WO2013065489A1 - ガラス基板およびその製造方法 - Google Patents

ガラス基板およびその製造方法 Download PDF

Info

Publication number
WO2013065489A1
WO2013065489A1 PCT/JP2012/076855 JP2012076855W WO2013065489A1 WO 2013065489 A1 WO2013065489 A1 WO 2013065489A1 JP 2012076855 W JP2012076855 W JP 2012076855W WO 2013065489 A1 WO2013065489 A1 WO 2013065489A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
temperature
glass substrate
less
viscosity
Prior art date
Application number
PCT/JP2012/076855
Other languages
English (en)
French (fr)
Inventor
学 西沢
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280053756.1A priority Critical patent/CN104024171A/zh
Priority to KR1020147011137A priority patent/KR20140088109A/ko
Priority to JP2013541696A priority patent/JP5987836B2/ja
Priority to EP12845956.7A priority patent/EP2774895A4/en
Publication of WO2013065489A1 publication Critical patent/WO2013065489A1/ja
Priority to US14/265,963 priority patent/US20140235425A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium

Definitions

  • the present invention relates to a glass substrate.
  • the present invention relates to a glass substrate for a display panel used for various display panels such as a liquid crystal display (LCD) panel (particularly a TFT panel), a plasma display panel (PDP) and the like.
  • LCD liquid crystal display
  • PDP plasma display panel
  • an alkali-free glass containing no alkali metal oxide has been used for a glass substrate for an LCD panel.
  • the reason for this is that if an alkali metal oxide is contained in the glass substrate, the thin film transistor (TFT) used by the alkali ions in the glass substrate to drive the LCD panel during the heat treatment performed in the LCD panel manufacturing process. This is because it may diffuse into the semiconductor film and cause deterioration of TFT characteristics.
  • alkali-free glass has a low coefficient of thermal expansion and a high glass transition point (Tg), so there is little dimensional change in the LCD panel manufacturing process, and there is little effect on display quality due to thermal stress when using the LCD panel. Therefore, it is preferable as a glass substrate for an LCD panel.
  • non-alkali glass has the following problems in terms of production.
  • Alkali-free glass has properties such as extremely high viscosity and difficulty in melting, and is accompanied by technical difficulties in production.
  • alkali-free glass has a poor effect of a fining agent.
  • SO 3 when SO 3 is used as a fining agent, the temperature at which SO 3 foams (decomposes) is lower than the melting temperature of the glass, so that most of the added SO 3 decomposes before fining. As a result, it evaporates from the molten glass, and the clarification effect cannot be fully exhibited.
  • Patent Document 1 It has also been proposed to use an alkali glass substrate containing an alkali metal oxide as a glass substrate for a TFT panel (“a-Si TFT panel”) (see Patent Document 1). This is because the heat treatment in the TFT panel manufacturing process, which has been conventionally performed at 350 to 450 ° C., can be performed at a relatively low temperature (about 250 to 300 ° C.). Since glass containing an alkali metal oxide generally has a high coefficient of thermal expansion, B 2 O 3 having an effect of reducing the coefficient of thermal expansion is used for the purpose of obtaining a preferable coefficient of thermal expansion as a glass substrate for a TFT panel. Usually contained (Patent Document 2).
  • the glass composition containing B 2 O 3 when the glass is melted, B 2 O 3 is volatilized particularly in the melting step, the refining step, and the float forming step, so that the glass composition becomes inhomogeneous.
  • Cheap when the glass composition becomes inhomogeneous, it affects the flatness when forming into a plate shape.
  • a glass substrate for a TFT panel is required to have a high degree of flatness in order to maintain a constant gap between two glass substrates sandwiching a liquid crystal, that is, a cell gap, in order to ensure display quality.
  • the surface of the plate glass is polished after being formed into a plate glass by the float method, but if the predetermined flatness is not obtained with the formed plate glass, the polishing step is performed.
  • the time required increases and productivity decreases.
  • B 2 O 3 content in the molten glass that lower is preferable.
  • the B 2 O 3 content is low, it has been difficult to reduce the coefficient of thermal expansion to a preferable thermal expansion coefficient for a glass substrate for a TFT panel and to obtain a predetermined Tg while suppressing an increase in viscosity.
  • the present invention has found that the glass compaction (heat shrinkage rate) at a low temperature can greatly affect the film forming quality (film forming pattern accuracy) on the glass substrate in the above-mentioned heat treatment at a low temperature in the TFT panel manufacturing process. It was.
  • the present invention contains an alkali metal oxide, has a small amount of B 2 O 3, has a small compaction (C) in a heat treatment at a low temperature (150 to 300 ° C.) in a TFT panel manufacturing process, and is used for patterning a film on a glass substrate.
  • An object of the present invention is to provide a glass substrate suitable for a TFT panel which is less likely to be displaced.
  • the present invention is expressed in mole percentages based on the following oxides 60 to 79% of SiO 2 Al 2 O 3 2.5-18%, 0 to 3% of B 2 O 3 1-15% MgO, 0-1% CaO, 0-1% SrO, BaO 0-1%, 0 to 1% of ZrO 2 7 to 15.5% Na 2 O, 0 to 3% of K 2 O, Containing 0 to 2% of Li 2 O, 7 to 15.5% of Na 2 O + K 2 O, Na 2 O / (Na 2 O + K 2 O) is 0.77 to 1, 1 to 18% of MgO + CaO + SrO + BaO, MgO-0.5Al 2 O 3 is 0 to 10, MgO + 0.5Al 2 O 3 is 1-20, Glass transition temperature is 580 to 720 ° C, The average thermal expansion coefficient at 50 to 350 ° C.
  • the glass surface devitrification temperature (T c ) is 900-1300 ° C.
  • Glass internal devitrification temperature (T d ) is 900-1300 ° C.
  • the temperature (T 4 ) at which the viscosity becomes 10 4 dPa ⁇ s is 1100 to 1350 ° C.
  • T 4 -T c The relationship (T 4 -T c ) between the temperature at which the viscosity is 10 4 dPa ⁇ s (T 4 ) and the glass surface devitrification temperature (T c ) is ⁇ 50 to 350 ° C.
  • a glass substrate in which the relationship (T 4 -T d ) between the temperature (T 4 ) at which the viscosity is 10 4 dPa ⁇ s and the glass internal devitrification temperature (T d ) is ⁇ 50 to 350 ° C.
  • the glass substrate of the present invention has a small compaction (C) (15 ppm or less) in a heat treatment at a low temperature (150 to 300 ° C.) in the TFT panel manufacturing process, and misalignment hardly occurs during film-forming patterning on the glass substrate. Therefore, it can be suitably used as a glass substrate for a particularly large TFT panel, for example, a mother glass having a side length of 2 m or more, corresponding to the recent low temperature heat treatment. Moreover, because of the low content of B 2 O 3 ratio, since volatilization of B 2 O 3 at the time of glass production is small, excellent in homogeneity of the glass substrate is excellent in flatness and productivity.
  • C compaction
  • FIG. 1 is a graph showing the relationship between MgO and Al 2 O 3 in the glass substrate of the present invention.
  • the glass substrate of the present invention is a molar percentage display based on the following oxides: 60 to 79% of SiO 2 Al 2 O 3 2.5-18%, 0 to 3% of B 2 O 3 1-15% MgO, 0-1% CaO, 0-1% SrO, BaO 0-1%, 0 to 1% of ZrO 2 7 to 15.5% Na 2 O, 0 to 3% of K 2 O, Containing 0 to 2% of Li 2 O, 7 to 15.5% of Na 2 O + K 2 O, Na 2 O / (Na 2 O + K 2 O) is 0.77 to 1, 1 to 18% of MgO + CaO + SrO + BaO, MgO-0.5Al 2 O 3 is 0 to 10, MgO + 0.5Al 2 O 3 is 1-20, Glass transition temperature is 580 to 720 ° C, The average thermal expansion coefficient at 50 to 350 ° C.
  • the glass surface devitrification temperature (T c ) is 900-1300 ° C.
  • Glass internal devitrification temperature (T d ) is 900-1300 ° C.
  • the temperature (T 4 ) at which the viscosity becomes 10 4 dPa ⁇ s is 1100 to 1350 ° C.
  • the relationship (T 4 -T c ) between the temperature at which the viscosity is 10 4 dPa ⁇ s (T 4 ) and the glass surface devitrification temperature (T c ) is ⁇ 50 to 350 ° C.
  • the glass substrate has a relationship (T 4 ⁇ T d ) between a temperature (T 4 ) at which the viscosity is 10 4 dPa ⁇ s and a glass internal devitrification temperature (T d ) of ⁇ 50 to 350 ° C.
  • the glass transition point temperature (Tg) of the glass substrate of this invention is 580 degreeC or more and 720 degrees C or less. Since the glass transition temperature (Tg) of the glass substrate of the present invention is in the above range, the viscosity of the glass is increased during low-temperature heat treatment (150 ° C. to 300 ° C.) in the TFT panel manufacturing process. The mobility to the TFT element becomes low, and the performance degradation of the TFT can be suppressed. From the viewpoint of reducing the compaction (C), the temperature is preferably 600 ° C. or higher, more preferably 640 ° C. or higher, and further preferably 680 ° C. or higher.
  • the average linear expansion coefficient of the glass substrate of the present invention at 50 to 350 ° C. is 85 ⁇ 10 ⁇ 7 / ° C. or less.
  • It is preferably 80 ⁇ 10 ⁇ 7 / ° C. or less, more preferably 78 ⁇ 10 ⁇ 7 / ° C. or less, and still more preferably 76 ⁇ 10 ⁇ 7 / ° C. or less.
  • a common soda lime glass is used for the counter glass substrate and the glass substrate of the present invention is used for the array glass substrate, it is 65 ⁇ 10 ⁇ 7 / ° C. or more in terms of the difference in thermal expansion between the two.
  • the glass substrate of the present invention has a compaction (C) of 15 ppm or less. 13 ppm or less is preferable, 11 ppm or less is more preferable, and 9 ppm or less is more preferable.
  • C compaction
  • concentration is 15 ppm or less, misalignment hardly occurs during patterning of TFT film formation on the array glass substrate in the heat treatment at a low temperature (150 to 300 ° C.) in the TFT panel manufacturing process.
  • the compaction (C) means a value measured by the method described below.
  • the target glass is melted at 1600 ° C., then the molten glass is poured out, formed into a plate shape, and then cooled.
  • the obtained glass plate is polished to obtain a sample of 100 mm ⁇ 20 mm ⁇ 2 mm.
  • the glass plate is heated to 300 ° C.
  • the glass substrate of the present invention has a glass surface devitrification temperature (T c ) of 1300 ° C. or lower. Preferably it is 1275 degrees C or less, More preferably, it is 1250 degrees C or less, Most preferably, it is 1225 degrees C or less. In consideration of the ease of securing other physical properties, the glass surface devitrification temperature (T c ) is 900 ° C. or higher. Glass surface devitrification temperature (T c ) means that glass particles crushed in a platinum dish are subjected to heat treatment for 17 hours in an electric furnace controlled at a constant temperature, and the glass is observed by optical microscope observation after the heat treatment. This is an average value of the maximum temperature at which crystals are deposited on the surface and the minimum temperature at which crystals are not deposited.
  • T c glass surface devitrification temperature
  • the glass substrate of the present invention has a glass internal devitrification temperature (T d ) of 1300 ° C. or lower. Preferably it is 1275 degrees C or less, More preferably, it is 1250 degrees C or less, More preferably, it is 1225 degrees C. In consideration of the ease of securing other physical properties, the glass internal devitrification temperature (T d ) is 900 ° C. or higher. Glass internal devitrification temperature (T d ) means that glass particles crushed in a platinum dish are subjected to heat treatment for 17 hours in an electric furnace controlled at a constant temperature, and the glass is observed by optical microscope observation after the heat treatment. Is the average value of the maximum temperature at which crystals are precipitated and the minimum temperature at which crystals are not precipitated.
  • the glass substrate of the present invention has a temperature (T 4 ) at which the viscosity is 10 4 dPa ⁇ s is 1350 ° C. or lower. It is preferable that it is 1300 degrees C or less, More preferably, it is 1275 degrees C or less, More preferably, it is 1250 degrees C or less. In consideration of the ease of securing other physical properties, the temperature (T 4 ) at which the viscosity is 10 4 dPa ⁇ s is 1100 ° C. or higher.
  • the glass viscosity at Td is preferably 10 3.8 dPa ⁇ s or more. More preferably, it is 104.3 dPa * s or more, More preferably, it is 104.7 dPa * s or more, Most preferably, it is 105.3 dPa * s or more.
  • T d is 10 7.0 dPa ⁇ s or less in the fusion method.
  • the glass viscosity at T c is preferably 10 3.8 dPa ⁇ s or more, more preferably 10 3.9 dPa ⁇ s or more, and still more preferably 10 4.0 dPa ⁇ s. That's it.
  • T c is 10 7.0 dPa ⁇ s or less in the float method.
  • the temperature (T 2 ) at which the viscosity becomes 10 2 dPa ⁇ s is preferably 1850 ° C. or less, more preferably 1750 ° C. or less, and further preferably 1650 ° C. or less.
  • the glass substrate of the present invention preferably has a density of 2.50 g / cm 3 or less, more preferably 2.45 g / cm 3 or less, still more preferably 2.43 g / cm 3 or less, and particularly preferably Is 2.41 g / cm 3 or less.
  • the density of the glass substrate of the present invention is 2.35 g / cm 3 or more considering the ease of securing other physical properties.
  • the glass substrate of the present invention preferably has a photoelastic constant of 33 nm / MPa / cm or less, more preferably 31 nm / MPa / cm or less, still more preferably 30 nm / MPa / cm or less, particularly preferably. It is 29 nm / MPa / cm or less.
  • a phenomenon that the display of black becomes gray and the contrast of the LCD is lowered due to the birefringence of the glass substrate due to the stress generated during the LCD panel manufacturing process or the use of the LCD device may be recognized.
  • the glass substrate of the present invention preferably has a photoelastic constant of 27 nm / MPa / cm or more in consideration of ease of securing other physical properties.
  • the photoelastic constant can be measured by a disk compression method.
  • the glass substrate of the present invention preferably has a Young's modulus of 66 GPa or more, more preferably 70 GPa or more, and further preferably 74 GPa or more.
  • the glass substrate of the present invention preferably has a Young's modulus of 80 GPa or less.
  • SiO 2 A component that forms the skeleton of the glass. If it is less than 60 mol% (hereinafter simply referred to as “%”), the heat resistance and chemical durability of the glass decrease, and the density at 50 to 350 ° C.
  • the average coefficient of thermal expansion and compaction (C) may increase. Preferably it is 62% or more, More preferably, it is 63% or more. However, if it exceeds 79%, the photoelastic constant increases, and there is a possibility that the high temperature viscosity of the glass increases and the solubility deteriorates. Preferably it is 77% or less, More preferably, it is 75% or less, More preferably, it is 74% or less.
  • Al 2 O 3 Raises glass transition temperature, improves weather resistance (solarization), heat resistance and chemical durability, and increases Young's modulus. If the content is less than 2.5%, the glass transition temperature may be lowered. Further, the average thermal expansion coefficient and compaction (c) at 50 to 350 ° C. may increase. Preferably it is 4% or more, More preferably, it is 6% or more, More preferably, it is 7% or more. However, if it exceeds 18%, the high-temperature viscosity of the glass increases, and the solubility may deteriorate.
  • the devitrification temperature (the surface devitrification temperature (T c ) on the glass surface and the internal devitrification temperature (T d ) inside the glass) is increased, and the moldability may be deteriorated.
  • the moldability Preferably it is 16% or less, More preferably, it is 15% or less.
  • B 2 O 3 may be contained up to 3% in order to improve the solubility.
  • the content exceeds 3%, the glass transition temperature decreases, or the average thermal expansion coefficient at 50 to 350 ° C. tends to decrease and the photoelastic constant tends to increase. Therefore, the content is preferably 1.5% or less. It is. It is more preferable that the content is 0.5% or less, and it is even more preferable that the content is not substantially contained.
  • substantially does not contain means that it is not contained other than inevitable impurities mixed from raw materials or the like, that is, it is not intentionally contained.
  • the volatilization amount of B 2 O 3 in the melting step, the refining step, and the molding step when the glass is melted at the time of manufacturing the glass substrate is small.
  • the manufactured glass substrate is excellent in homogeneity and flatness.
  • the display quality is superior to that of a conventional glass substrate for a TFT panel.
  • the content of B 2 O 3 is that less is preferable.
  • MgO includes 3% or more, More preferably, it is 5% or more, More preferably, it is 7% or more. However, if it exceeds 15%, the average coefficient of thermal expansion and compaction (C) at 50 to 350 ° C. may increase. Further, the devitrification temperature (T c ) may increase. Preferably it is 13% or less, More preferably, it is less than 11%, More preferably, it is 10% or less.
  • CaO It can be contained because it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting. However, if it exceeds 1%, the average coefficient of thermal expansion and compaction (C) of glass at 50 to 350 ° C. may increase. Preferably it is 0.5% or less, More preferably, it does not contain substantially.
  • SrO It can be contained because it has the effect of reducing the viscosity at the time of melting the glass and promoting the melting. However, if it exceeds 1%, the average thermal expansion coefficient and compaction (C) at 50 to 350 ° C. of the glass substrate may increase. Preferably it is 0.5% or less, More preferably, it does not contain substantially.
