过焊接工艺实现电 气连接。 在本发明的一个实施例中, 发光二极管灯芯包含被设置在一块绝 缘导热基板上的发光二极管单元、 驱动控制器和其它电路(例如传感 电路、 调光控制电路、 通信电路和功率因数校正电路等)或元件(例 如电容器和电感线圏等) , 这种高度集成化的结构对于规模化生产非 常有利, 能够大大降低灯具制造过程中的装配和物流成本, 并且也节 省了日后的升级维护费用。
在本发明的另一个实施例中, 发光二极管单元以未封装的管芯形 式集成到绝缘导热基板上, 并且绝缘导热基板直接与灯壳的散热件连 接在一起, 与管芯→支架→铝基板的布线层→铝基板的绝缘导热材料 层→铝基板的金属板→散热器的导热路径相比, 明显减少了热传导界 面, 因而一方面提高了照明装置的导热效率, 另一方面也降低了制造 成本。 此外, 当绝缘导热基板与散热件是一体成型时, 导热效率得以 进一步改善。
在本发明的另一个实施例中, 绝缘导热基板采用陶瓷材料制成, 由于布线层与陶瓷材料之间、 发光二极管单元与陶瓷材料和布线之间 均具有良好的结合能力, 因此提高了结构的可靠性。 而且陶瓷材料低 廉的价格进一步推动成本的降低。 此外, 当采用陶瓷材料作为基板时, 布线层可以通过银浆烧结工艺来制作, 这可以避免铜刻蚀工艺造成的 环境污染。
在本发明的另一个实施例中, 发光二极管单元被直接设置在灯壳 的绝缘导热部分的外表面, 因此无需额外的散热器即可有效解决发光 二极管的散热问题, 这极大降低了材料成本和制造成本。
在本发明的另一个实施例中, 采用沿灯壳纵轴延伸并由绝缘导热 材料构成的柱状体来承载发光二极管单元, 因而可以形成接近 360度 的发光空间角, 从而满足特殊的应用需求。 附图说明
本发明的上述和 /或其它方面和优点将通过以下结合附图的各个方 面的描述变得更加清晰和更容易理解, 附图中相同或相似的单元采用 相同的标号表示, 附图包括: 图 1为按照本发明第一实施例的采用发光二极管作为光源的照明 装置的示意图, 其示出了灯壳的结构。
图 2为图 1所示照明装置的分解示意图。
图 3为按照本发明第二实施例的采用发光二极管作为光源的照明 装置的示意图。
图 4为按照本发明第三实施例的采用发光二极管作为光源的照明 装置的示意图。
图 5为按照本发明第四实施例的采用发光二极管作为光源的照明 装置的示意图。
图 6为按照本发明第五实施例的采用发光二极管作为光源的照明 装置的示意图。
图 7A和 7B 为按照本发明第六实施例的发光二极管灯芯的示意 图, 其中, 图 7A为发光二极管灯芯其中一个表面的视图, 图 7B为发 光二极管灯芯另一个表面的视图。
图 8为可应用于本发明实施例的包含金属芯材的基板的示意图。 图 9为可应用于本发明实施例的包含绝缘材料芯材的基板的示意 图。
图 10为按照本发明第七实施例的发光二极管灯芯的示意图。 图 11为按照本发明第八实施例的采用发光二极管作为光源的照明 装置的分解示意图。
图 12为按照本发明第九实施例的采用发光二极管作为光源的照明 装置的分解示意图。 具体实施方式
下面参照其中图示了本发明示意性实施例的附图更为全面地说明 本发明。 但本发明可以按不同形式来实现, 而不应解读为仅限于本文 给出的各实施例。 给出的上述各实施例旨在使本文的披露全面完整, 从而使对本发明保护范围的理解更为全面和准确。
在本说明书中, 术语 "照明装置" 应该广义地理解为所有能够通 过提供光线以实现实用的或美学的效果的设备, 包括但不限于台灯、 壁灯、 射灯、 吊灯、 吸顶灯、 路灯、 手电筒、 舞台布景灯和城市景观 灯等。 术语 "灯壳" 应该广义地理解为一种用于承载或容纳光源的物理 结构, 光源例如可以设置在由灯壳壳体包围的完全封闭或半封闭的空 间内, 也可以设置在灯壳的外部表面或内部表面。
除非特别说明, 在本说明书中, 术语 "半导体晶圆" 指的是在半 导体材料(例如硅、 砷化镓等)上形成的多个独立的单个电路, "半 导体晶片" 或 "晶片 (die ) " 指的是这种单个电路, 而 "封装芯片" 指的是半导体晶片经过封装后形成的物理结构, 在典型的这种物理结 构中, 半导体晶片例如被安装在支架上并且用密封材料封装。
术语 "发光二极管单元" 指的是包含电致发光材料的单元, 这种 单元的例子包括但不限于 P-N结无机半导体发光二极管和有机发光二 极管 ( OLED和聚合物发光二极管 (PLED ) ) 。
P-N 结无机半导体发光二极管可以具有不同的结构形式, 例如包 括但不限于发光二极管管芯和发光二极管单体。 其中, "发光二极管 管芯" 指的是包含有 P-N结构的、 具有电致发光能力的半导体晶片, 而 "发光二极管单体" 指的是将管芯封装后形成的物理结构, 在典型 的这种物理结构中, 管芯例如被安装在支架上并且用密封材料封装。
术语 "布线" 、 "布线图案" 和 "布线层" 指的是在绝缘表面上 布置的用于元器件间电气连接的导电图案, 包括但不限于走线( trace ) 和孔(如焊盘、 元件孔、 紧固孔和金属化孔等) 。
术语 "热传导" 指的是热量在固体中从温度较高的部分传送到温 度较低的部分的传递方式。 在本发明中, 发光二极管单元产生的热量 可以主要以热传导方式被传送到灯壳, 并进而传送到照明装置的外部 (例如以热传导、 对流和热辐射等方式) 。
术语 "陶瓷材料" 泛指需高温处理或致密化的非金属无机材料, 包括但不限于硅酸盐、 氧化物、 碳化物、 氮化物、 硫化物、 硼化物等。
