WO2013054743A1 - Lithium-ion rechargeable battery electrode, and method for producing same - Google Patents

Lithium-ion rechargeable battery electrode, and method for producing same Download PDF

Info

Publication number
WO2013054743A1
WO2013054743A1 PCT/JP2012/075858 JP2012075858W WO2013054743A1 WO 2013054743 A1 WO2013054743 A1 WO 2013054743A1 JP 2012075858 W JP2012075858 W JP 2012075858W WO 2013054743 A1 WO2013054743 A1 WO 2013054743A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
repeating unit
unit based
active material
lithium
Prior art date
Application number
PCT/JP2012/075858
Other languages
French (fr)
Japanese (ja)
Inventor
角崎 健太郎
丈裕 巨勢
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Publication of WO2013054743A1 publication Critical patent/WO2013054743A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode for a lithium ion secondary battery, a method for producing a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
  • a lithium ion secondary battery has a positive electrode, a negative electrode, and a nonaqueous electrolyte.
  • the positive electrode includes a positive electrode active material, a binder, and a conductive material.
  • a composite oxide of lithium and a transition metal hereinafter also referred to as a lithium-containing composite oxide
  • Li-rich positive electrode material As a method for improving the discharge capacity, there is a case where the positive electrode active material is a composite oxide in which the ratio of Li element to the transition metal element such as Ni, Co, and Mn is increased (hereinafter referred to as “Li-rich positive electrode material”). .) Is proposed. As an example of the Li-rich positive electrode material, a solid solution of LiMO 2 (M is at least one transition metal element selected from Ni, Co, and Mn) and Li 2 MnO 3 has been proposed.
  • Patent Document 1 in a lithium ion secondary battery using a Li-rich positive electrode material as a positive electrode active material, 800,000 atomic mass is used as a positive electrode binder so that the positive electrode active material can be filled more highly. It has been proposed to use polyvinylidene fluoride (PVDF) having an average molecular weight greater than the unit. Further, Patent Document 2 comprises a fluorine-containing copolymer having a repeating unit based on ethylene tetrafluoride having a weight average molecular weight of 10,000 to 300,000 and a repeating unit based on propylene in order to improve cycle characteristics. Binders have been proposed.
  • PVDF polyvinylidene fluoride
  • the present invention provides a positive electrode for a lithium ion secondary battery having a high discharge capacity, excellent adhesion between a positive electrode active material and a conductive material and a positive electrode current collector, and excellent cycle characteristics that do not easily deteriorate even after repeated charge / discharge cycles.
  • An object of the present invention is to provide a method for producing a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery including the lithium ion secondary battery positive electrode.
  • the positive electrode for a lithium ion secondary battery of the present invention is a positive electrode for a lithium ion secondary battery in which a positive electrode active material layer containing a positive electrode active material, a binder, and a conductive material is formed on the surface of the positive electrode current collector,
  • the positive electrode active material contains Li element and at least one transition metal element selected from the group consisting of Ni, Co, and Mn (provided that the molar amount of Li element is the total molar amount of the transition metal element)
  • the lithium-containing composite oxide is included, and the binder is at least one monomer selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride.
  • a fluorine-containing rubber having a fluorine content of 50 to 76% by mass.
  • the binder preferably contains a fluorinated rubber composed of a copolymer having a repeating unit based on ethylene tetrafluoride and a repeating unit based on propylene.
  • the copolymer having a repeating unit based on tetrafluoroethylene and a repeating unit based on propylene has a ratio of 40 to 70/60 to 30 (mol%) of the repeating unit based on ethylene tetrafluoride / the repeating unit based on propylene. It is preferable to have. It is preferable that the binder includes a fluorinated rubber made of a copolymer having a repeating unit based on ethylene tetrafluoride, a repeating unit based on propylene, and a repeating unit based on vinylidene fluoride.
  • the copolymer having a repeating unit based on ethylene tetrafluoride, a repeating unit based on propylene, and a repeating unit based on vinylidene fluoride is a repeating unit based on ethylene tetrafluoride / a repeating unit based on propylene / vinylidene fluoride. It is preferable to have a ratio of repeating units based on 30 to 70/20 to 60/1 to 40 (mol%).
  • the present invention is a method for producing a positive electrode for a lithium ion secondary battery of the present invention, comprising a mixing step of mixing the positive electrode active material and the binder to obtain a mixture, and a step of heat-treating the mixture.
  • a method for producing a positive electrode for a lithium ion secondary battery comprising a mixing step of mixing the positive electrode active material and the binder to obtain a mixture, and a step of heat-treating the mixture.
  • the positive electrode active material and the binder are preferably mixed in an organic solvent.
  • the present invention provides a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery of the present invention, a negative electrode, and a nonaqueous electrolyte.
  • a lithium ion secondary battery having a high discharge capacity, excellent adhesion between a positive electrode active material and a conductive material and a positive electrode current collector, and excellent cycle characteristics that hardly deteriorate even after repeated charge and discharge cycles.
  • a positive electrode for use is obtained.
  • the lithium ion secondary battery of the present invention includes the positive electrode of the lithium ion secondary battery of the present invention, has a high discharge capacity, and excellent cycle characteristics.
  • the present invention is described in detail below.
  • the positive electrode active material in the present invention contains Li element and at least one transition metal element selected from Ni, Co, and Mn (provided that the molar amount of Li element is relative to the total molar amount of the transition metal element).
  • Including lithium-containing composite oxide hereinafter referred to as lithium-containing composite oxide (I)
  • a known positive electrode active material may be included in the lithium ion secondary battery.
  • 50 to 100% by mass of the positive electrode active material is preferably lithium-containing composite oxide (I), more preferably 75 to 100% by mass, and particularly preferably 100% by mass.
  • the shape of the positive electrode active material in the present invention is particulate.
  • the average particle size (D50) of the positive electrode active material is preferably 3 to 25 ⁇ m, more preferably 4 to 20 ⁇ m, and particularly preferably 5 to 15 ⁇ m.
  • the definition of the average particle diameter (D50) is as described later.
  • the composition ratio (molar ratio) of the Li element to the total molar amount of the transition metal element is preferably 1.25 to 1.70, and is 1.35 to 1.60. More preferably, it is particularly preferably 1.40 to 1.55.
  • the discharge capacity per unit mass of the lithium ion secondary battery can be further increased.
  • the lithium-containing composite oxide (I) contains at least one transition metal element selected from Ni, Co, and Mn. More preferably, Mn is included as an essential component, and it is particularly preferable that all elements of Ni, Co, and Mn are included.
  • the lithium-containing composite oxide (I) may contain a metal element other than Ni, Co, Mn, and Li (hereinafter referred to as other metal element). Examples of the other metal elements include at least one selected from Cr, Fe, Al, Ti, Zr, Mo, Nb, V, and Mg.
  • the proportion of the other metal elements is 0.001 to 0.1 mol in total when the total amount of metal elements other than Li in the lithium-containing composite oxide (I) is 1 mol. It is preferably 0.005 to 0.05 mol.
  • the lithium-containing composite oxide (I) is preferably a compound represented by the following formula (1).
  • the compound represented by Formula (1) in this invention is a composition before passing through the process of charging / discharging or activation.
  • activation means removing lithium oxide (Li 2 O) or lithium and lithium oxide from the lithium-containing composite oxide (I).
  • As a normal activation method there is an electrochemical activation method in which a voltage higher than 4.4 V or 4.6 V (expressed as a potential difference from the oxidation-reduction potential of Li + / Li) is applied.
  • the chemical activation method by performing chemical reaction using acids, such as a sulfuric acid, hydrochloric acid, or nitric acid, is mentioned.
  • Me is at least one element selected from Co, Ni, Cr, Fe, Al, Ti, Zr, Mo, Nb, V, and Mg.
  • Me is preferably one or more selected from Co, Ni, and Cr, and more preferably one or more selected from Co and Ni.
  • 0.09 ⁇ x ⁇ 0.3, y> 0, z> 0, 1.9 ⁇ p ⁇ 2.1, 0 ⁇ q ⁇ 0.1, and 0.4 ⁇ y / (y + z) ⁇ 0.8, x + y + z 1, 1.2 ⁇ (1 + x) / (y + z).
  • the ratio of Li exceeds 1.2 times mol with respect to the total of Mn and Me.
  • the formula (1) is also characterized in that it is a compound containing a specific amount of Mn, and the ratio of Mn to the total molar amount of Mn and Me is preferably 0.5 ⁇ y / (y + z) ⁇ 0.8, 0.55 ⁇ y / (y + z) ⁇ 0.75 is more preferable. If Mn is the said range, discharge capacity will become high capacity
  • the composition ratio of Li element with respect to the total molar amount of Mn and Me is preferably 1.25 ⁇ (1 + x) / (y + z) ⁇ 1.70, and 1.35 ⁇ (1 + x) / (y + z) ⁇ 1.60 is more preferable, and 1.40 ⁇ (1 + x) / (y + z) ⁇ 1.55 is particularly preferable.
  • the discharge capacity becomes high.
  • lithium-containing composite oxide (I) Li (Li 0.16 Ni 0.17 Co 0.08 Mn 0.59 ) O 2 , Li (Li 0.17 Ni 0.17 Co 0.17 Mn 0.49 ) O 2 , Li (Li 0.17 Ni 0.21 Co 0.08 Mn 0.54) O 2, Li (Li 0.17 Ni 0.14 Co 0.14 Mn 0.55 ) O 2 , Li (Li 0.18 Ni 0.12 Co 0.12 Mn 0.58 ) O 2 , Li (Li 0.18 Ni 0.16 Co 0.12 Mn 0.54 ) O 2 , Li (Li 0.20 Ni 0.12 Co 0.08 Mn 0.60 ) O 2 , Li (Li 0.20 Ni 0.16 Co 0.08 Mn 0.56 ) O 2 , Li (Li 0.20 Ni 0.13 Co 0.13 Mn 0.54 ) O 2 .
  • the shape of the lithium-containing composite oxide (I) is preferably particulate.
  • the average particle size (D50) of the lithium-containing composite oxide (I) is preferably 3 to 25 ⁇ m, more preferably 4 to 20 ⁇ m, and particularly preferably 5 to 15 ⁇ m.
  • the average particle size (D50) is a particle size distribution at a point where the cumulative curve is 50% in a cumulative curve where the particle size distribution is obtained on a volume basis and the total volume is 100%. It means% diameter.
  • the particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus.
  • the particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA, etc.). Used).
  • the specific surface area of the lithium-containing composite oxide (I) is preferably 0.3 ⁇ 10m 2 / g, particularly preferably 0.5 ⁇ 5m 2 / g.
  • the specific surface area is measured by a nitrogen gas adsorption BET (Brunauer, Emmett, Teller) method (for example, using a high precision gas / vapor adsorption amount measuring device BELSORP-max manufactured by Bell Japan).
  • the method for producing the lithium-containing composite oxide (I) includes a method in which a precursor of the lithium-containing composite oxide obtained by the coprecipitation method and a lithium compound are mixed and fired, a hydrothermal synthesis method, a sol-gel method, and a dry mixing method.
  • a method (solid phase method), an ion exchange method, or a glass crystallization method can be appropriately used.
  • the precursor of the lithium-containing composite oxide obtained by the coprecipitation method (coprecipitation composition) It is preferable to use a method of mixing and baking a lithium compound.
  • the lithium-containing composite oxide (I) used as the positive electrode active material has Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, Y, La, Ce, Nd, Gd, on the surface. It is preferable that a coating layer (hereinafter referred to as coating layer (II)) made of an oxide containing at least one metal element selected from the group consisting of Er and Er is formed.
  • coating layer (II) made of an oxide containing at least one metal element selected from the group consisting of Er and Er is formed.
  • Al 2 O 3 , Ga 2 O 3 , Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , or Er 2 O 3 is the cycle retention rate. Is particularly preferable because it can be greatly improved.
  • the coating layer (II) one or more of the above compounds may be used.
  • the coating layer (II) can be evaluated by transmission electron microscope-energy dispersive X-ray spectroscopy analysis (TEM-EDX) and X-ray electron spectroscopy (XPS).
  • TEM-EDX transmission electron microscope-energy dispersive X-ray spectroscopy analysis
  • XPS X-ray electron spectroscopy
  • the surface of the lithium-containing composite oxide (I) has Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, It can be confirmed that there is an oxide of at least one metal element selected from the group consisting of Y, La, Ce, Nd, Gd, and Er.
  • the coating layer (II) may be crystalline or amorphous, and is preferably amorphous.
  • amorphous means that no peak attributed to the coating layer (II) is observed in the X-ray diffraction measurement (hereinafter also referred to as XRD). Although the reason is not clear, it is considered that when the coating layer (II) is amorphous, the coating layer (II) can more uniformly cover the surface of the lithium-containing composite oxide (I).
  • the total total molar amount of Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, Y, La, Ce, Nd, Gd, and Er contained in the positive electrode active material is the positive electrode active material
  • the total molar amount of Ni, Co, and Mn in the total is 1 mol, it is preferably 0.0005 to 0.05 mol, more preferably 0.001 to 0.03 mol, Particularly preferred is 0.003 to 0.02 mol.
  • Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, Y, La contained in the positive electrode active material with respect to the total molar amount of Ni, Co, and Mn in the positive electrode active material , Ce, Nd, Gd, and Er can be measured by dissolving the positive electrode active material in an acid and performing ICP (high frequency inductively coupled plasma) measurement. If it is difficult to obtain by ICP measurement, it may be calculated based on the amount of preparation.
  • ICP high frequency inductively coupled plasma
  • the lithium-containing composite oxide (I) is subjected to heat treatment after contacting with the compound containing the metal element. Is mentioned.
  • the spray method is particularly preferable because of its excellent productivity.
  • the temperature for the heat treatment is preferably 200 to 650 ° C, more preferably 300 to 550 ° C. When the heat treatment temperature is in the above range, an oxide can be efficiently generated, and an amorphous oxide is easily obtained.
  • At least one lithium compound selected from the group consisting of a lithium phosphate compound, a lithium sulfate compound, and a lithium fluoride may be attached to the surface of the lithium-containing composite oxide (I).
  • the lithium compound include LiF, Li 3 PO 4 , Li 2 SO 4 , and Li 2 SO 4 .H 2 O.
  • the binder in the present invention is at least one selected from the group consisting of ethylene tetrafluoride (hereinafter also referred to as TFE), hexafluoropropylene (hereinafter also referred to as HFP), and vinylidene fluoride (hereinafter also referred to as VdF).
  • TFE ethylene tetrafluoride
  • HFP hexafluoropropylene
  • VdF vinylidene fluoride
  • Fluorine-containing rubber hereinafter referred to as fluorine-containing rubber (III)
  • fluorine-containing rubber (III) comprising a copolymer having a repeating unit based on a monomer and having a fluorine content of 50 to 76% by mass is included.
  • the fluorine-containing rubber (III) is a copolymer composed of two or more kinds of repeating units, and is a copolymer consisting of repeating units based on two or three monomers selected from the group consisting of TFE, HFP, and VdF. It may be a coalescence, one or more repeating units based on one or more monomers selected from the group consisting of TFE, HFP, and VdF, and one or more other monomers copolymerizable with the monomers It may be a copolymer comprising repeating units based on.
  • the fluorine content of the fluorine-containing rubber (III) is preferably 50 to 74% by mass, more preferably 53 to 70% by mass.
  • the fluorine content of the fluorine-containing rubber is obtained by fluorine content analysis, and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing rubber.
  • the fluorine-containing rubber (III) has a repeating unit based on another monomer in addition to a repeating unit based on TFE, a repeating unit based on HFP, and a repeating unit based on VdF
  • P Propylene
  • E ethylene
  • PAVE perfluoro (alkyl vinyl ether)
  • PAVE perfluoro (methyl vinyl ether)
  • PMVE perfluoro (propyl vinyl ether)
  • PPVE perfluoro (propyl vinyl ether)
  • fluorine-containing rubber (III) examples include a TFE / P copolymer (meaning a copolymer comprising a repeating unit based on TFE and a repeating unit based on P. The same shall apply hereinafter), TFE / P / VdF copolymer.
  • TFE / P copolymer The ratio of the repeating unit based on TFE / the repeating unit based on P is 30 to 80/70 to 20 (mol%) (however, the repeating unit based on TFE and the repeating unit based on P are 100 mol% in total). The same shall apply hereinafter)), more preferably from 40 to 70/60 to 30 (mol%), and most preferably from 60 to 50/40 to 50 (mol%).
  • TFE / P / VdF copolymer The ratio of the repeating unit based on TFE / the repeating unit based on P / the repeating unit based on VdF is preferably in the range of 30 to 85/15 to 70 / 0.01 to 50 (mol%), more preferably 30 70/20 to 60/1 to 40 (mol%).
  • VdF / HFP copolymer The ratio of the repeating unit based on VdF / the repeating unit based on HFP is preferably 45 to 90/55 to 10 (mol%), and more preferably 50 to 80/50 to 20 (mol%).
  • VdF / TFE copolymer The ratio of the repeating unit based on VdF / the repeating unit based on HFP is preferably 50 to 90/50 to 10 (mol%).
  • TFE / VdF / HFP copolymer The ratio of the repeating unit based on TFE / the repeating unit based on VdF / the repeating unit based on HFP is preferably 2 to 50/30 to 90/1 to 35 (mol%).
  • TFE / PAVE copolymer The ratio of the repeating unit based on TFE / the repeating unit based on PAVE is preferably 50 to 90/50 to 10 (mol%), and more preferably 50 to 80/50 to 20 (mol%).
  • TFE / P / PAVE copolymer The ratio of the repeating unit based on TFE / the repeating unit based on P / the repeating unit based on PAVE is preferably 30 to 80/15 to 70 / 0.1 to 40 (mol%), and preferably 39 to 70/20 to More preferably 60/1 to 30 (mol%)
  • the weight average molecular weight of the fluorinated rubber (III) is preferably 10,000 to 300,000, more preferably 20,000 to 250,000, and even more preferably 30,000 to 190,000.
  • the weight average molecular weight (Mw) in the present specification is a molecular weight in terms of polystyrene obtained by measuring with gel permeation chromatography using a calibration curve prepared using a standard polystyrene sample having a known molecular weight.
  • the tensile elongation at break is preferably 500% or more, more preferably 800% or more, and particularly preferably 1000% or more. When the tensile elongation at break is less than 500%, the adhesion with the positive electrode current collector tends to be lowered.
  • the tensile strength of the fluorine-containing rubber (III) is preferably 1 to 50 MPa, more preferably 5 to 20 MPa. When the tensile strength is within the above range, the adhesion is excellent.
  • the values of the tensile elongation at break and the tensile strength of the fluorinated rubber (III) are values obtained by a method according to JISK6251.
  • the fluorine-containing rubber (III) contained in the positive electrode binder may be one type or two or more types.
  • the binder may contain other fluororesins such as polytetrafluoroethylene and other polymer compounds as necessary.
  • 60% by mass or more of the binder is preferably fluorine-containing rubber (III), more preferably 80% by mass or more, and particularly preferably 100% by mass.
  • the fluorine-containing rubber (III) can be produced by a known polymerization method, and among them, the radical copolymerization method is preferable.
  • the radical polymerization method is not particularly limited, and various radical polymerization methods are used, but those initiated by an organic or inorganic radical polymerization initiator, light, heat, ionizing radiation, or the like are preferable.
  • the form of polymerization can be produced by a conventionally known polymerization method such as bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization or the like, and emulsion polymerization is preferred. For example, a method of copolymerizing propylene and tetrafluoroethylene in an aqueous medium in the presence of a redox catalyst can be used.
  • a method for producing a fluorine-containing rubber (III) having a repeating unit based on TFE and a repeating unit based on P such as a TFE / P copolymer, an aqueous medium, an anionic emulsifier, and thermal decomposition type radical polymerization It has an emulsion polymerization step in which a monomer mixture containing tetrafluoroethylene and propylene is emulsion-polymerized at a polymerization temperature in the range of 50 ° C. to 100 ° C. to produce a fluorinated rubber (III) in the presence of an initiator.
  • a production method (hereinafter referred to as production method (IV)) can be preferably used.
  • the aqueous medium is composed of water alone or water and a water-soluble organic solvent, and the content of the water-soluble organic solvent is less than 1 part by mass with respect to 100 parts by mass of water.
  • the amount of the anionic emulsifier used is 1.5 to 5.0 parts by mass with respect to 100 parts by mass of the fluorine-containing rubber (III) to be produced.
  • the emulsion polymerization step can be performed by a known emulsion polymerization method. For example, it can be performed by the following procedure. According to this production method (IV), since the fluorinated rubber (III) can be produced without using a redox catalyst, a latex of the fluorinated rubber (III) having a low metal content can be obtained. Moreover, although the content of the organic solvent is small, good stability in the latex of the fluorine-containing rubber (III) can be obtained.
  • water-soluble organic solvents meaning organic solvents that can be dissolved in water
  • Alcohols are preferable, and tert-butanol is particularly preferable.
  • the content of the water-soluble organic solvent in the aqueous medium is preferably small.
  • the water-soluble organic solvent is less than 1 part by mass with respect to 100 parts by mass of water, preferably 0.5 parts by mass or less, more preferably 0.1 parts by mass or less, and particularly preferably zero. That is, it is particularly preferable to use water that does not contain a water-soluble organic solvent alone as the aqueous medium.
  • anionic emulsifier those known in the emulsion polymerization method can be used.
  • hydrocarbon emulsifiers such as sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium succinate dialkyl ester sulfonate, sodium alkyl diphenyl ether disulfonate; perfluoro Fluorine-containing alkyl carboxylates such as ammonium octanoate and ammonium perfluorohexanoate; compounds represented by the following formula (2), and the like.
  • X represents a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms
  • A represents a hydrogen atom, an alkali metal atom, or —NH 4
  • p represents an integer of 1 to 10
  • Q represents 0 or an integer of 1 to 3.
  • anionic emulsifier sodium lauryl sulfate is particularly preferable.
  • the amount of the anionic emulsifier used is 1.5 to 5.0 parts by mass, and 1.5 to 3.8 parts by mass with respect to 100 parts by mass of the fluorinated rubber (III) produced in the emulsion polymerization step.
  • the content of the emulsifier in the fluorine-containing rubber (III) latex is within this range, the stability of the latex is excellent, and excellent charge / discharge characteristics can be obtained when the latex is used as a binder composition. When there is too much content of this emulsifier, this charge / discharge characteristic will deteriorate easily.
  • the thermal decomposition type radical polymerization initiator is water-soluble and has a one-hour half-life temperature of 50 to 100 ° C. It can be appropriately selected from water-soluble polymerization initiators used in ordinary emulsion polymerization. Specific examples include persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate; disuccinic acid peroxide; organic initiators such as azobisisobutylamidine dihydrochloride, and the like. Of these, persulfates are preferred, and ammonium persulfate is particularly preferred.
  • the amount of the thermal decomposition type radical polymerization initiator used is preferably 0.0001 to 3 parts by mass, and 0.001 to 1 part by mass with respect to 100 parts by mass of the fluorinated rubber (III) produced in the emulsion polymerization step. Is more preferable.
  • a pH adjuster may be added in the emulsion polymerization step of production method (IV).
  • Known inorganic salts can be used as the pH adjuster.
  • Specific examples include phosphates such as disodium hydrogen phosphate and sodium dihydrogen phosphate; carbonates such as sodium hydrogen carbonate and sodium carbonate; and the like. More preferable specific examples of the phosphate include disodium hydrogen phosphate dihydrate and disodium hydrogen phosphate dodecahydrate.
  • the polymerization rate and the stability of the resulting latex can be improved.
  • the amount of the pH adjuster used is preferably as small as possible. Therefore, the emulsion polymerization process is preferably performed in the absence of a pH adjuster.
  • the positive electrode for a lithium ion secondary battery according to the present invention has a positive electrode active material layer containing the positive electrode active material, the binder, and a conductive material formed on the surface of a positive electrode current collector.
  • the conductive material include carbon black such as acetylene black, graphite, and ketjen black.
  • Examples of the positive electrode current collector include aluminum or an aluminum alloy.
  • the positive electrode for a lithium ion secondary battery of the present invention can be highly filled with the lithium-containing composite oxide (I) as a positive electrode active material, and can have a high capacity. Moreover, since the binder does not deteriorate even when charged at a high voltage, the cycle retention rate is excellent. That is, the discharge capacity can be improved by using the lithium-containing composite oxide (I) in which the molar amount of Li element is more than 1.2 times the total molar amount of the transition metal element as the positive electrode active material. .
  • the positive electrode for a lithium ion secondary battery using such a lithium-containing composite oxide (I) as the positive electrode active material it is preferable to activate the positive electrode active material at a high voltage, and for that purpose, the withstand voltage of the binder Is desired to be high. Furthermore, since lithium containing complex oxide (I) has comparatively low electroconductivity, it is desired to reduce the binder content in the positive electrode active material layer and increase the positive electrode active material content (high filling).
  • the positive electrode is interposed via the binder.
  • Good adhesion between the active material and conductive material layer and the positive electrode current collector can be obtained.
  • the content of the positive electrode active material in the positive electrode active material layer can be preferably 80 to 97% by mass. 85 to 95% by mass is more preferable.
  • the binder content in the positive electrode active material layer is preferably 1.5 to 10% by mass, more preferably 2.5 to 5% by mass.
  • the content of the conductive material in the positive electrode active material layer is preferably 1.5 to 10% by mass, and more preferably 2.5 to 5% by mass.
  • the content of the positive electrode active material, the binder, and the conductive material is within the above ranges, good conductivity can be obtained, and since the content of the positive electrode active material is large, the positive electrode has a high discharge capacity and is collected from the positive electrode active material. The adhesion of the electric body is improved.
  • the fluorine content of the fluorine-containing rubber (III) used as the binder is high, good voltage resistance is obtained, and the binder is hardly deteriorated even when charged at a high voltage. Further, the fluororubber (III) has good alkali resistance when it contains a repeating unit based on TFE and a repeating unit based on P. Therefore, even when the lithium-containing composite oxide (I) having a high Li element content is used as the positive electrode active material, the binder is hardly deteriorated, and a good cycle maintenance rate is obtained. Furthermore, since the fluorine-containing rubber (III) is excellent in flexibility, it has excellent followability to expansion and contraction of the positive electrode active material when charging and discharging are repeated, and contributes to improvement of cycle characteristics.
  • the positive electrode for a lithium ion secondary battery of the present invention can be manufactured by a method including a mixing step of mixing the positive electrode active material and the binder to obtain a mixture, and a step of heat-treating the mixture.
  • the mixture is preferably a slurry or a kneaded product further containing an organic solvent or an aqueous dispersion medium. That is, in the mixing step, it is preferable to mix the positive electrode active material and the binder in an organic solvent. Alternatively, in the mixing step, it is preferable to mix the positive electrode active material and the binder in an aqueous dispersion medium.
  • the conductive material is preferably contained in the mixture.
  • a conductive material When mixing the positive electrode active material and the binder, a conductive material may be added and mixed. Alternatively, the conductive material and the positive electrode active material may be mixed in advance and then mixed with the binder. The mixture is supported on the surface of the positive electrode current collector plate by coating or the like, and heat treated to remove the organic solvent and / or aqueous dispersion medium to form a positive electrode active material layer and the like, thereby forming a positive electrode for a lithium ion secondary battery Is obtained. The positive electrode active material layer may be further pressed.
  • the binder In the production of a positive electrode for a lithium ion secondary battery, the binder is preferably used as a binder composition containing a binder and an organic solvent or an aqueous dispersion medium.
  • the binder composition is preferably a binder composition containing a binder and an aqueous dispersion medium.
  • organic solvents examples include ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, hexane, octane, toluene, xylene, naphtha, acetonitrile, N-methylpyrrolidone, acetylpyridine, cyclopentanone, dimethylformamide, dimethyl sulfoxide , Methylformamide, methanol, ethanol and the like.
  • N-methylpyrrolidone or butyl acetate is preferable, and N-methylpyrrolidone is more preferable.
  • the organic solvent may be a single solvent or a mixed solvent of two or more solvents.
  • aqueous dispersion medium water alone or a mixture of water and a water-soluble organic solvent can be used.
  • water-soluble organic solvents include ketones such as acetone and methyl ethyl ketone; amines such as triethylamine and aniline; amides such as N-methylpyrrolidone and dimethylformamide; methanol, ethanol, propanol, isopropanol, n-butanol, and t-butanol.
  • alcohols Among these, alcohols or amides are preferable, and alcohols are more preferable.
  • methanol, isopropanol, or t-butanol is preferable, and t-butanol is more preferable.
  • Only one water-soluble organic solvent may be used in the aqueous dispersion medium, or two or more water-soluble organic solvents may be used in combination.
  • the ratio of the binder contained in the binder composition is preferably 5 to 60% by mass, and more preferably 10 to 50% by mass, based on the entire binder composition.
  • the fluorinated rubber (III) is preferably emulsified or dispersed in the aqueous dispersion medium, particularly in a latex state. preferable.
  • the production method of the binder composition is not particularly limited, but the fluorine-containing rubber (III) is produced by suspension polymerization, emulsion polymerization, solution polymerization, etc., and the fluorine-containing rubber (III) after polymerization is dissolved in an organic solvent.
  • the composition dispersed in an aqueous dispersion medium can be used as it is.
  • the solvent or dispersion medium used in the polymerization is preferably the same as the organic solvent or aqueous dispersion medium constituting the binder composition to be obtained.
  • the binder composition contains an organic solvent, the solution of fluorine-containing rubber (III) produced by solution polymerization can be used as it is.
  • the binder composition contains an aqueous dispersion medium
  • a composition produced by emulsion polymerization in which the fluorinated rubber (III) is dispersed in the aqueous dispersion medium can be used as it is.
  • the binder composition may be a composition obtained by purifying the fluorine-containing rubber obtained by polymerization to a solid state and dissolving the solid again in an organic solvent or dispersing in an aqueous dispersion medium.
  • the organic solvent or aqueous dispersion medium used in this case is preferably the aforementioned organic solvent or aqueous dispersion medium.
  • the lithium ion secondary battery in this invention contains the positive electrode for lithium ion secondary batteries of this invention, a negative electrode, and a nonaqueous electrolyte.
  • the negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector.
  • a slurry can be prepared by kneading a negative electrode active material with an organic solvent, and the prepared slurry can be applied to a negative electrode current collector, dried, and pressed.
  • the negative electrode current collector for example, a metal foil such as a nickel foil or a copper foil can be used.
  • the negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential.
  • Carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds, and the like can be used.
  • Examples of the carbon material of the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbon, coke such as pitch coke, needle coke, petroleum coke, graphite, glassy carbon, phenol Organic polymer compound fired bodies, carbon fibers, activated carbon, carbon blacks, etc., obtained by firing and carbonizing a resin, furan resin or the like at an appropriate temperature can be used.
  • the metal of the periodic table group 14 is, for example, silicon or tin, and most preferably silicon.
  • Non-silicon materials that can be used as the negative electrode active material include oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide, and nitrides such as Li 2.6 Co 0.4 N. It is done.
  • non-aqueous electrolyte examples include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in an organic solvent, a solid electrolyte containing an electrolyte salt, a solid electrolyte obtained by mixing or dissolving an electrolyte salt in a polymer electrolyte, a polymer compound, and the like. Or a gel electrolyte etc. are mentioned.
  • organic solvent those known as organic solvents for electrolytic solutions can be used.
  • propylene carbonate ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, Diglyme, triglyme, ⁇ -butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetic acid ester, butyric acid ester, propionic acid ester and the like
  • cyclic carbonates such as propylene carbonate or chain carbonates such as dimethyl carbonate and diethyl carbonate.
  • such an organic solvent may be used individually by 1 type, and may be used in mixture of 2 or more types.
  • any material having lithium ion conductivity may be used.
  • an inorganic solid electrolyte or a polymer solid electrolyte can be used.
  • lithium nitride lithium iodide, or the like
  • polymer solid electrolyte an electrolyte salt and a polymer compound that dissolves the electrolyte salt can be used.
  • the polymer compound include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene, or derivatives, mixtures, and composites thereof. Can be used.
  • any gel electrolyte may be used as long as it absorbs the non-aqueous electrolyte and gels, and various polymers can be used.
  • the polymer material used for the gel electrolyte for example, fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene) can be used.
  • the polymer material used for the gel electrolyte for example, polyacrylonitrile and a copolymer of polyacrylonitrile, as well as an ether polymer such as polyethylene oxide, a copolymer of polyethylene oxide, and a crosslinked product thereof can be used. .
  • the copolymerization monomer examples include polypropylene oxide, methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
  • the matrix of the gel electrolyte is particularly preferably a fluoropolymer from the viewpoint of stability against redox reaction.
  • any electrolyte salt can be used as long as it is used for this type of battery.
  • LiClO 4 , LiPF 6 , LiBF 4 , CH 3 SO 3 Li, LiCl, LiBr, or the like can be used.
  • the shape of the lithium ion secondary battery of the present invention can be appropriately selected from coin shapes, sheet shapes (film shapes), folded shapes, wound bottomed cylindrical shapes, button shapes, and the like depending on the application.
  • the mother liquor was placed in a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and a pH adjusting solution was added so that the pH was 11.0.
  • the raw material solution was added at a rate of 5.0 g / min and the ammonia source solution was added at a rate of 1.0 g / min, and a composite hydroxide of nickel, cobalt, and manganese was added.
  • the pH adjusting solution was added so as to keep the pH in the reaction vessel at 11.0.
  • nitrogen gas was flowed at a flow rate of 0.5 L / min in the reaction tank so that the precipitated hydroxide was not oxidized. Further, the liquid was continuously extracted so that the amount of the liquid in the reaction tank did not exceed 2 L.
  • This precursor (20 g) and lithium carbonate (12.8 g) having a lithium content of 26.9 mol / kg were mixed and calcined at 900 ° C. for 12 hours in an oxygen-containing atmosphere to obtain a lithium-containing composite oxide of the example. It was.
  • the composition of the lithium-containing composite oxide of the obtained example is Li (Li 0.2 Ni 0.128 Co 0.134 Mn 0.538 ) O 2 .
  • the average particle diameter D50 of the lithium-containing composite oxide of the example was 8.4 ⁇ m, and the specific surface area measured using the nitrogen gas adsorption BET method was 1.4 m 2 / g. When the tap density of the lithium-containing composite oxide was measured, it was 1.8 g / cm 3 .
  • Al aqueous solution an aqueous solution in which the aluminum compound was dissolved (hereinafter also referred to as an Al aqueous solution).
  • Al aqueous solution aqueous solution in which the aluminum compound was dissolved
  • 1 g of the prepared Al aqueous solution was spray-sprayed and added to 10 g of the lithium-containing composite oxide of the example under stirring, and the lithium-containing composite oxide of the example and the Al aqueous solution were brought into contact with mixing.
  • the obtained mixture was dried at 90 ° C. for 2 hours, and then heated at 400 ° C. for 8 hours in an oxygen-containing atmosphere to form a coating layer (II) on the surface of the lithium-containing composite oxide to form a positive electrode active material (1 )
  • the coating layer (II) formed using the Al aqueous solution contains an oxide of Al.
  • the aluminum of the coating layer is in a molar ratio (coating amount) with respect to the total of nickel, cobalt, and manganese, which are transition metal elements of the lithium-containing composite oxide.
  • Binder composition As a binder composition, a solution was prepared in which a fluoropolymer as a binder was dissolved or dispersed in an organic solvent or water.
  • Reference Example 1 Preparation of binder composition containing fluorine-containing rubber A
  • ion exchange water After degassing the inside of a 3200 mL stainless steel pressure-resistant reactor equipped with an anchor blade for stirring, 1700 g of ion exchange water, 5 g of disodium hydrogen phosphate 12 hydrate, 2 0.0 g sodium hydroxide, 13.3 g sodium lauryl sulfate, and 4.4 g ammonium persulfate were added.
  • the anchor blade was rotated at 300 rpm to initiate the polymerization reaction.
  • the pressure in the reactor decreases.
  • the internal pressure of the reactor was increased to 2.51 MPaG. This was repeated, and the internal pressure of the reactor was maintained at 2.49 to 2.51 MPaG, and the polymerization reaction was continued.
  • the total amount of the TFE / P monomer mixed gas injected reaches 900 g
  • the internal temperature of the reactor is cooled to 10 ° C.
  • the polymerization reaction is stopped, and the latex containing the fine fluorine-containing rubber A This was used as a binder composition.
  • the polymerization time was 8 hours.
  • the solid content in the binder composition was 34% by mass.
  • the fluorine content of the obtained fluorinated rubber is shown in Table 1 (hereinafter the same).
  • EDTA ethylenediaminetetraacetic acid disodium salt dihydrate
  • ferrous sulfate heptahydrate ferrous sulfate heptahydrate
  • a 1.5% by mass aqueous solution of calcium chloride was added to the latex to agglomerate the fluorinated rubber B, which was filtered and recovered.
  • the fluorinated rubber B was washed with ion-exchanged water and dried in an oven at 100 ° C. for 15 hours to obtain a white fluorinated rubber B.
  • This fluorinated rubber B was dissolved in an N-methylpyrrolidone solution to prepare a binder composition having a fluorinated rubber B concentration of 10% by mass.
  • the fluorine-containing rubber A which is a binder of Reference Example 1 was added to the binder composition obtained in Reference Example 1 by adding a 1.5% by mass aqueous solution of calcium chloride to aggregate the fluorine-containing rubber A, and filtered. The recovered and dried product was used.
  • the fluorine-containing rubbers B and C which are binders of Reference Examples 2 and 3 the dried fluorine-containing rubbers B and C used for preparing the binder composition were used, respectively.
  • the binder of Reference Example 4 a dried product of the above polytetrafluoroethylene aqueous dispersion was used.
  • the binder of Reference Example 5 the above powdery polyvinylidene fluoride was used.
  • the binder of Reference Example 6 the above styrene-butadiene rubber was used.
  • Example 1 10 parts by weight of a 2% by weight aqueous solution of sodium carboxymethylcellulose as a viscosity modifier, the positive electrode active material (1) prepared above and acetylene black are mixed, and water is added so that the solid content concentration becomes 70% by weight. After that, the binder composition containing the fluorinated rubber A obtained in Reference Example 1 was added and stirred to prepare a uniform slurry (mixture). This slurry was applied on one side to a 20 ⁇ m thick aluminum foil (positive electrode current collector) using a doctor blade. And it heat-processed at 120 degreeC, it was made to dry, and the positive electrode sheet
  • the mass ratio of positive electrode active material / acetylene black / binder (fluorinated rubber A) was 85/15/5.
  • the positive electrode material sheet had good adhesion between the positive electrode active material layer and the positive electrode current collector.
  • a stainless steel simple sealed cell type lithium ion secondary battery was assembled in an argon glove box.
  • a metal lithium foil having a thickness of 500 ⁇ m is used for the negative electrode
  • a stainless steel plate having a thickness of 1 mm is used for the negative electrode current collector
  • a porous polypropylene having a thickness of 25 ⁇ m is used for the separator
  • a concentration is used for the electrolyte.
  • the following evaluation was performed using the lithium ion secondary battery manufactured above. That is, it charged to 4.6V with a load current of 20 mA per 1 g of the positive electrode active material, and discharged to 2.5 V with a load current of 20 mA per 1 g of the positive electrode active material.
  • the discharge capacity at this time is defined as the initial discharge capacity.
  • the initial discharge capacity was 270 mAh / g.
  • charging to 4.6 V with a load current of 60 mA per 1 g of the charge / discharge positive electrode active material and discharging to 2.5 V with a load current of 60 mA per 1 g of the positive electrode active material were further repeated 99 times.
  • the 99th discharge capacity / initial discharge capacity is defined as a cycle maintenance ratio.
  • the cycle maintenance rate was 96%.
  • Example 2 The positive electrode active material (1) produced above and acetylene black are mixed, the binder composition containing the fluorinated rubber B obtained in Reference Example 2 and N-methylpyrrolidone are added and stirred, and the solid content concentration is 65 A uniform slurry having a mass% was prepared. The mass ratio of positive electrode active material / acetylene black / binder (fluorinated rubber B) was 85/15/5. Thereafter, the same procedure as in Example 1 was performed.
  • Example 3 The same procedure as in Example 2 was performed except that the binder composition shown in Reference Example 3 was used as the binder composition.
  • Comparative Example 1 The same procedure as in Example 1 was performed except that the binder composition shown in Reference Example 4 was used as the binder composition.
  • the obtained positive electrode body sheet peels off due to insufficient adhesion between the positive electrode active material layer and the current collector.
  • the battery evaluation is performed on the positive electrode sheet that was not peeled off.
  • Comparative Example 2 It carries out similarly to Example 2 except having used the binder composition shown in the reference example 5 as a binder composition. Part of the obtained positive electrode sheet is peeled off due to insufficient adhesion between the positive electrode active material layer and the current collector.
  • the battery evaluation is performed on the positive electrode sheet that was not peeled off.
  • Comparative Example 3 The same procedure as in Example 2 was performed except that the binder composition shown in Reference Example 6 was used as the binder composition.
  • Comparative Example 4 The same procedure as in Example 1 was performed except that the positive electrode active material (1) was changed to the positive electrode active material (2).
  • Example 1 to 3 and Comparative Examples 1 to 4 are shown in Table 2.
  • the adhesion was evaluated by a cross-cut peel test of JISK5400. That is, a grid-like cut with a 1 mm interval was made with a cutter knife in the produced positive electrode sheet coating film, cellophane tape (trade name, manufactured by Nichiban Co., Ltd.) was applied, and the number of peeled and remaining eyes was measured. evaluate.
  • the number of remaining eyes is 70% or more, ⁇ , more than 40% to less than 70% is represented by ⁇ , and less than 40% is represented by ⁇ .
  • the initial discharge capacity is over 250 mAh / g, ⁇ , 200 to 250 mAh / g is ⁇ , and less than 200 mAh / g is x.
  • the cycle maintenance rate is over 90% as ⁇ , 80 to 90% as ⁇ , and less than 80% as x.
  • Comparative Example 4 is inferior in the initial discharge capacity because the molar amount of Li element in the lithium-containing composite oxide used as the positive electrode active material is as small as 1.0 times the total molar amount of transition metal elements.
  • a positive electrode for a lithium-in secondary battery having a high discharge capacity per unit mass and excellent cycle characteristics can be obtained.
  • the positive electrode can be used for electronic devices such as mobile phones and lithium ion secondary batteries for vehicles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

