WO2013061441A1 - 非接触受電装置、非接触送電装置および非接触送受電システム - Google Patents

非接触受電装置、非接触送電装置および非接触送受電システム Download PDF

Info

Publication number
WO2013061441A1
WO2013061441A1 PCT/JP2011/074803 JP2011074803W WO2013061441A1 WO 2013061441 A1 WO2013061441 A1 WO 2013061441A1 JP 2011074803 W JP2011074803 W JP 2011074803W WO 2013061441 A1 WO2013061441 A1 WO 2013061441A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
power transmission
frequency
power receiving
Prior art date
Application number
PCT/JP2011/074803
Other languages
English (en)
French (fr)
Inventor
真士 市川
堀内 学
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2013540576A priority Critical patent/JP5884830B2/ja
Priority to PCT/JP2011/074803 priority patent/WO2013061441A1/ja
Priority to EP11874672.6A priority patent/EP2773018B1/en
Priority to CN201180074457.1A priority patent/CN104025422B/zh
Priority to US14/352,516 priority patent/US9697952B2/en
Publication of WO2013061441A1 publication Critical patent/WO2013061441A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/36Means for automatic or assisted adjustment of the relative position of charging devices and vehicles by positioning the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F38/00Adaptations of transformers or inductances for specific applications or functions
    • H01F38/14Inductive couplings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00036Charger exchanging data with battery
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • This invention relates to a non-contact power receiving apparatus, a non-contact power transmitting apparatus, and a non-contact power transmitting / receiving system.
  • the magnetic resonance method can transmit power even when the distance between the power transmission unit and the power reception unit is larger than that of the electromagnetic induction method.
  • Patent Document 1 uses a resonance method, and when power is transmitted and received in a non-contact manner, the distance between the power transmission side and the power reception side approaches and becomes a tightly coupled state. Even in such a case, a technique capable of maintaining high transmission efficiency is disclosed.
  • non-contact power transmission device In the non-contact power transmission device disclosed in this document, AC power from an AC power source is supplied to the resonance element, thereby generating a magnetic field in the resonance element and supplying AC power to the power receiving apparatus as a counterpart by resonance.
  • an automatic matching unit is provided between the AC power source and the resonance element. The automatic matching device adjusts the impedance of the resonant element according to the coupling coefficient with the power receiving device to which the AC power is supplied.
  • the resonance coil is designed so that power can be transmitted with maximum efficiency when the positional relationship between the power transmitting device and the power receiving device is in a good state. Is done.
  • the positional relationship is deviated, for example, when the distance is too close and a tightly coupled state is established, the impedance is adjusted by an automatic matching device to improve the transmission efficiency.
  • Such a design technique is suitable for a non-contact power receiving apparatus that is small in weight and easy to align, such as a portable device, but is applied to a vehicle in which positioning of the power transmitting / receiving unit is not easy. Since there is a need to allow some positional deviation, there are few opportunities to transmit power with maximum efficiency.
  • An object of the present invention is to provide a non-contact power receiving device, a non-contact power transmitting device, and a non-contact power transmitting / receiving system in which the efficiency is unlikely to decrease even when the power transmission device and the power receiving device are misaligned.
  • this invention is a contactless power receiving device for receiving power transferred from a power transmitting device in a contactless manner.
  • the power transmission device includes a power transmission unit and a power supply unit that supplies AC power to the power transmission unit.
  • the non-contact power receiving device includes a power receiving unit that receives power from the power transmission unit in a non-contact manner, and an electric load device that uses the power received by the power receiving unit.
  • the power receiving unit is configured such that, when the power receiving unit is arranged in a state shifted from the position of the power transmitting unit, the transmission efficiency at the power frequency of the power source unit used for non-contact power transmission is the best.
  • the peak frequency at which the transmission efficiency when the power transmission frequency is changed shows a peak
  • the power supply frequency are configured to match.
  • the power receiving unit has a peak in which the transmission efficiency is higher than the transmission efficiency at the power supply frequency when the horizontal position of the central axis of the power receiving unit and the central axis of the power transmission unit coincide with each other. In at least two locations of a first frequency higher than the power supply frequency and a second frequency lower than the power supply frequency.
  • the non-contact power receiving device is provided between the power receiving unit and the electric load device, and includes a matching unit for adjusting the impedance of the non-contact power receiving device, a central axis of the power receiving unit, and a central axis of the power transmitting unit. And a control device that adjusts the impedance of the non-contact power receiving device with the matching device when the horizontal positions of the two devices are arranged to coincide with each other.
  • the non-contact power receiving device is provided between the power receiving unit and the electric load device, and includes a matching unit for adjusting the impedance of the non-contact power receiving device, a central axis of the power receiving unit, and a central axis of the power transmitting unit. And a control device that adjusts the impedance of the non-contact power receiving device using a matching device when the horizontal position of the device is shifted.
  • the power receiving unit has a peak in which the transmission efficiency is higher than the transmission efficiency at the power frequency when the horizontal axis of the central axis of the power receiving unit and the central axis of the power transmitting unit coincide with each other.
  • the power receiving unit has a peak in which the transmission efficiency is higher than the transmission efficiency at the power frequency when the horizontal axis of the central axis of the power receiving unit and the central axis of the power transmitting unit coincide with each other.
  • the non-contact power receiving device is provided between the power receiving unit and the electric load device, and includes a matching unit for adjusting impedance of the non-contact power receiving device, a central axis of the power receiving unit, and a central axis of the power transmitting unit. And a control device that adjusts the impedance of the non-contact power receiving device using a matching device when the horizontal positions are matched.
  • the non-contact power receiving device is provided between the power receiving unit and the electric load device, and includes a matching unit for adjusting impedance of the non-contact power receiving device, a central axis of the power receiving unit, and a central axis of the power transmitting unit. And a control device that adjusts the impedance of the non-contact power receiving device using a matching device when the horizontal position is shifted.
  • the power reception unit is configured such that the difference between the power transmission unit and the natural frequency is within ⁇ 10%.
  • the coupling coefficient between the power reception unit and the power transmission unit is 0.1 or less. More preferably, the power transmission unit is formed between the power reception unit and the power transmission unit and vibrates at a specific frequency, and the electric field formed between the power reception unit and the power transmission unit and vibrates at a specific frequency. The power is transmitted to the power receiving unit through at least one of the above.
  • the present invention is a contactless power transmission device for transmitting power to a power receiving device in a contactless manner.
  • the power receiving device includes a power receiving unit and an electric load device that receives power from the power receiving unit.
  • the non-contact power transmission device includes a power transmission unit that transmits power in a non-contact manner to a power reception unit, and a power supply unit that supplies AC power to the power transmission unit.
  • the power transmission unit is configured such that, when the power reception unit is arranged in a position shifted from the power transmission unit, the transmission efficiency at the power frequency of the power supply unit used for non-contact power transmission is the best.
  • the peak frequency at which the transmission efficiency when the power transmission frequency is changed shows a peak
  • the power supply frequency are configured to match.
  • the power transmission unit has a peak in which the transmission efficiency is higher than the transmission efficiency at the power supply frequency when the horizontal position of the central axis of the power reception unit and the central axis of the power transmission unit coincide with each other. In at least two locations of a first frequency higher than the power supply frequency and a second frequency lower than the power supply frequency.
  • the non-contact power transmission device is provided between the power transmission unit and the power source unit, and includes a matching unit for adjusting the impedance of the non-contact power transmission device, a central axis of the power reception unit, and a central axis of the power transmission unit. And a control device that adjusts the impedance of the non-contact power transmission device with a matching device when the horizontal positions are matched.
  • the non-contact power transmission device is provided between the power transmission unit and the power source unit, and includes a matching unit for adjusting the impedance of the non-contact power transmission device, a central axis of the power reception unit, and a central axis of the power transmission unit. And a controller that adjusts the impedance of the non-contact power transmission device with a matching device when the horizontal position is shifted.
  • the power transmission unit has a peak in which the transmission efficiency is higher than the transmission efficiency at the power supply frequency when the horizontal axis position of the central axis of the power reception unit and the central axis of the power transmission unit coincide with each other.
  • the first frequency higher than the power supply frequency and the second frequency lower than the power supply frequency are configured to have at least two locations.
  • the non-contact power transmission device is provided between the power transmission unit and the power source unit, the matching unit for adjusting the impedance of the non-contact power transmission device, the horizontal axis of the central axis of the power reception unit and the central axis of the power transmission unit And a control device that adjusts the impedance of the non-contact power transmission device using a matching device when the directional positions are matched.
  • the non-contact power transmission device is provided between the power transmission unit and the power source unit, the matching unit for adjusting the impedance of the non-contact power transmission device, the horizontal axis of the central axis of the power reception unit and the central axis of the power transmission unit And a control device that adjusts the impedance of the non-contact power transmission device using a matching device when the directional position is shifted.
  • the power transmission unit is configured such that the difference between the power reception unit and the natural frequency is within ⁇ 10%.
  • the coupling coefficient between the power reception unit and the power transmission unit is 0.1 or less. More preferably, the power transmission unit is formed between the power reception unit and the power transmission unit and vibrates at a specific frequency, and the electric field formed between the power reception unit and the power transmission unit and vibrates at a specific frequency. The power is transmitted to the power receiving unit through at least one of the above.
  • the present invention is a non-contact power transmission / reception system including a non-contact power transmission device and a non-contact power reception device for receiving power transferred from the non-contact power transmission device in a non-contact manner.
  • the non-contact power transmission device includes a power transmission unit and a power source unit that supplies AC power to the power transmission unit.
  • the non-contact power receiving device includes a power receiving unit having the same natural frequency as the natural frequency of the power transmitting unit, and an electric load device that uses power received by the power receiving unit.
  • the power receiving unit is configured such that, when the power receiving unit is arranged in a state shifted from the position of the power transmitting unit, the transmission efficiency at the power frequency of the power source unit used for non-contact power transmission is the best.
  • the power reception unit is configured such that the difference between the power transmission unit and the natural frequency is within ⁇ 10%.
  • the coupling coefficient between the power reception unit and the power transmission unit is 0.1 or less. More preferably, the power transmission unit is formed between the power reception unit and the power transmission unit and vibrates at a specific frequency, and the electric field formed between the power reception unit and the power transmission unit and vibrates at a specific frequency. The power is transmitted to the power receiving unit through at least one of the above.
  • the present invention it is possible to prevent an extreme decrease in efficiency even if a positional deviation occurs to some extent between the power transmission device and the power reception device.
  • FIG. 1 is an overall configuration diagram of a vehicle power supply system according to an embodiment of the present invention. It is a figure for demonstrating the principle of the power transmission by the resonance method. It is the figure which showed the relationship between the distance from an electric current source (magnetic current source), and the intensity