术语 "导热绝缘高分子复合材料"指的是这样的高分子材料, 通 过填充高导热性的金属或无机填料在其内部形成导热网链, 从而具备 高的导热系数。 导热绝缘高分子复合材料例如包括但不限于添加氧化 铝的聚丙烯材料、 添加氧化铝、 碳化硅和氧化铋的聚碳酸酯和丙烯腈- 丁二烯-苯乙烯三元共聚物等。 有关导热绝缘高分子复合材料的具体描 述可参见李丽等人的论文 "聚碳酸酯及聚碳酸酯合金导热绝缘高分子 材料的研究"(《 材料热处理学报》 2007年 8月, Vol. 28, No.4, pp51-54 ) 和李水等人的论文"氧化铝在导热绝缘高分子复合材料中的应用"(《塑 料助剂》 2008年第 3期, ppl4-16 ) , 这些文献以全文引用的方式包含 在本说明书中。
"电气连接" 应当理解为包括在两个单元之间直接传送电能量或 电信号的情形, 或者经过一个或多个第三单元间接传送电能量或电信 号的情形。
"驱动电源" 或 "LED驱动电源" 指的是连接在照明装置外部的 交流(AC )或直流(DC ) 电源与作为光源的发光二极管之间的 "电 子控制装置" , 用于为发光二极管提供所需的电流或电压 (例如恒定 电流、 恒定电压或恒定功率等) 。
诸如 "包含" 和 "包括" 之类的用语表示除了具有在说明书和权 利要求书中有直接和明确表述的单元和步骤以外, 本发明的技术方案 也不排除具有未被直接或明确表述的其它单元和步骤的情形。
诸如 "第一" 和 "第二" 之类的用语并不表示单元在时间、 空间、 大小等方面的顺序而仅仅是作区分各单元之用。 以下借助附图描述本发明的实施例。 第一实施例
图 1为按照本发明第一实施例的采用发光二极管作为光源的照明 装置的示意图, 其示出了灯壳的结构。
如图 1所示,按照本实施例的照明装置的灯壳 1包括灯头 110、散 热件 120 (图 1中呈碗杯状的部件)和灯軍 130。 在本实施例中, 灯头 110可釆用与普通白炽灯和节能灯类似的螺紋状旋接口形式,从而为照 明装置提供与外部电源 (例如 220伏交流电源) 的电气连接, 但是也 可以采用旋转卡口等其它形式;散热件 120设置在灯头 110和灯軍 130 之间, 其可采用各种绝缘散热材料制成, 例如陶瓷材料或导热绝缘高 分子复合材料等, 其一方面用于承载或容纳光源以及各种功能电路, 另一方面还起着将光源和功能电路产生的热量传递到灯壳外部的作 用; 灯軍 130采用透光材料制成, 主要用于保护光源和功能电路以及 使光线更柔和、 更均匀地向空间发散。
值得指出的是, 虽然这里采用绝缘导热材料制作散热件, 但是釆 用金属材料也是可行的, 此时可在灯头 110与散热件 120之间增设绝 缘部件(例如陶瓷或塑料等) 以使它们之间电气绝缘。
图 2为图 1所示照明装置的分解示意图。 照明装置的灯壳 1包括 灯头 110、 散热件 120和灯軍 130。 如图 2所示, 散热件 120的内腔中 设置有垂直于灯壳纵向轴并且将灯壳内部空间分隔开来的基板 20, 该 基板也由绝缘导热材料(例如陶瓷材料或导热绝缘高分子复合材料等) 构成, 其与散热件 120可以是一体成型的, 或者其周边也可以在组装 时借助导热胶、 导热的双面胶片或开设在散热件 120 内表面的槽口与 散热件 120 固定在一起。 优选地, 可以采用模具压制法来制作陶瓷材 料构成的基板, 这种方法制造的基板较厚(例如 1.5-3mm )并且硬度 高。
发光二极管单体 30被设置在基板 20上。 参见图 2, 在表面 201A 上通过印制电路工艺形成有布线 202(例如通过在陶瓷材料上烧结银浆 图案形成布线层), 其分为两段走线, 每段与发光二极管单体 30的其 中一个电极焊接在一起。 每段走线包含一个引出端, 分别以标号 202A 和 202B表示。 导线 203A的一端连接至引出端 202A, 另一端穿越通 孔 204A连接至设置在灯壳内部空间中的驱动电源模块(未画出), 或 连接至安装在基板 20表面 (例如与表面 201A相同或相对的一面)上 的驱动电源模块; 同样, 导线 203B的一端连接至引出端 202B, 另一 端穿越通孔 204B连接至设置在灯壳内部空间中的驱动电源模块,或连 接至安装在基板 20表面上的驱动电源模块, 由此, 在发光二极管单体 30与驱动电源模块之间实现了电气连接。 为了保证导线 203A和 203B 与布线 202具有良好的导通性, 在导线 203A和 203B与引出端 202A 和 202B接触的周缘实施焊接。
为了在 LED单体 30与基板 20之间形成更好的热传导,可以借助 粘合剂(例如环氧树脂或硅胶 )将 LED单体 30粘附在基板 20的表面 201A上。 如果需要调整光线的波长, 可以在环氧树脂或硅胶中混合荧 光粉,或者在 LED单体 30表面涂覆荧光层后再借助粘合剂将 LED单 体 30粘附到基板 20的表面 201A上。
图 2所示的实施例还可包括驱动电源 (未画出) 。 本实施例的驱 动电源包括电源变换电路和驱动电路, 其中电源变换电路将高压交流 电 (例如 100-220伏交流电) 变换为低压直流电, 而驱动电路则利用 低压直流电向发光二极管提供合适的电流或电压(例如恒定电压、 恒 定电流或恒定功率) 。
可以根据实际应用需要在电源变换电路中采用合适的降压方式, 例如包括但不限于电阻和电容降压、 电阻降压、 常规变压器降压、 电 子变压器降压、 RCC降压方式开关电源、 PWM控制方式开关电源等。 另外, 驱动电路可以采用多种驱动方式, 例如恒压供电、 恒流供电和 恒压恒流供电等方式。
可选地, 驱动电源还可以包含实现光通量和光色调控制、 功率因 数校正和定时开关等功能的控制电路以及实现过压保护、 过热保护、 短路保护、 输出开路保护、 低压锁存、 抑制电磁干扰、 传导噪声、 防 静电、 防雷击、 防浪涌、 防谐波振荡等的保护电路。
可选地, 驱动电源可以采用物理上独立的电路模块的形式(例如 被塑封为一个独立的部件)来实现, 该电路模块被设置于散热件 120 所包围的灯壳内部空间中并且与发光二极管单体 30电气连接在一起。
