WO2013065549A1 - 車両用冷却液制御弁 - Google Patents

車両用冷却液制御弁 Download PDF

Info

Publication number
WO2013065549A1
WO2013065549A1 PCT/JP2012/077488 JP2012077488W WO2013065549A1 WO 2013065549 A1 WO2013065549 A1 WO 2013065549A1 JP 2012077488 W JP2012077488 W JP 2012077488W WO 2013065549 A1 WO2013065549 A1 WO 2013065549A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve body
valve
solenoid
fluid
state
Prior art date
Application number
PCT/JP2012/077488
Other languages
English (en)
French (fr)
Inventor
松坂正宣
佐藤忠祐
弓指直人
Original Assignee
アイシン精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン精機株式会社 filed Critical アイシン精機株式会社
Priority to CN201280040508.3A priority Critical patent/CN103748333B/zh
Priority to EP12845279.4A priority patent/EP2775116B1/en
Priority to US14/238,101 priority patent/US9163553B2/en
Priority to BR112014003381-1A priority patent/BR112014003381B1/pt
Publication of WO2013065549A1 publication Critical patent/WO2013065549A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats
    • F16K1/44Details of seats or valve members of double-seat valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/52Means for additional adjustment of the rate of flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0658Armature and valve member being one single element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0682Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid with an articulated or pivot armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Definitions

