WO2013062026A1 - 多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス - Google Patents

多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス Download PDF

Info

Publication number
WO2013062026A1
WO2013062026A1 PCT/JP2012/077538 JP2012077538W WO2013062026A1 WO 2013062026 A1 WO2013062026 A1 WO 2013062026A1 JP 2012077538 W JP2012077538 W JP 2012077538W WO 2013062026 A1 WO2013062026 A1 WO 2013062026A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum foil
foil
porous aluminum
storage device
plating solution
Prior art date
Application number
PCT/JP2012/077538
Other languages
English (en)
French (fr)
Inventor
篤志 岡本
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to CN201280052457.6A priority Critical patent/CN103958742B/zh
Priority to US14/354,237 priority patent/US9812700B2/en
Priority to EP12844049.2A priority patent/EP2772569B1/en
Priority to KR1020147013780A priority patent/KR101958507B1/ko
Priority to JP2013540818A priority patent/JP6044546B2/ja
Publication of WO2013062026A1 publication Critical patent/WO2013062026A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/0469Electroforming a self-supporting electrode; Electroforming of powdered electrode material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/20Separation of the formed objects from the electrodes with no destruction of said electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/42Electroplating: Baths therefor from solutions of light metals
    • C25D3/44Aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a method for producing a porous aluminum foil, which can be used as a positive electrode current collector of an electricity storage device such as a lithium ion secondary battery or a super capacitor (such as an electric double layer capacitor, a redox capacitor, or a lithium ion capacitor), and its production Porous aluminum foil produced by the method, positive current collector for power storage device comprising the porous aluminum foil, electrode for power storage device using the positive current collector for power storage device, and electrode for power storage device It is related with the electrical storage device comprised.
  • an electricity storage device such as a lithium ion secondary battery or a super capacitor (such as an electric double layer capacitor, a redox capacitor, or a lithium ion capacitor)
  • lithium-ion secondary batteries with large energy density and no significant reduction in discharge capacity are used as the power source for mobile tools such as mobile phones and laptop computers.
  • mobile tools such as mobile phones and laptop computers.
  • miniaturization of lithium ion secondary batteries attached to the tools.
  • new applications of supercapacitors with large energy density such as electric double layer capacitors, redox capacitors and lithium ion capacitors will be developed. Accelerating, and further higher energy density is required.
  • An electricity storage device such as a lithium ion secondary battery or a supercapacitor has a positive electrode and a negative electrode made of polyolefin in an organic electrolyte containing a fluorine-containing compound such as LiPF 6 or NR 4 .BF 4 (R is an alkyl group) as an electrolyte. It has a structure that is arranged through a separator consisting of.
  • the positive electrode is composed of a positive electrode active material such as LiCoO 2 (lithium cobaltate) and activated carbon and a positive electrode current collector
  • the negative electrode is composed of a negative electrode active material such as graphite and activated carbon and a negative electrode current collector, and each shape is a current collector.
  • an active material is applied to the surface of the material and formed into a sheet shape.
  • it is immersed in an organic electrolyte containing a highly corrosive fluorine-containing compound, so that the material of the positive electrode current collector is particularly excellent in electrical conductivity and resistance. It is required to be excellent in corrosiveness.
  • the material of the positive electrode current collector aluminum that is a good electrical conductor and has excellent corrosion resistance by forming a passive film on the surface is adopted as the material of the positive electrode current collector. ing.
  • the material for the negative electrode current collector include copper and nickel.
  • Patent Document 1 proposes a method for roughening the surface of the aluminum foil by chemical treatment such as etching.
  • a method of making the foil porous by subjecting the aluminum foil to machining such as punching has been proposed.
  • the present invention provides a novel method for producing a porous aluminum foil, a porous aluminum foil produced by the production method, and a positive electrode for an electricity storage device comprising the porous aluminum foil, which can be used as a positive electrode current collector of an electricity storage device.
  • An object is to provide a current collector, an electrode for an electricity storage device using the positive electrode current collector for the electricity storage device, and an electricity storage device configured using the electrode for the electricity storage device.
  • the present inventor has been energetically researching the electroplating technology of aluminum so far. Since the electrodeposition potential of aluminum is lower than the potential for hydrogen generation, it is impossible to deposit aluminum from an aqueous solution. Therefore, the electroaluminum plating solution is non-aqueous (no water is used as a solvent), and the moisture contained in the plating solution is a factor that hinders the precipitation of aluminum, and a uniform aluminum coating is formed on the substrate. Since it cannot be formed on the surface, it is treated as being excluded as much as possible.
  • the present inventor if skillfully using the adverse effect of moisture contained in the plating solution on the formation of a uniform aluminum coating, the porous aluminum coating is formed by partially inhibiting the precipitation of aluminum on the surface of the substrate. As a result of intensive studies, we thought that it could be formed on the surface of the substrate and that a porous aluminum foil could be obtained by peeling the coating from the substrate. It has been found that the purpose can be achieved by controlling to an appropriate amount.
  • the method for producing a porous aluminum foil of the present invention includes at least (1) a dialkyl sulfone, (2) an aluminum halide, and (3) a nitrogen-containing compound as described in claim 1.
  • a porous aluminum film is formed on the surface of the substrate by an electrolytic method using a plating solution having a water content of 100 to 2000 ppm, and then the film is peeled off from the substrate.
  • the production method according to claim 2 is the production method according to claim 1, wherein the nitrogen-containing compound is an ammonium halide, a hydrogen halide salt of a primary amine, a hydrogen halide salt of a secondary amine, or a tertiary amine.
  • a hydrogen halide salt of the general formula: R 1 R 2 R 3 R 4 N ⁇ X (R 1 to R 4 are the same or different and are alkyl groups, X represents a counter anion for a quaternary ammonium cation) It is at least one selected from the group consisting of quaternary ammonium salts.
  • the manufacturing method according to claim 3 is characterized in that, in the manufacturing method according to claim 1, heat treatment is performed on the obtained porous aluminum foil.
  • the manufacturing method according to claim 4 is the manufacturing method according to claim 3, wherein the heat treatment is performed at 80 to 550 ° C.
  • the manufacturing method according to claim 5 is characterized in that in the manufacturing method according to claim 1, the dialkyl sulfone is dimethyl sulfone.
  • the porous aluminum foil of the present invention has a ratio of the X-ray diffraction intensity of the (111) plane to the X-ray diffraction intensity of other crystal planes is 2.5 or more as described in claim 6. It has a certain crystal orientation and has a porosity of 1 to 70%.
  • the porous aluminum foil of this invention is manufactured with the manufacturing method of Claim 1 as described in Claim 7. It is characterized by the above-mentioned.
  • the positive electrode current collector for an electricity storage device of the present invention comprises the porous aluminum foil according to claim 6 or 7, as described in claim 8.
  • the electrode for an electricity storage device of the present invention is characterized in that, as described in claim 9, an electrode active material is supported on the porous aluminum foil according to claim 6 or 7.
  • the electrical storage device of this invention is comprised using the electrode for electrical storage devices of Claim 9 as described in Claim 10.
  • a porous aluminum foil that can be used as a positive electrode current collector of an electricity storage device, etc., with a small number of steps without passing through a step of making the foil porous after being produced. Can be manufactured.
  • generated easily by machining can be manufactured.
  • FIG. 1 It is a scanning electron micrograph of the front surface (surface on the opposite side to the surface which opposes a base material) of the porous aluminum foil manufactured in Example 1.
  • FIG. It is a scanning electron micrograph of the back surface (surface which opposes a base material) of a porous aluminum foil similarly.
  • 3 is an X-ray diffraction chart showing the crystal orientation of the porous aluminum foil.
  • It is an X-ray-diffraction chart which shows the crystal orientation of the aluminum foil manufactured by the rolling method (reference example).
  • the method for producing a porous aluminum foil of the present invention uses a plating solution containing at least (1) a dialkyl sulfone, (2) an aluminum halide, and (3) a nitrogen-containing compound and having a water content of 100 to 2000 ppm.
  • the porous aluminum coating is formed on the surface of the substrate by the conventional electrolytic method, and then the coating is peeled off from the substrate.
  • the dialkyl sulfone contained in the plating solution used in the method for producing a porous aluminum foil of the present invention has an alkyl group having 1 to 6 carbon atoms such as dimethyl sulfone, diethyl sulfone, dipropyl sulfone, dihexyl sulfone, and methylethyl sulfone. (It may be linear or branched), but dimethylsulfone can be suitably employed from the viewpoint of good electrical conductivity and availability.
  • Examples of the aluminum halide as a solute serving as an aluminum source for forming an aluminum film on the surface of a substrate by an electrolytic method include aluminum chloride and aluminum bromide.
  • the aluminum halide used is preferably an anhydride, but in the present invention, By using a hydrate, water molecules held by the substance may be used as moisture contained in the plating solution.
  • a nitrogen-containing compound means a compound having one or more nitrogen atoms in one molecule.
  • Nitrogen-containing compounds that can be suitably used include ammonium halides and primary amines that impart ductility that facilitates peeling from the surface of the substrate to the aluminum coating formed on the surface of the substrate by the electrolytic method.
  • These nitrogen-containing compounds may be used alone or in combination.
  • ammonium halide examples include ammonium chloride and ammonium bromide.
  • primary amine to tertiary amine the carbon number of the alkyl group such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, propylamine, dipropylamine, tripropylamine, hexylamine, methylethylamine, etc. Examples are those having 1 to 6 (which may be linear or branched).
  • hydrogen halide examples include hydrogen chloride and hydrogen bromide.
  • R 1 to R 4 are the same or different and an alkyl group, X represents a counter anion for a quaternary ammonium cation
  • alkyl group represented by 1 to R 4 include those having 1 to 6 carbon atoms (which may be linear or branched) such as a methyl group, an ethyl group, a propyl group, and a hexyl group.
  • the X Other halide ions such as chloride ion or bromide ion and iodide ion, BF 4 - and PF 6 - and the like can be exemplified.
  • the compound examples include tetramethylammonium chloride, tetramethylammonium bromide, tetramethylammonium iodide, and tetraethylammonium tetrafluoride.
  • Particularly preferred nitrogen-containing compounds include tertiary amine hydrochlorides such as trimethylamine hydrochloride in terms of facilitating the formation of a high-purity aluminum film having high ductility at a high film formation rate.
  • the blending ratio of dialkyl sulfone, aluminum halide, and nitrogen-containing compound is preferably 1.5 to 4.0 moles, more preferably 2.0 to 3.5 moles, for 10 moles of dialkyl sulfone. .
  • the nitrogen-containing compound is desirably 0.01 to 2.0 mol, and more desirably 0.05 to 1.5 mol. If the blending amount of the aluminum halide is less than 1.5 moles per 10 moles of dialkyl sulfone, the formed aluminum film may be darkened (a phenomenon called burning), or the film formation efficiency may be lowered. is there. On the other hand, if it exceeds 4.0 moles, the plating solution may become too hot and decompose due to excessively high resistance of the plating solution.
  • the effect of blending the compounding amount of the nitrogen-containing compound is less than 0.01 mol with respect to 10 mol of the dialkyl sulfone, that is, the plating treatment with high current density applied based on the improvement of the electrical conductivity of the plating solution.
  • the amount exceeds 2.0 mol, the composition of the plating solution may be essentially changed, so that aluminum may not be precipitated.
  • composition of the plating solution used in the method for producing a porous aluminum foil of the present invention includes ammonium halide, primary amine hydrogen halide salt, secondary amine hydrogen halide salt, tertiary amine halogen as the nitrogen-containing compound.
  • R 1 to R 4 are the same or different and are alkyl groups, X represents a counter anion for a quaternary ammonium cation
  • a characteristic point of the plating solution used is that it is impossible to form a uniform aluminum coating on the surface of the substrate. It lies in the inclusion of intentional 100 ⁇ 2000 ppm water which has been removed as much as possible from the plating solution in order.
  • the reason why the water content of the plating solution is defined as 100 to 2000 ppm is that when the water content is less than 100 ppm, the plating solution has too little moisture to prevent the precipitation of aluminum on the surface of the substrate. This is because the porous aluminum film may not be formed on the surface of the substrate.