需要指出的是, 虽然图 2仅示出布线 202与发光二极管单体 30之 间的电气连接, 但是可选地, 还可以利用基板 20作为印刷线路板, 在 其表面形成一定的布线图案或布线层并且通过布线层将各种元器件 (例如微控制器芯片、 电阻器、 电容器、 射频信号收发器、 温度传感 器、 光强传感器和信号调制 /解调器等) 电气件连接起来, 从而形成能 够实现各种功能的电路, 这里的功能例如包括但不限于电源变换、 驱 动控制、 照明智能控制、 通信、 环境状态传感和调光等。 为此目的, 可以如制作印刷电路板那样, 利用印制电路工艺在基板 20的一个或两 个表面形成合适的布线图案, 然后将相应的元器件安装在表面上。 这 种方式的优点是大大提高了集成度,降低了制造成本,而且有利于 LED 灯的组装和维修。
值得指出的是, 虽然在图 2所示的实施例中, 发光二极管单元以 发光二极管单体 30的形式示出, 但是也可以采用管芯形式。 在后一种 情形下, 可以利用绑定机, 以金丝或银丝、 合金丝焊接的方式(也即 绑定工艺)将发光二极管管芯直接连接到布线 202上。 更为优选地是 利用在板上倒装芯片( FCOB )工艺将发光二极管管芯与布线电气连接。
虽然在图 2所示的实施例中仅示出釆用单个发光二极管单元作为 光源的布置, 但是本发明同样可应用于釆用多个发光二极管单元的布 置。 第二实施例
图 3为按照本发明第二实施例的采用发光二极管作为光源的照明 装置的示意图, 其釆用多个发光二极管单元作为光源的布置。 为简化 起见, 图 3仅示出由绝缘导热材料或金属材料构成的散热件以及基板 等部件。
如图 3所示,散热件 120 (图 3中呈碗杯状的部件)的内腔中也设 置有垂直于其轴向的基板 20, 该基板也可与散热件 120—体成型或者 借助粘合剂或槽口固定在一起。 本实施例与前述实施例的主要不同之 处在于,这里在基板 20的表面上设置了多个串联连接的 LED单体 30。
具体而言,参见图 3,五个 LED单体 30借助透明的环氧树脂或硅 胶被粘附在该基板 20的表面 201A上。 布线 202分为多段走线, 通过 其各个 LED单体 30被依次串联连接在一起。 此外, 在基板 20的中央 开设有通孔 204,布线 202的两个引出端 202A和 202B设置在通孔 204 附近, 其中, 导线 203A的一端焊接至引出端 202A, 另一端穿越通孔 204与设置在灯壳内部空间中或安装在基板 20另一面上的驱动电源模 块电气连接; 同样, 导线 203B的一端焊接至引出端 202B, 另一端穿 越通孔 204与设置在灯壳内部空间中或安装在基板 20表面上的驱动电 源模块电气连接。
需要指出的是, 虽然在图 3所示的实施例中, LED单体被串联连 接后再接入驱动电源模块或电路,但是多个 LED单体也可以采用其它 的连接方式, 例如并联、 串并、 混联或交叉阵列等连接方式。 第三实施例
图 4为按照本发明第三实施例的采用发光二极管作为光源的照明 装置的示意图。
如图 4所示, 按照本实施例的照明装置的灯壳 1也包括灯头 110、 散热件 120和灯軍(未画出) 。 本实施例与上述图 1-3所示实施例的 不同之处主要在于承载光源以及各种功能电路的散热件结构, 以下对 此作进一步的描述。
在灯壳内部设置一个柱状体 40,该柱状体 40沿灯壳的纵轴延伸并 且也由绝缘导热材料构成,其可以与散热件 120—体成型,或者如图 4 所示包含一个支承底座 401,在组装时借助导热胶、导热的双面胶片或 开设在散热件 120内表面的槽口将支承底座 401与散热件 120固定在 一起。 柱状体 40的内部可开设空腔, 其截面可以是各种形状, 例如包 括但不限于多边形、 圆形和椭圆形等。
在图 4所示的实施例中, 多个 LED单体 30例如借助透明的环氧 树脂或硅胶被粘附在柱状体 40 的外表面上。 另一方面, 在柱状体 40 烧结银浆图案形成布线层) , 其分为多 走线以将发光二极管单体 30 以串联、 并联、 混联或交叉阵列的方式连接起来。 参见图 4, 柱状体 40的顶部开设通孔 204, 导线 203A和 203B的一端焊接在布线 202的 引出端上, 另一端则穿越通孔 204与驱动电源电气连接。
在图 4所示的实施例中未示出向发光二极管供电的驱动电源。 可 选地, 驱动电源可以采用物理上独立的电路模块的形式(例如被塑封 为一个独立的部件)来实现, 该电路模块被设置于灯壳内部空间或者 柱状体 40的空腔中并且与发光二极管单体 30电气连接在一起。
可选地, 还可以利用支承底板 401作为印刷线路板, 在其的一个 或两个表面上形成一定的布线图案或布线层并且通过布线层将各种元 器件(例如微控制器芯片、 电阻器、 电容器、 射频信号收发器、 温度 传感器、 光强传感器和信号调制 /解调器等) 电气件连接起来, 从而形 成能够实现各种功能的电路,这里的功能例如包括但不限于电源变换、 驱动控制、 照明智能控制、 通信、 环境状态传感和调光等。 为此目的, 可以如制作印刷电路板那样, 利用印制电路工艺在支承底板 401的一 个或两个表面形成合适的布线图案, 然后将相应的元器件安装在表面 上。 这将大大提高集成度, 降低制造成本, 而且有利于 LED灯的组装 和维修。
此外, 在本实施例中, 由于发光二极管单元可以均勾地分布在柱 状体的外表面, 因此能够实现近似 360度的全方位照明, 而且照明光 线更为均勾和柔和。 第四实施例
图 5为按照本发明第四实施例的采用发光二极管作为光源的照明 装置的示意图。 在本实施例中, 照明装置以射灯的形式呈现。
如图 5所示,按照本实施例的照明装置的灯壳 1包括灯头 110、散 热件 120和灯軍 130。散热件 120设置在灯头 110与灯軍 130之间并且 其内腔中也设置有垂直于其轴向的基板 20, 该基板也由绝缘导热材料 构成, 其与散热件 120—体成型或者借助导热胶、 导热的双面胶片或 开设在散热件 120内表面的槽口与散热件 120固定在一起。