  • BaO Since it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting, it can be contained. However, if it exceeds 1%, the average thermal expansion coefficient and compaction (C) at 50 to 350 ° C. of the glass substrate may be increased. Preferably it is 0.5% or less, More preferably, it does not contain substantially.
  • ZrO 2 It can be contained because it has the effect of lowering the viscosity at the time of melting the glass and promoting the melting. However, if it exceeds 1%, the density of the glass substrate, the average coefficient of thermal expansion at 50 to 350 ° C., and compaction (C) may increase. 0.5% or less is preferable and it is more preferable not to contain substantially.
  • MgO, CaO, SrO and BaO are combined in an amount of 1% or more in order to improve the weather resistance of the glass substrate and to reduce the photoelastic constant. It is preferably 3% or more, more preferably 5% or more, and further preferably 7% or more. However, if the total amount exceeds 18%, the average thermal expansion coefficient and compaction (C) at 50 to 350 ° C. of the glass may increase. It is preferably 16% or less, more preferably 12.5% or less, and even more preferably 10% or less.
  • Na 2 O is contained in an amount of 7 to 15.5% because it lowers the viscosity at the glass melting temperature and facilitates melting.
  • the content is preferably 9% or more, and more preferably 11% or more. More preferably, it is 12% or more.
  • the content is preferably 14.5% or less, and more preferably 13.5% or less. More preferably, it is 13% or less.
  • K 2 O Since it has the same effect as Na 2 O, 0 to 3% is contained. However, if it exceeds 3%, the average coefficient of thermal expansion and compaction (C) at 50 to 350 ° C. may increase. When it contains, when considering compaction (C) reduction, 1.5% or less is preferable, it is more preferable that it is 0.5% or less, and it is still more preferable not to contain substantially.
  • Li 2 O It can be contained in an amount of 0 to 2% in order to lower the viscosity at the glass melting temperature and facilitate melting. However, if it exceeds 2%, the glass transition point may be lowered. Further, 2% or less is preferable so that the average thermal expansion coefficient at 50 to 350 ° C. is 85 ⁇ 10 ⁇ 7 / ° C. or less.
  • the content of Li 2 O is preferably 1% or less, more preferably 0.5% or less, and still more preferably substantially not contained.
  • Na 2 O and K 2 O In order to sufficiently reduce the viscosity at the glass melting temperature and reduce the photoelastic constant, the total content of Na 2 O and K 2 O is 7 to 15.5%. And In order to reduce the photoelastic constant, it is preferably 9% or more, more preferably 11% or more, and further preferably 12% or more. However, if it exceeds 15.5%, the Tg is too low, the average thermal expansion coefficient at 50 to 350 ° C. is too high, the compaction (C) is increased, and the Young's modulus may be lowered. Preferably it is 15% or less, More preferably, it is 13% or less.
  • Na 2 O and K 2 O are contained so that the following formula (1) satisfies 0.77 to 1 in order to reduce the compaction (C).
  • the above formula serves as an index for reducing the compaction (C) in the heat treatment at a low temperature (150 to 300 ° C.).
  • the present inventors have found that when each of the above components satisfies the scope of the present application and the value obtained by the above formula (1) is 0.77 to 1, the Tg is 580 to It was found that the compaction (C) satisfies 15 ppm or less while satisfying an average thermal expansion coefficient of 65 ⁇ 10 ⁇ 7 to 85 ⁇ 10 ⁇ 7 at 720 ° C. and 50 to 350 ° C.
  • it is 0.9 or more, more preferably 0.95 or more, and further preferably 1.
  • MgO and Al 2 O 3 are contained so that the following formula (2) satisfies 0 to 10.
  • “Mole%” of MgO and Al 2 O 3 included in the composition of the glass substrate is substituted for “MgO” and “Al 2 O 3 ” in the following formula (2).
  • MgO-0.5Al 2 O 3 (Formula 2) The above formula (2) serves as an index for reducing the photoelastic constant and reducing the compaction (C) in the heat treatment at a low temperature (150 to 300 ° C.).
  • each of the above components satisfies the scope of the present application, and the value obtained by the above equation (2) is in the middle of 0 to 10, that is, as the value approaches 5.
  • the compaction (C) can be reduced.
  • it is 1 or more, More preferably, it is 2 or more, More preferably, it is 3 or more, Most preferably, it is 4 or more.
  • it is 9 or less, More preferably, it is 8 or less, More preferably, it is 7 or less, Most preferably, it is 6 or less.
  • MgO and Al 2 O 3 are contained so that the following formula (3) satisfies 1 to 20.
  • “Mole%” of MgO and Al 2 O 3 included in the composition of the glass substrate is substituted for “MgO” and “Al 2 O 3 ” in the following formula (3).
  • MgO + 0.5Al 2 O 3 (Formula 3) The above formula (3) is for devitrification characteristics in the glass production process, specifically, for satisfying T 4 -T c described later at ⁇ 50 to 350 ° C. or T 4 -T d at ⁇ 50 to 350 ° C. It becomes an indicator.
  • the present inventors have found that when each of the above components satisfies the scope of the present application and the value obtained by the above formula (3) is 1 to 20, the Tg is 580 to 720. It was found that T 4 -T c or T 4 -T d satisfies the above range while satisfying an average thermal expansion coefficient of 65 ⁇ 10 ⁇ 7 to 85 ⁇ 10 ⁇ 7 / ° C. at 50 ° C. and 50 to 350 ° C.
  • the above formula (3) is preferably 15 or less, more preferably 13 or less. Yes, more preferably 11 or less.
  • the above formula (3) is preferably 18 or less, more preferably 15 or less, and still more preferably 13 or less.
  • it is preferably 3 or more, more preferably 5 or more, and further preferably 7 or more.
  • the glass substrate of the present invention preferably consists essentially of the above mother composition, but may contain other components as long as the object of the present invention is not impaired.
  • the other components may be contained in a total of 2% or less, preferably 1% or less, more preferably 0.5% or less.
  • ZnO, Li 2 O, WO 3 , Nb 2 O 5 , V 2 O 5 , Bi 2 O 3 , MoO 3 , P 2 for the purpose of improving weather resistance, solubility, devitrification, ultraviolet shielding, etc. O 5 or the like may be contained in some cases.
  • these raw materials may be added to the matrix composition raw material so that the total amount of SO 3 , F, Cl, SnO 2 is 2% or less in the glass. Good. When using as a glass substrate for TFT panels, these additions are more preferable.
  • ZrO 2 , Y 2 O 3 , La 2 O 3 , TiO 2 , SnO 2 may be contained in the glass in a total amount of 2% or less, preferably 1%. Below, more preferably 0.5% or less.
  • Y 2 O 3 , La 2 O 3 and TiO 2 contribute to the improvement of the Young's modulus of the glass.
  • a colorant such as Fe 2 O 3 or CeO 2 may be contained in the glass.
  • the total content of such colorants is preferably 1% or less.
  • the glass substrate of the present invention preferably contains substantially no As 2 O 3 or Sb 2 O 3 in consideration of environmental load. In consideration of stable float forming, it is preferable that ZnO is not substantially contained.
  • the glass substrate of the present invention is not limited to being formed by the float method, and may be manufactured by forming by the fusion method.
  • the manufacturing method and use of the glass substrate of this invention can be suitably used as a glass substrate for a TFT panel. This will be described in detail below.
  • the glass substrate in this invention are the alkali glass substrate containing an alkali metal oxide (Na 2 O, K 2 O ), can be used SO 3 effectively as a refining agent, a float as a forming method Suitable for the method and fusion method (down-draw method).
  • a float method capable of easily and stably forming a large-area glass substrate as the size of the TFT panel increases.
  • T 4 is used as a physical property of the glass substrate in the fusion method.
  • ⁇ T d is ⁇ 50 to 350 ° C.
  • T 4 ⁇ T d ⁇ 50 ° C. is preferably satisfied
  • T 4 ⁇ T d ⁇ 100 ° C. is more preferable
  • T 4 ⁇ T d ⁇ 200 ° C. is satisfied. It is more preferable to satisfy.
  • T 4 -T c is preferably ⁇ 50 to 350 ° C.
  • T 4 -T c ⁇ ⁇ 20 ° C. more preferably T 4 ⁇ T c ⁇ ⁇ 10 ° C. More preferably, T 4 ⁇ T c ⁇ 0 ° C. is satisfied.
  • molten glass obtained by melting raw materials is formed into a plate shape.
  • raw materials are prepared so as to have the composition of the obtained glass substrate, the raw materials are continuously charged into a melting furnace, and heated to about 1450 to 1650 ° C. to obtain molten glass.
  • the molten glass is formed into a ribbon-like glass plate by applying, for example, a float process.
  • After pulling out the ribbon-shaped glass plate from the molding furnace it is cooled to room temperature by a cooling means, and after cutting, a glass substrate is obtained.
  • the cooling means sets the surface temperature of the ribbon-shaped glass plate drawn out from the forming furnace to T H (° C.), the room temperature to T L (° C.), and further the surface temperature of the ribbon-shaped glass substrate from T H.
  • This is a cooling means for setting the average cooling rate represented by (T H ⁇ T L ) / t to 10 to 300 ° C./min, where t (min) is the time until cooling to T L.
  • the specific cooling means is not particularly limited, and may be a conventionally known cooling method. For example, a method using a heating furnace having a temperature gradient can be mentioned.
  • T H is preferably a glass transition temperature Tg + 20 ° C., specifically 600 to 740 ° C.
  • the average cooling rate is preferably 15 to 150 ° C./min, more preferably 20 to 80 ° C./min, and further preferably 40 to 60 ° C./min.
  • a glass substrate having a compaction (C) of 15 ppm or less, preferably 13 ppm or less can be easily obtained.
  • the glass substrate of this invention can be used suitably for the glass substrate for TFT panels.
  • a method for manufacturing a TFT panel including a film forming process for forming a gate insulating film on an array substrate on the surface of the glass substrate of the present invention will be described.
  • the film formation region on the surface of the glass substrate of the present invention is raised to a temperature within the range of 150 to 300 ° C. (hereinafter referred to as film formation temperature),
  • film formation temperature There is no particular limitation as long as it includes a film forming step of forming the array substrate gate insulating film in the film forming region by holding at the film forming temperature for 5 to 60 minutes.
  • the film forming temperature is preferably 150 to 250 ° C., more preferably 150 to 230 ° C., and further preferably 150 to 200 ° C.
  • the time for maintaining the film forming temperature is preferably 5 to 30 minutes, more preferably 5 to 20 minutes, and further preferably 5 to 15 minutes. Since the gate insulating film is formed within the range of the film forming temperature and the holding time as described above, the glass substrate is thermally shrunk during this time. Note that once the glass substrate is thermally shrunk, depending on the subsequent cooling conditions (cooling rate or the like), the result of the heat shrinking is not greatly affected.
  • the glass substrate for TFT panels in the present invention has a small compaction (C), the thermal contraction of the glass substrate is small, and the film forming pattern is hardly displaced.
  • the film formation in the film formation process can be achieved by, for example, a conventionally known CVD method.
  • an array substrate can be obtained by a known method.
  • a TFT panel can be manufactured using the array substrate by the following known processes. That is, an alignment treatment process in which an alignment film is formed on each of the array substrate and the color filter substrate and rubbed, a bonding process in which the TFT array substrate and the color filter substrate are bonded with high accuracy while maintaining a predetermined gap,
  • a TFT panel can be manufactured by a series of steps including a dividing step of dividing a cell into a predetermined size, an injection step of injecting liquid crystal into the divided cell, and a polarizing plate attaching step of attaching a polarizing plate to the cell.
  • the glass substrate of the present invention can be used after being chemically strengthened by a well-known method. However, in order to improve the display quality of the TFT panel, it is preferable that the glass substrate is not chemically strengthened considering the flatness of the glass substrate.
  • Example and a manufacture example demonstrate this invention in more detail, this invention is not limited to these Examples and a manufacture example.
  • Examples of the glass substrate of the present invention (Examples 1 to 13, 18 to 22) and comparative examples (Examples 14 to 17) are shown.
  • the parentheses in the table are calculated values.
  • the raw materials of the respective components for the glass substrate were prepared so that the compositions shown in Tables 1 to 4 were obtained, and 0.1 part by mass of sulfate in terms of SO 3 was added to 100 parts by mass of the raw material for the glass substrate component. It added to the raw material, and it melt
  • the average thermal expansion coefficient (unit: ⁇ 10 -7 / ° C), glass transition temperature (Tg) (unit: ° C), density, viscosity, compaction (C), photoelasticity of the glass thus obtained at 50 to 350 ° C. Constant, Young's modulus, devitrification temperature (glass surface devitrification temperature (T c ), glass internal devitrification temperature (T d )), glass viscosity (unit: dPa ⁇ s) at T 4 and T d , , T 4 -T c and T 4 -T d were calculated and shown in Tables 1 to 3. The measuring method of each physical property is shown below.
  • Tg Tg is a value measured using TMA, and was determined according to JIS R3103-3 (fiscal 2001).
  • Density About 20 g of glass plate not containing bubbles was measured by Archimedes method.
  • Viscosity Viscosity was measured using a rotational viscometer, and a temperature T 4 (° C.) at 10 4 dPa ⁇ s was measured. Further, the coefficient of Fruchar's formula is obtained from the measurement result of the glass viscosity at a high temperature (1000 to 1600 ° C.) of the molten glass, and the glass viscosity at the glass internal devitrification temperature (T d ) is obtained by the Frucher's formula using the coefficient. Asked. (4) Compaction (C): Measured by the measurement method for compaction (C) described above.
  • Devitrification temperature glass surface devitrification temperature (T c ) and glass internal devitrification temperature (T d )): Glass particles crushed in a platinum dish are placed in an electric furnace controlled at a constant temperature. Heat treatment is performed for 17 hours, and the average value of the maximum temperature at which crystals are deposited on the surface of the glass and the minimum temperature at which crystals are not precipitated is determined by observation with an optical microscope after the heat treatment, and the glass surface devitrification temperature T c (° C.) The average value of the maximum temperature at which crystals precipitate inside and the minimum temperature at which crystals do not precipitate is defined as the glass internal devitrification temperature T d (° C.).
  • Photoelastic constant Measured by a disk compression method using 546 nm light as a light source.
  • Young's modulus Glass having a thickness of 7 to 10 mm was measured by an ultrasonic pulse method.
  • the residual amount of SO 3 in the glass was 100 to 500 ppm.
  • the glasses of Examples have a high glass transition temperature Tg. Further, since the glass of the example has an average coefficient of thermal expansion of 65 ⁇ 10 ⁇ 7 to 85 ⁇ 10 ⁇ 7 / ° C. at 50 to 350 ° C., when used as a glass substrate for a TFT panel, the dimensions in the panel manufacturing process There is little change, and pattern matching at the time of matching the color filter and the array plate becomes easy. Furthermore, since the influence on the quality by the thermal stress at the time of panel use is small, it is particularly preferable in terms of display quality.
  • the compaction (C) is 15 ppm or less, it is difficult to cause a positional shift at the time of film formation patterning on the glass substrate. Therefore, it can be suitably used as a glass substrate for TFT panels, particularly large glass panels having a side of 2 m or more, particularly for large-sized TFT panels, corresponding to the recent reduction in heat treatment temperature.
  • T 4 -T c satisfies ⁇ 50 to 350 ° C.
  • T 4 -T d satisfies ⁇ 50 to 350 ° C., and devitrification during sheet glass forming can be suppressed. .
  • Examples 14 and 15 since the compaction (C) is larger than 15 ppm and the average thermal expansion coefficient at 50 to 350 ° C. is larger than 85 ⁇ 10 ⁇ 7 / ° C., the dimensional change in the manufacturing process of the TFT panel is large. It is difficult to align the pattern when aligning the array plate, and misalignment is likely to occur when patterning the film on the glass substrate.
  • Examples 16 and 17 although the compaction (C) is 15 ppm or less, the glass transition temperature is less than 580 ° C., and the average thermal expansion coefficient at 50 to 350 ° C. is greater than 85 ⁇ 10 ⁇ 7 / ° C. The dimensional change in the manufacturing process of the TFT panel is large, making it difficult to align the pattern when aligning the color filter and the array plate, and misalignment is likely to occur during film formation patterning on the glass substrate.
  • the glass substrate of the present invention is suitable as a glass substrate for a TFT panel, but can be used for other display substrates such as a plasma display panel (PDP), an inorganic electroluminescence display, and the like.
  • PDP plasma display panel
  • inorganic electroluminescence display and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Liquid Crystal (AREA)

