WO2013050283A1 - Lithium-ion cells having improved properties - Google Patents

Lithium-ion cells having improved properties Download PDF

Info

Publication number
WO2013050283A1
WO2013050283A1 PCT/EP2012/069010 EP2012069010W WO2013050283A1 WO 2013050283 A1 WO2013050283 A1 WO 2013050283A1 EP 2012069010 W EP2012069010 W EP 2012069010W WO 2013050283 A1 WO2013050283 A1 WO 2013050283A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
carbonate
solvent
cell according
ion cell
Prior art date
Application number
PCT/EP2012/069010
Other languages
German (de)
French (fr)
Inventor
David ENSLING
Original Assignee
Varta Microbattery Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Varta Microbattery Gmbh filed Critical Varta Microbattery Gmbh
Publication of WO2013050283A1 publication Critical patent/WO2013050283A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0431Cells with wound or folded electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/0042Four or more solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a lithium-ion cell having at least one negative and at least one positive electrode, which are connected to one another via an ion-conducting electrolyte, wherein the electrolyte comprises a solvent and a conductive salt component dissolved therein.
  • battery originally meant several galvanic cells connected in series, but today also individual galvanic cells are often referred to as "battery.”
  • an energy-supplying chemical reaction takes place, which consists of two electrically coupled but spatially separated partial reactions
  • a partial reaction taking place at a comparatively lower redox potential takes place at the negative electrode, one with a comparatively higher redox potential at the positive electrode
  • electrons are released at the negative electrode by an oxidation process, resulting in an electron current via an external consumer to the positive one Electrode, from which a corresponding amount of electrons is taken in.
  • a reduction process takes place.
  • a lonenstr om inside the cell.
  • electrochemically active components for lithium-ion batteries are basically all materials in question, which can absorb lithium ions and release again.
  • the state of the art in this regard for the negative electrode in particular carbon-based particles such as graphitic carbon or for the intercalation of lithium capable non-graphitic carbon materials.
  • metallic and semi-metallic materials which can be alloyed with lithium.
  • the elements tin, antimony and silicon are able to form intermetallic phases with lithium.
  • the active materials industrially used at this time mainly include lithium cobalt oxide (L1CO 2), LiMn 2 O 4 spinel (LiMn 2 O 4 ), lithium iron phosphate (LiFePO 4 ), and derivatives such as LiNii / 3 Mni / 3 Coi / 302 or LiMnP0 4 . All electrochemically active materials are usually contained in the form of particles in the electrodes.
  • Electrode binders and current conductors should be mentioned in the first place. Via current conductors, the transport of the electrons from and to the electrodes takes place. Electrode binders ensure the mechanical stability of the electrodes as well as the mutual contacting of the particles of the electrochemically active material and their connection to the current conductors. To improve the electrical connection of the electrochemically active particles to the current conductor conductivity-enhancing additives contribute, which are also subsumed under the collective term "electrochemically inactive components.” All electrochemically inactive components should be at least in the potential range of the respective electrode electrochemically stable and a chemically inert character have compared to common electrolyte solutions. Common electrolyte solutions include solutions of lithium salts such as lithium hexafluorophosphate (LiPF 6 ) in organic solvents such as ethers or esters of carbonic acid.
  • LiPF 6 lithium hexafluorophosphate
  • This topcoat is referred to as "Solid Electrolyte Interphase” (SEI) and is usually composed primarily of electrolyte decomposition products and a certain amount of lithium, which is accordingly no longer available for further charge / discharge reactions
  • SEI Solid Electrolyte Interphase
  • the SEI is ideally However, it is also an obstacle for the extremely small lithium ions, but this is an obstacle during charging and discharging processes.
  • Another important feature of the SEI is that it prevents further direct contact of the electrolyte solution with the electrochemically active components in the anode, thereby protecting it from further decomposition.
  • EP 0 683 537 B1 describes lithium-ion cells which have a negative electrode comprising a carbon material having a degree of crystallinity of more than 80%, wherein the electrolyte used is a mixture of two organic solvents (ethylene carbonate and dimethyl carbonate) and a Lithium salt is used.
  • the electrolyte contains as an additive vinylene carbonate or a vinyl carbonate derivative, which is added to selectively form an SEI during the formation.
  • a better stability of the cells at higher temperatures, in particular at 60 ° C, should be ensured.
  • Lithium-ion cells according to the invention like the generic lithium-ion cells mentioned at the beginning, have at least one negative and at least one positive electrode, which are connected via an ionic lead.
  • electrolyte which electrolyte comprises a solvent and a conductive salt component dissolved therein.
  • the solvent contains at least one, preferably at least two, carbonates from the group comprising diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and propylene carbonate (PC) in addition to ethylene carbonate (EC). includes.
  • DEC diethyl carbonate
  • DMC dimethyl carbonate
  • EMC ethyl methyl carbonate
  • PC propylene carbonate
  • EC ethylene carbonate
  • EC, DEC, DMC, EMC and PC belong to the organic carbonates (acyclic and cyclic carbonic acid esters) and are highly volatile, polar solvents, which are characterized among other things by their low toxicity.
  • the solvent comprises at least three of said carbonates, in particular the components EC, DEC and EMC or it consists of said components.
  • the electrolyte of a lithium ion cell according to the invention may additionally comprise at least one co-solvent from the group comprising butylene carbonate (BC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC).
  • the proportion of the cosolvent optionally is preferably below 10%, based on the total weight of all components of the electrolyte which are liquid at room temperature and normal pressure.
  • the electrolyte contains the components EC and DEC and / or DMC and / or EMC and / or PC and optionally the co-solvent in the following proportions:
  • DEC Between 5 and 85%, preferably between 5 and 80%, more preferably between 10 and 60%, DEC between 5 and 85%, preferably between 5 and 80%, particularly preferably between 10 and 60%, DMC
  • EMC EMC
  • the stated percentages represent preferred ranges for the individual components, regardless of the combination in which the components are actually present in the solvent. Incidentally, the percentages are in each case percent by weight, based on the total weight of all components of the electrolyte which are liquid at room temperature and normal pressure. In the electrolyte, the respective proportions add up to 100%.
  • the solvent has the three components EC, DEC and EMC in each case in the same proportions, ie in a ratio of 1: 1: 1.
  • mixtures which, in addition to EC, comprise at least one, preferably at least two components from the group comprising DEC, DMC, EMC and PC, in particular the said preferred mixtures, are particularly suitable as electrolyte components of lithium-ion cells, in particular if they are in the proportions indicated.
  • the cycle behavior of a secondary lithium-ion cell according to the invention in a temperature range between -20 ° C and 60 ° C can be significantly improved. Especially at an elevated temperature of 60 ° C, significant improvements were observed.
  • the conductive salt component dissolved in the solvent is particularly preferably a mixture of at least two lithium salts, in particular a mixture which contains, in addition to a fluorinated lithium phosphate (lithium fluorophosphate), at least one further lithium salt, preferably a lithium borate and / or a lithium alkylsulfonylimide.
  • a fluorinated lithium phosphate lithium fluorophosphate
  • at least one further lithium salt preferably a lithium borate and / or a lithium alkylsulfonylimide.
  • the lithium fluorophosphate is particularly preferably lithium hexafluorophosphate (LiPF 6 ).
  • the at least one further lithium salt is preferably selected from the group comprising lithium bis (oxalato) borate (LiBOB), lithium difluoro (oxalato) borate (LiFOB), lithium (fluorosulfonyl) (nonafluorobutanesulfonyl) imide (LiFNFSI), lithium (trifluoromethanesulfonyl) imide (LiTFSI) and mixtures selected from the lithium salts mentioned.
  • the conductive salt component is a mixture which, in addition to a lithium fluorophosphate, in particular LiPF 6 , as further lithium salt (s) lithium bis (oxalato) borate (LiBOB) and / or lithium difluoro (oxalato) borate ( LiFOB).
  • a lithium fluorophosphate in particular LiPF 6
  • LiBOB lithium bis (oxalato) borate
  • LiFOB lithium difluoro (oxalato) borate
  • the cycle stability and also the current-carrying capacity of the lithium-ion cells according to the invention could in some cases be drastically increased. This is especially true for the combination of lithium hexafluorophosphate with LiBOB. It is believed that these positive effects are due to the formation of a particularly stable SEI on the surface of the active materials.
  • the lithium fluorophosphate in a molar concentration between 0.1 and 4.0 M, preferably between 0.5 and 2 , 0 M, in particular between 0.8 and 1, 4 M to add.
  • a molar concentration between 0.01 and 1.0 M, preferably between 0.05 and 0.5 M, in particular between 0.1 and 0.3 M has proven to be particularly advantageous.
  • the weight ratio of the lithium fluorophosphate to the at least one further conductive salt in the conductive salt component should, in preferred embodiments, be in a range between 20: 1 and 4: 1, especially about 10: 1, to achieve the above effects.
  • the electrolyte of a lithium-ion cell according to the invention comprises at least one additive, in particular from the group with vinylene carbonate (VC), cyclohexylbenzene (CHB), biphenyl (BP), diphenyl ether (DPE), toluene (TOL), xylene (XYL), 1,3-propane sultone (PS), propensultone (PRS), butane sultone (BS), propylmethane sulfonate (PMS), thiophene (TP) and succinic anhydride (BSA).
  • VC vinylene carbonate
  • CHB cyclohexylbenzene
  • BP biphenyl
  • DPE diphenyl ether
  • TOL toluene
  • XYL 1,3-propane sultone
  • PS propensultone
  • BS butane sultone
  • PMS propylmethane sulfonate
  • the electrolyte contains the components EC and DEC and / or DMC and / or EMC and / or PC and optionally the co-solvent and / or the at least one additive in the following proportions:
  • DEC DEC
  • DMC Between 5 and 85%, preferably between 5 and 80%, particularly preferably between 10 and 60%, DMC between 5 and 85%, preferably between 5 and 80%, more preferably between 10 and 60%, EMC
  • the percentages given are representative of the individual components, regardless of the combination of the components actually present in the solvent.
  • the percentages here are also percentages by weight, based on the total weight of all components of the electrolyte which are liquid at room temperature and normal pressure. In the electrolyte, the respective proportions add up to 100%.
  • the carbonate additive VC can significantly improve the performance of a lithium-ion cell. Due to the low dissociation energies of the carbonate-carbon bond in the VC, it competes with electrolytic solvents during SEI formation, it reacts preferentially with electrochemical active materials. As a consequence, the chemical composition and probably also the morphology of the SEI is likely to change. This has a particularly positive effect on the safety properties of the lithium-ion cell according to the invention, since the decomposition of the electrolyte can be at least partially prevented.
  • the VC is added in amounts of at most between 0.1 and 2 wt .-%, based on the total mass of the electrolyte, since it can otherwise lead to increased gassing of the cell.
  • at least one further stabilizing additive may also be added to the electrolyte.
  • PS, PRS, PMS and / or BS are preferably used according to the invention for this purpose.
  • CHB, XYL, TOL, DPE and BP are preferably added to the electrolyte of a lithium-ion cell according to the invention as an overcharge additive, in particular in a proportion of 1 to 5% by weight, based on the total mass of the electrolyte. If a cell according to the invention is overloaded, these additives prevent or slow down a decomposition reaction and heat generation.
  • a lithium-ion cell according to the invention is, in particular, a cell in which the at least one negative and the at least one positive electrode are formed as flat layers and are constituents of an electrode-separator composite which is present as a coil.
  • the lithium-ion cell according to the invention is housed in a button cell housing, particularly preferably in a housing, as described in DE 10 2009 008 859 A1.
  • a button cell housing particularly preferably in a housing, as described in DE 10 2009 008 859 A1.
  • the content of this document is hereby incorporated by reference into the content of this specification.
  • the electrolyte contained 1 M LiPF 6 as conductive salt component
  • the electrolyte contained a mixture of EC and DEC in the weight ratio 4: 5 (EC: DEC)
  • the electrolyte contained 2% by weight BS, 2% by weight CHB and 0.5% by weight VC
  • Electrolyte 1 (according to the invention)
  • the conductive salt component contained 0.9 M LiPF 6 and 0.1 M LiBOB
  • the electrolyte contained a mixture of EC, DEC and EMC in the weight ratio 1: 1: 1 (EC: DEC: EMC)
  • the electrolyte contained 5 wt .-% PC
  • the electrolyte contained 3 wt .-% PS, 0.5 wt .-% VC and 0.1 wt .-% TP
  • Electrolyte 2 (according to the invention)
  • the conductive salt component contained 0.9 M LiPF 6 and 0.1 M LiBOB
  • the electrolyte contained a mixture of EC, DEC and EMC in the weight ratio 1: 1: 1 (EC: DEC: EMC)
  • the electrolyte contained 5 wt .-% PC
  • the electrolyte contained 3 wt .-% PS, 1, 5 wt .-% CHB, 0.5 wt .-% VC, 2 wt .-% TP and 0.5 wt .-% BP
  • Cells with the reference electrolyte and the electrolytes 1 and 2 were cycled at 60 ° C in the voltage range between 3.0 and 4.2V.
  • the charge / discharge rate was 1 C / 1 C in cccv mode (cv limit C / 50).
  • the observed drop in the discharge capacity is shown in FIG. It can be clearly seen that the cells with the electrolyte 1 and 2 have a significantly higher cycle stability compared to the cells with the reference electrolyte.