值得指出的是, 散热件可以采用绝缘导热材料或金属材料制作, 当采用金属材料时,可在灯头 110与散热件 120之间增设绝缘部件(例 如陶瓷或塑料等) 以使它们之间电气绝缘。
参见图 5,三个 LED单体 30借助透明的环氧树脂或硅胶被粘附在 该基板 20的表面 201A上。 布线 202分为多段走线, 通过其多个 LED 单体 30被依次串联连接在一起。 此外, 在基板 20的中央开设有通孔 204, 布线 202的两个引出端 202A和 202B设置在通孔 204附近, 其 中, 导线 203A的一端焊接至引出端 202A, 另一端穿越通孔 204与驱 动电源电气连接; 同样, 导线 203B的一端焊接至引出端 202B, 另一 端穿越通孔 204与驱动电源电气连接。
在本实施例中, 驱动电源可以采用物理上独立的电路模块的形式 (例如被塑封为一个独立的部件)来实现, 该电路模块被设置于散热 件 120包围的灯壳内部空间中并且与发光二极管单体 30电气连接在一 起。 对于典型的射灯, 其一般以直流低压作为外部电源。 因此在本实 施例中, 电源变换电路可以省去, 而由驱动电路将外部电源利用外部 电源输出的低压直流向发光二极管提供恒定的电流或电压。 可选地, 可以将调光电路和校正功率因数电路也集成在驱动电源内。
除了以上述物理上独立的电路模块的形式提供驱动电源以外, 也 可以将基板 20用作印刷线路板, 在其表面 (例如与表面 201A相对的 表面)上形成布线层并将驱动电源的元器件安装在表面。 第五实施例
图 6为按照本发明还有一个实施例的釆用发光二极管作为光源的 照明装置的示意图。
如图 6所示,按照本实施例的照明装置的灯壳 1包括灯头 110、 由 绝缘导热材料(例如陶瓷材料和导热绝缘高分子复合材料等)构成的 散热件 120和盖板 140,其中盖板 140用于密封灯壳 1的内腔以起到防 尘、 防湿气等作用。 这种无灯軍的照明方式比较适合于景观照明、 路 灯等户外照明应用场合。
参见图 6,多个 LED单体 30例如借助透明的环氧树脂或硅胶被粘 附在散热件 120的外表面上。 另一方面, 在散热件 120的外表面上还 通过印制电路工艺形成有布线 202(例如通过在陶瓷材料上烧结银浆图 案形成布线层), 其分为多段走线以将发光二极管单体 30以串联、 并 联、 混联或交叉阵列的方式连接起来并经导线 203连接至设置在散热 件 120内部的驱动电源。
在本实施例中, 驱动电源可以采用物理上独立的电路模块的形式 (例如被塑封为一个独立的部件)来实现, 该电路模块被设置于灯壳 内部空间中并且与发光二极管单体 30电气连接在一起。
在本实施例中, 由于发光二极管单元均句地分布在散热件 120的 外表面, 因此能够实现 360度的全方位照明。 此外, 发光二极管单元 除了通过热传导方式将热量传递给导热绝缘材料构成的灯壳部分以 外, 还可以通过热辐射的方式直接向外部环境散热。 第六实施例
图 7A和 7B 为按照本发明第六实施例的发光二极管灯芯的示意 图, 其中, 图 7A为发光二极管灯芯其中一个表面的视图, 图 7B为发 光二极管灯芯另一个表面的视图。
按照本实施例的发光二极管灯芯 2包括基板 20、 多个发光二极管 单元 30和驱动电源 50。
基板 20采用绝缘导热材料(例如陶瓷材料或导热绝缘高分子复合 材料等)制成。 参见图 7A, 在基板 20的其中一个表面 201A上形成有 布线 (例如通过在陶瓷材料上烧结银浆图案而形成布线层) , 因此在 本实施例中,基板 20—方面相当于印刷线路板,为发光二极管单元 30 和驱动电源 50提供支承平台和电气连接, 另一方面其还起着将发光二 极管单元 30和驱动电源 50所产生的热量传送到外部的作用。优选地, 可以釆用模具压制法来制作陶瓷材料构成的基板, 这种方法制造的基 板较厚(例如 1.5-3mm )并且硬度高。
需要指出的是, 虽然上面描述的基板 20由诸如陶瓷和导热绝缘高 分子复合材料之类的绝缘导热材料制成, 但是也可以采用包含金属基 层的金属芯材印刷电路板(MCPCB ) (例如铝基板)和包含绝缘材料 芯材的基板(例如纸基板、 玻璃纤维布基板和以玻璃纤维布作为表面 增强材料的复合基板等)作基板。
图 8为可应用于本发明实施例的包含金属基层的基板的示意图。 参见图 8, 具有多层结构的基板 20 包括依次层叠的第一绝缘层 207A、 金属基层 208 和第二绝缘层 207B, 其中, 第一和第二绝缘层 207A、 207B由低热阻导热绝缘材料构成, 例如选用以特种陶瓷填充的 特殊聚合物, 这种材料具有热阻小、 粘弹性能优良和能够承受机械及 热应力等优良性能, 适于粘合到金属基层 208上。 金属基层 208可以 采用导热性好的金属(例如铝、 铜、 铁和包含至少两种这些金属的合 金)制成。
参见图 8, 在第一和第二绝缘层 207A和 207B表面可以通过印制 电路工艺形成布线 202, 从而一方面为发光二极管单元 30和驱动电源 50提供电气连接, 另一方面将发光二极管单元 30和驱动电源 50产生 的热量高效地传送至金属基层 208,再由金属基层 208将热量高效地传 送到基板 20以外。 为此, 可以用粘合剂将金属基层 208的边缘与照明 装置的散热件接合在一起, 从而将热量散发到照明装置外部。
当发光二极管功率较小或者照明装置的散热问题不是非常突出 时, 基板 20也可以釆用包含绝缘材料芯材的印刷电路板。 图 9为可应 用于本发明实施例的包含绝缘材料芯材的基板的示意图。参见图 9,基 板 20包含绝缘基材 207, 其两个表面可以通过印制电路工艺形成布线 202, 从而为发光二极管单元 30和驱动电源 50提供电气连接。