  • FIG. 1 is an overall configuration diagram of a power transmission / reception system according to an embodiment of the present invention.
  • power transmission / reception system 10 includes a vehicle 100 and a power transmission device 200.
  • Vehicle 100 includes a power reception unit 110 and a communication unit 160.
  • the power receiving unit 110 is installed on the bottom surface of the vehicle body and configured to receive the power transmitted from the power transmitting unit 220 of the power transmitting apparatus 200 in a contactless manner.
  • power reception unit 110 includes a self-resonant coil (also referred to as a resonance coil) described later, and receives power from power transmission unit 220 in a non-contact manner by resonating with a self-resonance coil included in power transmission unit 220 via an electromagnetic field.
  • Communication unit 160 is a communication interface for performing communication between vehicle 100 and power transmission device 200.
  • the power transmission device 200 includes a high frequency power supply device 210, a power transmission unit 220, and a communication unit 230.
  • the high frequency power supply device 210 converts commercial AC power supplied through, for example, the connector 212 into high frequency power and outputs the high frequency power to the power transmission unit 220.
  • the power transmission unit 220 is installed on the floor of a parking lot, for example, and is configured to send the high frequency power supplied from the high frequency power supply device 210 to the power receiving unit 110 of the vehicle 100 in a non-contact manner.
  • the power transmission unit 220 includes a self-resonant coil, and the self-resonant coil resonates with the self-resonant coil included in the power receiving unit 110 via an electromagnetic field, thereby transmitting power to the power receiving unit 110 in a non-contact manner.
  • Communication unit 230 is a communication interface for performing communication between power transmission device 200 and vehicle 100.
  • the vehicle 100 when power is supplied from the power transmission device 200 to the vehicle 100, it is necessary to guide the vehicle 100 to the power transmission device 200 to align the power receiving unit 110 of the vehicle 100 and the power transmission unit 220 of the power transmission device 200. That is, the vehicle 100 is not easily aligned.
  • the user In the portable device, the user can easily lift it by hand and place it at an appropriate position of a power supply unit such as a charger.
  • the vehicle needs to be operated by the user to stop the vehicle at an appropriate position, and cannot be lifted by hand to adjust the position.
  • the power supply from the power transmission apparatus 200 to the vehicle 100 has a large tolerance with respect to the positional deviation.
  • the transmission distance is short, and it is said that the tolerance is small with respect to positional deviation.
  • the resonance method using an electromagnetic field is capable of transmitting a relatively large amount of power even when the transmission distance is several meters, and is generally said to have a greater tolerance for positional deviation than the electromagnetic induction method. Therefore, in power transmission / reception system 10 according to this embodiment, power is supplied from power transmission device 200 to vehicle 100 using the resonance method.
  • the natural frequency of the power transmission unit and the natural frequency of the power reception unit are the same natural frequency.
  • the natural frequency of the power transmission unit means the vibration frequency when the electric circuit including the coil and the capacitor of the power transmission unit vibrates freely.
  • the “resonance frequency of the power transmission unit” means an eigenfrequency when the braking force or the electrical resistance is zero in an electric circuit including a coil and a capacitor of the power transmission unit.
  • the “natural frequency of the power receiving unit” means the vibration frequency when the electric circuit including the coil and capacitor of the power receiving unit freely vibrates.
  • the “resonance frequency of the power receiving unit” means the natural frequency when the braking force or the electric resistance is zero in an electric circuit including the coil and the capacitor of the power receiving unit.
  • the same natural frequency includes not only the case where the frequency is completely the same, but also the case where the natural frequency is substantially the same. “The natural frequency is substantially the same” means that the difference between the natural frequency of the power transmission unit and the natural frequency of the power reception unit is within 10% of the natural frequency of the power transmission unit or the natural frequency of the power reception unit.
  • FIG. 2 is a diagram for explaining the principle of power transmission by the resonance method.
  • this resonance method in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), and thereby, from one coil. Electric power is transmitted to the other coil via an electromagnetic field.
  • the primary coil 320 is connected to the high-frequency power source 310, and high-frequency power is supplied to the primary self-resonant coil 330 that is magnetically coupled to the primary coil 320 by electromagnetic induction.
  • the primary self-resonant coil 330 is an LC resonator having an inductance and stray capacitance of the coil itself, and resonates with a secondary self-resonant coil 340 having the same resonance frequency as the primary self-resonant coil 330 via an electromagnetic field (near field). .
  • energy electrical power moves from the primary self-resonant coil 330 to the secondary self-resonant coil 340 via the electromagnetic field.
  • the energy (electric power) transferred to the secondary self-resonant coil 340 is taken out by the secondary coil 350 magnetically coupled to the secondary self-resonant coil 340 by electromagnetic induction and supplied to the load 360.
  • power transmission by the resonance method is realized when the Q value indicating the resonance intensity between the primary self-resonant coil 330 and the secondary self-resonant coil 340 is greater than 100, for example.
  • power is transmitted from the power transmission unit to the power reception unit by causing the power transmission unit and the power reception unit to resonate (resonate) with an electromagnetic field, and the power transmission unit and the power reception unit
  • the coupling coefficient ( ⁇ ) between and is 0.1 or less.
  • the coupling coefficient ( ⁇ ) between the power transmission unit and the power reception unit is close to 1.0.
  • the secondary self-resonant coil 340 and the secondary coil 350 correspond to the power receiving unit 110 in FIG. 1
  • the primary coil 320 and the primary self-resonant coil 330 correspond to the power transmitting unit 220 in FIG. 1.
  • FIG. 3 is a diagram showing the relationship between the distance from the current source (magnetic current source) and the intensity of the electromagnetic field.
  • the electromagnetic field includes three components.
  • the curve k1 is a component that is inversely proportional to the distance from the wave source, and is referred to as a “radiated electromagnetic field”.
  • a curve k2 is a component inversely proportional to the square of the distance from the wave source, and is referred to as an “induction electromagnetic field”.
  • the curve k3 is a component inversely proportional to the cube of the distance from the wave source, and is referred to as an “electrostatic magnetic field”.
  • the resonance method energy (electric power) is transmitted using this near field (evanescent field). That is, by using a near field to resonate a pair of resonators (for example, a pair of LC resonance coils) having the same natural frequency, one resonator (primary self-resonant coil) and the other resonator (two Energy (electric power) is transmitted to the next self-resonant coil. Since this near field does not propagate energy (electric power) far away, the resonance method transmits power with less energy loss than electromagnetic waves that transmit energy (electric power) by "radiation electromagnetic field” that propagates energy far away. be able to.
  • FIG. 4 is a diagram illustrating a simulation model of the power transmission system.
  • FIG. 5 is a diagram illustrating the relationship between the deviation of the natural frequency of the power transmission unit and the power reception unit and the power transmission efficiency.
  • power transmission system 89 includes a power transmission unit 90 and a power reception unit 91.
  • the power transmission unit 90 includes a first coil 92 and a second coil 93.
  • the second coil 93 includes a resonance coil 94 and a capacitor 95 connected to the resonance coil 94.
  • the power receiving unit 91 includes a third coil 96 and a fourth coil 97.
  • the third coil 96 includes a resonance coil 99 and a capacitor 98 connected to the resonance coil 99.
  • the inductance of the resonance coil 94 is an inductance Lt
  • the capacitance of the capacitor 95 is a capacitance C1.
  • the inductance of the resonance coil 99 is an inductance Lr
  • the capacitance of the capacitor 98 is a capacitance C2.
  • the horizontal axis indicates the deviation (%) of the natural frequency
  • the vertical axis indicates the power transmission efficiency (%) at a constant frequency.
  • the deviation (%) in natural frequency is expressed by the following equation (3).
  • the power transmission efficiency can be increased to a practical level by setting. Furthermore, when the natural frequency of the second coil 93 and the third coil 96 is set so that the absolute value of the deviation (%) of the natural frequency is 5% or less of the natural frequency of the third coil 96, the power transmission efficiency is further increased. This is more preferable.
  • the simulation software employs electromagnetic field analysis software (JMAG (registered trademark): manufactured by JSOL Corporation).
  • FIG. 6 is a detailed configuration diagram of the power transmission / reception system 10 shown in FIG.
  • vehicle 100 includes matching unit 120, rectifier 180, charging relay (CHR) 170, power storage device 190, and system main relay (SMR) in addition to power receiving unit 110 and communication unit 160.
  • a power control unit PCU (Power Control Unit) 120 a motor generator 130, a power transmission gear 140, drive wheels 150, a vehicle ECU (Electronic Control Unit) 300 as a control device, a current sensor 171, Voltage sensor 172.
  • Power receiving unit 110 includes a secondary self-resonant coil 111, a capacitor 112, and a secondary coil 113.
  • an electric vehicle is described as an example of vehicle 100, but the configuration of vehicle 100 is not limited to this as long as the vehicle can travel using electric power stored in the power storage device.
  • Other examples of the vehicle 100 include a hybrid vehicle equipped with an engine and a fuel cell vehicle equipped with a fuel cell.
  • the secondary self-resonant coil 111 receives power from the primary self-resonant coil 221 included in the power transmission device 200 by electromagnetic resonance using an electromagnetic field.
  • the primary self-resonant coil 221 and the primary self-resonant coil 221 are based on the distance from the primary self-resonant coil 221 of the power transmission device 200, the resonance frequencies of the primary self-resonant coil 221 and the secondary self-resonant coil 111,
  • the Q value indicating the resonance intensity with the secondary self-resonant coil 111 is increased (for example, Q> 100), and the coupling coefficient ( ⁇ ) indicating the degree of coupling is decreased (for example, 0.1 or less).
  • the number of turns and the distance between the coils are appropriately set.
  • the capacitor 112 is connected to both ends of the secondary self-resonant coil 111 and forms an LC resonant circuit together with the secondary self-resonant coil 111.
  • the capacity of the capacitor 112 is appropriately set so as to have a predetermined resonance frequency according to the inductance of the secondary self-resonant coil 111. Note that the capacitor 112 may be omitted when a desired resonance frequency can be obtained with the stray capacitance of the secondary self-resonant coil 111 itself.
  • the secondary coil 113 is provided coaxially with the secondary self-resonant coil 111 and can be magnetically coupled to the secondary self-resonant coil 111 by electromagnetic induction.
  • the secondary coil 113 takes out the electric power received by the secondary self-resonant coil 111 by electromagnetic induction and outputs it to the rectifier 180 via the matching unit 120.
  • the matching unit 120 includes a coil 121 and variable capacitors 122 and 123. Note that the matching unit 120 can adjust the impedance of the power receiving device by adjusting the variable capacitors 122 and 123. When the variable capacitors 122 and 123 are in a predetermined state, it is possible to set the impedance of the power receiving device in the state where there is no matching unit 120, that is, the impedance when the matching unit 120 is not inserted.
  • the rectifier 180 rectifies the AC power received from the secondary coil 113 and outputs the rectified DC power to the power storage device 190 via the CHR 170.
  • the rectifier 180 may include a diode bridge and a smoothing capacitor (both not shown).
  • the rectifier 180 it is possible to use a so-called switching regulator that performs rectification using switching control.
  • the rectifier 180 may be included in the power receiving unit 110 to prevent malfunction of the switching element due to the generated electromagnetic field. Therefore, it is more preferable to use a static rectifier such as a diode bridge.
  • the DC power rectified by the rectifier 180 is directly output to the power storage device 190.
  • the DC voltage after rectification is different from the charge voltage allowable by the power storage device 190, May be provided with a DC / DC converter (not shown) for voltage conversion between rectifier 180 and power storage device 190.
  • the voltage sensor 172 is provided between a pair of power lines connecting the rectifier 180 and the power storage device 190. Voltage sensor 172 detects the DC voltage on the secondary side of rectifier 180, that is, the received voltage received from power transmission device 200, and outputs the detected value VC to vehicle ECU 300.
  • Current sensor 171 is provided on a power line connecting rectifier 180 and power storage device 190.
  • Current sensor 171 detects a charging current for power storage device 190 and outputs the detected value IC to vehicle ECU 300.
  • CHR 170 is electrically connected to rectifier 180 and power storage device 190.
