WO2015039399A1 - 一种led光电模组 - Google Patents

一种led光电模组 Download PDF

Info

Publication number
WO2015039399A1
WO2015039399A1 PCT/CN2013/090384 CN2013090384W WO2015039399A1 WO 2015039399 A1 WO2015039399 A1 WO 2015039399A1 CN 2013090384 W CN2013090384 W CN 2013090384W WO 2015039399 A1 WO2015039399 A1 WO 2015039399A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
aluminum substrate
cob light
led
ceramic layer
Prior art date
Application number
PCT/CN2013/090384
Other languages
English (en)
French (fr)
Inventor
陈卫平
张高柏
Original Assignee
上海俪德照明科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海俪德照明科技股份有限公司 filed Critical 上海俪德照明科技股份有限公司
Priority to DE212013000310.2U priority Critical patent/DE212013000310U1/de
Publication of WO2015039399A1 publication Critical patent/WO2015039399A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S9/00Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply
    • F21S9/02Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator
    • F21S9/03Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light
    • F21S9/037Lighting devices with a built-in power supply; Systems employing lighting devices with a built-in power supply the power supply being a battery or accumulator rechargeable by exposure to light the solar unit and the lighting unit being located within or on the same housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/003Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array
    • F21V23/004Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board
    • F21V23/005Arrangement of electric circuit elements in or on lighting devices the elements being electronics drivers or controllers for operating the light source, e.g. for a LED array arranged on a substrate, e.g. a printed circuit board the substrate is supporting also the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/86Ceramics or glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to the field of LED lighting, and in particular to an LED photovoltaic module. Background technique
  • LED Light-Emitting Diode
  • a diode made of a compound of gallium (Ga) and arsenic (AS), phosphorus (P), or nitrogen (N), which is a semiconductor.
  • LEDs consist of a PN junction and also have unidirectional conductivity. When a forward voltage is applied to the light-emitting diode, holes injected from the P region into the N region and electrons injected into the P region from the N region are separated from the electrons of the N region and the P region within a few micrometers near the PN junction. The hole complexes, producing fluorescence of spontaneous radiation.
  • the energy states of electrons and holes in different semiconductor materials are different. When the electrons and holes recombine, the amount of energy released is different, and the more energy is released, the shorter the wavelength of the emitted light.
  • the gallium arsenide diode emits red light
  • the gallium phosphide diode emits green light
  • the gallium nitride diode emits violet light.
  • the LED bulb is generally composed of three parts: an LED light source, a driving power source and a lamp housing.
  • the LED light source and the driving power source are the main factors determining the performance and price of the LED bulb.
  • the invention patent integrates the LED light source and the driving power source into one component _LED photoelectric module, which improves performance and reduces cost. Due to the simplified structure, it is more suitable for mass production.
  • an object of the present invention is to provide an LED optoelectronic module for solving the problem that the LED lamp in the prior art cannot be integrated due to excessive heat generation of the light source and the driving power source.
  • an LED photovoltaic module including: An aluminum substrate having a first surface and a second surface opposite to the first surface; a first ceramic layer and a second ceramic layer respectively disposed on the first surface and the second surface of the aluminum substrate for heat conduction; a COB light source on a ceramic layer; an insulating plate disposed at the COB light source and embedded between the first surface and the second surface of the aluminum substrate; the insulating plate is provided with a lead for guiding the COB light source to the aluminum a metallized via of the second surface of the substrate; a driving power source connected to the second surface of the aluminum substrate and connected to the lead of the COB light source drawn from the metallized via of the second surface of the aluminum substrate to drive the COB light source .
  • the driving power source is an alternating current driving power source.
  • the driving power source comprises a driving chip of a built-in or external MOSFET tube and a peripheral circuit of the driving chip, wherein the driving chip respectively drives the LED lamp according to a connection driving manner of dividing the LED lamp in the COB light source into multiple segments. .
  • the driving power source comprises a constant current driving source and a peripheral circuit, wherein the constant current driving source and a certain number of LED lamps in the COB light source are connected in series to drive the LED lamps in series.
  • the first ceramic layer is formed by sintering in a silk screen or spray coating process on the first surface of the aluminum substrate; and the second ceramic layer is formed by sintering on the second surface of the aluminum substrate by a silk screen or spray coating process.
  • the silver paste is cured by a predetermined bonding circuit by a silk screen process to form a printed circuit for connecting the COB light source and the driving power source.
  • the thickness of the insulating plate is consistent with the thickness of the aluminum substrate.
  • the shape of the aluminum substrate is circular, elliptical or polygonal.
  • the COB light source is a circular COB light source, a strip COB light source, a circular COB light source or a polygonal COB light source.
  • the annular COB light source is provided with a plurality of LEDs uniformly distributed, and the number of the LEDs is 30 to 48 or 72 to 96.
  • the aluminum substrate is provided with at least one mounting hole for connecting the photoelectric module to the heat sink or the lamp housing.
  • the LED photovoltaic module of the present invention has the following beneficial effects:
  • the LED photoelectric module of the present invention is coated with a ceramic slurry on both surfaces of an aluminum substrate, and a ceramic material having a high thermal conductivity and a high withstand voltage (DC 4000V) is sintered at a high temperature to form a ceramic layer.