在本实施例中, 发光二极管单元 30釆用管芯形式, 它们通过粘附 方式设置在基板 20的表面 201A上以在 LED单元 30与基板 20之间形 成较好的热传导。 另一方面, 布线包含有多个焊盘 202C , 发光二极管 单元 30通过引线 206(例如金丝、银丝或合金丝)直接连接至焊盘 202C 以形成串联的发光二极管组, 该发光二极管组两端的发光二极管单元 30通过引线 206连接至布线的走线 202D和 202E,而走线 202D和 202E 则经穿越通孔 204的导线 203A和 203B连接至位于基板 20另一面上 的驱动电源 50。 在本实施例中, 可以利用绑定工艺实现发光二极管管 芯经引线到布线的连接。 如果需要调整发光二极管单元 30的发光波长,可以用混合荧光粉 的环氧树脂或硅胶将发光二极管单元 30粘附在表面 201A上, 或者在 发光二极管单元 30的表面涂覆荧光层,再将其借助环氧树脂或硅胶粘 合到表面 201A上。
参见图 7B,在基板 20的另一表面 201B上设置有驱动电源 50。根 据外部供电的方式, 驱动电源可采用各种拓朴架构的电路, 例如包括 但不限于非隔离降压型拓朴电路结构、 反激式拓朴电路结构和半桥 LLC拓朴电路结构等。 有关驱动电源电路的详细描述可参见人民邮电 出版社 201A1年 5月第 1版的《LED照明驱动电源与灯具设计》一书, 该出版物以全文引用方式包含在本说明书中。
驱动电源可以多种驱动方式(例如恒压供电、 恒流供电和恒压恒 流供电等方式)向发光二极管单元 30提供合适的电流或电压, 其可以 由一个或多个独立的部件组成。 在本实施例中, 驱动电源中的一个或 多个部件以晶片或封装芯片的形式实现, 以下将驱动电源中以晶片或 封装芯片的形式实现的部件称为 "驱动控制器" 。
可选地, 在驱动电源 50中还可以集成实现其它功能的电路, 例如 调光控制电路、 传感电路、 功率因数校正电路、 智能照明控制电路、 通信电路和保护电路等。 这些电路可以与驱动控制器集成在同一半导 体晶片或封装芯片内, 或者这些电路可以单独地以半导体晶片或封装 芯片的形式提供, 或者这些电路中的一些或全部可以组合在一起并以 半导体晶片或封装芯片的形式提供。
如图 7B所示,外部电源经接线柱 510A和 510B接入整流电路 520 (在这里以集成电路封装芯片的形式实现), 而驱动电路 530 (在这里 以集成电路封装芯片的形式实现, 例如可以是美信(Maxim ) 集成产 品公司制造的 LED驱动器 MAX16820、 恩智浦( NXP )半导体公司制 造的反激式驱动器 SSL系列控制 IC、 Clare公司制造的 HB LED驱动 器 MXHV9910、 安森美公司制造的 LED驱动器 NCP1351、 Active半 导体公司制造的 LED驱动器 ACT355A等)经布线 202与整流电路 520 电气连接。 驱动器 530还经布线 202与电容器 540A和 540B以及实现 其它功能的电路(这里以无线通信收发器芯片 550为例) 电气连接。 参见图 7B,驱动电源 50的输出端经穿越通孔 204的导线 203A和 203B 与位于基板表面 201A上的发光二极管单元 30电气连接。 在本实施例中, 对于封装芯片形式的驱动控制器和实现其它功能 的电路, 例如可以利用焊接工艺将其直接连接到表面 201B的布线 202 上, 而对于晶片形式的驱动控制器和实现其它功能的电路, 例如可以 利用绑定工艺或在板上倒装芯片 (FCOB ) 工艺将其直接连接到表面 201B的布线 202上。 此外, 可选地, 也可以釆用将整流电路 520之类 的电源变换元器件设置在灯芯 2外部或与驱动器集成在一个封装芯片 内的结构。
值得指出的是, 虽然在本实施例中, 利用绑定工艺将管芯形式的 发光二极管单元 30直接连接到布线 202上。但是也可以利用在板上倒 装芯片 (FCOB )工艺将发光二极管管芯与布线电气连接。 此外, 虽然 在本实施例中, 发光二极管单元 30以串联方式连接在一起, 但是也可 以并联、 混联或交叉阵列的形式连接在一起。
还需要指出的是, 虽然在本实施例中, 发光二极管单元 30和驱动 电源 50被设置在基板 20不同的表面, 但是它们也可以设置在同一表 面。 第七实施例
图 10为按照本发明第七实施例的发光二极管灯芯的示意图。
与上述借助图 7A、 7B、 8和 9所示的实施例相比, 本实施例的主 要不同之处在于发光二极管单元 30的形式, 因此这里仅示出设置发光 二极管单元的基板表面的视图。
参见图 10, 在基板 20的表面 201A上形成布线 202, 釆用封装芯 片形式的发光二极管单元 30被焊接在布线 202上从而与基板 20之间 形成热传导。 为了加强热传导, 例如还可以用粘合剂将 LED单元 30 粘合在表面 201A上。在图 10中,布线 202分为多段以将多个 LED单 体 30依次串联连接在一起。 此外, 在基板 20的中央开设有通孔 204, 布线 202借助穿越通孔 204的导线 203A和 203B电气连接至设置于基 板 20的另一表面上的驱动电源的驱动控制器。
第八实施例
图 11为按照本发明第八实施例的采用发光二极管作为光源的照明 装置的分解示意图。
如图 11所示,按照本实施例的照明装置包括灯壳 1和设置在灯壳 1内的发光二极管灯芯 2。