  • CHR 170 is controlled by a control signal SE2 from vehicle ECU 300, and switches between supply and interruption of power from rectifier 180 to power storage device 190.
  • the power storage device 190 is a power storage element configured to be chargeable / dischargeable.
  • the power storage device 190 includes, for example, a secondary battery such as a lithium ion battery, a nickel metal hydride battery, or a lead storage battery, and a power storage element such as an electric double layer capacitor.
  • the power storage device 190 is connected to the rectifier 180 via the CHR 170.
  • the power storage device 190 stores the power received by the power receiving unit 110 and rectified by the rectifier 180.
  • the power storage device 190 is also connected to the PCU 120 via the SMR 115.
  • Power storage device 190 supplies power for generating vehicle driving force to PCU 120. Further, power storage device 190 stores the electric power generated by motor generator 130.
  • the output of power storage device 190 is, for example, about 200V.
  • power storage device 190 is provided with a voltage sensor and a current sensor for detecting voltage VB of power storage device 190 and input / output current IB. These detection values are output to vehicle ECU 300. Vehicle ECU 300 calculates the state of charge of power storage device 190 (also referred to as “SOC (State Of Charge)”) based on voltage VB and current IB.
  • SOC State Of Charge
  • SMR 115 is inserted in a power line connecting power storage device 190 and PCU 120.
  • SMR 115 is controlled by control signal SE ⁇ b> 1 from vehicle ECU 300, and switches between supply and interruption of power between power storage device 190 and PCU 120.
  • the PCU 120 includes a converter and an inverter (not shown).
  • the converter is controlled by a control signal PWC from vehicle ECU 300 to convert the voltage from power storage device 190.
  • the inverter is controlled by a control signal PWI from vehicle ECU 300 and drives motor generator 130 using electric power converted by the converter.
  • the motor generator 130 is an AC rotating electric machine, for example, a permanent magnet type synchronous motor including a rotor in which a permanent magnet is embedded.
  • the output torque of the motor generator 130 is transmitted to the drive wheels 150 via the power transmission gear 140 to cause the vehicle 100 to travel.
  • the motor generator 130 can generate electric power by the rotational force of the drive wheels 150 during the regenerative braking operation of the vehicle 100. Then, the generated power is converted by PCU 120 into charging power for power storage device 190.
  • a necessary vehicle driving force is generated by operating the engine and the motor generator 130 in a coordinated manner.
  • the power storage device 190 can be charged using the power generated by the rotation of the engine.
  • Communication unit 160 is a communication interface for performing wireless communication between vehicle 100 and power transmission device 200 as described above.
  • Communication unit 160 outputs battery information INFO including SOC of power storage device 190 from vehicle ECU 300 to power transmission device 200.
  • Communication unit 160 outputs signals STRT and STP instructing start and stop of power transmission from power transmission device 200 to power transmission device 200.
  • the vehicle ECU 300 includes a CPU (Central Processing Unit), a storage device, and an input / output buffer (not shown in FIG. 1), and inputs signals from each sensor and outputs control signals to each device.
  • the vehicle 100 and each device are controlled. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • vehicle ECU 300 When vehicle ECU 300 receives charge start signal TRG by a user operation or the like, vehicle ECU 300 outputs a signal STRT instructing the start of power transmission to power transmission device 200 via communication unit 160 based on the fact that a predetermined condition is satisfied. . In addition, vehicle ECU 300 outputs a signal STP instructing to stop power transmission to power transmission device 200 through communication unit 160 based on the fact that power storage device 190 is fully charged or an operation by the user.
  • the power transmission device 200 includes a power supply device 210 and a power transmission unit 220.
  • power supply device 210 further includes a power transmission ECU 240 that is a control device, a power supply unit 250, and a matching unit 260.
  • Power transmission unit 220 includes a primary self-resonant coil 221, a capacitor 222, and a primary coil 223.
  • the power supply unit 250 is controlled by a control signal MOD from the power transmission ECU 240, and converts power received from an AC power supply such as a commercial power supply into high-frequency power. Then, the power supply unit 250 supplies the converted high frequency power to the primary coil 223 via the matching unit 260.
  • Matching device 260 is a circuit for matching the impedance between power transmission device 200 and vehicle 100.
  • Matching device 260 includes inductor 261 and variable capacitors 262 and 263.
  • Matching device 260 is controlled by control signal ADJ provided from power transmission ECU 240 based on battery information INFO transmitted from vehicle 100, and a variable capacitor and a variable inductor so that the impedance of power transmission device 200 matches the impedance on vehicle 100 side. Is adjusted.
  • Matching device 260 also outputs a signal COMP indicating that impedance adjustment has been completed to power transmission ECU 240.
  • the matching device 260 is provided on the power transmission side and the matching device 120 is provided on the power reception side.
  • the matching device may be provided only on either the power transmission side or the power reception side.
  • the primary self-resonant coil 221 transfers electric power to the secondary self-resonant coil 111 included in the power receiving unit 110 of the vehicle 100 by electromagnetic resonance.
  • the primary self-resonant coil 221 and the secondary self-resonant coil 221 are arranged based on the distance from the secondary self-resonant coil 111 of the vehicle 100, the resonance frequency of the primary self-resonant coil 221 and the secondary self-resonant coil 111, and the like.
  • the number of turns and the inter-coil distance are set so that the Q value indicating the resonance strength with the self-resonant coil 111 increases (for example, Q> 100), and ⁇ indicating the coupling degree decreases (for example, 0.1 or less). Set as appropriate.
  • the capacitor 222 is connected to both ends of the primary self-resonant coil 221 and forms an LC resonance circuit together with the primary self-resonant coil 221.
  • the capacitance of the capacitor 222 is appropriately set so as to have a predetermined resonance frequency according to the inductance of the primary self-resonant coil 221. Note that the capacitor 222 may be omitted when a desired resonance frequency is obtained with the stray capacitance of the primary self-resonant coil 221 itself.
  • the primary coil 223 is provided coaxially with the primary self-resonant coil 221 and can be magnetically coupled to the primary self-resonant coil 221 by electromagnetic induction.
  • the primary coil 223 transmits the high frequency power supplied through the matching unit 260 to the primary self-resonant coil 221 by electromagnetic induction.
  • the communication unit 230 is a communication interface for performing wireless communication between the power transmission device 200 and the vehicle 100 as described above.
  • Communication unit 230 receives battery information INFO transmitted from communication unit 160 on vehicle 100 side and signals STRT and STP instructing start and stop of power transmission, and outputs these information to power transmission ECU 240.
  • Communication unit 230 receives signal COMP indicating that impedance adjustment from matching unit 260 has been completed from power transmission ECU 240 and outputs the signal COMP to vehicle 100 side.
  • the power transmission ECU 240 includes a CPU, a storage device, and an input / output buffer.
  • the power transmission ECU 240 inputs a signal from each sensor and outputs a control signal to each device. Control the equipment. Note that these controls are not limited to processing by software, and can be processed by dedicated hardware (electronic circuit).
  • the difference between the natural frequency of power transmission unit 220 and the natural frequency of power reception unit 110 is ⁇ 10% or less of the natural frequency of power transmission unit 220 or the natural frequency of power reception unit 110.
  • the power transmission efficiency can be increased.
  • the difference between the natural frequencies is larger than ⁇ 10%, the power transmission efficiency is smaller than 10%, and the power transmission time becomes longer.
  • the natural frequency of the power transmission unit 220 (power reception unit 110) means a vibration frequency when the electric circuit (resonance circuit) constituting the power transmission unit 220 (power reception unit 110) freely vibrates.
  • the natural frequency when the braking force or the electrical resistance is zero is also referred to as the resonance frequency of the power transmission unit 220 (power reception unit 110).
  • the power transmission unit 220 and the power reception unit 110 are formed between the power transmission unit 220 and the power reception unit 110, and are formed between the magnetic field that vibrates at a specific frequency, between the power transmission unit 220 and the power reception unit 110, and Electric power is transferred in a non-contact manner through at least one of an electric field that vibrates at a specific frequency.
  • the coupling coefficient ⁇ between the power transmission unit 220 and the power reception unit 110 is 0.1 or less, and electric power is transmitted from the power transmission unit 220 to the power reception unit 110 by causing the power transmission unit 220 and the power reception unit 110 to resonate with each other by an electromagnetic field. Is transmitted.
  • FIG. 7 is a diagram for explaining a positional shift between the power reception unit 110 and the power transmission unit 220.
  • the horizontal positional deviation distance D ⁇ b> 1 between the power reception unit 110 and the power transmission unit 220 is a horizontal distance between the horizontal center of the power reception unit 110 and the horizontal center of the power transmission unit 220.
  • the power transmission unit and the power reception unit are designed on the assumption that the horizontal position shift distance D1 is zero, the reduction in efficiency increases when the horizontal position shift occurs. Actually, it is more likely that the vehicle is parked in a state where the horizontal displacement distance D1 is not zero than the parking is performed such that the horizontal displacement distance D1 is zero.
  • the vertical distance H1 between the power reception unit 110 and the power transmission unit 220 also varies depending on the presence or absence of a passenger, the load capacity, tire pressure, and the like. Therefore, when the vertical distance H1 is fixed and the power transmission unit and the power reception unit are designed so as to be exactly the fixed distance, a decrease in efficiency increases when a vertical misalignment occurs.
  • the power transmission unit and the power reception unit are designed on the assumption that there is a positional shift.
  • FIG. 8 is a diagram for explaining the characteristics (when not matched) of the power transmitting unit or the power receiving unit of the comparative example with respect to the embodiment.
  • FIG. 9 is a diagram for explaining the characteristics (when matching) of the power transmission unit or the power reception unit of the comparative example with respect to the embodiment.
  • the resonance coil in the resonance-type non-contact power transmission / reception system of the comparative example is in a directly-facing state without misalignment in order to maximize the transmission efficiency between the power transmission unit and the power reception unit.
  • the transmission efficiency peak is designed to coincide with the power supply frequency f0, and the peak frequency is one.
  • the transmission efficiency at the power supply frequency f0 is reduced from E2 to E1 in the characteristic curve W2 in the state of 150 mm positional deviation compared to the characteristic curve W1 in the state of positional deviation 0 mm (no positional deviation).
  • the characteristic curve W2 with a positional deviation of 150 mm changes like the characteristic curve W4, and the transmission efficiency at the power supply frequency f0 is improved from E1 to E3. .
  • the transmission efficiency is not improved until it matches the transmission efficiency E2 in the state without positional deviation, and the transmission efficiency guaranteed value when the positional deviation is allowed to plus or minus 150 mm is the maximum transmission efficiency E3.
  • FIG. 10 is a diagram for explaining the positional relationship and characteristics of the coil of the power receiving unit or the power transmitting unit. For easy correspondence with FIG. 7, the horizontal displacement distance D1 and the vertical distance H1 are also shown in FIG.
  • the power transmission unit includes a resonance coil (primary self-resonance coil 221) and an induction coil (primary coil 223).
  • the power reception unit includes a resonance coil (secondary self-resonance coil 111) and an induction coil (secondary coil 113).
  • the distance X1 between the resonance coil (primary self-resonance coil 221) and the induction coil (primary coil 223) or the distance X2 between the resonance coil (secondary self-resonance coil 111) and the induction coil (secondary coil 113) is increased. If the power transmission unit or the power reception unit is designed, the power transmission unit and the power reception unit are tightly coupled, and the transmission efficiency shows two peaks.
  • the coupling between the power transmission unit and the power reception unit is shifted to loose coupling, so the distance X1 between the resonance coil (primary self-resonance coil 221) and the induction coil (primary coil 223), or The distance X2 between the resonance coil (secondary self-resonance coil 111) and the induction coil (secondary coil 113) is adjusted apart.
  • FIG. 11 is a diagram for explaining the characteristics (when not matched) of the power transmission unit or the power reception unit of the present embodiment.
  • FIG. 12 is a diagram for explaining the characteristics (during matching) of the power transmission unit or the power reception unit of the present embodiment.