Provided is a lithium-ion rechargeable battery electrode, which has a high discharge capacity, excellent adhesion between a positive electrode active material and a conductive material and a positive electrode current collector, and excellent cycle characteristics that are not prone to degradation even when a charge-discharge cycle is repeated. The lithium-ion rechargeable battery electrode has a positive electrode active material layer containing a positive active material, binder and conductive material formed on a surface of the positive electrode current collector. The positive electrode active material contains a lithium-containing complex oxide that contains an Li element, and at least one type of transition metal element selected from a group comprising Ni, Co and Mn (where the molar quantity of the Li element is 1.2-fold the total molar quantity of said transition metal element(s)). The binder contains a fluorine-containing rubber, which comprises a copolymer having repeating units based on at least one type of monomer selected from a group comprising tetrafluoroethylene, hexafluoropropylene and vinylidene fluoride, and a fluorine content of 50-76 mass %.

Description

リチウムイオン二次電池用正極、およびその製造方法Positive electrode for lithium ion secondary battery and method for producing the same
 本発明は、リチウムイオン二次電池用正極、リチウムイオン二次電池用正極の製造方法およびリチウムイオン二次電池に関する。 The present invention relates to a positive electrode for a lithium ion secondary battery, a method for producing a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery.
 近年、携帯型電子機器や車載用のリチウムイオン二次電池として小型化・軽量化が求められ、単位質量あたりの放電容量のさらなる向上が望まれている。また、充放電サイクルを繰り返した後に放電容量が低下しない特性(以下、サイクル特性ともいう。)のさらなる向上が望まれている。
 一般的に、リチウムイオン二次電池は、正極、負極、非水電解質を有する。正極としては、正極活物質、バインダー、導電材を有し、正極活物質としては、リチウムと遷移金属等との複合酸化物(以下、リチウム含有複合酸化物ともいう。)が用いられている。
In recent years, miniaturization and weight reduction have been demanded as portable electronic devices and in-vehicle lithium ion secondary batteries, and further improvement in discharge capacity per unit mass has been desired. Further, there is a demand for further improvement in characteristics (hereinafter also referred to as cycle characteristics) in which the discharge capacity does not decrease after repeated charge / discharge cycles.
Generally, a lithium ion secondary battery has a positive electrode, a negative electrode, and a nonaqueous electrolyte. The positive electrode includes a positive electrode active material, a binder, and a conductive material. As the positive electrode active material, a composite oxide of lithium and a transition metal (hereinafter also referred to as a lithium-containing composite oxide) is used.
 放電容量を向上させる方法としては、正極活物質としてNi、Co、およびMn等の遷移金属元素に対するLi元素の比率を高くした複合酸化物(以下、「Li-rich系正極材料」という場合がある。)を用いることが提案されている。
 Li-rich系正極材料の例として、LiMO(MはNi、Co、およびMnから選ばれる少なくとも1種の遷移金属元素。)とLiMnOとの固溶体が提案されている。
As a method for improving the discharge capacity, there is a case where the positive electrode active material is a composite oxide in which the ratio of Li element to the transition metal element such as Ni, Co, and Mn is increased (hereinafter referred to as “Li-rich positive electrode material”). .) Is proposed.
As an example of the Li-rich positive electrode material, a solid solution of LiMO 2 (M is at least one transition metal element selected from Ni, Co, and Mn) and Li 2 MnO 3 has been proposed.
 その他に、放電容量を向上させる方法として、正極中に正極活物質を高充填させることも提案されている。例えば、特許文献1には、Li-rich系正極材料を正極活物質とするリチウムイオン二次電池において、正極活物質をより高充填できるようにするために、正極のバインダーとして800,000原子質量単位より大きい平均分子量を有するポリフッ化ビニリデン(PVDF)を使用することが提案されている。
 また特許文献2では、サイクル特性を向上させるために、重量平均分子量が10,000~300,000である四フッ化エチレンに基づく繰り返し単位及びプロピレンに基づく繰り返し単位を有する含フッ素共重合体からなるバインダーが提案されている。
In addition, as a method for improving the discharge capacity, it has been proposed to highly charge the positive electrode active material in the positive electrode. For example, in Patent Document 1, in a lithium ion secondary battery using a Li-rich positive electrode material as a positive electrode active material, 800,000 atomic mass is used as a positive electrode binder so that the positive electrode active material can be filled more highly. It has been proposed to use polyvinylidene fluoride (PVDF) having an average molecular weight greater than the unit.
Further, Patent Document 2 comprises a fluorine-containing copolymer having a repeating unit based on ethylene tetrafluoride having a weight average molecular weight of 10,000 to 300,000 and a repeating unit based on propylene in order to improve cycle characteristics. Binders have been proposed.
日本特表2011-519126号公報Japan Special Table 2011-519126 国際公開第2011/055760号International Publication No. 2011/055760
 しかしながら、本発明者等の知見によれば、ポリフッ化ビニリデン(PVDF)からなるバインダーは密着性が不十分となりやすく、特にLi-rich系正極材料を高充填した際に集電体との密着性に劣るという問題がある。またPVDFは耐アルカリ性が不十分となりやすく、充放電サイクルによる劣化が生じやすいという問題がある。
 本発明は、放電容量が高く、正極活物質および導電材と正極集電体との密着性に優れ、充放電サイクルを繰り返しても劣化しにくいサイクル特性に優れた、リチウムイオン二次電池用正極、該リチウムイオン二次電池用正極の製造方法、および該リチウムイオン二次電池正極を備えたリチウムイオン二次電池を提供することを目的とする。
However, according to the knowledge of the present inventors, the binder made of polyvinylidene fluoride (PVDF) tends to have insufficient adhesion, and particularly when the Li-rich positive electrode material is highly filled, the adhesion to the current collector. There is a problem that it is inferior. Further, PVDF has a problem that alkali resistance tends to be insufficient, and deterioration due to charge / discharge cycles tends to occur.
The present invention provides a positive electrode for a lithium ion secondary battery having a high discharge capacity, excellent adhesion between a positive electrode active material and a conductive material and a positive electrode current collector, and excellent cycle characteristics that do not easily deteriorate even after repeated charge / discharge cycles. An object of the present invention is to provide a method for producing a positive electrode for a lithium ion secondary battery, and a lithium ion secondary battery including the lithium ion secondary battery positive electrode.
 本発明のリチウムイオン二次電池用正極は、正極活物質、バインダー、および導電材を含む正極活物質層が正極集電体の表面上に形成されたリチウムイオン二次電池用正極であって、前記正極活物質が、Li元素と、Ni、Co、およびMnからなる群より選ばれる少なくとも1種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物を含み、前記バインダーが、四フッ化エチレン、ヘキサフルオロプロピレン、およびフッ化ビニリデンからなる群より選ばれる少なくとも1種の単量体に基づく繰り返し単位を有する共重合体からなり、フッ素含有量が50~76質量%である含フッ素ゴムを含むことを特徴とする。 The positive electrode for a lithium ion secondary battery of the present invention is a positive electrode for a lithium ion secondary battery in which a positive electrode active material layer containing a positive electrode active material, a binder, and a conductive material is formed on the surface of the positive electrode current collector, The positive electrode active material contains Li element and at least one transition metal element selected from the group consisting of Ni, Co, and Mn (provided that the molar amount of Li element is the total molar amount of the transition metal element) The lithium-containing composite oxide is included, and the binder is at least one monomer selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride. And a fluorine-containing rubber having a fluorine content of 50 to 76% by mass.
 前記リチウム含有複合酸化物の表面にMg、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Al、Ga、Y、La、Ce、Nd、Gd、およびErからなる群より選ばれる少なくとも1種の金属元素を含む酸化物からなる被覆層が形成されていることが好ましい。
 前記バインダーが、四フッ化エチレンに基づく繰り返し単位およびプロピレンに基づく繰り返し単位を有する共重合体からなる含フッ素ゴムを含むことが好ましい。
 前記四フッ化エチレンに基づく繰り返し単位およびプロピレンに基づく繰り返し単位を有する共重合体が、四フッ化エチレンに基づく繰り返し単位/プロピレンに基づく繰り返し単位の比率40~70/60~30(モル%)を有することが好ましい。
 前記バインダーが、四フッ化エチレンに基づく繰り返し単位、プロピレンに基づく繰り返し単位、およびフッ化ビニリデンに基づく繰り返し単位を有する共重合体からなる含フッ素ゴムを含むことが好ましい。
 前記四フッ化エチレンに基づく繰り返し単位、プロピレンに基づく繰り返し単位、およびフッ化ビニリデンに基づく繰り返し単位を有する共重合体が、四フッ化エチレンに基づく繰り返し単位/プロピレンに基づく繰り返し単位/フッ化ビニリデンに基づく繰り返し単位の比率30~70/20~60/1~40(モル%)を有することが好ましい。
At least selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, Y, La, Ce, Nd, Gd, and Er on the surface of the lithium-containing composite oxide It is preferable that a coating layer made of an oxide containing one kind of metal element is formed.
The binder preferably contains a fluorinated rubber composed of a copolymer having a repeating unit based on ethylene tetrafluoride and a repeating unit based on propylene.
The copolymer having a repeating unit based on tetrafluoroethylene and a repeating unit based on propylene has a ratio of 40 to 70/60 to 30 (mol%) of the repeating unit based on ethylene tetrafluoride / the repeating unit based on propylene. It is preferable to have.
It is preferable that the binder includes a fluorinated rubber made of a copolymer having a repeating unit based on ethylene tetrafluoride, a repeating unit based on propylene, and a repeating unit based on vinylidene fluoride.
The copolymer having a repeating unit based on ethylene tetrafluoride, a repeating unit based on propylene, and a repeating unit based on vinylidene fluoride is a repeating unit based on ethylene tetrafluoride / a repeating unit based on propylene / vinylidene fluoride. It is preferable to have a ratio of repeating units based on 30 to 70/20 to 60/1 to 40 (mol%).
 本発明は、本発明のリチウムイオン二次電池用正極を製造する方法であって、前記正極活物質と前記バインダーを混合して混合物を得る混合工程と、該混合物を熱処理する工程を含むことを特徴とするリチウムイオン二次電池用正極の製造方法を提供する。 The present invention is a method for producing a positive electrode for a lithium ion secondary battery of the present invention, comprising a mixing step of mixing the positive electrode active material and the binder to obtain a mixture, and a step of heat-treating the mixture. Provided is a method for producing a positive electrode for a lithium ion secondary battery.
 前記混合工程において、有機溶媒中で前記正極活物質と前記バインダーとを混合することが好ましい。
 または、前記混合工程において、水性分散媒中で前記正極活物質と前記バインダーとを混合することが好ましい。
 本発明は、本発明のリチウムイオン二次電池用正極と、負極と、非水電解質とを含むリチウムイオン二次電池を提供する。
In the mixing step, the positive electrode active material and the binder are preferably mixed in an organic solvent.
Alternatively, in the mixing step, it is preferable to mix the positive electrode active material and the binder in an aqueous dispersion medium.
The present invention provides a lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery of the present invention, a negative electrode, and a nonaqueous electrolyte.
 本発明によれば、放電容量が高く、正極活物質および導電材と正極集電体との密着性に優れ、充放電サイクルを繰り返しても劣化しにくいサイクル特性に優れた、リチウムイオン二次電池用正極が得られる。
 本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池正極を備えており、放電容量が高く、サイクル特性に優れる。
According to the present invention, a lithium ion secondary battery having a high discharge capacity, excellent adhesion between a positive electrode active material and a conductive material and a positive electrode current collector, and excellent cycle characteristics that hardly deteriorate even after repeated charge and discharge cycles. A positive electrode for use is obtained.
The lithium ion secondary battery of the present invention includes the positive electrode of the lithium ion secondary battery of the present invention, has a high discharge capacity, and excellent cycle characteristics.
 以下に、本発明を詳細に説明する。
[正極活物質]
 本発明における正極活物質は、Li元素と、Ni、Co、およびMnから選ばれる少なくとも1種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物(以下、リチウム含有複合酸化物(I)という。)を含む。該リチウム含有複合酸化物(I)のほかに、リチウムイオン二次電池において公知の正極活物質を含んでもよい。
 高い放電容量を得るために、正極活物質のうちの50~100質量%がリチウム含有複合酸化物(I)であることが好ましく、75~100質量%がより好ましく、100質量%が特に好ましい。
 本発明における正極活物質の形状は粒子状である。正極活物質の平均粒子径(D50)は、3~25μmが好ましく、4~20μmがより好ましく、5~15μmが特に好ましい。平均粒子径(D50)の定義は、後述するとおりである。
The present invention is described in detail below.
[Positive electrode active material]
The positive electrode active material in the present invention contains Li element and at least one transition metal element selected from Ni, Co, and Mn (provided that the molar amount of Li element is relative to the total molar amount of the transition metal element). Including lithium-containing composite oxide (hereinafter referred to as lithium-containing composite oxide (I)). In addition to the lithium-containing composite oxide (I), a known positive electrode active material may be included in the lithium ion secondary battery.
In order to obtain a high discharge capacity, 50 to 100% by mass of the positive electrode active material is preferably lithium-containing composite oxide (I), more preferably 75 to 100% by mass, and particularly preferably 100% by mass.
The shape of the positive electrode active material in the present invention is particulate. The average particle size (D50) of the positive electrode active material is preferably 3 to 25 μm, more preferably 4 to 20 μm, and particularly preferably 5 to 15 μm. The definition of the average particle diameter (D50) is as described later.
 リチウム含有複合酸化物(I)において、遷移金属元素の総モル量に対するLi元素の組成比(モル比)は、1.25~1.70であることが好ましく、1.35~1.60であることがより好ましく、1.40~1.55が特に好ましい。該組成比とすることにより、リチウムイオン二次電池の単位質量あたりの放電容量をより一層増加させうる。 In the lithium-containing composite oxide (I), the composition ratio (molar ratio) of the Li element to the total molar amount of the transition metal element is preferably 1.25 to 1.70, and is 1.35 to 1.60. More preferably, it is particularly preferably 1.40 to 1.55. By setting the composition ratio, the discharge capacity per unit mass of the lithium ion secondary battery can be further increased.
 リチウム含有複合酸化物(I)は、Ni、Co、およびMnから選ばれる少なくとも1種の遷移金属元素を含む。Mnを必須として含むことがより好ましく、Ni、Co、およびMnの全ての元素を含むことが特に好ましい。
 リチウム含有複合酸化物(I)は、Ni、Co、Mn、およびLi以外の金属元素(以下、他の金属元素という。)を含んでいてもよい。他の金属元素としては、Cr、Fe、Al、Ti、Zr、Mo、Nb、V、およびMgから選ばれる少なくとも1種が挙げられる。他の金属元素の割合は、リチウム含有複合酸化物(I)中のLi以外の金属元素の総量を1モルとするとき、そのうち他の金属元素の合計が0.001~0.1モルであることが好ましく、0.005~0.05モルがより好ましい。
The lithium-containing composite oxide (I) contains at least one transition metal element selected from Ni, Co, and Mn. More preferably, Mn is included as an essential component, and it is particularly preferable that all elements of Ni, Co, and Mn are included.
The lithium-containing composite oxide (I) may contain a metal element other than Ni, Co, Mn, and Li (hereinafter referred to as other metal element). Examples of the other metal elements include at least one selected from Cr, Fe, Al, Ti, Zr, Mo, Nb, V, and Mg. The proportion of the other metal elements is 0.001 to 0.1 mol in total when the total amount of metal elements other than Li in the lithium-containing composite oxide (I) is 1 mol. It is preferably 0.005 to 0.05 mol.
 リチウム含有複合酸化物(I)は、下記式(1)で表される化合物であることが好ましい。本発明における式(1)で表される化合物は、充放電や活性化の工程を経る前の組成である。ここで、活性化とは、酸化リチウム(LiO)、または、リチウムおよび酸化リチウムを、リチウム含有複合酸化物(I)から取り除くことをいう。通常の活性化方法としては、4.4Vまたは4.6V(Li/Liの酸化還元電位との電位差として表される。)より大きな電圧を加える電気化学的な活性化方法が挙げられる。また、硫酸、塩酸または硝酸等の酸を用いた化学反応を行うことによる、化学的な活性化方法が挙げられる。 The lithium-containing composite oxide (I) is preferably a compound represented by the following formula (1). The compound represented by Formula (1) in this invention is a composition before passing through the process of charging / discharging or activation. Here, activation means removing lithium oxide (Li 2 O) or lithium and lithium oxide from the lithium-containing composite oxide (I). As a normal activation method, there is an electrochemical activation method in which a voltage higher than 4.4 V or 4.6 V (expressed as a potential difference from the oxidation-reduction potential of Li + / Li) is applied. Moreover, the chemical activation method by performing chemical reaction using acids, such as a sulfuric acid, hydrochloric acid, or nitric acid, is mentioned.
 Li(LiMnMe)O (1)
 式(1)において、Meは、Co、Ni、Cr、Fe、Al、Ti、Zr、Mo、Nb、V、およびMgから選ばれる少なくとも1種の元素である。Meとしては、Co、Ni、およびCrから選ばれる1種以上が好ましく、CoおよびNiから選ばれる1種以上が特に好ましい。
 式(1)において、0.09<x<0.3、y>0、z>0、1.9<p<2.1、0≦q≦0.1であり、かつ、0.4≦y/(y+z)≦0.8、x+y+z=1、1.2<(1+x)/(y+z)である。すなわち、式(1)で表わされる化合物は、Liの割合が、MnとMeの合計に対して1.2倍モルを超える。また、式(1)はMnを特定量含む化合物である点も特徴であり、MnとMeの総モル量に対するMnの割合は、0.5≦y/(y+z)≦0.8が好ましく、0.55≦y/(y+z)≦0.75がより好ましい。Mnが前記の範囲であれば、放電容量が高容量となる。qはFの割合を示すが、Fが存在しない場合、qは0である。pは、x、y、zおよびqに応じて決まる値であり、1.9~2.1である。
Li (Li x Mn y Me z ) O p F q (1)
In the formula (1), Me is at least one element selected from Co, Ni, Cr, Fe, Al, Ti, Zr, Mo, Nb, V, and Mg. Me is preferably one or more selected from Co, Ni, and Cr, and more preferably one or more selected from Co and Ni.
In the formula (1), 0.09 <x <0.3, y> 0, z> 0, 1.9 <p <2.1, 0 ≦ q ≦ 0.1, and 0.4 ≦ y / (y + z) ≦ 0.8, x + y + z = 1, 1.2 <(1 + x) / (y + z). That is, in the compound represented by the formula (1), the ratio of Li exceeds 1.2 times mol with respect to the total of Mn and Me. The formula (1) is also characterized in that it is a compound containing a specific amount of Mn, and the ratio of Mn to the total molar amount of Mn and Me is preferably 0.5 ≦ y / (y + z) ≦ 0.8, 0.55 ≦ y / (y + z) ≦ 0.75 is more preferable. If Mn is the said range, discharge capacity will become high capacity | capacitance. q represents the proportion of F, but q is 0 when F is not present. p is a value determined according to x, y, z, and q, and is 1.9 to 2.1.
 式(1)において、MnとMeの総モル量に対するLi元素の組成比は1.25≦(1+x)/(y+z)≦1.70が好ましく、1.35≦(1+x)/(y+z)≦1.60がより好ましく、1.40≦(1+x)/(y+z)≦1.55が特に好ましい。Li元素の組成比が前記の範囲であれば、放電容量が高容量となる。 In the formula (1), the composition ratio of Li element with respect to the total molar amount of Mn and Me is preferably 1.25 ≦ (1 + x) / (y + z) ≦ 1.70, and 1.35 ≦ (1 + x) / (y + z) ≦ 1.60 is more preferable, and 1.40 ≦ (1 + x) / (y + z) ≦ 1.55 is particularly preferable. When the composition ratio of the Li element is in the above range, the discharge capacity becomes high.
 リチウム含有複合酸化物(I)としては、
Li(Li0.13Ni0.26Co0.09Mn0.52)O
Li(Li0.13Ni0.22Co0.09Mn0.56)O
Li(Li0.13Ni0.17Co0.17Mn0.53)O
Li(Li0.15Ni0.17Co0.13Mn0.55)O
Li(Li0.16Ni0.17Co0.08Mn0.59)O
Li(Li0.17Ni0.17Co0.17Mn0.49)O
Li(Li0.17Ni0.21Co0.08Mn0.54)O
Li(Li0.17Ni0.14Co0.14Mn0.55)O
Li(Li0.18Ni0.12Co0.12Mn0.58)O
Li(Li0.18Ni0.16Co0.12Mn0.54)O
Li(Li0.20Ni0.12Co0.08Mn0.60)O
Li(Li0.20Ni0.16Co0.08Mn0.56)O
Li(Li0.20Ni0.13Co0.13Mn0.54)O
Li(Li0.22Ni0.12Co0.12Mn0.54)O
Li(Li0.23Ni0.12Co0.08Mn0.57)O、が好ましい。
As the lithium-containing composite oxide (I),
Li (Li 0.13 Ni 0.26 Co 0.09 Mn 0.52 ) O 2 ,
Li (Li 0.13 Ni 0.22 Co 0.09 Mn 0.56 ) O 2 ,
Li (Li 0.13 Ni 0.17 Co 0.17 Mn 0.53 ) O 2 ,
Li (Li 0.15 Ni 0.17 Co 0.13 Mn 0.55 ) O 2 ,
Li (Li 0.16 Ni 0.17 Co 0.08 Mn 0.59 ) O 2 ,
Li (Li 0.17 Ni 0.17 Co 0.17 Mn 0.49 ) O 2 ,
Li (Li 0.17 Ni 0.21 Co 0.08 Mn 0.54) O 2,
Li (Li 0.17 Ni 0.14 Co 0.14 Mn 0.55 ) O 2 ,
Li (Li 0.18 Ni 0.12 Co 0.12 Mn 0.58 ) O 2 ,
Li (Li 0.18 Ni 0.16 Co 0.12 Mn 0.54 ) O 2 ,
Li (Li 0.20 Ni 0.12 Co 0.08 Mn 0.60 ) O 2 ,
Li (Li 0.20 Ni 0.16 Co 0.08 Mn 0.56 ) O 2 ,
Li (Li 0.20 Ni 0.13 Co 0.13 Mn 0.54 ) O 2 ,
Li (Li 0.22 Ni 0.12 Co 0.12 Mn 0.54 ) O 2 ,
Li (Li 0.23 Ni 0.12 Co 0.08 Mn 0.57 ) O 2 is preferred.
 特に好ましいリチウム含有複合酸化物(I)としては、
Li(Li0.16Ni0.17Co0.08Mn0.59)O
Li(Li0.17Ni0.17Co0.17Mn0.49)O
Li(Li0.17Ni0.21Co0.08Mn0.54)O
Li(Li0.17Ni0.14Co0.14Mn0.55)O
Li(Li0.18Ni0.12Co0.12Mn0.58)O
Li(Li0.18Ni0.16Co0.12Mn0.54)O
Li(Li0.20Ni0.12Co0.08Mn0.60)O
Li(Li0.20Ni0.16Co0.08Mn0.56)O
Li(Li0.20Ni0.13Co0.13Mn0.54)O、が挙げられる。