  • the COB light source and the driving power source are respectively disposed on two surfaces of the aluminum substrate, the COB light source and the driving power source
  • the generated heat can be thermally conducted to the aluminum substrate through the ceramic layer respectively, so the invention can integrate the COB light source and the driving power source, and solves the problem that the LED lamp in the prior art cannot be integrated due to excessive heat generation of the light source and the driving power source. problem.
  • the AC direct drive power source can solve the problem that the number of the power source components is small and the volume is small.
  • FIG. 1 is a schematic view showing the front structure of an LED photovoltaic module of the present invention.
  • FIG. 2 is a schematic view showing the structure of the reverse side of the LED photovoltaic module of the present invention.
  • FIGS. 1 through 2 This embodiment relates to FIGS. 1 through 2. It is to be understood that the structures, the proportions, the dimensions, and the like of the drawings are only used to facilitate the understanding and reading of those skilled in the art, and are not intended to limit the practice of the present invention. The conditions are limited, so it is not technically meaningful. Any modification of the structure, change of the proportional relationship or adjustment of the size should remain in the present invention without affecting the effects and the achievable objectives of the present invention. The disclosed technical content is within the scope of the disclosure. At the same time, the terms such as “upper”, “lower”, “left”, “right”, “middle” and “one” are used in this specification. The scope of the present invention is also considered to be within the scope of the invention, and is not intended to limit the scope of the invention.
  • the principle and embodiment of an LED optoelectronic module of the present invention will be described in detail below, so that those skilled in the art can understand the LED optoelectronic module of the present invention without any creative work.
  • FIG. 1 is a schematic view showing the front structure of the LED photoelectric module of the present invention
  • FIG. 2 is a schematic view showing the structure of the reverse surface of the LED photovoltaic module of the present invention.
  • the present invention provides an LED photoelectric module.
  • the LED photovoltaic module 1 includes: an aluminum substrate 11, a first ceramic layer 13, a second ceramic layer 17, and a COB light source. 12. Insulation board 14 and drive power source 16.
  • the invention adopts a ceramic slurry on both surfaces of the aluminum substrate 11 to form a ceramic layer after sintering, and then, on the first ceramic layer and the second ceramic layer, the silver paste is pressed into a predetermined connection line by a silk screen process. After curing, a printed circuit for connecting the COB light source and the driving power source is formed.
  • the COB light source 12 and the driving power source 16 are respectively disposed on the surface of the two ceramic layers of the aluminum substrate 11, and the heat generated by the COB light source 12 and the driving power source 16 can be respectively thermally conducted through the ceramic layer, so that the present invention can make the COB light source 12 and the driving power source. 16 integrated.
  • the aluminum substrate 11 is the base of the entire LED photovoltaic module 1.
  • the heat generated by the COB light source 12 and the driving power source 16 is conducted to the aluminum substrate 11 through the first ceramic layer 13 and the second ceramic layer 17 having a high thermal conductivity, and then passed through the aluminum.
  • the substrate 11 is conducted to a heat dissipation housing of the bulb.
  • the aluminum substrate 11 has a first surface and a second surface opposite to the first surface.
  • the shape of the aluminum substrate 11 may be circular, elliptical or polygonal, but not Limited to the above shape, those skilled in the art can set the shape of the aluminum substrate 11 according to actual needs.
  • At least one mounting hole 15 is provided in the aluminum substrate 11.
  • the LED optoelectronic module 1 can be connected to the heat sink or the lamp housing through screws or bolts through the mounting holes 15.
  • the mounting holes 15 are provided at the edges of the aluminum substrate 11, and the number is three or any other.
  • the first ceramic layer 13 and the second ceramic layer 17 are respectively disposed on the first surface and the second surface of the aluminum substrate 11 for heat conduction, and further, the first ceramic layer 13 is disposed on the aluminum substrate 11 by a process such as silk screen or spray coating.
  • the first surface is further formed by high-temperature sintering;
  • the second ceramic layer 17 is formed on the second surface of the aluminum substrate 11 by screen printing or spraying, and is formed by high-temperature sintering. That is, the ceramic layer is coated on both surfaces of the aluminum substrate 11, and the paste-like ceramic slurry may be coated on the first surface and the second surface of the aluminum substrate 11 by a process technique such as silk screen printing or spraying, after sintering.
  • a first ceramic layer 13 and a second ceramic layer 17 are formed.
  • the silver paste is cured by a predetermined printing line by a silk screen process to form a printed circuit for connecting the COB light source 12 and the driving power source 16.
  • the conductive silver paste is silk-printed on the surfaces of the first ceramic layer 13 and the second ceramic layer 17 according to the electronic circuit of the driving power source 16 and the COB light source 12. After curing, LED chip bonding can be performed or the components can be processed by surface mount technology.
  • the ceramics used in the first ceramic layer 13 and the second ceramic layer 17 should have a high thermal conductivity and a thermal conductivity of more than 30 W/m/K.
  • the COB light source 12 is a high-efficiency integrated surface light source in which the LED chip is directly attached to the mirror metal substrate with high reflectivity.
  • the COB light source 12 eliminates the bracket concept. This technology is electroless, no reflow, no patching process, so the process is reduced. Nearly one-third, the cost is also saved by one-third.
  • COB Chip On Board (COB) process first covers the wafer placement point with an insulating, high-voltage and thermal-resistant epoxy resin (usually an epoxy resin doped with silver particles) on the surface of the substrate, and then directly directs the wafer. Placed on the surface of the substrate, heat cured until the silicon wafer is firmly fixed to the substrate, and then directly soldered to establish an electrical connection between the Chip and the substrate, Chip and Chip.