  • the resonance coil in the resonance-type non-contact power transmission / reception system of the comparative example maximizes the transmission efficiency between the power transmission unit and the power reception unit on the assumption that a positional shift occurs. Therefore, the transmission efficiency peak is designed to coincide with the power supply frequency f0 when the positional deviation is 150 mm, and the peak frequency is one as shown in the characteristic curve W6.
  • the transmission efficiency at the power supply frequency f0 is reduced from E3 to E4 in the characteristic curve W5 in the state of 0 mm (no positional deviation) compared to the characteristic curve W6 in the state of 150 mm in positional deviation.
  • the characteristic curve W5 has a peak at which the transmission efficiency is E5 higher than E4 at two frequencies, a frequency fL lower than the power supply frequency f0 and a frequency fH higher than the power supply frequency f0.
  • the characteristic curve W5 with a positional deviation of 0 mm changes as the characteristic curve W7, and the power supply frequency f0.
  • the transmission efficiency is improved from E4 to E6.
  • the inter-coil distance X1 or X2 shown in FIG. 10 is determined so as to achieve the transmission efficiency guarantee value E3 at the position where the positional deviation is 150 mm, the impedance is matched by the matching unit when the positional deviation is smaller than 150 mm.
  • the transmission efficiency can be made higher than E3.
  • the maximum peak is one and the frequency matches the power supply frequency on the basis of the case where no occupant is on the vehicle (the state in which the vertical distance H1 increases). What is necessary is just to determine the distance X1 or X2 between coils.
  • the position between the coils is adjusted by adjusting the inter-coil distances X1 and X2 shown in FIG.
  • the transmission efficiency could be improved by several percent compared to the comparative examples of FIGS.
  • the non-contact power receiving device and the non-contact type in which the allowable amount of positional deviation of the power transmitting unit and the power receiving unit is set large (for example, up to about 1 ⁇ 2 of the coil diameter).
  • a power transmission device and a non-contact power transmission / reception system can be realized.
  • electromagnetic resonance coupling As described above, in the power transmission / reception system according to the present embodiment, power is transmitted from the power transmission unit to the power reception unit by resonating the power transmission unit and the power reception unit with an electromagnetic field.
  • electromagnetic resonance coupling “magnetic field (magnetic field) resonance coupling”, “electromagnetic field (electromagnetic field) resonance coupling” or “electric field (electric field) resonance coupling” "
  • Electromagnetic field (electromagnetic field) resonance coupling means a coupling including any of “magnetic resonance coupling”, “magnetic field (magnetic field) resonance coupling”, and “electric field (electric field) resonance coupling”.
  • the power transmission unit and the power reception unit described in this specification employ a coil-shaped antenna, the power transmission unit and the power reception unit are mainly coupled by a magnetic field (magnetic field).
  • the part is “magnetic resonance coupling” or “magnetic field (magnetic field) resonance coupling”.
  • an antenna such as a meander line can be adopted as the power transmission unit and the power reception unit.
  • the power transmission unit and the power reception unit are mainly coupled by an electric field (electric field).
  • the power transmission unit and the power reception unit are “electric field (electric field) resonance coupled”.
  • the power transmission unit and the power reception unit including the electromagnetic induction coil are illustrated, but the present invention can also be applied to a resonance type non-contact power transmission and reception device that does not include the electromagnetic induction coil.
  • designing a power transmission unit and a power reception unit on the premise of positional deviation, and making the best efficiency in a state where the power transmission unit and the power reception unit are misaligned is a resonance type non-contact power transmission / reception that does not include an electromagnetic induction coil
  • the present invention can be applied not only to the resonance type but also to a non-contact power transmission / reception device that transmits and receives power by other methods.
  • FIG. 13 is a diagram showing a first arrangement example of resonance coils for explaining the positional deviation.
  • the arrangement relationship between the resonance coil 111 and the resonance coil 221 is defined by the horizontal shift amount D1, the height H1, and the rotation angle ⁇ . If the coil shape is circular, the rotation angle ⁇ does not affect much, but if the coil is a deformed coil (rectangle, polygon, etc.), the effect of the rotation angle ⁇ on transmission efficiency becomes large.
  • FIG. 14 is a diagram showing a second arrangement example of resonance coils for explaining the positional deviation.
  • a resonance coil 111 ⁇ / b> A and a resonance coil 221 ⁇ / b> A in which wiring is wound around a flat core material are illustrated as a power transmission unit and a power reception unit.
  • the arrangement relationship between the resonance coil 111A and the resonance coil 221A is defined by the horizontal shift amount D1, the height H1, and the rotation angle ⁇ .
  • the positional deviation may be other than the horizontal deviation D1.
  • the positional deviation includes the following deviations.
  • (Iv) In the case where an atypical coil is used for the power transmission unit / power reception unit, if the state where the power transmission unit and the power reception unit are arranged in a state where the predetermined power reception efficiency can be maintained is the optimal position, it is compared with the optimal position.
  • a state in which the power reception efficiency is lowered due to the positional relationship between the power transmission unit and the power reception unit being shifted in at least one of the X direction, the H direction, and the rotation direction (V) A state in which the positional relationship between the magnetic pole of the power transmission unit and the magnetic pole of the power reception unit is deviated in at least one of the X direction, the H direction, and the rotation direction as compared with the optimum position.
  • the positional relationship between the power transmission unit and the power reception unit is shifted from the state in which the resonance coil position is arranged in the optimum state in at least one of the X direction, the H direction, and the rotation direction. This can be called positional displacement.
  • the contactless power receiving device disclosed in the present embodiment is a contactless power receiving device for receiving the power transferred from power transmission device 200 in a contactless manner.
  • the power transmission device 200 includes a power transmission unit 220 and a power supply unit 250 that supplies AC power to the power transmission unit 220.
  • the non-contact power receiving device includes a power receiving unit 110 that receives power in a non-contact manner from a power transmission unit, and an electric load device (power storage device 190, PCU 120) that uses the power received by the power receiving unit 110.
  • the power receiving unit 110 When the power receiving unit 110 is arranged in a state where the horizontal axis between the central axis of the power receiving unit 110 and the central axis of the power transmitting unit 220 is shifted, the power receiving unit 110 has the power frequency f0 of the power source unit 250 used for non-contact power transmission. Is configured to improve the transmission efficiency (E3 in FIG. 11). That is, the power receiving unit 110 is designed with reference to a state where the position is shifted.
  • the power receiving unit 110 transmits the transmission efficiency at the power frequency f0 of the power source unit 250 used for non-contact power transmission when the power receiving unit 110 is disposed at the target position with respect to the power transmitting unit 220 (FIG. 11).
  • the transmission efficiency (E3 in FIG. 11) at the power supply frequency f0 when the power receiving unit 110 is arranged at a position shifted from the target position with respect to the power transmission unit 220 is higher than E4) of FIG.
  • the target position is a position where the power receiving unit 110 is arranged so that there is no positional deviation from the power transmitting unit 220.
  • the power supply frequency f0 matches the peak frequency at which the transmission efficiency peaks when the frequency is changed. Configured to do.
  • a peak (E5 in FIG. 11) at which the transmission efficiency is higher than the transmission efficiency at the power frequency f0 is greater than the power frequency.
  • the first frequency (fH in FIG. 11) is higher and the second frequency (fL in FIG. 11) is lower than the power supply frequency.
  • the contactless power receiving device further includes a matching unit 120 provided between the power receiving unit 110 and the electric load device (power storage device 190, PCU 120) for adjusting the impedance of the contactless power receiving device.
  • the power receiving unit 110 is disposed at a target position with respect to the power transmitting unit 220 and the matching unit is adjusted to be in the same electrical state as that without the matching unit (FIG. 11)
  • the power supply frequency f0 is set.
  • the peak at which the transmission efficiency is higher than the transmission efficiency E4 is at least at two locations of the first frequency (fH in FIG. 11) higher than the power supply frequency f0 and the second frequency (fL in FIG. 11) lower than the power supply frequency. Have.
  • the non-contact power receiving device includes a control device (vehicle ECU 300) that adjusts the impedance of the non-contact power receiving device with the matching unit 120 when the amount of positional deviation is different from a predetermined amount (for example, 150 mm in FIGS. 11 and 12). Further prepare.
  • a control device vehicle ECU 300 that adjusts the impedance of the non-contact power receiving device with the matching unit 120 when the amount of positional deviation is different from a predetermined amount (for example, 150 mm in FIGS. 11 and 12). Further prepare.
  • control device adjusts the impedance of the non-contact power receiving device by the matching unit 120 even if the positional deviation amount is substantially zero.
  • the power reception unit 110 is configured such that the difference between the power transmission unit 220 and the natural frequency is within ⁇ 10%.
  • the coupling coefficient between the power reception unit 110 and the power transmission unit 220 is 0.1 or less. More preferably, the power transmission unit 220 is formed between the power reception unit 110 and the power transmission unit 220 and formed between the power reception unit 110 and the power transmission unit 220 and a magnetic field that vibrates at a specific frequency. Power is transmitted to the power receiving unit 110 through at least one of an electric field that vibrates at a frequency.
  • this embodiment discloses a non-contact power transmission device for transmitting power in a non-contact manner to a power receiving device.
  • Power receiving device vehicle 100
  • the non-contact power transmission apparatus includes a power transmission unit 220 that transmits power to the power receiving unit 110 in a contactless manner, and a power supply unit 250 that supplies AC power to the power transmission unit 220.
  • the power transmission unit 220 When the power transmission unit 220 is arranged in a state where the horizontal axis of the power receiving unit 110 and the central axis of the power transmission unit 220 are shifted in the horizontal direction, the power transmission unit 220 has the power frequency f0 of the power supply unit 250 used for non-contact power transmission.
  • the transmission efficiency E3 is configured to be the best.
  • the transmission efficiency E3 is better than the transmission efficiency E4 at the power supply frequency f0 of the power supply unit 250 used for non-contact power transmission when the power transmission unit 220 is arranged at the target position with respect to the power reception unit 110. That is, the power transmission unit 220 is configured to improve the transmission efficiency E3 at the power supply frequency f0 when the power transmission unit 220 is disposed at a position shifted from the target position (position shift 150 mm in FIG. 11) with respect to the power reception unit 110. . That is, the power transmission unit 220 is designed on the basis of the state where the position is shifted.
  • the target position is a position where the power transmission unit 220 is arranged so that there is no positional deviation from the power reception unit 110.
  • the power supply frequency f0 matches the peak frequency at which the transmission efficiency shows a peak when the frequency is changed. Configured as follows.
  • the peak (E5 in FIG. 11) has a higher transmission efficiency than the transmission efficiency (E4 in FIG. 11) at power supply frequency f0.
  • the peak (E5 in FIG. 11) has a higher transmission efficiency than the transmission efficiency (E4 in FIG. 11) at power supply frequency f0.
  • the non-contact power transmission device 200 further includes a matching unit 260 that is provided between the power transmission unit 220 and the power source unit 250 and adjusts the impedance of the non-contact power transmission device 200.
  • a matching unit 260 that is provided between the power transmission unit 220 and the power source unit 250 and adjusts the impedance of the non-contact power transmission device 200.
  • 10 power transmission / reception system 100, 300 ECU, 91, 110 power receiving unit, 111, 340 secondary self-resonant coil, 112, 222 capacitor, 113, 350 secondary coil, 120, 260 matcher, 121 coil, 122, 123 , 262, 263 variable capacitor, 130 motor generator, 140 power transmission gear, 150 drive wheel, 160, 230 communication unit, 171 current sensor, 172 voltage sensor, 180 rectifier, 190 power storage device, 200 power transmission device, 210 high frequency power supply device, 212 connector, 90, 220 power transmission unit, 221, 330 primary self-resonant coil, 223, 320 primary coil, 250 power supply unit, 261 inductor, 310 high frequency power supply, 360 load, PCU power control unit .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 非接触受電装置は、送電装置(200)から転送される電力を、非接触で受電する。送電装置は、送電部(220)と、送電部に交流電力を供給する電源部(250)とを含む。非接触受電装置は、送電部から非接触で電力を受電する受電部(110)と、受電部で受電された電力を使用する電気負荷装置(190,120)とを備える。受電部は、受電部は、送電部との位置がずれた状態に配置された場合に、非接触電力伝送に使用する電源部の電源周波数での伝送効率が最も良くなるように構成される。好ましくは、受電部は、受電部の中心軸と送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、送電周波数を変更したときの伝送効率がピークを示すピーク周波数と電源周波数とが一致するように構成される。