Abstract

The invention relates to a lithium-ion cell having at least one negative electrode and at least one positive electrode, which are connected to each other by means of an ion-conducting electrolyte, wherein the electrolyte comprises a solvent and a conducting salt component dissolved in the solvent, and wherein the solvent comprises, in addition to ethylene carbonate, at least two carbonates from the group comprising diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and propylene carbonate and optionally additionally comprises at least one Co solvent from the group comprising butylene carbonate, dipropyl carbonate, methyl propyl carbonate, and ethyl propyl carbonate.

Description

Beschreibung Lithium-Ionen-Zellen mit verbesserten Eigenschaften  Description Lithium-ion cells with improved properties
Die vorliegende Erfindung betrifft eine Lithium-Ionen-Zelle mit mindestens einer negativen und mindestens einer positiven Elektrode, die über einen ionenleitenden Elektrolyten miteinander verbunden sind, wobei der Elektrolyt ein Lösungsmittel und eine darin gelöste Leitsalzkomponente umfasst. The present invention relates to a lithium-ion cell having at least one negative and at least one positive electrode, which are connected to one another via an ion-conducting electrolyte, wherein the electrolyte comprises a solvent and a conductive salt component dissolved therein.
Der Begriff „Batterie" meinte ursprünglich mehrere in Serie geschaltete galvanische Zellen. Heute werden jedoch auch einzelne galvanische Zellen häufig als Batterie bezeichnet. Bei der Entladung einer Batterie findet eine energieliefernde chemische Reaktion statt, welche sich aus zwei elektrisch miteinander gekoppelten aber räumlich voneinander getrennten Teilreaktionen zusammensetzt. Eine bei vergleichsweise niedrigerem Redoxpotential stattfindende Teilreaktion läuft an der negativen Elektrode ab, eine bei vergleichsweise höherem Redoxpotential an der positiven Elektrode. Bei der Entladung werden an der negativen Elektrode durch einen Oxidationsprozess Elektronen freigesetzt, resultierend in einem Elektronenstrom über einen äußeren Verbraucher zur positiven Elektrode, von der eine entsprechende Menge an Elektronen aufgenommen wird. An der positiven Elektrode findet also ein Reduktionspro- zess statt. Zeitgleich kommt es zu einem der Elektrodenreaktion entsprechenden lonenstrom innerhalb der Zelle. Dieser lonenstrom wird durch einen ionisch leitenden Elektrolyten gewährleistet. In sekundären Zellen und Batterien ist diese Entladereaktion reversibel, es besteht also die Möglichkeit, die bei der Entladung erfolgte Umwandlung chemischer Energie in elektrische umzukehren. Werden in diesem Zusammenhang die Begriffe Anode und Kathode benutzt, benennt man die Elektroden in der Regel entsprechend ihrer Entladefunktion. Die negative Elektrode ist in solchen Zellen also die Anode, die positive Elektrode die Kathode. Unter den sekundären Zellen und Batterien werden vergleichsweise hohe Energiedichten von Lithium-Ionen-Batterien erreicht. Diese Batterien weisen in der Regel sogenannte Kompositelektroden auf, die neben elektrochemisch aktiven Komponenten auch elektrochemisch inaktive Komponenten umfassen. Als elektrochemisch aktive Komponenten (oft auch als Aktivmaterialien bezeichnet) für Lithium-Ionen-Batterien kommen grundsätzlich sämtliche Materialien in Frage, die Lithiumionen aufnehmen und wieder abgeben können. Stand der Technik sind diesbezüglich für die negative Elektrode insbesondere Partikel auf Kohlenstoffbasis wie graphitischer Kohlenstoff oder zur Interkalation von Lithium befähigte nicht-graphitische Kohlenstoffmaterialien. Weiterhin können auch metallische und halbmetallische Materialien zum Einsatz kommen, die mit Lithium legierbar sind. So sind beispielsweise die Elemente Zinn, Antimon und Silizium in der Lage, mit Lithium intermetallische Phasen zu bilden. Für die positive Elektrode umfassen die zu diesem Zeitpunkt industriell verwendeten Aktivmaterialien vor allem Lithiumcobaltoxid (L1C0O2), LiMn204-Spinell (LiMn204), Lithiumeisenphosphat (LiFeP04) sowie Derivate wie beispielsweise LiNii/3Mni/3Coi/302 oder LiMnP04. Sämtliche elektrochemisch aktiven Materialien sind in der Regel in Partikelform in den Elektroden enthalten. The term "battery" originally meant several galvanic cells connected in series, but today also individual galvanic cells are often referred to as "battery." When a battery is discharged, an energy-supplying chemical reaction takes place, which consists of two electrically coupled but spatially separated partial reactions A partial reaction taking place at a comparatively lower redox potential takes place at the negative electrode, one with a comparatively higher redox potential at the positive electrode During the discharge, electrons are released at the negative electrode by an oxidation process, resulting in an electron current via an external consumer to the positive one Electrode, from which a corresponding amount of electrons is taken in. At the positive electrode, therefore, a reduction process takes place. At the same time, a lonenstr om inside the cell. This ionic current is ensured by an ionically conductive electrolyte. In secondary cells and batteries, this discharging reaction is reversible, so there is the possibility of reversing the conversion of chemical energy into electrical discharge. If the terms anode and cathode are used in this context, the electrodes are usually named according to their discharge function. The negative electrode is in such cells so the anode, the positive electrode, the cathode. Among the secondary cells and batteries comparatively high energy densities of lithium-ion batteries are achieved. As a rule, these batteries have so-called composite electrodes which, in addition to electrochemically active components, also comprise electrochemically inactive components. As electrochemically active components (often referred to as active materials) for lithium-ion batteries are basically all materials in question, which can absorb lithium ions and release again. The state of the art in this regard for the negative electrode in particular carbon-based particles such as graphitic carbon or for the intercalation of lithium capable non-graphitic carbon materials. Furthermore, it is also possible to use metallic and semi-metallic materials which can be alloyed with lithium. For example, the elements tin, antimony and silicon are able to form intermetallic phases with lithium. For the positive electrode, the active materials industrially used at this time mainly include lithium cobalt oxide (L1CO 2), LiMn 2 O 4 spinel (LiMn 2 O 4 ), lithium iron phosphate (LiFePO 4 ), and derivatives such as LiNii / 3 Mni / 3 Coi / 302 or LiMnP0 4 . All electrochemically active materials are usually contained in the form of particles in the electrodes.
Als elektrochemisch inaktive Komponenten sind an erster Stelle Elektrodenbinder und Stromableiter zu nennen. Über Stromableiter erfolgt der Transport der Elektronen aus und zu den Elektroden. Elektrodenbinder sorgen für die mechanische Stabilität der Elektroden sowie für die gegenseitige Kontaktierung der Partikel aus dem elektrochemisch aktiven Material und ihre Anbindung an die Stromableiter. Zu einer verbesserten elektrischen Anbindung der elektrochemisch aktiven Partikel an die Stromableiter können leitfähigkeitsverbessernde Additive beitragen, die vorliegend ebenfalls unter den Sammelbegriff „elektrochemisch inaktive Komponenten" subsumiert werden. Sämtliche elektrochemisch inaktiven Komponenten sollten zumindest im Potential bereich der jeweiligen Elektrode elektrochemisch stabil sein und einen chemisch inerten Charakter gegenüber gängigen Elektrolytlösungen aufweisen. Gängige Elektrolytlösungen sind z.B. Lösungen von Lithiumsalzen wie Lithiumhexafluoro- phosphat (LiPF6) in organischen Lösungsmitteln wie Ether oder Ester der Kohlensäure. As electrochemically inactive components, electrode binders and current conductors should be mentioned in the first place. Via current conductors, the transport of the electrons from and to the electrodes takes place. Electrode binders ensure the mechanical stability of the electrodes as well as the mutual contacting of the particles of the electrochemically active material and their connection to the current conductors. To improve the electrical connection of the electrochemically active particles to the current conductor conductivity-enhancing additives contribute, which are also subsumed under the collective term "electrochemically inactive components." All electrochemically inactive components should be at least in the potential range of the respective electrode electrochemically stable and a chemically inert character have compared to common electrolyte solutions. Common electrolyte solutions include solutions of lithium salts such as lithium hexafluorophosphate (LiPF 6 ) in organic solvents such as ethers or esters of carbonic acid.