Abstract

 本発明は、高いガラス転移点温度を有し、低温(150~300℃)での熱処理においてコンパクション(C)が小さいガラス基板を提供する。下記酸化物基準のモル百分率表示で、SiOを60~79%、Alを2.5~18%、Bを0~3%、MgOを1~15%、CaOを0~1%、SrOを0~1%、BaOを0~1%、ZrOを0~1%、NaOを7~15.5%、KOを0~3%、LiOを0~2%含有し、NaO+KOが7~15.5%、NaO/(NaO+KO)が0.77~1、MgO+CaO+SrO+BaOが1~18%、MgO-0.5Alが0~10であり、MgO+0.5Alが1~20であり、ガラス転移点温度が580~720℃、50~350℃における平均熱膨張係数が65×10-7~85×10-7/℃であり、コンパクション(C)が15ppm以下であり、ガラス表面失透温度(T)が900~1300℃であり、ガラス内部失透温度(T)が900~1300℃であり、粘度が10dPa・sとなる温度(T)が1100~1350℃であり、粘度が10dPa・sとなる温度(T)とガラス表面失透温度(T)との関係(T-T)が、-50~350℃であり、粘度が10dPa・sとなる温度(T)とガラス内部失透温度(T)との関係(T-T)が、-50~350℃であるガラス基板とする。