  • COB technology There are two main types of bare chip technology: one is COB technology and the other is flip chip technology (Flip Chip).
  • Chip-on-board (COB) semiconductor chip is placed on the printed circuit board, and the electrical connection between the chip and the substrate is achieved by wire stitching. The electrical connection between the chip and the substrate is achieved by wire stitching and covered with resin to ensure reliability. .
  • the COB light source 12 is disposed on the first ceramic layer 13.
  • the COB light source 12 may be an annular COB light source, a strip COB light source, a circular COB light source, or a polygonal COB light source, but is not limited to the above shape, and may be based on actual needs by those skilled in the art.
  • the shape of the COB light source 12 is set.
  • a ring-shaped COB light source If a ring-shaped COB light source is used, a plurality of LEDs in the annular COB light source are uniformly distributed, and more recently, the number of the LEDs is 30 to 48 or 72 to 96 depending on the operating voltage and the Vf voltage value of the LED.
  • the diameter of the ring in the ring COB source depends on the lamp power and the number of LEDs.
  • the insulating plate 14 is disposed at the COB light source 12 and embedded between the first surface and the second surface of the aluminum substrate 11, and the thickness of the insulating plate 14 is consistent with the thickness of the aluminum substrate 11 so that Set the ceramic layer.
  • the insulating plate 14 is provided with a metallized via 141 for guiding the leads of the COB light source 12 to the second surface of the aluminum substrate 11.
  • the function of the insulating plate 14 is to apply the first surface of the aluminum substrate 11 (positive
  • the LED lead wire in the COB light source 12 is guided to the second surface (reverse side) through a "via" (ie, the metallized via 141) to the output terminal of the driving chip in the driving power source 16.
  • the insulating plate 14 is pressed into the aluminum substrate 11 by a special process. This technique is necessary and well known to those skilled in the art to ensure that the safety requirements such as insulation and withstand voltage are satisfied.
  • the driving power source 16 is disposed on the second surface of the aluminum substrate 11 and is connected to the lead of the COB light source 12 drawn from the metallized via 141 of the second surface of the aluminum substrate 11 to drive the COB light source 12.
  • the drive power source 16 is an AC drive power source.
  • an AC direct drive power source is used, which can solve the problem of a small number of drives and a small volume.
  • the AC drive power source can be integrally mounted on the reverse side of the LED photoelectric module 1. When you use it, you only need to connect two wires as the power input, and the whole LED photoelectric module 1 can work normally.
  • the AC power supply can take several specific forms.
  • the driving power source 16 can adopt a driving chip with a built-in MOSFET tube and a peripheral circuit of the driving chip, wherein the driving chip drives the LED lamp according to a connection driving method of dividing the LED lamp in the COB light source 12 into a plurality of segments.
  • the multi-segment driving method is adopted, and the LED chip string is driven in the driving chip, and the LED lamp string is divided into a plurality of segments to drive.
  • the advantages of the multi-segment driving technology are high power factor, small harmonics, simple peripheral circuit, and easy realization of dimming and the like. .
  • the cost is higher due to the built-in high voltage power MOSFET.
  • the driving power source 16 can also adopt a driving chip of an external MOSFET tube and a peripheral circuit of the driving chip, wherein the driving chip respectively performs the LED driving method by dividing the LED lamp in the COB light source 12 into a plurality of segments. drive.
  • the multi-stage driving method is used to drive the external MOSFET of the chip to separate the driving circuit (digital circuit or analog and digital hybrid circuit) from the high-voltage MOSFET. Since the driving circuit is separated from the high-voltage MOSFET, the cost of the chip is greatly reduced. However, there are many peripheral circuit components (external MOSFETs), which has the advantages of flexible application, can be expanded into high-power output (10W-50W), and has low cost and outstanding advantages in high-power applications.
  • the driving power source 16 may further adopt a constant current driving source and a peripheral circuit, wherein the constant current driving source and a certain number of LED lamps in the COB light source 12 are connected in series to drive the LED lamps in series.
  • the LEDs are serialized in different quantities.
  • the advantage is that the peripheral circuit has the fewest parts and the lowest cost.
  • the disadvantage is that it can't dim, the power factor is low, the harmonics are high, and it is only suitable for small current and low power applications.
  • the driving power source 16 includes, but is not limited to, the above three types of driving power sources 16. Those skilled in the art can determine the advantages and disadvantages of the driving power sources 16 according to actual conditions, and determine which driving power source 16 is specifically selected.
  • the LED photoelectric module of the present invention achieves the following beneficial effects:
  • the LED photoelectric module of the present invention is coated with a ceramic slurry on both surfaces of an aluminum substrate, and a ceramic material having a high thermal conductivity and a high withstand voltage (DC 4000V) is sintered at a high temperature to form a ceramic coating. Then, the COB light source and the driving power source are respectively disposed on the two surfaces of the aluminum substrate, and the heat generated by the COB light source and the driving power source can be respectively thermally conducted to the aluminum substrate through the ceramic layer, so the invention can integrate the COB light source and the driving power source, and solves the problem. In the prior art, the problem that the LED lamp and the driving power source are too large to be integrated cannot be integrated.
  • the AC direct drive power source can solve the problem that the number of the power source components is small and the volume is small.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