灯壳 1包括灯头 110、 散热件 120 (图 11中呈碗杯状的部件)和 灯軍 130。在本实施例中,灯头 110可釆用与普通白炽灯和节能灯类似 的螺纹状旋接口形式, 从而为照明装置提供与外部电源 (例如 220伏 交流电源) 的电气连接, 但是也可以采用旋转卡口等其它形式。 散热 件 120设置在灯头 110和灯軍 130之间, 其可采用各种绝缘导热材料 制成, 例如陶瓷材料或导热绝缘高分子复合材料等, 其一方面用于容 纳发光二极管灯芯 2,另一方面还起着将发光二极管和驱动电源产生的 热量传递到灯壳外部的作用。 如图 11所示, 在散热件 120的内壁上设 置多个沿灯壳纵向延伸的肋条以增加散热面积, 由于散热件 120 由绝 缘导热材料制成, 因此肋条可以与驱动电源的元器件接触从而增加导 热面积。 灯軍 130采用透光材料制成, 主要用于保护光源和功能电路 以及使光线更柔和、 更均匀地向空间发散。
值得指出的是, 虽然这里采用绝缘导热材料制作散热件, 但是釆 用金属材料也是可行的, 此时可在灯头 110与散热件 120之间增设绝 缘部件(例如陶瓷或塑料等) 以使它们之间电气绝缘。
在本实施例中, 灯芯 2可以采用上面借助图 7-10所述实施例的结 构。 参见图 11, 发光二极管灯芯 2包括基板 20、 多个设置在基板其中 一个表面的采用管芯形式的发光二极管单元 30和设置在基板另一个表 面的驱动电源。
基板 20由绝缘导热材料(例如陶瓷材料或导热绝缘高分子复合材 料等)构成的, 其周边可以在组装时借助导热胶、 导热的双面胶片或 开设在散热件 120内表面的槽口与散热件 120固定在一起, 由此使发 光二极管灯芯 2产生的热量较好地传递至散热件 120,并进而散发到周 围环境。 优选地, 可以采用模具压制法来制作陶瓷材料构成的基板, 这种方法制造的基板较厚(例如 1.5-3mm )并且硬度高。
需要指出的是, 虽然上面描述的基板 20由诸如陶瓷和导热绝缘高 分子复合材料之类的绝缘导热材料制成, 但是也可以采用包含金属基 层的金属芯材印刷电路板(MCPCB ) (例如铝基板)和包含绝缘材料 芯材的印刷电路板(例如纸基板、 玻璃纤维布基板和以玻璃纤维布作 为表面增强材料的复合基板等)作基板。
与图 7A和 7B所示实施例一样, 多个设置在基板表面的发光二极 管单元通过粘附方式设置在基板的表面以在 LED单元与基板之间形成 较好的热传导。 另一方面, 发光二极管单元可借助绑定工艺连接到布 线 (例如通过在陶瓷材料上烧结银浆图案形成布线层)上并由此与设 置在另一面上的驱动电源电气连接。 如果需要调整发光二极管单元的 发光波长, 可以用混合荧光粉的环氧树脂或硅胶将发光二极管单元粘 附在表面上, 或者在发光二极管单元的表面涂覆荧光层, 再将其借助 环氧树脂或硅胶粘合到表面上。
在本实施例中, 驱动电源可以采用在借助图 7A、 7B、 8和 9所述 实施例中描述的结构和原理, 此处不再赘述。
同样,可选地,在驱动电源中还可以集成实现其它功能的电路(例 如调光控制电路、 传感电路、 功率因数校正电路、 智能照明控制电路、 通信电路和保护电路等) 。 这些电路可以与驱动控制器集成在同一半 导体晶片或封装芯片内, 或者这些电路可以单独地以半导体晶片或封 装芯片的形式提供, 或者这些电路中的一些或全部可以组合在一起并 以半导体晶片或封装芯片的形式提供。
同样, 在本实施例中, 对于晶片形式的驱动控制器和实现其它功 能的电路, 例如可以利用绑定工艺或在板上倒装芯片(FCOB )工艺将 其直接连接到基板表面的布线上, 而对于封装芯片形式的驱动控制器 和实现其它功能的电路, 例如可以利用焊接工艺将其直接连接到基板 表面的布线上。 此外, 可选地, 也可以釆用将整流电路之类的电源变 换元器件设置在灯芯 2外部 (例如灯壳 1内) 的结构, 或者在外部电 源提供直流电压时也可以釆用省去整流电路的结构。
值得指出的是, 虽然在本实施例中, 利用绑定工艺将管芯形式的 发光二极管单元直接连接到布线上。 但是也可以利用在板上倒装芯片 ( FCOB )工艺将发光二极管管芯与布线电气连接。 此外, 虽然在本实 施例中,发光二极管单元 30以串联方式连接在一起,但是也可以并联、 混联或交叉阵列的形式连接在一起。
还需要指出的是, 虽然在本实施例中, 发光二极管单元和驱动电 源被设置在基板 20不同的表面, 但是它们也可以设置在同一表面。 第九实施例
图 12为按照本发明第九实施例的采用发光二极管作为光源的照明 装置的分解示意图。
本实施例与图 11所示实施例的主要不同之处在于,灯壳 1的散热 件 120采用金属材料制成, 为此在灯头 110与散热件 120之间增设绝 缘部件 150 (例如陶瓷或塑料等) 以使它们之间电气绝缘。
如图 12所示,按照本实施例的照明装置包括灯壳 1和设置在灯壳 1内的发光二极管灯芯 2。 灯壳 1包括灯头 110、 散热件 120 (图 12中 呈碗杯状的部件) 、 灯軍 130和设置在灯头 110与散热件 120之间的 绝缘部件 150。 在本实施例中, 为了提高散热效果,散热件 120的外表 面上设置多个鳍片以增大散热面积。 此外, 为了防止灯芯 2的电路与 散热件 120接触从而使散热件 120带电,基板 20上的元器件和布线应 该与基板边缘保持足够的间隙。
灯头 110可釆用与普通白炽灯和节能灯类似的螺紋状旋接口形式, 从而为照明装置提供与外部电源(例如 220伏交流电源)的电气连接, 但是也可以釆用旋转卡口等其它形式; 散热件 120设置在灯头 110和 灯軍 130之间, 其可釆用各种绝缘散热材料制成, 例如陶瓷材料或导 热绝缘高分子复合材料等,其一方面用于容纳发光二极管灯芯 2, 另一 方面还起着将发光二极管和驱动电源产生的热量传递到灯壳外部的作 用; 灯軍 130采用透光材料制成, 主要用于保护光源和功能电路以及 使光线更柔和、 更均匀地向空间发散。
在本实施例中, 灯芯 2可以采用在借助图 7-10所述实施例中描述 的结构和原理, 此处不再赘述。 虽然已经展现和讨论了本发明的一些方面, 但是本领域内的技术 人员应该意识到: 可以在不背离本发明原理和精神的条件下对上述方 面进行改变, 因此本发明的范围将由权利要求以及等同的内容所限定。