  • the present invention relates to a vehicle coolant control valve used for a cooling system of an engine or the like.
  • the vehicle engine performs warm-up operation when the engine temperature is low and controls the temperature to be substantially constant after the engine temperature rises.
  • a cooling system for the engine when the cooling water temperature is low by opening and closing the thermostat valve, the valve is closed and the cooling water is circulated through the bypass passage without passing through the radiator, so that the cooling water temperature is high.
  • the cooling water when the cooling water is in a low temperature state, the engine temperature can be quickly raised to the optimum temperature by warm-up operation, and then the combustion can be stabilized by making the engine temperature substantially constant to improve fuel efficiency. .
  • Patent Document 1 discloses a thermostat that can be operated in consideration of a radiator outlet side liquid temperature by providing a passage with a radiator outlet channel in an independent thermo-element sensing greenhouse on the engine outlet side. A thermo-expanding thermo wax is enclosed in the thermo element of this thermostat, and the valve body is opened and closed by the cooling water temperature. Further, a thermoelement and a heating element such as a nichrome heater are combined to open and close the valve body to electronically control the cooling water temperature.
  • Patent Document 2 discloses a solenoid valve having a movable portion urged in a closing direction by a spring. Since the solenoid valve is configured to be in a closed state when the coil is not excited and to be opened when the coil is excited, switching between the open and closed states can be performed quickly. As a result, when the solenoid valve is provided on the engine outlet side in the engine cooling system described above, the cooling water temperature becomes high, and the cooling water temperature becomes high, in which the cooling water circulates through the bypass passage without passing through the radiator. In this case, it is possible to immediately switch to a valve open state in which cooling water circulates through the radiator, and the valve response is good.
  • a first characteristic configuration of a vehicle coolant control valve includes a valve body that has a magnetic body and controls the flow of fluid, a fluid flow path, and abuts on the valve body to contact the flow path.
  • a valve seat that can close the valve body, a solenoid that maintains a contact state between the valve body and the valve seat by magnetic force, and a biasing mechanism that biases the valve body in a direction opposite to the flow direction of the fluid.
  • a first valve body that maintains contact with the valve seat when the solenoid is operating, and the fluid in a state in which the first valve body is in contact with the valve seat.
  • a second valve body capable of distributing a small amount.
  • a valve body that has a magnetic body and controls the flow of fluid, a fluid flow path, a valve seat that can contact the valve body and close the flow path
  • a solenoid that moves to a contact side with the valve seat and a biasing mechanism that biases the valve body in a direction opposite to the fluid flow direction
  • the valve body and the valve are magnetically activated when the solenoid is energized.
  • the valve body maintains a contact state with the valve seat when the solenoid is operating, and a small amount of fluid is maintained in a state where the first valve body maintains the contact state. Since the second valve body fluid that can be circulated is provided, the valve body is in a state where the first valve body is opened and normal fluid is circulated, and the second valve body is opened and a small amount of fluid is circulated. It is possible to switch to the state to be performed. As a result, when it is detected that the temperature in the engine has reached a predetermined temperature and the coolant control valve is opened, the second valve body is initially opened to allow a small amount of coolant to flow into the engine. be able to. As a result, the temperature in the engine can be prevented from rapidly decreasing, and combustion in the engine can be stably performed.
  • the fluid circulation hole is formed in the first valve body, and the second valve body is in a closed state in which the circulation hole is closed and
  • the open state can be switched to an open state in which the flow hole is opened, and is maintained in the closed state by the leakage magnetic flux of the solenoid from the first valve body, and the open state is achieved by reducing the current flowing to the solenoid. It is in the point where it was configured to be changeable.
  • the second valve body When the fluid circulation hole is formed in the first valve body as in this configuration and the second valve body can be switched between the closed state in which the circulation hole is closed and the open state in which the circulation hole is opened, the second valve body When the is opened, the flow hole formed in the first valve body is opened, and a small amount of fluid can be circulated by flowing the fluid through the flow hole. Further, the second valve body is maintained in the closed state by the leakage magnetic flux of the solenoid from the first valve body, and can be changed to the open state by reducing the energization current to the solenoid.
  • the valve body and the second valve body are kept closed by a common magnetic flux of the solenoid, and the second valve body can be changed to the open state only by reducing the energization current to the solenoid.
  • the structure of the coolant control valve is simplified by using the flow hole formed in the first valve body as a small-volume flow path for the fluid and sharing the solenoid between the first valve body and the second valve body.
  • the coolant control valve itself can be made compact.
  • the second valve body is in the open state by the fluid pressure of the fluid passing through the flow hole when the energization current to the solenoid is reduced. It is in the point.
  • a fourth characteristic configuration of the vehicle coolant control valve according to the present invention is that the biasing mechanism is configured to bias the first valve body in the closing direction via the second valve body. .
  • the biasing mechanism is configured to bias the first valve body in the closing direction via the second valve body, so that the first valve body and the second valve body can be moved by one biasing mechanism. Both can be biased in the closing direction. Thereby, the urging mechanism of the first valve body and the second valve body can be simplified.
  • a fifth characteristic configuration of the vehicle coolant control valve according to the present invention is that an energization current value to the solenoid is set according to an engine speed.
  • the mechanical water pump also increases the discharge pressure of cooling water (coolant) in proportion to the engine speed. For this reason, when the mechanical water pump is connected to the inflow port of the vehicle coolant control valve, even when the energization current to the solenoid is reduced to open the second valve body, the engine speed is high. Then, there is a possibility that the first valve body is opened under the influence of an increase in the discharge pressure. Then, the small flow rate mode is not realized in the vehicle coolant control valve.
  • the energization current value to the solenoid is set according to the engine speed as in this configuration, for example, the energization to the solenoid for opening the second valve body as the engine speed increases is achieved.
  • the current value can be set higher. As a result, even in a region where the engine speed is high, the first valve body is prevented from being immediately opened, and the second valve body is opened to allow a small amount of fluid to flow.
  • a sixth characteristic configuration of the vehicle coolant control valve according to the present invention is such that the valve body shifts from a closed state to an open state in which the first valve body is opened without passing through a small amount flow state by the second valve body. It is in a point that is configured to be possible.
  • the control of the fluid supply with high urgency is given priority over the coolant control valve rather than performing the small amount flow control of the fluid that suppresses the temperature change of the engine. If the valve body is configured to be able to shift from the closed state to the open state in which the first valve body is opened without passing through the small-volume flow state by the second valve body as in this configuration, the engine may be As a result, fluid can be quickly supplied to the valve, and the operability of the coolant control valve is improved.
  • a seventh characteristic configuration of the vehicle coolant control valve according to the present invention includes a winding number changing unit that controls the solenoid by changing the effective number of turns of the coil, wherein the solenoid has at least one coil. In the point.
  • the electromagnetic force of the solenoid is proportional to the product (ampere turn) of the current flowing in the coil and the number of coil turns. That is, the electromagnetic force of the solenoid can be controlled by changing either the current value flowing through the coil or the number of coil turns of the solenoid.
  • a current sensor for controlling the current value is required.
  • the solenoid has at least one coil, and includes a winding number changing unit that controls the solenoid by changing the effective number of turns of the coil, and the effective number of turns of the coil is changed by the winding number changing unit.
  • the magnitude of the electromagnetic force on the valve body can be switched with. This eliminates the need for a current sensor and simplifies the configuration for controlling the electromagnetic force of the solenoid. As a result, the cost of the coolant control valve can be further reduced.
  • the first valve body and the second valve body are provided in parallel between an inflow port and an outflow port, and the first valve body is provided.
  • a first valve passage and a second valve passage that bypasses the solenoid while having the second valve body, and the second valve body is formed in the second valve passage.
  • the valve hole can be switched between a closed state and an open state, and when the solenoid is energized by energization, the first valve body and the second valve body are maintained in a closed state, and the solenoid is energized. It is a point that the second valve body can be changed to an open state by the fluid pressure of the flow path in the second valve by reducing the current.
  • the fluid flowing in from the inflow port is discharged from the outflow port via either the first valve flow path provided with the first valve body or the second valve flow path provided with the second valve body. Leaked. Accordingly, a small amount of fluid can be circulated by closing the first valve body and opening the second valve body.
  • the solenoid when the solenoid is energized by energization, the first valve body and the second valve body are maintained in a closed state, and when the energization current to the solenoid is reduced, the fluid pressure in the second valve flow path causes the first valve body to be closed.
  • the two-valve element is changed to the open state.
  • the first valve body and the second valve body are maintained in the closed state by the magnetic flux of the common solenoid, and the second valve body can be changed to the open state only by reducing the energization current to the solenoid. .
  • the structure of the coolant control valve can be simplified by sharing the solenoid between the first valve body and the second valve body.
  • FIG. 2 is a schematic diagram showing an overall configuration of an engine cooling system. These are sectional drawings when the 1st valve body and the 2nd valve body of a coolant control valve for vehicles are in a closed state. These are sectional drawings when the 2nd valve body of the coolant control valve for vehicles is an open state. These are sectional drawings when the 1st valve body of the coolant control valve for vehicles is an open state. These are figures which show the relationship between engine internal temperature, control valve flow volume, current ratio, and the open / close state of a control valve. These are sectional drawings when the 1st valve body and the 2nd valve body of the coolant control valve for vehicles of a 2nd embodiment are in a closed state.
  • FIG. 1 is an illustration showing the overall configuration of an engine cooling system 20 in a vehicle.
  • An inflow port 24 of the radiator 23 is connected to a cooling water (coolant) outflow port 22 of the engine 21, and an outflow port 25 of the radiator 23 is connected to an inflow port 27 of a thermostat valve 26.
  • An outflow port 28 of the thermostat valve 26 is connected to a suction port 32 of the water pump 31, and a discharge port (not shown) of the water pump 31 is connected to a cooling water (coolant) inflow port (not shown) of the engine 21.
  • a heating outflow port (not shown) of the engine 21 is connected to the inflow port 6 (see FIG. 2) of the vehicle coolant control valve 1.
  • the outflow port 7 of the vehicle coolant control valve 1 is connected to the inflow port 34 of the heater core 33, and the outflow port 35 of the heater core 33 is connected to the bypass inflow port 29 of the thermostat valve 26.
  • the bypass inflow port 29 communicates with the outflow port 28.
  • the vehicle coolant control valve (hereinafter referred to as coolant control valve) 1 includes a housing 8, a valve seat 14, a position spaced from the valve seat 14, and a position in contact with the valve seat 14. And a solenoid 2 capable of maintaining contact between the valve seat 14 and the valve body 11 by energization.
  • the valve body 11 includes a first valve body 12 located on the upstream side of the inflow port 6 and a second valve body 13 located on the downstream side of the inflow port 6.
  • the first valve body 12 is a valve body that opens and closes by contacting and separating from the valve seat 14, and a fluid circulation hole 12 a is formed in the first valve body 12. This flow hole 12a becomes a flow path of a small flow rate fluid which will be described later.