一种LED光电模组(1),包括:具有第一表面和与第一表面相对的第二表面的铝基板(11);分别设置在铝基板(11)的第一和第二表面用于导热的第一陶瓷层(13)和第二陶瓷层(17);设置在第一陶瓷层(13)上的COB光源(12);设置在COB光源(12)处且嵌入铝基板(11)的第一表面和第二表面间的绝缘板(14);绝缘板(14)上设有用于将COB光源(12)的引线导出至铝基板(11)的第二表面的金属化过孔(141);设置在铝基板(11)的第二表面上且与从铝基板(11)的第二表面的金属化过孔(141)引出的COB光源(12)的引线相连以对COB光源(12)进行驱动的驱动电源(16)。驱动电源(16)为交流驱动电源。通过陶瓷层导热,解决了LED灯中由于光源和驱动电源发热量过大而无法集成在一起的问题。

Description

一种 LED光电模组 技术领域
本发明涉及 LED照明领域, 特别是涉及一种 LED光电模组。 背景技术
发光二极管(LED, Light-Emitting Diode) 是一种能发光的半导体电子元件, 由镓 (Ga) 与砷 (AS) 、 磷 (P) 、 氮 (N) 的化合物制成的二极管, 它是半导 体二极管的一种, 可以把电能转化成光能。 发光二极管与普通二极管一样是由一 个 PN结组成, 也具有单向导电性。 当给发光二极管加上正向电压后, 从 P区注 入到 N区的空穴和由 N区注入到 P区的电子, 在 PN结附近数微米内分别与 N 区的电子和 P区的空穴复合, 产生自发辐射的荧光。 不同的半导体材料中电子和 空穴所处的能量状态不同。 当电子和空穴复合时释放出的能量多少不同, 释放出 的能量越多, 则发出的光的波长越短。 磷砷化镓二极管发红光, 磷化镓二极管发 绿光, 氮化镓二极管发紫光。
近年来, 随着 LED产业的飞速发展, LED照明灯具依靠其自身节能优势在 市场上占据了很大的份额。 LED的灯泡, 一般由三部分: LED光源、驱动电源和 灯壳组成,其中 LED光源和驱动电源是决定 LED灯泡的性能和价格的主要因素。 本发明专利就是将 LED光源和驱动电源集成为一个组件 _LED光电模组, 使其 性能提高, 成本下降。 由于结构简化, 更适合于大批量生产。
已有所有的 LED光源与驱动电源都是分离的,这样做的原因一是驱动电源的 体积较大,不可能与 LED光源集成在一起,二是光源和电源的本身都是发热的主 体。可见, 在高功率和小体积时, 散热成为不可逾越的障碍, 而且 LED在高温工 作状态下, 其光衰加速并且寿命特性将大大下降。 发明内容
鉴于以上所述现有技术的缺点, 本发明的目的在于提供一种 LED光电模组, 用于解决现有技术中 LED灯中由于光源和驱动电源发热量过大而无法集成在一 起的问题。
为实现上述目的及其他相关目的, 本发明提供一种 LED光电模组, 包括: 具 有第一表面和与所述第一表面相对的第二表面的铝基板; 分别设置在铝基板的第 一表面和第二表面用于导热的第一陶瓷层和第二陶瓷层; 设置在第一陶瓷层上的 COB光源; 设置在所述 COB光源处且嵌入所述铝基板的第一表面和第二表面间 的绝缘板; 所述绝缘板上设有用于将 COB光源的引线导出至铝基板的第二表面 的金属化过孔; 设置在铝基板的第二表面上且与从铝基板的第二表面的金属化过 孔引出的 COB光源的引线相连以对 COB光源进行驱动的驱动电源。
优选地, 所述驱动电源为交流驱动电源。
优选地,所述驱动电源包括内置或外置 M0SFET管的驱动芯片和该驱动芯片 的***电路, 其中所述驱动芯片按将 COB光源中的 LED灯分成多段的连接驱动 方式分别对 LED灯进行驱动。
优选地, 所述驱动电源包括一个恒流驱动源和***电路, 其中所述恒流驱动 源与 COB光源中一定数量的 LED灯串联的连接驱动方式对串联的 LED灯进行驱 动。
优选地, 所述第一陶瓷层通过丝印或喷涂工艺设置在铝基板的第一表面烧结 后形成; 所述第二陶瓷层通过丝印或喷涂工艺设置在铝基板的第二表面烧结后形 成。
优选地, 在第一陶瓷层和第二陶瓷层上, 采用丝印工艺将银浆按预设的连接 线路, 固化后制成用于所述 COB光源和所述驱动电源连接的印制电路。
优选地, 所述绝缘板的厚度与所述铝基板的厚度一致。
优选地, 所述铝基板的形状为圆形、 椭圆形或多边形。
优选地, 所述 COB光源为环形 COB光源、 条形 COB光源、 圆形 COB光源 或多边形 COB光源。
优选地, 所述环形 COB光源中设有均匀分布的若干 LED, 所述 LED的数量 为 30~48个或 72~96个。
优选地, 所述铝基板上设有至少一个将光电模组与散热装置或灯具外壳相接 的安装孔。
如上所述, 本发明的 LED光电模组, 具有以下有益效果:
1、 本发明的 LED光电模组通在在铝基板的两个表面分别涂覆陶瓷浆料, 且 使用了高导热系数、 高耐压(DC 4000V) 的陶瓷材料高温烧结后形成陶瓷层, 之 后将 COB光源和驱动电源分别设置在铝基板的两个表面, COB光源和驱动电源 产生的热量可以分别通过陶瓷层导热至铝基板, 所以本发明可以使得 COB光源 和驱动电源集成一体,解决了现有技术中 LED灯中由于光源和驱动电源发热量过 大而无法集成在一起的问题。