Description

ガラス基板およびその製造方法
 本発明は、ガラス基板に関する。特に、液晶ディスプレイ(LCD)パネル(特にTFTパネル)、プラズマディスプレイパネル(PDP)等、各種ディスプレイパネルに用いるディスプレイパネル用ガラス基板に関する。
 従来からLCDパネル用のガラス基板には、アルカリ金属酸化物を含有しない無アルカリガラスが用いられている。この理由は、ガラス基板中にアルカリ金属酸化物が含まれていると、LCDパネルの製造工程で実施される熱処理中に、ガラス基板中のアルカリイオンがLCDパネルの駆動に用いる薄膜トランジスタ(TFT)の半導体膜に拡散して、TFT特性の劣化を招くおそれがあるからである。
 また、無アルカリガラスは、熱膨張係数が低く、ガラス転移点(Tg)が高いため、LCDパネルの製造工程での寸法変化が少なく、LCDパネル使用時の熱応力による表示品質への影響が少ないことからも、LCDパネル用のガラス基板として好ましい。
 しかしながら、無アルカリガラスは、製造面において以下に述べるような課題を有している。
 無アルカリガラスは粘性が非常に高く、溶融が困難といった性質を有し、製造に技術的な困難性を伴う。
 また、一般的に、無アルカリガラスは清澄剤の効果が乏しい。例えば、清澄剤としてSO3を使用した場合、SO3が(分解して)発泡する温度がガラスの溶融温度よりも低いため、清澄がなされる前に、添加したSO3の大部分が分解して溶融ガラスから揮散してしまい、清澄効果を十分発揮することができない。
 TFTパネル用(「a-Si TFTパネル用」)のガラス基板として、アルカリ金属酸化物を含有するアルカリガラス基板を使用することも提案されている(特許文献1参照)。これはTFTパネル製造工程における熱処理を、従来350~450℃で行ってきたものを比較的低温(250~300℃程度)で行うことが可能になりつつあるためである。
 アルカリ金属酸化物を含有するガラスは、一般的に熱膨張係数が高いため、TFTパネル用のガラス基板として好ましい熱膨張係数とする目的で、熱膨張係数を低減させる効果を有するB23が通常含有される(特許文献2)。
 しかしながら、Bを含有するガラス組成とした場合、ガラスを溶解した際に、特に溶解工程、清澄工程およびフロート成形工程において、Bが揮散するため、ガラス組成が不均質になりやすい。ガラス組成が不均質になると、板状に成形する際の平坦性に影響を与える。TFTパネル用のガラス基板は、表示品質確保のため、液晶を挟む2枚のガラス基板間隔、すなわちセルギャップを一定に保つために高度の平坦度が要求される。このため所定の平坦度を確保するために、フロート法で板ガラスに成形された後、板ガラスの表面の研磨を行うが、成形後の板ガラスで所定の平坦性が得られていないと、研磨工程に要する時間が長くなり生産性が低下する。また、前記Bの揮散による環境負荷を考慮すると、溶融ガラス中のBの含有率はより低いことが好ましい。
 だが、B含有率が低いと、TFTパネル用のガラス基板として好ましい熱膨張係数まで下げること、および粘性の上昇を抑えつつ所定のTg等を得ることは困難であった。
日本国特開2006-137631号公報 日本国特開2006-169028号公報
 本発明は、TFTパネル製造工程の前述の低温での熱処理において、低温でのガラスのコンパクション(熱収縮率)がガラス基板上の成膜品質(成膜パターン精度)に大きく影響し得ることを見出した。本発明は、アルカリ金属酸化物を含有し、Bが少なく、TFTパネル製造工程における低温(150~300℃)での熱処理においてコンパクション(C)が小さく、ガラス基板上の成膜パターニング時の位置ずれが生じ難いTFTパネルに適したガラス基板を提供することを目的とする。
 本発明は、下記酸化物基準のモル百分率表示で、
 SiOを60~79%、
 Alを2.5~18%、
 Bを0~3%、
 MgOを1~15%、
 CaOを0~1%、
 SrOを0~1%、
 BaOを0~1%、
 ZrOを0~1%、
 NaOを7~15.5%、
 KOを0~3%、
 LiOを0~2%含有し、
 NaO+KOが7~15.5%、
 NaO/(NaO+KO)が0.77~1、
 MgO+CaO+SrO+BaOが1~18%、
 MgO-0.5Alが0~10であり、
 MgO+0.5Alが1~20であり、
 ガラス転移点温度が580~720℃、
 50~350℃における平均熱膨張係数が65×10-7~85×10-7/℃であり、
 コンパクション(C)が15ppm以下であり、
 ガラス表面失透温度(T)が900~1300℃であり、
 ガラス内部失透温度(T)が900~1300℃であり、
 粘度が10dPa・sとなる温度(T)が1100~1350℃であり、
 粘度が10dPa・sとなる温度(T)とガラス表面失透温度(T)との関係(T-T)が、-50~350℃であり、
 粘度が10dPa・sとなる温度(T)とガラス内部失透温度(T)との関係(T-T)が、-50~350℃であるガラス基板を提供する。
 本発明のガラス基板は、TFTパネル製造工程における低温(150~300℃)での熱処理においてコンパクション(C)が小さく(15ppm以下)、ガラス基板上の成膜パターニング時の位置ずれが生じ難い。したがって、近年の熱処理の低温化に対応した、特に大型のTFTパネル用のガラス基板、例えば、マザーガラスとして一辺が2m以上のガラス基板として好適に用いることができる。
 また、B含有率が低いので、ガラス製造時におけるBの揮散が少ないことから、ガラス基板の均質性に優れ、平坦性および生産性に優れている。
図1は、本発明のガラス基板におけるMgOとAlとの関係を示すグラフである。
<本発明のガラス基板>
 本発明のガラス基板は、下記酸化物基準のモル百分率表示で、
 SiOを60~79%、
 Alを2.5~18%、
 Bを0~3%、
 MgOを1~15%、
 CaOを0~1%、
 SrOを0~1%、
 BaOを0~1%、
 ZrOを0~1%、
 NaOを7~15.5%、
 KOを0~3%、
 LiOを0~2%含有し、
 NaO+KOが7~15.5%、
 NaO/(NaO+KO)が0.77~1、
 MgO+CaO+SrO+BaOが1~18%、
 MgO-0.5Alが0~10であり、
 MgO+0.5Alが1~20であり、
ガラス転移点温度が580~720℃、
50~350℃における平均熱膨張係数が65×10-7~85×10-7/℃であり、
コンパクション(C)が15ppm以下であり、
ガラス表面失透温度(T)が900~1300℃であり、
ガラス内部失透温度(T)が900~1300℃であり、
粘度が10dPa・sとなる温度(T)が1100~1350℃であり、
粘度が10dPa・sとなる温度(T)とガラス表面失透温度(T)との関係(T-T)が、-50~350℃であり、
 粘度が10dPa・sとなる温度(T)とガラス内部失透温度(T)との関係(T-T)が、-50~350℃であるガラス基板である。
 なお、本発明のガラス基板のガラス転移点温度(Tg)は580℃以上、720℃以下である。本発明のガラス基板のガラス転移点温度(Tg)は、上記範囲であることで、TFTパネル製造工程における低温熱処理(150℃~300℃)においてガラスの粘性が高くなるため、ガラス中のアルカリ成分のTFT素子への移動度が低くなり、TFTの性能劣化を抑えられる。コンパクション(C)を小さくする点から、600℃以上であるのが好ましく、640℃以上であるのがより好ましく、680℃以上であるのがさらに好ましい。
 また、本発明のガラス基板の50~350℃における平均線膨張係数は85×10-7/℃以下である。上記範囲であることで、パネルの製造工程での寸法変化が少なく、カラーフィルタを有する対向ガラス基板とTFTを有するアレイガラス基板の合せ時のパターン合せが容易となる。さらに、パネル使用時の熱応力による品質への影響が少ないことから、特に表示品質面で好ましい。
 なお、好ましくは80×10-7/℃以下、より好ましくは78×10-7/℃以下、さらに好ましくは76×10-7/℃以下である。また対向ガラス基板に一般的なソーダライムガラスを用い、アレイガラス基板に本発明のガラス基板を用いる場合の両者の熱膨張差の点から、65×10-7/℃以上である。
 本発明のガラス基板はコンパクション(C)が15ppm以下である。13ppm以下が好ましく、11ppm以下がより好ましく、9ppm以下がさらに好ましい。15ppm以下であると、TFTパネル製造工程における低温(150~300℃)での熱処理において、アレイガラス基板上へのTFT成膜パターニング時の位置ずれが生じ難い。
 本発明においてコンパクション(C)とは、次に説明する方法で測定した値を意味するものとする。
 初めに、対象となるガラスを1600℃で溶解した後、溶融ガラスを流し出し、板状に成形後冷却する。得られたガラス板を研磨加工して100mm×20mm×2mmの試料を得る。
 次に、得られたガラス板を転移点温度Tg+50℃まで加熱し、この温度で1分間保持した後、降温速度50℃/分で室温まで冷却する。その後、ガラス板の表面に圧痕を長辺方向に2箇所、間隔A(A=90mm)で打つ。
 次にガラス板を300℃まで昇温速度100℃/時(=1.6℃/分)で加熱し、300℃で1時間保持した後、降温速度100℃/時で室温まで冷却する。そして、再度、圧痕間距離を測定し、その距離をBとする。このようにして得たA、Bから下記式を用いてコンパクション(C)を算出する。なお、A、Bは光学顕微鏡を用いて測定する。
 C[ppm]=(A-B)/A×10
 本発明のガラス基板は、ガラス表面失透温度(T)が1300℃以下である。好ましくは1275℃以下であり、より好ましくは1250℃以下であり、特に好ましくは1225℃以下である。なお、他の物性確保の容易性を考慮すると、ガラス表面失透温度(T)は900℃以上である。
 ガラス表面失透温度(T)とは、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの表面に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
 また、本発明のガラス基板は、ガラス内部失透温度(T)が1300℃以下である。好ましくは1275℃以下であり、より好ましくは1250℃以下であり、さらに好ましくは1225℃である。なお、他の物性確保の容易性を考慮すると、ガラス内部失透温度(T)は900℃以上である。
 ガラス内部失透温度(T)とは、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
 また、本発明のガラス基板は、粘度が10dPa・sとなる温度(T)が、1350℃以下である。1300℃以下であることが好ましく、より好ましくは1275℃以下であり、さらに好ましくは1250℃以下である。なお、他の物性確保の容易性を考慮すると、粘度が10dPa・sとなる温度(T)は1100℃以上である。
 本願発明のガラス基板の成形方法として、フロート法およびフュージョン法(ダウンドロー法)が適用できるが、フュージョン法のときはTにおけるガラス粘度は、103.8dPa・s以上であることが好ましく、より好ましくは104.3dPa・s以上、さらに好ましくは104.7dPa・s以上、特に好ましくは105.3dPa・s以上である。なお、他の物性確保の容易性を考慮すると、フュージョン法のときはTは107.0dPa・s以下である。
 また、フロート法のときはTにおけるガラス粘度は、103.8dPa・s以上であることが好ましく、より好ましくは103.9dPa・s以上、さらに好ましくは104.0dPa・s以上である。なお、他の物性確保の容易性を考慮すると、フロート法のときはTは107.0dPa・s以下である。
 本発明のガラス基板は、粘度が10dPa・sとなる温度(T)が、1850℃以下であることが好ましく、より好ましくは1750℃以下であり、さらに好ましくは1650℃以下である。