Description

非接触受電装置、非接触送電装置および非接触送受電システム
 この発明は、非接触受電装置、非接触送電装置および非接触送受電システムに関する。
 近年、非接触で電気エネルギーを伝送可能にする技術として、磁界共鳴方式を用いたエネルギー伝送が注目されている。磁気共鳴方式では、電磁誘導方式よりも送電部と受電部との距離が大きい場合でも送電可能であることが知られている。
 しかし、磁気共鳴方式では、最適距離があり距離が近すぎると伝送効率が低くなる。特開2011-50140号公報(特許文献1)は、共鳴方式を用い、非接触で電力の送受を行なう場合に、電力の送り側と受け側との間の距離が接近し密結合状態となった場合であっても、伝送効率を高く維持できる技術が開示されている。
 この文献に開示された非接触送電装置では、交流電源からの交流電力を共鳴素子に供給し、これによって共鳴素子に磁界を発生させて、共鳴により相手方となる受電装置に対して交流電力を供給する構成において、交流電源と共鳴素子との間に自動整合器が設けられる。自動整合器は、交流電力の供給先の受電装置との間における結合係数に応じて、共鳴素子のインピーダンスを調整する。
特開2011-50140号公報 特開2010-141976号公報 特開2010-193598号公報
 上記の特開2011-50140号公報に開示された設計手法によると、送電装置と受電装置との位置関係がちょうどよい状態になった時に最大効率で送電することが可能なように共鳴コイルが設計される。そして、位置関係がずれたとき、たとえば距離が近づきすぎて密結合状態となったときには、自動整合器によってインピーダンスを調整して伝送効率を改善している。
 このような設計手法は、携帯型機器などのような重量が小さく位置合わせが容易である非接触受電装置には好適であるが、送受電部の位置合わせが容易でない車両などに適用する場合には多少の位置ズレは許容する必要があるので最大効率で送電できる機会は少ない。
 むしろ、位置ズレをある程度許容しつつ位置ズレしても効率が低下しないようにシステムを構築する必要がある。
 この発明の目的は、送電装置と受電装置の位置ズレが発生しても効率が低下しにくい非接触受電装置、非接触送電装置および非接触送受電システムを提供することである。
 この発明は、要約すると、送電装置から転送される電力を、非接触で受電するための非接触受電装置である。送電装置は、送電部と、送電部に交流電力を供給する電源部とを含む。非接触受電装置は、送電部から非接触で電力を受電する受電部と、受電部で受電された電力を使用する電気負荷装置とを備える。受電部は、受電部は、送電部との位置がずれた状態に配置された場合に、非接触電力伝送に使用する電源部の電源周波数での伝送効率が最も良くなるように構成される。
 好ましくは、受電部は、受電部の中心軸と送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、送電周波数を変更したときの伝送効率がピークを示すピーク周波数と電源周波数とが一致するように構成される。
 より好ましくは、受電部は、受電部の中心軸と送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、電源周波数での伝送効率よりも伝送効率が高くなるピークを、電源周波数よりも高い第1周波数および電源周波数よりも低い第2周波数の少なくとも2箇所に有するように構成される。
 さらに好ましくは、非接触受電装置は、受電部と電気負荷装置との間に設けられ、非接触受電装置のインピーダンスを調整するための整合器と、受電部の中心軸と送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、整合器で非接触受電装置のインピーダンスを調整する制御装置とをさらに備える。
 さらに好ましくは、非接触受電装置は、受電部と電気負荷装置との間に設けられ、非接触受電装置のインピーダンスを調整するための整合器と、受電部の中心軸と送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、整合器で非接触受電装置のインピーダンスを調整する制御装置とをさらに備える。
 好ましくは、受電部は、受電部の中心軸と送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、電源周波数での伝送効率よりも、伝送効率が高くなるピークを電源周波数よりも高い第1周波数および電源周波数よりも低い第2周波数の少なくとも2箇所に有するように構成される。
 好ましくは、非接触受電装置は、受電部と電気負荷装置との間に設けられ、非接触受電装置のインピーダンスを調整するための整合器と、受電部の中心軸と送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、整合器で非接触受電装置のインピーダンスを調整する制御装置とをさらに備える。
 好ましくは、非接触受電装置は、受電部と電気負荷装置との間に設けられ、非接触受電装置のインピーダンスを調整するための整合器と、受電部の中心軸と送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、整合器で非接触受電装置のインピーダンスを調整する制御装置とをさらに備える。
 好ましくは、受電部は、送電部と固有周波数の差が±10%以内となるように構成される。
 より好ましくは、受電部と送電部との結合係数は、0.1以下である。
 より好ましくは、送電部は、受電部と送電部との間に形成され、かつ特定の周波数で振動する磁界と、受電部と送電部との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、受電部に電力を送電する。
 この発明は、他の局面では、受電装置に対して非接触で電力を送電するための非接触送電装置である。受電装置は、受電部と、受電部から電力を受ける電気負荷装置とを含む。非接触送電装置は、受電部に非接触で電力を送電する送電部と、送電部に交流電力を供給する電源部とを備える。送電部は、受電部は、送電部との位置がずれた状態に配置された場合に、非接触電力伝送に使用する電源部の電源周波数での伝送効率が最も良くなるように構成される。
 好ましくは、送電部は、受電部の中心軸と送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、送電周波数を変更したときの伝送効率がピークを示すピーク周波数と電源周波数とが一致するように構成される。
 より好ましくは、送電部は、受電部の中心軸と送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、電源周波数での伝送効率よりも伝送効率が高くなるピークを、電源周波数よりも高い第1周波数および電源周波数よりも低い第2周波数の少なくとも2箇所に有するように構成される。
 さらに好ましくは、非接触送電装置は、送電部と電源部との間に設けられ、非接触送電装置のインピーダンスを調整するための整合器と、受電部の中心軸と送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、整合器で非接触送電装置のインピーダンスを調整する制御装置とをさらに備える。
 さらに好ましくは、非接触送電装置は、送電部と電源部との間に設けられ、非接触送電装置のインピーダンスを調整するための整合器と、受電部の中心軸と送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、整合器で非接触送電装置のインピーダンスを調整する制御装置とをさらに備える。
 好ましくは、送電部は、受電部の中心軸と送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、電源周波数での伝送効率よりも伝送効率が高くなるピークを、電源周波数よりも高い第1周波数および電源周波数よりも低い第2周波数の少なくとも2箇所に有するように構成される。
 好ましくは、非接触送電装置は、送電部と電源部との間に設けられ、非接触送電装置のインピーダンスを調整するための整合器と、受電部の中心軸と送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、整合器で非接触送電装置のインピーダンスを調整する制御装置とをさらに備える。
 好ましくは、非接触送電装置は、送電部と電源部との間に設けられ、非接触送電装置のインピーダンスを調整するための整合器と、受電部の中心軸と送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、整合器で非接触送電装置のインピーダンスを調整する制御装置とをさらに備える。
 好ましくは、送電部は、受電部と固有周波数の差が±10%以内となるように構成される。
 より好ましくは、受電部と送電部との結合係数は、0.1以下である。
 より好ましくは、送電部は、受電部と送電部との間に形成され、かつ特定の周波数で振動する磁界と、受電部と送電部との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、受電部に電力を送電する。
 この発明はさらに他の局面では、非接触送受電システムであって、非接触送電装置と、非接触送電装置から転送される電力を、非接触で受電するための非接触受電装置とを備える。非接触送電装置は、送電部と、送電部に交流電力を供給する電源部とを含む。非接触受電装置は、送電部の固有周波数と同じ固有周波数の受電部と、受電部で受電された電力を使用する電気負荷装置とを含む。受電部は、受電部は、送電部との位置がずれた状態に配置された場合に、非接触電力伝送に使用する電源部の電源周波数での伝送効率が最も良くなるように構成される。
 好ましくは、受電部は、送電部と固有周波数の差が±10%以内となるように構成される。
 より好ましくは、受電部と送電部との結合係数は、0.1以下である。
 より好ましくは、送電部は、受電部と送電部との間に形成され、かつ特定の周波数で振動する磁界と、受電部と送電部との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、受電部に電力を送電する。
 本発明によれば、送電装置と受電装置にある程度位置ズレが発生しても極端な効率低下をおこさないようにすることができる。
この発明の実施の形態による車両用給電システムの全体構成図である。 共鳴法による送電の原理を説明するための図である。 電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。 電力伝送システムのシミュレーションモデルを示す図である。 送電装置と受電装置との間の固有周波数のズレと効率の関係を示す図である。 図1に示した電力送受電システム10の詳細構成図である。 受電部110と送電部220の間の位置ズレについて説明するための図である。 実施の形態に対する比較例の送電部または受電部の特性(未整合時)を説明するための図である。 実施の形態に対する比較例の送電部または受電部の特性(整合時)を説明するための図である。 受電部または送電部のコイルの位置関係と特性について説明するための図である。 本実施の形態の送電部または受電部の特性(未整合時)を説明するための図である。 本実施の形態の送電部または受電部の特性(整合時)を説明するための図である。 位置ズレについて説明するための共鳴コイルの第1配置例を示す図である。 位置ズレについて説明するための共鳴コイルの第2配置例を示す図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 図1は、この発明の実施の形態による電力送受電システムの全体構成図である。
 図1を参照して、電力送受電システム10は、車両100と、送電装置200とを含む。車両100は、受電部110と、通信部160とを含む。
 受電部110は、車体底面に設置され、送電装置200の送電部220から送出される電力を非接触で受電するように構成される。詳しくは、受電部110は、後に説明する自己共振コイル(共鳴コイルともいう)を含み、送電部220に含まれる自己共振コイルと電磁場を介して共鳴することにより送電部220から非接触で受電する。通信部160は、車両100と送電装置200との間で通信を行なうための通信インターフェースである。
 送電装置200は、高周波電源装置210と、送電部220と、通信部230とを含む。高周波電源装置210は、たとえばコネクタ212を介して供給される商用交流電力を高周波の電力に変換して送電部220へ出力する。
 送電部220は、たとえば駐車場の床面に設置され、高周波電源装置210から供給される高周波電力を車両100の受電部110へ非接触で送出するように構成される。詳しくは、送電部220は、自己共振コイルを含み、この自己共振コイルが受電部110に含まれる自己共振コイルと電磁場を介して共鳴することにより受電部110へ非接触で送電する。通信部230は、送電装置200と車両100との間で通信を行なうための通信インターフェースである。
 ここで、送電装置200から車両100への給電に際し、車両100を送電装置200へ誘導して車両100の受電部110と送電装置200の送電部220との位置合わせを行なう必要がある。すなわち、車両100は、位置合わせが簡単ではない。携帯型機器では、ユーザが手で持ち上げて充電器等の給電ユニットの適切な位置に置くことが簡単に行える。しかし、車両は、ユーザが車両を操作し適切な位置に車両を停車させる必要があり、手で持ち上げて位置を調整するというわけにはいかない。
 このため、送電装置200から車両100への給電は、位置ズレに対して許容度が大きい方式を採用することが望ましい。電磁誘導方式は、送信距離は短距離であり位置ズレに対しても許容度が小さいと言われている。電磁誘導方式を車両への給電に採用しようとすると、駐車時に運転者の精度の高い運転技術が要求されたり、高精度な車両誘導装置を車両に搭載することが必要となったり、ラフな駐車位置でも対応可能なようにコイル位置を移動させる可動部が必要となったりする可能性がある。
 電磁界による共鳴方式は、送信距離が数mであっても比較的大電力を送信することが可能であり、位置ズレに対する許容度も電磁誘導方式よりも一般的に大きいと言われている。このため、この実施の形態による電力送受電システム10では、共鳴法を用いて送電装置200から車両100への給電が行なわれる。
 なお、本実施の形態に係る電力送受電システムにおいては、送電部の固有周波数と、受電部の固有周波数とは、同じ固有周波数とされている。
 「送電部の固有周波数」とは、送電部のコイルおよびキャパシタを含む電気回路が自由振動する場合の振動周波数を意味する。なお、「送電部の共振周波数」とは、送電部のコイルおよびキャパシタを含む電気回路で、制動力または電気抵抗をゼロとしたときの固有周波数を意味する。
 同様に、「受電部の固有周波数」とは、受電部のコイルおよびキャパシタを含む電気回路が自由振動する場合の振動周波数を意味する。また、「受電部の共振周波数」とは、受電部のコイルおよびキャパシタを含む電気回路で、制動力または電気抵抗をゼロとしたときの固有周波数を意味する。
 本明細書において、「同じ固有周波数」とは、完全に同じ場合だけでなく、固有周波数が実質的に同じ場合も含む。「固有周波数が実質的に同じ」とは、送電部の固有周波数と受電部の固有周波数との差が送電部の固有周波数または受電部の固有周波数の10%以内の場合を意味する。
 図2は、共鳴法による送電の原理を説明するための図である。
 図2を参照して、この共鳴法では、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場を介して電力が伝送される。
 具体的には、高周波電源310に一次コイル320を接続し、電磁誘導により一次コイル320と磁気的に結合される一次自己共振コイル330へ高周波電力を給電する。一次自己共振コイル330は、コイル自身のインダクタンスと浮遊容量とによるLC共振器であり、一次自己共振コイル330と同じ共振周波数を有する二次自己共振コイル340と電磁場(近接場)を介して共鳴する。そうすると、一次自己共振コイル330から二次自己共振コイル340へ電磁場を介してエネルギー(電力)が移動する。二次自己共振コイル340へ移動したエネルギー(電力)は、電磁誘導により二次自己共振コイル340と磁気的に結合される二次コイル350によって取出され、負荷360へ供給される。なお、共鳴法による送電は、一次自己共振コイル330と二次自己共振コイル340との共鳴強度を示すQ値がたとえば100よりも大きいときに実現される。
 また、本実施の形態に係る電力送受電システムにおいては、送電部と受電部とを電磁界によって共鳴(共振)させることで送電部から受電部に電力を送電しており、送電部と受電部との間の結合係数(κ)は、0.1以下である。なお、一般的に電磁誘導を利用した電力伝送では、送電部と受電部と間の結合係数(κ)は1.0に近いものとなっている。