Von besonderer Bedeutung ist in diesem Zusammenhang, dass es bereits beim ersten Lade-/Entladezyklus von sekundären Lithium-Ionen- Zellen (der sogenannten Formierung) zur Ausbildung einer Deckschicht auf der Oberfläche der elektrochemisch aktiven Materialien in der Anode kommt (siehe D. Aurbach, H. Teller, M. Koltypin, E. Levi, Journal of Power Sources 2003, 119-121, 2). Diese Deckschicht wird als„Solid Elec- trolyte Interphase" (SEI) bezeichnet und besteht in der Regel vor allem aus Elektrolytzersetzungsprodukten sowie einer gewissen Menge an Lithium, das entsprechend für weitere Lade-/Entladereaktionen nicht mehr zur Verfügung steht. Die SEI ist im Idealfall nur noch für die extrem kleinen Lithiumionen permeabel, bildet für diese bei Lade- und Entladeprozessen aber auch ein Hindernis. Je dicker die SEI ist, desto größer ist die Impedanz der betroffenen Zelle. Die Dicke der SEI sollte nach der Formierung deshalb möglichst nicht weiter ansteigen. Eine weitere wichtige Funktion der SEI: Sie unterbindet einen weiteren direkten Kontakt der Elektrolytlösung mit den elektrochemisch aktiven Komponenten in der Anode und schützt diese dadurch vor weiterer Zersetzung. Of particular importance in this connection is that even during the first charge / discharge cycle of secondary lithium-ion cells (the so-called formation), a covering layer is formed on the surface of the electrochemically active materials in the anode (see D. Aurbach, H. Teller, M. Koltypin, E. Levi, Journal of Power Sources 2003, 119-121, 2). This topcoat is referred to as "Solid Electrolyte Interphase" (SEI) and is usually composed primarily of electrolyte decomposition products and a certain amount of lithium, which is accordingly no longer available for further charge / discharge reactions The SEI is ideally However, it is also an obstacle for the extremely small lithium ions, but this is an obstacle during charging and discharging processes.The thicker the SEI is, the greater is the impedance of the affected cell, and the thickness of the SEI should therefore not increase as much as possible after the formation Another important feature of the SEI is that it prevents further direct contact of the electrolyte solution with the electrochemically active components in the anode, thereby protecting it from further decomposition.
Dies ist insoweit wünschenswert, als die Reaktion von Elektrolytlösung mit den elektrochemisch aktiven Komponenten in der Regel mit einer Gasentwicklung verbunden ist. Da die Gehäuse von Lithium-Ionen- Zellen in der Regel wenig Toleranz gegenüber den damit verbundenen Drücken aufweisen, ist jegliche Gasung grundsätzlich in höchstem Maße unerwünscht. Aus diesem Grund enthalten die Elektrolyten von Lithium- Ionen-Zellen häufig recht hohe Anteile des Lösungsmittels Ethylencar- bonat, welches sich sehr positiv auf die Sicherheitseigenschaften von Lithium-Ionen-Zellen auswirkt. So sind z.B. in der EP 0 683 537 B1 Lithium-Ionen-Zellen beschrieben, die eine negative Elektrode umfassend ein Kohlenstoffmaterial mit einem Kristallinitätsgrad von mehr als 80 % aufweisen, wobei als Elektrolyt eine Mischung aus zwei organischen Lösungsmitteln (Ethylencarbonat und Dimethylcarbonat) und einem Lithiumsalz zum Einsatz kommt. Zudem enthält der Elektrolyt als Additiv Vinylencarbonat oder ein Viny- lencarbonatderivat, das zugesetzt wird, um gezielt eine SEI bei der Formierung zu bilden. This is desirable insofar as the reaction of electrolyte solution with the electrochemically active components is usually associated with gas evolution. Since the housing of lithium-ion cells usually have little tolerance to the associated pressures, any gassing is basically highly undesirable. For this reason, the electrolytes of lithium-ion cells often contain quite high proportions of the solvent ethylene carbonate, which has a very positive effect on the safety properties of lithium-ion cells. Thus, for example, EP 0 683 537 B1 describes lithium-ion cells which have a negative electrode comprising a carbon material having a degree of crystallinity of more than 80%, wherein the electrolyte used is a mixture of two organic solvents (ethylene carbonate and dimethyl carbonate) and a Lithium salt is used. In addition, the electrolyte contains as an additive vinylene carbonate or a vinyl carbonate derivative, which is added to selectively form an SEI during the formation.
Eine Elektrolytmischung aus Diethylcarbonat und Ethylencarbonat als Lösungsmittel, Lithiumhexafluorophosphat als Leitsalz und Vinylencarbonat als Additiv ist aus der DE 10 2004 014 629 A1 bekannt. An electrolyte mixture of diethyl carbonate and ethylene carbonate as solvent, lithium hexafluorophosphate as conductive salt and vinylene carbonate as additive is known from DE 10 2004 014 629 A1.
Negativ wirkt sich Ethylencarbonat - vermutlich wegen seiner hohen Viskosität - allerdings auf die Leistungsfähigkeit von Lithium-Ionen-Zellen aus, insbesondere bei niedrigen Temperaturen. However, ethylene carbonate - probably because of its high viscosity - has a negative effect on the performance of lithium-ion cells, especially at low temperatures.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, Lithium-Ionen- Zellen mit einem optimierten Elektrolyten bereitzustellen, die herkömmlichen Zellen im Hinblick auf den Aspekt Leistungsfähigkeit, insbesondere bei tieferen Temperaturen, überlegen sind, ohne Einbußen im Bereich Sicherheit hinnehmen zu müssen. Zudem sollte auch eine bessere Stabilität der Zellen bei höheren Temperaturen, insbesondere bei 60 °C, gewährleistet sein. It is an object of the present invention to provide lithium-ion cells with an optimized electrolyte that are superior to conventional cells in terms of performance, especially at lower temperatures, without sacrificing safety. In addition, a better stability of the cells at higher temperatures, in particular at 60 ° C, should be ensured.
Diese Aufgabe wird gelöst durch die Lithium-Ionen-Zelle mit den Merkmalen des Anspruchs 1. Bevorzugte Ausführungsformen der erfindungsgemäßen Zelle sind in den abhängigen Ansprüchen 2 bis 13 angegeben. Der Wortlaut sämtlicher Ansprüche wird hiermit durch Bezugnahme zum Inhalt dieser Beschreibung gemacht. This object is achieved by the lithium-ion cell with the features of claim 1. Preferred embodiments of the cell according to the invention are given in the dependent claims 2 to 13. The wording of all claims is hereby incorporated by reference into the content of this specification.
Erfindungsgemäße Lithium-Ionen-Zellen weisen wie die eingangs erwähnten gattungsgemäßen Lithium-Ionen-Zellen mindestens eine negative und mindestens eine positive Elektrode auf, die über einen ionenlei- tenden Elektrolyten miteinander verbunden sind, wobei der Elektrolyt ein Lösungsmittel und eine darin gelöste Leitsalzkomponente umfasst. Insbesondere zeichnen sich erfindungsgemäße Lithium-Ionen-Zellen dadurch aus, dass das Lösungsmittel neben Ethylencarbonat (EC) mindestens ein, vorzugsweise mindestens zwei Carbonate aus der Gruppe mit Diethylcarbonat (DEC), Dimethylcarbonat (DMC), Ethylmethylcarbonat (EMC) und Propylencarbonat (PC) umfasst. Lithium-ion cells according to the invention, like the generic lithium-ion cells mentioned at the beginning, have at least one negative and at least one positive electrode, which are connected via an ionic lead. electrolyte, which electrolyte comprises a solvent and a conductive salt component dissolved therein. In particular, lithium-ion cells according to the invention are distinguished by the fact that the solvent contains at least one, preferably at least two, carbonates from the group comprising diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and propylene carbonate (PC) in addition to ethylene carbonate (EC). includes.