As particularly preferred lithium-containing composite oxide (I),
Li (Li 0.16 Ni 0.17 Co 0.08 Mn 0.59 ) O 2 ,
Li (Li 0.17 Ni 0.17 Co 0.17 Mn 0.49 ) O 2 ,
Li (Li 0.17 Ni 0.21 Co 0.08 Mn 0.54) O 2,
Li (Li 0.17 Ni 0.14 Co 0.14 Mn 0.55 ) O 2 ,
Li (Li 0.18 Ni 0.12 Co 0.12 Mn 0.58 ) O 2 ,
Li (Li 0.18 Ni 0.16 Co 0.12 Mn 0.54 ) O 2 ,
Li (Li 0.20 Ni 0.12 Co 0.08 Mn 0.60 ) O 2 ,
Li (Li 0.20 Ni 0.16 Co 0.08 Mn 0.56 ) O 2 ,
Li (Li 0.20 Ni 0.13 Co 0.13 Mn 0.54 ) O 2 .
 リチウム含有複合酸化物(I)の形状は粒子状であることが好ましい。リチウム含有複合酸化物(I)の平均粒子径(D50)は、3~25μmが好ましく、4~20μmがより好ましく、5~15μmが特に好ましい。ここで、平均粒子径(D50)とは、体積基準で粒度分布を求め、全体積を100%とした累積カーブにおいて、その累積カーブが50%となる点の粒子径である、体積基準累積50%径を意味する。粒度分布は、レーザー散乱粒度分布測定装置で測定した頻度分布および累積体積分布曲線で求められる。粒子径の測定は、粉末を水媒体中に超音波処理などで充分に分散させて粒度分布を測定する(例えば、HORIBA社製レーザー回折/散乱式粒子径分布測定装置Partica LA-950VII、などを用いる)ことで行なわれる。 The shape of the lithium-containing composite oxide (I) is preferably particulate. The average particle size (D50) of the lithium-containing composite oxide (I) is preferably 3 to 25 μm, more preferably 4 to 20 μm, and particularly preferably 5 to 15 μm. Here, the average particle size (D50) is a particle size distribution at a point where the cumulative curve is 50% in a cumulative curve where the particle size distribution is obtained on a volume basis and the total volume is 100%. It means% diameter. The particle size distribution is obtained from a frequency distribution and a cumulative volume distribution curve measured with a laser scattering particle size distribution measuring apparatus. The particle size is measured by sufficiently dispersing the powder in an aqueous medium by ultrasonic treatment or the like and measuring the particle size distribution (for example, a laser diffraction / scattering particle size distribution measuring device Partica LA-950VII manufactured by HORIBA, etc.). Used).
 リチウム含有複合酸化物(I)の比表面積は、0.3~10m/gであることが好ましく、0.5~5m/gが特に好ましい。該比表面積が、0.3~10m/gであると容量が高く、緻密な正極電極層が形成できる。
 比表面積の測定は、窒素ガス吸着BET(Brunauer,Emmett,Teller)法(例えば、日本ベル社製高精度ガス/蒸気吸着量測定装置BELSORP-max、などを用いる)により行なわれる。
The specific surface area of the lithium-containing composite oxide (I) is preferably 0.3 ~ 10m 2 / g, particularly preferably 0.5 ~ 5m 2 / g. When the specific surface area is 0.3 to 10 m 2 / g, the capacity is high and a dense positive electrode layer can be formed.
The specific surface area is measured by a nitrogen gas adsorption BET (Brunauer, Emmett, Teller) method (for example, using a high precision gas / vapor adsorption amount measuring device BELSORP-max manufactured by Bell Japan).
 リチウム含有複合酸化物(I)は、層状岩塩型結晶構造(空間群R-3m)であることが好ましい。また、リチウム含有複合酸化物(I)は、遷移金属元素に対するLi元素の比率が高いため、XRD(X線回折)測定では層状LiMnOと同様に2θ=20~25°の範囲にピークが観察される。 The lithium-containing composite oxide (I) preferably has a layered rock salt type crystal structure (space group R-3m). Further, since the lithium-containing composite oxide (I) has a high ratio of Li element to transition metal element, XRD (X-ray diffraction) measurement shows a peak in the range of 2θ = 20 to 25 ° as in the case of layered Li 2 MnO 3. Is observed.
 リチウム含有複合酸化物(I)の製造方法としては、共沈法により得られたリチウム含有複合酸化物の前躯体とリチウム化合物を混合して焼成する方法、水熱合成法、ゾルゲル法、乾式混合法(固相法)、イオン交換法、ガラス結晶化法を適宜用いることができる。なお、リチウム含有複合酸化物(I)中に遷移金属元素が均一に含有されると放電容量が向上するため、共沈法により得られたリチウム含有複合酸化物の前駆体(共沈組成物)とリチウム化合物とを混合して焼成する方法を用いることが好ましい。 The method for producing the lithium-containing composite oxide (I) includes a method in which a precursor of the lithium-containing composite oxide obtained by the coprecipitation method and a lithium compound are mixed and fired, a hydrothermal synthesis method, a sol-gel method, and a dry mixing method. A method (solid phase method), an ion exchange method, or a glass crystallization method can be appropriately used. In addition, since the discharge capacity is improved when the transition metal element is uniformly contained in the lithium-containing composite oxide (I), the precursor of the lithium-containing composite oxide obtained by the coprecipitation method (coprecipitation composition) It is preferable to use a method of mixing and baking a lithium compound.
 正極活物質として用いられるリチウム含有複合酸化物(I)は、表面にMg、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Al、Ga、Y、La、Ce、Nd、Gd、およびErからなる群より選ばれる少なくとも1種の金属元素を含む酸化物よりなる被覆層(以下、被覆層(II)という。)が形成されていることが好ましい。
 リチウム含有複合酸化物(I)を被覆層(II)で被覆することによって、リチウム含有複合酸化物(I)と電解液との接触を減らすことができるため、リチウム含有複合酸化物(I)の表面から電解液へのMn等の遷移金属元素の溶出が抑制でき、サイクル特性が向上すると考えられる。
The lithium-containing composite oxide (I) used as the positive electrode active material has Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, Y, La, Ce, Nd, Gd, on the surface. It is preferable that a coating layer (hereinafter referred to as coating layer (II)) made of an oxide containing at least one metal element selected from the group consisting of Er and Er is formed.
By coating the lithium-containing composite oxide (I) with the coating layer (II), the contact between the lithium-containing composite oxide (I) and the electrolytic solution can be reduced. It is thought that elution of transition metal elements such as Mn from the surface to the electrolytic solution can be suppressed, and cycle characteristics are improved.
 被覆層(II)としては、具体的には、MgO、CaO、SrO、BaO、TiO、ZrO、HfO、Nb、Ta、Al、Ga、Y、La、Ce、Nd、Gd、Er等が挙げられる。また、これらのなかでもAl、Ga、Y、La、Ce、Nd、Gd、またはErがサイクル維持率を大きく向上させ得るため特に好ましい。
 被覆層(II)としては、前記化合物を1種または二種以上を用いてもよい。
Examples of the coating layer (II), specifically, MgO, CaO, SrO, BaO , TiO 2, ZrO 2, HfO 2, Nb 2 O 5, Ta 2 O 5, Al 2 O 3, Ga 2 O 3, Y 2 O 3, La 2 O 3, Ce 2 O 3, Nd 2 O 3, Gd 2 O 3, Er 2 O 3 and the like. Among these, Al 2 O 3 , Ga 2 O 3 , Y 2 O 3 , La 2 O 3 , Ce 2 O 3 , Nd 2 O 3 , Gd 2 O 3 , or Er 2 O 3 is the cycle retention rate. Is particularly preferable because it can be greatly improved.
As the coating layer (II), one or more of the above compounds may be used.
 被覆層(II)は透過型電子顕微鏡-エネルギー分散型X線分光法分析(TEM-EDX)およびX線電子分光法(XPS)により評価することができる。リチウム含有複合酸化物(I)を切断し、TEM-EDXにより組成の面分析を行うことで、前記リチウム含有複合酸化物(I)の表面にMg、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Al、Ga、Y、La、Ce、Nd、Gd、およびErからなる群より選ばれる少なくとも1種の金属元素を含む被覆層が形成されていることを確認することができる。また、リチウム含有複合酸化物(I)のXPS分析を行うことでリチウム含有複合酸化物(I)の表面にMg、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Al、Ga、Y、La、Ce、Nd、Gd、およびErからなる群より選ばれる少なくとも1種の金属元素の酸化物が存在することが確認できる。 The coating layer (II) can be evaluated by transmission electron microscope-energy dispersive X-ray spectroscopy analysis (TEM-EDX) and X-ray electron spectroscopy (XPS). By cutting the lithium-containing composite oxide (I) and performing surface analysis of the composition by TEM-EDX, Mg, Ca, Sr, Ba, Ti, Zr, Hf are formed on the surface of the lithium-containing composite oxide (I). It can be confirmed that a coating layer containing at least one metal element selected from the group consisting of Nb, Ta, Al, Ga, Y, La, Ce, Nd, Gd, and Er is formed. Further, by performing XPS analysis of the lithium-containing composite oxide (I), the surface of the lithium-containing composite oxide (I) has Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, It can be confirmed that there is an oxide of at least one metal element selected from the group consisting of Y, La, Ce, Nd, Gd, and Er.
 被覆層(II)は、結晶性であってもよく、あるいは非晶質であってもよく、非晶質であることが好ましい。ここで、非晶質とは、X線回折測定(以下、XRDともいう。)において被覆層(II)に帰属されるピークが観察されないことをいう。理由は明確ではないが、被覆層(II)が非晶質である場合、被覆層(II)がより均一にリチウム含有複合酸化物(I)の表面を覆うことができると考えられる。 The coating layer (II) may be crystalline or amorphous, and is preferably amorphous. Here, the term “amorphous” means that no peak attributed to the coating layer (II) is observed in the X-ray diffraction measurement (hereinafter also referred to as XRD). Although the reason is not clear, it is considered that when the coating layer (II) is amorphous, the coating layer (II) can more uniformly cover the surface of the lithium-containing composite oxide (I).
 正極活物質中に含まれるMg、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Al、Ga、Y、La、Ce、Nd、Gd、およびErの合計総モル量は正極活物質中のNi、Co、およびMnを合わせた総モル量を1モルとすると、0.0005~0.05モルであることが好ましく、0.001~0.03モルであることがより好ましく、0.003~0.02モルであることが特に好ましい。 The total total molar amount of Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, Y, La, Ce, Nd, Gd, and Er contained in the positive electrode active material is the positive electrode active material When the total molar amount of Ni, Co, and Mn in the total is 1 mol, it is preferably 0.0005 to 0.05 mol, more preferably 0.001 to 0.03 mol, Particularly preferred is 0.003 to 0.02 mol.
 正極活物質中のNi、Co、およびMnを合わせた総モル量に対する正極活物質中に含まれるMg、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Al、Ga、Y、La、Ce、Nd、Gd、およびErの合計総モル量は、正極活物質を酸に溶解してICP(高周波誘導結合プラズマ)測定を行うことによって測定することができる。なお、ICP測定によって求めることが難しい場合には、仕込みの量に基づいて算出してもよい。 Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, Y, La contained in the positive electrode active material with respect to the total molar amount of Ni, Co, and Mn in the positive electrode active material , Ce, Nd, Gd, and Er can be measured by dissolving the positive electrode active material in an acid and performing ICP (high frequency inductively coupled plasma) measurement. If it is difficult to obtain by ICP measurement, it may be calculated based on the amount of preparation.
 リチウム含有複合酸化物(I)の表面にMg、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Al、Ga、Y、La、Ce、Nd、Gd、およびErからなる群より選ばれる少なくとも1種の金属元素を含む酸化物よりなる被覆層(II)を形成する方法としては、リチウム含有複合酸化物(I)を前記金属元素を含む化合物とを接触させた後に加熱処理する方法が挙げられる。
 リチウム含有複合酸化物(I)を、前記金属元素を含む化合物と接触させる方法としては、リチウム含有複合酸化物(I)を前記金属元素を含む化合物が溶解した溶液に浸漬する湿式法や、リチウム含有複合酸化物(I)に前記金属元素を含む化合物が溶解した溶液をスプレーするスプレー法、リチウム含有複合酸化物(I)を前記金属元素を含む揮発性の化合物の蒸気と接触させる気相法等が挙げられる。これらの中で、生産性に優れていることからスプレー法が特に好ましい。
 加熱処理する温度は200~650℃が好ましく、300~550℃がより好ましい。加熱処理温度が前記範囲であると、酸化物を効率良く生成することができ、なおかつ非晶質の酸化物が得られやすい。
Selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, Y, La, Ce, Nd, Gd, and Er on the surface of the lithium-containing composite oxide (I) As a method of forming the coating layer (II) made of an oxide containing at least one kind of metal element, the lithium-containing composite oxide (I) is subjected to heat treatment after contacting with the compound containing the metal element. Is mentioned.
As a method of bringing the lithium-containing composite oxide (I) into contact with the compound containing the metal element, a wet method in which the lithium-containing composite oxide (I) is immersed in a solution in which the compound containing the metal element is dissolved, lithium Spray method of spraying solution in which compound containing metal element is dissolved in containing composite oxide (I), vapor phase method of contacting lithium containing composite oxide (I) with vapor of volatile compound containing metal element Etc. Among these, the spray method is particularly preferable because of its excellent productivity.
The temperature for the heat treatment is preferably 200 to 650 ° C, more preferably 300 to 550 ° C. When the heat treatment temperature is in the above range, an oxide can be efficiently generated, and an amorphous oxide is easily obtained.
 また、リチウム含有複合酸化物(I)の表面にリチウムのリン酸塩化合物、リチウムの硫酸塩化合物、およびリチウムのフッ化物からなる群より選ばれる少なくとも1種のリチウム化合物が付着していてもよい。該リチウム化合物として具体的にはLiF、LiPO、LiSO、LiSO・HOが挙げられる。 Further, at least one lithium compound selected from the group consisting of a lithium phosphate compound, a lithium sulfate compound, and a lithium fluoride may be attached to the surface of the lithium-containing composite oxide (I). . Specific examples of the lithium compound include LiF, Li 3 PO 4 , Li 2 SO 4 , and Li 2 SO 4 .H 2 O.
[バインダー]
 本発明におけるバインダーは、四フッ化エチレン(以下TFEともいう。)、ヘキサフルオロプロピレン(以下HFPともいう。)、およびフッ化ビニリデン(以下VdFともいう。)からなる群より選ばれる少なくとも1種の単量体に基づく繰り返し単位を有する共重合体からなり、フッ素含有量が50~76質量%である含フッ素ゴム(以下、含フッ素ゴム(III)という。)を含む。
 含フッ素ゴム(III)は2種以上の繰り返し単位からなる共重合体であり、TFE、HFP、およびVdFからなる群より選ばれる2種または3種の単量体に基づく繰り返し単位からなる共重合体であってもよく、TFE、HFP、およびVdFからなる群より選ばれる1種以上の単量体に基づく繰り返し単位と、該単量体と共重合可能な他の単量体の1種以上に基づく繰り返し単位とからなる共重合体であってもよい。
 含フッ素ゴム(III)のフッ素含有量は、50~74質量%が好ましく、53~70質量%がより好ましい。該フッ素含有量が50質量%未満であると、耐アルカリ性、耐電圧性が不充分となりやすい。
 なお、含フッ素ゴムのフッ素含有量は、フッ素含有量分析により得られ、含フッ素ゴムを構成するすべての原子の総質量に対するフッ素原子の質量の割合を示す。
[binder]
The binder in the present invention is at least one selected from the group consisting of ethylene tetrafluoride (hereinafter also referred to as TFE), hexafluoropropylene (hereinafter also referred to as HFP), and vinylidene fluoride (hereinafter also referred to as VdF). Fluorine-containing rubber (hereinafter referred to as fluorine-containing rubber (III)) comprising a copolymer having a repeating unit based on a monomer and having a fluorine content of 50 to 76% by mass is included.
The fluorine-containing rubber (III) is a copolymer composed of two or more kinds of repeating units, and is a copolymer consisting of repeating units based on two or three monomers selected from the group consisting of TFE, HFP, and VdF. It may be a coalescence, one or more repeating units based on one or more monomers selected from the group consisting of TFE, HFP, and VdF, and one or more other monomers copolymerizable with the monomers It may be a copolymer comprising repeating units based on.
The fluorine content of the fluorine-containing rubber (III) is preferably 50 to 74% by mass, more preferably 53 to 70% by mass. When the fluorine content is less than 50% by mass, the alkali resistance and voltage resistance tend to be insufficient.
The fluorine content of the fluorine-containing rubber is obtained by fluorine content analysis, and indicates the ratio of the mass of fluorine atoms to the total mass of all atoms constituting the fluorine-containing rubber.
 含フッ素ゴム(III)が、TFEに基づく繰り返し単位、HFPに基づく繰り返し単位、VdFに基づく繰り返し単位のほかに、その他の単量体に基づく繰り返し単位を有する場合、その他の単量体としては、プロピレン(以下Pともいう。)、エチレン(以下Eともいう。)、またはペルフルオロ(アルキルビニルエーテル)(以下PAVEともいう。)が好ましい。
 PAVEとしては、例えばペルフルオロ(メチルビニルエーテル)(以下PMVEともいう。)、ペルフルオロ(プロピルビニルエーテル)(以下PPVEともいう。)などが挙げられ、これらをそれぞれ単独で、または2種類以上任意に組み合わせて用いることができる。
When the fluorine-containing rubber (III) has a repeating unit based on another monomer in addition to a repeating unit based on TFE, a repeating unit based on HFP, and a repeating unit based on VdF, Propylene (hereinafter also referred to as P), ethylene (hereinafter also referred to as E), or perfluoro (alkyl vinyl ether) (hereinafter also referred to as PAVE) is preferable.
Examples of PAVE include perfluoro (methyl vinyl ether) (hereinafter also referred to as PMVE), perfluoro (propyl vinyl ether) (hereinafter also referred to as PPVE), and these are used alone or in any combination of two or more. be able to.
 含フッ素ゴム(III)の具体例として、TFE/P共重合体(TFEに基づく繰り返し単位とPに基づく繰り返し単位とからなる共重合体を意味する。以下同様。)、TFE/P/VdF共重合体、VdF/HFP共重合体、VdF/TFE共重合体、TFE/VdF/HFP共重合体、TFE/PAVE共重合体、E/PAVE共重合体、E/P/PAVE共重合体、E/HFP共重合体、TFE/P/E共重合体、TFE/P/PAVE共重合体、TFE/P/VdF/PAVE共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/TFE/HFP/PAVE共重合体、等が挙げられる。
 これらのうち、
TFE/P共重合体、
TFE/P/VdF共重合体、
VdF/HFP共重合体、
VdF/TFE共重合体、
TFE/VdF/HFP共重合体、
TFE/PAVE共重合体、
TFE/P/PAVE共重合体、
またはTFE/P/VdF/PAVE共重合体が好ましく、
TFE/P共重合体、またはTFE/P/VdF共重合体が特に好ましい。
Specific examples of the fluorine-containing rubber (III) include a TFE / P copolymer (meaning a copolymer comprising a repeating unit based on TFE and a repeating unit based on P. The same shall apply hereinafter), TFE / P / VdF copolymer. Polymer, VdF / HFP copolymer, VdF / TFE copolymer, TFE / VdF / HFP copolymer, TFE / PAVE copolymer, E / PAVE copolymer, E / P / PAVE copolymer, E / HFP copolymer, TFE / P / E copolymer, TFE / P / PAVE copolymer, TFE / P / VdF / PAVE copolymer, VdF / PAVE copolymer, VdF / TFE / PAVE copolymer , VdF / TFE / HFP / PAVE copolymer, and the like.
Of these,
TFE / P copolymer,
TFE / P / VdF copolymer,
VdF / HFP copolymer,
VdF / TFE copolymer,
TFE / VdF / HFP copolymer,
TFE / PAVE copolymer,
TFE / P / PAVE copolymer,
Or a TFE / P / VdF / PAVE copolymer is preferred,
A TFE / P copolymer or a TFE / P / VdF copolymer is particularly preferred.
 含フッ素ゴム(III)のより好ましい組成を以下に述べる。共重合組成が以下の範囲であると、正極集電体との密着性に優れ、優れた耐アルカリ性、耐電圧性が得られやすい。
 TFE/P共重合体:
 TFEに基づく繰り返し単位/Pに基づく繰り返し単位の比率が、30~80/70~20(モル%)(ただし、TFEに基づく繰り返し単位とPに基づく繰り返し単位とは合計で100モル%である。以下同じ。)であることが好ましく、40~70/60~30(モル%)であることがより好ましく、60~50/40~50(モル%)であることが最も好ましい。
A more preferred composition of the fluorinated rubber (III) is described below. When the copolymer composition is in the following range, the adhesiveness to the positive electrode current collector is excellent, and excellent alkali resistance and voltage resistance are easily obtained.
TFE / P copolymer:
The ratio of the repeating unit based on TFE / the repeating unit based on P is 30 to 80/70 to 20 (mol%) (however, the repeating unit based on TFE and the repeating unit based on P are 100 mol% in total). The same shall apply hereinafter)), more preferably from 40 to 70/60 to 30 (mol%), and most preferably from 60 to 50/40 to 50 (mol%).
 TFE/P/VdF共重合体:
 TFEに基づく繰り返し単位/Pに基づく繰り返し単位/VdFに基づく繰り返し単位の比率が、30~85/15~70/0.01~50(モル%)の範囲であることが好ましく、より好ましくは30~70/20~60/1~40(モル%)である。
TFE / P / VdF copolymer:
The ratio of the repeating unit based on TFE / the repeating unit based on P / the repeating unit based on VdF is preferably in the range of 30 to 85/15 to 70 / 0.01 to 50 (mol%), more preferably 30 70/20 to 60/1 to 40 (mol%).
 VdF/HFP共重合体:
 VdFに基づく繰り返し単位/HFPに基づく繰り返し単位の比率が、45~90/55~10(モル%)であることが好ましく、50~80/50~20(モル%)であることがより好ましい。
VdF / HFP copolymer:
The ratio of the repeating unit based on VdF / the repeating unit based on HFP is preferably 45 to 90/55 to 10 (mol%), and more preferably 50 to 80/50 to 20 (mol%).
 VdF/TFE共重合体:
 VdFに基づく繰り返し単位/HFPに基づく繰り返し単位の比率が、50~90/50~10(モル%)であることが好ましい。
VdF / TFE copolymer:
The ratio of the repeating unit based on VdF / the repeating unit based on HFP is preferably 50 to 90/50 to 10 (mol%).
 TFE/VdF/HFP共重合体:
 TFEに基づく繰り返し単位/VdFに基づく繰り返し単位/HFPに基づく繰り返し単位の比率が、2~50/30~90/1~35(モル%)であることが好ましい。
TFE / VdF / HFP copolymer:
The ratio of the repeating unit based on TFE / the repeating unit based on VdF / the repeating unit based on HFP is preferably 2 to 50/30 to 90/1 to 35 (mol%).
 TFE/PAVE共重合体:
 TFEに基づく繰り返し単位/PAVEに基づく繰り返し単位の比率が、50~90/50~10(モル%)であることが好ましく、50~80/50~20(モル%)であることがより好ましい。
TFE / PAVE copolymer:
The ratio of the repeating unit based on TFE / the repeating unit based on PAVE is preferably 50 to 90/50 to 10 (mol%), and more preferably 50 to 80/50 to 20 (mol%).
 TFE/P/PAVE共重合体:
 TFEに基づく繰り返し単位/Pに基づく繰り返し単位/PAVEに基づく繰り返し単位の比率が、30~80/15~70/0.1~40(モル%)であることが好ましく、39~70/20~60/1~30(モル%)であることがより好ましい
TFE / P / PAVE copolymer:
The ratio of the repeating unit based on TFE / the repeating unit based on P / the repeating unit based on PAVE is preferably 30 to 80/15 to 70 / 0.1 to 40 (mol%), and preferably 39 to 70/20 to More preferably 60/1 to 30 (mol%)
 含フッ素ゴム(III)の重量平均分子量は、10,000~300,000が好ましく、20,000~250,000がより好ましく、30,000~190,000がさらに好ましい。該重量平均分子量が前記範囲の下限値以上であると、正極活物質層のバインダーとして用いた場合に電解液に膨潤し難く、前記範囲の上限値以下であると、密着性に優れる。
 本明細書における重量平均分子量(Mw)は、分子量既知の標準ポリスチレン試料を用いて作成した検量線を用い、ゲルパーミエーションクロマトグラフィーで測定することによって得られるポリスチレン換算分子量である。