 なお、図1との対応関係については、二次自己共振コイル340および二次コイル350が図1の受電部110に対応し、一次コイル320および一次自己共振コイル330が図1の送電部220に対応する。
 図3は、電流源(磁流源)からの距離と電磁界の強度との関係を示した図である。
 図3を参照して、電磁界は3つの成分を含む。曲線k1は、波源からの距離に反比例した成分であり、「輻射電磁界」と称される。曲線k2は、波源からの距離の2乗に反比例した成分であり、「誘導電磁界」と称される。また、曲線k3は、波源からの距離の3乗に反比例した成分であり、「静電磁界」と称される。
 この中でも波源からの距離とともに急激に電磁波の強度が減少する領域があるが、共鳴法では、この近接場(エバネッセント場)を利用してエネルギー(電力)の伝送が行なわれる。すなわち、近接場を利用して、同じ固有振動数を有する一対の共鳴器(たとえば一対のLC共振コイル)を共鳴させることにより、一方の共鳴器(一次自己共振コイル)から他方の共鳴器(二次自己共振コイル)へエネルギー(電力)を伝送する。この近接場は遠方にエネルギー(電力)を伝播しないので、遠方までエネルギーを伝播する「輻射電磁界」によりエネルギー(電力)を伝送する電磁波に比べて、共鳴法は、より少ないエネルギー損失で送電することができる。
 図4および図5を用いて、固有周波数の差と電力伝送効率との関係とを解析したシミュレーション結果について説明する。図4は、電力伝送システムのシミュレーションモデルを示す図である。また、図5は、送電部および受電部の固有周波数のズレと電力伝送効率との関係を示す図である。
 図4を参照して、電力伝送システム89は、送電部90と、受電部91とを含む。送電部90は、第1コイル92と、第2コイル93とを含む。第2コイル93は、共振コイル94と、共振コイル94に接続されたキャパシタ95とを含む。受電部91は、第3コイル96と、第4コイル97とを含む。第3コイル96は、共振コイル99と、この共振コイル99に接続されたキャパシタ98とを含む。
 共振コイル94のインダクタンスをインダクタンスLtとし、キャパシタ95のキャパシタンスをキャパシタンスC1とする。また、共振コイル99のインダクタンスをインダクタンスLrとし、キャパシタ98のキャパシタンスをキャパシタンスC2とする。このように各パラメータを設定すると、第2コイル93の固有周波数f1は、下記の式(1)によって示され、第3コイル96の固有周波数f2は、下記の式(2)によって示される。
 f1=1/{2π(Lt×C1)1/2}・・・(1)
 f2=1/{2π(Lr×C2)1/2}・・・(2)
 ここで、インダクタンスLrおよびキャパシタンスC1,C2を固定して、インダクタンスLtのみを変化させた場合において、第2コイル93および第3コイル96の固有周波数のズレと電力伝送効率との関係を図5に示す。なお、このシミュレーションにおいては、共振コイル94および共振コイル99の相対的な位置関係は固定とし、さらに、第2コイル93に供給される電流の周波数は一定である。
 図5に示すグラフのうち、横軸は固有周波数のズレ(%)を示し、縦軸は一定周波数での電力伝送効率(%)を示す。固有周波数のズレ(%)は、下記の式(3)によって示される。
 (固有周波数のズレ)={(f1-f2)/f2}×100(%)・・・(3)
 図5からも明らかなように、固有周波数のズレ(%)が0%の場合には、電力伝送効率は100%近くとなる。固有周波数のズレ(%)が±5%の場合には、電力伝送効率は40%程度となる。固有周波数のズレ(%)が±10%の場合には、電力伝送効率は10%程度となる。固有周波数のズレ(%)が±15%の場合には、電力伝送効率は5%程度となる。すなわち、固有周波数のズレ(%)の絶対値(固有周波数の差)が、第3コイル96の固有周波数の10%以下の範囲となるように第2コイル93および第3コイル96の固有周波数を設定することで、電力伝送効率を実用的なレベルに高めることができることがわかる。さらに、固有周波数のズレ(%)の絶対値が第3コイル96の固有周波数の5%以下となるように第2コイル93および第3コイル96の固有周波数を設定すると、電力伝送効率をさらに高めることができるのでより好ましい。なお、シミュレーションソフトしては、電磁界解析ソフトウェア(JMAG(登録商標):株式会社JSOL製)を採用している。
 図6は、図1に示した電力送受電システム10の詳細構成図である。図6を参照して、車両100は、受電部110および通信部160に加えて、整合器120と、整流器180と、充電リレー(CHR)170と、蓄電装置190と、システムメインリレー(SMR)115と、パワーコントロールユニットPCU(Power Control Unit)120と、モータジェネレータ130と、動力伝達ギヤ140と、駆動輪150と、制御装置である車両ECU(Electronic Control Unit)300と、電流センサ171と、電圧センサ172とを含む。受電部110は、二次自己共振コイル111と、コンデンサ112と、二次コイル113とを含む。
 なお、本実施の形態においては、車両100として電気自動車を例として説明するが、蓄電装置に蓄えられた電力を用いて走行が可能な車両であれば車両100の構成はこれに限られない。車両100の他の例としては、エンジンを搭載したハイブリッド車両や、燃料電池を搭載した燃料電池車などが含まれる。
 二次自己共振コイル111は、送電装置200に含まれる一次自己共振コイル221から、電磁場を用いて電磁共鳴により受電する。
 この二次自己共振コイル111については、送電装置200の一次自己共振コイル221との距離や、一次自己共振コイル221および二次自己共振コイル111の共鳴周波数等に基づいて、一次自己共振コイル221と二次自己共振コイル111との共鳴強度を示すQ値が大きくなり(たとえば、Q>100)、その結合度を示す結合係数(κ)等が小さく(たとえば0.1以下)となるようにその巻数やコイル間距離が適宜設定される。
 コンデンサ112は、二次自己共振コイル111の両端に接続され、二次自己共振コイル111とともにLC共振回路を形成する。コンデンサ112の容量は、二次自己共振コイル111の有するインダクタンスに応じて、所定の共鳴周波数となるように適宜設定される。なお、二次自己共振コイル111自身の有する浮遊容量で所望の共振周波数が得られる場合には、コンデンサ112が省略される場合がある。
 二次コイル113は、二次自己共振コイル111と同軸上に設けられ、電磁誘導により二次自己共振コイル111と磁気的に結合可能である。この二次コイル113は、二次自己共振コイル111により受電された電力を電磁誘導により取出して整合器120を経由して整流器180へ出力する。
 整合器120は、コイル121と、可変コンデンサ122,123とを含む。なお、整合器120は、可変コンデンサ122,123を調整することによって受電装置のインピーダンスを調整することができる。可変コンデンサ122,123を所定の状態とすると、整合器120が無い状態、すなわち整合器120を挿入しない場合のインピーダンスにも受電装置のインピーダンスを設定することが可能である。
 整流器180は、二次コイル113から受ける交流電力を整流し、その整流された直流電力を、CHR170を介して蓄電装置190に出力する。整流器180としては、たとえば、ダイオードブリッジおよび平滑用のコンデンサ(いずれも図示せず)を含む構成とすることができる。整流器180として、スイッチング制御を用いて整流を行なう、いわゆるスイッチングレギュレータを用いることも可能であるが、整流器180が受電部110に含まれる場合もあり、発生する電磁場に伴うスイッチング素子の誤動作等を防止するために、ダイオードブリッジのような静止型の整流器とすることがより好ましい。
 なお、本実施の形態においては、整流器180により整流された直流電力が蓄電装置190へ直接出力される構成としているが、整流後の直流電圧が、蓄電装置190が許容できる充電電圧と異なる場合には、整流器180と蓄電装置190との間に、電圧変換するためのDC/DCコンバータ(図示せず)が設けられてもよい。
 電圧センサ172は、整流器180と蓄電装置190とを結ぶ電力線対間に設けられる。電圧センサ172は、整流器180の二次側の直流電圧、すなわち送電装置200から受電した受電電圧を検出し、その検出値VCを車両ECU300に出力する。
 電流センサ171は、整流器180と蓄電装置190とを結ぶ電力線に設けられる。電流センサ171は、蓄電装置190への充電電流を検出し、その検出値ICを車両ECU300へ出力する。
 CHR170は、整流器180と蓄電装置190とに電気的に接続される。CHR170は、車両ECU300からの制御信号SE2により制御され、整流器180から蓄電装置190への電力の供給と遮断とを切換える。
 蓄電装置190は、充放電可能に構成された電力貯蔵要素である。蓄電装置190は、たとえば、リチウムイオン電池、ニッケル水素電池あるいは鉛蓄電池などの二次電池や、電気二重層キャパシタなどの蓄電素子を含んで構成される。
 蓄電装置190は、CHR170を介して整流器180と接続される。蓄電装置190は、受電部110で受電され整流器180で整流された電力を蓄電する。また、蓄電装置190は、SMR115を介してPCU120とも接続される。蓄電装置190は、車両駆動力を発生させるための電力をPCU120へ供給する。さらに、蓄電装置190は、モータジェネレータ130で発電された電力を蓄電する。蓄電装置190の出力はたとえば200V程度である。
 蓄電装置190には、いずれも図示しないが、蓄電装置190の電圧VBおよび入出力される電流IBを検出するための電圧センサおよび電流センサが設けられる。これらの検出値は、車両ECU300へ出力される。車両ECU300は、この電圧VBおよび電流IBに基づいて、蓄電装置190の充電状態(「SOC(State Of Charge)」とも称される。)を演算する。
 SMR115は、蓄電装置190とPCU120とを結ぶ電力線に介挿される。そして、SMR115は、車両ECU300からの制御信号SE1によって制御され、蓄電装置190とPCU120との間での電力の供給と遮断とを切換える。
 PCU120は、いずれも図示しないが、コンバータやインバータを含む。コンバータは、車両ECU300からの制御信号PWCにより制御されて蓄電装置190からの電圧を変換する。インバータは、車両ECU300からの制御信号PWIにより制御されて、コンバータで変換された電力を用いてモータジェネレータ130を駆動する。
 モータジェネレータ130は交流回転電機であり、たとえば、永久磁石が埋設されたロータを備える永久磁石型同期電動機である。
 モータジェネレータ130の出力トルクは、動力伝達ギヤ140を介して駆動輪150に伝達されて、車両100を走行させる。モータジェネレータ130は、車両100の回生制動動作時には、駆動輪150の回転力によって発電することができる。そして、その発電電力は、PCU120によって蓄電装置190の充電電力に変換される。
 また、モータジェネレータ130の他にエンジン(図示せず)が搭載されたハイブリッド自動車では、このエンジンおよびモータジェネレータ130を協調的に動作させることによって、必要な車両駆動力が発生される。この場合、エンジンの回転による発電電力を用いて、蓄電装置190を充電することも可能である。
 通信部160は、上述のように、車両100と送電装置200との間で無線通信を行なうための通信インターフェースである。通信部160は、車両ECU300からの、蓄電装置190についてのSOCを含むバッテリ情報INFOを送電装置200へ出力する。また、通信部160は、送電装置200からの送電の開始および停止を指示する信号STRT,STPを送電装置200へ出力する。
 車両ECU300は、いずれも図1には図示しないがCPU(Central Processing Unit)、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、車両100および各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 車両ECU300は、ユーザの操作などによる充電開始信号TRGを受けると、所定の条件が成立したことに基づいて、送電の開始を指示する信号STRTを、通信部160を介して送電装置200へ出力する。また、車両ECU300は、蓄電装置190が満充電になったこと、またはユーザによる操作などに基づいて、送電の停止を指示する信号STPを、通信部160を介して送電装置200へ出力する。
 送電装置200は、電源装置210と、送電部220とを含む。電源装置210は、通信部230に加えて、制御装置である送電ECU240と、電源部250と、整合器260とをさらに含む。また、送電部220は、一次自己共振コイル221と、コンデンサ222と、一次コイル223とを含む。
 電源部250は、送電ECU240からの制御信号MODによって制御され、商用電源などの交流電源から受ける電力を高周波の電力に変換する。そして、電源部250は、その変換した高周波電力を、整合器260を介して一次コイル223へ供給する。
 整合器260は、送電装置200と車両100との間のインピーダンスをマッチングさせるための回路である。整合器260は、インダクタ261と可変コンデンサ262,263とを含んで構成される。整合器260は、車両100から送信されるバッテリ情報INFOの基づいて送電ECU240から与えられる制御信号ADJにより制御され、送電装置200のインピーダンスが車両100側のインピーダンスに合致するように可変コンデンサおよび可変インダクタが調整される。また、整合器260は、インピーダンス調整が完了したことを示す信号COMPを送電ECU240へ出力する。
 なお、図6には、送電側に整合器260を設け、受電側に整合器120を設けているが、整合器を送電側または受電側のいずれか一方のみに設ける構成としても良い。
 一次自己共振コイル221は、車両100の受電部110に含まれる二次自己共振コイル111へ、電磁共鳴により電力を転送する。
 一次自己共振コイル221については、車両100の二次自己共振コイル111との距離や、一次自己共振コイル221および二次自己共振コイル111の共鳴周波数等に基づいて、一次自己共振コイル221と二次自己共振コイル111との共鳴強度を示すQ値が大きくなり(たとえば、Q>100)、その結合度を示すκ等が小さく(たとえば0.1以下)となるようにその巻数やコイル間距離が適宜設定される。
 コンデンサ222は、一次自己共振コイル221の両端に接続され、一次自己共振コイル221とともにLC共振回路を形成する。コンデンサ222の容量は、一次自己共振コイル221の有するインダクタンスに応じて、所定の共鳴周波数となるように適宜設定される。なお、一次自己共振コイル221自身の有する浮遊容量で所望の共振周波数が得られる場合には、コンデンサ222が省略される場合がある。
 一次コイル223は、一次自己共振コイル221と同軸上に設けられ、電磁誘導により一次自己共振コイル221と磁気的に結合可能である。一次コイル223は、整合器260を介して供給された高周波電力を、電磁誘導によって一次自己共振コイル221に伝達する。
 通信部230は、上述のように、送電装置200と車両100との間で無線通信を行なうための通信インターフェースである。通信部230は、車両100側の通信部160から送信されるバッテリ情報INFO、ならびに、送電の開始および停止を指示する信号STRT,STPを受信し、これらの情報を送電ECU240へ出力する。また、通信部230は、整合器260からのインピーダンス調整が完了したことを示す信号COMPを送電ECU240から受け、それを車両100側へ出力する。
 送電ECU240は、いずれも図1には図示しないがCPU、記憶装置および入出力バッファを含み、各センサ等からの信号の入力や各機器への制御信号の出力を行なうとともに、電源装置210における各機器の制御を行なう。なお、これらの制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 なお、送電装置200から車両100への電力伝送については、図4,5で説明した送電部90および受電部91についての関係が成立する。図6の電力伝送システムにおいては、送電部220の固有周波数と、受電部110の固有周波数との差は、送電部220の固有周波数または受電部110の固有周波数の±10%以下である。このような範囲に送電部220および受電部110の固有周波数を設定することで電力伝送効率を高めることができる。一方、上記の固有周波数の差が±10%よりも大きくなると、電力伝送効率が10%よりも小さくなり、電力伝送時間が長くなるなどの弊害が生じる。