 本発明のガラス基板は、密度が2.50g/cm以下であることが好ましく、より好ましくは2.45g/cm以下であり、さらに好ましくは2.43g/cm以下であり、特に好ましくは2.41g/cm以下である。なお、本発明のガラス基板は、他の物性確保の容易性を考慮すると、密度は2.35g/cm以上である。
 本発明のガラス基板は、光弾性定数が33nm/MPa/cm以下であることが好ましく、より好ましくは31nm/MPa/cm以下であり、さらに好ましくは30nm/MPa/cm以下であり、特に好ましくは29nm/MPa/cm以下である。
 LCDパネル製造工程やLCD装置使用時に発生した応力によってガラス基板が複屈折性を有することにより、黒の表示がグレーとなりLCDのコントラストが低下する現象が認められることがある。光弾性定数を33nm/MPa/cm以下とすることにより、この現象を小さく抑えることができる。
 また、本発明のガラス基板は、他の物性確保の容易性を考慮すると、光弾性定数が27nm/MPa/cm以上であることが好ましい。
 なお、光弾性定数は、円盤圧縮法により測定できる。
 本発明のガラス基板は、ヤング率が66GPa以上であることが好ましく、より好ましくは70GPa以上であり、さらに好ましくは74GPa以上である。本発明のガラス基板は、ヤング率が80GPa以下であることが好ましい。この範囲とすることにより、液晶パネル製造工程において、ガラス基板を搬送する際、二端を保持した時の中央部のたわみ量が小さく、ガラス基板間で接触するなどのトラブルを抑止したり、ガラス基板間のスペースを小さくしたりすることができるなどのメリットがある。
 また、一般的に、ヤング率が高いとガラス基板の機械特性の向上、割れに対する耐久性の向上に寄与する。
 本発明のガラス基板において上記組成に限定する理由は以下のとおりである。
 SiO:ガラスの骨格を形成する成分で、60モル%(以下、単に「%」と記載する)未満ではガラスの耐熱性および化学的耐久性が低下し、また、密度、50~350℃における平均熱膨張係数およびコンパクション(C)が増大するおそれがある。好ましくは62%以上であり、より好ましくは63%以上である。
 しかし、79%超では光弾性定数が増大し、またガラスの高温粘度が上昇し溶解性が悪化する問題が生じるおそれがある。好ましくは77%以下であり、より好ましくは75%以下であり、さらに好ましくは74%以下である。
 Al:ガラス転移点温度を上げ、耐候性(ソラリゼーション)、耐熱性および化学的耐久性を向上し、ヤング率を高める。その含有量が2.5%未満だとガラス転移点温度が低下するおそれがある。また50~350℃における平均熱膨張係数およびコンパクション(c)が増大するおそれがある。好ましくは4%以上であり、より好ましくは6%以上であり、さらに好ましくは7%以上である。
 しかし、18%超では、ガラスの高温粘度が上昇し、溶解性が悪くなるおそれがある。また、失透温度(ガラス表面における表面失透温度(T)およびガラス内部における内部失透温度(T))が上昇し、成形性が悪くなるおそれがある。好ましくは16%以下であり、より好ましくは15%以下である。
 Bは、溶解性を向上させる等のために3%まで含有してもよい。含有量が3%を超えるとガラス転移点温度が下がる、または50~350℃における平均熱膨張係数が小さくなり、光弾性定数が大きくなる傾向があるため、好ましくは含有量が1.5%以下である。含有量が0.5%以下であるとより好ましく、実質的に含有しないことがさらに好ましい。
 なお、「実質的に含有しない」とは、原料等から混入する不可避的不純物以外には含有しないこと、すなわち、意図的に含有させないことを意味する。
 TFTパネル用ガラス基板として用いる場合、B含有率が低いと、ガラス基板製造時にガラスを溶解する際の、溶解工程、清澄工程および成形工程での、Bの揮散量が少なく、製造されるガラス基板が均質性および平坦性に優れる。その結果、高度の平坦性が要求されるTFTパネル用ガラス基板として使用する場合に、従来のTFTパネル用ガラス基板に比べて、表示品質に優れる。
 また、Bの揮散による環境負荷を考慮しても、Bの含有率はより低いことが好ましい。
 MgO:ガラスの溶解時の粘性を下げ、溶解を促進し、ガラス基板の耐候性を向上する効果があるので含有させるが、1%未満だとガラスの高温粘度が上昇し溶解性が悪化するおそれがある。好ましくは3%以上であり、より好ましくは5%以上であり、さらに好ましくは7%以上である。
 しかし、15%超では、50~350℃における平均熱膨張係数およびコンパクション(C)が増大するおそれがある。また失透温度(T)が上昇するおそれがある。好ましくは13%以下であり、より好ましくは11%未満であり、さらに好ましくは10%以下である。
 CaO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、1%超ではガラスの50~350℃における平均熱膨張係数およびコンパクション(C)が増大するおそれがある。好ましくは0.5%以下であり、より好ましくは実質的に含有しない。
 SrO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、1%超含有すると、ガラス基板の50~350℃における平均熱膨張係数およびコンパクション(C)が増大するおそれがある。好ましくは0.5%以下であり、より好ましくは実質的に含有しない。
 BaO:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、1%超含有すると、ガラス基板の50~350℃における平均熱膨張係数およびコンパクション(C)が大きくなるおそれがある。好ましくは0.5%以下であり、より好ましくは実質的に含有しない。
 ZrO2:ガラスの溶解時の粘性を下げ、溶解を促進する効果があるので含有させることができる。しかし、1%超含有すると、ガラス基板の密度、50~350℃における平均熱膨張係数およびコンパクション(C)が増大するおそれがある。0.5%以下が好ましく、実質的に含有しないことがより好ましい。
 MgO、CaO、SrOおよびBaOは、ガラス基板の耐候性を向上させるため、また、光弾性定数を小さくするため、合量で1%以上とする。3%以上が好ましく、5%以上がより好ましく、7%以上がさらに好ましい。しかし、合量で18%超ではガラスの50~350℃における平均熱膨張係数およびコンパクション(C)が増大するおそれがある。16%以下が好ましく、12.5%以下がより好ましく、10%以下がさらに好ましい。
 NaO:NaOはガラス溶解温度での粘性を下げ、溶解しやすくする効果があるので7~15.5%含有させる。含有量が9%以上であると好ましく、11%以上であるとより好ましい。12%以上であるとさらに好ましい。
 NaO含有量が15.5%を超えると50~350℃における平均熱膨張係数およびコンパクション(C)が大きくなり、または化学的耐久性が劣化する。含有量が14.5%以下であると好ましく、13.5%以下であるとより好ましい。13%以下であるとさらに好ましい。
 KO:NaOと同様の効果があるため、0~3%含有させる。しかし、3%超では、50~350℃における平均熱膨張係数およびコンパクション(C)が大きくなるおそれがある。含有する場合は、コンパクション(C)低減を考慮すると、1.5%以下が好ましく、0.5%以下であることがより好ましく、実質的に含有しないことがさらに好ましい。
 LiO:ガラス溶解温度での粘性を下げ、溶解しやすくするため0~2%含有させることができる。しかし、2%超含有するとガラス転移点の低下をもたらすおそれがある。また、50~350℃の平均熱膨張係数が85×10-7/℃以下とするためにも2%以下が好ましい。
 LiOの含有量は1%以下が好ましく、0.5%以下がより好ましく、実質的に含有しないことがさらに好ましい。
 NaOおよびKO:ガラス溶解温度での粘性を十分に下げ、また光弾性定数を小さくするために、NaOおよびKOの合量の含有量は、7~15.5%とする。光弾性定数を小さくするために、好ましくは9%以上であり、より好ましくは11%以上であり、さらに好ましくは12%以上である。
 しかし、15.5%超ではTgが下がりすぎ、50~350℃における平均熱膨張係数が上がりすぎ、コンパクション(C)が増大し、ヤング率が低くなるおそれがある。好ましくは15%以下であり、より好ましくは13%以下である。
 また、NaOおよびKOは、コンパクション(C)を小さくするために、下記式(1)が0.77~1を満たすように含有する。
NaO/(NaO+KO)  (1)
 上記式は、低温(150~300℃)での熱処理におけるコンパクション(C)を小さくする指標となる。本発明者等は、実験および試行錯誤の結果から、上記各成分が本願の範囲を満たし、且つ、上記式(1)で得られる値が0.77~1となる場合に、Tgが580~720℃であり、および50~350℃における平均熱膨張係数が65×10-7~85×10-7を満足させつつ、コンパクション(C)が15ppm以下を満たすことを見出した。好ましくは、0.9以上であり、より好ましくは0.95以上であり、さらに好ましくは1である。
 MgOおよびAl:MgOおよびAlは、下記式(2)が0~10を満たすように含有する。なお、下記式(2)の「MgO」、「Al」には、ガラス基板の組成に含まれるMgOおよびAlのそれぞれの「モル%」を代入する。
 MgO-0.5Al  (式2)
 上記式(2)は、光弾性定数を低くし、且つ低温(150~300℃)での熱処理におけるコンパクション(C)を小さくする指標となる。本発明者等は、実験および試行錯誤の結果から、上記の各成分が本願の範囲を満たし、且つ、上記式(2)で得られる値が0~10の中間になるほど、つまり5に近づくほど、コンパクション(C)を小さくできることを見出した。好ましくは1以上であり、より好ましくは2以上であり、さらに好ましくは3以上であり、特に好ましくは4以上である。好ましくは9以下であり、より好ましくは8以下であり、さらに好ましくは7以下であり、特に好ましくは6以下である。また、低い光弾性定数を得るために、2以上であると好ましい。
 なお、MgOを縦軸、Alを横軸とした場合、上記式(2)が0~10且つMgOおよびAlが上記組成範囲のときに、本願の範囲は、図1において実線ラインで囲まれた部分となる。コンパクション(C)を小さくできる範囲は、図1において本願の範囲内においてMgO-0.5Al=0とMgO-0.5Al=10の二本の直線の上下のY切片が5となる直線に近い部分、即ち、図1において本願の範囲内で且つMgO-0.5Al=5の直線に近い部分である。
 また、MgOおよびAlは、下記式(3)が1~20を満たすように含有する。なお、下記式(3)の「MgO」、「Al」には、ガラス基板の組成に含まれるMgOおよびAlのそれぞれの「モル%」を代入する。
 MgO+0.5Al  (式3)
 上記式(3)は、ガラス製造工程における失透特性、具体的には、後述するT-Tが-50~350℃、またはT-Tが-50~350℃を満たすための指標となる。本発明者等は、実験および試行錯誤の結果から、上記の各成分が本願の範囲を満たし、且つ、上記式(3)で得られる値が1~20となる場合に、Tgが580~720℃および50~350℃における平均熱膨張係数65×10-7~85×10-7/℃を満足させつつ、T-TまたはT-Tが上記範囲を満たすことを見出した。
 本願発明のガラス基板の成形方法として、フロート法およびフュージョン法(ダウンドロー法)が適用できるが、フュージョン法のときは上記式(3)は、好ましくは15以下であり、より好ましくは13以下であり、さらに好ましくは11以下である。またフロート法のときは上記式(3)は、好ましくは18以下であり、より好ましくは15以下であり、さらに好ましくは13以下である。また、低い光弾性定数を得るために、好ましくは3以上であり、より好ましくは5以上であり、さらに好ましくは7以上である。