The weight average molecular weight of the fluorinated rubber (III) is preferably 10,000 to 300,000, more preferably 20,000 to 250,000, and even more preferably 30,000 to 190,000. When the weight average molecular weight is not less than the lower limit of the above range, it is difficult to swell in the electrolyte when used as the binder of the positive electrode active material layer, and when it is not more than the upper limit of the above range, the adhesion is excellent.
The weight average molecular weight (Mw) in the present specification is a molecular weight in terms of polystyrene obtained by measuring with gel permeation chromatography using a calibration curve prepared using a standard polystyrene sample having a known molecular weight.
 含フッ素ゴム(III)の引張特性として、引張破断伸びが500%以上であることが好ましく、800%以上がより好ましく、1000%以上が特に好ましい。引張破断伸びが500%未満であると、正極集電体との密着性が低下しやすい。
 また、含フッ素ゴム(III)の引張強度は1~50MPaが好ましく、5~20MPaがより好ましい。該引張強度が前記の範囲であると密着性に優れる。含フッ素ゴム(III)の引張破断伸びおよび引張強度の値は、JISK6251に準処する方法で求められる値である。
As tensile properties of the fluorine-containing rubber (III), the tensile elongation at break is preferably 500% or more, more preferably 800% or more, and particularly preferably 1000% or more. When the tensile elongation at break is less than 500%, the adhesion with the positive electrode current collector tends to be lowered.
The tensile strength of the fluorine-containing rubber (III) is preferably 1 to 50 MPa, more preferably 5 to 20 MPa. When the tensile strength is within the above range, the adhesion is excellent. The values of the tensile elongation at break and the tensile strength of the fluorinated rubber (III) are values obtained by a method according to JISK6251.
 正極のバインダーに含まれる含フッ素ゴム(III)は1種でもよく2種以上でもよい。バインダーは、含フッ素ゴム(III)の他に、必要に応じてポリ四フッ化エチレンなどの他のフッ素樹脂や、他の高分子化合物を含んでもよい。バインダーのうちの60質量%以上が含フッ素ゴム(III)であることが好ましく、80質量%以上がより好ましく、100質量%が特に好ましい。 The fluorine-containing rubber (III) contained in the positive electrode binder may be one type or two or more types. In addition to the fluorine-containing rubber (III), the binder may contain other fluororesins such as polytetrafluoroethylene and other polymer compounds as necessary. 60% by mass or more of the binder is preferably fluorine-containing rubber (III), more preferably 80% by mass or more, and particularly preferably 100% by mass.
[含フッ素ゴムの製造方法]
 含フッ素ゴム(III)は公知の重合方法により製造することができ、中でもラジカル共重合法が好ましい。ラジカル重合法は、特に限定されるものではなく、種々のラジカル重合法が用いられるが、有機または無機のラジカル重合開始剤、光、熱、電離放射線などによって開始されるものが好ましい。重合の形態としては塊状重合、懸濁重合、乳化重合、溶液重合等の従来公知の重合方法により製造することができるが、好ましくは乳化重合である。
 例えば、プロピレンとテトラフルオロエチレンとを水性媒体中で、レドックス触媒の存在下に共重合させる方法を用いることができる。
[Method for producing fluorine-containing rubber]
The fluorine-containing rubber (III) can be produced by a known polymerization method, and among them, the radical copolymerization method is preferable. The radical polymerization method is not particularly limited, and various radical polymerization methods are used, but those initiated by an organic or inorganic radical polymerization initiator, light, heat, ionizing radiation, or the like are preferable. The form of polymerization can be produced by a conventionally known polymerization method such as bulk polymerization, suspension polymerization, emulsion polymerization, solution polymerization or the like, and emulsion polymerization is preferred.
For example, a method of copolymerizing propylene and tetrafluoroethylene in an aqueous medium in the presence of a redox catalyst can be used.
 または、特に、TFE/P共重合体など、TFEに基づく繰り返し単位とPに基づく繰り返し単位を有する含フッ素ゴム(III)を製造する方法として、水性媒体、アニオン性乳化剤、および熱分解型ラジカル重合開始剤の存在下で、テトラフルオロエチレンとプロピレンとを含む単量体混合物を、重合温度50℃~100℃の範囲で乳化重合して、含フッ素ゴム(III)を生成させる乳化重合工程を有する製造方法(以下、製造方法(IV)という。)を好ましく用いることができる。
 前記水性媒体は、水単独、または水と水溶性有機溶媒とからなり、該水溶性有機溶媒の含有量が水100質量部に対して1質量部未満であるものを用いる。
 前記アニオン性乳化剤の使用量は、生成する含フッ素ゴム(III)100質量部に対して、1.5~5.0質量部とする。
 乳化重合工程は、公知の乳化重合法により行うことができる。例えば以下の手順で行うことができる。
 この製造方法(IV)によれば、レドックス触媒を使用せずに含フッ素ゴム(III)を製造できるため、金属分の含有量が少ない含フッ素ゴム(III)のラテックスが得られる。また、有機溶剤の含有量が少ないにもかかわらず、含フッ素ゴム(III)のラテックスにおける良好な安定性が得られる。
Or, in particular, as a method for producing a fluorine-containing rubber (III) having a repeating unit based on TFE and a repeating unit based on P, such as a TFE / P copolymer, an aqueous medium, an anionic emulsifier, and thermal decomposition type radical polymerization It has an emulsion polymerization step in which a monomer mixture containing tetrafluoroethylene and propylene is emulsion-polymerized at a polymerization temperature in the range of 50 ° C. to 100 ° C. to produce a fluorinated rubber (III) in the presence of an initiator. A production method (hereinafter referred to as production method (IV)) can be preferably used.
The aqueous medium is composed of water alone or water and a water-soluble organic solvent, and the content of the water-soluble organic solvent is less than 1 part by mass with respect to 100 parts by mass of water.
The amount of the anionic emulsifier used is 1.5 to 5.0 parts by mass with respect to 100 parts by mass of the fluorine-containing rubber (III) to be produced.
The emulsion polymerization step can be performed by a known emulsion polymerization method. For example, it can be performed by the following procedure.
According to this production method (IV), since the fluorinated rubber (III) can be produced without using a redox catalyst, a latex of the fluorinated rubber (III) having a low metal content can be obtained. Moreover, although the content of the organic solvent is small, good stability in the latex of the fluorine-containing rubber (III) can be obtained.
 製造方法(IV)において、水性媒体における水溶性有機溶媒(水に溶解可能な有機溶媒を意味する。)は公知のものを適宜用いることができる。好ましくはアルコール類であり、tert-ブタノールが特に好ましい。
 水性媒体中の水溶性有機溶媒の含有量は少ない方が好ましい。具体的には、水の100質量部に対して、水溶性有機溶媒は1質量部未満であり、0.5質量部以下が好ましく、0.1質量部以下がより好ましく、ゼロが特に好ましい。
 すなわち、水性媒体として水溶性有機溶媒を含まない水を単独で用いることが特に好ましい。
 水溶性有機溶媒の含有量が上記の範囲であると、得られる含フッ素ゴム(III)ラテックスを蓄電デバイス用バインダーとして用いた場合、製造工程によって作業環境対策等の取扱いの問題が生じる可能性が低減でき、好ましい。
In the production method (IV), known water-soluble organic solvents (meaning organic solvents that can be dissolved in water) in an aqueous medium can be appropriately used. Alcohols are preferable, and tert-butanol is particularly preferable.
The content of the water-soluble organic solvent in the aqueous medium is preferably small. Specifically, the water-soluble organic solvent is less than 1 part by mass with respect to 100 parts by mass of water, preferably 0.5 parts by mass or less, more preferably 0.1 parts by mass or less, and particularly preferably zero.
That is, it is particularly preferable to use water that does not contain a water-soluble organic solvent alone as the aqueous medium.
When the content of the water-soluble organic solvent is in the above range, when the obtained fluorinated rubber (III) latex is used as a binder for an electricity storage device, there may be a problem in handling such as measures for working environment depending on the production process. This is preferable because it can be reduced.
 製造方法(IV)において、アニオン性乳化剤としては、乳化重合法において公知のものが使用できる。具体例としては、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、アルキルスルホン酸ナトリウム塩、アルキルベンゼンスルホン酸ナトリウム塩、コハク酸ジアルキルエステルスルホン酸ナトリウム塩、アルキルジフェニルエーテルジスルホン酸ナトリウム塩等の炭化水素系乳化剤;ペルフルオロオクタン酸アンモニウム、ペルフルオロヘキサン酸アンモニウム等の含フッ素アルキルカルボン酸塩;下記式(2)で表される化合物等が挙げられる。
 F(CF)pO(CF(X)CFO)qCF(X)COOA ・・・(2)
 式(2)中、Xはフッ素原子または炭素原子数1~3のペルフルオロアルキル基を表し、Aは、水素原子、アルカリ金属原子、または-NHを表し、pは1~10の整数を表し、qは0または1~3の整数を表す。
 アニオン性乳化剤としては、ラウリル硫酸ナトリウムが特に好ましい。
 アニオン性乳化剤の使用量は、乳化重合工程で生成される含フッ素ゴム(III)の100質量部に対して、1.5~5.0質量部であり、1.5~3.8質量部が好ましく、1.7~3.2質量部が特に好ましい。
 含フッ素ゴム(III)ラテックスにおける乳化剤の含有量がこの範囲であると、ラテックスの安定性に優れ、該ラテックスをバインダー組成物として用いた場合に優れた充放電特性が得られる。該乳化剤の含有量が多すぎると該充放電特性が劣化しやすくなる。
In the production method (IV), as the anionic emulsifier, those known in the emulsion polymerization method can be used. Specific examples include hydrocarbon emulsifiers such as sodium lauryl sulfate, sodium dodecylbenzene sulfonate, sodium alkyl sulfonate, sodium alkyl benzene sulfonate, sodium succinate dialkyl ester sulfonate, sodium alkyl diphenyl ether disulfonate; perfluoro Fluorine-containing alkyl carboxylates such as ammonium octanoate and ammonium perfluorohexanoate; compounds represented by the following formula (2), and the like.
F (CF 2 ) pO (CF (X) CF 2 O) qCF (X) COOA (2)
In the formula (2), X represents a fluorine atom or a perfluoroalkyl group having 1 to 3 carbon atoms, A represents a hydrogen atom, an alkali metal atom, or —NH 4 , and p represents an integer of 1 to 10 , Q represents 0 or an integer of 1 to 3.
As the anionic emulsifier, sodium lauryl sulfate is particularly preferable.
The amount of the anionic emulsifier used is 1.5 to 5.0 parts by mass, and 1.5 to 3.8 parts by mass with respect to 100 parts by mass of the fluorinated rubber (III) produced in the emulsion polymerization step. It is preferably 1.7 to 3.2 parts by mass.
When the content of the emulsifier in the fluorine-containing rubber (III) latex is within this range, the stability of the latex is excellent, and excellent charge / discharge characteristics can be obtained when the latex is used as a binder composition. When there is too much content of this emulsifier, this charge / discharge characteristic will deteriorate easily.
 製造方法(IV)において、熱分解型ラジカル重合開始剤としては、水溶性であって、1時間半減期温度が50~100℃のものが用いられる。通常の乳化重合に用いられる水溶性重合開始剤から適宜選択して使用することができる。具体例としては、過硫酸アンモニウム、過硫酸ナトリウム、過硫酸カリウム等の過硫酸類;ジコハク酸過酸化物;アゾビスイソブチルアミジン二塩酸塩等の有機系開始剤等が挙げられる。これらのうちで過硫酸類が好ましく、過硫酸アンモニウム塩が特に好ましい。
 熱分解型ラジカル重合開始剤の使用量は、乳化重合工程で生成される含フッ素ゴム(III)の100質量部に対して、0.0001~3質量部が好ましく、0.001~1質量部がより好ましい。
In the production method (IV), the thermal decomposition type radical polymerization initiator is water-soluble and has a one-hour half-life temperature of 50 to 100 ° C. It can be appropriately selected from water-soluble polymerization initiators used in ordinary emulsion polymerization. Specific examples include persulfates such as ammonium persulfate, sodium persulfate, and potassium persulfate; disuccinic acid peroxide; organic initiators such as azobisisobutylamidine dihydrochloride, and the like. Of these, persulfates are preferred, and ammonium persulfate is particularly preferred.
The amount of the thermal decomposition type radical polymerization initiator used is preferably 0.0001 to 3 parts by mass, and 0.001 to 1 part by mass with respect to 100 parts by mass of the fluorinated rubber (III) produced in the emulsion polymerization step. Is more preferable.
 製造方法(IV)の乳化重合工程においてpH調整剤を添加してもよい。pH調整剤として公知の無機塩を用いることができる。具体例としてはリン酸水素二ナトリウム、リン酸二水素ナトリウムなどのリン酸塩;炭酸水素ナトリウム、炭酸ナトリウムなどの炭酸塩;などが挙げられる。リン酸塩のより好ましい具体例としては、リン酸水素二ナトリウム2水和物、リン酸水素二ナトリウム12水和物等が挙げられる。また、所望のpHに調整するために、水酸化ナトリウム、水酸化カリウムなどの塩基類;硫酸、塩酸、硝酸などの酸類;などを併用してもよい。
 pH調整剤を添加することにより、重合速度や、得られるラテックスの安定性を向上させることができる。
 含フッ素ゴム(III)ラテックス中の金属分の含有量を低減させるためには、pH調整剤の使用量はできるだけ少ない方が好ましい。そのために、乳化重合工程はpH調整剤の非存在下で行うことが好ましい。
A pH adjuster may be added in the emulsion polymerization step of production method (IV). Known inorganic salts can be used as the pH adjuster. Specific examples include phosphates such as disodium hydrogen phosphate and sodium dihydrogen phosphate; carbonates such as sodium hydrogen carbonate and sodium carbonate; and the like. More preferable specific examples of the phosphate include disodium hydrogen phosphate dihydrate and disodium hydrogen phosphate dodecahydrate. Moreover, in order to adjust to desired pH, you may use together bases, such as sodium hydroxide and potassium hydroxide; Acids, such as a sulfuric acid, hydrochloric acid, and nitric acid;
By adding a pH adjuster, the polymerization rate and the stability of the resulting latex can be improved.
In order to reduce the metal content in the fluorinated rubber (III) latex, the amount of the pH adjuster used is preferably as small as possible. Therefore, the emulsion polymerization process is preferably performed in the absence of a pH adjuster.
<リチウムイオン二次電池用正極>
 本発明のリチウムイオン二次電池用正極は、前記の正極活物質、前記のバインダー、および導電材を含む正極活物質層が、正極集電体の表面上に形成されてなる。
 導電材としては、アセチレンブラック、黒鉛、ケッチェンブラックなどのカーボンブラック等が挙げられる。
 正極集電体としては、アルミニウムまたはアルミニウム合金が挙げられる。
<Positive electrode for lithium ion secondary battery>
The positive electrode for a lithium ion secondary battery according to the present invention has a positive electrode active material layer containing the positive electrode active material, the binder, and a conductive material formed on the surface of a positive electrode current collector.
Examples of the conductive material include carbon black such as acetylene black, graphite, and ketjen black.
Examples of the positive electrode current collector include aluminum or an aluminum alloy.
 本発明のリチウムイオン二次電池用正極は、正極活物質としてリチウム含有複合酸化物(I)を高充填することができ高い容量を得ることができる。また、バインダーによる密着性に優れ、高電圧で充電してもバインダーが劣化しないためサイクル維持率に優れる。
 すなわち、正極活物質としてLi元素のモル量が該遷移金属元素の総モル量に対して1.2倍超であるリチウム含有複合酸化物(I)を用いることにより放電容量を向上させることができる。
 正極活物質として、かかるリチウム含有複合酸化物(I)を用いたリチウムイオン二次電池用正極にあっては、正極活物質を高電圧で活性化させることが好ましく、そのためにバインダーの耐電圧性が高いことが望まれる。さらにリチウム含有複合酸化物(I)は導電性が比較的低いため、正極活物質層におけるバインダーの含有量を少なくし、正極活物質の含有量を多く(高充填)することが望まれる。
The positive electrode for a lithium ion secondary battery of the present invention can be highly filled with the lithium-containing composite oxide (I) as a positive electrode active material, and can have a high capacity. Moreover, since the binder does not deteriorate even when charged at a high voltage, the cycle retention rate is excellent.
That is, the discharge capacity can be improved by using the lithium-containing composite oxide (I) in which the molar amount of Li element is more than 1.2 times the total molar amount of the transition metal element as the positive electrode active material. .
In the positive electrode for a lithium ion secondary battery using such a lithium-containing composite oxide (I) as the positive electrode active material, it is preferable to activate the positive electrode active material at a high voltage, and for that purpose, the withstand voltage of the binder Is desired to be high. Furthermore, since lithium containing complex oxide (I) has comparatively low electroconductivity, it is desired to reduce the binder content in the positive electrode active material layer and increase the positive electrode active material content (high filling).
 本発明によれば、バインダーとして含フッ素ゴム(III)を用いることにより、後述の実施例に示されるように、正極活物質層において正極活物質を高充填した場合にも、バインダーを介して正極活物質および導電材層と正極集電体との良好な密着性が得られる。
 例えば、正極活物質層における正極活物質の含有量を好ましくは80~97質量%とすることができる。85~95質量%がより好ましい。
 正極活物質層におけるバインダーの含有量は1.5~10質量%が好ましく、2.5~5質量%がより好ましい。
 正極活物質層における導電材の含有量は1.5~10質量%が好ましく、2.5~5質量%がより好ましい。
 正極活物質、バインダー、導電材の含有量が前記の範囲であると、良好な導電性が得られるとともに、正極活物質の含有量が多いため放電容量の高い正極となり、かつ正極活物質と集電体の密着性が良好となる。
According to the present invention, by using the fluorine-containing rubber (III) as a binder, even when the positive electrode active material layer is highly filled in the positive electrode active material layer, as shown in the examples described later, the positive electrode is interposed via the binder. Good adhesion between the active material and conductive material layer and the positive electrode current collector can be obtained.
For example, the content of the positive electrode active material in the positive electrode active material layer can be preferably 80 to 97% by mass. 85 to 95% by mass is more preferable.
The binder content in the positive electrode active material layer is preferably 1.5 to 10% by mass, more preferably 2.5 to 5% by mass.
The content of the conductive material in the positive electrode active material layer is preferably 1.5 to 10% by mass, and more preferably 2.5 to 5% by mass.
When the content of the positive electrode active material, the binder, and the conductive material is within the above ranges, good conductivity can be obtained, and since the content of the positive electrode active material is large, the positive electrode has a high discharge capacity and is collected from the positive electrode active material. The adhesion of the electric body is improved.
 また、バインダーとして用いる含フッ素ゴム(III)のフッ素含有量が高いため、良好な耐電圧性が得られ、高電圧で充電してもバインダーの劣化が生じにくい。
 さらに含フッ素ゴム(III)はTFEに基づく繰り返し単位とPに基づく繰り返し単位を含む場合は耐アルカリ性が良好である。したがって、正極活物質としてLi元素の含有比率が高いリチウム含有複合酸化物(I)を用いてもバインダーの劣化が生じにくく、良好なサイクル維持率が得られる。
 さらに、含フッ素ゴム(III)は柔軟性に優れるため、充放電が繰り返される際の、正極活物質の膨張、収縮に対する追従性に優れ、サイクル特性の向上に寄与する。
Further, since the fluorine content of the fluorine-containing rubber (III) used as the binder is high, good voltage resistance is obtained, and the binder is hardly deteriorated even when charged at a high voltage.
Further, the fluororubber (III) has good alkali resistance when it contains a repeating unit based on TFE and a repeating unit based on P. Therefore, even when the lithium-containing composite oxide (I) having a high Li element content is used as the positive electrode active material, the binder is hardly deteriorated, and a good cycle maintenance rate is obtained.
Furthermore, since the fluorine-containing rubber (III) is excellent in flexibility, it has excellent followability to expansion and contraction of the positive electrode active material when charging and discharging are repeated, and contributes to improvement of cycle characteristics.
<リチウムイオン二次電池用正極の製造方法>
 本発明のリチウムイオン二次電池用正極は、前記正極活物質と前記バインダーとを混合して混合物を得る混合工程と、該混合物を熱処理する工程を含む方法で製造できる。
 該混合物は、さらに有機溶媒または水系分散媒を含む、スラリーまたは混練物であることが好ましい。すなわち、前記混合工程において、有機溶媒中で正極活物質とバインダーとを混合することが好ましい。または、前記混合工程において、水性分散媒中で正極活物質とバインダーとを混合することが好ましい。
 導電材は前記混合物に含有させることが好ましい。正極活物質とバインダーとを混合する際に、導電材を加えて混合してもよく、予め導電材と正極活物質とを混合した後、これらとバインダーを混合してもよい。
 該混合物を正極集電板の表面上に塗布等により担持させ、熱処理して有機溶媒および/または水系分散媒を除去して正極活物質層等を形成することにより、リチウムイオン二次電池用正極が得られる。該正極活物質層に、さらにプレス処理を施してもよい。
<Method for producing positive electrode for lithium ion secondary battery>
The positive electrode for a lithium ion secondary battery of the present invention can be manufactured by a method including a mixing step of mixing the positive electrode active material and the binder to obtain a mixture, and a step of heat-treating the mixture.
The mixture is preferably a slurry or a kneaded product further containing an organic solvent or an aqueous dispersion medium. That is, in the mixing step, it is preferable to mix the positive electrode active material and the binder in an organic solvent. Alternatively, in the mixing step, it is preferable to mix the positive electrode active material and the binder in an aqueous dispersion medium.
The conductive material is preferably contained in the mixture. When mixing the positive electrode active material and the binder, a conductive material may be added and mixed. Alternatively, the conductive material and the positive electrode active material may be mixed in advance and then mixed with the binder.
The mixture is supported on the surface of the positive electrode current collector plate by coating or the like, and heat treated to remove the organic solvent and / or aqueous dispersion medium to form a positive electrode active material layer and the like, thereby forming a positive electrode for a lithium ion secondary battery Is obtained. The positive electrode active material layer may be further pressed.