Claims

权利要求
1、 一种发光二极管灯芯, 其特征在于, 包括:
绝缘导热基板;
至少一个发光二极管单元, 其设置于所述基板的第一表面以与所 述基板之间形成热传导; 以及
设置于所述基板的第二表面的驱动控制器, 其与所述至少一个发 光二极管单元电气连接以向所述至少一个发光二极管单元提供所需的 工作电流或工作电压, 其中, 所述第一和第二表面为相同或相对的表 面。
2、 如权利要求 1所述的发光二极管灯芯, 其中, 所述绝缘导热基 板由陶瓷材料或导热绝缘高分子复合材料构成。
3、一种釆用发光二极管作为光源的照明装置,其特征在于, 包括: 灯壳, 包含散热件;
发光二极管灯芯, 包括:
绝缘导热基板, 与所述散热件固定在一起以在所述基板与所 述散热件之间形成热传导;
至少一个发光二极管单元, 其设置于所述基板的第一表面以 与所述基板之间形成热传导; 以及
设置于所述基板的第二表面的驱动控制器, 其与所述至少一 个发光二极管单元电气连接以向所述至少一个发光二极管单元提 供所需的工作电压或工作电流,其中,所述第一和第二表面为相同 或相对的表面。
4、一种釆用发光二极管作为光源的照明装置,其特征在于, 包括: 灯壳, 包含散热件;
绝缘导热基板, 与所述散热件固定在一起以在所述基板与所述散 热件之间形成热传导;
至少一个发光二极管单元, 其设置于所述基板的表面以与所述基 板之间形成热传导;
设置于所述灯壳内的驱动电源模块; 以及
形成于所述散热件表面的布线层, 用于使所述发光二极管单元电 气连接至所述驱动电源模块。
5、一种釆用发光二极管作为光源的照明装置,其特征在于, 包括: 灯壳, 包含绝缘导热部分;
至少一个发光二极管单元, 其设置在所述绝缘导热部分的外表面 以与所述绝缘导热部分之间形成热传导;
设置在所述灯壳内的驱动电源模块; 以及
形成于所述绝缘导热部分表面的布线层, 用于使所述发光二极管 单元电气连接至所述驱动电源模块。
6、一种釆用发光二极管作为光源的照明装置,其特征在于, 包括: 灯壳, 包含散热件;
沿所述灯壳纵轴延伸的柱状体, 其由绝缘导热材料构成并且其中 一个端部与所述散热件固定在一起以在所述柱状体与所述散热件之间 形成热传导;
至少一个发光二极管单元, 其设置在所述柱状体的外表面以与所 述柱状体之间形成热传导;
设置在所述灯壳内的驱动电源模块; 以及
形成于所述柱状体外表面的布线层, 其使所述发光二极管单元电 气连接至所述驱动电源模块。
7、 一种发光二极管灯芯, 其特征在于, 包括:
印刷线路板, 包括绝缘层和形成于所述绝缘层的第一和第二表面 的布线层;
至少一个发光二极管单元, 其设置于所述绝缘层的第一表面并与 所述布线层电气连接; 以及
设置于所述基材的第二表面的驱动控制器, 其通过所述布线层与 所述至少一个发光二极管单元电气连接以向所述至少一个发光二极管 单元提供所需的工作电压或工作电流。
8、一种釆用发光二极管作为光源的照明装置,其特征在于, 包括: 灯壳, 包含散热件;
发光二极管灯芯, 包括:
印刷线路板, 包括绝缘层和形成于所述绝缘层的第一和第二 表面的布线层,所述绝缘层与所述散热件固定在一起以在所述基材 与所述散热件之间形成热传导; 至少一个发光二极管单元, 其设置于所述绝缘层的第一表面 并与所述布线层电气连接; 以及
设置于所述绝缘层的第二表面的驱动控制器, 其通过所述布 线层与所述至少一个发光二极管单元电气连接以向所述至少一个 发光二极管单元提供所需的工作电压或工作电流。
9、 一种发光二极管灯芯, 其特征在于, 包括:
印刷线路板, 包括第一和第二绝缘层、 位于所述第一和第二绝缘 层之间的金属层以及形成于所述第一和第二绝缘层表面的布线层; 至少一个发光二极管单元, 其设置于所述第一绝缘层表面并与所 述布线层电气连接; 以及
设置于所述第二绝缘层表面的驱动控制器, 其通过所述布线层与 所述至少一个发光二极管单元电气连接以向所述至少一个发光二极管 单元提供所需的工作电流或工作电压。
10、 一种采用发光二极管作为光源的照明装置, 其特征在于, 包 括:
灯壳, 包含散热件;
发光二极管灯芯, 包括:
印刷线路板, 包括第一和第二绝缘层、 位于所述第一和第二 绝缘层之间的金属层以及形成于所述第一和第二绝缘层表面的布 线层,所述金属层与所述散热件固定在一起以在所述印刷线路板与 所述散热件之间形成热传导;
至少一个发光二极管单元, 其设置于所述第一绝缘层表面并 与所述布线层电气连接; 以及
设置于所述第二绝缘层表面的驱动控制器, 其通过所述布线 层与所述至少一个发光二极管单元电气连接以向所述至少一个发 光二极管单元提供所需的工作电压或工作电流。
PCT/CN2012/084280 2011-11-11 2012-11-08 发光二极管灯芯和采用发光二极管作为光源的照明装置 WO2013067945A1 (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201110357803.9 2011-11-11
CN201120447845 2011-11-11
CN201120447845.7 2011-11-11
CN201110357803 2011-11-11
CN201110462220.2 2011-12-12
CN2011104622202A CN103104828A (zh) 2011-11-11 2011-12-12 发光二极管灯芯和采用发光二极管作为光源的照明装置