  • the water content of the plating solution is desirably 200 to 1900 ppm.
  • the method for adjusting the water content of the plating solution is not particularly limited as long as the water content of the adjusted plating solution is 100 to 2000 ppm, and a predetermined amount of water is added to the prepared plating solution. You may carry out by adding, and you may carry out by preparing a plating solution, after adding a predetermined amount of water previously with respect to the substance used as the component of a plating solution.
  • the substance that is a constituent of the plating solution when the substance that is a constituent of the plating solution contains moisture due to its storage conditions, etc., it may be performed using the moisture, or the substance that is a constituent of the plating solution may be water. In the case of a Japanese product, water molecules held by the substance may be used. Moreover, you may carry out combining these methods.
  • Examples of electroplating conditions include a plating solution temperature of 80 to 110 ° C. and an applied current density of 2 to 15 A / dm 2 .
  • the lower limit of the temperature of the plating solution should be determined in consideration of the melting point of the plating solution, preferably 85 ° C., more preferably 95 ° C. (Because the plating solution is solidified below the melting point of the plating solution, plating is performed. Processing is no longer possible).
  • the temperature of the plating solution exceeds 110 ° C., the reaction between the aluminum coating formed on the surface of the substrate and the plating solution is activated, and the purity is lowered by incorporating a large amount of impurities into the aluminum coating. There is a fear.
  • the applied current density is less than 2 A / dm 2 , the film formation efficiency may be reduced. On the other hand, when it exceeds 15 A / dm 2 , there is a possibility that stable plating treatment cannot be performed due to decomposition of the nitrogen-containing compound or a high-purity aluminum foil with high ductility cannot be obtained.
  • the applied current density is desirably 3 to 12 A / dm 2 .
  • a notable advantage of the plating solution used in the method for producing a porous aluminum foil of the present invention is that a stable plating process is possible even when a current density of 10 A / dm 2 or more is applied, so that the film formation rate is improved. There is in point that can.
  • the plating time depends on the desired thickness of the aluminum foil, the temperature of the plating solution, the applied current density, and the like, but is usually 1 to 90 minutes (1 to 30 minutes is desirable in consideration of production efficiency). ).
  • Examples of the substrate (cathode) for forming the porous aluminum coating include a stainless plate, a titanium plate, an aluminum plate, a nickel plate, and the like.
  • the surface of the base material be as smooth as possible by applying a mirror finish or the like.
  • the porous aluminum coating formed on the substrate has a feature that it can be easily peeled off even if the substrate is not subjected to such processing. The reason for this is not necessarily clear, but when the porous aluminum coating is formed on the surface of the substrate, S and Cl derived from the plating solution are concentrated near the surface of the coating on the side in contact with the substrate. It is assumed that there is.
  • an anode aluminum can be illustrated, for example.
  • the porous aluminum film can be peeled off from the substrate batchwise, and the cathode aluminum drum can be used to continuously form and peel the porous aluminum film (for example, JP-A-6-93490).
  • the porous aluminum coating Prior to peeling off the porous aluminum coating from the substrate, the porous aluminum coating may be dried after washing with water to remove the plating solution adhering to the surface of the substrate on which the porous aluminum coating is formed. desirable.
  • the thickness of the porous aluminum foil is, for example, 3 to 200 ⁇ m is desirable. If the thickness is less than 3 ⁇ m, the foil may not have sufficient strength to be used as a current collector. On the other hand, if the thickness exceeds 200 ⁇ m, the pores may disappear due to further crystal growth of aluminum even if the pores are once generated.
  • the hole of the porous aluminum foil produced by the method of the present invention is different from the hole produced by performing mechanical processing such as punching after producing the foil.
  • the size and shape vary, but the size is generally 1 to 500 ⁇ m, typically 3 to 50 ⁇ m.
  • the size of the hole means the long diameter of the hole penetrating the front and back surfaces of the foil.
  • the porosity is approximately 1 to 70%.
  • the size and porosity of the holes can be changed by adjusting the water content of the plating solution. As the water content of the plating solution increases, the size and porosity of the holes tend to increase.
  • a porous aluminum foil having pores with a size of 50 ⁇ m or less can be produced. The porous aluminum foil having such fine pores can be punched after the foil is produced. Depending on the method of machining, manufacturing is difficult.
  • the positive electrode active material When the positive electrode active material is applied to the surface of the porous aluminum foil having the pore size and porosity as described above, the positive electrode active material enters the inside of the hole, thereby increasing the adhesion between the foil and the positive electrode active material, The positive electrode active material is firmly supported on the surface of the foil. If the size of the holes is less than 1 ⁇ m, the size of the holes may be smaller than the size of the particles of the positive electrode active material, so that the holes may not contribute to improving the adhesion between the foil and the positive electrode active material. On the other hand, if it exceeds 500 ⁇ m, the foil may not have sufficient strength to be used as a current collector.
  • the porosity is less than 1%, the ratio of the holes to the foil is too small, and the holes may not contribute to the improvement of the adhesion between the foil and the positive electrode active material. On the other hand, if it exceeds 70%, the foil may not have sufficient strength to be used as a current collector.
  • the porous aluminum foil obtained as mentioned above.
  • moisture remaining on the surface of the foil causes destabilization of electrochemical behavior when the foil is used as a positive electrode current collector for an electricity storage device, resulting in characteristics of the electricity storage device. Problems such as adverse effects can be avoided.
  • effects such as removal of strain inherent in the foil and improvement of strength against tension may be performed at 80 to 550 ° C. for 2 to 120 minutes in an atmosphere such as an air atmosphere, a reduced pressure atmosphere, or an inert gas atmosphere using argon gas or nitrogen gas.
  • the temperature for the heat treatment is less than 80 ° C., the effect of the heat treatment may not be sufficiently exhibited.
  • the foil may be softened as the aluminum foil approaches the melting point of aluminum (660 ° C.).
  • the heat treatment time is less than 2 minutes, the effect of the heat treatment may not be sufficiently exhibited.
  • the productivity may be adversely affected.
  • the temperature for the heat treatment is preferably 100 to 450 ° C., more preferably 200 to 350 ° C.
  • the heat treatment time is preferably 20 to 90 minutes.
  • electroconductive particles such as a carbonaceous particle
  • the conductive particles dispersed and supported on the foil contribute to a reduction in the surface resistance of the foil.
  • the carbonaceous particles are preferably particles having a carbon content of 90 mass% or more and excellent conductivity, such as furnace black particles, acetylene black particles, carbon black particles, graphite.
  • carbon nanotubes and carbon nanofibers can be exemplified.
  • the size of the carbonaceous particles (meaning the particle size, diameter, fiber diameter, length, etc. depending on the shape, which may mean the size when present in an aggregated state) is preferably 1 nm to 100 ⁇ m, preferably 1 nm More preferably, it is ⁇ 15 ⁇ m, more preferably 3 nm to 5 ⁇ m. If the size of the carbonaceous particles is less than 1 nm, it may be difficult to contribute to the reduction of the surface resistance of the foil. On the other hand, if it exceeds 100 ⁇ m, it may become difficult to uniformly disperse in the foil or the plating solution, and the positive electrode current collector may not be thinned.
  • the size of the carbonaceous particles is desirably 50% or less of the thickness of the foil.
  • the existence form of the carbonaceous particles dispersed and supported on the foil is not particularly limited, but in order for the carbonaceous particles to effectively contribute to the reduction of the surface resistance of the foil, at least some of the carbonaceous particles are It is desirable to be exposed to the outside by protruding from the surface of the foil.
  • the size of the carbonaceous particles may be larger than the thickness of the foil, but in this case, in order for the carbonaceous particles to be firmly supported on the foil, the size is the thickness of the foil. It is desirable that it is 150% or less.
  • the amount of carbonaceous particles dispersed in the plating solution is desirably 1 ⁇ 10 ⁇ 4 to 1 g per 100 mL of the plating solution.
  • the dispersion amount is less than 1 ⁇ 10 ⁇ 4 g per 100 mL of the plating solution, an amount sufficient to contribute to the reduction of the surface resistance of the foil (for example, 0.01 to 3 of the porous aluminum foil in which carbonaceous particles are dispersed and supported) 0.0 mass%) carbonaceous particles may not be dispersedly supported.
  • it exceeds 1 g per 100 mL of plating solution the viscosity of the plating solution becomes too high and electroplating may be difficult.
  • Dispersion of the carbonaceous particles in the plating solution is carried out by sufficiently stirring the plating solution so that the carbonaceous particles are uniformly dispersed in the solution. It is desirable to perform this, and ultrasonic waves may be applied as necessary.
  • the plating solution used in the method for producing a porous aluminum foil of the present invention includes adding a dispersant to the plating solution or performing a surface treatment of the carbonaceous particles in order to increase the dispersibility of the carbonaceous particles in the plating solution. Even if it does not, it has the advantage that the dispersibility of a carbonaceous particle is very favorable.
  • the porous aluminum foil produced by the method of the present invention is a foil having a characteristic crystal orientation that has not been known so far, and the (111) plane is preferentially oriented with respect to the surface of the foil.
  • the ratio of the X-ray diffraction intensity of the (111) plane to the X-ray diffraction intensity of other crystal planes ((200) plane, (220) plane, (311) plane, (222) plane, etc.)) is 2.5 or more. .
  • This characteristic crystal orientation does not substantially change even when heat treatment is performed on the foil.
  • Example 1 (A) Production of porous aluminum foil As a reagent, dimethyl sulfone, aluminum chloride, and trimethylamine hydrochloride were used in the following procedure. The water content of dimethylsulfone was 109 ppm, the water content of aluminum chloride was 40 ppm, and the water content of trimethylamine hydrochloride was 95 ppm (measured using a trace moisture measuring device manufactured by Mitsubishi Chemical Corporation: CA-100. The same applies hereinafter. ). These three kinds of reagents are mixed with dimethylsulfone: aluminum chloride: trimethylamine hydrochloride in a molar ratio of 10: 3: 0.01 under a nitrogen gas stream and dissolved at 110 ° C. to obtain an electroaluminum plating solution.
  • the water content of this plating solution was 200 ppm.
  • an aluminum plate having a purity of 99.99 mass% is used as the anode
  • a titanium plate is used as the cathode (base material for forming the aluminum coating)
  • the plating solution is applied at an applied current density of 5 A / dm 2.
  • the electroplating process was performed for 60 minutes while stirring at a stirring speed of 300 rpm while maintaining the temperature at 95 ° C. After 60 minutes, the titanium plate with the aluminum film formed on the surface is taken out of the plating solution, washed with water and dried, and then tweezers interposed between the aluminum film and the titanium plate are slid along the titanium plate from the end.
  • the aluminum film was easily peeled from the titanium plate and an aluminum foil was obtained.
  • This aluminum foil was heat-treated at 300 ° C. for 60 minutes in an air atmosphere.
  • the resulting aluminum foil had a thickness of about 12 ⁇ m.
  • Scanning electron micrographs of this aluminum foil (surface opposite to the surface facing the titanium plate) and back surface (surface facing the titanium plate) (device: VE-8800 manufactured by Keyence Corporation; the same applies hereinafter) Are shown in FIGS. 1 and 2, respectively.
  • this aluminum foil is a porous foil having a large number of fine pores having a size of 20 ⁇ m or less, and the porosity thereof is about 30%.
  • the porosity of the porous aluminum foil was determined by image analysis of a scanning electron micrograph (magnification: 100 times) of an arbitrary 1 mm square field of the foil (the same applies hereinafter).
  • An X-ray diffraction peak was measured on the front surface of the porous aluminum foil using an X-ray diffractometer (D8 ADVANCE: manufactured by Bruker AXS, ⁇ -2 ⁇ method using CuK ⁇ ray as X-ray, the same applies hereinafter).
  • D8 ADVANCE manufactured by Bruker AXS, ⁇ -2 ⁇ method using CuK ⁇ ray as X-ray, the same applies hereinafter.
  • the results are shown in FIG.
  • the crystal orientation is such that the (111) plane is preferentially oriented with respect to the foil surface, and the (111) plane X-ray diffraction intensity is the (200) plane X-ray diffraction intensity.
  • Ratio (X-ray diffraction intensity of the (111) plane / X-ray diffraction intensity of the (200) plane) is 7.7, which is the same result in the measurement on the back surface of the foil. .
  • the crystal orientation of this porous aluminum foil was completely different from the crystal orientation of the aluminum foil produced by the rolling method (as a reference example, X-ray of a rolled aluminum foil having a thickness of 20 ⁇ m manufactured by Nippon Foil Co., Ltd.). The diffraction peak is shown in FIG.