  • the housing 8 includes an inflow port 6, an outflow port 7, an opening 15 that is concentrically opposed to the inflow port 6, and a cover body 16 that seals the opening 15. Are provided along a direction orthogonal to the inflow port 6.
  • the solenoid 2 is electrically connected to a drive circuit by a connector (not shown), wound around the inner diameter part 4 of the bobbin 3 formed of a magnetic material such as iron, and is enclosed in the inner diameter part 4 and the outer diameter part 5. Consists of copper wire.
  • the bobbin 3 is installed in a housing having an inflow port 6 and an outflow port 7.
  • An in-valve channel 9 is formed inside the inner diameter portion 4 of the bobbin 3, and the in-valve channel 9 communicates with the inflow port 6.
  • the first valve body 12 and the second valve body 13 are formed of a magnetic material such as iron, and the second valve body 13 is supported by the cover body 16 so as to be slidable by the bearing portion 17.
  • the first valve body 12 is also slidably supported by a cover body 16 by a guide portion (not shown).
  • the cover body 16 is hermetically installed in the opening 15 of the housing 8 formed on the side opposite to the inflow port 6.
  • the valve seat 14 that comes into contact with the first valve body 12 is formed on the flange surface of the bobbin 3 opposite to the inflow port 6.
  • a coil spring 18 is installed as an urging mechanism between the second valve body 13 and the cover body 16, and the coil spring 18 urges the second valve body 13 toward the valve seat 14, so that the second The first valve body 12 is also urged in the direction of the valve seat 14 via the valve body 13.
  • the first valve body 12 is attracted to the valve seat 14 when the solenoid 2 is excited by energization, and the contact state between the first valve body 12 and the valve seat 14 is maintained. This state is a closed state of the first valve body 12.
  • the solenoid 2 is excited by energization, the second valve body 13 is maintained in a closed state in which the flow hole 12a of the first valve body 12 is closed by the leakage magnetic flux of the solenoid 2.
  • the water pump 31 When the engine 21 is stopped, the water pump 31 is also stopped, so that no fluid pressure is generated at the inflow port 6. Therefore, the closed state where the first valve body 12 is urged by the urging force of the coil spring 18 and is in contact with the valve seat 14 is maintained (see FIG. 2).
  • the water pump 31 of this embodiment is comprised with the mechanical pump, the water pump connected to the inflow port 6 of the coolant control valve 1 may be an electric pump.
  • the solenoid 2 When the engine 21 is started, the solenoid 2 is excited by energization, and an attractive force acts on the first valve body 12 formed of a magnetic material.
  • the valve body 11 of the coolant control valve 1 receives the suction force of the solenoid 2 and the urging force of the coil spring 18, contacts the valve seat 14, and the fluid pressure generated by the discharge of the water pump 31 acts on the first valve body 12. Even in this state, the valve seat 14 is held in a closed state (closed state). At this time, since the second valve body 13 is maintained in the closed state in which the flow hole 12a of the first valve body 12 is closed, the valve body 11 (the first valve body 12 and the second valve body 13) is in the closed state. (See FIG. 2).
  • the energizing current value of the solenoid 2 is weakened to, for example, about 50%.
  • the state in which the first valve body 12 abuts on the valve seat 14 is maintained, but the second valve body 13 moves in the opening direction by the fluid pressure passing through the flow hole 12a formed in the first valve body 12. (See FIG. 3).
  • the flow hole 12a formed in the first valve body 12 is opened, and a small amount of fluid can be circulated by flowing the fluid through the flow hole 12a.
  • the second valve body 13 is maintained in the closed state by the leakage magnetic flux of the solenoid 2 from the first valve body 12, and is configured to be able to be changed to the open state by reducing the energization current to the solenoid 2.
  • the closed state of the first valve body 12 and the second valve body 13 is maintained by the magnetic flux of the common solenoid 2, and the second valve body 13 can be changed to the open state only by reducing the energization current to the solenoid 2. It becomes possible.
  • the second valve body 13 is initially opened to supply a small amount of cooling water. It can be made to flow into the engine 21. Thereby, as shown in FIG. 5, the temperature in the engine 21 gradually decreases immediately after the cooling water is supplied to the engine 21. As a result, a sudden temperature drop in the engine 21 can be prevented, and combustion in the engine 21 can be performed stably.
  • the cooling water is heated inside the engine 21, cooled by the radiator 23, and circulated by the water pump 31 via the thermostat valve 26.
  • the thermostat valve 26 When the engine 21 is at a low temperature, the thermostat valve 26 is closed.
  • the cooling water heated inside the engine 21 is supplied to the heater core 33 via the coolant control valve 1 held open by the fluid pressure, and the room is warmed.
  • the cooling water cooled by the heater core 33 is circulated by the water pump 31 via the thermostat valve 26.
  • the coolant control valve 1 is not opened by thermal expansion such as thermowax, but is opened by the solenoid 2 that has excellent response and can be freely controlled by electric current. Will improve. Further, in the closed state, the first valve body 12 and the valve seat 14 come into contact with each other and the distance between the magnetic bodies approaches, so that the attractive force per current increases and the urging force of the coil spring 18 causes the valve body 11. By energizing the first valve body 12 and the second valve body 13 in the closed state, the power consumption of the solenoid 2 can be reduced. Further, the second valve body 13 is always urged by the coil spring 18, so that the vibration of the valve body 11 (first valve body 12, second valve body 13) due to hydraulic pulsation can be suppressed.
  • the flow hole 12a formed in the first valve body 12 is used as a small-volume flow path of the fluid, and the solenoid 2 is shared by the first valve body 12 and the second valve body 13, so that the coolant control valve 1
  • the structure is simplified, and the coolant control valve 1 itself can be made compact.
  • the coolant control valve 1 has a first valve body 12 and a second valve body 13 arranged in parallel between the inflow port 6 and the outflow port 7,
  • the first valve body passage 9 that passes through the first valve body 12 and the second valve passage 19 that bypasses the solenoid 2 and passes through the second valve body 13 are separately provided.
  • the second in-valve flow path 19 passing through the second valve body 13 is formed at the outer peripheral position of the solenoid 2 from the inflow port 6, and a valve hole 19 a is formed.
  • the second valve body 13 is pivotally supported at one end and biased in a closed state by a not-shown winding spring or the like.
  • a communication hole 8 a communicating with the outflow port 7 is formed in the housing 8 on the downstream side of the second valve body 13.
  • the first valve body 12 and the second valve body 13 are in a closed state, and when the pump is started, the solenoid 2 is excited by energization, and the first valve body 12 and the second valve body A suction force acts on the body 13.
  • the coolant control valve 1 shown in FIG. 7 shows a small flow rate mode in which the second valve body 13 is opened while the first valve body 12 is maintained in the closed state.
  • the solenoid 2 is weakened in the energization current value, and the second valve body 13 is opened by receiving the fluid pressure in the second valve passage 19.
  • the coolant control valve 1 shown in FIG. 8 shows a normal open mode in which both the first valve body 12 and the second valve body 13 are open.
  • the solenoid 2 is not energized, and the first valve body 12 is also opened by receiving the fluid pressure in the first valve passage 9.
  • the mechanical water pump 31 also increases the discharge pressure of the cooling water (coolant) in proportion to the engine speed. For this reason, even if the energization current to the solenoid is decreased in order to open the second valve body 13, in the region where the engine speed is high, the first valve body 12 is opened due to the influence of the increase in the discharge pressure. There is a possibility. Then, the small flow rate mode is not realized in the coolant control valve 1.
  • the energization current value to the solenoid 2 is configured to be set according to the engine speed. Specifically, for example, as shown in the graph of FIG. 9, the value of the current that is energized to open the second valve body 13 as the engine speed increases is set higher. By doing so, even in a region where the engine speed is high, the first valve body 12 is not opened, and only the second valve body 13 is opened, and the small flow rate mode can be set.
  • the valve body 11 is configured to be able to shift from the closed state to the open state in which the first valve body 12 is opened while the state in which the second valve body 13 is closed is maintained.
  • a small flow rate control request # 01
  • the presence / absence of a defroster request is confirmed (# 02).
  • the energization is turned off (# 03), and it is confirmed whether or not the first valve body 12 is opened due to the fluid pressure (# 04).
  • the valve body 11 is configured to be able to shift from the closed state to the open state in which the first valve body 12 is opened while the state in which the second valve body 13 is closed is maintained. Then, fluid supply to the engine 21 as soon as necessary becomes possible, and the operability of the coolant control valve 1 is improved.
  • operator is not limited to a defroster request
  • the electromagnetic force of the solenoid is proportional to the product (ampere turn) of the current flowing in the coil and the number of coil turns. Therefore, the electromagnetic force of the solenoid can be controlled by changing either the current value flowing through the coil or the number of coil turns of the solenoid.
  • a configuration for controlling the electromagnetic force of the solenoid either a configuration controlled by a current flowing in the coil or a configuration controlled by the effective number of turns of the coil may be adopted as a configuration for controlling the electromagnetic force of the solenoid.
  • the effective number of turns of the coil means the number of turns of the coil that is actually energized among the total number of turns of the coil provided in the solenoid.
  • the current sensor 50 and the ECU are arranged in the power supply circuit, and the current is detected by the ECU based on the value of the current sensor 50. Change and control.
  • the solenoid is configured to include at least one coil and a turn number changing unit that can change the effective number of turns of the coil.
  • a coil 41 (number of turns N1) and a coil 42 (number of turns N2) are provided as coil windings of the solenoid 2, and the effective number of turns of the coil 41 is set by the changeover switch SW (setting unit).
  • the number of turns of the coil to be energized is changed by switching between the number of turns (N1) and the number of turns of the coil 41 and the coil 42 (N1 + N2).
  • the effective number of turns of a coil will be changed by changing with changeover switch SW (turn number change part), and the size of the electromagnetic force to valve body 11 (the 1st valve body 12 and the 2nd valve body 13) can be changed. .
  • the current sensor 50 becomes unnecessary, and the configuration for controlling the electromagnetic force of the solenoid 2 is simplified. As a result, the cost of the coolant control valve 1 can be further reduced.
  • the effective winding number of the coil may be changed by moving the position of the contact point with respect to one coil.
  • the number of contacts of the changeover switch SW for a plurality of coils may be three or more, and the number of solenoid coils may be three or more.
  • a plurality of coils (for example, six) that can stably adsorb the valve element 11 in the circumferential direction of the solenoid 2 are dispersedly arranged, and the entire coil is energized or only a part of the coils (for example, three at equal intervals). The effective number of turns may be changed depending on whether or not the current is energized.
  • the solenoid 2 of the coolant control valve 1 is kept in contact with the first valve body 12 (second valve body 13) in a state of being excited when the engine 21 is started.
  • the solenoid 2 is energized again after the first valve body 12 is in the open state (the first valve body 12 and the valve seat 14 are separated).
  • a powerful solenoid that moves the first valve body 12 against the fluid pressure and contacts the valve seat 14 may be used.
  • the solenoid 2 of the coolant control valve 1 is installed around the in-valve channel 9 but is installed at a position away from the coolant channel for reasons such as mounting. Also good.
  • the example in which the solenoid 2 is shared by the first valve body 12 and the second valve body 13 has been described.
  • the solenoid that maintains the suction of the second valve body 13 is the solenoid of the first valve body 12.
  • the structure provided separately from 2 may be sufficient.
  • the coil spring 18 is used as an urging mechanism for the valve body 11.
  • the valve body 11 is urged in the closing direction by other moving means such as an air spring, a magnetic force, and gravity acting on the mass of the valve body 11. May be.
  • the means for circulating the cooling water may use not only the water pump 31 but also an accumulator or the like.
  • the coolant control valve 1 is used for the cooling system of the engine 21 main body.
  • the coolant control valve 1 may be applied to a catalyst cooling system or a liquid-cooled oil cooler installed in the exhaust pipe.
  • the present invention may be applied as a cooling liquid control valve for a heat source cooling system or exhaust heat recovery system for motors, inverters, secondary batteries, fuel cells and the like used in electric vehicles.
  • the vehicle coolant control valve according to the present invention can be used for a wide range of objects to be cooled in various vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