 なお、MgOを縦軸、Alを横軸とした場合、上記式(3)が1~20且つMgOおよびAlが上記組成範囲のときに、本願の範囲は、図1において実線で囲まれた部分となる。
 本発明のガラス基板は、好ましくは本質的に上記母組成からなるが、本発明の目的を損なわない範囲でその他の成分を含有しても良い。その他の成分は、合計で2%以下含有してもよく、好ましくは1%以下、より好ましくは0.5%以下で含有する。たとえば、耐候性、溶解性、失透性、紫外線遮蔽等の改善を目的に、ZnO、LiO、WO、Nb、V、Bi、MoO、P等を含有してもよい場合がある。
 また、ガラスの溶解性、清澄性を改善するため、ガラス中にSO、F、Cl、SnOを合量で2%以下含有するように、これらの原料を母組成原料に添加してもよい。TFTパネル用ガラス基板として用いる場合は、これらの添加はより好ましい。
 また、ガラスの化学的耐久性向上のため、ガラス中にZrO、Y、La、TiO2、SnO2を合量で2%以下含有させてもよく、好ましくは1%以下、より好ましくは0.5%以下で含有させる。これらのうちY23、La23およびTiOは、ガラスのヤング率向上にも寄与する。
 ガラスの色調を調整するため、ガラス中にFe、CeO等の着色剤を含有してもよい。このような着色剤の含有量は、合量で1%以下が好ましい。
 本発明のガラス基板は、環境負荷を考慮すると、As、Sbを実質的に含有しないことが好ましい。また、安定してフロート成形することを考慮すると、ZnOを実質的に含有しないことが好ましい。しかし、本発明のガラス基板は、フロート法による成形に限らず、フュージョン法による成形により製造してもよい。
<本発明のガラス基板の製造方法および用途>
 本発明のガラス基板は、TFTパネル用ガラス基板として好適に用いることができる。以下、詳しく説明する。
(1)ガラス基板の製造方法
 本発明におけるガラス基板を製造する場合、従来のTFTパネル用ガラス基板を製造する際と同様に、溶解・清澄工程および成形工程を実施する。なお、本発明におけるガラス基板は、アルカリ金属酸化物(NaO、KO)を含有するアルカリガラス基板であるため、清澄剤としてSOを効果的に用いることができ、成形方法としてフロート法およびフュージョン法(ダウンドロー法)に適している。
 TFTパネル用ガラス基板の製造工程において、TFTパネルの大型化に伴い、大面積のガラス基板を容易に、安定して成形できるフロート法を用いることが特に好ましい。
 なお、本発明のガラス基板の成形方法として、フロート法およびフュージョン法(ダウンドロー法)が適用できるが、板ガラス成形時の失透防止を考慮すると、ガラス基板の物性としてフュージョン法のときはT-Tが-50~350℃であり、T-T≧50℃を満たすことが好ましく、T-T≧100℃を満たすことがより好ましく、T-T≧200℃を満たすことがさらに好ましい。
 また、フロート法のときはT-Tが-50~350℃でありT-T≧-20℃を満たすことが好ましく、T-T≧-10℃を満たすことがより好ましく、T-T≧0℃を満たすことがさらに好ましい。
 本発明におけるガラス基板の製造方法の好ましい態様について説明する。
 初めに、原料を溶解して得た溶融ガラスを板状に成形する。例えば、得られるガラス基板の組成となるように原料を調製し、前記原料を溶解炉に連続的に投入し、1450~1650℃程度に加熱して溶融ガラスを得る。そしてこの溶融ガラスを例えばフロート法を適用してリボン状のガラス板に成形する。
 次に、リボン状のガラス板を成形炉から引出した後に、冷却手段によって室温状態まで冷却し、切断後、ガラス基板を得る。
 ここで冷却手段は、前記成形炉から引出されたリボン状のガラス板の表面温度をT(℃)、室温をT(℃)とし、さらに前記リボン状ガラス基板の表面温度がTからTに冷却されるまでの時間をt(分)とした場合に、(T-T)/tで示される平均冷却速度を10~300℃/分とする冷却手段である。具体的な冷却手段は特に限定されず、従来公知の冷却方法であってよい。例えば温度勾配を持った加熱炉を用いる方法が挙げられる。
 Tは、ガラス転移点温度Tg+20℃、具体的には600~740℃が好ましい。
 前記平均冷却速度は15~150℃/分であることが好ましく、20~80℃/分であることがより好ましく、40~60℃/分であることがさらに好ましい。上記のガラス基板製造方法により、コンパクション(C)が15ppm以下、好ましくは13ppm以下のガラス基板が容易に得られる。
(2)TFTパネル
 本発明のガラス基板は、TFTパネル用ガラス基板に好適に用いることができる。
 本発明のガラス基板の表面に、アレイ基板におけるゲート絶縁膜を成膜する成膜工程を具備するTFTパネルの製造方法について説明する。
 本発明のガラス基板を用いたTFTパネルの製造方法は、本発明のガラス基板の表面の成膜領域を150~300℃の範囲内の温度(以下、成膜温度という)まで昇温した後、前記成膜温度で5~60分間保持して、前記成膜領域に前記アレイ基板ゲート絶縁膜を成膜する成膜工程を具備するものであれば特に限定されない。ここで成膜温度は150~250℃であることが好ましく、150~230℃であることがより好ましく、150~200℃であることがさらに好ましい。また、この成膜温度に保持する時間は5~30分間であることが好ましく、5~20分間であることがより好ましく、5~15分間であることがさらに好ましい。
 ゲート絶縁膜の成膜は上記のような成膜温度および保持時間の範囲内で行われるので、この間にガラス基板が熱収縮する。なお、一度ガラス基板が熱収縮した後は、その後の冷却条件(冷却速度等)によっては、上記の熱収縮の結果に大きな影響を及ぼさない。本発明におけるTFTパネル用ガラス基板はコンパクション(C)が小さいので、ガラス基板の前記熱収縮が小さく、成膜パターンのずれが生じ難い。
 成膜工程における成膜は、例えば従来公知のCVD法によって達成することができる。
 本発明に係るTFTパネルの製造方法では、公知の方法によってアレイ基板を得ることができる。そして、該アレイ基板を用いて以下のような公知の工程によりTFTパネルを製造することができる。
 すなわち、前記アレイ基板、カラーフィルタ基板各々に配向膜を形成し、ラビングを行う配向処理工程、TFTアレイ基板とカラーフィルタ基板を所定のギャップを保持して高精度で貼り合せる貼り合せ工程、基板よりセルを所定サイズに分断する分断工程、分断されたセルに液晶を注入する注入工程、セルに偏光板を貼り付ける偏光板貼り付け工程からなる一連の工程によりTFTパネルを製造することができる。
 また、本発明のガラス基板は、周知の方法で化学強化して用いることができるが、TFTパネルの表示品質向上のために、ガラス基板の平坦性を考慮すると化学強化しないことが好ましい。
 以下、実施例および製造例により本発明をさらに詳しく説明するが、本発明はこれら実施例および製造例に限定されない。
 本発明のガラス基板の実施例(例1~13、18~22)および比較例(例14~17)を示す。なお表中のかっこは、計算値である。
 表1~4で表示した組成になるように、ガラス基板用の各成分の原料を調合し、該ガラス基板用成分の原料100質量部に対し、硫酸塩をSO換算で0.1質量部原料に添加し、白金坩堝を用いて1600℃の温度で3時間加熱し溶解した。溶解にあたっては、白金スターラーを挿入し1時間攪拌しガラスの均質化を行った。次いで溶融ガラスを流し出し、冷却後、板状に研削、研磨加工した。
 こうして得られたガラスの50~350℃における平均熱膨張係数(単位:×10-7/℃)、ガラス転移点温度(Tg)(単位:℃)、密度、粘度、コンパクション(C)、光弾性定数、ヤング率、失透温度(ガラス表面失透温度(T)、ガラス内部失透温度(T))、T、Tにおけるガラス粘度(単位:dPa・s)を測定し、また、T-TとT-Tを算出し、表1~3に示した。以下に各物性の測定方法を示す。
(1)Tg:TgはTMAを用いて測定した値であり、JIS R3103-3(2001年度)により求めた。
(2)密度:泡を含まない約20gのガラス板をアルキメデス法によって測定した。
(3)粘度:回転粘度計を用いて粘度を測定し、10dPa・sとなるときの温度T(℃)を測定した。
 また、溶融ガラスの高温(1000~1600℃)におけるガラス粘度の測定結果から、フルチャーの式の係数を求め、該係数を用いたフルチャーの式により、ガラス内部失透温度(T)におけるガラス粘度を求めた。
(4)コンパクション(C):前述のコンパクション(C)の測定方法により測定した。
(5)50~350℃の平均熱膨張係数:示差熱膨張計(TMA)を用いて測定し、JIS R3102(1995年度)より求めた。
(6)失透温度(ガラス表面失透温度(T)及びガラス内部失透温度(T)):白金製皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの表面に結晶が析出する最高温度と結晶が析出しない最低温度との平均値をガラス表面失透温度T(℃)、またガラスの内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値をガラス内部失透温度T(℃)とする。
(7)光弾性定数:光源として546nmの光を使用して、円盤圧縮法により測定した。
(8)ヤング率:厚み7~10mmのガラスについて、超音波パルス法により測定した。
 ガラス中のSO残存量は100~500ppmであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~表4より明らかなように、実施例(例1~13、18~22)のガラスは、ガラス転移点温度Tgが高い。また、実施例のガラスは50~350℃における平均熱膨張係数が65×10-7~85×10-7/℃であるので、TFTパネル用ガラス基板として用いる場合、パネルの製造工程での寸法変化が少なく、カラーフィルタとアレイ板の合せ時のパターン合せが容易となる。さらに、パネル使用時の熱応力による品質への影響が少ないことから、特に表示品質面で好ましい。
 また、コンパクション(C)が15ppm以下であるため、ガラス基板上の成膜パターニング時の位置ずれが生じにくい。したがって、近年の熱処理の低温化に対応した、特に大型のTFTパネル用ガラス基板、例えば、マザーガラスとして一辺が2m以上のガラス基板として好適に用いることができる。
 また、例2~13、19~22は、T-Tが-50~350℃、またはT-Tが-50~350℃を満たしており、板ガラス成形時の失透が抑えられる。
 なお、例1、18についても、各物性値(T、T、T、T-T、T-T、光弾性定数、ヤング率)は本願範囲を満たすものである。また例11~13のT、Tも本願範囲を満たすものである。
 例14、15は、コンパクション(C)が15ppmより大きく、50~350℃における平均熱膨張係数が85×10-7/℃より大きいため、TFTパネルの製造工程での寸法変化が大きく、カラーフィルタとアレイ板の合せ時のパターン合せが困難となり、ガラス基板上の成膜パターニング時の位置ずれが生じ易い。
 例16、17は、コンパクション(C)が15ppm以下であるものの、ガラス転移点温度が580℃未満であり、また50~350℃における平均熱膨張係数が85×10-7/℃より大きいため、TFTパネルの製造工程での寸法変化が大きく、カラーフィルタとアレイ板の合せ時のパターン合せが困難となり、ガラス基板上の成膜パターニング時の位置ずれが生じ易い。
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2011年10月31日出願の日本特許出願2011-238869に基づくものであり、その内容はここに参照として取り込まれる。
 本発明のガラス基板は、TFTパネル用ガラス基板として好適であるが、他のディスプレイ用基板、例えば、プラズマディスプレイパネル(PDP)、無機エレクトロ・ルミネッセンス・ディスプレイ等に使用することができる。