Publications (1)

Publication Number Publication Date
WO2013067945A1 true WO2013067945A1 (zh) 2013-05-16

Family

ID=48288534

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/084280 WO2013067945A1 (zh) 2011-11-11 2012-11-08 发光二极管灯芯和采用发光二极管作为光源的照明装置

Country Status (2)

Country Link
CN (1) CN103104828A (zh)
WO (1) WO2013067945A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9401468B2 (en) 2014-12-24 2016-07-26 GE Lighting Solutions, LLC Lamp with LED chips cooled by a phase transformation loop

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104180202B (zh) * 2013-05-23 2019-03-01 赵依军 Led灯芯和包含其的led球泡灯
CN103528010A (zh) * 2013-09-22 2014-01-22 上海俪德照明科技股份有限公司 一种led光电模组
CN104235649A (zh) * 2014-08-19 2014-12-24 宁波爱科电气实业有限公司 一种改进型led灯
CN105135237A (zh) * 2015-08-06 2015-12-09 苏州晶雷光电照明科技有限公司 一种带过热保护的led照明灯
CN105423188A (zh) * 2015-12-23 2016-03-23 苏文藏 一种带缓冲垫的led灯
WO2017107081A1 (zh) * 2015-12-23 2017-06-29 苏文藏 一种带缓冲垫的led灯
CN106287258A (zh) * 2016-09-26 2017-01-04 苏州圣咏电子科技有限公司 一种发光模块及具有该发光模块的灯具
CN109519728A (zh) * 2018-11-13 2019-03-26 漳州立达信光电子科技有限公司 一种智能灯
CN109922573B (zh) * 2019-04-09 2020-01-14 上海大学 一种深海照明装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2926764Y (zh) * 2006-05-17 2007-07-25 乐清市前丰防爆电气有限公司 Led矿灯灯头
CN101025256A (zh) * 2007-04-13 2007-08-29 港立设计有限公司 发光二极管模块及其灯具
CN200968565Y (zh) * 2006-10-26 2007-10-31 政齐科技股份有限公司 发光二极管灯泡
CN101122382A (zh) * 2007-08-24 2008-02-13 黎昌兴 Led节能灯的散热装置
CN201748205U (zh) * 2010-07-20 2011-02-16 钱江涛 Led球泡灯
CN201764307U (zh) * 2010-08-05 2011-03-16 庄胜义 发光二极管灯泡
CN102011952A (zh) * 2009-09-04 2011-04-13 佛山市国星光电股份有限公司 Led光源模块的制造方法及该方法的产品
CN201811045U (zh) * 2010-08-31 2011-04-27 苏州达方电子有限公司 发光二极体灯具
CN201934983U (zh) * 2010-12-23 2011-08-17 安徽众和达光电有限公司 带散热装置的led照明灯具
CN102213378A (zh) * 2010-04-02 2011-10-12 秦大为 一种圆柱形一体化led路灯光源

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2926764Y (zh) * 2006-05-17 2007-07-25 乐清市前丰防爆电气有限公司 Led矿灯灯头
CN200968565Y (zh) * 2006-10-26 2007-10-31 政齐科技股份有限公司 发光二极管灯泡
CN101025256A (zh) * 2007-04-13 2007-08-29 港立设计有限公司 发光二极管模块及其灯具
CN101122382A (zh) * 2007-08-24 2008-02-13 黎昌兴 Led节能灯的散热装置
CN102011952A (zh) * 2009-09-04 2011-04-13 佛山市国星光电股份有限公司 Led光源模块的制造方法及该方法的产品
CN102213378A (zh) * 2010-04-02 2011-10-12 秦大为 一种圆柱形一体化led路灯光源
CN201748205U (zh) * 2010-07-20 2011-02-16 钱江涛 Led球泡灯
CN201764307U (zh) * 2010-08-05 2011-03-16 庄胜义 发光二极管灯泡
CN201811045U (zh) * 2010-08-31 2011-04-27 苏州达方电子有限公司 发光二极体灯具
CN201934983U (zh) * 2010-12-23 2011-08-17 安徽众和达光电有限公司 带散热装置的led照明灯具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9401468B2 (en) 2014-12-24 2016-07-26 GE Lighting Solutions, LLC Lamp with LED chips cooled by a phase transformation loop

Also Published As

Publication number Publication date
CN103104828A (zh) 2013-05-15

Similar Documents

Publication Publication Date Title
WO2013067945A1 (zh) 发光二极管灯芯和采用发光二极管作为光源的照明装置
WO2013139295A1 (zh) 具有强散热能力的发光二极管球泡灯及其制造方法
WO2014187335A1 (zh) Led灯芯和包含其的led球泡灯
JP2010045030A (ja) 発光ダイオード照明装置
JP2008293966A (ja) 発光ダイオードランプ
CN104421682B (zh) Led光源模块和包含该模块的led球泡灯
US20050062059A1 (en) Light emission diode (LED)
WO2008043206A1 (en) A semiconductor light-emitting module
JP2016171147A (ja) 発光装置および照明装置
WO2013117168A1 (zh) 发光二极管球泡灯及其制造方法
US9466772B2 (en) Method and apparatus for providing high-temperature multi-layer optics
CN103470968A (zh) 大发光角度的发光二极管灯芯及包含该灯芯的照明装置
CN103322438A (zh) 大功率发光二极管投光灯及其制造方法
WO2015039399A1 (zh) 一种led光电模组
CN103375704B (zh) 大功率发光二极管灯及其制造方法
CN101451689A (zh) 平板式led光源芯片
WO2013097755A1 (zh) 高度集成化的发光二级管灯芯和包含其的照明装置
CN105609496A (zh) 高功率密度cob封装白光led模块及其封装方法
WO2016197961A1 (zh) 一种led灯封装支架
CN203413588U (zh) Led光源板组件、led灯芯和led照明装置
WO2011038550A1 (zh) 一种发光二极管节能灯
CN104033749A (zh) 散热能力强的发光二极管球泡灯
WO2016184372A2 (zh) Led光源组件、led光电一体化模组和led射灯
US8419237B2 (en) Heat sink and light emitting diode lamp
CN201122598Y (zh) 平板式led光源芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12847714

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12847714

Country of ref document: EP

Kind code of ref document: A1