 弁体の開状態を通常量の流体を流通させる状態とそれよりも小量の流体を流通させる状態とに切換え可能に構成された車両用冷却液制御弁を提供する。磁性体を有し流体の流通を制御する弁体と、流体の流路を構成し、弁体と当接して流路を閉塞可能な弁座と、磁力によって弁体と弁座との当接状態を維持させるソレノイドと、弁体を流体の流通方向とは反対側に付勢する付勢機構とを備え、弁体が、ソレノイドが作用しているときに弁座との当接状態を維持する第1弁体と、当該第1弁体が弁座に当接した状態において流体を小量流通させることができる第2弁体とを備えた。

Description

車両用冷却液制御弁
 本発明は、エンジン等の冷却系に使用される車両用冷却液制御弁に関する。
 車両のエンジンは、燃費の向上等のために、エンジン温度が低い場合には暖機運転を行い、エンジン温度が上昇した後にその温度を略一定にする制御がなされる。そのためのエンジンの冷却系として、サーモスタットバルブの開閉により、冷却水温度が低い場合には、当該バルブを閉じて冷却水がラジエータを経由せずにバイパス通路を介して循環させ、冷却水温度が高くなった場合に、当該バルブを開いて冷却水がラジエータを通るよう循環させて、冷却水温を一定に制御するシステムが一般的に存在する。また、冷却水が低温状態のときは暖機運転により、エンジン温度を最適温度に早期に上昇させることができ、その後のエンジン温度を略一定にして燃焼を安定させて燃費を向上させることができる。
 特許文献1には、エンジン出口側の独立したサーモエレメント感温室にラジエータ出口流路との通路を設け、ラジエータ出口側液温を加味した作動を行えるサーモスタットが開示されている。このサーモスタットのサーモエレメントには熱膨張するサーモワックスが封入されており、冷却水温により弁体を開閉動作させる。さらに、サーモエレメントにニクロムヒータ等の発熱素子を組み合わせて弁体を開閉させ冷却水温を電子制御している。
 特許文献2には、スプリングによって閉方向に付勢された可動部を持つソレノイドバルブが開示されている。ソレノイドバルブでは、コイル非励磁時には閉状態となり、コイル励磁時に開状態となるよう構成されているため、開閉状態の切換えを素早く行うことができる。これにより、上述のエンジンの冷却系におけるエンジン出口側にソレノイドバルブを設けた場合には、冷却水がラジエータを経由せずにバイパス通路を介して循環させるバルブ閉状態と、冷却水温度が高くなった場合に冷却水がラジエータを通って循環させるバルブ開状態との切換えを即座に行うことができ、バルブの応答性は良い。
特開2003-328753号公報 特開2002-340219号公報
 エンジンの冷却系統において、エンジンからの冷却水出口に特許文献2に記載のソレノイドバルブを設置した場合には、当該ソレノイドバルブを閉状態にすると、冷却系統全体の冷却水の流れが停止する。この状態では、エンジン内部の熱が外部に放出されないので暖機促進される。しかしながら、エンジン内の温度が所定温度になったことを検知してソレノイドバルブを開放する際には、ソレノイドバルブは即座に開状態になるため、エンジン外部において暖められていない冷却水が一気にエンジン内部に流れ込むこととなりエンジンの冷却が促進される。その場合、図11に示すように、エンジン内の温度は急激に低下しエンジンにおける燃焼が不安定となる。
 本発明は上述の問題点に鑑みてなされたものであり、その目的は、弁体の開状態を通常量の流体を流通させる状態とそれよりも小量の流体を流通させる状態とに切換え可能に構成された車両用冷却液制御弁を提供することにある。
 本発明に係る車両用冷却液制御弁の第1特徴構成は、磁性体を有し流体の流通を制御する弁体と、流体の流路を構成し、前記弁体と当接して前記流路を閉塞可能な弁座と、磁力によって前記弁体と前記弁座との当接状態を維持させるソレノイドと、前記弁体を前記流体の流通方向とは反対側に付勢する付勢機構とを備え、前記弁体が、前記ソレノイドが作用しているときに前記弁座との当接状態を維持する第1弁体と、当該第1弁体が前記弁座に当接した状態において前記流体を小量流通させることができる第2弁体とを備えている点にある。
 本構成の如く、磁性体を有し流体の流通を制御する弁体と、流体の流路を構成し、弁体と当接して流路を閉塞可能な弁座と、磁力によって弁体を前記弁座との当接側に移動させるソレノイドと、弁体を前記流体の流通方向とは反対側に付勢する付勢機構とを備えることで、ソレノイドが通電状態になると磁力によって弁体と弁座との当接状態が維持されて弁体が閉状態となり、ソレノイドが非通電状態になると弁体と弁座との当接状態は維持されなくなり弁体を流体が流通可能な開状態にすることができる。
 また、弁体が、ソレノイドが作用しているとき弁座に対して当接状態を維持する第1弁体と、当該第1弁体が当接状態を維持している状態で流体を小量流通させることができる第2弁体流体とを備えているので、弁体は、第1弁体が開いて通常の流体が流通する状態と、第2弁体が開いて小量の流体が流通する状態とに切換可能となる。これにより、エンジン内の温度が所定温度になったことを検知して、冷却液制御弁を開状態する際に、当初においては第2弁体を開いて小量の冷却液をエンジンに流入させることができる。その結果、エンジン内の温度は急激に低下することを防止することができ、エンジンにおける燃焼を安定的に行うことができる。
 本発明に係る車両用冷却液制御弁の第2特徴構成は、前記第1弁体に前記流体の流通孔が形成されており、前記第2弁体は、前記流通孔を閉じる閉状態と前記流通孔を開く開状態とに切換可能であり、前記第1弁体からの前記ソレノイドの漏れ磁束によって前記閉状態に維持されるとともに、前記ソレノイドへの通電電流が減少されることで前記開状態に変更可能に構成された点にある。
 本構成の如く、第1弁体に流体の流通孔が形成されており、第2弁体が流通孔を閉じる閉状態と流通孔を開く開状態とに切換可能であると、第2弁体を開状態にしたときに第1弁体に形成された流通孔が開き、当該流通孔に流体が流通することで流体を小量流通させることができる。また、第2弁体が第1弁体からのソレノイドの漏れ磁束によって閉状態に維持されるとともに、ソレノイドへの通電電流が減少することで開状態に変更可能に構成されているので、第1弁体と第2弁体とは共通のソレノイドの磁束によって閉状態が維持され、ソレノイドへの通電電流を減少させるだけで第2弁体の開状態への変更も可能となる。このように、第1弁体に形成された流通孔を流体の小量流通経路とし、ソレノイドを第1弁体と第2弁体とで共用することで、冷却液制御弁の構造が簡易となり、冷却液制御弁自体をコンパクトに構成することができる。
 本発明に係る車両用冷却液制御弁の第3特徴構成は、前記第2弁体は、前記ソレノイドへの通電電流が減少することで、前記流通孔を通過する流体の流体圧によって前記開状態となる点にある。
 本構成のように、開状態にするために、流体の流体圧を利用することで、第2弁体を開状態にする部材を特に設ける必要がなく、冷却液制御弁の構造を簡素にすることができる。
 本発明に係る車両用冷却液制御弁の第4特徴構成は、前記付勢機構が、前記第2弁体を介して前記第1弁体を閉方向に付勢するよう構成された点にある。
 本構成の如く、付勢機構が第2弁体を介して第1弁体を閉方向に付勢するよう構成することで、1つの付勢機構によって第1弁体と第2弁体との両方を閉方向に付勢することができる。これにより、第1弁体及び第2弁体の付勢機構を簡略化することができる。
 本発明に係る車両用冷却液制御弁の第5特徴構成は、前記ソレノイドへの通電電流値がエンジン回転数に応じて設定される点にある。
 機械式のウォータポンプは、エンジン回転数に比例して冷却水(冷却液)の吐出圧も上昇する。このため、機械式ウォータポンプが車両用冷却液制御弁の流入ポートに接続されていると、第2弁体を開くためにソレノイドへの通電電流を減少させた場合でも、エンジン回転数が高い領域では吐出圧の上昇の影響を受けて第1弁体が開状態となる可能性がある。そうなると、車両用冷却液制御弁において小流量モードが実現されなくなる。
 しかし、本構成の如く、ソレノイドへの通電電流値をエンジン回転数に応じて設定されるよう構成すると、例えば、エンジン回転数の上昇に合わせて第2弁体を開放するためのソレノイドへの通電電流値を高めに設定することができる。これにより、エンジン回転数が高い領域においても、第1弁体が直ちに開状態になることが防止され、第2弁体を開放させて流体を小量流通させることが可能となる。
 本発明に係る車両用冷却液制御弁の第6特徴構成は、前記弁体が、閉状態から前記第2弁体による小量流通状態を経ることなく前記第1弁体を開く開状態に移行可能に構成された点にある。
 車両走行時等においては、例えば運転者によるデフロスタ要求等、エンジンへの流体の供給が早急に必要となる場合がある。こうした状況では、冷却液制御弁は、エンジンの温度変化を抑制する流体の少量流通制御を行うよりも、緊急性の高い流体供給の制御が優先される方が好ましい。本構成のように、弁体が、閉状態から前記第2弁体による小量流通状態を経ることなく第1弁体を開く開状態に移行可能に構成されていると、必要に応じてエンジンへの早急な流体供給が可能となり、冷却液制御弁の操作性が向上する。
 本発明に係る車両用冷却液制御弁の第7特徴構成は、前記ソレノイドが、少なくとも1つのコイルを有し、前記コイルの有効巻数を変更して前記ソレノイドの制御を行う巻数変更部を備えた点にある。