 なお、送電部220(受電部110)の固有周波数とは、送電部220(受電部110)を構成する電気回路(共振回路)が自由振動する場合の振動周波数を意味する。なお、送電部220(受電部110)を構成する電気回路(共振回路)において、制動力または電気抵抗を零としたときの固有周波数は、送電部220(受電部110)の共振周波数とも称される。
 送電部220および受電部110は、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する磁界と、送電部220と受電部110との間に形成され、かつ、特定の周波数で振動する電界との少なくとも一方を通じて、非接触で電力を授受する。送電部220と受電部110との結合係数κは0.1以下であり、送電部220と受電部110とを電磁界によって共振(共鳴)させることで、送電部220から受電部110へ電力が伝送される。
 図7は、受電部110と送電部220の間の位置ズレについて説明するための図である。
 図7を参照して、受電部110と送電部220の間の水平位置ズレ距離D1は、受電部110の水平中心と送電部220の水平中心の水平距離である。しかし、水平位置ズレ距離D1がゼロであることを前提に送電部や受電部を設計をすると、水平位置ズレが生じた場合に効率の低下が大きくなる。実際には水平位置ズレ距離D1がゼロとなるように駐車されるよりも、水平位置ズレ距離D1がゼロでない状態に駐車がされるほうが可能性が高い。
 また、受電部110と送電部220の間の垂直距離H1も、乗員の有無、荷物積載量、タイヤ空気圧などによって変動する。したがって、垂直距離H1が固定であるとしてその固定距離ぴったりに合わせて送電部や受電部を設計をすると、垂直位置ズレが生じた場合に効率の低下が大きくなる。
 そこで、本実施の形態では、位置ズレがあることを前提として送電部や受電部の設計を行なう。
 図8は、実施の形態に対する比較例の送電部または受電部の特性(未整合時)を説明するための図である。
 図9は、実施の形態に対する比較例の送電部または受電部の特性(整合時)を説明するための図である。
 図8、図9を参照して、比較例の共鳴型非接触送受電システムでの共鳴コイルは、送電部と受電部との間の伝送効率を最大化するため、位置ズレなしの正対状態のとき伝送効率ピークが電源周波数f0と一致するように設計され、ピーク周波数は一つである。
 図8において位置ズレ0mm(位置ズレなし)の状態の特性曲線W1に比べて位置ズレ150mmの状態の特性曲線W2では電源周波数f0での伝送効率がE2からE1に低下してしまう。
 そこで、図9に示すように整合器によってインピーダンスのマッチングを行なうと、位置ズレ150mmの特性曲線W2が特性曲線W4のように変化し、電源周波数f0での伝送効率はE1からE3に改善される。しかし、改善した場合でも位置ズレなしの状態の伝送効率E2に一致するまでは改善されず、位置ズレをプラスマイナス150mmまで許容する場合の伝送効率保証値は最大で伝送効率E3となる。
 図10は、受電部または送電部のコイルの位置関係と特性について説明するための図である。なお、図7との対応の容易のため、水平位置ズレ距離D1、垂直距離H1を図10にも示している。
 図10を参照して、送電部は、共鳴コイル(一次自己共振コイル221)と誘導コイル(一次コイル223)とを含んで構成される。受電部は、共鳴コイル(二次自己共振コイル111)と誘導コイル(二次コイル113)とを含んで構成される。
 共鳴コイル(一次自己共振コイル221)と誘導コイル(一次コイル223)との距離X1、または共鳴コイル(二次自己共振コイル111)と誘導コイル(二次コイル113)との距離X2を大きくするように送電部または受電部を設計すると、送電部と受電部とは密結合となり伝送効率は2ピークを示すようになる。また距離Dが離れる場合には、送電部と受電部との結合は疎結合にシフトしてしまうので、共鳴コイル(一次自己共振コイル221)と誘導コイル(一次コイル223)との距離X1、または共鳴コイル(二次自己共振コイル111)と誘導コイル(二次コイル113)との距離X2を離して調整する。
 このようにして、距離Dをいくらとしたときに、送電部と受電部とがちょうどよい結合度となるように送電部、受電部を設計しておくかは、製造メーカにとって重要である。
 図11は、本実施の形態の送電部または受電部の特性(未整合時)を説明するための図である。
 図12は、本実施の形態の送電部または受電部の特性(整合時)を説明するための図である。
 図11、図12を参照して、比較例の共鳴型非接触送受電システムでの共鳴コイルは、位置ズレが発生することを前提として送電部と受電部との間の伝送効率を最大化するため、位置ズレ150mmの正対状態のとき伝送効率ピークが電源周波数f0と一致するように設計され、特性曲線W6に示すようにピーク周波数は一つである。
 図11において位置ズレ150mmの状態の特性曲線W6に比べて位置ズレ0mm(位置ズレなし)の状態の特性曲線W5では電源周波数f0での伝送効率は、E3からE4に低下している。特性曲線W5は、電源周波数f0より低い周波数fLと電源周波数f0より高い周波数fHの2つの周波数で伝送効率がE4よりも高いE5となるピークを有する。
 このように設計した送電部または受電部に対して、図12に示すように整合器によってインピーダンスのマッチングを行なうと、位置ズレ0mmの特性曲線W5が特性曲線W7のように変化し、電源周波数f0での伝送効率はE4からE6に改善される。
 位置ズレ150mmの位置において伝送効率保証値E3を達成するように図10に示したコイル間距離X1またはX2を決定すれば、位置ズレが150mmよりも小さい状態では整合器によってインピーダンスをマッチングすることにより伝送効率をE3よりも高くすることができる。また、図7に示した垂直距離H1については、乗員が乗っていない場合(垂直距離H1が大きくなる状態)を基準にして、最大ピークが1つでありその周波数が電源周波数に一致するようにコイル間距離X1またはX2を決定すればよい。
 なお、本実施の形態では、誘導コイルや共鳴コイルに同じものを使用した場合であっても、図10に示すコイル間距離X1、X2を調整して送電部または受電部を作ることによって、位置ズレ150mmの状態とした場合において、図8、図9の比較例よりも数%の伝送効率を向上させることができた。
 以上のように送電部、受電部の設計を行なうことにより、送電部や受電部の位置ズレの許容量を大きく(たとえば、コイル径の1/2程度まで)設定した非接触受電装置、非接触送電装置および非接触送受電システムを実現することができる。
 上記のように本実施の形態に係る電力送受電システムにおいては、送電部と受電部とを電磁界によって共鳴させることで送電部から受電部に電力を送電させている。このような電力伝送における送電部と受電部との結合を、たとえば、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電磁界(電磁場)共振結合」または「電界(電場)共振結合」という。
 「電磁界(電磁場)共振結合」は、「磁気共鳴結合」、「磁界(磁場)共鳴結合」、「電界(電場)共振結合」のいずれも含む結合を意味する。
 本明細書中で説明した送電部と受電部とは、コイル形状のアンテナが採用されているため、送電部と受電部とは主に、磁界(磁場)によって結合しており、送電部と受電部とは、「磁気共鳴結合」または「磁界(磁場)共鳴結合」している。
 なお、送電部と受電部として、たとえば、メアンダラインなどのアンテナを採用することも可能であり、この場合には、送電部と受電部とは主に、電界(電場)によって結合している。このときには、送電部と受電部とは、「電界(電場)共振結合」している。
 また、本実施の形態では、電磁誘導コイルを含んだ送電部、受電部を例示したが、電磁誘導コイルを含まない共鳴型非接触送受電装置にも本発明は適用可能である。すなわち、位置ズレを前提として送電部および受電部を設計し、送電部と受電部が位置ズレした状態で効率が最も良くなるようにすることは、電磁誘導コイルを含まない共鳴型非接触送受電装置にも、また共鳴型に限らず他の方式で送受電する非接触送受電装置にも適用することができる。
 また、位置ズレについては、図7や図10では主として水平方向のズレを例示して説明したが、水平方向以外のズレについても対象とすることが意図される。
 図13は、位置ズレについて説明するための共鳴コイルの第1配置例を示す図である。図13に示すように、共鳴コイル111と共鳴コイル221との配置関係が水平ズレ量D1、高さH1、回転角度θで規定される。コイル形状が円形の場合であれば回転角度θはあまり影響しないが、異型コイルの場合(四角形、多角形など)の場合には、回転角度θが伝送効率与える影響も大きくなる。
 図14は、位置ズレについて説明するための共鳴コイルの第2配置例を示す図である。図14では、平板のコア材に配線を巻回した共鳴コイル111Aと共鳴コイル221Aが送電部、受電部として例示される。
 図14に示すように、共鳴コイル111Aと共鳴コイル221Aとの配置関係が水平ズレ量D1、高さH1、回転角度θで規定される。
 図13、図14を参照して、位置ズレは、水平方向のズレD1以外であっても良い。本明細書においては、位置ズレは、以下のズレを含む。
(i)水平方向の位置ズレ(X方向のズレと称する)、
(ii)高さ方向(H方向のズレと称する)へのズレ、
(iii)中心軸に対する回転角度θのズレ(回転方向のズレと称する)、
(iv)送電部/受電部に異型コイルを用いた場合には、所定の受電効率を維持できる状態に送電部と受電部とが配置された状態を最適位置とすると、最適位置と比較して、X方向、H方向、回転方向の少なくともいずれか一方に送電部と受電部の位置関係がずれることで受電効率が低下する状態、
(v)上記の最適位置と比較して、送電部の磁極と受電部の磁極の位置関係が、X方向、H方向、回転方向の少なくともいずれか一方にずれた状態。
 特に、図14に示すような共鳴コイルの場合には、最適状態に共鳴コイル位置を配置した状態からX方向、H方向、回転方向の少なくともいずれか一方に送電部と受電部の位置関係がずれたことを位置ズレと呼ぶことができる。
 最後に、再び図を参照して、本実施の形態について総括する。図6を参照して、本実施の形態に開示される非接触受電装置は、送電装置200から転送される電力を、非接触で受電するための非接触受電装置である。送電装置200は、送電部220と、送電部220に交流電力を供給する電源部250とを含む。非接触受電装置は、送電部から非接触で電力を受電する受電部110と、受電部110で受電された電力を使用する電気負荷装置(蓄電装置190,PCU120)とを含む。受電部110は、受電部110の中心軸と送電部220の中心軸との水平方向の位置がずれた状態に配置された場合に、非接触電力伝送に使用する電源部250の電源周波数f0での伝送効率(図11のE3)を最も良くするように構成される。つまり、位置ズレした位置に配置された状態を基準として受電部110が設計される。
 なお、図11では、受電部110は、受電部110が送電部220に対して目標位置に配置された場合の非接触電力伝送に使用する電源部250の電源周波数f0での伝送効率(図11のE4)よりも、受電部110が送電部220に対して目標位置よりも位置ズレした位置に配置された場合の電源周波数f0での伝送効率(図11のE3)が高くなるように構成される。
 好ましくは、目標位置は、送電部220との位置ズレが無いように受電部110が配置された位置である。受電部110は、送電部220に対する位置ズレ量が所定量(たとえば、図11では150mm)である場合に、電源周波数f0と、周波数を変更した場合に伝送効率がピークを示すピーク周波数とが一致するように構成される。
 より好ましくは、受電部110は、送電部220に対して目標位置に配置された場合に、電源周波数f0での伝送効率よりも伝送効率が高くなるピーク(図11のE5)を、電源周波数よりも高い第1周波数(図11のfH)および電源周波数よりも低い第2周波数(図11のfL)の少なくとも2箇所に有するように構成される。
 さらに好ましくは、非接触受電装置は、受電部110と電気負荷装置(蓄電装置190,PCU120)との間に設けられ、非接触受電装置のインピーダンスを調整するための整合器120をさらに備える。受電部110は、送電部220に対して目標位置に配置された場合であって、かつ整合器が整合器無しと電気的に同じ状態に調整されている場合(図11)に、電源周波数f0での伝送効率E4よりも伝送効率が高くなるピークを、電源周波数f0よりも高い第1周波数(図11のfH)および電源周波数よりも低い第2周波数(図11のfL)の少なくとも2箇所に有する。
 さらに好ましくは、非接触受電装置は、位置ズレ量が所定量(たとえば図11、図12では150mm)と異なる場合に整合器120で非接触受電装置のインピーダンスを調整する制御装置(車両ECU300)をさらに備える。
 さらに好ましくは、図11、図12に示したように、制御装置(車両ECU300)は、位置ズレ量が略ゼロであっても整合器120で非接触受電装置のインピーダンスを調整する。
 好ましくは、受電部110は、送電部220と固有周波数の差が±10%以内となるように構成される。
 より好ましくは、受電部110と送電部220との結合係数は、0.1以下である。
 より好ましくは、送電部220は、受電部110と送電部220との間に形成され、かつ特定の周波数で振動する磁界と、受電部110と送電部220との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、受電部110に電力を送電する。
 図6を参照して、本実施の形態は、他の局面では、受電装置に対して非接触で電力を送電するための非接触送電装置を開示する。受電装置(車両100)は、受電部110と、受電部110から電力を受ける電気負荷装置(蓄電装置190,PCU120)とを含む。非接触送電装置は、受電部110に非接触で電力を送電する送電部220と、送電部220に交流電力を供給する電源部250とを備える。送電部220は、受電部110の中心軸と送電部220の中心軸との水平方向の位置がずれた状態に配置された場合に、非接触電力伝送に使用する電源部250の電源周波数f0での伝送効率E3が最も良くなるように構成される。
 伝送効率E3は、送電部220が受電部110に対して目標位置に配置された場合の非接触電力伝送に使用する電源部250の電源周波数f0での伝送効率E4よりも良い。すなわち送電部220が受電部110に対して目標位置よりも位置ズレした位置(図11では位置ズレ150mm)に配置された場合の電源周波数f0での伝送効率E3を最も良くするように構成される。つまり、位置ズレした位置に配置された状態を基準として送電部220が設計される。
 好ましくは、目標位置は、受電部110との位置ズレが無いように送電部220が配置された位置である。送電部220は、受電部110に対する位置ズレ量が所定量(たとえば図11では150mm)である場合に、電源周波数f0と、周波数を変更した場合に伝送効率がピークを示すピーク周波数とが一致するように構成される。
 より好ましくは、送電部220は、受電部110に対して目標位置に配置された場合に、電源周波数f0での伝送効率(図11のE4)よりも伝送効率が高くなるピーク(図11のE5)を、電源周波数よりも高い第1周波数(図11のfH)および電源周波数f0よりも低い第2周波数(図11のfL)の少なくとも2箇所に有するように構成される。
 さらに好ましくは、非接触送電装置200は、送電部220と電源部250との間に設けられ、非接触送電装置200のインピーダンスを調整するための整合器260をさらに備える。送電部220は、受電部110に対して目標位置に配置された場合であって、かつ整合器260が整合器無しと電気的に同じ状態に調整されている場合に、電源周波数f0での伝送効率(図11のE4)よりも伝送効率が高くなるピーク(図11のE5)を、電源周波数f0よりも高い第1周波数(図11のfH)および電源周波数f0よりも低い第2周波数(図11のfL)の少なくとも2箇所に有する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 10 電力送受電システム、100,300 ECU、91,110 受電部、111,340 二次自己共振コイル、112,222 コンデンサ、113,350 二次コイル、120,260 整合器、121 コイル、122,123,262,263 可変コンデンサ、130 モータジェネレータ、140 動力伝達ギヤ、150 駆動輪、160,230 通信部、171 電流センサ、172 電圧センサ、180 整流器、190 蓄電装置、200 送電装置、210 高周波電源装置、212 コネクタ、90,220 送電部、221,330 一次自己共振コイル、223,320 一次コイル、250 電源部、261 インダクタ、310 高周波電源、360 負荷、PCU パワーコントロールユニット。