2、 此外, 本发明中使用交流直接驱动电源, 可以解决驱电源元器件数量少、 体积小的问题。 附图说明
图 1显示为本发明的 LED光电模组的正面结构示意图。
图 2显示为本发明的 LED光电模组中的反面结构示意图。 元件标号说明
1 LED光电模组
11 铝基板
12 COB光源
13 第一陶瓷层
14 绝缘板
141 金属化过孔
15 安装孔
16 驱动电源
17 第二陶瓷层 具体实施方式
以下由特定的具体实施例说明本发明的实施方式, 熟悉此技术的人士可由本 说明书所揭露的内容轻易地了解本发明的其他优点及功效。
本具体实施方式涉及图 1至图 2。 须知, 本说明书所附图式所绘示的结构、 比例、 大小等, 均仅用以配合说明书所揭示的内容, 以供熟悉此技术的人士了解 与阅读, 并非用以限定本发明可实施的限定条件, 故不具技术上的实质意义, 任 何结构的修饰、 比例关系的改变或大小的调整, 在不影响本发明所能产生的功效 及所能达成的目的下, 均应仍落在本发明所揭示的技术内容得能涵盖的范围内。 同时, 本说明书中所引用的如"上"、 "下"、 "左"、 "右"、 "中间 "及"一"等的用语, 亦仅为便于叙述的明了, 而非用以限定本发明可实施的范围, 其相对关系的改变 或调整, 在无实质变更技术内容下, 当亦视为本发明可实施的范畴。
本发明的目的在于提供一种 LED光电模组, 用于解决现有技术中 LED灯中 由于光源和驱动电源发热量过大而无法集成在一起的问题。 以下将详细描述本发 明的一种 LED光电模组的原理和实施方式,使本领域技术人员不需要创造性劳动 即可理解本发明的一种 LED光电模组。
请参阅图 1及图 2, 图 1显示为本发明的 LED光电模组的正面结构示意图, 图 2显示为本发明的 LED光电模组中的反面结构示意图。如图 1和图 2所示,本 发明提供一种 LED光电模组,具体地,所述的 LED光电模组 1包括:铝基板 11、 第一陶瓷层 13、 第二陶瓷层 17、 COB光源 12、 绝缘板 14和驱动电源 16。
本发明通过在铝基板 11的两个表面分别涂覆陶瓷浆料, 烧结后形成陶瓷层, 之后在第一陶瓷层和第二陶瓷层上, 采用丝印工艺将银浆按预设的连接线路, 固 化后制成用于所述 COB光源和所述驱动电源连接的印制电路。再将 COB光源 12 和驱动电源 16分别设置在铝基板 11的两个陶瓷层表面, COB光源 12和驱动电 源 16产生的热量可以分别通过陶瓷层导热, 所以本发明可以使得 COB光源 12 和驱动电源 16集成一体。
所述铝基板 11是整个 LED光电模组 1的基体, COB光源 12和驱动电源 16 发出的热量通过高导热系数的第一陶瓷层 13、 第二陶瓷层 17传导至铝基板 11, 再通过铝基板 11传导至灯泡的散热外壳。
在本发明中, 所述铝基板 11 具有第一表面和与所述第一表面相对的第二表 面, 具体地, 所述铝基板 11的形状可以为圆形、椭圆形或多边形, 但并不局限于 上述形状, 本领域技术人员可根据实际需求, 设定所述铝基板 11的形状。
此外, 在本实施例中, 所述铝基板 11上设有至少一个安装孔 15。 通过安装 孔 15可用螺钉或螺栓将所述 LED光电模组 1与散热装置或灯具外壳相接。 具体 地, 在本实施例中, 所述安装孔 15设置在铝基板 11的边缘, 数量为三个或其它 任意个。
第一陶瓷层 13和第二陶瓷层 17分别设置在铝基板 11的第一表面和第二表面 用于导热, 而且, 所述第一陶瓷层 13通过丝印或喷涂等工艺设置在铝基板 11的 第一表面,再经过高温烧结形成;所述第二陶瓷层 17通过丝印或喷涂设置在铝基 板 11的第二表面, 再经过高温烧结形成。 也就是说, 在铝基板 11的两个表面涂覆陶瓷层, 具体可采用用丝印、喷涂等 工艺技术将膏状陶瓷浆料涂覆在铝基板 11的第一表面和第二表面,烧结后形成第 一陶瓷层 13和第二陶瓷层 17。 在第一陶瓷层 13和第二陶瓷层 17上, 采用丝印 工艺将银浆按预设的连接线路, 固化后制成用于所述 COB光源 12和所述驱动电 源 16连接的印制电路。 根据驱动电源 16和 COB光源 12的电子线路将导电银浆 丝印在第一陶瓷层 13和第二陶瓷层 17表面,固化后可进行 LED芯片绑定或将元 件用表面贴装技术进行加工。
此外, 在本发明中, 第一陶瓷层 13和第二陶瓷层 17所采用的陶瓷均应具有 高导热系数, 导热系数大于 30W/m/K为宜。
COB光源 12就是 LED芯片直接贴在高反光率的镜面金属基板上的高光效集 成面光源, COB光源 12剔除了支架概念, 这种技术无电镀、 无回流焊、 无贴片 工序, 因此工序减少近三分之一, 成本也节约了三分之一。
COB板上芯片 (Chip On Board, COB ) 工艺过程首先是在基底表面用绝缘、 耐高压和导热环氧树脂 (一般用掺银颗粒的环氧树脂)覆盖硅片安放点, 然后将硅 片直接安放在基底表面, 热固化至硅片牢固地固定在基底为止, 随后再用点焊的 方法在 Chip和基底、 Chip和 Chip之间直接建立电气连接。 裸芯片技术主要有两 种形式:一种 COB技术,另一种是倒装片技术 (Flip Chip)。板上芯片封装(COB ), 半导体芯片交接贴装在印刷线路板上, 芯片与基板的电气连接用引线缝合方法实 现, 芯片与基板的电气连接用引线缝合方法实现, 并用树脂覆盖以确保可靠性。