 一般的に、ソレノイドの電磁力はコイルに流れる電流とコイル巻数との積(アンペアターン)に比例する。すなわち、ソレノイドの電磁力は、コイルに流れる電流値とソレノイドのコイル巻数のいずれかを変更することで制御することができる。ここで、コイルに流れる電流値を変更してソレノイドの電磁力を制御するには、電流値を制御するための電流センサが必要となる。一方、本構成のように、ソレノイドが、少なくとも1つのコイルを有し、コイルの有効巻数を変更してソレノイドの制御を行う巻数変更部を備え、コイルの有効巻数を巻数変更部によって変更することで弁体に対する電磁力の大きさを切換えることができる。これにより、電流センサが不要となり、ソレノイドの電磁力を制御する構成が簡易となる。その結果、冷却液制御弁のコストをより低減することができる。
 本発明に係る車両用冷却液制御弁の第8特徴構成は、流入ポートと流出ポートとの間に前記第1弁体と前記第2弁体とが並設され、前記第1弁体を設けた第1弁内流路と、前記第2弁体を備えつつ前記ソレノイドを迂回する第2弁内流路と、を備え、前記第2弁体は、前記第2弁内流路に形成された弁孔を閉状態と開状態とに切換可能であり、前記ソレノイドが通電により励磁されることで、前記第1弁体及び前記第2弁体は閉状態に維持され、前記ソレノイドへの通電電流が減少することで、前記第2弁内流路の流体圧により前記第2弁体を開状態に変更可能に構成された点である。
 本構成により、流入ポートから流入する流体は、第1弁体を設けた第1弁内流路と、第2弁体を設けた第2弁内流路とのいずれかを介して流出ポートから流出される。これにより、第1弁体を閉状態にして第2弁体を開状態にすることで、流体を小量流通させることができる。また、ソレノイドが通電により励磁されることで、第1弁体および第2弁体は閉状態に維持され、ソレノイドへの通電電流が減少することで、第2弁内流路の流体圧により第2弁体が開状態に変更される。このように、第1弁体と第2弁体とは共通のソレノイドの磁束によって閉状態が維持され、ソレノイドへの通電電流を減少させるだけで第2弁体を開状態に変更することができる。また、ソレノイドを第1弁体と第2弁体とで共用することで、冷却液制御弁の構造を簡易にすることができる。
は、エンジン冷却系の全体構成を示す概略図である。 は、車両用冷却液制御弁の第1弁体および第2弁体が閉状態の時の断面図である。 は、車両用冷却液制御弁の第2弁体が開状態の時の断面図である。 は、車両用冷却液制御弁の第1弁体が開状態の時の断面図である。 は、エンジン内温度、制御弁流量、電流比と制御弁の開閉状態との関係を示す図である。 は、第2実施形態の車両用冷却液制御弁の第1弁体および第2弁体が閉状態の時の断面図である。 は、第2実施形態の車両用冷却液制御弁の第1弁体が閉状態で第2弁体が開状態の時の断面図である。 は、第2実施形態の車両用冷却液制御弁の第1弁体および第2弁体が開状態の時の断面図である。 は、エンジン回転数と制御弁通電電流との関係を示す図である。 は、制御弁における開閉制御のフローチャートである。 は、エンジン内温度、制御弁流量、電流比と従来の制御弁の開閉状態との関係を示す図である。 は、電流値を変更してソレノイドの電磁力を制御する回路を示す図である。 は、コイルの有効巻数を変更してソレノイドの電磁力を制御する回路を示す図である。
 以下、本発明に係る車両用冷却液制御弁の実施形態を図面に基づいて説明する。
 図1は、車両におけるエンジン冷却系20の全体構成を示す説明である。エンジン21の冷却水(冷却液)流出ポート22にラジエータ23の流入ポート24が接続され、ラジエータ23の流出ポート25は、サーモスタットバルブ26の流入ポート27に接続される。サーモスタットバルブ26の流出ポート28は、ウォータポンプ31の吸込ポート32に接続され、ウォータポンプ31の図示しない吐出ポートは、エンジン21の図示しない冷却水(冷却液)流入ポートに接続される。一方、エンジン21の図示しない暖房用流出ポートは、車両用冷却液制御弁1の流入ポート6(図2参照)に接続される。車両用冷却液制御弁1の流出ポート7は、ヒータコア33の流入ポート34に接続され、ヒータコア33の流出ポート35は、サーモスタットバルブ26のバイパス流入ポート29に接続される。バイパス流入ポート29は流出ポート28まで連通する。
 車両用冷却液制御弁(以下、冷却液制御弁)1は、図2に示すように、ハウジング8と、弁座14と、弁座14から離間する位置と当該弁座14に当接する位置とに移動可能な弁体11と、弁座14と弁体11との当接を通電により維持可能なソレノイド2とを備えている。
 弁体11は、流入ポート6の上流側に位置する第1弁体12と、流入ポート6の下流側に位置する第2弁体13によって構成されている。第1弁体12は弁座14に当接離間することで開閉する弁体であり、第1弁体12には流体の流通孔12aが形成されている。この流通孔12aが後述する小流量の流体の流路となる。
 ハウジング8は、流入ポート6と、流出ポート7と、流入ポート6に対し同心状に対向するように形成された開口部15と、開口部15を密閉するカバー体16とを備え、流出ポート7は流入ポート6に対して直交する方向に沿わせて設けられている。
 ソレノイド2は、図示しないコネクタにより駆動回路に電気的に接続され、鉄等の磁性体により成形されたボビン3の内径部4の外側に巻かれ、内径部4と外径部5に内包される銅線により構成される。ボビン3は、流入ポート6及び流出ポート7を備えたハウジング内に設置される。ボビン3の内径部4の内側には弁内流路9が形成されており、弁内流路9は流入ポート6に連通する。
 第1弁体12及び第2弁体13は鉄等の磁性体により成形されており、第2弁体13は軸受部17によりスライド可能にカバー体16に支持される。また、第1弁体12も図示しないガイド部によりスライド可能にカバー体16に支持されている。カバー体16は流入ポート6と反対側に形成されたハウジング8の開口部15に密閉して設置される。第1弁体12と当接する弁座14は、ボビン3における流入ポート6とは反対側のフランジ面に形成される。第2弁体13とカバー体16との間には、付勢機構としてコイルスプリング18が設置されており、コイルスプリング18は第2弁体13を弁座14の方向に付勢し、第2弁体13を介して第1弁体12も弁座14の方向に付勢する。
 第1弁体12は、ソレノイド2が通電により励磁されると弁座14に吸着され、第1弁体12と弁座14との当接状態が維持される。この状態は、第1弁体12の閉状態である。第2弁体13は、ソレノイド2が通電により励磁されると、ソレノイド2の漏れ磁束によって第1弁体12の流通孔12aを閉じる閉状態に維持される。
 エンジン21の停止時には、ウォータポンプ31も停止しているため流入ポート6に流体圧は発生していない。したがって、第1弁体12はコイルスプリング18の付勢力により付勢されて弁座14に当接した閉状態が保持される(図2参照)。なお、本実施形態のウォータポンプ31は機械式ポンプで構成されているが、冷却液制御弁1の流入ポート6に接続されるウォータポンプは電動式ポンプであってもよい。
 エンジン21の始動時には、ソレノイド2は通電により励磁され、磁性体により成形された第1弁体12に吸引力が作用する。冷却液制御弁1の弁体11は、ソレノイド2による吸引力とコイルスプリング18による付勢力とを受け、弁座14に当接しウォータポンプ31の吐出による流体圧が第1弁体12に作用しても弁座14に当接した状態(閉状態)に保持される。このとき、第2弁体13は第1弁体12の流通孔12aを閉じる閉状態が維持されているので、弁体11(第1弁体12、第2弁体13)は閉状態である(図2参照)。
 エンジン21内の温度が所定温度まで上昇し冷却液制御弁1に対し流体の供給要求が与えられると、ソレノイド2の通電電流値が、例えば50%程度に弱められる。そうなると、第1弁体12は弁座14に当接する状態が維持されるが、第2弁体13は第1弁体12に形成された流通孔12aを通過する流体圧により開方向に移動する(図3参照)。
 第2弁体13が開状態になると第1弁体12に形成された流通孔12aが開き、当該流通孔12aに流体が流通することで流体を小量流通させることができる。第2弁体13は第1弁体12からのソレノイド2の漏れ磁束によって閉状態に維持されるとともに、ソレノイド2への通電電流が減少されることで開状態に変更可能に構成されているので、第1弁体12と第2弁体13とは共通のソレノイド2の磁束によって閉状態が維持され、ソレノイド2への通電電流を減少させるだけで第2弁体13の開状態への変更も可能となる。
 このように、エンジン21内の温度が所定温度になったことを検知して、冷却液制御弁1を開状態する際に、当初においては第2弁体13を開いて小量の冷却水をエンジン21に流入させることができる。これにより、図5に示すように、エンジン21内の温度は、冷却水がエンジン21に供給された直後において緩やかに低下することとなる。その結果、エンジン21内の温度の急激な温度低下が防止でき、エンジン21における燃焼を安定的に行うことができる。
 第2弁体13が開状態となる小流量モードになった後、エンジン21内の温度が再び所定温度になると、ソレノイド2への通電電流を解除して第1弁体12を開放する。第1弁体12に作用する流体圧は、コイルスプリング18による付勢力に抗して第1弁体12を開状態に保持する(図4参照)。