EC, DEC, DMC, EMC und PC gehören zu den organischen Carbonaten (acyclische und cyclische Kohlensäureester) und sind schwer flüchtige, polare Lösungsmittel, welche sich unter anderem durch ihre geringe Toxizität auszeichnen. EC, DEC, DMC, EMC and PC belong to the organic carbonates (acyclic and cyclic carbonic acid esters) and are highly volatile, polar solvents, which are characterized among other things by their low toxicity.
Bevorzugt umfasst das Lösungsmittel mindestens drei der genannten Carbonate, insbesondere die Komponenten EC, DEC und EMC oder es besteht aus den genannten Komponenten. Preferably, the solvent comprises at least three of said carbonates, in particular the components EC, DEC and EMC or it consists of said components.
Gegebenfalls kann der Elektrolyt einer erfindungsgemäßen Lithium- Ionen-Zelle zusätzlich mindestens ein Co-Lösungsmittel aus der Gruppe mit Butylencarbonat (BC), Dipropylcarbonat (DPC), Methylpropylcarbo- nat (MPC) und Ethylpropylcarbonat (EPC) umfassen. Der Anteil des Co- Lösungsmittels liegt gegebenenfalls bevorzugt unter 10 %, bezogen auf das Gesamtgewicht aller bei Raumtemperatur und Normaldruck flüssigen Bestandteile des Elektrolyten. Optionally, the electrolyte of a lithium ion cell according to the invention may additionally comprise at least one co-solvent from the group comprising butylene carbonate (BC), dipropyl carbonate (DPC), methyl propyl carbonate (MPC) and ethyl propyl carbonate (EPC). The proportion of the cosolvent optionally is preferably below 10%, based on the total weight of all components of the electrolyte which are liquid at room temperature and normal pressure.
Vorzugsweise enthält der Elektrolyt die Komponenten EC sowie DEC und/oder DMC und/oder EMC und/oder PC sowie gegebenenfalls das Co-Lösungsmittel in folgenden Anteilen: Preferably, the electrolyte contains the components EC and DEC and / or DMC and / or EMC and / or PC and optionally the co-solvent in the following proportions:
• zwischen 5 und 85 %, bevorzugt zwischen 5 und 80 %, besonders bevorzugt zwischen 10 und 60 %, EC Between 5 and 85%, preferably between 5 and 80%, more preferably between 10 and 60%, EC
• zwischen 5 und 85 %, bevorzugt zwischen 5 und 80 %, besonders bevorzugt zwischen 10 und 60 %, DEC • zwischen 5 und 85 %, bevorzugt zwischen 5 und 80 %, besonders bevorzugt zwischen 10 und 60 %, DMC Between 5 and 85%, preferably between 5 and 80%, more preferably between 10 and 60%, DEC Between 5 and 85%, preferably between 5 and 80%, particularly preferably between 10 and 60%, DMC
• zwischen 5 und 85 %, bevorzugt zwischen 5 und 80 %, besonders bevorzugt zwischen 10 und 60 %, EMC  Between 5 and 85%, preferably between 5 and 80%, more preferably between 10 and 60%, EMC
• zwischen 0 und 70 %, bevorzugt zwischen 5 und 40 %, PC • between 0 and 70%, preferably between 5 and 40%, PC
• zwischen 0 und 10 %, bevorzugt zwischen 1 und 10 %, des mindestens einen Co-Lösungsmittels. Between 0 and 10%, preferably between 1 and 10%, of the at least one co-solvent.
Die angegebenen Prozentangaben stellen für die einzelnen Komponenten bevorzugte Bereiche dar, unabhängig davon, in welcher Kombination die Komponenten im Lösungsmittel tatsächlich vorliegen. Bei den Prozentangaben handelt es sich im Übrigen jeweils um Gewichtsprozente, bezogen auf das Gesamtgewicht aller bei Raumtemperatur und Normaldruck flüssigen Bestandteile des Elektrolyten. Im Elektrolyten addieren sich die jeweiligen Anteile auf 100 %. The stated percentages represent preferred ranges for the individual components, regardless of the combination in which the components are actually present in the solvent. Incidentally, the percentages are in each case percent by weight, based on the total weight of all components of the electrolyte which are liquid at room temperature and normal pressure. In the electrolyte, the respective proportions add up to 100%.
In einer bevorzugten Ausführungsform der erfindungsgemäßen Lithium- Ionen-Zelle weist das Lösungsmittel die drei Komponenten EC, DEC und EMC jeweils in den gleichen Anteilen auf, also in einem Verhältnis von 1 : 1 : 1 . In a preferred embodiment of the lithium-ion cell according to the invention, the solvent has the three components EC, DEC and EMC in each case in the same proportions, ie in a ratio of 1: 1: 1.
Überraschenderweise wurde gefunden, dass sich Mischungen, die neben EC mindestens eine, vorzugsweise mindestens zwei Komponenten aus der Gruppe mit DEC, DMC, EMC und PC umfassen, insbesondere die genannten bevorzugten Mischungen, besonders gut als Elektrolytbestandteil von Lithium-Ionen-Zellen eignen, insbesondere, wenn sie in den angegebenen Anteilen vorliegen. Insbesondere durch den gleichzeitigen Zusatz von mindestens zwei der genannten Carbonate zu EC lässt sich das Zyklenverhalten einer erfindungsgemäßen sekundären Lithium- Ionen-Zelle in einem Temperaturbereich zwischen -20 °C und 60 °C erheblich verbessern. Insbesondere bei einer erhöhten Temperatur von 60 °C wurden signifikante Verbesserungen beobachtet. Besonders bevorzugt handelt es sich bei der in dem Lösungsmittel gelösten Leitsalzkomponente um eine Mischung aus mindestens zwei Lithiumsalzen, insbesondere um eine Mischung, die neben einem fluorierten Lithiumphosphat (Lithiumfluorophosphat) mindestens ein weiteres Lithiumsalz enthält, vorzugsweise ein Lithiumborat und/oder ein Lithium- alkylsulfonylimid. Surprisingly, it has been found that mixtures which, in addition to EC, comprise at least one, preferably at least two components from the group comprising DEC, DMC, EMC and PC, in particular the said preferred mixtures, are particularly suitable as electrolyte components of lithium-ion cells, in particular if they are in the proportions indicated. In particular, by the simultaneous addition of at least two of said carbonates to EC, the cycle behavior of a secondary lithium-ion cell according to the invention in a temperature range between -20 ° C and 60 ° C can be significantly improved. Especially at an elevated temperature of 60 ° C, significant improvements were observed. The conductive salt component dissolved in the solvent is particularly preferably a mixture of at least two lithium salts, in particular a mixture which contains, in addition to a fluorinated lithium phosphate (lithium fluorophosphate), at least one further lithium salt, preferably a lithium borate and / or a lithium alkylsulfonylimide.
Bei dem Lithiumfluorophosphat handelt es sich besonders bevorzugt um Lithiumhexafluorophosphat (LiPF6). Das mindestens eine weitere Lithiumsalz ist bevorzugt aus der Gruppe mit Lithiumbis(oxalato)borat (LiBOB), Lithiumdifluoro(oxalato)borat (LiFOB), Lithium(fluorosulfonyl)(no- nafluorobutansulfonyl)imid (LiFNFSI), Lithium(trifluoromethansulfo- nyl)imid (LiTFSI) und Mischungen aus den genannten Lithiumsalzen ausgewählt. The lithium fluorophosphate is particularly preferably lithium hexafluorophosphate (LiPF 6 ). The at least one further lithium salt is preferably selected from the group comprising lithium bis (oxalato) borate (LiBOB), lithium difluoro (oxalato) borate (LiFOB), lithium (fluorosulfonyl) (nonafluorobutanesulfonyl) imide (LiFNFSI), lithium (trifluoromethanesulfonyl) imide (LiTFSI) and mixtures selected from the lithium salts mentioned.