  • lithium hexafluorophosphate was dissolved in a mixed solvent of 1: 1 volume ratio composed of ethylene carbonate (EC) and dimethyl carbonate (DMC) to a concentration of 1 mol / L. It was immersed in an electrolytic solution (1 mol / L LiPF 6 / EC + DMC (1: 1 by vol.)). After leaving in a vacuum atmosphere for 15 minutes, the electrode was taken out, washed lightly with water, dried with warm air with a dryer, and the adhesion between the foil and the positive electrode active material was evaluated by a tape peel test, showing good adhesion. It was. A scanning electron micrograph of the fracture surface of this electrode is shown in FIG.
  • FIG. 5 the schematic diagram of a torn surface is shown in FIG.
  • the positive electrode active material layer on the surface of the foil is formed so that the positive electrode active material enters inside the holes of the foil, and the adhesion between the foil and the positive electrode active material. It was confirmed that the holes of the foil contributed to the improvement of the thickness.
  • An electricity storage device produced using this electrode and having a configuration known per se exhibited the desired performance.
  • Example 2 An electrode for a power storage device (positive electrode) was produced in the same manner as in Example 1 using the aluminum foil before heat treatment at 300 ° C. for 60 minutes in the air atmosphere in Example 1.
  • the aluminum foil before the heat treatment was a porous foil having the same structural characteristics as the aluminum foil after the heat treatment (however, the (200) plane having the (111) plane X-ray diffraction intensity with respect to the surface of the foil)
  • the ratio of X to the X-ray diffraction intensity was 8.7, which was slightly higher than the ratio after heat treatment.
  • Example 3 (A) Production of porous aluminum foil Each of dimethylsulfone, aluminum chloride, and trimethylamine hydrochloride used in Example 1 was vacuum-dried for 24 hours, and then dimethylsulfone: aluminum chloride: trimethylamine hydrochloride was added in a nitrogen gas stream. The mixture was mixed at a ratio of 10: 3: 0.05 and dissolved at 110 ° C. to prepare an electroaluminum plating solution. The water content of this plating solution was 100 ppm. Using this hydrous plating solution, an aluminum film was formed on the surface of the titanium plate in the same manner as in Example 1 except that the applied current density was 10 A / dm 2, and then the aluminum film was peeled off from the titanium plate. A foil was obtained.
  • This aluminum foil was heat-treated at 300 ° C. for 60 minutes in an air atmosphere.
  • the thickness of the obtained aluminum foil was about 45 ⁇ m.
  • This aluminum foil was a porous foil having a large number of fine pores having a size of 8 ⁇ m or less, and the porosity was about 3%.
  • the crystal orientation of this porous aluminum foil is similar to the crystal orientation of the porous aluminum foil of Example 1, with the (111) plane preferentially oriented with respect to the surface of the foil, and the (111) plane X-ray diffraction intensity.
  • the ratio of the (200) plane to the X-ray diffraction intensity was 5.0.
  • lithium hexafluorophosphate is dissolved in a 1: 1 mixed solvent composed of ethylene carbonate (EC) and dimethyl carbonate (DMC) to a concentration of 1 mol / L (1 mol / L LiPF 6 / EC + DMC (1: 1 by vol.)) was used.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • the positive electrode 21 produced above, the negative electrode 22 made of lithium foil, and the reference electrode 23 made of lithium foil were installed, and a charge / discharge test was conducted.
  • the charge / discharge rate was 0.3C, 1C, 2C, 3C (C represents the charge / discharge rate.
  • 0.3C means that one cycle of charging and discharging is completed in 200 minutes.
  • 1C means 1 hour.
  • FIG. 8 shows the discharge behavior at each charge / discharge rate (the horizontal axis indicates the discharge capacity, and the vertical axis indicates the potential applied to the positive electrode). As is apparent from FIG. 8, the discharge capacity generally decreases when charging / discharging at a high rate, but when the positive electrode produced above is used, the decrease in discharge capacity is relatively small, and the charge / discharge rate is 0.3C.
  • Example 4 Water was intentionally added to the trimethylamine hydrochloride used in Example 1 to make its water content 1900 ppm.
  • the trimethylamine hydrochloride, dimethylsulfone and aluminum chloride used in Example 1 were mixed at a molar ratio of 10: 3: 0.05 in a nitrogen gas stream with dimethylsulfone: aluminum chloride: trimethylamine hydrochloride. , And dissolved at 110 ° C. to prepare an electrolytic aluminum plating solution.
  • the water content of this plating solution was 998 ppm.
  • an aluminum film was formed on the surface of the titanium plate in the same manner as in Example 1, and then the aluminum film was peeled off from the titanium plate to obtain an aluminum foil.
  • This aluminum foil was heat-treated at 300 ° C. for 60 minutes in an air atmosphere.
  • the thickness of the obtained aluminum foil was about 150 ⁇ m.
  • This aluminum foil was a porous foil having a large number of fine pores having a size of 80 ⁇ m or less, and the porosity was about 50%.
  • the crystal orientation of this porous aluminum foil is similar to the crystal orientation of the porous aluminum foil of Example 1, with the (111) plane preferentially oriented with respect to the surface of the foil, and the (111) plane X-ray diffraction intensity.
  • the ratio of the (200) plane to the X-ray diffraction intensity was 2.8.
  • Example 5 Water was intentionally added to the dimethyl sulfone used in Example 1 to make its water content 1000 ppm.
  • This dimethyl sulfone, the aluminum chloride used in Example 1 and trimethylamine hydrochloride were mixed at a ratio of 10: 3: 0.05 in a molar ratio of dimethyl sulfone: aluminum chloride: trimethylamine hydrochloride under a nitrogen gas stream.
  • the water content of this plating solution was 1860 ppm.
  • an aluminum film was formed on the surface of the titanium plate in the same manner as in Example 1 except that the applied current density was 3 A / dm 2. A foil was obtained.
  • This aluminum foil was heat-treated at 300 ° C. for 60 minutes in an air atmosphere.
  • the resulting aluminum foil had a thickness of about 100 ⁇ m.
  • This aluminum foil was a porous foil having a large number of pores having a size of 400 ⁇ m or less, and the porosity was 60 to 70%.
  • the crystal orientation of this porous aluminum foil is similar to the crystal orientation of the porous aluminum foil of Example 1, with the (111) plane preferentially oriented with respect to the surface of the foil, and the (111) plane X-ray diffraction intensity.
  • the ratio of the (200) plane to the X-ray diffraction intensity was characteristic of 3.4.
  • Example 6 Each of dimethylsulfone, aluminum chloride, and trimethylamine hydrochloride used in Example 1 was vacuum-dried for 24 hours, and then in a nitrogen gas stream, dimethylsulfone: aluminum chloride: trimethylamine hydrochloride in a molar ratio of 10: 3: 0. The mixture was mixed at a ratio of 01 and dissolved at 110 ° C. to prepare an electroaluminum plating solution. Water was intentionally added to this plating solution to make its water content 1900 ppm. Using this hydrous plating solution, an aluminum film was formed on the surface of the titanium plate in the same manner as in Example 1 except that the applied current density was 15 A / dm 2, and then the aluminum film was peeled off from the titanium plate. A foil was obtained.
  • This aluminum foil was heat-treated at 300 ° C. for 60 minutes in an air atmosphere.
  • the thickness of the obtained aluminum foil was about 50 ⁇ m.
  • This aluminum foil was a porous foil having many fine pores having a size of 100 ⁇ m or less, and the porosity was 60 to 70%.
  • the crystal orientation of this porous aluminum foil is similar to the crystal orientation of the porous aluminum foil of Example 1, with the (111) plane preferentially oriented with respect to the surface of the foil, and the (111) plane X-ray diffraction intensity.
  • the ratio of the (200) plane to the X-ray diffraction intensity was 3.8.
  • Example 7 A porous aluminum foil was obtained in the same manner as in Example 1 except that ammonium chloride was used instead of trimethylamine hydrochloride.
  • the thickness of the obtained aluminum foil was about 13 ⁇ m.
  • This aluminum foil was a porous foil having many fine pores having a size of 10 ⁇ m or less, and the porosity was about 15%.
  • the crystal orientation of this porous aluminum foil is similar to the crystal orientation of the porous aluminum foil of Example 1, with the (111) plane preferentially oriented with respect to the surface of the foil, and the (111) plane X-ray diffraction intensity.
  • the ratio of the (200) plane to the X-ray diffraction intensity was characteristic 4.2.
  • Example 8 A porous aluminum foil was obtained in the same manner as in Example 1 except that tetramethylammonium chloride was used instead of trimethylamine hydrochloride. The thickness of the obtained aluminum foil was about 9 ⁇ m. This aluminum foil was a porous foil having a large number of fine pores having a size of 20 ⁇ m or less, and the porosity was about 40%. The crystal orientation of this porous aluminum foil is similar to the crystal orientation of the porous aluminum foil of Example 1, with the (111) plane preferentially oriented with respect to the surface of the foil, and the (111) plane X-ray diffraction intensity. The ratio of the (200) plane to the X-ray diffraction intensity was characteristic 2.6.
  • Example 9 Instead of the slurry prepared by mixing lithium manganate: acetylene black: polyvinylidene fluoride at a weight ratio of 8: 1: 1, which was used in the production of the electrode for the electricity storage device (positive electrode) in Example 1.
  • the surface of the foil is obtained by applying a slurry obtained by mixing activated carbon: acetylene black: polyvinylidene fluoride at a weight ratio of 9: 0.5: 0.5 with a doctor blade and then vacuum drying at 80 ° C. for 24 hours.
  • a positive electrode active material layer was formed on the electrode to prepare an electrode for a power storage device (positive electrode) having a total thickness of about 30 ⁇ m.
  • Example 10 A porous aluminum foil was obtained in the same manner as in Example 1 except that dimethylsulfone: aluminum chloride: trimethylamine hydrochloride was mixed at a molar ratio of 10: 4: 0.01. The thickness of the obtained aluminum foil was about 13 ⁇ m.
  • This aluminum foil was a porous foil having many fine pores having a size of 10 ⁇ m or less, and the porosity was about 5%.
  • the crystal orientation of this porous aluminum foil is similar to the crystal orientation of the porous aluminum foil of Example 1, with the (111) plane preferentially oriented with respect to the surface of the foil, and the (111) plane X-ray diffraction intensity.
  • the ratio of the (200) plane to the X-ray diffraction intensity was characteristic of 11.0.
  • Comparative Example 1 Each of dimethylsulfone, aluminum chloride, and trimethylamine hydrochloride used in Example 1 was vacuum-dried for 24 hours, and then in a dry atmosphere with a dew point of ⁇ 100 ° C. or lower, dimethylsulfone: aluminum chloride: trimethylamine hydrochloride at a molar ratio of 10: 3: Mixed at a ratio of 0.01 and dissolved at 110 ° C. to prepare an electroaluminum plating solution. The water content of this plating solution was 70 ppm. Using this plating solution, an aluminum film was formed on the surface of the titanium plate in the same manner as in Example 1, and then the aluminum film was peeled off from the titanium plate to obtain an aluminum foil.
  • This aluminum foil was heat-treated at 300 ° C. for 60 minutes in an air atmosphere.
  • the resulting aluminum foil had a thickness of about 12 ⁇ m. Since this aluminum foil was uniform with no pores confirmed by image analysis of scanning electron micrographs (the porosity was 0%), it was plated when a plating solution with a water content of 70 ppm was used. It was found that the porous aluminum foil could not be obtained because the water content of the liquid was too small.
  • Comparative Example 2 A porous aluminum foil was obtained in the same manner as in Example 6 except that water was intentionally added to the plating solution and the water content was 2500 ppm. At the time of forming the aluminum coating on the surface of the titanium plate, Since the coating partially darkened or streaky coating unevenness occurred, when a plating solution with a water content of 2500 ppm was used, the water content of the plating solution was too high to obtain a porous aluminum foil. I found it impossible.
  • Comparative Example 3 In the same manner as in Example 1 (B), a positive electrode active material layer was formed on the surface of a commercially available rolled aluminum foil (manufactured by Nippon Foil Co., Ltd.) having a thickness of 15 ⁇ m, and the total thickness was about 40 ⁇ m. (Positive electrode) was produced. When the adhesion between the foil of the electrode and the positive electrode active material was evaluated in the same manner as in Example 1 (B), the positive electrode active material layer was peeled off from the foil in the form of a sheet in the drying stage of the electrode before performing the tape peeling test. I have.
  • Example 3 (B) an electrode for a power storage device (positive electrode) was prepared using this rolled aluminum foil as a positive electrode current collector for a power storage device, and charged using an experimental apparatus shown in FIG. A discharge test was conducted. The results are shown in FIG. As is clear from FIG. 9, when this positive electrode is used, the discharge capacity is remarkably reduced. The discharge capacity when the charge / discharge rate is 0.3 C is 144 Ah / kg, whereas the charge / discharge rate is 3 C. The discharge capacity at that time was 90 Ah / kg, and the decrease in the discharge capacity was 38%.
  • the present invention relates to a novel method for producing a porous aluminum foil, a porous aluminum foil produced by the production method, and a positive electrode collector for an electricity storage device comprising the porous aluminum foil, which can be used as a positive electrode current collector for an electricity storage device.
  • Industrial applicability in that an electrical storage device, an electrical storage device electrode using the positive current collector for the electrical storage device, and an electrical storage device configured using the electrical storage device electrode can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Electroplating And Plating Baths Therefor (AREA)