 冷却水はエンジン21の内部で加熱後、ラジエータ23により冷却され、サーモスタットバルブ26を経由してウォータポンプ31によって循環する。エンジン21が低温時には、サーモスタットバルブ26が閉状態となる。暖房作動時には、エンジン21の内部で加熱された冷却水は、流体圧によって開状態に保持された冷却液制御弁1を経由してヒータコア33に供給され、室内が暖められる。ヒータコア33で冷却された冷却水は、サーモスタットバルブ26を経由してウォータポンプ31により循環する。
 冷却液制御弁1は、サーモワックス等の熱膨張による開動作ではなく、応答性に優れ電流により自在に制御できるソレノイド2により開動作する為、暖房の効きを早めることができ寒冷時の快適性が向上する。また、閉状態では、第1弁体12と弁座14が当接して磁性体間の距離が接近するため電流当たりの吸引力が増大すること、及び、コイルスプリング18の付勢力により弁体11(第1弁体12、第2弁体13)が閉状態に付勢されることにより、ソレノイド2の電力消費を低減できる。さらに、第2弁体13がコイルスプリング18により常時付勢されることにより、液圧脈動による弁体11(第1弁体12、第2弁体13)の振動を抑制できる。
 また、第1弁体12に形成された流通孔12aを流体の小量流通経路とし、ソレノイド2を第1弁体12と第2弁体13とで共用することで、冷却液制御弁1の構造が簡易となり、冷却液制御弁1自体をコンパクトに構成することができる。
〔第2実施形態〕
 本実施形態は、図6~図8に示すように、冷却液制御弁1が、流入ポート6と流出ポート7との間に第1弁体12と第2弁体13とが並設され、第1弁体12を通過する第1弁内流路9と、前記ソレノイド2を迂回して第2弁体13を通過する第2弁内流路19とを別々に備える構成である。第2弁体13を通過する第2弁内流路19は、流入ポート6からソレノイド2の外周位置に形成されており、弁孔19aが形成されている。第2弁体13は、一端が枢支され図示しない巻きバネ等によって閉状態に付勢されている。第2弁体13の下流側のハウジング8には流出ポート7に連通する連通孔8aが形成されている。
 図6に示される冷却液制御弁1は、第1弁体12、第2弁体13が閉状態であり、ポンプ始動時には、ソレノイド2は通電により励磁され、第1弁体12及び第2弁体13に吸引力が作用する。
 図7に示される冷却液制御弁1は、第1弁体12が閉状態に維持されたまま第2弁体13が開状態となる小流量モードを示す。ソレノイド2は通電電流値が弱められ、第2弁体13が第2弁内流路19の流体圧を受けて開状態となる。
 図8に示される冷却液制御弁1は、第1弁体12、第2弁体13が共に開状態となる通常の開モードを示す。ソレノイド2には通電されなくなり、第1弁体12についても第1弁内流路9の流体圧を受けて開状態となる。
〔第3実施形態〕
 機械式のウォータポンプ31は、エンジン回転数に比例して冷却水(冷却液)の吐出圧も上昇する。このため、第2弁体13を開くためにソレノイドへの通電電流を減少させても、エンジン回転数が高い領域においては、吐出圧の上昇の影響を受けて第1弁体12が開状態となる可能性がある。そうなると、冷却液制御弁1において小流量モードが実現されなくなる。
 そこで、本実施形態では、ソレノイド2への通電電流値をエンジン回転数に応じて設定されるよう構成した。詳しくは、例えば図9のグラフに示すように、エンジン回転数の上昇に伴って第2弁体13を開放するために通電する電流値を高めに設定する。こうすることで、エンジン回転数が高い領域においても、第1弁体12が開放されることなく、第2弁体13のみを開放させ、小流量モードとすることが可能となる。
〔第4実施形態〕
 車両走行時等において、例えば運転者によるデフロスタ要求が操作される場合は、窓ガラスが曇った場合等であって視界確保のため、緊急性を高い状況といえる。こうした状況下では、エンジン21内の冷却水温度の変化を抑制する流体の少量流通制御よりも、緊急性の高い流体供給に応える制御を優先させる方が好ましい。
 本実施形態では、弁体11が、閉状態から第2弁体13を閉じた状態が維持されたままで第1弁体12を開く開状態に移行可能に構成されている。図10の制御フローに示されるように、小流量制御の要求(♯01)が発生した場合に、デフロスタ要求の有無が確認され(♯02)、デフロスタ要求が確認されれば、ソレノイド2への通電をOFFにし(♯03)、第1弁体12が流体圧を受けて開状態となったか否かが確認される(♯04)。
 小流量制御の要求(♯01)が発生した場合に、デフロスタ要求の有無が確認され(♯02)、デフロスタ要求が確認されなければ、ソレノイド2への通電が弱められ(♯05)、第2弁体13が流体圧を受けて開状態となる小流量制御が行われる。エンジン21内の冷却水温度が所定温度T1以上か否かが確認され(♯06)、所定温度T1以上になるとソレノイド2への通電をOFFにする(#03)。
 このように、冷却液制御弁1において、弁体11が、閉状態から第2弁体13を閉じた状態が維持されたままで第1弁体12を開く開状態に移行可能に構成されていると、必要に応じてエンジン21への早急な流体供給が可能となり、冷却液制御弁1の操作性が向上する。なお、運転者による上述の緊急要求はデフロスタ要求に限定されない。
〔他の実施形態〕
(1)上記の実施形態では、冷却液制御弁1をヒータコア33への流路を開閉する冷却液制御弁に適用した例を示したが、ラジエータ23への流路を開閉するサーモスタットバルブ26に適用してもよい。
(2)一般的に、ソレノイドの電磁力はコイルに流れる電流とコイル巻数との積(アンペアターン)に比例する。したがって、ソレノイドの電磁力は、コイルに流れる電流値とソレノイドのコイル巻数のいずれかを変更することで制御することができる。上記の実施形態においては、ソレノイドの電磁力を制御する構成として、コイルに流れる電流によって制御する構成と、コイルの有効巻数によって制御する構成のいずれを採用してもよい。ここで、コイルの有効巻数とは、ソレノイドが備えるコイル全体の巻数のうち、実際に通電されるコイルの巻数をいう。
 ソレノイド2の電磁力をコイル40に流れる電流によって制御する場合には、例えば図12に示すように、電流センサ50とECUとを電源回路に配置し、電流センサ50の値に基づいてECUで電流を変更し制御する。
 ソレノイド2の電磁力を有効巻数によって制御する場合には、ソレノイドが、少なくとも1つのコイルと、コイルの有効巻数を変更できる巻数変更部とを備えるよう構成にする。例えば、図13に示すように、ソレノイド2のコイル巻線としてコイル41(巻数N1)とコイル42(巻数N2)とを設け、切替スイッチSW(設定部)により、コイルの有効巻数をコイル41の巻数(N1)と、コイル41及びコイル42の巻数(N1+N2)とに切替えて通電されるコイルの巻数を変更する。こうすると、切替スイッチSW(巻数変更部)で切替えることでコイルの有効巻数が変更され、弁体11(第1弁体12、第2弁体13)に対する電磁力の大きさを切換えることができる。これにより、電流センサ50は不要となり、ソレノイド2の電磁力を制御する構成が簡易となる。その結果、冷却液制御弁1のコストをより低減することができる。
 ソレノイド2における、巻数変更部の構成としては、1つのコイルに対して接点の位置を移動させることでコイルの有効巻数を変更するものであってもよい。また、複数のコイルに対する切替スイッチSWの接点を3つ以上にしてもよいし、ソレノイドのコイル数を3つ以上にしてもよい。また、ソレノイド2の周方向に弁体11を安定的に吸着できる複数のコイル(例えば6つ)を分散配置し、コイル全体に通電するか、コイルの一部(例えば均等間隔の3つ)のみに通電するかによって有効巻数を変更するものであってもよい。
(3)上記の実施形態では、冷却液制御弁1のソレノイド2として、エンジン21の始動時において励磁された状態において、第1弁体12(第2弁体13)との当接が維持される程度の微弱なソレノイドを用いる例を示したが、ソレノイド2として、第1弁体12が開状態(第1弁体12と弁座14とが離間した状態)となった後に再び通電することで流体圧に抗して第1弁体12を移動させて弁座14に当接させるような強力なソレノイドを用いてもよい。
(4)上記の実施形態では、冷却液制御弁1のソレノイド2は弁内流路9の周囲に設置されているが、搭載上等の理由により冷却水流路から離れた位置に設置されていてもよい。上記の第2実施形態では、ソレノイド2を第1弁体12と第2弁体13とで共用する例を示したが、第2弁体13を吸着維持するソレノイドを第1弁体12のソレノイド2とは別に備える構成でもよい。また、弁体11の付勢機構としてコイルスプリング18が用いられているが、空気ばね、磁力、弁体11の質量に作用する重力等の他の移動手段で弁体11を閉方向に付勢してもよい。冷却水を循環させる手段はウォータポンプ31だけでなく、蓄圧器等を補助的に用いてもよい。
(5)上記の実施形態では、冷却液制御弁1をエンジン21本体の冷却系に用いているが、排気管に設置される触媒の冷却系又は液冷式オイルクーラ等に適用してもよい。他に、電動車両に使用されるモータ、インバータ、二次電池、燃料電池等の熱源の冷却系又は排熱回収系の冷却液制御弁として適用してもよい。
 本発明に係る車両用冷却液制御弁は、各種車両における幅広い冷却対象に対して利用可能である。