[バインダー組成物]
 リチウムイオン二次電池用正極の製造において、バインダーは、バインダーと有機溶媒または水性分散媒とを含有するバインダー組成物として用いることが好ましい。
 有機溶媒は可燃性である場合が多く、取り扱いに注意を要することから、バインダー組成物としては、バインダーと水性分散媒とを含有するバインダー組成物であることがより好ましい。
[Binder composition]
In the production of a positive electrode for a lithium ion secondary battery, the binder is preferably used as a binder composition containing a binder and an organic solvent or an aqueous dispersion medium.
In many cases, the organic solvent is flammable and needs attention in handling. Therefore, the binder composition is preferably a binder composition containing a binder and an aqueous dispersion medium.
 有機溶媒としては、酢酸エチル、酢酸ブチル、アセトン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、オクタン、トルエン、キシレン、ナフサ、アセトニトリル、N-メチルピロリドン、アセチルピリジン、シクロペンタノン、ジメチルホルムアミド、ジメチルスルフォキシド、メチルホルムアミド、メタノール、エタノール等が例示される。これらの中でも、N-メチルピロリドン、または酢酸ブチルが好ましく、N-メチルピロリドンがより好ましい。有機溶媒は、1種のみからなる溶媒であってもよく、2種以上の溶媒の混合溶媒であってもよい。 Examples of organic solvents include ethyl acetate, butyl acetate, acetone, methyl ethyl ketone, methyl isobutyl ketone, hexane, octane, toluene, xylene, naphtha, acetonitrile, N-methylpyrrolidone, acetylpyridine, cyclopentanone, dimethylformamide, dimethyl sulfoxide , Methylformamide, methanol, ethanol and the like. Among these, N-methylpyrrolidone or butyl acetate is preferable, and N-methylpyrrolidone is more preferable. The organic solvent may be a single solvent or a mixed solvent of two or more solvents.
 水性分散媒としては、水単独、または水と水溶性有機溶媒との混合物を使用することができる。水溶性有機溶媒としては、アセトン、メチルエチルケトン等のケトン類;トリエチルアミン、アニリン等のアミン類;N-メチルピロリドン、ジメチルホルムアミド等のアミド類;メタノール、エタノール、プロパノール、イソプロパノール、n-ブタノール、t-ブタノール等のアルコール類などが挙げられる。これらの中でもアルコール類、またはアミド類が好ましく、アルコール類がより好ましい。
 また、アルコール類の中でも、メタノール、イソプロパノール、またはt-ブタノールが好ましく、t-ブタノールがより好ましい。水性分散媒に使用する水溶性有機溶媒は1種のみでもよく、2種以上を組み合わせて使用してもよい。
As the aqueous dispersion medium, water alone or a mixture of water and a water-soluble organic solvent can be used. Examples of water-soluble organic solvents include ketones such as acetone and methyl ethyl ketone; amines such as triethylamine and aniline; amides such as N-methylpyrrolidone and dimethylformamide; methanol, ethanol, propanol, isopropanol, n-butanol, and t-butanol. And alcohols. Among these, alcohols or amides are preferable, and alcohols are more preferable.
Of the alcohols, methanol, isopropanol, or t-butanol is preferable, and t-butanol is more preferable. Only one water-soluble organic solvent may be used in the aqueous dispersion medium, or two or more water-soluble organic solvents may be used in combination.
 バインダー組成物に含まれるバインダーの割合は、バインダー組成物全体の5~60質量%が好ましく、より好ましくは10~50質量%である。
 バインダー組成物が、含フッ素ゴム(III)と水性分散媒を含有する場合、含フッ素ゴム(III)は、水性分散媒に乳化または分散していることが好ましく、特にラテックスの状態であることが好ましい。
The ratio of the binder contained in the binder composition is preferably 5 to 60% by mass, and more preferably 10 to 50% by mass, based on the entire binder composition.
When the binder composition contains the fluorinated rubber (III) and the aqueous dispersion medium, the fluorinated rubber (III) is preferably emulsified or dispersed in the aqueous dispersion medium, particularly in a latex state. preferable.
 バインダー組成物の製造方法については特に限定されないが、含フッ素ゴム(III)を懸濁重合、乳化重合、溶液重合等で製造し、重合後の含フッ素ゴム(III)が有機溶媒に溶解した状態、または水性分散媒に分散した状態の組成物をそのまま使用することができる。この場合は、重合の際に用いる溶媒または分散媒を、得ようとするバインダー組成物を構成する有機溶媒または水性分散媒と同じにすることが好ましい。
 バインダー組成物が、有機溶媒を含有する場合、溶液重合で製造された、含フッ素ゴム(III)の溶液をそのまま使用することができる。
 また、バインダー組成物が水性分散媒を含有する場合、乳化重合により製造された、含フッ素ゴム(III)が水性分散媒に分散した組成物をそのまま使用することができる。
 また、バインダー組成物は、重合によって得られた含フッ素ゴムを精製して固体の状態とし、該固体を再度、有機溶媒に溶解または水性分散媒に分散させた組成物であってもよい。この場合に使用する有機溶媒または水性分散媒は、前述の有機溶媒または水性分散媒であることが好ましい。
The production method of the binder composition is not particularly limited, but the fluorine-containing rubber (III) is produced by suspension polymerization, emulsion polymerization, solution polymerization, etc., and the fluorine-containing rubber (III) after polymerization is dissolved in an organic solvent. Alternatively, the composition dispersed in an aqueous dispersion medium can be used as it is. In this case, the solvent or dispersion medium used in the polymerization is preferably the same as the organic solvent or aqueous dispersion medium constituting the binder composition to be obtained.
When the binder composition contains an organic solvent, the solution of fluorine-containing rubber (III) produced by solution polymerization can be used as it is.
Further, when the binder composition contains an aqueous dispersion medium, a composition produced by emulsion polymerization in which the fluorinated rubber (III) is dispersed in the aqueous dispersion medium can be used as it is.
The binder composition may be a composition obtained by purifying the fluorine-containing rubber obtained by polymerization to a solid state and dissolving the solid again in an organic solvent or dispersing in an aqueous dispersion medium. The organic solvent or aqueous dispersion medium used in this case is preferably the aforementioned organic solvent or aqueous dispersion medium.
<リチウムイオン二次電池>
 本発明におけるリチウムイオン二次電池は、本発明のリチウムイオン二次電池用正極と、負極と非水電解質とを含むものである。
 負極は、負極集電体上に、負極活物質を含有する負極活物質層が形成されてなる。たとえば、負極活物質を有機溶媒と混錬することによってスラリーを調製し、調製したスラリーを負極集電体に塗布、乾燥、プレスすることによって製造できる。
<Lithium ion secondary battery>
The lithium ion secondary battery in this invention contains the positive electrode for lithium ion secondary batteries of this invention, a negative electrode, and a nonaqueous electrolyte.
The negative electrode is formed by forming a negative electrode active material layer containing a negative electrode active material on a negative electrode current collector. For example, a slurry can be prepared by kneading a negative electrode active material with an organic solvent, and the prepared slurry can be applied to a negative electrode current collector, dried, and pressed.
 負極集電体としては、たとえばニッケル箔、銅箔等の金属箔を用いることができる。
 負極活物質としては、比較的低い電位でリチウムイオンを吸蔵、放出可能な材料であればよく、たとえば、リチウム金属、リチウム合金、炭素材料、周期表14、15族の金属を主体とする酸化物、炭素化合物、炭化ケイ素化合物、酸化ケイ素化合物、硫化チタンおよび炭化ホウ素化合物等を用いることができる。
As the negative electrode current collector, for example, a metal foil such as a nickel foil or a copper foil can be used.
The negative electrode active material may be any material that can occlude and release lithium ions at a relatively low potential. For example, an oxide mainly composed of lithium metal, lithium alloy, carbon material, periodic table 14 or group 15 metal. Carbon compounds, silicon carbide compounds, silicon oxide compounds, titanium sulfide, boron carbide compounds, and the like can be used.
 負極活物質の炭素材料としては、たとえば、難黒鉛化性炭素、人造黒鉛、天然黒鉛、熱分解炭素類、ピッチコークス、ニードルコークス、石油コークス等のコークス類、グラファイト類、ガラス状炭素類、フェノール樹脂やフラン樹脂等を適当な温度で焼成し炭素化した有機高分子化合物焼成体、炭素繊維、活性炭、カーボンブラック類等を用いることができる。
 周期表14族の金属としては、たとえば、ケイ素またはスズであり、最も好ましくはケイ素である。
 その他に負極活物質として用いることができる材料としては酸化鉄、酸化ルテニウム、酸化モリブデン、酸化タングステン、酸化チタン、酸化スズ等の酸化物やLi2.6Co0.4N等の窒化物が挙げられる。
Examples of the carbon material of the negative electrode active material include non-graphitizable carbon, artificial graphite, natural graphite, pyrolytic carbon, coke such as pitch coke, needle coke, petroleum coke, graphite, glassy carbon, phenol Organic polymer compound fired bodies, carbon fibers, activated carbon, carbon blacks, etc., obtained by firing and carbonizing a resin, furan resin or the like at an appropriate temperature can be used.
The metal of the periodic table group 14 is, for example, silicon or tin, and most preferably silicon.
Other materials that can be used as the negative electrode active material include oxides such as iron oxide, ruthenium oxide, molybdenum oxide, tungsten oxide, titanium oxide, and tin oxide, and nitrides such as Li 2.6 Co 0.4 N. It is done.
 非水電解質としては、例えば、有機溶媒に電解質塩を溶解させた非水電解液、電解質塩を含有させた固体電解質、高分子電解質、高分子化合物等に電解質塩を混合または溶解させた固体状もしくはゲル状電解質等が挙げられる。
 有機溶媒としては、電解液用の有機溶媒として公知のものを用いることができ、たとえば、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1,2-ジメトキシエタン、1,2-ジエトキシエタン、ジグライム、トリグライム、γ-ブチロラクトン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、酢酸エステル、酪酸エステル、プロピオン酸エステル等を用いることができる。特に、電圧安定性の点からは、プロピレンカーボネート等の環状カーボネート類、またはジメチルカーボネート、ジエチルカーボネート等の鎖状カーボネート類を使用することが好ましい。また、このような有機溶媒は、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
Examples of the non-aqueous electrolyte include a non-aqueous electrolyte obtained by dissolving an electrolyte salt in an organic solvent, a solid electrolyte containing an electrolyte salt, a solid electrolyte obtained by mixing or dissolving an electrolyte salt in a polymer electrolyte, a polymer compound, and the like. Or a gel electrolyte etc. are mentioned.
As the organic solvent, those known as organic solvents for electrolytic solutions can be used. For example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, Diglyme, triglyme, γ-butyrolactone, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, acetic acid ester, butyric acid ester, propionic acid ester and the like can be used. In particular, from the viewpoint of voltage stability, it is preferable to use cyclic carbonates such as propylene carbonate or chain carbonates such as dimethyl carbonate and diethyl carbonate. Moreover, such an organic solvent may be used individually by 1 type, and may be used in mixture of 2 or more types.
 固体電解質としては、リチウムイオン伝導性を有する材料であればよく、たとえば、無機固体電解質および高分子固体電解質のいずれをも用いることができる。 As the solid electrolyte, any material having lithium ion conductivity may be used. For example, either an inorganic solid electrolyte or a polymer solid electrolyte can be used.
 無機固体電解質としては、窒化リチウム、ヨウ化リチウム等を用いることができる。
 高分子固体電解質としては、電解質塩と該電解質塩を溶解する高分子化合物を用いることができる。そして、この高分子化合物としては、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリホスファゼン、ポリアジリジン、ポリエチレンスルフィド、ポリビニルアルコール、ポリフッ化ビニリデン、および、ポリヘキサフルオロプロピレン、もしくは、これらの誘導体、混合物、および複合体を用いることができる。
As the inorganic solid electrolyte, lithium nitride, lithium iodide, or the like can be used.
As the polymer solid electrolyte, an electrolyte salt and a polymer compound that dissolves the electrolyte salt can be used. Examples of the polymer compound include polyethylene oxide, polypropylene oxide, polyphosphazene, polyaziridine, polyethylene sulfide, polyvinyl alcohol, polyvinylidene fluoride, and polyhexafluoropropylene, or derivatives, mixtures, and composites thereof. Can be used.
 ゲル状電解質等としては、前記の非水電解液を吸収してゲル化するものであればよく、種々の高分子を用いることができる。また、ゲル状電解質に用いられる高分子材料としては、たとえば、ポリ(ビニリデンフルオロライド)、ポリ(ビニリデンフルオロライド-co-ヘキサフルオロプロピレン)などのフッ素系高分子等を使用できる。また、ゲル状電解質に用いられる高分子材料としては、たとえば、ポリアクリロニトリルおよびポリアクリロニトリルの共重合体の他、ポリエチレンオキサイドおよびポリエチレンオキサイドの共重合体、同架橋体などのエーテル系高分子を使用できる。共重合モノマーとしては、たとえば、ポリプロピレンオキサイド、メタクリル酸メチル、メタクリル酸ブチル、アクリル酸メチル、アクリル酸ブチル等を挙げることができる。
 また、 ゲル状電解質のマトリックスとしては、酸化還元反応に対する安定性の観点から、特にフッ素系高分子が好ましい。
Any gel electrolyte may be used as long as it absorbs the non-aqueous electrolyte and gels, and various polymers can be used. In addition, as the polymer material used for the gel electrolyte, for example, fluorine-based polymers such as poly (vinylidene fluoride) and poly (vinylidene fluoride-co-hexafluoropropylene) can be used. As the polymer material used for the gel electrolyte, for example, polyacrylonitrile and a copolymer of polyacrylonitrile, as well as an ether polymer such as polyethylene oxide, a copolymer of polyethylene oxide, and a crosslinked product thereof can be used. . Examples of the copolymerization monomer include polypropylene oxide, methyl methacrylate, butyl methacrylate, methyl acrylate, and butyl acrylate.
In addition, the matrix of the gel electrolyte is particularly preferably a fluoropolymer from the viewpoint of stability against redox reaction.
 電解質塩は、この種の電池に用いられるものであればいずれも使用可能であり、たとえば、LiClO、LiPF、LiBF、CHSOLi、LiCl、LiBr等を用いることができる。
 本発明のリチウムイオン二次電池の形状は、コイン型、シート状(フィルム状)、折り畳み状、巻回型有底円筒型、ボタン型等の形状を、用途に応じて適宜選択できる。
Any electrolyte salt can be used as long as it is used for this type of battery. For example, LiClO 4 , LiPF 6 , LiBF 4 , CH 3 SO 3 Li, LiCl, LiBr, or the like can be used.
The shape of the lithium ion secondary battery of the present invention can be appropriately selected from coin shapes, sheet shapes (film shapes), folded shapes, wound bottomed cylindrical shapes, button shapes, and the like depending on the application.
 以下に、本発明の更に詳しい説明を実施例によって行うが、本発明は、これら実施例にのみ限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
 [正極活物質(1)の合成例]
 硫酸ニッケル(II)六水和物(630g)、硫酸コバルト(II)七水和物(669g)、および硫酸マンガン(II)五水和物(2321g)に蒸留水(5980g)を加えて均一に溶解させて原料溶液とした。硫酸アンモニウム(400g)に蒸留水(1600g)を加えて均一に溶解させてアンモニア源溶液とした。硫酸アンモニウム(79.2g)に蒸留水(1920.8g)を加えて均一に溶解させて母液とした。水酸化ナトリウム(120g)に蒸留水(1800g)を加えて均一に溶解させてpH調整液とした。
[Synthesis Example of Positive Electrode Active Material (1)]
Distilled water (5980 g) was added uniformly to nickel (II) sulfate hexahydrate (630 g), cobalt (II) sulfate heptahydrate (669 g), and manganese (II) sulfate pentahydrate (2321 g). A raw material solution was prepared by dissolving. Distilled water (1600 g) was added to ammonium sulfate (400 g) and dissolved uniformly to obtain an ammonia source solution. Distilled water (1920.8 g) was added to ammonium sulfate (79.2 g) and dissolved uniformly to obtain a mother liquor. Distilled water (1800 g) was added to sodium hydroxide (120 g) and dissolved uniformly to obtain a pH adjusting solution.
 2Lのバッフル付きガラス製反応槽に母液を入れてマントルヒーターで50℃に加熱し、pHが11.0となるようにpH調整液を加えた。反応槽内の溶液をアンカー型の攪拌翼で攪拌しながら原料溶液を5.0g/分、アンモニア源溶液を1.0g/分の速度で添加し、ニッケル、コバルト、およびマンガンの複合水酸化物を析出させた。原料溶液を添加している間、反応槽内のpHを11.0に保つようにpH調整溶液を添加した。また、析出した水酸化物が酸化しないように反応槽内に窒素ガスを流量0.5L/分で流した。また、反応槽内の液量が2Lを超えないように連続的に液の抜き出しを行った。 The mother liquor was placed in a 2 L baffled glass reaction vessel, heated to 50 ° C. with a mantle heater, and a pH adjusting solution was added so that the pH was 11.0. While stirring the solution in the reaction vessel with an anchor-type stirring blade, the raw material solution was added at a rate of 5.0 g / min and the ammonia source solution was added at a rate of 1.0 g / min, and a composite hydroxide of nickel, cobalt, and manganese was added. Was precipitated. During the addition of the raw material solution, the pH adjusting solution was added so as to keep the pH in the reaction vessel at 11.0. Moreover, nitrogen gas was flowed at a flow rate of 0.5 L / min in the reaction tank so that the precipitated hydroxide was not oxidized. Further, the liquid was continuously extracted so that the amount of the liquid in the reaction tank did not exceed 2 L.
 得られたニッケル、コバルト、およびマンガンの複合水酸化物から不純物イオンを取り除くため、加圧ろ過と蒸留水への分散を繰返して洗浄した。ろ液の電気伝導度が25μS/cmとなった時点で洗浄を終了し、120℃で15時間乾燥させて前駆体とした。
 ICPで前駆体のニッケル、コバルト、およびマンガンの含有量を測定したところ、それぞれ11.3質量%、11.9質量%、44.5質量%であった(モル比でニッケル:コバルト:マンガン=0.160:0.168:0.673)。
In order to remove impurity ions from the resulting composite hydroxide of nickel, cobalt, and manganese, washing was repeated by pressure filtration and dispersion in distilled water. When the electrical conductivity of the filtrate reached 25 μS / cm, the washing was finished and dried at 120 ° C. for 15 hours to obtain a precursor.
When the contents of the precursors nickel, cobalt, and manganese were measured by ICP, they were 11.3 mass%, 11.9 mass%, and 44.5 mass%, respectively (molar ratio of nickel: cobalt: manganese = 0.160: 0.168: 0.673).
 この前駆体(20g)とリチウム含有量が26.9mol/kgの炭酸リチウム(12.8g)を混合して酸素含有雰囲気下900℃で12時間焼成し、実施例のリチウム含有複合酸化物を得た。得られた実施例のリチウム含有複合酸化物の組成はLi(Li0.2Ni0.128Co0.134Mn0.538)Oとなる。実施例のリチウム含有複合酸化物の平均粒子径D50は8.4μmであり、窒素ガス吸着BET法を用いて測定した比表面積は1.4m/gであった。リチウム含有複合酸化物のタップ密度を測定したところ1.8g/cmであった。 This precursor (20 g) and lithium carbonate (12.8 g) having a lithium content of 26.9 mol / kg were mixed and calcined at 900 ° C. for 12 hours in an oxygen-containing atmosphere to obtain a lithium-containing composite oxide of the example. It was. The composition of the lithium-containing composite oxide of the obtained example is Li (Li 0.2 Ni 0.128 Co 0.134 Mn 0.538 ) O 2 . The average particle diameter D50 of the lithium-containing composite oxide of the example was 8.4 μm, and the specific surface area measured using the nitrogen gas adsorption BET method was 1.4 m 2 / g. When the tap density of the lithium-containing composite oxide was measured, it was 1.8 g / cm 3 .
 次いで、乳酸アルミニウム水溶液(Al含量4.5質量%、pH4.6)の7.0gに、蒸留水を3.0g加えてアルミニウム化合物が溶解した水溶液(以下、Al水溶液ともいう。)を調製した。攪拌中の実施例のリチウム含有複合酸化物10gに対して、調製したAl水溶液1gをスプレーコート噴霧して添加し、実施例のリチウム含有複合酸化物とAl水溶液とを混合しながら接触させた。 Next, 3.0 g of distilled water was added to 7.0 g of an aluminum lactate aqueous solution (Al content: 4.5 mass%, pH 4.6) to prepare an aqueous solution in which the aluminum compound was dissolved (hereinafter also referred to as an Al aqueous solution). . 1 g of the prepared Al aqueous solution was spray-sprayed and added to 10 g of the lithium-containing composite oxide of the example under stirring, and the lithium-containing composite oxide of the example and the Al aqueous solution were brought into contact with mixing.
 次に、得られた混合物を90℃で2時間乾燥した後に酸素含有雰囲気下400℃で8時間加熱し、リチウム含有複合酸化物の表面に被覆層(II)を形成して正極活物質(1)を得た。前記Al水溶液を用いて形成された該被覆層(II)はAlの酸化物を含む。
 本例で得られた正極活物質(1)において、該被覆層のアルミニウムは、リチウム含有複合酸化物の遷移金属元素であるニッケル、コバルト、マンガンの合計に対して、モル比(被覆量)で{(被覆層のAlのモル数)/(被覆する前のリチウム含有複合酸化物のNi、Co、Mnの合計モル数)}=0.013である。
 [正極活物質(2)]
 AGCセイミケミカル社製、商品名「セリオンL」(LiNi0.5Co0.2Mn0.3、タップ密度2.4g/cm、平均粒子径:12μm)を正極活物質(2)として使用した。
Next, the obtained mixture was dried at 90 ° C. for 2 hours, and then heated at 400 ° C. for 8 hours in an oxygen-containing atmosphere to form a coating layer (II) on the surface of the lithium-containing composite oxide to form a positive electrode active material (1 ) The coating layer (II) formed using the Al aqueous solution contains an oxide of Al.
In the positive electrode active material (1) obtained in this example, the aluminum of the coating layer is in a molar ratio (coating amount) with respect to the total of nickel, cobalt, and manganese, which are transition metal elements of the lithium-containing composite oxide. {(Number of moles of Al in coating layer) / (total number of moles of Ni, Co and Mn of lithium-containing composite oxide before coating)} = 0.013.
[Positive electrode active material (2)]
Product name “Selion L” (LiNi 0.5 Co 0.2 Mn 0.3 O 2 , tap density 2.4 g / cm 3 , average particle size: 12 μm) manufactured by AGC Seimi Chemical Co., Ltd., positive electrode active material (2) Used as.
[バインダー組成物の調製例]
 バインダー組成物として、バインダーである含フッ素重合体が、有機溶媒または水に、溶解または分散した溶液を調製した。
(参考例1:含フッ素ゴムAを含むバインダー組成物の調製)
 攪拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、1700gのイオン交換水、5gのリン酸水素二ナトリウム12水和物、2.0gの水酸化ナトリウム、13.3gのラウリル硫酸ナトリウム、および4.4gの過硫酸アンモニウムを加えた。
 ついで、75℃で、TFE/P=88/12(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、重合反応を開始させた。
 重合の進行に伴い、反応器内の圧力が低下するので、反応器の内圧が2.49MPaGに降下した時点で、TFE/P=56/44(モル比)の単量体混合ガスを自圧で圧入し、反応器の内圧を2.51MPaGまで昇圧させた。これを繰り返し、反応器の内圧を2.49~2.51MPaGに保持し、重合反応を続けた。TFE/Pの単量体混合ガスの圧入量の総量が900gとなった時点で、反応器の内温を10℃まで冷却し、重合反応を停止し、微粒子状の含フッ素ゴムAを含むラテックスを得、これをバインダー組成物とした。重合時間は8時間であった。バインダー組成物中の固形分は34質量%であった。含フッ素ゴムAの重量平均分子量は13万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位=56/44(モル比)であった。得られた含フッ素ゴムのフッ素含有量を表1に示す(以下、同様)。