Abstract

 本発明の多孔アルミニウム箔の製造方法は、(1)ジアルキルスルホン、(2)アルミニウムハロゲン化物、および、(3)含窒素化合物を少なくとも含み、かつ、含水量が100~2000ppmであるめっき液を用いた電解法によって多孔アルミニウム被膜を基材の表面に形成した後、当該被膜を基材から剥離することを特徴とする。前記含窒素化合物としては、ハロゲン化アンモニウム、第一アミンのハロゲン化水素塩、第二アミンのハロゲン化水素塩、第三アミンのハロゲン化水素塩、一般式:RN・X(R~Rは同一または異なってアルキル基、Xは第四アンモニウムカチオンに対するカウンターアニオンを示す)で表される第四アンモニウム塩からなる群から選択される少なくとも1つが望ましい。

Description

多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス
 本発明は、リチウムイオン二次電池やスーパーキャパシター(電気二重層キャパシター、レドックスキャパシター、リチウムイオンキャパシターなど)といった蓄電デバイスの正極集電体などとして用いることができる、多孔アルミニウム箔の製造方法、その製造方法で製造されてなる多孔アルミニウム箔、その多孔アルミニウム箔からなる蓄電デバイス用正極集電体、その蓄電デバイス用正極集電体を用いた蓄電デバイス用電極、および、その蓄電デバイス用電極を用いて構成されてなる蓄電デバイスに関する。
 携帯電話やノートパソコンなどのモバイルツールの電源に、大きなエネルギー密度を持ち、かつ、放電容量の著しい減少が無いリチウムイオン二次電池が用いられていることは周知の事実であるが、近年、モバイルツールの小型化に伴い、そこに装着されるリチウムイオン二次電池にも小型化の要請がなされている。また、地球温暖化防止対策などの観点からのハイブリッド自動車や太陽光発電などの技術の進展に伴い、電気二重層キャパシター、レドックスキャパシター、リチウムイオンキャパシターなどの大きなエネルギー密度を持つスーパーキャパシターの新しい用途展開が加速しつつあり、これらのさらなる高エネルギー密度化が要求されている。
 リチウムイオン二次電池やスーパーキャパシターといった蓄電デバイスは、例えば、電解質としてLiPFやNR・BF(Rはアルキル基)などの含フッ素化合物を含んだ有機電解液中に、正極と負極がポリオレフィンなどからなるセパレータを介して配された構造を持つ。正極はLiCoO(コバルト酸リチウム)や活性炭などの正極活物質と正極集電体からなるとともに、負極はグラファイトや活性炭などの負極活物質と負極集電体からなり、それぞれの形状は集電体の表面に活物質を塗布してシート状に成型したものが一般的である。各電極とも、大きな電圧がかかることに加え、腐食性が高い含フッ素化合物を含んだ有機電解液に浸漬されることから、特に、正極集電体の材料は、電気伝導性に優れるとともに、耐腐食性に優れることが求められる。このような事情から、現在、正極集電体の材料としては、ほぼ100%に、電気良導体であり、かつ、表面に不働態膜を形成することで優れた耐腐食性を有するアルミニウムが採用されている。なお、負極集電体の材料としては銅やニッケルなどが挙げられる。
 蓄電デバイスの製造において、集電体の表面への活物質の塗布は、高い密着性でもって行う必要があり、また、蓄電デバイスの高エネルギー密度化のためには、可能な限り厚く行うことが望ましい。集電体と活物質の密着性が不十分であると、充放電の際に活物質が自身の体積膨張などによって集電体から剥離するといった問題があるからである。このような問題は、活物質の塗布を厚くすればするほど発生しやすくなる。とりわけ、近年、LiCoOに代わる新たな正極活物質として注目されているLiMn(マンガン酸リチウム)やLiFePO(リン酸鉄リチウム)などは、通常、LiCoOよりも粒子径が小さいため、正極集電体として用いるアルミニウム箔に何らの表面処理や表面加工も行わなかった場合、その表面に高い密着性でもって塗布することが困難である。
 そこでアルミニウム箔と正極活物質の密着性を高める方法として、アルミニウム箔の表面をエッチングなどの化学処理によって粗面化する方法が特許文献1において提案されている。また、その他のアルミニウム箔と正極活物質の密着性を高める方法として、アルミニウム箔にパンチングなどの機械加工を施すことによって箔を多孔化する方法が提案されている。
特開2001-189238号公報
 しかしながら、特許文献1において提案されているアルミニウム箔の表面をエッチングなどの化学処理によって粗面化する方法には、箔を作製した後に粗面化のための工程を設けなければならないといった問題、箔の厚みの均一性を確保することが困難であるといった問題、エッチングによって箔が痩せ細ることで強度の低下を招くといった問題がある。また、アルミニウム箔にパンチングなどの機械加工を施すことによって箔を多孔化する方法には、箔を作製した後に多孔化のための工程を設けなければならないといった問題、機械加工によって箔が破壊されたり孔の縁部に電極の短絡の要因となるバリと呼ばれる突起が発生するといった問題、微細な孔を生成させることが困難であるといった問題がある。
 そこで本発明は、蓄電デバイスの正極集電体などとして用いることができる、多孔アルミニウム箔の新規な製造方法、その製造方法で製造されてなる多孔アルミニウム箔、その多孔アルミニウム箔からなる蓄電デバイス用正極集電体、その蓄電デバイス用正極集電体を用いた蓄電デバイス用電極、および、その蓄電デバイス用電極を用いて構成されてなる蓄電デバイスを提供することを目的とする。
 ところで、本発明者は、これまでアルミニウムの電気めっき技術について精力的に研究を行ってきている。アルミニウムの電析電位は水素発生の電位よりも卑であるため、水溶液からアルミニウムを電析することは不可能である。従って、電気アルミニウムめっき液は、非水系のもの(溶媒として水を用いないもの)であって、めっき液中に含まれる水分はアルミニウムの析出を阻害する要因となり、均一なアルミニウム被膜を基材の表面に形成することができなくなることから極力排除されるべきものとして取り扱われている。本発明者は、めっき液中に含まれる水分が均一なアルミニウム被膜の形成に及ぼす悪影響を巧みに利用すれば、基材の表面へのアルミニウムの析出を部分的に阻害することで多孔アルミニウム被膜を基材の表面に形成できるのではないか、そして当該被膜を基材から剥離することで多孔アルミニウム箔が得られるのではないかと考え、鋭意検討を重ねた結果、めっき液中に含まれる水分を適量に制御することで、目的を達成することができることを見出した。
 上記の知見に基づいてなされた本発明の多孔アルミニウム箔の製造方法は、請求項1記載の通り、(1)ジアルキルスルホン、(2)アルミニウムハロゲン化物、および、(3)含窒素化合物を少なくとも含み、かつ、含水量が100~2000ppmであるめっき液を用いた電解法によって多孔アルミニウム被膜を基材の表面に形成した後、当該被膜を基材から剥離することを特徴とする。
 また、請求項2記載の製造方法は、請求項1記載の製造方法において、含窒素化合物が、ハロゲン化アンモニウム、第一アミンのハロゲン化水素塩、第二アミンのハロゲン化水素塩、第三アミンのハロゲン化水素塩、一般式:RN・X(R~Rは同一または異なってアルキル基、Xは第四アンモニウムカチオンに対するカウンターアニオンを示す)で表される第四アンモニウム塩からなる群から選択される少なくとも1つであることを特徴とする。
 また、請求項3記載の製造方法は、請求項1記載の製造方法において、得られた多孔アルミニウム箔に対して熱処理を行うことを特徴とする。
 また、請求項4記載の製造方法は、請求項3記載の製造方法において、熱処理を80~550℃で行うことを特徴とする。
 また、請求項5記載の製造方法は、請求項1記載の製造方法において、ジアルキルスルホンがジメチルスルホンであることを特徴とする。
 また、本発明の多孔アルミニウム箔は、請求項6記載の通り、箔の表面に対して(111)面のX線回折強度のその他の結晶面のX線回折強度に対する比率が2.5以上である結晶配向性を有し、空孔率が1~70%であることを特徴とする。
 また、本発明の多孔アルミニウム箔は、請求項7記載の通り、請求項1記載の製造方法で製造されてなることを特徴とする。
 また、本発明の蓄電デバイス用正極集電体は、請求項8記載の通り、請求項6または7記載の多孔アルミニウム箔からなることを特徴とする。
 また、本発明の蓄電デバイス用電極は、請求項9記載の通り、請求項6または7記載の多孔アルミニウム箔に電極活物質を担持させてなることを特徴とする。
 また、本発明の蓄電デバイスは、請求項10記載の通り、請求項9記載の蓄電デバイス用電極を用いて構成されてなることを特徴とする。
 本発明の多孔アルミニウム箔の製造方法によれば、箔を作製した後に多孔化を行うといった工程を経ることなく、少ない工程で、蓄電デバイスの正極集電体などとして用いることができる、多孔アルミニウム箔を製造することができる。また、機械加工によっては生成させることが困難な微細な孔を有する多孔アルミニウム箔を製造することができる。さらに、本発明によれば、本発明の製造方法で製造されてなる多孔アルミニウム箔、その多孔アルミニウム箔からなる蓄電デバイス用正極集電体、その蓄電デバイス用正極集電体を用いた蓄電デバイス用電極、および、その蓄電デバイス用電極を用いて構成されてなる蓄電デバイスが提供される。
実施例1において製造した多孔アルミニウム箔のオモテ面(基材に対向する面と反対側の面)の走査型電子顕微鏡写真である。 同、多孔アルミニウム箔のウラ面(基材に対向する面)の走査型電子顕微鏡写真である。 同、多孔アルミニウム箔の結晶配向性を示すX線回折チャートである。 圧延法によって製造されたアルミニウム箔の結晶配向性を示すX線回折チャートである(参考例)。 実施例1において製造した多孔アルミニウム箔を用いて作製した蓄電デバイス用電極(正極)の破断面の走査型電子顕微鏡写真である。 同、破断面の模式図である。 実施例3と比較例3において充放電試験による蓄電デバイス用電極(正極)の評価を行うための実験装置の模式図である。 実施例3における充放電試験の結果を示すグラフである(多孔アルミニウム箔を用いた場合)。 比較例3における充放電試験の結果を示すグラフである(圧延アルミニウム箔を用いた場合)。
 本発明の多孔アルミニウム箔の製造方法は、(1)ジアルキルスルホン、(2)アルミニウムハロゲン化物、および、(3)含窒素化合物を少なくとも含み、かつ、含水量が100~2000ppmであるめっき液を用いた電解法によって多孔アルミニウム被膜を基材の表面に形成した後、当該被膜を基材から剥離することを特徴とするものである。
 本発明の多孔アルミニウム箔の製造方法において用いるめっき液に含ませるジアルキルスルホンとしては、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、ジヘキシルスルホン、メチルエチルスルホンなどのアルキル基の炭素数が1~6のもの(直鎖状でも分岐状でもよい)を例示することができるが、良好な電気伝導性や入手の容易性などの観点からはジメチルスルホンを好適に採用することができる。
 電解法によってアルミニウム被膜を基材の表面に形成するためのアルミニウム源となる溶質としてのアルミニウムハロゲン化物としては、塩化アルミニウムや臭化アルミニウムなどを例示することができる。一般的には、アルミニウムの析出を阻害する要因となるめっき液に含まれる水分の量を可能な限り少なくするという観点から、用いるアルミニウムハロゲン化物は無水物であることが望ましいが、本発明においては水和物を用いることで、当該物質が保持する水分子をめっき液に含まれる水分として利用してもよい。
 含窒素化合物は、1つの分子中に1つ以上の窒素原子を有する化合物を意味する。好適に採用することができる含窒素化合物としては、電解法によって基材の表面に形成したアルミニウム被膜に基材の表面からの剥離を容易にする延性を付与する、ハロゲン化アンモニウム、第一アミンのハロゲン化水素塩、第二アミンのハロゲン化水素塩、第三アミンのハロゲン化水素塩、一般式:RN・X(R~Rは同一または異なってアルキル基、Xは第四アンモニウムカチオンに対するカウンターアニオンを示す)で表される第四アンモニウム塩などが挙げられる。これらの含窒素化合物は単独で用いてもよいし、複数を混合して用いてもよい。
 ハロゲン化アンモニウムとしては、塩化アンモニウムや臭化アンモニウムなどを例示することができる。また、第一アミン~第三アミンとしては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、プロピルアミン、ジプロピルアミン、トリプロピルアミン、ヘキシルアミン、メチルエチルアミンなどのアルキル基の炭素数が1~6のもの(直鎖状でも分岐状でもよい)を例示することができる。ハロゲン化水素としては、塩化水素や臭化水素などを例示することができる。一般式:RN・X(R~Rは同一または異なってアルキル基、Xは第四アンモニウムカチオンに対するカウンターアニオンを示す)で表される第四アンモニウム塩におけるR~Rで示されるアルキル基としては、メチル基、エチル基、プロピル基、ヘキシル基などの炭素数が1~6のもの(直鎖状でも分岐状でもよい)を例示することができる。Xとしては塩素イオンや臭素イオンやヨウ素イオンなどのハロゲン化物イオンの他、BF やPF などを例示することができる。具体的な化合物としては、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、ヨウ化テトラメチルアンモニウム、四フッ化ホウ素テトラエチルアンモニウムなどを例示することができる。特に好適な含窒素化合物としては、速い成膜速度で延性に富む高純度のアルミニウム被膜の形成を容易にする点において第三アミンの塩酸塩、例えばトリメチルアミン塩酸塩を挙げることができる。