Claims (8)

  1.  磁性体を有し流体の流通を制御する弁体と、
     流体の流路を構成し、前記弁体と当接して前記流路を閉塞可能な弁座と、
     磁力によって前記弁体と前記弁座との当接状態を維持させるソレノイドと、
     前記弁体を前記流体の流通方向とは反対側に付勢する付勢機構とを備え、
     前記弁体が、前記ソレノイドが作用しているときに前記弁座との当接状態を維持する第1弁体と、当該第1弁体が前記弁座に当接した状態において前記流体を小量流通させることができる第2弁体とを備えている車両用冷却液制御弁。
  2.  前記第1弁体に前記流体の流通孔が形成されており、前記第2弁体は、前記流通孔を閉じる閉状態と前記流通孔を開く開状態とに切換可能であり、前記第1弁体からの前記ソレノイドの漏れ磁束によって前記閉状態に維持されるとともに、前記ソレノイドへの通電電流が減少することで前記開状態に変更可能に構成された請求項1記載の車両用冷却液制御弁。
  3.  前記第2弁体は、前記ソレノイドへの通電電流が減少することで、前記流通孔を通過する流体の流体圧によって前記開状態となる請求項2記載の車両用冷却液制御弁。
  4.  前記付勢機構が、前記第2弁体を介して前記第1弁体を閉方向に付勢するよう構成された請求項1~3のいずれか一項に記載の車両用冷却液制御弁。
  5.  前記ソレノイドへの通電電流値がエンジン回転数に応じて設定される請求項1~4のいずれか一項に記載の車両用冷却液制御弁。
  6.  前記弁体が、閉状態から前記第2弁体による小量流通状態を経ることなく前記第1弁体を開く開状態に移行可能に構成された請求項1~5のいずれか一項に記載の車両用冷却液制御弁。
  7.  前記ソレノイドが、少なくとも1つのコイルを有し、前記コイルの有効巻数を変更して前記ソレノイドの制御を行う巻数変更部を備えた請求項1~6のいずれか一項に記載の車両用冷却液制御弁。
  8.  流入ポートと流出ポートとの間に前記第1弁体と前記第2弁体とが並設され、
     前記第1弁体を設けた第1弁内流路と、前記第2弁体を備えつつ前記ソレノイドを迂回する第2弁内流路と、を備え、
     前記第2弁体は、前記第2弁内流路に形成された弁孔を閉状態と開状態とに切換可能であり、
     前記ソレノイドが通電により励磁されることで、前記第1弁体及び前記第2弁体は閉状態に維持され、前記ソレノイドへの通電電流が減少することで、前記第2弁内流路の流体圧により前記第2弁体を開状態に変更可能に構成された請求項1記載の車両用冷却液制御弁。
PCT/JP2012/077488 2011-11-04 2012-10-24 車両用冷却液制御弁 WO2013065549A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280040508.3A CN103748333B (zh) 2011-11-04 2012-10-24 车辆用冷却液控制阀
EP12845279.4A EP2775116B1 (en) 2011-11-04 2012-10-24 Vehicular coolant control valve
US14/238,101 US9163553B2 (en) 2011-11-04 2012-10-24 Vehicular coolant control valve
BR112014003381-1A BR112014003381B1 (pt) 2011-11-04 2012-10-24 Válvula de controle de refrigerante para veículo