[Preparation Example of Binder Composition]
As a binder composition, a solution was prepared in which a fluoropolymer as a binder was dissolved or dispersed in an organic solvent or water.
(Reference Example 1: Preparation of binder composition containing fluorine-containing rubber A)
After degassing the inside of a 3200 mL stainless steel pressure-resistant reactor equipped with an anchor blade for stirring, 1700 g of ion exchange water, 5 g of disodium hydrogen phosphate 12 hydrate, 2 0.0 g sodium hydroxide, 13.3 g sodium lauryl sulfate, and 4.4 g ammonium persulfate were added.
Next, a monomer mixed gas of TFE / P = 88/12 (molar ratio) was injected at 75 ° C. so that the internal pressure of the reactor was 2.50 MPaG. The anchor blade was rotated at 300 rpm to initiate the polymerization reaction.
As the polymerization proceeds, the pressure in the reactor decreases. When the internal pressure of the reactor drops to 2.49 MPaG, the monomer mixed gas of TFE / P = 56/44 (molar ratio) is self-pressured. And the internal pressure of the reactor was increased to 2.51 MPaG. This was repeated, and the internal pressure of the reactor was maintained at 2.49 to 2.51 MPaG, and the polymerization reaction was continued. When the total amount of the TFE / P monomer mixed gas injected reaches 900 g, the internal temperature of the reactor is cooled to 10 ° C., the polymerization reaction is stopped, and the latex containing the fine fluorine-containing rubber A This was used as a binder composition. The polymerization time was 8 hours. The solid content in the binder composition was 34% by mass. The weight average molecular weight of the fluorinated rubber A was 130,000, and the copolymer composition was a repeating unit based on TFE / a repeating unit based on P = 56/44 (molar ratio). The fluorine content of the obtained fluorinated rubber is shown in Table 1 (hereinafter the same).
(参考例2:含フッ素ゴムBを含むバインダー組成物の調製)
 攪拌用アンカー翼を備えた内容積3200mLのステンレス鋼製の耐圧反応器の内部を脱気した後、該反応器に、1700gのイオン交換水、58gのリン酸水素二ナトリウム12水和物、1.0gの水酸化ナトリウム、9gのラウリル硫酸ナトリウム、および4.4gの過硫酸アンモニウムを加えた。さらに、200gのイオン交換水に0.4gのEDTA(エチレンジアミン四酢酸2ナトリウム塩・2水和物)および0.3gの硫酸第一鉄7水和物を溶解させた水溶液を、反応器に加えた。
 ついで、25℃で、TFE/P/VdF=25/6/69(モル比)の単量体混合ガスを、反応器の内圧が2.50MPaGになるように圧入した。アンカー翼を300rpmで回転させ、水酸化ナトリウムでpHを10.0に調整したロンガリットの6.9質量%水溶液(以下、ロンガリット6.9質量%水溶液と記す。)を反応器に加え、重合反応を開始させた。以降、ロンガリット6.9質量%水溶液を、高圧ポンプを用いて連続的に反応器に加えた。
 重合の進行に伴い、反応器内の圧力が低下するので、反応器の内圧が2.49MPaGに降下した時点で、TFE/P/VdF=39/26/35(モル比)の単量体混合ガスを自圧で圧入し、反応器の内圧を2.51MPaGまで昇圧させた。これを繰り返し、反応器の内圧を2.49~2.51MPaGに保持し、重合反応を続けた。TFE/P/VdFの単量体混合ガスの圧入量の総量が900gとなった時点で、ロンガリット6.9質量%水溶液の添加を停止し、反応器の内温を10℃まで冷却し、重合反応を停止し、含フッ素ゴムBを含むラテックスを得た。ラテックス中の固形分は34質量%であり、含フッ素ゴムBの重量平均分子量は22万であり、共重合組成は、TFEに基づく繰り返し単位/Pに基づく繰り返し単位/VdFに基づく繰り返し単位=39/26/35(モル比)であった。
 前記ラテックスに塩化カルシウムの1.5質量%水溶液を添加して、含フッ素ゴムBを凝集させ、ろ過し、回収した。ついで、含フッ素ゴムBをイオン交換水により洗浄し、100℃のオーブンで15時間乾燥させ、白色の含フッ素ゴムBを得た。この含フッ素ゴムBをN-メチルピロリドン溶液に溶解し、含フッ素ゴムBの濃度が10質量%のバインダー組成物を調製した。
(Reference Example 2: Preparation of binder composition containing fluorine-containing rubber B)
After degassing the inside of a 3200 mL stainless steel pressure-resistant reactor equipped with an anchor blade for stirring, 1700 g of ion-exchange water, 58 g of disodium hydrogen phosphate 12 hydrate, 0.0 g sodium hydroxide, 9 g sodium lauryl sulfate, and 4.4 g ammonium persulfate were added. Further, an aqueous solution in which 0.4 g of EDTA (ethylenediaminetetraacetic acid disodium salt dihydrate) and 0.3 g of ferrous sulfate heptahydrate were dissolved in 200 g of ion-exchanged water was added to the reactor. It was.
Then, a monomer mixed gas of TFE / P / VdF = 25/6/69 (molar ratio) was injected at 25 ° C. so that the internal pressure of the reactor was 2.50 MPaG. The anchor blade was rotated at 300 rpm, and a 6.9% by mass aqueous solution of Rongalite adjusted to pH 10.0 with sodium hydroxide (hereinafter referred to as Rongalit's 6.9% by mass aqueous solution) was added to the reactor, followed by polymerization reaction. Was started. Thereafter, Rongalite 6.9% by mass aqueous solution was continuously added to the reactor using a high-pressure pump.
As the polymerization proceeds, the pressure in the reactor decreases, so when the internal pressure of the reactor drops to 2.49 MPaG, monomer mixing of TFE / P / VdF = 39/26/35 (molar ratio) The gas was injected under its own pressure, and the internal pressure of the reactor was increased to 2.51 MPaG. This was repeated, and the internal pressure of the reactor was maintained at 2.49 to 2.51 MPaG, and the polymerization reaction was continued. When the total amount of TFE / P / VdF monomer mixture gas injection reaches 900 g, the addition of Rongalite 6.9% by mass aqueous solution is stopped, the internal temperature of the reactor is cooled to 10 ° C., and polymerization is performed. The reaction was stopped, and a latex containing fluorine-containing rubber B was obtained. The solid content in the latex is 34% by mass, the weight average molecular weight of the fluorinated rubber B is 220,000, and the copolymer composition is a repeating unit based on TFE / a repeating unit based on P / a repeating unit based on VdF = 39. / 26/35 (molar ratio).
A 1.5% by mass aqueous solution of calcium chloride was added to the latex to agglomerate the fluorinated rubber B, which was filtered and recovered. Next, the fluorinated rubber B was washed with ion-exchanged water and dried in an oven at 100 ° C. for 15 hours to obtain a white fluorinated rubber B. This fluorinated rubber B was dissolved in an N-methylpyrrolidone solution to prepare a binder composition having a fluorinated rubber B concentration of 10% by mass.
(参考例3:含フッ素ゴムCを含むバインダー組成物の調製)
 バインダーとして、含フッ素ゴムBの代わりに、VdF/HFP/TFE=48/22/30(モル比)の含フッ素ゴムCを用いた以外は参考例2と同様にして、含フッ素ゴムCが濃度10質量%でN-メチルピロリドンに溶解したバインダー組成物を調製した。
(Reference Example 3: Preparation of binder composition containing fluorine-containing rubber C)
The concentration of the fluorine-containing rubber C was the same as in Reference Example 2 except that the fluorine-containing rubber C of VdF / HFP / TFE = 48/22/30 (molar ratio) was used instead of the fluorine-containing rubber B as the binder. A binder composition dissolved in N-methylpyrrolidone at 10% by mass was prepared.
(参考例4:ポリ四フッ化エチレン水性分散液の調製)
 バインダー組成物として、ポリ四フッ化エチレン水性分散液(旭硝子社製、製品名:Fluon PTFEAD、固形分濃度60%)を用いた。
(参考例5:ポリフッ化ビニリデン溶液の調製)
 バインダーとして、含フッ素ゴムBの代わりに、粉末状のポリフッ化ビニリデンを用いた以外は参考例2と同様にして、ポリフッ化ビニリデンが濃度10質量%でN-メチルピロリドンに溶解したバインダー組成物を調製した。
(参考例6:スチレン-ブタジエンゴム溶液の調製)
 バインダーとして、含フッ素ゴムBの代わりに、スチレン-ブタジエンゴムを用いた以外は参考例2と同様にして、スチレン-ブタジエンゴムが濃度10質量%でN-メチルピロリドンに溶解したバインダー組成物を調製した。
(Reference Example 4: Preparation of polytetrafluoroethylene aqueous dispersion)
As the binder composition, an aqueous polytetrafluoroethylene dispersion (Asahi Glass Co., Ltd., product name: Fluon PTFEAD, solid content concentration 60%) was used.
(Reference Example 5: Preparation of polyvinylidene fluoride solution)
A binder composition in which polyvinylidene fluoride was dissolved in N-methylpyrrolidone at a concentration of 10% by mass in the same manner as in Reference Example 2 except that powdered polyvinylidene fluoride was used in place of fluorine-containing rubber B as a binder. Prepared.
(Reference Example 6: Preparation of styrene-butadiene rubber solution)
A binder composition in which styrene-butadiene rubber was dissolved in N-methylpyrrolidone at a concentration of 10% by mass was prepared in the same manner as in Reference Example 2 except that styrene-butadiene rubber was used in place of fluorine-containing rubber B. did.
[バインダーの機械特性評価]
 各例のバインダー組成物中のバインダーのみ厚さ2mmのシートに圧縮成形し、該シートから3号ダンベルの形状の試験片を切り出し、JISK6251に従い、引張特性(引張強度および引張破断伸び)を評価した。各バインダーの物性評価結果を表1に示す。
[Mechanical property evaluation of binder]
Only the binder in the binder composition of each example was compression-molded into a sheet having a thickness of 2 mm, a test piece having a No. 3 dumbbell shape was cut out from the sheet, and tensile properties (tensile strength and tensile elongation at break) were evaluated according to JISK6251. . Table 1 shows the physical property evaluation results of each binder.
 なお、参考例1のバインダーである含フッ素ゴムAは、参考例1で得たバインダー組成物に塩化カルシウムの1.5質量%水溶液を添加して、含フッ素ゴムAを凝集させ、ろ過し、回収し、乾燥させたものを用いた。
 参考例2、3のバインダーである含フッ素ゴムB、Cは、それぞれ、バインダー組成物の調製に用いた乾燥物の含フッ素ゴムB、Cを用いた。
 参考例4のバインダーとしては、上記ポリ四フッ化エチレン水性分散液の乾燥物を用いた。
 参考例5のバインダーとしては、上記粉末状のポリフッ化ビニリデンを用いた。
 参考例6のバインダーとしては、上記スチレン-ブタジエンゴムを用いた。
In addition, the fluorine-containing rubber A which is a binder of Reference Example 1 was added to the binder composition obtained in Reference Example 1 by adding a 1.5% by mass aqueous solution of calcium chloride to aggregate the fluorine-containing rubber A, and filtered. The recovered and dried product was used.
As the fluorine-containing rubbers B and C which are binders of Reference Examples 2 and 3, the dried fluorine-containing rubbers B and C used for preparing the binder composition were used, respectively.
As the binder of Reference Example 4, a dried product of the above polytetrafluoroethylene aqueous dispersion was used.
As the binder of Reference Example 5, the above powdery polyvinylidene fluoride was used.
As the binder of Reference Example 6, the above styrene-butadiene rubber was used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(実施例1)
 粘度調整剤としてのカルボキシメチルセルロースナトリウムの2質量%水溶液10質量部、上記で製造した正極活物質(1)とアセチレンブラックを混合し、固形分濃度が70質量%となるように水を加えて攪拌したのち、参考例1で得られた含フッ素ゴムAを含むバインダー組成物を加えて攪拌し、均一なスラリー(混合物)を作製した。このスラリーを、厚さ20μmのアルミニウム箔(正極集電体)に、ドクターブレードを用いて片面塗工した。そして、120℃で熱処理して乾燥させ、ロールプレス圧延を2回行うことにより、正極体シートを作製した。この際、正極活物質/アセチレンブラック/バインダー(含フッ素ゴムA)の質量比は85/15/5とした。正極材シートは正極活物質層と正極集電体との密着性が良好であった。
 得られた正極体シートを正極に用い、ステンレス鋼製簡易密閉セル型のリチウムイオン二次電池をアルゴングローブボックス内で組み立てた。この際、厚さ500μmの金属リチウム箔を負極に用い、負極集電体に厚さ1mmのステンレス板を使用し、セパレータには厚さ25μmの多孔質ポリプロピレンを用い、さらに、電解液には濃度1mol/dmのLiPF/EC(エチレンカーボネート)+DEC(ジエチルカーボネート)(1:1)溶液(LiPFを溶質とするECとDECとの体積比(EC:DEC=1:1)の混合溶液を意味する。)を用いた。
Example 1
10 parts by weight of a 2% by weight aqueous solution of sodium carboxymethylcellulose as a viscosity modifier, the positive electrode active material (1) prepared above and acetylene black are mixed, and water is added so that the solid content concentration becomes 70% by weight. After that, the binder composition containing the fluorinated rubber A obtained in Reference Example 1 was added and stirred to prepare a uniform slurry (mixture). This slurry was applied on one side to a 20 μm thick aluminum foil (positive electrode current collector) using a doctor blade. And it heat-processed at 120 degreeC, it was made to dry, and the positive electrode sheet | seat was produced by performing roll press rolling twice. At this time, the mass ratio of positive electrode active material / acetylene black / binder (fluorinated rubber A) was 85/15/5. The positive electrode material sheet had good adhesion between the positive electrode active material layer and the positive electrode current collector.
Using the obtained positive electrode sheet as a positive electrode, a stainless steel simple sealed cell type lithium ion secondary battery was assembled in an argon glove box. At this time, a metal lithium foil having a thickness of 500 μm is used for the negative electrode, a stainless steel plate having a thickness of 1 mm is used for the negative electrode current collector, a porous polypropylene having a thickness of 25 μm is used for the separator, and a concentration is used for the electrolyte. 1 mol / dm 3 LiPF 6 / EC (ethylene carbonate) + DEC (diethyl carbonate) (1: 1) solution (mixed solution of EC and DEC in volume ratio (EC: DEC = 1: 1) using LiPF 6 as a solute) Is used.)
 前記で製造したリチウムイオン二次電池を用いて下記の評価を行った。
 すなわち、正極活物質1gにつき20mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき20mAの負荷電流にて2.5Vまで放電した。このときの放電容量を初回放電容量とする。初回放電容量は270mAh/gであった。
 次いで、充放電正極活物質1gにつき60mAの負荷電流で4.6Vまで充電し、正極活物質1gにつき60mAの負荷電流にて2.5Vまで放電することをさらに99回繰り返した。99回目の放電容量/初回放電容量をサイクル維持率とする。サイクル維持率は96%であった。
The following evaluation was performed using the lithium ion secondary battery manufactured above.
That is, it charged to 4.6V with a load current of 20 mA per 1 g of the positive electrode active material, and discharged to 2.5 V with a load current of 20 mA per 1 g of the positive electrode active material. The discharge capacity at this time is defined as the initial discharge capacity. The initial discharge capacity was 270 mAh / g.
Next, charging to 4.6 V with a load current of 60 mA per 1 g of the charge / discharge positive electrode active material and discharging to 2.5 V with a load current of 60 mA per 1 g of the positive electrode active material were further repeated 99 times. The 99th discharge capacity / initial discharge capacity is defined as a cycle maintenance ratio. The cycle maintenance rate was 96%.
(実施例2)
 上記で製造した正極活物質(1)とアセチレンブラックを混合し、参考例2で得られた含フッ素ゴムBを含むバインダー組成物、およびN-メチルピロリドンを加えて攪拌し、固形分濃度が65質量%である均一なスラリーを作製した。正極活物質/アセチレンブラック/バインダー(含フッ素ゴムB)の質量比は85/15/5とした。以降は実施例1と同様に行った。
(Example 2)
The positive electrode active material (1) produced above and acetylene black are mixed, the binder composition containing the fluorinated rubber B obtained in Reference Example 2 and N-methylpyrrolidone are added and stirred, and the solid content concentration is 65 A uniform slurry having a mass% was prepared. The mass ratio of positive electrode active material / acetylene black / binder (fluorinated rubber B) was 85/15/5. Thereafter, the same procedure as in Example 1 was performed.
(実施例3)
 バインダー組成物として参考例3に示すバインダー組成物を用いた以外は実施例2と同様に行う。
(比較例1)
 バインダー組成物として参考例4に示すバインダー組成物を用いた以外は実施例1と同様に行う。得られた正極体シートは正極活物質層と集電体との密着性が不十分で剥離してしまう。電池評価は剥離しなかった正極体シートで行う。
(比較例2)
 バインダー組成物として参考例5に示すバインダー組成物を用いた以外は実施例2と同様に行う。得られた正極体シートの一部は正極活物質層と集電体との密着性が不十分で剥離してしまう。電池評価は剥離しなかった正極体シートで行う。
(比較例3)
 バインダー組成物として参考例6に示すバインダー組成物を用いた以外は実施例2と同様に行う。
(比較例4)
 正極活物質(1)を正極活物質(2)に変更した以外は、実施例1と同様に行う。
(Example 3)
The same procedure as in Example 2 was performed except that the binder composition shown in Reference Example 3 was used as the binder composition.
(Comparative Example 1)
The same procedure as in Example 1 was performed except that the binder composition shown in Reference Example 4 was used as the binder composition. The obtained positive electrode body sheet peels off due to insufficient adhesion between the positive electrode active material layer and the current collector. The battery evaluation is performed on the positive electrode sheet that was not peeled off.
(Comparative Example 2)
It carries out similarly to Example 2 except having used the binder composition shown in the reference example 5 as a binder composition. Part of the obtained positive electrode sheet is peeled off due to insufficient adhesion between the positive electrode active material layer and the current collector. The battery evaluation is performed on the positive electrode sheet that was not peeled off.
(Comparative Example 3)
The same procedure as in Example 2 was performed except that the binder composition shown in Reference Example 6 was used as the binder composition.
(Comparative Example 4)
The same procedure as in Example 1 was performed except that the positive electrode active material (1) was changed to the positive electrode active material (2).
(評価)
 実施例1~3および比較例1~4の結果を表2に示す。なお、密着性は、JISK5400の碁盤目剥離試験により評価した。すなわち、作製した正極体シート塗膜にカッターナイフで1mm間隔の碁盤目状の切込みを入れ、セロハンテープ(商品名、ニチバン社製)を貼り付けた後、剥離し残存する目数を計測して評価する。残存する目数が70%以上のものを○、40%超~70%未満を△、40%未満を×とする。
 初回放電容量は250mAh/g超を○、200~250mAh/gを△、200mAh/g未満を×とする。
 サイクル維持率は90%超を○、80~90%を△、80%未満を×とする。
(Evaluation)
The results of Examples 1 to 3 and Comparative Examples 1 to 4 are shown in Table 2. The adhesion was evaluated by a cross-cut peel test of JISK5400. That is, a grid-like cut with a 1 mm interval was made with a cutter knife in the produced positive electrode sheet coating film, cellophane tape (trade name, manufactured by Nichiban Co., Ltd.) was applied, and the number of peeled and remaining eyes was measured. evaluate. The number of remaining eyes is 70% or more, ◯, more than 40% to less than 70% is represented by Δ, and less than 40% is represented by ×.
The initial discharge capacity is over 250 mAh / g, ◯, 200 to 250 mAh / g is Δ, and less than 200 mAh / g is x.
The cycle maintenance rate is over 90% as ◯, 80 to 90% as △, and less than 80% as x.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 実施例1~実施例3および比較例1~4の結果より、本発明のリチウムイオン二次電池用正極を適用してリチウムイオン二次電池を構成した場合には、初期放電容量が高く、また、優れたサイクル維持率が得られることが明らかとなる。比較例1、比較例2のバインダーを用いた場合はバインダーの引張破断伸びが小さくゴム弾性を有さないため、正極活物質を高充填した場合に集電体との密着性が不十分である。比較例3のバインダーはフッ素含有量が小さいため耐電圧性が不十分であり、初期放電容量とサイクル維持率に劣る。実施例1、実施例2で用いたバインダーはTFEに基づく繰り返し単位とPに基づく繰り返し単位を有するため、実施例3で用いたバインダーよりも耐アルカリ性が高い。このため実施例1と実施例2では特にサイクル維持率が高い。
 比較例4は、正極活物質として使用したリチウム含有複合酸化物におけるLi元素のモル量が遷移金属元素の総モル量の1.0倍と少ないため、初期放電容量に劣る。
From the results of Examples 1 to 3 and Comparative Examples 1 to 4, when the lithium ion secondary battery was configured by applying the positive electrode for a lithium ion secondary battery of the present invention, the initial discharge capacity was high, It is clear that an excellent cycle maintenance ratio can be obtained. When the binders of Comparative Examples 1 and 2 are used, the tensile elongation at break of the binder is small and the rubber does not have elasticity. Therefore, when the positive electrode active material is highly filled, the adhesion with the current collector is insufficient. . Since the binder of Comparative Example 3 has a low fluorine content, the voltage resistance is insufficient, and the initial discharge capacity and cycle retention rate are inferior. Since the binder used in Example 1 and Example 2 has a repeating unit based on TFE and a repeating unit based on P, the alkali resistance is higher than that of the binder used in Example 3. For this reason, in Example 1 and Example 2, a cycle maintenance factor is especially high.
Comparative Example 4 is inferior in the initial discharge capacity because the molar amount of Li element in the lithium-containing composite oxide used as the positive electrode active material is as small as 1.0 times the total molar amount of transition metal elements.
 本発明によれば、単位質量あたりの放電容量が高く、かつ、サイクル特性に優れるリチウムイン二次電池用正極を得ることができる。正極は、携帯電話等の電子機器、車載用のリチウムイオン二次電池用に利用できる。
 なお、2011年10月14日に出願された日本特許出願2011-226763号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
According to the present invention, a positive electrode for a lithium-in secondary battery having a high discharge capacity per unit mass and excellent cycle characteristics can be obtained. The positive electrode can be used for electronic devices such as mobile phones and lithium ion secondary batteries for vehicles.
It should be noted that the entire contents of the specification, claims, and abstract of Japanese Patent Application No. 2011-226863 filed on October 14, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.