Claims (26)

  1.  送電装置(200)から転送される電力を、非接触で受電するための非接触受電装置であって、
     前記送電装置は、
     送電部(220)と、
     前記送電部に交流電力を供給する電源部(250)とを含み、
     前記非接触受電装置は、
     前記送電部から非接触で電力を受電する受電部(110)と、
     前記受電部で受電された電力を使用する電気負荷装置(190,120)とを備え、
     前記受電部は、前記受電部は、前記送電部との位置がずれた状態に配置された場合に、非接触電力伝送に使用する前記電源部の電源周波数での伝送効率が最も良くなるように構成される、非接触受電装置。
  2.  前記受電部は、前記受電部の中心軸と前記送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、送電周波数を変更したときの伝送効率がピークを示すピーク周波数と前記電源周波数とが一致するように構成される、請求項1に記載の非接触受電装置。
  3.  前記受電部は、前記受電部の中心軸と前記送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、前記電源周波数での伝送効率よりも伝送効率が高くなるピークを、前記電源周波数よりも高い第1周波数および前記電源周波数よりも低い第2周波数の少なくとも2箇所に有するように構成される、請求項2に記載の非接触受電装置。
  4.  前記受電部と前記電気負荷装置との間に設けられ、前記非接触受電装置のインピーダンスを調整するための整合器(120)と、
     前記受電部の中心軸と前記送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、前記整合器で前記非接触受電装置のインピーダンスを調整する制御装置(300)とをさらに備える、請求項3に記載の非接触受電装置。
  5.  前記受電部と前記電気負荷装置との間に設けられ、前記非接触受電装置のインピーダンスを調整するための整合器(120)と、
     前記受電部の中心軸と前記送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、前記整合器で前記非接触受電装置のインピーダンスを調整する制御装置(300)とをさらに備える、請求項3に記載の非接触受電装置。
  6.  前記受電部は、前記受電部の中心軸と前記送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、前記電源周波数での伝送効率よりも伝送効率が高くなるピークを、前記電源周波数よりも高い第1周波数および前記電源周波数よりも低い第2周波数の少なくとも2箇所に有するように構成される、請求項1に記載の非接触受電装置。
  7.  前記受電部と前記電気負荷装置との間に設けられ、前記非接触受電装置のインピーダンスを調整するための整合器(120)と、
     前記受電部の中心軸と前記送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、前記整合器で前記非接触受電装置のインピーダンスを調整する制御装置(300)とをさらに備える、請求項1に記載の非接触受電装置。
  8.  前記受電部と前記電気負荷装置との間に設けられ、前記非接触受電装置のインピーダンスを調整するための整合器(120)と、
     前記受電部の中心軸と前記送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、前記整合器で前記非接触受電装置のインピーダンスを調整する制御装置(300)とをさらに備える、請求項1に記載の非接触受電装置。
  9.  前記受電部は、前記送電部と固有周波数の差が±10%以内となるように構成される、請求項1に記載の非接触受電装置。
  10.  前記受電部と前記送電部との結合係数は、0.1以下である、請求項1に記載の非接触受電装置。
  11.  前記送電部は、前記受電部と前記送電部との間に形成され、かつ特定の周波数で振動する磁界と、前記受電部と前記送電部との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、前記受電部に電力を送電する、請求項1に記載の非接触受電装置。
  12.  受電装置に対して非接触で電力を送電するための非接触送電装置であって、
     前記受電装置は、
     受電部(110)と、
     前記受電部から電力を受ける電気負荷装置(190,120)とを含み、
     前記非接触送電装置は、
     前記受電部に非接触で電力を送電する送電部(220)と、
     前記送電部に交流電力を供給する電源部(250)とを備え、
     前記送電部は、前記受電部は、前記送電部との位置がずれた状態に配置された場合に、非接触電力伝送に使用する前記電源部の電源周波数での伝送効率が最も良くなるように構成される、非接触送電装置。
  13.  前記送電部は、前記受電部の中心軸と前記送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、送電周波数を変更したときの伝送効率がピークを示すピーク周波数と前記電源周波数とが一致するように構成される、請求項12に記載の非接触送電装置。
  14.  前記送電部は、前記受電部の中心軸と前記送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、前記電源周波数での伝送効率よりも伝送効率が高くなるピークを、前記電源周波数よりも高い第1周波数および前記電源周波数よりも低い第2周波数の少なくとも2箇所に有するように構成される、請求項13に記載の非接触送電装置。
  15.  前記送電部と前記電源部との間に設けられ、前記非接触送電装置のインピーダンスを調整するための整合器(260)と、
     前記受電部の中心軸と前記送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、前記整合器で前記非接触送電装置のインピーダンスを調整する制御装置(240)とをさらに備える、請求項14に記載の非接触送電装置。
  16.  前記送電部と前記電源部との間に設けられ、前記非接触送電装置のインピーダンスを調整するための整合器(260)と、
     前記受電部の中心軸と前記送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、前記整合器で前記非接触送電装置のインピーダンスを調整する制御装置(240)とをさらに備える、請求項14に記載の非接触送電装置。
  17.  前記送電部は、前記受電部の中心軸と前記送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、前記電源周波数での伝送効率よりも伝送効率が高くなるピークを、前記電源周波数よりも高い第1周波数および前記電源周波数よりも低い第2周波数の少なくとも2箇所に有するように構成される、請求項12に記載の非接触送電装置。
  18.  前記送電部と前記電源部との間に設けられ、前記非接触送電装置のインピーダンスを調整するための整合器(260)と、
     前記受電部の中心軸と前記送電部の中心軸との水平方向の位置が一致する状態に配置された場合に、前記整合器で前記非接触送電装置のインピーダンスを調整する制御装置(240)とをさらに備える、請求項12に記載の非接触送電装置。
  19.  前記送電部と前記電源部との間に設けられ、前記非接触送電装置のインピーダンスを調整するための整合器(260)と、
     前記受電部の中心軸と前記送電部の中心軸との水平方向の位置がずれた状態に配置された場合に、前記整合器で前記非接触送電装置のインピーダンスを調整する制御装置(240)とをさらに備える、請求項12に記載の非接触送電装置。
  20.  前記送電部は、前記受電部と固有周波数の差が±10%以内となるように構成される、請求項12に記載の非接触送電装置。
  21.  前記受電部と前記送電部との結合係数は、0.1以下である、請求項12に記載の非接触送電装置。
  22.  前記送電部は、前記受電部と前記送電部との間に形成され、かつ特定の周波数で振動する磁界と、前記受電部と前記送電部との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、前記受電部に電力を送電する、請求項12に記載の非接触送電装置。
  23.  非接触送受電システムであって、
     非接触送電装置(200)と、
     前記非接触送電装置から転送される電力を、非接触で受電するための非接触受電装置(100)とを備え、
     前記非接触送電装置は、
     送電部(220)と、
     前記送電部に交流電力を供給する電源部(250)とを含み、
     前記非接触受電装置は、
     前記送電部の固有周波数と同じ固有周波数の受電部(110)と、
     前記受電部で受電された電力を使用する電気負荷装置(190,120)とを含み、
     前記受電部は、前記受電部は、前記送電部との位置がずれた状態に配置された場合に、非接触電力伝送に使用する前記電源部の電源周波数での伝送効率が最も良くなるように構成される、非接触送受電システム。
  24.  前記受電部は、前記送電部と固有周波数の差が±10%以内となるように構成される、請求項23に記載の非接触送受電システム。
  25.  前記受電部と前記送電部との結合係数は、0.1以下である、請求項23に記載の非接触送受電システム。
  26.  前記送電部は、前記受電部と前記送電部との間に形成され、かつ特定の周波数で振動する磁界と、前記受電部と前記送電部との間に形成され、かつ特定の周波数で振動する電界との少なくとも一方を通じて、前記受電部に電力を送電する、請求項23に記載の非接触送受電システム。
PCT/JP2011/074803 2011-10-27 2011-10-27 非接触受電装置、非接触送電装置および非接触送受電システム WO2013061441A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013540576A JP5884830B2 (ja) 2011-10-27 2011-10-27 非接触受電装置、非接触送電装置および非接触送受電システム
PCT/JP2011/074803 WO2013061441A1 (ja) 2011-10-27 2011-10-27 非接触受電装置、非接触送電装置および非接触送受電システム
EP11874672.6A EP2773018B1 (en) 2011-10-27 2011-10-27 Non-contact power receiving apparatus, non-contact power transmitting apparatus, and non-contact power transmitting/receiving system
CN201180074457.1A CN104025422B (zh) 2011-10-27 2011-10-27 非接触受电装置、非接触送电装置以及非接触送电受电***
US14/352,516 US9697952B2 (en) 2011-10-27 2011-10-27 Non-contact electric power reception device, non-contact electric power transmission device, and non-contact electric power transmission and reception system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/074803 WO2013061441A1 (ja) 2011-10-27 2011-10-27 非接触受電装置、非接触送電装置および非接触送受電システム

Publications (1)

Publication Number Publication Date
WO2013061441A1 true WO2013061441A1 (ja) 2013-05-02

Family

ID=48167307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074803 WO2013061441A1 (ja) 2011-10-27 2011-10-27 非接触受電装置、非接触送電装置および非接触送受電システム

Country Status (5)

Country Link
US (1) US9697952B2 (ja)
EP (1) EP2773018B1 (ja)
JP (1) JP5884830B2 (ja)
CN (1) CN104025422B (ja)
WO (1) WO2013061441A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177618A (ja) * 2014-03-14 2015-10-05 パイオニア株式会社 給電装置及び方法、受電装置及び方法、並びにコンピュータプログラム
JP2021027777A (ja) * 2019-08-08 2021-02-22 株式会社レーザーシステム 共振装置、電力伝送装置、及び電力伝送方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2502903A (en) * 2011-06-13 2013-12-11 Murata Manufacturing Co Power transmission system and power reception device
DE112012003140T5 (de) * 2011-07-28 2014-06-26 Honda Motor Co., Ltd. Drahtloses Energieübertragungsverfahren
EP2848454A4 (en) 2012-05-09 2015-12-09 Toyota Motor Co Ltd VEHICLE
US9435830B2 (en) * 2013-01-18 2016-09-06 Cyberonics, Inc. Implantable medical device depth estimation
JP6167395B2 (ja) * 2013-03-22 2017-07-26 パナソニックIpマネジメント株式会社 給電装置
JP6401672B2 (ja) * 2015-07-22 2018-10-10 本田技研工業株式会社 受電装置及び非接触送電方法
JP6314934B2 (ja) * 2015-08-07 2018-04-25 トヨタ自動車株式会社 車両
CN109153336A (zh) * 2016-05-31 2019-01-04 日本电产株式会社 移动体和移动体***
CN109478800B (zh) * 2016-07-29 2023-05-16 索尼半导体解决方案公司 馈电***
US10008457B2 (en) * 2016-10-18 2018-06-26 Semiconductor Components Industries, Llc Resonance-coupled signaling between IC modules
JP2020072492A (ja) * 2018-10-29 2020-05-07 株式会社東芝 無線給電装置、無線給電システムおよび無線給電方法
US11387690B1 (en) * 2021-03-11 2022-07-12 Hong Kong Applied Science and Technology Research Institute Company, Limited Self-aligning wireless power transfer system that switches power current into aligning electromagnets

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106136A (ja) * 2007-10-25 2009-05-14 Toyota Motor Corp 電動車両および車両用給電装置
JP2010141976A (ja) 2008-12-09 2010-06-24 Toyota Industries Corp 非接触電力伝送装置
JP2010183812A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 共鳴型非接触充電システム
JP2010193598A (ja) 2009-02-17 2010-09-02 Nippon Soken Inc 非接触給電設備および非接触給電システム
JP2010246348A (ja) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd 受電装置、及び送電装置
JP2011050140A (ja) 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
JP2011097671A (ja) * 2009-10-27 2011-05-12 Nippon Tekumo:Kk 非接触電力供給装置
JP2011130614A (ja) * 2009-12-18 2011-06-30 Nissan Motor Co Ltd 非接触給電装置
JP2011169043A (ja) * 2010-02-19 2011-09-01 Toyota Industries Corp 自動車用自動倉庫及び非接触充電用アダプタ

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4036813B2 (ja) * 2003-09-30 2008-01-23 シャープ株式会社 非接触電力供給システム
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
AU2006269374C1 (en) 2005-07-12 2010-03-25 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
CN103633745B (zh) 2007-03-27 2015-09-09 麻省理工学院 用于无线能量传输的方法
JP5224442B2 (ja) 2007-12-28 2013-07-03 Necトーキン株式会社 非接触電力伝送装置
JP5381011B2 (ja) 2008-10-20 2014-01-08 トヨタ自動車株式会社 給電システム
JP5308127B2 (ja) * 2008-11-17 2013-10-09 株式会社豊田中央研究所 給電システム
DK2357715T3 (en) 2008-12-12 2018-10-01 Ge Hybrid Tech Llc CONTACTLESS CHARGING STATION EQUIPPED WITH A PTPS CORE WITH A PLANAR SPIRAL NUCLEAR STRUCTURE, CONTACTless POWER RECEIVER, AND PROCEDURE TO CONTROL TOGETHER
JP4849142B2 (ja) 2009-02-27 2012-01-11 ソニー株式会社 電力供給装置および電力伝送システム
JP2010259171A (ja) * 2009-04-22 2010-11-11 Panasonic Electric Works Co Ltd 非接触伝送装置
FR2947113A1 (fr) * 2009-06-17 2010-12-24 Renault Sas Charge d'une batterie de vehicule automobile
US8729735B2 (en) * 2009-11-30 2014-05-20 Tdk Corporation Wireless power feeder, wireless power receiver, and wireless power transmission system
JP5211088B2 (ja) 2010-02-12 2013-06-12 トヨタ自動車株式会社 給電装置および車両給電システム
US20120153739A1 (en) * 2010-12-21 2012-06-21 Cooper Emily B Range adaptation mechanism for wireless power transfer
JP5825882B2 (ja) * 2011-06-30 2015-12-02 矢崎総業株式会社 給電システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009106136A (ja) * 2007-10-25 2009-05-14 Toyota Motor Corp 電動車両および車両用給電装置
JP2010141976A (ja) 2008-12-09 2010-06-24 Toyota Industries Corp 非接触電力伝送装置
JP2010183812A (ja) * 2009-02-09 2010-08-19 Toyota Industries Corp 共鳴型非接触充電システム
JP2010193598A (ja) 2009-02-17 2010-09-02 Nippon Soken Inc 非接触給電設備および非接触給電システム
JP2010246348A (ja) * 2009-04-09 2010-10-28 Fujitsu Ten Ltd 受電装置、及び送電装置
JP2011050140A (ja) 2009-08-26 2011-03-10 Sony Corp 非接触給電装置、非接触受電装置、非接触給電方法、非接触受電方法および非接触給電システム
JP2011097671A (ja) * 2009-10-27 2011-05-12 Nippon Tekumo:Kk 非接触電力供給装置
JP2011130614A (ja) * 2009-12-18 2011-06-30 Nissan Motor Co Ltd 非接触給電装置
JP2011169043A (ja) * 2010-02-19 2011-09-01 Toyota Industries Corp 自動車用自動倉庫及び非接触充電用アダプタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2773018A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015177618A (ja) * 2014-03-14 2015-10-05 パイオニア株式会社 給電装置及び方法、受電装置及び方法、並びにコンピュータプログラム
JP2021027777A (ja) * 2019-08-08 2021-02-22 株式会社レーザーシステム 共振装置、電力伝送装置、及び電力伝送方法

Also Published As

Publication number Publication date
US20140285029A1 (en) 2014-09-25
EP2773018B1 (en) 2019-03-06
CN104025422B (zh) 2018-10-30
JP5884830B2 (ja) 2016-03-15
CN104025422A (zh) 2014-09-03
EP2773018A4 (en) 2016-05-18
JPWO2013061441A1 (ja) 2015-04-02
EP2773018A1 (en) 2014-09-03
US9697952B2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
JP5884830B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JP5700133B2 (ja) 非接触受電装置、非接触送電装置および非接触送受電システム
JP6119756B2 (ja) 非接触給電システムおよび送電装置
US20140125144A1 (en) Power transmitting device, power receiving device, vehicle, and contactless power supply system and control method for contactless power supply system
US9722433B2 (en) Power receiving device, power transmitting device and power transfer system
US9649946B2 (en) Vehicle and contactless power supply system for adjusting impedence based on power transfer efficiency
JP5794203B2 (ja) 送電装置、受電装置、車両、および非接触給電システム
JP5768878B2 (ja) 車両
JP5839044B2 (ja) 車両用受電装置およびそれを備える車両、給電設備、ならびに電力伝送システム
WO2013042229A1 (ja) 非接触送電装置、非接触受電装置および非接触送受電システム
US20130154384A1 (en) Contactless power receiving device, vehicle, contactless power transmitting device, and contactless power supply system
WO2012073349A1 (ja) 非接触給電設備、車両および非接触給電システムの制御方法
WO2013069089A1 (ja) 車両の受電装置、送電装置および非接触送受電システム
JP2013240132A (ja) 車両、受電装置、送電装置および非接触給電システム
WO2013057786A1 (ja) 給電装置および給電方法
JP6003696B2 (ja) 変換ユニット
JP5884698B2 (ja) 非接触受電装置
JP2015027224A (ja) 非接触受電装置
JPWO2013042229A1 (ja) 非接触送電装置、非接触受電装置および非接触送受電システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11874672

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013540576

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14352516

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011874672

Country of ref document: EP