在本发明中, 所述 COB光源 12设置在第一陶瓷层 13上。 在本实施例中, 具体地, 所述 COB光源 12可以为环形 COB光源、 条形 COB光源、 圆形 COB 光源或多边形 COB光源, 但并不局限于上述形状, 本领域技术人员可根据实际 需求, 设定所述 COB光源 12的形状。
若采用环形 COB光源, 所述环形 COB光源中若干 LED均匀分布, 更近一 步地, 根据工作电压和 LED的 Vf电压值, 所述 LED的数量为 30~48个或 72~96 个。 环形 COB光源中环的直径可视灯功率和 LED数量而定。
所述绝缘板 14设置在所述 COB光源 12处且嵌入所述铝基板 11的第一表面 和第二表面间, 而且, 所述绝缘板 14的厚度与所述铝基板 11的厚度一致, 以便 设置陶瓷层。 所述绝缘板 14上设有用于将 COB光源 12的引线导出至铝基板 11 的第二表面的金属化过孔 141。所述绝缘板 14的功能是将铝基板 11第一表面(正 面) 的 COB光源 12中的 LED引出线, 通过 "过孔"(即所述金属化过孔 141 ) 导至第二表面 (反面), 接到驱动电源 16 中驱动芯片的输出端。 所述绝缘板 14 以特殊的工艺压入铝基板 11 ,这一技术是必须的,且是本领域技术人员所熟知的, 以保证满足绝缘、 耐压等安规的要求。
所述驱动电源 16设置在铝基板 11的第二表面上且与从铝基板 11的第二表面 的金属化过孔 141引出的 COB光源 12的引线相连以对 COB光源 12进行驱动。
在本发明中,所述驱动电源 16为交流驱动电源。本发明中使用交流直接驱动 电源, 可以解决驱电源元器件数量少、 体积小的问题。 同时正因为交流直接驱动 方式的线路的元件数量少、 可靠性高、 性能好, 才使得交流驱动电源能够实现整 体安装在 LED光电模组 1的反面。 使用时只需悍接两根线, 作为电源输入即可, 整个 LED光电模组 1就可正常工作。
所述交流电源可采用以下几种具体形式。
1、所述驱动电源 16可以采用内置 MOSFET管的驱动芯片和该驱动芯片的外 围电路,其中所述驱动芯片按将 COB光源 12中的 LED灯分成多段的连接驱动方 式分别对 LED灯进行驱动。
即采用多段驱动的方式, 在驱动芯片内置 MOSFET管, 将 LED灯串分成多 段来驱动, 这种多段驱动技术的优点是功率因数高、 谐波小、 ***电路简单, 很 容易实现调光等功能。 由于内置高压功率型 MOSFET管, 成本较高。
2、所述驱动电源 16还可以采用外置 MOSFET管的驱动芯片和该驱动芯片的 ***电路,其中所述驱动芯片按将 COB光源 12中的 LED灯分成多段的连接驱动 方式分别对 LED灯进行驱动。
即釆用多段驱动的方式, 在驱动芯片外置 MOSFET管, 将驱动电路(数字电 路或模拟、数字混合电路)与高压 MOSFET管分离,由于驱动电路与高压 MOSFET 管分离, 芯片的成本大大下降, 但是***电路零件较多 (MOSFET管外接), 其 优点是应用灵活, 可以扩展成大功率输出 (10W-50W) , 而且在大功率应用时, 成本低, 具有突出的优势。
3、 所述驱动电源 16又可以采用一个恒流驱动源和***电路, 其中所述恒流 驱动源与 COB光源 12中一定数量的 LED灯串联的连接驱动方式对串联的 LED 灯进行驱动。
即采用 LED单段、 恒流源驱动的方式, 视工作电压将 LED以不同的数量串 联, 接入恒流芯片, 其优点是***电路的零件最少, 成本最低, 缺点是不能调光, 功率因数较低、 谐波较高, 而且只适合在小电流、 小功率应用的场合。
在实际使用中,所述驱动电源 16包括但不限于上述三种形式的驱动电源 16, 本领域技术人员,可根据实际情况结构各驱动电源 16的优缺点,决定具体选用何 种驱动电源 16。
综上所述, 本发明的 LED光电模组, 达到了以下有益效果:
1、 本发明的 LED光电模组通在在铝基板的两个表面分别涂覆陶瓷浆料, 且 使用了高导热系数、 高耐压 (DC 4000V) 的陶瓷材料高温烧结后形成陶瓷涂层, 之后将 COB光源和驱动电源分别设置在铝基板的两个表面, COB光源和驱动电 源产生的热量可以分别通过陶瓷层导热至铝基板, 所以本发明可以使得 COB光 源和驱动电源集成一体,解决了现有技术中 LED灯中由于光源和驱动电源发热量 过大而无法集成在一起的问题。
2、 此外, 本发明中使用交流直接驱动电源, 可以解决驱电源元器件数量少、 体积小的问题。
所以, 本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。 上述实施例仅例示性说明本发明的原理及其功效, 而非用于限制本发明。 任何熟 悉此技术的人士皆可在不违背本发明的精神及范畴下, 对上述实施例进行修饰或 改变。 因此, 举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神 与技术思想下所完成的一切等效修饰或改变, 仍应由本发明的权利要求所涵盖。