 ジアルキルスルホン、アルミニウムハロゲン化物、含窒素化合物の配合割合は、例えば、ジアルキルスルホン10モルに対し、アルミニウムハロゲン化物は1.5~4.0モルが望ましく、2.0~3.5モルがより望ましい。含窒素化合物は0.01~2.0モルが望ましく、0.05~1.5モルがより望ましい。アルミニウムハロゲン化物の配合量がジアルキルスルホン10モルに対し1.5モル未満であると形成されるアルミニウム被膜が黒ずんでしまう現象(焼けと呼ばれる現象)が発生する恐れや成膜効率が低下する恐れがある。一方、4.0モルを超えるとめっき液の液抵抗が高くなりすぎることでめっき液が発熱して分解する恐れがある。また、含窒素化合物の配合量がジアルキルスルホン10モルに対し0.01モル未満であると配合することの効果、即ち、めっき液の電気伝導性の改善に基づく高電流密度印加でのめっき処理の実現による成膜速度の向上、アルミニウム被膜の高純度化や延性の向上などの効果が得られにくくなる恐れがある。一方、2.0モルを超えるとめっき液の組成が本質的に変わってしまうことでアルミニウムが析出しなくなってしまう恐れがある。
 本発明の多孔アルミニウム箔の製造方法において用いるめっき液の上記の組成は、含窒素化合物としてハロゲン化アンモニウム、第一アミンのハロゲン化水素塩、第二アミンのハロゲン化水素塩、第三アミンのハロゲン化水素塩、一般式:RN・X(R~Rは同一または異なってアルキル基、Xは第四アンモニウムカチオンに対するカウンターアニオンを示す)で表される第四アンモニウム塩などを採用する場合、本発明者が国際公開第2011/001932号において提案した、アルミニウム箔の製造に適しためっき液の組成に従うものであるが、本発明の多孔アルミニウム箔の製造方法において用いるめっき液の特徴的な点は、これまで均一なアルミニウム被膜を基材の表面に形成することができなくなるためにめっき液から極力排除されてきた水分を意図的に100~2000ppm含ませる点にある。めっき液の含水量を100~2000ppmと規定するのは、含水量が100ppm未満であるとめっき液中に含まれる水分が少なすぎて基材の表面へのアルミニウムの析出が阻害されにくくなることで多孔アルミニウム被膜が基材の表面に形成されない恐れがあるからである。一方、2000ppmを超えるとめっき液中に含まれる水分が多すぎて形成されるアルミニウム被膜が不純物を多量に含んでしまう現象や、被膜が黒ずんでしまう現象(焼けと呼ばれる現象)などが発生する恐れがあるからである。めっき液の含水量は200~1900ppmが望ましい。なお、めっき液の含水量の調整方法は、調整後のめっき液の含水量が100~2000ppmになる方法であれば特段限定されるものではなく、調製しためっき液に対して所定量の水を添加することによって行ってもよいし、めっき液の構成成分となる物質に対して所定量の水を予め添加した後にめっき液を調製することによって行ってもよい。また、めっき液の構成成分となる物質がその保存条件などに起因して水分を含んでいる場合には、その水分を利用して行ってもよいし、めっき液の構成成分となる物質が水和物である場合には、当該物質が保持する水分子を利用して行ってもよい。また、これらの方法を組み合わせて行ってもよい。
 電気めっき条件としては、例えば、めっき液の温度が80~110℃、印加電流密度が2~15A/dmを挙げることができる。めっき液の温度の下限はめっき液の融点を考慮して決定されるべきものであり、望ましくは85℃、より望ましくは95℃である(めっき液の融点を下回るとめっき液が固化するのでめっき処理がもはや行えなくなる)。一方、めっき液の温度が110℃を超えると基材の表面に形成されたアルミニウム被膜とめっき液の間での反応が活発化し、アルミニウム被膜中に不純物が多く取り込まれることでその純度が低下する恐れがある。また、印加電流密度が2A/dm未満であると成膜効率が低下する恐れがある。一方、15A/dmを超えると含窒素化合物の分解などが原因で安定なめっき処理が行えなくなったり延性に富む高純度のアルミニウム箔が得られなくなったりする恐れがある。印加電流密度は3~12A/dmが望ましい。本発明の多孔アルミニウム箔の製造方法において用いるめっき液の特筆すべき利点は、10A/dm以上の電流密度を印加しても安定なめっき処理が可能なため、成膜速度の向上を図ることができる点にある。なお、めっき処理の時間は、アルミニウム箔の所望する厚み、めっき液の温度や印加電流密度などにも依存するが、通常、1~90分間である(生産効率を考慮すると1~30分間が望ましい)。
 多孔アルミニウム被膜を形成するための基材(陰極)としては、ステンレス板、チタン板、アルミニウム板、ニッケル板などを例示することができる。通常、基材からのアルミニウム被膜の剥離を容易ならしめるためには、基材の表面は鏡面加工などが施されることによって可能な限り平滑であることが望ましいが、本発明において基材の表面に形成された多孔アルミニウム被膜は、基材に対してこのような加工を施さなくても剥離が容易であるという特徴を有する。その理由は必ずしも明らかではないが基材の表面に多孔アルミニウム被膜が形成される際に基材に接する側の被膜の表面付近にめっき液に由来するSとClが濃化することが関係しているものと推察される。なお、陽極の材質としては、例えばアルミニウムを例示することができる。基材からの多孔アルミニウム被膜の剥離はバッチ的に行うことができる他、陰極ドラムを用いて多孔アルミニウム被膜の形成と剥離を連続的に行うこともできる(例えば特開平6-93490号公報)。なお、多孔アルミニウム被膜を基材から剥離するに先立って、表面に多孔アルミニウム被膜が形成された基材の表面に付着しているめっき液を除去するための水洗を行った後、乾燥することが望ましい。
 本発明の方法によって製造される多孔アルミニウム箔を蓄電デバイス用正極集電体として用いることを想定した場合、多孔アルミニウム箔の厚み(基材の表面に形成する多孔アルミニウム被膜の膜厚)は、例えば3~200μmが望ましい。厚みが3μm未満であると集電体として使用できるに足る十分な強度を箔が有さない恐れがある。一方、200μmを超えるといったん孔を生成させてもアルミニウムのさらなる結晶成長によって孔が消失する方向に進む恐れがある。本発明の方法によって製造される多孔アルミニウム箔が有する孔は、箔を作製した後にパンチングなどの機械加工を施すことによって生成される孔とは異なり、基材の表面へのアルミニウム被膜の形成過程において生成されるものであるため、大きさや形状は様々であるが、大きさは概ね1~500μmであり、典型的には3~50μmである。ここで孔の大きさとは、箔の表面と裏面を貫通する空孔の長径を意味するものとする。また、空孔率は概ね1~70%である。孔の大きさや空孔率は、めっき液の含水量を調整することで変化させることができる。めっき液の含水量が多くなるほど孔の大きさや空孔率は大きくなる傾向にある。本発明の方法によれば、例えば大きさが50μm以下の孔を有する多孔アルミニウム箔を製造することができるが、このような微細な孔を有する多孔アルミニウム箔は、箔を作製した後にパンチングなどの機械加工を施す方法によっては製造が困難なものである。
 上記のような孔の大きさや空孔率を有する多孔アルミニウム箔の表面に正極活物質を塗布すると、孔の内部に正極活物質が入り込むことで、箔と正極活物質との密着性が高まり、正極活物質は箔の表面に強固に担持される。孔の大きさが1μm未満であると孔の大きさが正極活物質の粒子の大きさよりも小さくなってしまうことで孔が箔と正極活物質との密着性の向上に寄与しない恐れがある。一方、500μmを超えると集電体として使用できるに足る十分な強度を箔が有さない恐れがある。空孔率が1%未満であると箔に対する孔の割合が小さすぎることで孔が箔と正極活物質との密着性の向上に寄与しない恐れがある。一方、70%を超えると集電体として使用できるに足る十分な強度を箔が有さない恐れがある。
 なお、上記のようにして得た多孔アルミニウム箔に対して熱処理を行ってもよい。多孔アルミニウム箔に対して熱処理を行うことで、箔の表面に残存する水分が箔を蓄電デバイス用正極集電体として使用した場合に電気化学的挙動の不安定化を引き起こして蓄電デバイスの特性に悪影響を及ぼすといった問題を回避することができる。また、箔に内在する歪みの除去、張力に対する強度の向上といった効果を期待することができる。アルミニウム箔に対する熱処理は、例えば、大気雰囲気下、減圧雰囲気下、アルゴンガスや窒素ガスを利用した不活性ガス雰囲気下などの雰囲気下で、80~550℃で2~120分間行えばよい。熱処理を行う温度が80℃未満であると熱処理を行う効果が十分に発揮されない恐れがある。一方、550℃を超えるとアルミニウム箔がアルミニウムの融点(660℃)に近づくことで箔の軟化が起こる恐れがある。また、熱処理を行う時間が2分間未満であると熱処理を行う効果が十分に発揮されない恐れがある。一方、120分間を超えると生産性に悪影響を及ぼす恐れがある。以上の点に鑑みれば、熱処理を行う温度は100~450℃が望ましく、200~350℃がより望ましい。熱処理を行う時間は20~90分間が望ましい。
 また、本発明の多孔アルミニウム箔の製造方法において用いるめっき液には、その他の成分として炭素性粒子などの導電性粒子を添加してもよい。めっき液に導電性粒子を添加することによって多孔アルミニウム箔に導電性粒子を分散担持させれば、箔に分散担持された導電性粒子は箔の表面抵抗の低減に寄与する。導電性粒子として炭素性粒子をめっき液に添加する場合、炭素性粒子としては、炭素含量が90mass%以上の導電性に優れた粒子が望ましく、ファーネスブラック粒子、アセチレンブラック粒子、カーボンブラック粒子、黒鉛粒子、グラファイト粒子の他、カーボンナノチューブやカーボンナノファイバーなどを例示することができる。炭素性粒子の大きさ(形状によって粒径や直径や繊維径や長さなどを意味し、凝集して存在する場合にはその大きさを意味してもよい)は1nm~100μmが望ましく、1nm~15μmがより望ましく、3nm~5μmがさらに望ましい。炭素性粒子の大きさが1nm未満であると箔の表面抵抗の低減に寄与しにくくなる恐れがある。一方、100μmを超えると箔中やめっき液中への均一分散が困難になる恐れに加え、正極集電体の薄膜化を図ることができなくなる恐れがある。炭素性粒子を分散担持した多孔アルミニウム箔が高い強度を有するためには、炭素性粒子の大きさは箔の厚みの50%以下であることが望ましい。箔に分散担持された炭素性粒子の存在形態は特段制限されるものではないが、炭素性粒子が箔の表面抵抗の低減に効果的に寄与するためには、少なくとも一部の炭素性粒子は箔の表面から突出するなどして外部に対して露出していることが望ましい。この点に鑑みれば、炭素性粒子の大きさは箔の厚みよりも大きくてもかまわないが、この場合、炭素性粒子が箔に強固に担持されるためにはその大きさは箔の厚みの150%以下であることが望ましい。めっき液中の炭素性粒子の分散量は、めっき液100mLあたり1×10-4~1gが望ましい。分散量がめっき液100mLあたり1×10-4g未満であると箔の表面抵抗の低減に寄与するに足る十分量(例えば炭素性粒子が分散担持されてなる多孔アルミニウム箔の0.01~3.0mass%)の炭素性粒子を分散担持させることができなくなる恐れがある。一方、めっき液100mLあたり1gを超えるとめっき液の粘度が高くなりすぎて電気めっきが困難になる恐れがある。めっき液中への炭素性粒子の分散は、炭素性粒子が液中に均一に分散されることで、炭素性粒子が箔に均一に分散担持されるように、めっき液を十分に攪拌して行うことが望ましく、必要に応じて超音波を与えてもよい。なお、本発明の多孔アルミニウム箔の製造方法において用いるめっき液は、めっき液中での炭素性粒子の分散性を高めるために、めっき液に分散剤を添加したり炭素性粒子の表面処理を行ったりしなくても、炭素性粒子の分散性が極めて良好であるという利点を有する。
 本発明の方法によって製造される多孔アルミニウム箔は、これまでに知られていない特徴的な結晶配向性を有する箔であり、箔の表面に対して(111)面が優先配向している。(111)面のX線回折強度のその他の結晶面((200)面、(220)面、(311)面、(222)面など)のX線回折強度に対する比率は2.5以上である。この特徴的な結晶配向性は、箔に対して熱処理を行っても実質的に変化しない。
 以下、本発明を実施例によって詳細に説明するが、本発明は以下の記載に限定して解釈されるものではない。
実施例1:
(A)多孔アルミニウム箔の製造
 試薬として、ジメチルスルホン、塩化アルミニウム、トリメチルアミン塩酸塩を用いて以下の手順で行った。なお、ジメチルスルホンの含水量は109ppm、塩化アルミニウムの含水量は40ppm、トリメチルアミン塩酸塩の含水量は95ppmであった(三菱化学社製の微量水分測定装置:CA-100を用いて測定。以下同じ)。この3種類の試薬を、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.01の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は200ppmであった。この含水めっき液を用いて、陽極に純度99.99mass%のアルミニウム板、陰極(アルミニウム被膜を形成するための基材)にチタン板を用い、5A/dmの印加電流密度で、めっき液を95℃に保って300rpmの攪拌速度で攪拌しながら電気めっき処理を60分間行った。60分後、表面にアルミニウム被膜が形成されたチタン板をめっき液から取り出し、水洗を行ってから乾燥した後、その端部からアルミニウム被膜とチタン板の間に介入させたピンセットをチタン板に沿って滑らせるように移動させると、アルミニウム被膜はチタン板から容易に剥離し、アルミニウム箔が得られた。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約12μmであった。このアルミニウム箔のオモテ面(チタン板に対向する面と反対側の面)とウラ面(チタン板に対向する面)の走査型電子顕微鏡写真(装置:キーエンス社製のVE-8800。以下同じ)をそれぞれ図1と図2に示す。図1と図2から明らかなように、このアルミニウム箔は、大きさが20μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約30%であった。なお、多孔アルミニウム箔の空孔率は、箔の任意の1mm四方視野の走査型電子顕微鏡写真(倍率:100倍)の画像解析より求めた(以下同じ)。この多孔アルミニウム箔のオモテ面に対し、X線回折装置(D8 ADVANCE:ブルカーAXS社製、X線としてCuKα線を使用したθ-2θ法による、以下同じ)を用いてX線回折ピークを測定した結果を図3に示す。図3から明らかなように、その結晶配向性は、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率((111)面のX線回折強度/(200)面のX線回折強度)は7.7という特徴的なものであって、箔のウラ面に対する測定においても同様の結果であった。この多孔アルミニウム箔の結晶配向性は、圧延法によって製造されたアルミニウム箔の結晶配向性とは全く異なるものであった(参考例として日本製箔社製の厚みが20μmの圧延アルミニウム箔のX線回折ピークを図4に示す)。