Claims (10)

  1.  正極活物質、バインダー、および導電材を含む正極活物質層が正極集電体の表面上に形成されたリチウムイオン二次電池用正極であって、
     前記正極活物質が、Li元素と、Ni、Co、およびMnからなる群より選ばれる少なくとも1種の遷移金属元素とを含む(ただし、Li元素のモル量が該遷移金属元素の総モル量に対して1.2倍超である。)リチウム含有複合酸化物を含み、
     前記バインダーが、四フッ化エチレン、ヘキサフルオロプロピレン、およびフッ化ビニリデンからなる群より選ばれる少なくとも1種の単量体に基づく繰り返し単位を有する共重合体からなり、フッ素含有量が50~76質量%である含フッ素ゴムを含むことを特徴とするリチウムイオン二次電池用正極。
    A positive electrode for a lithium ion secondary battery in which a positive electrode active material layer including a positive electrode active material, a binder, and a conductive material is formed on the surface of a positive electrode current collector,
    The positive electrode active material contains Li element and at least one transition metal element selected from the group consisting of Ni, Co, and Mn (provided that the molar amount of Li element is the total molar amount of the transition metal element) More than 1.2 times) including a lithium-containing composite oxide;
    The binder comprises a copolymer having a repeating unit based on at least one monomer selected from the group consisting of tetrafluoroethylene, hexafluoropropylene, and vinylidene fluoride, and has a fluorine content of 50 to 76 mass. %, A positive electrode for a lithium ion secondary battery.
  2.  前記リチウム含有複合酸化物の表面にMg、Ca、Sr、Ba、Ti、Zr、Hf、Nb、Ta、Al、Ga、Y、La、Ce、Nd、Gd、およびErからなる群より選ばれる少なくとも1種の金属元素を含む酸化物からなる被覆層が形成されている請求項1に記載のリチウムイオン二次電池用正極。 At least selected from the group consisting of Mg, Ca, Sr, Ba, Ti, Zr, Hf, Nb, Ta, Al, Ga, Y, La, Ce, Nd, Gd, and Er on the surface of the lithium-containing composite oxide The positive electrode for a lithium ion secondary battery according to claim 1, wherein a coating layer made of an oxide containing one kind of metal element is formed.
  3.  前記バインダーが、四フッ化エチレンに基づく繰り返し単位およびプロピレンに基づく繰り返し単位を有する共重合体からなる含フッ素ゴムを含む請求項1または2に記載のリチウムイオン二次電池用正極。 The positive electrode for a lithium ion secondary battery according to claim 1 or 2, wherein the binder includes a fluorine-containing rubber made of a copolymer having a repeating unit based on tetrafluoroethylene and a repeating unit based on propylene.
  4.  前記四フッ化エチレンに基づく繰り返し単位およびプロピレンに基づく繰り返し単位を有する共重合体が、四フッ化エチレンに基づく繰り返し単位/プロピレンに基づく繰り返し単位の比率40~70/60~30(モル%)を有する請求項3に記載のリチウムイオン二次電池用正極。 The copolymer having a repeating unit based on tetrafluoroethylene and a repeating unit based on propylene has a ratio of 40 to 70/60 to 30 (mol%) of the repeating unit based on ethylene tetrafluoride / the repeating unit based on propylene. The positive electrode for a lithium ion secondary battery according to claim 3.
  5.  前記バインダーが、四フッ化エチレンに基づく繰り返し単位、プロピレンに基づく繰り返し単位、およびフッ化ビニリデンに基づく繰り返し単位を有する共重合体からなる含フッ素ゴムを含む請求項1または2に記載のリチウムイオン二次電池用正極。 3. The lithium ion catalyst according to claim 1, wherein the binder comprises a fluorine-containing rubber comprising a copolymer having a repeating unit based on ethylene tetrafluoride, a repeating unit based on propylene, and a repeating unit based on vinylidene fluoride. Positive electrode for secondary battery.
  6.  前記四フッ化エチレンに基づく繰り返し単位、プロピレンに基づく繰り返し単位、およびフッ化ビニリデンに基づく繰り返し単位を有する共重合体が、四フッ化エチレンに基づく繰り返し単位/プロピレンに基づく繰り返し単位/フッ化ビニリデンに基づく繰り返し単位の比率30~70/20~60/1~40(モル%)を有する請求項5に記載のリチウムイオン二次電池用正極。 The copolymer having a repeating unit based on ethylene tetrafluoride, a repeating unit based on propylene, and a repeating unit based on vinylidene fluoride is a repeating unit based on ethylene tetrafluoride / a repeating unit based on propylene / vinylidene fluoride. 6. The positive electrode for a lithium ion secondary battery according to claim 5, having a ratio of repeating units based on 30 to 70/20 to 60/1 to 40 (mol%).
  7.  請求項1~6のいずれか一項に記載のリチウムイオン二次電池用正極を製造する方法であって、前記正極活物質と前記バインダーを混合して混合物を得る混合工程と、該混合物を熱処理する工程を含むリチウムイオン二次電池用正極の製造方法。 A method for producing a positive electrode for a lithium ion secondary battery according to any one of claims 1 to 6, comprising a mixing step of mixing the positive electrode active material and the binder to obtain a mixture, and heat-treating the mixture. The manufacturing method of the positive electrode for lithium ion secondary batteries including the process to carry out.
  8.  前記混合工程において、有機溶媒中で前記正極活物質と前記バインダーとを混合する請求項7に記載のリチウムイオン二次電池用正極の製造方法。 The method for producing a positive electrode for a lithium ion secondary battery according to claim 7, wherein the positive electrode active material and the binder are mixed in an organic solvent in the mixing step.
  9.  前記混合工程において、水性分散媒中で前記正極活物質と前記バインダーとを混合する請求項7に記載のリチウムイオン二次電池用正極の製造方法。 The method for producing a positive electrode for a lithium ion secondary battery according to claim 7, wherein in the mixing step, the positive electrode active material and the binder are mixed in an aqueous dispersion medium.
  10.  請求項1~6のいずれか一項に記載のリチウムイオン二次電池用正極と、負極と、非水電解質とを含むリチウムイオン二次電池。 A lithium ion secondary battery comprising the positive electrode for a lithium ion secondary battery according to any one of claims 1 to 6, a negative electrode, and a nonaqueous electrolyte.
PCT/JP2012/075858 2011-10-14 2012-10-04 Lithium-ion rechargeable battery electrode, and method for producing same WO2013054743A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-226763 2011-10-14
JP2011226763 2011-10-14