Claims

权利要求书
、 一种 LED光电模组, 其特征在于, 包括:
具有第一表面和与所述第一表面相对的第二表面的铝基板;
分别设置在铝基板的第一表面和第二表面用于导热的第一陶瓷层和第二陶瓷层; 设置在第一陶瓷层上的 COB光源;
设置在所述 COB 光源处且嵌入所述铝基板的第一表面和第二表面间的绝缘板; 所 述绝缘板上设有用于将 COB光源的引线导出至铝基板的第二表面的金属化过孔;
设置在铝基板的第二表面上且与从铝基板的第二表面的金属化过孔引出的 COB 光 源的引线相连以对 COB光源进行驱动的驱动电源。 、 根据权利要求 1所述的 LED光电模组, 其特征在于, 所述驱动电源为交流驱动电源。 、 根据权利要求 1或 2所述的 LED光电模组, 其特征在于, 所述驱动电源包括内置或外置 M0SFET管的驱动芯片和该驱动芯片的***电路, 其中所述驱动芯片按将 COB 光源中 的 LED灯分成多段的连接驱动方式分别对 LED灯进行驱动。 、 根据权利要求 1或 2所述的 LED光电模组, 其特征在于, 所述驱动电源包括一个恒流驱 动源和***电路, 其中所述恒流驱动源与 COB光源中一定数量的 LED灯串联的连接驱 动方式对串联的 LED灯进行驱动。 、 根据权利要求 1所述的 LED光电模组, 其特征在于, 所述第一陶瓷层通过丝印或喷涂工 艺设置在铝基板的第一表面烧结后形成; 所述第二陶瓷层通过丝印或喷涂工艺设置在铝 基板的第二表面烧结后形成。 、 根据权利要求 5所述的 LED光电模组, 其特征在于, 在第一陶瓷层和第二陶瓷层上, 采 用丝印工艺将银浆按预设的连接线路, 固化后制成用于所述 COB光源和所述驱动电源连 接的印制电路。 、 根据权利要求 1所述的 LED光电模组, 其特征在于, 所述绝缘板的厚度与所述铝基板的 厚度一致。 、 根据权利要求 1所述的 LED光电模组, 其特征在于, 所述铝基板的形状为圆形、 椭圆形 或多边形。 、 根据权利要求 1所述的 LED光电模组, 其特征在于, 所述 COB光源为环形 COB光源、 条形 COB光源、 圆形 COB光源或多边形 COB光源。 0、 根据权利要求 9所述的 LED光电模组, 其特征在于, 所述环形 COB光源中设有均匀分 布的若干 LED, 所述 LED的数量为 30~48个或 72~96个。 1、 根据权利要求 1所述的 LED光电模组, 其特征在于, 所述铝基板上设有至少一个将光 电模组与散热装置或灯具外壳相接的安装孔。
PCT/CN2013/090384 2013-09-22 2013-12-25 一种led光电模组 WO2015039399A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE212013000310.2U DE212013000310U1 (de) 2013-09-22 2013-12-25 LED-Photovoltaik-Modul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310433204.XA CN103528010A (zh) 2013-09-22 2013-09-22 一种led光电模组
CN201310433204.X 2013-09-22

Publications (1)

Publication Number Publication Date
WO2015039399A1 true WO2015039399A1 (zh) 2015-03-26

Family

ID=49930236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090384 WO2015039399A1 (zh) 2013-09-22 2013-12-25 一种led光电模组

Country Status (3)

Country Link
CN (1) CN103528010A (zh)
DE (1) DE212013000310U1 (zh)
WO (1) WO2015039399A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397854A (zh) * 2019-08-30 2019-11-01 周永旺 一种led光源模组

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106287496A (zh) * 2015-05-19 2017-01-04 赵依军 Led光源组件、led光电一体化模组和led射灯
CN106287258A (zh) * 2016-09-26 2017-01-04 苏州圣咏电子科技有限公司 一种发光模块及具有该发光模块的灯具
US11353180B2 (en) * 2019-07-31 2022-06-07 Jiaxing Super Lighting Electric Appliance Co., Ltd LED lamp