(B)蓄電デバイス用電極(正極)の作製とその評価
 上記の多孔アルミニウム箔を蓄電デバイス用正極集電体として用い、その表面に、マンガン酸リチウム:アセチレンブラック:ポリフッ化ビニリデンを重量比で8:1:1の割合で混合して調製したスラリーをドクターブレードで塗布した後、80℃で24時間真空乾燥することで、箔の表面に正極活物質層を形成して全体の厚みが約40μmの蓄電デバイス用電極(正極)を作製した。この電極にクロスカットを入れた後、6フッ化リン酸リチウムをエチレンカーボネート(EC)とジメチルカーボネート(DMC)からなる体積比1:1の混合溶媒に溶解して濃度を1mol/Lとした有機電解液(1mol/L LiPF/EC+DMC(1:1 by vol.))に浸漬した。真空雰囲気下で15分間放置した後、電極を取り出し、軽く水洗した後、ドライヤーで温風乾燥してから箔と正極活物質の密着性をテープ剥離試験で評価したところ、良好な密着性を示した。この電極の破断面の走査型電子顕微鏡写真を図5に示す。また、破断面の模式図を図6に示す。図5と図6から明らかなように、箔の表面の正極活物質層は、箔が有する孔の内部に正極活物質が入り込むようにして形成されており、箔と正極活物質との密着性の向上に箔が有する孔が寄与していることを確認できた。この電極を用いて作製した自体公知の構成を有する蓄電デバイスは所望する性能を発揮した。
実施例2:
 実施例1における大気雰囲気下での300℃で60分間の熱処理を行う前のアルミニウム箔を用い、実施例1と同様にして蓄電デバイス用電極(正極)を作製した。なお、この熱処理前のアルミニウム箔は、熱処理後のアルミニウム箔と同様の構造的特徴を有する多孔箔であった(但し箔の表面に対して(111)面のX線回折強度の(200)面のX線回折強度に対する比率は8.7であって熱処理後の比率よりもわずかに高かった)。
実施例3:
(A)多孔アルミニウム箔の製造
 実施例1で用いたジメチルスルホン、塩化アルミニウム、トリメチルアミン塩酸塩のそれぞれを24時間真空乾燥した後、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.05の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は100ppmであった。この含水めっき液を用いて、印加電流密度を10A/dmとすること以外は実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約45μmであった。このアルミニウム箔は、大きさが8μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約3%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は5.0という特徴的なものであった。
(B)蓄電デバイス用電極(正極)の作製とその評価
 上記の多孔アルミニウム箔を蓄電デバイス用正極集電体として用い、その表面に、リン酸鉄リチウム:アセチレンブラック:ポリフッ化ビニリデンを重量比で9:0.5:0.5の割合で混合して調製したスラリーをドクターブレードで塗布した後、80℃で24時間真空乾燥することで、箔の表面に正極活物質層を形成して全体の厚みが約70μmの蓄電デバイス用電極(正極)を作製し、図7に示す実験装置を用いてその評価を次のようにして行った。実験装置20の容器24の中に有機電解液25を入れた。有機電解液25としては6フッ化リン酸リチウムをエチレンカーボネート(EC)とジメチルカーボネート(DMC)からなる体積比1:1の混合溶媒に溶解して濃度を1mol/Lとしたもの(1mol/L LiPF/EC+DMC(1:1 by vol.))を用いた。この有機電解液25の中に、上記で作製した正極21、リチウム箔からなる負極22、リチウム箔からなる参照極23を設置し、充放電試験を行った。充放電レートは0.3C、1C、2C、3Cとした(Cは充放電速度を表す。0.3Cとは200分間で充電と放電が1サイクル完了することを意味する。1Cとは1時間で充電と放電が1サイクル完了することを意味する。2Cは30分間で充電と放電が1サイクル完了することを意味する。3Cとは20分間で充電と放電が1サイクル完了することを意味する)。それぞれの充放電レートにおける放電挙動を図8に示す(横軸が放電容量を示し、縦軸が正極に印加される電位を示す)。図8から明らかなように、一般的に高いレートで充放電すると放電容量が低下するが、上記で作製した正極を用いると放電容量の低下が比較的少なく、充放電レートが0.3Cの時の放電容量が148Ah/kgであるのに対し、充放電レートが3Cの時の放電容量は117Ah/kgであり、放電容量の低下は25%以下に抑制された。これは、活物質と集電体との密着性が良好であるため、活物質と集電体の間での電子のやり取りがスムーズに行われ、その結果、電極内部でのエネルギーロスが低減されたことによるものである。以上の結果から、本発明の多孔アルミニウム箔を蓄電デバイス用正極集電体として用いることで、エネルギーロスの小さい蓄電デバイスを作製できることがわかった。
実施例4:
 実施例1で用いたトリメチルアミン塩酸塩に意図的に水を添加してその含水量を1900ppmとした。このトリメチルアミン塩酸塩と、実施例1で用いたジメチルスルホンと塩化アルミニウムを、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.05の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は998ppmであった。この含水めっき液を用いて、実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約150μmであった。このアルミニウム箔は、大きさが80μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約50%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は2.8という特徴的なものであった。
実施例5:
 実施例1で用いたジメチルスルホンに意図的に水を添加してその含水量を1000ppmとした。このジメチルスルホンと、実施例1で用いた塩化アルミニウムとトリメチルアミン塩酸塩を、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.05の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は1860ppmであった。この含水めっき液を用いて、印加電流密度を3A/dmとすること以外は実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約100μmであった。このアルミニウム箔は、大きさが400μm以下の孔を多数有する多孔箔であり、その空孔率は60~70%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は3.4という特徴的なものであった。
実施例6:
 実施例1で用いたジメチルスルホン、塩化アルミニウム、トリメチルアミン塩酸塩のそれぞれを24時間真空乾燥した後、窒素ガス流気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.01の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液に意図的に水を添加してその含水量を1900ppmとした。この含水めっき液を用いて、印加電流密度を15A/dmとすること以外は実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約50μmであった。このアルミニウム箔は、大きさが100μm以下の微細な孔を多数有する多孔箔であり、その空孔率は60~70%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は3.8という特徴的なものであった。
実施例7:
 トリメチルアミン塩酸塩のかわりに塩化アンモニウムを用いること以外は実施例1と同様にして多孔アルミニウム箔を得た。得られたアルミニウム箔の厚みは約13μmであった。このアルミニウム箔は、大きさが10μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約15%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は4.2という特徴的なものであった。
実施例8:
 トリメチルアミン塩酸塩のかわりに塩化テトラメチルアンモニウムを用いること以外は実施例1と同様にして多孔アルミニウム箔を得た。得られたアルミニウム箔の厚みは約9μmであった。このアルミニウム箔は、大きさが20μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約40%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は2.6という特徴的なものであった。
実施例9:
 実施例1における蓄電デバイス用電極(正極)の作製の際に用いた、マンガン酸リチウム:アセチレンブラック:ポリフッ化ビニリデンを重量比で8:1:1の割合で混合して調製したスラリーのかわりに、活性炭:アセチレンブラック:ポリフッ化ビニリデンを重量比で9:0.5:0.5の割合で混合したスラリーをドクターブレードで塗布した後、80℃で24時間真空乾燥することで、箔の表面に正極活物質層を形成して全体の厚みが約30μmの蓄電デバイス用電極(正極)を作製した。
実施例10:
 ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:4:0.01の割合で混合すること以外は実施例1と同様にして多孔アルミニウム箔を得た。得られたアルミニウム箔の厚みは約13μmであった。このアルミニウム箔は、大きさが10μm以下の微細な孔を多数有する多孔箔であり、その空孔率は約5%であった。この多孔アルミニウム箔の結晶配向性は、実施例1の多孔アルミニウム箔の結晶配向性と同様、箔の表面に対して(111)面が優先配向しており、(111)面のX線回折強度の(200)面のX線回折強度に対する比率は11.0という特徴的なものであった。
比較例1:
 実施例1で用いたジメチルスルホン、塩化アルミニウム、トリメチルアミン塩酸塩のそれぞれを24時間真空乾燥した後、露点-100℃以下の乾燥雰囲気下、ジメチルスルホン:塩化アルミニウム:トリメチルアミン塩酸塩をモル比で10:3:0.01の割合で混合し、110℃で溶解させて電気アルミニウムめっき液を調製した。このめっき液の含水量は70ppmであった。このめっき液を用いて、実施例1と同様にしてチタン板の表面にアルミニウム被膜を形成した後、チタン板からアルミニウム被膜を剥離し、アルミニウム箔を得た。このアルミニウム箔を大気雰囲気下、300℃で60分間熱処理した。得られたアルミニウム箔の厚みは約12μmであった。このアルミニウム箔は、走査型電子顕微鏡写真の画像解析によっては孔が確認できない均一なもの(空孔率は0%)であったことから、含水量が70ppmのめっき液を用いた場合にはめっき液の含水量が少なすぎて多孔アルミニウム箔を得ることができないことがわかった。
比較例2:
 めっき液に意図的に水を添加してその含水量を2500ppmとしたこと以外は実施例6と同様にして多孔アルミニウム箔を得ようとしたが、チタン板の表面にアルミニウム被膜を形成する時点において部分的に被膜が黒ずんだりスジ状の被膜ムラが発生したりしてしまったことから、含水量が2500ppmのめっき液を用いた場合にはめっき液の含水量が多すぎて多孔アルミニウム箔を得ることができないことがわかった。
比較例3:
 実施例1の(B)と同様にして、厚みが15μmの市販の圧延アルミニウム箔(日本製箔社製)の表面に正極活物質層を形成し、全体の厚みが約40μmの蓄電デバイス用電極(正極)を作製した。この電極の箔と正極活物質の密着性を実施例1の(B)と同様にして評価したところ、テープ剥離試験を行う前の電極の乾燥段階で正極活物質層がシート状に箔から剥がれてしまった。また、実施例3の(B)と同様にして、この圧延アルミニウム箔を蓄電デバイス用正極集電体として用いて蓄電デバイス用電極(正極)を作製し、図7に示す実験装置を用いて充放電試験を行った。結果を図9に示す。図9から明らかなように、この正極を用いると放電容量の低下が顕著であり、充放電レートが0.3Cの時の放電容量が144Ah/kgであるのに対し、充放電レートが3Cの時の放電容量は90Ah/kgであり、放電容量の低下は38%であった。
 本発明は、蓄電デバイスの正極集電体などとして用いることができる、多孔アルミニウム箔の新規な製造方法、その製造方法で製造されてなる多孔アルミニウム箔、その多孔アルミニウム箔からなる蓄電デバイス用正極集電体、その蓄電デバイス用正極集電体を用いた蓄電デバイス用電極、および、その蓄電デバイス用電極を用いて構成されてなる蓄電デバイスを提供することができる点において産業上の利用可能性を有する。