Gemäß einer besonders bevorzugten Ausführungsform handelt es sich bei der Leitsalzkomponente um eine Mischung, die neben einem Lithiumfluorophosphat, insbesondere LiPF6, als weitere(s) Lithiumsalz(e) Lithiumbis(oxalato)borat (LiBOB) und/oder Lithiumdifluoro(oxalato)borat (LiFOB) enthält. According to a particularly preferred embodiment, the conductive salt component is a mixture which, in addition to a lithium fluorophosphate, in particular LiPF 6 , as further lithium salt (s) lithium bis (oxalato) borate (LiBOB) and / or lithium difluoro (oxalato) borate ( LiFOB).
Durch den Einsatz der Mischung aus den mindestens zwei Lithiumsalzen konnte die Zyklenstabilität und auch die Strombelastbarkeit der erfindungsgemäßen Lithium-Ionen-Zellen teilweise drastisch gesteigert werden. Dies gilt insbesondere für die Kombination von Lithiumhexafluorophosphat mit LiBOB. Es wird vermutet, dass diese positiven Effekte auf die Ausbildung eines besonders stabilen SEI auf der Oberfläche der Aktivmaterialien zurückzuführen sind. By using the mixture of the at least two lithium salts, the cycle stability and also the current-carrying capacity of the lithium-ion cells according to the invention could in some cases be drastically increased. This is especially true for the combination of lithium hexafluorophosphate with LiBOB. It is believed that these positive effects are due to the formation of a particularly stable SEI on the surface of the active materials.
Für die Funktionsfähigkeit des Elektrolyten in einem Temperaturbereich zwischen -20°C und 60°C hat es sich als besonders vorteilhaft erwiesen, dem Lösungsmittel das Lithiumfluorophosphat in einer molaren Konzentration zwischen 0,1 und 4,0 M, bevorzugt zwischen 0,5 und 2,0 M, insbesondere zwischen 0,8 und 1 ,4 M, zuzusetzen. Für das mindestens eine weitere Lithiumsalz hat sich eine molare Konzentration zwischen 0,01 und 1 ,0 M, bevorzugt zwischen 0,05 und 0,5 M, insbesondere zwischen 0,1 und 0,3 M, als besonders vorteilhaft herausgestellt. For the functionality of the electrolyte in a temperature range between -20 ° C and 60 ° C, it has proved to be particularly advantageous to the solvent, the lithium fluorophosphate in a molar concentration between 0.1 and 4.0 M, preferably between 0.5 and 2 , 0 M, in particular between 0.8 and 1, 4 M to add. For the at least one further lithium salt, a molar concentration between 0.01 and 1.0 M, preferably between 0.05 and 0.5 M, in particular between 0.1 and 0.3 M, has proven to be particularly advantageous.
Das Gewichtsverhältnis des Lithiumfluorophosphats zu dem mindestens einen weiteren Leitsalz in der Leitsalzkomponente sollte in bevorzugten Ausführungsformen in einem Bereich zwischen 20 : 1 und 4 : 1 , insbesondere bei etwa 10 : 1 , liegen, um obige Effekte zu erzielen. The weight ratio of the lithium fluorophosphate to the at least one further conductive salt in the conductive salt component should, in preferred embodiments, be in a range between 20: 1 and 4: 1, especially about 10: 1, to achieve the above effects.
In besonders bevorzugten Ausführungsformen weist der Elektrolyt einer erfindungsgemäßen Lithium-Ionen-Zelle mindestens ein Additiv auf, insbesondere aus der Gruppe mit Vinylencarbonat (VC), Cyclohexylbenzol (CHB), Biphenyl (BP), Diphenylether (DPE), Toluol (TOL), Xylol (XYL), 1 ,3-Propansulton (PS), Propensulton (PRS), Butansulton (BS), Propar- gylmethansulfonat (PMS),Thiophen (TP) und Bernsteinsäureanhydrid (BSA). Es hat sich als vorteilhaft erwiesen, dass der Elektrolyt das mindestens eine Additiv in einem Anteil zwischen 0,1 und 10 Gew.-% enthält, bezogen auf das Gesamtgewicht aller bei Raumtemperatur und Normaldruck flüssigen Bestandteile des Elektrolyten. In particularly preferred embodiments, the electrolyte of a lithium-ion cell according to the invention comprises at least one additive, in particular from the group with vinylene carbonate (VC), cyclohexylbenzene (CHB), biphenyl (BP), diphenyl ether (DPE), toluene (TOL), xylene (XYL), 1,3-propane sultone (PS), propensultone (PRS), butane sultone (BS), propylmethane sulfonate (PMS), thiophene (TP) and succinic anhydride (BSA). It has proved to be advantageous for the electrolyte to contain the at least one additive in a proportion of between 0.1 and 10% by weight, based on the total weight of all liquid constituents of the electrolyte which are liquid at room temperature and normal pressure.
Vorzugsweise enthält der Elektrolyt die Komponenten EC sowie DEC und/oder DMC und/oder EMC und/oder PC sowie gegebenenfalls das Co-Lösungsmittel und/oder das mindestens eine Additiv in folgenden Anteilen: Preferably, the electrolyte contains the components EC and DEC and / or DMC and / or EMC and / or PC and optionally the co-solvent and / or the at least one additive in the following proportions:
• zwischen 5 und 85 %, bevorzugt zwischen 5 und 80 %, besonders bevorzugt zwischen 10 und 60 %, EC Between 5 and 85%, preferably between 5 and 80%, more preferably between 10 and 60%, EC
• zwischen 5 und 85 %, bevorzugt zwischen 5 und 80 %, besonders bevorzugt zwischen 10 und 60 %, DEC  Between 5 and 85%, preferably between 5 and 80%, more preferably between 10 and 60%, DEC
• zwischen 5 und 85 %, bevorzugt zwischen 5 und 80 %, besonders bevorzugt zwischen 10 und 60 %, DMC • zwischen 5 und 85 %, bevorzugt zwischen 5 und 80 %, besonders bevorzugt zwischen 10 und 60 %, EMC Between 5 and 85%, preferably between 5 and 80%, particularly preferably between 10 and 60%, DMC Between 5 and 85%, preferably between 5 and 80%, more preferably between 10 and 60%, EMC
• zwischen 0 und 70 %, bevorzugt zwischen 5 und 40 %, PC • between 0 and 70%, preferably between 5 and 40%, PC
• zwischen 0 und 10 %, bevorzugt zwischen 1 und 10 %, des mindestens einen Co-Lösungsmittels Between 0 and 10%, preferably between 1 and 10%, of the at least one co-solvent
• zwischen 0 und 10 %, bevorzugt zwischen 1 und 10 %, des mindestens einen Additivs.  Between 0 and 10%, preferably between 1 and 10%, of the at least one additive.
Auch hier gilt, dass die angegebenen Prozentangaben für die einzelnen Komponenten bevorzugte Bereiche darstellen, unabhängig davon, in welcher Kombination die Komponenten im Lösungsmittel tatsächlich vorliegen. Bei den Prozentangaben handelt es sich auch hier jeweils um Gewichtsprozente, bezogen auf das Gesamtgewicht aller bei Raumtemperatur und Normaldruck flüssigen Bestandteile des Elektrolyten. Im Elektrolyten addieren sich die jeweiligen Anteile auf 100 %. Again, the percentages given are representative of the individual components, regardless of the combination of the components actually present in the solvent. The percentages here are also percentages by weight, based on the total weight of all components of the electrolyte which are liquid at room temperature and normal pressure. In the electrolyte, the respective proportions add up to 100%.
Das Carbonatadditiv VC vermag die Leistung einer Lithium-Ionen-Zelle deutlich zu verbessern. Aufgrund der niedrigen Dissoziationsenergien der Carbonat-Kohlenstoffbindung im VC konkurriert es bei der SEI- Bildung mit Elektrolytlösungsmitteln, es reagiert bevorzugt mit elektrochemischen Aktivmaterialien. Als Folge davon ändert sich vermutlich die chemische Zusammensetzung und wahrscheinlich auch die Morphologie des SEI. Dies wirkt sich insbesondere auch positiv auf die Sicherheitseigenschaften der erfindungsgemäßen Lithium-Ionen-Zelle aus, da die Zersetzung des Elektrolyten zumindest teilweise verhindert werden kann. The carbonate additive VC can significantly improve the performance of a lithium-ion cell. Due to the low dissociation energies of the carbonate-carbon bond in the VC, it competes with electrolytic solvents during SEI formation, it reacts preferentially with electrochemical active materials. As a consequence, the chemical composition and probably also the morphology of the SEI is likely to change. This has a particularly positive effect on the safety properties of the lithium-ion cell according to the invention, since the decomposition of the electrolyte can be at least partially prevented.