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201462526U (zh) * 2009-06-16 2010-05-12 刘兴贵 一种改进的led灯具
CN102287651A (zh) * 2011-08-11 2011-12-21 陞佳集团有限公司 陶瓷载板led日光灯管
CN202308039U (zh) * 2011-10-14 2012-07-04 格瑞电子(厦门)有限公司 一种新型铝基板
CN103080641A (zh) * 2010-07-06 2013-05-01 克利公司 具有综合热管理的紧凑光学有效固态光源
CN103104828A (zh) * 2011-11-11 2013-05-15 赵依军 发光二极管灯芯和采用发光二极管作为光源的照明装置
CN203478079U (zh) * 2013-09-22 2014-03-12 上海俪德照明科技股份有限公司 一种led光电模组

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101387379B (zh) * 2007-09-14 2010-10-13 南京汉德森科技股份有限公司 高效大功率led光源的植物生长灯
US20110012161A1 (en) * 2009-07-14 2011-01-20 Hung Mien-Hsia Manufacturing methods and installation procedures which conforming to the international safety codes and regulations for ac led lamp
CN201636587U (zh) * 2010-01-29 2010-11-17 上海亮硕光电子科技有限公司 一种led嵌入式筒灯
CN202024208U (zh) * 2011-04-22 2011-11-02 常州华天福杰光电科技有限公司 一种led路灯
CN102395236B (zh) * 2011-11-30 2013-11-27 上海俪德照明科技股份有限公司 一种采用cob工艺的led灯板
CN202382046U (zh) * 2011-12-05 2012-08-15 陈卫平 一种具有特殊led裸片排列结构的灯板
CN202931664U (zh) * 2012-07-09 2013-05-08 苏州热驰光电科技有限公司 超高导热双面铝基线路板
CN102795875B (zh) * 2012-07-11 2013-11-06 铜陵国展电子有限公司 一种陶瓷铝基覆铜板的制备方法
CN202930430U (zh) * 2012-09-07 2013-05-08 茂邦电子有限公司 具有绝缘散热层的散热基板
CN203104940U (zh) * 2012-12-30 2013-07-31 东莞市合通电子有限公司 一种铝基板的斜孔结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201462526U (zh) * 2009-06-16 2010-05-12 刘兴贵 一种改进的led灯具
CN103080641A (zh) * 2010-07-06 2013-05-01 克利公司 具有综合热管理的紧凑光学有效固态光源
CN102287651A (zh) * 2011-08-11 2011-12-21 陞佳集团有限公司 陶瓷载板led日光灯管
CN202308039U (zh) * 2011-10-14 2012-07-04 格瑞电子(厦门)有限公司 一种新型铝基板
CN103104828A (zh) * 2011-11-11 2013-05-15 赵依军 发光二极管灯芯和采用发光二极管作为光源的照明装置
CN203478079U (zh) * 2013-09-22 2014-03-12 上海俪德照明科技股份有限公司 一种led光电模组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110397854A (zh) * 2019-08-30 2019-11-01 周永旺 一种led光源模组

Also Published As

Publication number Publication date
DE212013000310U1 (de) 2016-04-25
CN103528010A (zh) 2014-01-22

Similar Documents

Publication Publication Date Title
WO2013067945A1 (zh) 发光二极管灯芯和采用发光二极管作为光源的照明装置
TWM437919U (en) Light emission device
JP2016171147A (ja) 発光装置および照明装置
WO2013139295A1 (zh) 具有强散热能力的发光二极管球泡灯及其制造方法
TWM498387U (zh) 熱電分離的發光二極體封裝模組及電連接模組
WO2014187335A1 (zh) Led灯芯和包含其的led球泡灯
WO2015027884A1 (zh) Led光源模块和包含该模块的led球泡灯
WO2015039399A1 (zh) 一种led光电模组
US9752764B2 (en) Wide-angle emitting LED driven by built-in power and assembly method thereof
CN103470968A (zh) 大发光角度的发光二极管灯芯及包含该灯芯的照明装置
CN104747934A (zh) 用于提供定向光束的led照明装置
CN103956356A (zh) 一种高效导热的大功率led集成封装结构
WO2009063255A1 (en) Improved led device
CN105609496A (zh) 高功率密度cob封装白光led模块及其封装方法
WO2016197961A1 (zh) 一种led灯封装支架
KR20080088140A (ko) 방열 기판과 이를 포함하는 발광소자
CN203478079U (zh) 一种led光电模组
TWM524431U (zh) 發光模組及其燈具
US20180063903A1 (en) Light-emitting device and illuminating apparatus
KR20160066569A (ko) 다이칩을 집적화한 고휘도, 고출력 led 소자를 이용한 공장등
US20180063931A1 (en) Light-emitting device and illuminating apparatus
WO2016184372A2 (zh) Led光源组件、led光电一体化模组和led射灯
Chan Electronic packaging for solid-state lighting
CN105299500A (zh) 用于提供定向光束的led照明装置
CN203413588U (zh) Led光源板组件、led灯芯和led照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13894045

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2120130003102

Country of ref document: DE

Ref document number: 212013000310

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13894045

Country of ref document: EP

Kind code of ref document: A1