Claims (10)

  1.  (1)ジアルキルスルホン、(2)アルミニウムハロゲン化物、および、(3)含窒素化合物を少なくとも含み、かつ、含水量が100~2000ppmであるめっき液を用いた電解法によって多孔アルミニウム被膜を基材の表面に形成した後、当該被膜を基材から剥離することを特徴とする多孔アルミニウム箔の製造方法。
  2.  含窒素化合物が、ハロゲン化アンモニウム、第一アミンのハロゲン化水素塩、第二アミンのハロゲン化水素塩、第三アミンのハロゲン化水素塩、一般式:RN・X(R~Rは同一または異なってアルキル基、Xは第四アンモニウムカチオンに対するカウンターアニオンを示す)で表される第四アンモニウム塩からなる群から選択される少なくとも1つであることを特徴とする請求項1記載の製造方法。
  3.  得られた多孔アルミニウム箔に対して熱処理を行うことを特徴とする請求項1記載の製造方法。
  4.  熱処理を80~550℃で行うことを特徴とする請求項3記載の製造方法。
  5.  ジアルキルスルホンがジメチルスルホンであることを特徴とする請求項1記載の製造方法。
  6.  箔の表面に対して(111)面のX線回折強度のその他の結晶面のX線回折強度に対する比率が2.5以上である結晶配向性を有し、空孔率が1~70%であることを特徴とする多孔アルミニウム箔。
  7.  請求項1記載の製造方法で製造されてなることを特徴とする多孔アルミニウム箔。
  8.  請求項6または7記載の多孔アルミニウム箔からなることを特徴とする蓄電デバイス用正極集電体。
  9.  請求項6または7記載の多孔アルミニウム箔に電極活物質を担持させてなることを特徴とする蓄電デバイス用電極。
  10.  請求項9記載の蓄電デバイス用電極を用いて構成されてなることを特徴とする蓄電デバイス。
PCT/JP2012/077538 2011-10-27 2012-10-25 多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス WO2013062026A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201280052457.6A CN103958742B (zh) 2011-10-27 2012-10-25 多孔铝箔的制造方法、多孔铝箔、蓄电装置用正极集电体、蓄电装置用电极,以及蓄电装置
US14/354,237 US9812700B2 (en) 2011-10-27 2012-10-25 Method for producing porous aluminum foil, porous aluminum foil, positive electrode current collector for electrical storage devices, electrode for electrical storage devices, and electrical storage device
EP12844049.2A EP2772569B1 (en) 2011-10-27 2012-10-25 Method for manufacturing porous aluminum foil, porous aluminum foil, positive electrode collector for electricity storage device, electrode for electricity storage device, and electricity storage device
KR1020147013780A KR101958507B1 (ko) 2011-10-27 2012-10-25 다공 알루미늄박의 제조방법, 다공 알루미늄박, 축전 디바이스용 양극 집전체, 축전 디바이스용 전극 및 축전 디바이스
JP2013540818A JP6044546B2 (ja) 2011-10-27 2012-10-25 多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011235858 2011-10-27
JP2011-235858 2011-10-27

Publications (1)

Publication Number Publication Date
WO2013062026A1 true WO2013062026A1 (ja) 2013-05-02

Family

ID=48167852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/077538 WO2013062026A1 (ja) 2011-10-27 2012-10-25 多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス

Country Status (6)

Country Link
US (1) US9812700B2 (ja)
EP (1) EP2772569B1 (ja)
JP (1) JP6044546B2 (ja)
KR (1) KR101958507B1 (ja)
CN (1) CN103958742B (ja)
WO (1) WO2013062026A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075205A (ja) * 2012-10-03 2014-04-24 Hitachi Metals Ltd 蓄電デバイス
JP2014235851A (ja) * 2013-05-31 2014-12-15 住友電気工業株式会社 アルミニウム多孔体、集電体、電極及び電気化学デバイス
KR20160124074A (ko) * 2014-02-20 2016-10-26 히타치 긴조쿠 가부시키가이샤 전해알루미늄박 및 그 제조방법, 축전 디바이스용 집전체, 축전 디바이스용 전극, 축전 디바이스
CN106460216A (zh) * 2014-06-24 2017-02-22 住友电气工业株式会社 铝镀液、铝膜的制造方法以及铝多孔体
CN106847550A (zh) * 2017-02-15 2017-06-13 哈尔滨工业大学深圳研究生院 一种激光打孔模板法电镀多孔金属膜及其方法与应用
WO2017199564A1 (ja) * 2016-05-18 2017-11-23 住友電気工業株式会社 アルミニウム合金及びアルミニウム合金の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104213157A (zh) * 2014-09-17 2014-12-17 朱忠良 一种水相容性电镀铝液以及铝镀膜的形成方法及形成的铝镀物品
KR20160139617A (ko) * 2015-05-28 2016-12-07 주식회사 엘지화학 금속 폼 필터, 이를 포함하는 리튬 슬러리 흐름 전지 및 이의 제조 방법
CN105047943B (zh) * 2015-07-04 2018-03-30 广东烛光新能源科技有限公司 一种柔性器件及其制备方法
WO2018211916A1 (ja) * 2017-05-18 2018-11-22 富士フイルム株式会社 孔あき金属箔、孔あき金属箔の製造方法、二次電池用負極および二次電池用正極
US10793959B2 (en) 2017-06-19 2020-10-06 Kyung Mo Yang Method for production of metal article of manufacture and uses thereof
US10936178B2 (en) 2019-01-07 2021-03-02 MemoryWeb, LLC Systems and methods for analyzing and organizing digital photos and videos
KR102362580B1 (ko) * 2020-05-07 2022-02-15 동아대학교 산학협력단 다층 구리박의 제조를 위한 전기도금장치
KR20230116240A (ko) 2022-01-28 2023-08-04 주식회사 엘지에너지솔루션 알루미늄 포일의 젖음성 개선 방법

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693490A (ja) 1992-09-10 1994-04-05 Nippon Denkai Kk 電解金属箔の製造方法
JP2001189238A (ja) 1999-12-28 2001-07-10 Nippon Chemicon Corp 電気二重層コンデンサ集電体用アルミニウム箔の製造方法、電気二重層コンデンサ集電体用アルミニウム箔及び電気二重層コンデンサ
JP2010232171A (ja) * 2009-03-05 2010-10-14 Hitachi Metals Ltd アルミニウム多孔質材およびその製造方法、アルミニウム多孔質材を電極集電体として用いた蓄電デバイス
WO2011001932A1 (ja) 2009-06-29 2011-01-06 日立金属株式会社 アルミニウム箔の製造方法
WO2011059023A1 (ja) * 2009-11-11 2011-05-19 日立金属株式会社 炭素性粒子が分散担持されてなるアルミニウム箔
JP2012136735A (ja) * 2010-12-27 2012-07-19 Hitachi Metals Ltd 粗面を有するアルミニウム箔
JP2012136736A (ja) * 2010-12-27 2012-07-19 Hitachi Metals Ltd 引張強度に優れる複合金属箔
JP2012201961A (ja) * 2011-03-28 2012-10-22 Hitachi Metals Ltd 多孔質アルミニウム箔の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0191319A (ja) * 1987-09-30 1989-04-11 Noboru Tsuya 磁気ディスクの製造方法
JP2623485B2 (ja) * 1988-09-05 1997-06-25 日新製鋼株式会社 めっき皮膜の面方位をそろえる電気アルミニウムめっき方法
US5041194A (en) * 1989-05-18 1991-08-20 Mitsubishi Petrochemical Co., Ltd. Aluminum electroplating method
JPH1197032A (ja) * 1997-09-18 1999-04-09 Nippon Foil Mfg Co Ltd 二次電池用アルミニウム箔製集電体
JP2000231923A (ja) * 1999-02-12 2000-08-22 Kee:Kk 非水系二次電池用多孔質集電体および電極
WO2005014893A1 (en) * 2003-08-11 2005-02-17 Canon Kabushiki Kaisha Method for production of structure and porous member
JP4986122B2 (ja) * 2006-03-31 2012-07-25 日立金属株式会社 電解アルミニウムめっき液およびアルミニウムめっき膜
JP4530111B2 (ja) * 2008-10-15 2010-08-25 日立金属株式会社 電気アルミニウムめっき液およびアルミニウムめっき被膜の形成方法
CN102034959A (zh) * 2009-09-29 2011-04-27 银旺科技股份有限公司 复合电极材料与使用该材料的二次电池
JP5304796B2 (ja) * 2010-01-08 2013-10-02 トヨタ自動車株式会社 リチウムイオン二次電池用正極板、リチウムイオン二次電池、車両、電池搭載機器、及び、リチウムイオン二次電池用正極板の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693490A (ja) 1992-09-10 1994-04-05 Nippon Denkai Kk 電解金属箔の製造方法
JP2001189238A (ja) 1999-12-28 2001-07-10 Nippon Chemicon Corp 電気二重層コンデンサ集電体用アルミニウム箔の製造方法、電気二重層コンデンサ集電体用アルミニウム箔及び電気二重層コンデンサ
JP2010232171A (ja) * 2009-03-05 2010-10-14 Hitachi Metals Ltd アルミニウム多孔質材およびその製造方法、アルミニウム多孔質材を電極集電体として用いた蓄電デバイス
WO2011001932A1 (ja) 2009-06-29 2011-01-06 日立金属株式会社 アルミニウム箔の製造方法
WO2011059023A1 (ja) * 2009-11-11 2011-05-19 日立金属株式会社 炭素性粒子が分散担持されてなるアルミニウム箔
JP2012136735A (ja) * 2010-12-27 2012-07-19 Hitachi Metals Ltd 粗面を有するアルミニウム箔
JP2012136736A (ja) * 2010-12-27 2012-07-19 Hitachi Metals Ltd 引張強度に優れる複合金属箔
JP2012201961A (ja) * 2011-03-28 2012-10-22 Hitachi Metals Ltd 多孔質アルミニウム箔の製造方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014075205A (ja) * 2012-10-03 2014-04-24 Hitachi Metals Ltd 蓄電デバイス
JP2014235851A (ja) * 2013-05-31 2014-12-15 住友電気工業株式会社 アルミニウム多孔体、集電体、電極及び電気化学デバイス
KR20160124074A (ko) * 2014-02-20 2016-10-26 히타치 긴조쿠 가부시키가이샤 전해알루미늄박 및 그 제조방법, 축전 디바이스용 집전체, 축전 디바이스용 전극, 축전 디바이스
KR102265234B1 (ko) * 2014-02-20 2021-06-15 히타치 긴조쿠 가부시키가이샤 전해알루미늄박 및 그 제조방법, 축전 디바이스용 집전체, 축전 디바이스용 전극, 축전 디바이스
CN106460216A (zh) * 2014-06-24 2017-02-22 住友电气工业株式会社 铝镀液、铝膜的制造方法以及铝多孔体
CN106460216B (zh) * 2014-06-24 2018-05-04 住友电气工业株式会社 铝镀液、铝膜的制造方法以及铝多孔体
WO2017199564A1 (ja) * 2016-05-18 2017-11-23 住友電気工業株式会社 アルミニウム合金及びアルミニウム合金の製造方法
JP2017206739A (ja) * 2016-05-18 2017-11-24 住友電気工業株式会社 アルミニウム合金及びアルミニウム合金の製造方法
US10808300B2 (en) 2016-05-18 2020-10-20 Sumitomo Electric Industries, Ltd. Aluminum alloy and method for manufacturing aluminum alloy
CN106847550A (zh) * 2017-02-15 2017-06-13 哈尔滨工业大学深圳研究生院 一种激光打孔模板法电镀多孔金属膜及其方法与应用
CN106847550B (zh) * 2017-02-15 2018-10-09 哈尔滨工业大学深圳研究生院 一种激光打孔模板法电镀多孔金属膜及其方法与应用

Also Published As

Publication number Publication date
KR20140081890A (ko) 2014-07-01
EP2772569A4 (en) 2015-08-19
JPWO2013062026A1 (ja) 2015-04-02
CN103958742A (zh) 2014-07-30
JP6044546B2 (ja) 2016-12-14
US9812700B2 (en) 2017-11-07
EP2772569A1 (en) 2014-09-03
CN103958742B (zh) 2016-07-13
EP2772569B1 (en) 2018-10-17
US20140272598A1 (en) 2014-09-18
KR101958507B1 (ko) 2019-03-14

Similar Documents

Publication Publication Date Title
JP6044546B2 (ja) 多孔アルミニウム箔の製造方法、多孔アルミニウム箔、蓄電デバイス用正極集電体、蓄電デバイス用電極、および、蓄電デバイス
JP5516751B2 (ja) アルミニウム箔の製造方法
JP5598027B2 (ja) アルミニウム多孔質材およびその製造方法、アルミニウム多孔質材を電極集電体として用いた蓄電デバイス
JP5527328B2 (ja) 炭素性粒子が分散担持されてなるアルミニウム箔
KR101915483B1 (ko) 알루미늄판
WO2011001932A1 (ja) アルミニウム箔の製造方法
JP5482646B2 (ja) 粗面を有するアルミニウム箔
Hsu et al. Nanostructured tin electrodeposited in ionic liquid for use as an anode for Li-ion batteries
CN112117445A (zh) 氧化亚锡/石墨烯异质结复合材料及其制备方法、应用和以其为宿主的金属锂负极
JP5929000B2 (ja) 多孔質アルミニウム箔の製造方法
JP2014075205A (ja) 蓄電デバイス
Yang et al. Efficient anion immobilization enabled by structurally controllable halloysite for dendrite-free sodium metal anode
JP2012252830A (ja) 電池用集電体及びその製造方法
Wang et al. Anode Design for Suppressing Zn Metal Dendrites
KR20160126572A (ko) 집전체 제조방법 및 전극 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12844049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540818

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147013780

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012844049

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14354237

Country of ref document: US