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011242691 2011-11-04
JP2011-242691 2011-11-04
JP2011277333A JP5578373B2 (ja) 2011-11-04 2011-12-19 車両用冷却液制御弁
JP2011-277333 2011-12-19

Publications (1)

Publication Number Publication Date
WO2013065549A1 true WO2013065549A1 (ja) 2013-05-10

Family

ID=48191901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077488 WO2013065549A1 (ja) 2011-11-04 2012-10-24 車両用冷却液制御弁

Country Status (6)

Country Link
US (1) US9163553B2 (ja)
EP (1) EP2775116B1 (ja)
JP (1) JP5578373B2 (ja)
CN (1) CN103748333B (ja)
BR (1) BR112014003381B1 (ja)
WO (1) WO2013065549A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9458922B2 (en) * 2012-10-26 2016-10-04 Dana Automotive Systems Group, Llc Lubricant management system
JP6459342B2 (ja) * 2014-09-25 2019-01-30 アイシン精機株式会社 冷却液制御弁
JP6401123B2 (ja) * 2015-08-04 2018-10-03 トヨタ自動車株式会社 冷却水循環装置
JP6181119B2 (ja) * 2015-08-04 2017-08-16 アイシン精機株式会社 エンジン冷却装置
KR101807124B1 (ko) * 2015-12-02 2017-12-07 현대자동차 주식회사 연료전지차량의 비상 운전 제어 방법
CN107477239B (zh) * 2016-06-08 2023-03-07 浙江盾安禾田金属有限公司 一种电磁水阀
GB201615280D0 (en) * 2016-09-08 2016-10-26 Rolls Royce Plc Oil cooling system
DE102017200874A1 (de) * 2016-11-14 2018-05-17 Mahle International Gmbh Elektrische Kühlmittelpumpe
US10190673B2 (en) 2016-11-30 2019-01-29 Dana Heavy Vehicle Systems, Llc Active oil management system for axles
JP7185413B2 (ja) * 2018-03-26 2022-12-07 株式会社Subaru 車両用冷却システム
JP6815367B2 (ja) * 2018-11-19 2021-01-20 アイシン精機株式会社 流路装置およびエンジン冷却システム
DE102019215285A1 (de) * 2019-10-04 2021-04-08 Robert Bosch Gmbh Brennstoffzellenschließsystem
US11060601B2 (en) * 2019-12-17 2021-07-13 Ford Global Technologies, Llc Differential with passive thermal-management system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332085A (ja) * 1994-06-07 1995-12-19 Nippon Thermostat Kk サーモスタット
JP2002340219A (ja) 2001-05-16 2002-11-27 Aisin Seiki Co Ltd 電磁弁
JP2003328753A (ja) 2002-05-10 2003-11-19 Nippon Thermostat Co Ltd 電子制御サーモスタット
JP2006528311A (ja) * 2003-09-23 2006-12-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 騒音を減衰する減衰円板を有する電磁弁
JP2009085130A (ja) * 2007-10-01 2009-04-23 Fuji Heavy Ind Ltd 車両用エンジンの冷却装置
JP2011111962A (ja) * 2009-11-26 2011-06-09 Aisin Seiki Co Ltd 内燃機関冷却システム
WO2011132530A2 (en) * 2010-04-19 2011-10-27 Aisin Seiki Kabushiki Kaisha Vehicle coolant control valve

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3020759A1 (de) * 1980-05-31 1981-12-10 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Verfahren zur regelung der temperatur eines raumes und vorrichtung zur durchfuehrung des verfahrens
DE10354230A1 (de) * 2003-11-20 2005-06-23 Robert Bosch Gmbh Elektrisch ansteuerbares Mehrwegeventil
DE102006033315A1 (de) * 2006-07-17 2008-01-24 Behr Gmbh & Co. Kg Ventil zur Steuerung eines Kühlmittelstroms für einen Heizkörper eines Kraftfahrzeuges, System mit zumindest einem Ventil
JP4930428B2 (ja) * 2008-03-28 2012-05-16 アイシン・エィ・ダブリュ株式会社 ブリード型電磁弁
DE102008056247B4 (de) 2008-11-06 2010-09-09 Itw Automotive Products Gmbh Thermostatventilanordnung und Kühlsystem für ein Kraftfahrzeug
DE102009007695A1 (de) 2009-02-05 2010-08-12 Mahle International Gmbh Kühlsystem in einem Kraftfahrzeug
JP5626606B2 (ja) * 2010-11-12 2014-11-19 アイシン精機株式会社 制御弁
JP5257712B2 (ja) * 2011-02-10 2013-08-07 アイシン精機株式会社 エンジン冷却装置
JP6086201B2 (ja) * 2012-11-20 2017-03-01 アイシン精機株式会社 流体制御弁

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332085A (ja) * 1994-06-07 1995-12-19 Nippon Thermostat Kk サーモスタット
JP2002340219A (ja) 2001-05-16 2002-11-27 Aisin Seiki Co Ltd 電磁弁
JP2003328753A (ja) 2002-05-10 2003-11-19 Nippon Thermostat Co Ltd 電子制御サーモスタット
JP2006528311A (ja) * 2003-09-23 2006-12-14 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 騒音を減衰する減衰円板を有する電磁弁
JP2009085130A (ja) * 2007-10-01 2009-04-23 Fuji Heavy Ind Ltd 車両用エンジンの冷却装置
JP2011111962A (ja) * 2009-11-26 2011-06-09 Aisin Seiki Co Ltd 内燃機関冷却システム
WO2011132530A2 (en) * 2010-04-19 2011-10-27 Aisin Seiki Kabushiki Kaisha Vehicle coolant control valve

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2775116A4 *

Also Published As

Publication number Publication date
BR112014003381A2 (pt) 2017-03-01
JP5578373B2 (ja) 2014-08-27
BR112014003381B1 (pt) 2021-07-20
EP2775116A4 (en) 2014-09-10
CN103748333B (zh) 2016-05-25
US9163553B2 (en) 2015-10-20
US20140224891A1 (en) 2014-08-14
JP2013117297A (ja) 2013-06-13
EP2775116A1 (en) 2014-09-10
CN103748333A (zh) 2014-04-23
EP2775116B1 (en) 2016-01-13

Similar Documents

Publication Publication Date Title
JP5578373B2 (ja) 車両用冷却液制御弁
JP2013117297A5 (ja)
JP5257713B2 (ja) 車両用冷却装置
JP5626606B2 (ja) 制御弁
JP5299728B2 (ja) 車両用冷却液制御弁
JP5811797B2 (ja) エンジン冷却システム
WO2012060188A1 (ja) 流体制御弁
WO2016047304A1 (ja) 流体制御装置
EP2674588B1 (en) Engine cooling apparatus
JP5970779B2 (ja) 車両用冷却液制御バルブ
JP6972776B2 (ja) 流体制御弁
JP6442880B2 (ja) 制御弁
JP5574180B2 (ja) 流体制御弁
JP5614585B2 (ja) 流体制御弁
JP5618141B2 (ja) 流体制御弁
JP2018031282A (ja) 内燃機関の冷却装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845279

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14238101

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012845279

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014003381

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014003381

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140213