Publications (1)

Publication Number Publication Date
WO2013054743A1 true WO2013054743A1 (en) 2013-04-18

Family

ID=48081799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075858 WO2013054743A1 (en) 2011-10-14 2012-10-04 Lithium-ion rechargeable battery electrode, and method for producing same

Country Status (2)

Country Link
JP (1) JPWO2013054743A1 (en)
WO (1) WO2013054743A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132641A1 (en) * 2014-03-03 2015-09-11 Toyota Jidosha Kabushiki Kaisha Positive electrode of lithium ion secondary battery, and method of manufacturing lithium ion secondary battery
JP2015227263A (en) * 2014-05-30 2015-12-17 住友金属鉱山株式会社 Nickel-cobalt-manganese composite hydroxide and production method of the same
JP2015232998A (en) * 2014-05-12 2015-12-24 株式会社豊田自動織機 Power storage device
JP2016042417A (en) * 2014-08-15 2016-03-31 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
JP2019513285A (en) * 2016-03-14 2019-05-23 スリーエム イノベイティブ プロパティズ カンパニー Fluoropolymer composition containing high content of inorganic material
JPWO2021015230A1 (en) * 2019-07-25 2021-12-09 ダイキン工業株式会社 Binders, solid-state battery slurry, solid-state battery electrodes and secondary solid-state batteries

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306474A (en) * 1996-05-14 1997-11-28 Kazuo Tagawa Applying paste for electrode and nonaqueous secondary battery electrode
JPH10233217A (en) * 1996-12-16 1998-09-02 Daikin Ind Ltd Binder for nonaqueous electrolyte secondary cell and battery electrode mix using it
JP2009146871A (en) * 2007-11-20 2009-07-02 Asahi Glass Co Ltd Water-based paste for forming power storage element electrode having small environmental load
WO2010039732A2 (en) * 2008-09-30 2010-04-08 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
WO2011055760A1 (en) * 2009-11-06 2011-05-12 旭硝子株式会社 Binder composition for secondary battery, secondary battery electrode mix comprising same, and secondary battery
JP2011519126A (en) * 2008-04-16 2011-06-30 エンビア・システムズ・インコーポレイテッド High energy lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09306474A (en) * 1996-05-14 1997-11-28 Kazuo Tagawa Applying paste for electrode and nonaqueous secondary battery electrode
JPH10233217A (en) * 1996-12-16 1998-09-02 Daikin Ind Ltd Binder for nonaqueous electrolyte secondary cell and battery electrode mix using it
JP2009146871A (en) * 2007-11-20 2009-07-02 Asahi Glass Co Ltd Water-based paste for forming power storage element electrode having small environmental load
JP2011519126A (en) * 2008-04-16 2011-06-30 エンビア・システムズ・インコーポレイテッド High energy lithium ion secondary battery
WO2010039732A2 (en) * 2008-09-30 2010-04-08 Envia Systems, Inc. Fluorine doped lithium rich metal oxide positive electrode battery materials with high specific capacity and corresponding batteries
WO2011055760A1 (en) * 2009-11-06 2011-05-12 旭硝子株式会社 Binder composition for secondary battery, secondary battery electrode mix comprising same, and secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y. WU ET AL.: "High Capacity, Surface- Modified Layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/ 3]02 Cathodes with Low Irreversible Capacity Loss", ELECTROCHEMICAL AND SOLID-STATE LETTERS, vol. 9, no. 5, 2006, pages A221 - A224, XP002460582, DOI: doi:10.1149/1.2180528 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015132641A1 (en) * 2014-03-03 2015-09-11 Toyota Jidosha Kabushiki Kaisha Positive electrode of lithium ion secondary battery, and method of manufacturing lithium ion secondary battery
CN106068573A (en) * 2014-03-03 2016-11-02 丰田自动车株式会社 The positive pole of lithium rechargeable battery and the method manufacturing lithium rechargeable battery
US9941513B2 (en) 2014-03-03 2018-04-10 Toyota Jidosha Kabushiki Kaisha Positive electrode of lithium ion secondary battery, and method of manufacturing lithium ion secondary battery
JP2015232998A (en) * 2014-05-12 2015-12-24 株式会社豊田自動織機 Power storage device
JP2015227263A (en) * 2014-05-30 2015-12-17 住友金属鉱山株式会社 Nickel-cobalt-manganese composite hydroxide and production method of the same
JP2016042417A (en) * 2014-08-15 2016-03-31 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
JP2019513285A (en) * 2016-03-14 2019-05-23 スリーエム イノベイティブ プロパティズ カンパニー Fluoropolymer composition containing high content of inorganic material
US10947378B2 (en) 2016-03-14 2021-03-16 3M Innovative Properties Company Fluoropolymer compositions with high content of inorganic material
JPWO2021015230A1 (en) * 2019-07-25 2021-12-09 ダイキン工業株式会社 Binders, solid-state battery slurry, solid-state battery electrodes and secondary solid-state batteries
JP7260819B2 (en) 2019-07-25 2023-04-19 ダイキン工業株式会社 Binders, slurries for solid-state batteries, electrodes for solid-state batteries and secondary solid-state batteries

Also Published As

Publication number Publication date
JPWO2013054743A1 (en) 2015-03-30

Similar Documents

Publication Publication Date Title
US10153489B2 (en) Lithium-containing composite oxide and process for its production
JP5617663B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
JP6587804B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6487279B2 (en) Lithium-containing composite oxide, positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6510402B2 (en) Composite compound, lithium-containing composite oxide, and method for producing them
JP6607670B2 (en) Positive electrode active material, method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
US9373845B2 (en) Method for producing fluorinated copolymer latex, fluorinated copolymer latex, binder for producing electrode, electrode mixture for storage battery device, and electrode for storage battery device
JP6600136B2 (en) Positive electrode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
WO2012108513A1 (en) Method for producing positive electrode active material for lithium ion secondary batteries
JP5621600B2 (en) Cathode active material for lithium ion secondary battery and method for producing the same
JPWO2012057289A1 (en) Positive electrode active material for lithium ion secondary battery, positive electrode, battery, and manufacturing method
WO2013054743A1 (en) Lithium-ion rechargeable battery electrode, and method for producing same
JP6745929B2 (en) Method for producing lithium-containing composite oxide, positive electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2016199414A (en) Lithium-containing composite oxide, method for producing the same, cathode active material, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014116162A (en) Positive electrode active material
JPWO2013154142A1 (en) Positive electrode active material for lithium ion secondary battery
JP2013178926A (en) Positive electrode mixture for nonaqueous secondary battery
US9490484B2 (en) Binder for storage battery device
JP2014222583A (en) Method of producing cathode active material
JP6378676B2 (en) Carbonate compound, method for producing the same, and method for producing positive electrode active material for lithium ion secondary battery
JP2014089848A (en) Positive electrode active material and method for producing the same
JP6259771B2 (en) Method for producing positive electrode active material
JP2017200859A (en) Production method of lithium-containing complex oxide
JP2020017534A (en) Manufacturing method of positive electrode active material, manufacturing method of positive electrode for lithium ion secondary battery, and manufacturing method of lithium ion secondary battery
WO2015111724A1 (en) Binder for electricity storage devices, binder composition, electrode mixture, electrode and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12839405

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013538520

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12839405

Country of ref document: EP

Kind code of ref document: A1