Bevorzugt wird das VC in Mengen von maximal zwischen 0,1 und 2 Gew.-%, bezogen auf die Gesamtmasse des Elektrolyten, zugesetzt, da es ansonsten zu einer verstärkten Gasung der Zelle kommen kann. Zusätzlich kann dem Elektrolyten auch mindestens ein weiteres stabilisierendes Additiv zugegeben werden. Erfindungsgemäß bevorzugt werden hierfür PS, PRS, PMS und/oder BS eingesetzt. CHB, XYL, TOL, DPE und BP werden dem Elektrolyten einer erfindungsgemäßen Lithium-Ionen-Zelle bevorzugt als Überladungsadditiv zugesetzt, insbesondere in einem Anteil von jeweils 1 bis 5 Gew.-%, bezogen auf die Gesamtmasse des Elektrolyten. Wird eine erfindungsgemäße Zelle überladen, so verhindern oder verlangsamen diese Additive eine Zersetzungsreaktionen und Wärmeentwicklung. Preferably, the VC is added in amounts of at most between 0.1 and 2 wt .-%, based on the total mass of the electrolyte, since it can otherwise lead to increased gassing of the cell. In addition, at least one further stabilizing additive may also be added to the electrolyte. PS, PRS, PMS and / or BS are preferably used according to the invention for this purpose. CHB, XYL, TOL, DPE and BP are preferably added to the electrolyte of a lithium-ion cell according to the invention as an overcharge additive, in particular in a proportion of 1 to 5% by weight, based on the total mass of the electrolyte. If a cell according to the invention is overloaded, these additives prevent or slow down a decomposition reaction and heat generation.
Bei einer erfindungsgemäßen Lithium-Ionen-Zelle handelt es sich insbesondere um eine Zelle, bei der die mindestens eine negative und die mindestens eine positive Elektrode als flache Schichten ausgebildet sind und Bestandteile eines Elektroden-Separator- Verbunds sind, der als Wickel vorliegt. A lithium-ion cell according to the invention is, in particular, a cell in which the at least one negative and the at least one positive electrode are formed as flat layers and are constituents of an electrode-separator composite which is present as a coil.
Bevorzugt ist die erfindungsgemäße Lithium-Ionen-Zelle in einem Knopfzellengehäuse eingehaust, besonders bevorzugt in einem Gehäuse, wie es in der DE 10 2009 008 859 A1 beschrieben ist. Der Inhalt dieser Druckschrift wird hiermit durch Bezugnahme zum Inhalt dieser Beschreibung gemacht. Preferably, the lithium-ion cell according to the invention is housed in a button cell housing, particularly preferably in a housing, as described in DE 10 2009 008 859 A1. The content of this document is hereby incorporated by reference into the content of this specification.
Weitere Merkmale und auch Vorteile der vorliegenden Erfindung ergeben sich aus den Ausführungsbeispielen in Verbindung mit den Unteransprüchen. Die einzelnen Merkmale können dabei jeweils für sich oder zu mehreren in Kombination miteinander bei einer Ausführungsform der Erfindung verwirklicht sein. Die Ausführungsbeispiele dienen lediglich zur Erläuterung und zum besseren Verständnis der Erfindung und sind in keiner Weise einschränkend zu verstehen. Further features and advantages of the present invention will become apparent from the embodiments in conjunction with the subclaims. The individual features can be implemented individually or in combination with one another in one embodiment of the invention. The embodiments are merely illustrative and for a better understanding of the invention and are in no way limiting.
Beispiele Examples
Es wurden Vergleichsuntersuchungen durchgeführt, in denen erfindungsgemäße Lithium-Ionen-Zellen mit Referenzellen verglichen wurden. Die verglichenen Zellen waren jeweils baugleich, sie unterschieden sich ausschließlich in der Elektrolytzusammensetzung. Auf Seite der po- sitiven Elektrode wiesen sie Lithiumcobaltoxid als Aktivmaterial auf, auf Seite der negativen Elektrode Graphit. Der jeweils verwendete Elektrolyt wies die folgende Zusammensetzung auf: Comparative studies were carried out in which lithium-ion cells according to the invention were compared with reference cells. The cells compared were identical, they differed only in the electrolyte composition. On the side of the po- they had lithium cobalt oxide as the active material, and graphite on the negative electrode side. The electrolyte used in each case had the following composition:
Referenzelektrolvt Referenzelektrolvt
- Als Leitsalzkomponente enthielt der Elektrolyt 1 M LiPF6 The electrolyte contained 1 M LiPF 6 as conductive salt component
- Als Lösungsmittel enthielt der Elektrolyt eine Mischung aus EC und DEC im Gewichtsverhältnis 4 : 5 (EC : DEC)  As solvent the electrolyte contained a mixture of EC and DEC in the weight ratio 4: 5 (EC: DEC)
- Als Additive enthielt der Elektrolyt 2 Gew.-% BS, 2 Gew.-% CHB und 0,5 Gew.-% VC  As additives, the electrolyte contained 2% by weight BS, 2% by weight CHB and 0.5% by weight VC
Elektrolyt 1 (erfindungsgemäß) Electrolyte 1 (according to the invention)
- Als Leitsalzkomponente enthielt der Elektrolyt 0,9 M LiPF6 und 0,1 M LiBOB The conductive salt component contained 0.9 M LiPF 6 and 0.1 M LiBOB
- Als Lösungsmittel enthielt der Elektrolyt eine Mischung aus EC, DEC und EMC im Gewichtsverhältnis 1 : 1 : 1 (EC : DEC : EMC)  As solvent, the electrolyte contained a mixture of EC, DEC and EMC in the weight ratio 1: 1: 1 (EC: DEC: EMC)
- Ferner enthielt der Elektrolyt 5 Gew.-% PC  - Furthermore, the electrolyte contained 5 wt .-% PC
- Als Additive enthielt der Elektrolyt 3 Gew.-% PS, 0,5 Gew.-% VC und 0,1 Gew.-% TP  - As additives, the electrolyte contained 3 wt .-% PS, 0.5 wt .-% VC and 0.1 wt .-% TP
Elektrolyt 2 (erfindungsgemäß) Electrolyte 2 (according to the invention)
- Als Leitsalzkomponente enthielt der Elektrolyt 0,9 M LiPF6 und 0,1 M LiBOB The conductive salt component contained 0.9 M LiPF 6 and 0.1 M LiBOB
- Als Lösungsmittel enthielt der Elektrolyt eine Mischung aus EC, DEC und EMC im Gewichtsverhältnis 1 : 1 : 1 (EC : DEC : EMC)  As solvent, the electrolyte contained a mixture of EC, DEC and EMC in the weight ratio 1: 1: 1 (EC: DEC: EMC)
- Ferner enthielt der Elektrolyt 5 Gew.-% PC  - Furthermore, the electrolyte contained 5 wt .-% PC
- Als Additive enthielt der Elektrolyt 3 Gew.-% PS, 1 ,5 Gew.-% CHB, 0,5 Gew.-% VC, 2 Gew.-% TP und 0,5 Gew.-% BP  - As additives, the electrolyte contained 3 wt .-% PS, 1, 5 wt .-% CHB, 0.5 wt .-% VC, 2 wt .-% TP and 0.5 wt .-% BP
Zellen mit dem Referenzelektrolyten und den Elektrolyten 1 und 2 wurden bei 60 °C im Spannungsbereich zwischen 3,0 und 4,2 V zyklisiert. Die Lade-/Entladerate betrug dabei 1 C/1 C im cccv Modus (cv Limit C/50). Der dabei beobachtete Abfall der Entladekapazitäten ist in Fig. 1 dargestellt. Es ist klar zu erkennen, dass die Zellen mit dem Elektrolyten 1 und 2 gegenüber den Zellen mit dem Referenzelektrolyten eine deutlich höhere Zyklenbeständigkeit aufweisen. Cells with the reference electrolyte and the electrolytes 1 and 2 were cycled at 60 ° C in the voltage range between 3.0 and 4.2V. The charge / discharge rate was 1 C / 1 C in cccv mode (cv limit C / 50). The observed drop in the discharge capacity is shown in FIG. It can be clearly seen that the cells with the electrolyte 1 and 2 have a significantly higher cycle stability compared to the cells with the reference electrolyte.
Eine weitere Zyklisierungsreihe wurde bei 20 °C durchgeführt. Auch hierbei wurde im Spannungsbereich zwischen 3,0 und 4,2 V zyklisiert, allerdings wurde die Entladerate von Zyklus zu Zyklus gesteigert (0.1 C, 0.2C, 0.5C, 1 C, 2C, 3C, 5C, 8C und 10C). Der dabei beobachtete Abfall der Entladekapazitäten ist in Fig. 2 dargestellt. Es ist klar zu erkennen, dass die Zellen mit dem Elektrolyten 1 und 2 bei höheren Entladeraten den Zellen mit dem Referenzelektrolyten deutlich überlegen sind. Another series of cyclization was carried out at 20 ° C. Here, too, cyclization was carried out in the voltage range between 3.0 and 4.2 V, but the discharge rate was increased from cycle to cycle (0.1 C, 0.2 C, 0.5 C, 1 C, 2 C, 3 C, 5 C, 8 C and 10 C). The observed drop in the discharge capacity is shown in Fig. 2. It can be clearly seen that the cells with the electrolytes 1 and 2 are clearly superior to the cells with the reference electrolyte at higher discharge rates.

Claims

Patentansprüche claims
1. Lithium-Ionen-Zelle mit mindestens einer negativen und mindestens einer positiven Elektrode, die über einen ionenleitenden Elektrolyten miteinander verbunden sind, wobei der Elektrolyt ein Lösungsmittel und eine darin gelöste Leitsalzkomponente umfasst, dadurch gekennzeichnet, dass das Lösungsmittel neben Ethylen- carbonat mindestens zwei Carbonate aus der Gruppe mit Diethyl- carbonat, Dimethylcarbonat, Ethylmethylcarbonat und Propylen- carbonat sowie gegebenenfalls zusätzlich mindestens ein Co- Lösungsmittel aus der Gruppe mit Butylencarbonat, Dipropylcar- bonat, Methylpropylcarbonat und Ethylpropylcarbonat umfasst. 1. Lithium-ion cell having at least one negative and at least one positive electrode, which are interconnected via an ion-conducting electrolyte, wherein the electrolyte comprises a solvent and a conductive salt component dissolved therein, characterized in that the solvent in addition to ethylene carbonate at least two Carbonates from the group with diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate and propylene carbonate and optionally additionally at least one co-solvent from the group comprising butylene carbonate, dipropyl carbonate, methyl propyl carbonate and ethyl propyl carbonate.
2. Lithium-Ionen-Zelle nach Anspruch 1 , dadurch gekennzeichnet, dass das Lösungsmittel eine Mischung aus Ethylencarbonat, Diethylcarbonat und Ethylmethylcarbonat und gegebenenfalls zusätzlich mindestens ein Co-Lösungsmittel aus der Gruppe mit Butylencarbonat, Dipropylcarbonat, Methylpropylcarbonat und Ethylpropylcarbonat umfasst. 2. Lithium-ion cell according to claim 1, characterized in that the solvent comprises a mixture of ethylene carbonate, diethyl carbonate and ethyl methyl carbonate and optionally additionally at least one co-solvent from the group with butylene carbonate, dipropyl carbonate, methyl propyl carbonate and ethyl propyl carbonate.
3. Lithium-Ionen-Zelle nach Anspruch 1 , dadurch gekennzeichnet, dass das Lösungsmittel 3. Lithium-ion cell according to claim 1, characterized in that the solvent
• zwischen 5 und 80 %, bevorzugt zwischen 10 und 60 %, Ethylencarbonat sowie Between 5 and 80%, preferably between 10 and 60%, of ethylene carbonate as well
• zwischen 5 und 80 %, bevorzugt zwischen 10 und 60 %, Diethylcarbonat, und/oder  Between 5 and 80%, preferably between 10 and 60%, diethyl carbonate, and / or
• zwischen 5 und 80 %, bevorzugt zwischen 10 und 60 %, Dimethylcarbonat, und/oder  Between 5 and 80%, preferably between 10 and 60%, of dimethyl carbonate, and / or
• zwischen 5 und 85 %, bevorzugt zwischen 10 und 60 %, Ethylmethylcarbonat, und/oder  Between 5 and 85%, preferably between 10 and 60%, ethyl methyl carbonate, and / or
• zwischen 0 und 70 %, bevorzugt zwischen 5 und 40 %, Propy- lencarbonat, enthält, wobei es sich bei den Prozentangaben jeweils um Gewichtsprozente handelt, bezogen auf das Gesamtgewicht der flüssigen Bestandteile des Elektrolyten. Between 0 and 70%, preferably between 5 and 40%, propylene carbonate, wherein the percentages are in each case percentages by weight, based on the total weight of the liquid constituents of the electrolyte.
4. Lithium-Ionen-Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der Leitsalzkomponente um eine Mischung aus mindestens zwei Lithiumsalzen handelt, insbesondere um eine Mischung, die neben einem Lithium- fluorophosphat, insbesondere Lithiumhexafluorophosphat, mindestens ein weiteres Lithiumsalz enthält, vorzugsweise ein Lithiumborat und/oder ein Lithiumalkylsulfonylimid. 4. Lithium-ion cell according to one of the preceding claims, characterized in that it is the Leitsalzkomponente a mixture of at least two lithium salts, in particular a mixture which in addition to a lithium fluorophosphate, in particular lithium hexafluorophosphate, at least one further lithium salt contains, preferably a lithium borate and / or a Lithiumalkylsulfonylimid.
5. Lithium-Ionen-Zelle nach Anspruch 4, dadurch gekennzeichnet, dass das mindestens eine weitere Lithiumsalz ausgewählt ist aus der Gruppe mit Lithiumbis(oxalato)borat (LiBOB), Lithiumdifluoro- (oxalato)borat (LiFOB), Lithium(fluorosulfonyl)(nonafluorobutansul- fonyl)imid (LiFNFSI), Lithium(trifluoromethansulfonyl)imid (LiTFSI) und Mischungen aus den genannten Lithiumsalzen. 5. Lithium-ion cell according to claim 4, characterized in that the at least one further lithium salt is selected from the group with lithium bis (oxalato) borate (LiBOB), lithium difluoro (oxalato) borate (LiFOB), lithium (fluorosulfonyl) ( nonafluorobutanesulphonyl) imide (LiFNFSI), lithium (trifluoromethanesulfonyl) imide (LiTFSI) and mixtures of the abovementioned lithium salts.
6. Lithium-Ionen-Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es sich bei der Leitsalzkomponente um eine Mischung handelt, die neben einem Lithiumfluorophos- phat als weitere(s) Lithiumsalz(e) Lithiumbis(oxalato)borat (LiBOB) und/oder Lithiumdifluoro(oxalato)borat (LiFOB) enthält. 6. Lithium-ion cell according to one of the preceding claims, characterized in that the conductive salt component is a mixture which, in addition to a lithium fluorophosphate, is a further lithium salt (s) lithium bis (oxalato) borate (LiBOB). and / or lithium difluoro (oxalato) borate (LiFOB).
7. Lithium-Ionen-Zelle nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass das Lithiumfluorophosphat in einer molaren Konzentration zwischen 0,1 und 4,0 M, bevorzugt zwischen 0,5 und 2,0 M, insbesondere zwischen 0,8 und 1 ,4 M, im Lösungsmittel enthalten ist. 7. Lithium-ion cell according to one of claims 4 to 6, characterized in that the lithium fluorophosphate in a molar concentration between 0.1 and 4.0 M, preferably between 0.5 and 2.0 M, in particular between 0, 8 and 1, 4 M, is contained in the solvent.
8. Lithium-Ionen-Zelle nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass das mindestens eine weitere Lithiumsalz in einer molaren Konzentration zwischen 0,01 und 1 ,0 M, bevorzugt zwischen 0,05 und 0,5 M, insbesondere zwischen 0, 1 und 0,3 M, im Lösungsmittel enthalten ist. 8. Lithium-ion cell according to one of claims 4 to 7, characterized in that the at least one further lithium salt in a molar concentration between 0.01 and 1, 0 M, preferably between 0.05 and 0.5 M, in particular between 0, 1 and 0.3 M, is contained in the solvent.
9. Lithium-Ionen-Zelle nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet, dass das Gewichtsverhältnis des Lithiumfluoro- phosphats zu dem mindestens einen weiteren Lithiumsalz in der Leitsalzkomponente zwischen 20 : 1 und 4 : 1 , insbesondere bei etwa 10 : 1 , liegt. 9. Lithium-ion cell according to one of claims 4 to 8, characterized in that the weight ratio of the lithium fluorophosphate to the at least one further lithium salt in the Leitsalzkomponente between 20: 1 and 4: 1, in particular about 10: 1, lies.
10. Lithium-Ionen-Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Elektrolyt mindestens ein Additiv enthält, insbesondere mindestens ein Additiv aus der Gruppe mit Vinylencarbonat, Cyclohexylbenzol, Biphenyl, Diphenylether, Toluol, Xylol, 1 ,3-Propansulton, Propensulton, Butansulton, Pro- pargylmethansulfonat, Thiophen und Bernsteinsäureanhydrid. 10. Lithium-ion cell according to one of the preceding claims, characterized in that the electrolyte contains at least one additive, in particular at least one additive from the group with vinylene carbonate, cyclohexylbenzene, biphenyl, diphenyl ether, toluene, xylene, 1, 3-propanesultone, Propensultone, butanesultone, propargylmethanesulfonate, thiophene and succinic anhydride.
1 1. Lithium-Ionen-Zelle nach Anspruch 10, dadurch gekennzeichnet, dass der Elektrolyt das mindestens eine Additiv in einem Anteil zwischen 0,1 und 10 Gew.-% enthält, bezogen auf das Gesamtgewicht aller flüssigen Bestandteile des Elektrolyten. 1 1. Lithium-ion cell according to claim 10, characterized in that the electrolyte contains the at least one additive in a proportion of between 0.1 and 10 wt .-%, based on the total weight of all liquid constituents of the electrolyte.
12. Lithium-Ionen-Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die mindestens eine negative und die mindestens eine positive Elektrode als flache Schichten ausgebildet sind und Bestandteile eines Elektroden-Separator-Verbunds sind, der als Wickel vorliegt. 12. Lithium-ion cell according to one of the preceding claims, characterized in that the at least one negative and the at least one positive electrode are formed as flat layers and are components of an electrode-separator composite, which is present as a coil.
13. Lithium-Ionen-Zelle nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sie in einem Knopfzellengehäuse eingehaust ist. 13. Lithium-ion cell according to one of the preceding claims, characterized in that it is housed in a button cell housing.
PCT/EP2012/069010 2011-10-05 2012-09-26 Lithium-ion cells having improved properties WO2013050283A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011084009.5 2011-10-05
DE102011084009A DE102011084009A1 (en) 2011-10-05 2011-10-05 Lithium-ion cells with improved properties

Publications (1)

Publication Number Publication Date
WO2013050283A1 true WO2013050283A1 (en) 2013-04-11

Family

ID=47018154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/069010 WO2013050283A1 (en) 2011-10-05 2012-09-26 Lithium-ion cells having improved properties

Country Status (2)

Country Link
DE (1) DE102011084009A1 (en)
WO (1) WO2013050283A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994023A (en) * 2019-11-29 2020-04-10 湖北宇电能源科技股份有限公司 Lithium ion battery safety electrolyte, preparation method and application thereof, and lithium ion battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230178810A1 (en) * 2021-12-03 2023-06-08 GM Global Technology Operations LLC Electrolyte composition for high energy density batteries

Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594965A1 (en) * 1992-10-29 1994-05-04 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
EP0683537B1 (en) 1994-04-22 1998-01-14 Alcatel Lithium secondary battery with carbonaceous anode
US20030129500A1 (en) * 1998-10-22 2003-07-10 Hong Gan Organic carbonate additives for nonaqueous electrolyte rechargeable electrochemical cells
JP2003282140A (en) * 2002-03-26 2003-10-03 Osaka Gas Co Ltd Nonaqueous secondary battery
KR20040036817A (en) * 2002-10-25 2004-05-03 한국전기연구원 Lithium secondary battery
US20040096750A1 (en) * 2002-11-16 2004-05-20 Samsung Sdi Co., Ltd. Non-aqueous electrolytic solution and lithium battery employing the same
JP2004171838A (en) * 2002-11-18 2004-06-17 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005235508A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
DE102004014629A1 (en) 2004-03-19 2005-10-06 Varta Microbattery Gmbh Galvanic element
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
US20060240327A1 (en) * 2005-04-25 2006-10-26 Ferro Corporation Non-aqueous electrolytic solution
JP2007149654A (en) * 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary battery and secondary battery using the same
JP2007179883A (en) * 2005-12-28 2007-07-12 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
JP2008004503A (en) * 2006-06-26 2008-01-10 Sony Corp Nonaqueous electrolyte composition, and nonaqueous electrolyte secondary battery
JP2008077950A (en) * 2006-09-21 2008-04-03 Ube Ind Ltd Nonaqueous electrolyte solution and lithium secondary battery using the same
JP2008198408A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US20090098456A1 (en) * 2007-10-15 2009-04-16 Myung Kook Park Non-aqueous electrolyte solution and lithium secondary battery including the same
US20090181311A1 (en) * 2006-05-31 2009-07-16 Sanyo Electric Co., Ltd. High-voltage charge type nonaqueous electrolyte secondary cell
US20090239146A1 (en) * 2008-03-17 2009-09-24 Hiroshi Nakagawa Non- Aqueous electrolyte secondary battery
EP2138481A1 (en) * 2007-04-20 2009-12-30 Ube Industries, Ltd. Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same
DE102009008859A1 (en) 2009-02-09 2010-08-12 Varta Microbattery Gmbh Rechargeable button cell i.e. lithium ion button cell, has positive and negative electrodes that are connected with each other by laminar separator and orthogonally aligned to even base area and even cover area
JP2010177020A (en) * 2009-01-29 2010-08-12 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium-ion secondary battery using the same
JP2010192456A (en) * 2003-02-18 2010-09-02 Mitsubishi Chemicals Corp Lithium secondary battery
JP2010205474A (en) * 2009-03-02 2010-09-16 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium ion secondary battery including the same
JP2010238504A (en) * 2009-03-31 2010-10-21 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte solution
US20110052980A1 (en) * 2008-05-07 2011-03-03 Hideo Sakata Nonaqueous secondary battery and electronic device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1768203B1 (en) * 2005-08-02 2011-10-05 Greatbatch Ltd. Battery electrodes
US20100068605A1 (en) * 2008-09-15 2010-03-18 Gm Global Technology Operations, Inc. Rejuvenation and reuse of degraded lithium ion battery cells

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0594965A1 (en) * 1992-10-29 1994-05-04 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery
EP0683537B1 (en) 1994-04-22 1998-01-14 Alcatel Lithium secondary battery with carbonaceous anode
US20030129500A1 (en) * 1998-10-22 2003-07-10 Hong Gan Organic carbonate additives for nonaqueous electrolyte rechargeable electrochemical cells
JP2003282140A (en) * 2002-03-26 2003-10-03 Osaka Gas Co Ltd Nonaqueous secondary battery
KR20040036817A (en) * 2002-10-25 2004-05-03 한국전기연구원 Lithium secondary battery
US20040096750A1 (en) * 2002-11-16 2004-05-20 Samsung Sdi Co., Ltd. Non-aqueous electrolytic solution and lithium battery employing the same
JP2004171838A (en) * 2002-11-18 2004-06-17 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2010192456A (en) * 2003-02-18 2010-09-02 Mitsubishi Chemicals Corp Lithium secondary battery
JP2005235508A (en) * 2004-02-18 2005-09-02 Matsushita Electric Ind Co Ltd Lithium-ion secondary battery and its manufacturing method
DE102004014629A1 (en) 2004-03-19 2005-10-06 Varta Microbattery Gmbh Galvanic element
JP2005285491A (en) * 2004-03-29 2005-10-13 Central Glass Co Ltd Nonaqueous electrolyte solution and lithium secondary battery using it
US20060240327A1 (en) * 2005-04-25 2006-10-26 Ferro Corporation Non-aqueous electrolytic solution
JP2007149654A (en) * 2005-10-28 2007-06-14 Mitsubishi Chemicals Corp Non-aqueous electrolyte solution for secondary battery and secondary battery using the same
JP2007179883A (en) * 2005-12-28 2007-07-12 Gs Yuasa Corporation:Kk Nonaqueous electrolyte secondary battery
US20090181311A1 (en) * 2006-05-31 2009-07-16 Sanyo Electric Co., Ltd. High-voltage charge type nonaqueous electrolyte secondary cell
JP2008004503A (en) * 2006-06-26 2008-01-10 Sony Corp Nonaqueous electrolyte composition, and nonaqueous electrolyte secondary battery
JP2008077950A (en) * 2006-09-21 2008-04-03 Ube Ind Ltd Nonaqueous electrolyte solution and lithium secondary battery using the same
JP2008198408A (en) * 2007-02-09 2008-08-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
EP2138481A1 (en) * 2007-04-20 2009-12-30 Ube Industries, Ltd. Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same
US20090098456A1 (en) * 2007-10-15 2009-04-16 Myung Kook Park Non-aqueous electrolyte solution and lithium secondary battery including the same
US20090239146A1 (en) * 2008-03-17 2009-09-24 Hiroshi Nakagawa Non- Aqueous electrolyte secondary battery
US20110052980A1 (en) * 2008-05-07 2011-03-03 Hideo Sakata Nonaqueous secondary battery and electronic device
JP2010177020A (en) * 2009-01-29 2010-08-12 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium-ion secondary battery using the same
DE102009008859A1 (en) 2009-02-09 2010-08-12 Varta Microbattery Gmbh Rechargeable button cell i.e. lithium ion button cell, has positive and negative electrodes that are connected with each other by laminar separator and orthogonally aligned to even base area and even cover area
JP2010205474A (en) * 2009-03-02 2010-09-16 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte and lithium ion secondary battery including the same
JP2010238504A (en) * 2009-03-31 2010-10-21 Sanwa Yuka Kogyo Kk Nonaqueous electrolyte solution

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. AURBACH; H. TELLER; M. KOLTYPIN; E. LEVI, JOURNAL OF POWER SOURCES, vol. 2, 2003, pages 119 - 121
M.C. SMART ET AL: "Improved low-temperature performance of lithium-ion cells with quaternary carbonate-based electrolytes", JOURNAL OF POWER SOURCES, vol. 119-121, 1 June 2003 (2003-06-01), pages 349 - 358, XP004430194, ISSN: 0378-7753, DOI: 10.1016/S0378-7753(03)00154-X *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110994023A (en) * 2019-11-29 2020-04-10 湖北宇电能源科技股份有限公司 Lithium ion battery safety electrolyte, preparation method and application thereof, and lithium ion battery
CN110994023B (en) * 2019-11-29 2023-05-16 湖北宇电能源科技股份有限公司 Lithium ion battery safety electrolyte, preparation method and application thereof, and lithium ion battery

Also Published As

Publication number Publication date
DE102011084009A1 (en) 2013-04-11

Similar Documents

Publication Publication Date Title
EP3794666B9 (en) Rechargeable battery cell
EP1035612B1 (en) Use of additives in electrolytes for electrochemical cells
EP3005449B1 (en) New electrolyte composition for high-energy anodes
EP3255714B1 (en) Electrochemical cells with lithium depot, method for the preparation of such cells and battery with such cells
WO2023001670A1 (en) Liquid electrolyte composition, and electrochemical cell comprising said electrolyte composition
WO2016045887A1 (en) Cathode, cathode-containing lithium ion battery in the state prior to the first charging process, method for forming a lithium ion battery, and lithium ion battery after formation
DE102014202180A1 (en) Electrolyte compositions for lithium-sulfur batteries
EP3155686B1 (en) Electrolyte, cell and battery comprising the electrolyte, and use of the electrolyte
DE102013209982B4 (en) Alkaline metal-sulphur battery and method of operating it
WO2013050283A1 (en) Lithium-ion cells having improved properties
US20220407106A1 (en) Gelled electrolyte for lithium-ion electrochemical cell
DE102006055770A1 (en) Electrolyte with lithium bis(oxalato)borate, dissolved in solvent from carbonate or ester and at least an additive, useful e.g. in electro-chemical cells, preferably in lithium cells, lithium ion cells and lithium ion polymer cells
KR20210042303A (en) Lithium rechargeable battery
DE102012203447A1 (en) Electrolyte useful for lithium-ion batteries, comprises a solvent and an electrolyte salt component dissolved in the solvent, and at least one nitrogen-substituted pyrrolidone as an additive for overcharge protection
WO2008040698A1 (en) Electrolyte for lithium ion batteries
WO2012032471A1 (en) Producing solvent mixtures having a low water content
WO2008110558A1 (en) Electrolytes for electrochemical components
DE102020119843A1 (en) Cathode active material and lithium ion battery having the cathode active material
EP4037036A1 (en) Rechargeable battery cell
DE102020119842A1 (en) Cathode active material and lithium ion battery having the cathode active material
EP4037051A1 (en) Rechargeable battery cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12772260

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12772260

Country of ref document: EP

Kind code of ref document: A1