Claims (6)

  1.  下記酸化物基準のモル百分率表示で、
     SiOを60~79%、
     Alを2.5~18%、
     Bを0~3%、
     MgOを1~15%、
     CaOを0~1%、
     SrOを0~1%、
     BaOを0~1%、
     ZrOを0~1%、
     NaOを7~15.5%、
     KOを0~3%、
     LiOを0~2%含有し、
     NaO+KOが7~15.5%、
     NaO/(NaO+KO)が0.77~1、
     MgO+CaO+SrO+BaOが1~18%、
     MgO-0.5Alが0~10であり、
     MgO+0.5Alが1~20であり、
     ガラス転移点温度が580~720℃、
     50~350℃における平均熱膨張係数が65×10-7~85×10-7/℃であり、
     コンパクション(C)が15ppm以下であり、
     ガラス表面失透温度(T)が900~1300℃であり、
     ガラス内部失透温度(T)が900~1300℃であり、
     粘度が10dPa・sとなる温度(T)が1100~1350℃であり、
     粘度が10dPa・sとなる温度(T)とガラス表面失透温度(T)との関係(T-T)が、-50~350℃であり、
     粘度が10dPa・sとなる温度(T)とガラス内部失透温度(T)との関係(T-T)が、-50~350℃であるガラス基板。
  2.  光弾性定数が27~33nm/MPa/cmである請求項1に記載のガラス基板。
  3.  粘度が10dPa・sとなる温度(T)とガラス表面失透温度(T)との関係が、T-T≧-20℃である請求項1又は2に記載のガラス基板。
  4.  粘度が10dPa・sとなる温度(T)とガラス内部失透温度(T)との関係が、T-T≧50℃である請求項1又は2に記載のガラス基板。
  5.  原料を溶解して得た溶融ガラスをフロート法を用いて板ガラス成形し、請求項3に記載のガラス基板を得るガラス基板の製造方法。
  6.  原料を溶解して得た溶融ガラスをフュージョン法を用いて板ガラス成形し、請求項4に記載のガラス基板を得るガラス基板の製造方法。
PCT/JP2012/076855 2011-10-31 2012-10-17 ガラス基板およびその製造方法 WO2013065489A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280053756.1A CN104024171A (zh) 2011-10-31 2012-10-17 玻璃基板及其制造方法
KR1020147011137A KR20140088109A (ko) 2011-10-31 2012-10-17 유리 기판 및 그 제조 방법
JP2013541696A JP5987836B2 (ja) 2011-10-31 2012-10-17 ガラス基板およびその製造方法
EP12845956.7A EP2774895A4 (en) 2011-10-31 2012-10-17 GLASS SUPPLY AND MANUFACTURING METHOD THEREFOR
US14/265,963 US20140235425A1 (en) 2011-10-31 2014-04-30 Glass substrate and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-238869 2011-10-31
JP2011238869 2011-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/265,963 Continuation US20140235425A1 (en) 2011-10-31 2014-04-30 Glass substrate and method for producing same

Publications (1)

Publication Number Publication Date
WO2013065489A1 true WO2013065489A1 (ja) 2013-05-10

Family

ID=48191845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/076855 WO2013065489A1 (ja) 2011-10-31 2012-10-17 ガラス基板およびその製造方法

Country Status (7)

Country Link
US (1) US20140235425A1 (ja)
EP (1) EP2774895A4 (ja)
JP (2) JP5987836B2 (ja)
KR (1) KR20140088109A (ja)
CN (1) CN104024171A (ja)
TW (1) TWI583650B (ja)
WO (1) WO2013065489A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104150765A (zh) * 2013-08-27 2014-11-19 东旭集团有限公司 一种高硅、高铝触摸屏盖板玻璃
CN104418504A (zh) * 2013-08-27 2015-03-18 科立视材料科技有限公司 化学强化碱铝硅酸盐玻璃用玻璃组合物及其制造方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016084952A1 (ja) * 2014-11-28 2017-10-05 旭硝子株式会社 液晶ディスプレイパネル
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
CN109562979B (zh) * 2016-08-05 2021-11-16 Agc株式会社 玻璃基板、半导体装置以及显示装置
KR102088678B1 (ko) * 2016-10-07 2020-03-13 주식회사 엘지화학 곡면 접합 유리 및 곡면 접합 유리의 제조 방법
JP6870195B2 (ja) * 2016-12-21 2021-05-12 エルジー・ケム・リミテッド 曲面接合ガラスの製造方法および曲面接合ガラス
KR101911621B1 (ko) * 2017-02-27 2018-10-24 주식회사 엘지화학 접합 유리 및 접합 유리의 제조 방법
CN110944953A (zh) * 2017-07-26 2020-03-31 Agc株式会社 半导体封装用支承玻璃
JP6798629B2 (ja) * 2018-02-05 2020-12-09 Agc株式会社 化学強化用ガラス
CN111018345A (zh) * 2019-11-23 2020-04-17 石家庄旭新光电科技有限公司 一种oled面板用铝硅酸盐玻璃用组合物、及铝硅酸盐玻璃及其制备方法
CN111807700B (zh) * 2020-07-31 2023-12-12 山东晶峰玻璃科技有限公司 一种用于白酒瓶的玻璃组合物
CN113979633B (zh) * 2021-11-24 2023-08-11 中国洛阳浮法玻璃集团有限责任公司 一种高硬度能化学钢化用钠钙硅玻璃的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133778A (ja) * 1994-09-14 1996-05-28 Asahi Glass Co Ltd ガラス組成物及びプラズマディスプレー用基板
JPH11240735A (ja) * 1998-02-27 1999-09-07 Asahi Glass Co Ltd 基板として用いるためのガラス組成物
JP2006137631A (ja) 2004-11-11 2006-06-01 Nippon Electric Glass Co Ltd ガラス基板及びその製造方法
JP2006169028A (ja) 2004-12-15 2006-06-29 Nippon Sheet Glass Co Ltd ガラス組成物およびその製造方法
JP2010059038A (ja) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd 強化ガラスおよびその製造方法
JP2010527892A (ja) * 2007-05-18 2010-08-19 コーニング インコーポレイテッド ダウンドロー法で製造可能な、化学的に強化されたカバープレート用ガラス

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4156755A (en) * 1978-04-19 1979-05-29 Ppg Industries, Inc. Lithium containing ion exchange strengthened glass
CN101489944A (zh) * 2006-07-13 2009-07-22 旭硝子株式会社 无碱玻璃基板及其制造方法以及液晶显示面板
EP2426094B1 (en) * 2008-04-21 2014-10-22 Asahi Glass Company, Limited Glass plate for display panels, process for producing it, and process for producing TFT panel
JP5699434B2 (ja) * 2009-04-02 2015-04-08 旭硝子株式会社 情報記録媒体基板用ガラス、情報記録媒体用ガラス基板および磁気ディスク
US8647995B2 (en) * 2009-07-24 2014-02-11 Corsam Technologies Llc Fusion formable silica and sodium containing glasses
KR20120098601A (ko) * 2009-10-19 2012-09-05 아사히 가라스 가부시키가이샤 기판용 유리판, 그의 제조 방법 및 tft 패널의 제조 방법
WO2011049146A1 (ja) * 2009-10-20 2011-04-28 旭硝子株式会社 Cu-In-Ga-Se太陽電池用ガラス板およびこれを用いた太陽電池
WO2011152414A1 (ja) * 2010-06-03 2011-12-08 旭硝子株式会社 ガラス基板およびその製造方法
WO2012043482A1 (ja) * 2010-09-27 2012-04-05 旭硝子株式会社 化学強化用ガラス、化学強化ガラスおよびディスプレイ装置用ガラス板
US8652660B2 (en) * 2010-12-21 2014-02-18 Hoya Corporation Glass substrate for magnetic recording medium and its use
JP5834793B2 (ja) * 2010-12-24 2015-12-24 旭硝子株式会社 化学強化ガラスの製造方法
CN102531384B (zh) * 2010-12-29 2019-02-22 安瀚视特股份有限公司 玻璃盖片及其制造方法
US9701580B2 (en) * 2012-02-29 2017-07-11 Corning Incorporated Aluminosilicate glasses for ion exchange
CN105121371A (zh) * 2013-04-29 2015-12-02 康宁公司 光伏模块封装

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08133778A (ja) * 1994-09-14 1996-05-28 Asahi Glass Co Ltd ガラス組成物及びプラズマディスプレー用基板
JPH11240735A (ja) * 1998-02-27 1999-09-07 Asahi Glass Co Ltd 基板として用いるためのガラス組成物
JP2006137631A (ja) 2004-11-11 2006-06-01 Nippon Electric Glass Co Ltd ガラス基板及びその製造方法
JP2006169028A (ja) 2004-12-15 2006-06-29 Nippon Sheet Glass Co Ltd ガラス組成物およびその製造方法
JP2010527892A (ja) * 2007-05-18 2010-08-19 コーニング インコーポレイテッド ダウンドロー法で製造可能な、化学的に強化されたカバープレート用ガラス
JP2010059038A (ja) * 2008-08-04 2010-03-18 Nippon Electric Glass Co Ltd 強化ガラスおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2774895A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104150765A (zh) * 2013-08-27 2014-11-19 东旭集团有限公司 一种高硅、高铝触摸屏盖板玻璃
CN104418504A (zh) * 2013-08-27 2015-03-18 科立视材料科技有限公司 化学强化碱铝硅酸盐玻璃用玻璃组合物及其制造方法
JP2016531831A (ja) * 2013-08-27 2016-10-13 コーナーストーン・マテリアルズ・テクノロジー・カンパニー・リミテッドKornerstone Materials Technology Company, Ltd. 化学強化のアルカリアルミノシリケートガラス用ガラス組成物及びその製造方法
EP3038981A4 (en) * 2013-08-27 2017-08-30 Kornerstone Materials Technology Co., Ltd Glass composition for chemically strengthened alkali-aluminosilicate glass and method for the manufacture thereof

Also Published As

Publication number Publication date
TW201317192A (zh) 2013-05-01
JPWO2013065489A1 (ja) 2015-04-02
EP2774895A1 (en) 2014-09-10
KR20140088109A (ko) 2014-07-09
JP5987836B2 (ja) 2016-09-07
EP2774895A4 (en) 2015-04-15
JP2016193831A (ja) 2016-11-17
US20140235425A1 (en) 2014-08-21
CN104024171A (zh) 2014-09-03
JP6354808B2 (ja) 2018-07-11
TWI583650B (zh) 2017-05-21

Similar Documents

Publication Publication Date Title
JP6354808B2 (ja) ガラス基板
JP5510315B2 (ja) ディスプレイパネル用ガラス板、その製造方法およびtftパネルの製造方法
JP5233998B2 (ja) ガラス板およびその製造方法ならびにtftパネルの製造方法
JP5761025B2 (ja) 基板用ガラス板、その製造方法およびtftパネルの製造方法
KR101790478B1 (ko) 고변형점 알루미노실리케이트 유리
US9321671B2 (en) Glass substrate for flat panel display and manufacturing method thereof
JP5387411B2 (ja) 基板用ガラス板
WO2014175144A1 (ja) 化学強化用ガラス板およびその製造方法
WO2013099970A1 (ja) フラットパネルディスプレイ用ガラス基板およびその製造方法
WO2014087971A1 (ja) 無アルカリガラス基板
JP5708484B2 (ja) 基板用ガラス板
WO2015030013A1 (ja) 無アルカリガラス
WO2017188126A1 (ja) 無アルカリガラス
JPWO2015041246A1 (ja) 無アルカリガラス
WO2014208524A1 (ja) 無アルカリガラス
TW202325673A (zh) 無鹼玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12845956

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013541696

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147011137

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012845956

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE