WO2013048191A2 - Carbon dioxide absorbent, and preparation method thereof - Google Patents

Carbon dioxide absorbent, and preparation method thereof Download PDF

Info

Publication number
WO2013048191A2
WO2013048191A2 PCT/KR2012/007935 KR2012007935W WO2013048191A2 WO 2013048191 A2 WO2013048191 A2 WO 2013048191A2 KR 2012007935 W KR2012007935 W KR 2012007935W WO 2013048191 A2 WO2013048191 A2 WO 2013048191A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorbent
dioxide absorbent
composition
weight
Prior art date
Application number
PCT/KR2012/007935
Other languages
French (fr)
Korean (ko)
Other versions
WO2013048191A9 (en
WO2013048191A3 (en
Inventor
이중범
류청걸
엄태형
최동혁
백점인
위영호
김경숙
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2013048191A2 publication Critical patent/WO2013048191A2/en
Publication of WO2013048191A3 publication Critical patent/WO2013048191A3/en
Publication of WO2013048191A9 publication Critical patent/WO2013048191A9/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2/00Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic
    • B01J2/02Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops
    • B01J2/04Processes or devices for granulating materials, e.g. fertilisers in general; Rendering particulate materials free flowing in general, e.g. making them hydrophobic by dividing the liquid material into drops, e.g. by spraying, and solidifying the drops in a gaseous medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide absorbent composition and a method for producing the same, which can effectively collect carbon dioxide and have excellent physical properties.
  • Carbon dioxide is recognized as one of the major substances that cause climate change, and the global number of large-scale facilities that emit more than 100,000 tons of CO 2 annually emits 7900 units and 13.5 billion tons of carbon dioxide. It accounts for 55% of the billion tons. Therefore, in order to stabilize carbon dioxide in the atmosphere, it is desirable to first collect CO 2 in a large-scale carbon dioxide emission facility.
  • This method uses solid particles instead of the liquid solvent used in conventional wet chemical cleaning to react with carbon dioxide in the flue gas to make it a stable compound, and separates pure carbon dioxide using water vapor and an additional heat source. It is a technique to reuse repeatedly and continuously. In addition, because of the fluidized bed process, the installation area is small, the heat transfer characteristics are excellent, and the operation is easy.
  • Dry Regeneration Absorption technology is characterized by almost no waste water, less corrosion problems, and can be used for a variety of inexpensive materials. In addition, it has a great potential for sustainable growth compared to other technologies in many aspects such as design flexibility, eco-friendliness, low energy regeneration, and high efficiency carbon dioxide absorption (absorption and reactivity).
  • the object of the present invention is to effectively capture the carbon dioxide contained in the flue-gas before discharging it to the atmosphere, and to be easily regenerated by an additional heat source so that it can be repeatedly used for a long period of time while continuously cycling between the two reactors for absorption and regeneration. It is to provide a carbon dioxide absorbent composition that can reduce the carbon dioxide capture cost.
  • the present invention provides a carbon dioxide absorbent composition
  • a carbon dioxide absorbent composition comprising an active ingredient, a support, and a regenerative enhancer containing two or more selected from the group consisting of titania, zirconia, ⁇ -alumina, vanadium sulfate and manganese oxide.
  • the present invention also comprises the steps of (A) spray drying the slurry composition comprising the carbon dioxide absorbent composition to produce solid particles; And (B) drying and firing the prepared solid particles to prepare an absorbent.
  • the carbon dioxide absorbent composition according to the present invention not only satisfies physical properties such as spherical shape, average particle size and size distribution, packing density, abrasion resistance as conditions of the absorbent required in the process, and is particularly excellent in CO 2 absorption ability and reproducibility. It can be reused.
  • the absorption reaction (50 to 110 °C) proceeds in the exhaust gas temperature range, and by minimizing the supply of additional heat source (regeneration reaction temperature range: 80 to 180 °C) to reduce the energy consumption required for the process to improve energy efficiency and Cost reduction problem can be solved at the same time.
  • additional heat source regeneration reaction temperature range: 80 to 180 °C
  • FIG. 1 is a process chart showing the manufacturing process of the carbon dioxide absorbent according to the present invention.
  • FIG. 2 is a process chart showing in detail a process for preparing a slurry composition.
  • FIG. 3 is a process chart showing a process of forming solid particles by spray drying the prepared slurry composition.
  • FIG. 4 is a process chart illustrating a process of preparing an absorbent by drying and firing molded solid particles.
  • Example 8 is a graph showing the results of 5 cycles repeated experiments of the absorbent prepared in Example K of the present invention.
  • Figure 9 is a photograph of the absorbent prepared in the embodiment of the present invention.
  • Example 10 is a graph showing the results of 3 cycles repeated experiments of the absorbent prepared in Example P of the present invention.
  • Figure 11 is a photograph of the absorbent prepared in the embodiment of the present invention.
  • the present invention is an active ingredient; Support; And a regeneration enhancer containing at least two selected from the group consisting of titania, zirconia, ⁇ -alumina, vanadium sulfate and manganese oxide.
  • the active ingredient is a substance that selectively reacts with carbon dioxide to efficiently collect and separate carbon dioxide from the gas stream.
  • the type of the active ingredient for example, one or more selected from the group consisting of alkali metal oxides, alkaline earth metal oxides, alkali metal carbonates, alkali metal bicarbonates, alkaline earth metal carbonates, alkaline earth metal bicarbonates and precursors thereof can be used.
  • their precursors refer to materials that can be converted into the active ingredient.
  • the active ingredient may include at least one selected from the group consisting of potassium carbonate, potassium bicarbonate, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium oxide and zinc oxide.
  • the active ingredient may include 5 to 80 parts by weight, preferably 25 to 75 parts by weight, based on 100 parts by weight of the absorbent composition. If the content is less than 5 parts by weight, there is a possibility that the collection efficiency of carbon dioxide is lowered, if it exceeds 80 parts by weight, the active ingredient can not be used efficiently, the spherical shape of the absorbent may be deformed, and the physical properties (Strength, Filling Density) may be lowered.
  • the purity of the active ingredient is preferably 98% or more.
  • the support is a substance which makes the active ingredient well distributed in the absorbent particles to increase the utility of the active ingredient, and facilitates the adsorption and absorption of carbon dioxide and water required for the reaction.
  • the support has a large specific surface area, and for example, alumina, magnesia, silica, clays, hydrotalcite, zirconia and the like can be used.
  • the alumina used as the support may be at least one selected from the group consisting of alpha-alumina and gamma-alumina, and the specific surface area may be 10 to 300 m 2 / g.
  • Silica may have a specific surface area of 90 to 300 m 2 / g, and magnesia may have a specific surface area of 20 to 100 m 2 / g.
  • the specific surface area is too small, the active material is not good dispersion, the reactivity may be reduced, on the contrary, if the specific surface area is too large, the reactivity may be excellent, but the physical properties such as wear resistance may fall.
  • the clay one or more selected from the group consisting of bentonite, montmorillonite, kaolinite and sepiolite may be used.
  • the hydrotalcite is composed of magnesia and alumina, it is preferable to use a magnesia content of 30% or more.
  • the support may include 1 to 70 parts by weight, preferably 5 to 50 parts by weight, based on 100 parts by weight of the absorbent composition. If the content is less than 1 part by weight, the physical strength may be lowered. If the content is more than 70 parts by weight, the active ingredient may be relatively low, resulting in a decrease in performance.
  • the regeneration enhancer makes it possible to repeatedly use the absorption reaction and the regeneration reaction without decreasing the reactivity due to the repeated use of the absorbent.
  • a mixture containing two or more selected from the group consisting of titania, zirconia, ⁇ -alumina, vanadium sulfate and manganese oxide may be used.
  • a mixture including zirconia as a first component and at least one selected from the group consisting of titania, ⁇ -alumina, vanadium sulfate, and manganese oxide may be used, and more preferably, Mixtures of titania and zirconia, mixtures of zirconia and ⁇ -alumina, mixtures of vanadium sulfate and zirconia, mixtures of zirconia, ⁇ -alumina and manganese oxide or mixtures of zirconia and manganese oxide can be used.
  • the regeneration enhancer may include 1 to 60 parts by weight, preferably 3 to 50 parts by weight, based on 100 parts by weight of the absorbent composition. If the content is less than 1 part by weight, there is a fear that the regeneration of the absorbent is lowered, if it exceeds 60 parts by weight, the content of the active ingredient is relatively reduced, there is a fear that the performance is lowered.
  • the present invention may further include an inorganic binder.
  • the inorganic binder is densely packed between the absorbent compositions to prepare a high-density absorbent, increases the binding strength of the active ingredient and the support, gives strength to the absorbent, and allows the absorbent to be used without loss due to prolonged wear. It is a substance.
  • the type of the inorganic binder in the present invention for example, one or more selected from the group consisting of cements, clays and ceramics may be used.
  • specific types of the clays include bentonite or kaolin
  • specific types of ceramics include alumina sol, silica sol or boehmite, and the like. Silicates, calcium aluminate, and the like.
  • the inorganic binder may include 1 to 70 parts by weight, and preferably 5 to 40 parts by weight based on 100 parts by weight of the absorbent composition. If the content is less than 1 part by weight, physical properties may be reduced by lowering the bonding strength between the raw materials (active ingredient, support and regeneration enhancer). If the content is more than 70 parts by weight, the content of the active ingredient is relatively decreased and the performance is reduced. This may fall.
  • the present invention also relates to a slurry composition comprising the above-mentioned solid material and a solvent, using the above-described absorbent composition, that is, the absorbent composition containing the active ingredient, the support, and the regeneration enhancer as a solid raw material.
  • the active ingredient, the support, and the regenerator may be used without limitation the above-described type, and the amount thereof may also be used in the above-mentioned amount.
  • the kind of the solvent is not particularly limited, and a solvent generally used in the art may be used. Specifically, water or alcohols such as methanol and ethanol can be used, and water is preferably used.
  • the solid raw material in the present invention may be included, for example, 20 to 50 parts by weight with respect to the slurry composition, preferably 20 to 40 parts by weight. If the content of the solid raw material is less than 20 parts by weight, the amount of the slurry for the absorbent preparation is increased and ultimately the absorbent manufacturing efficiency may be lowered. If it exceeds 50 parts by weight, the viscosity of the slurry increases with increasing the concentration of the slurry The fluidity of the furnace may be lowered, making it difficult to carry out spray drying.
  • the slurry composition according to the present invention requires an additive to impart plasticity and dispersibility in the process of mixing with water, which is a solvent of a solid raw material. That is, at least one organic additive selected from the group consisting of a dispersant, an antifoaming agent, and an organic binder may be further included for controlling the homogenization of the solid material, the concentration of the slurry, the viscosity, the stability, the flowability and the strength and the density.
  • a dispersant is used to prevent agglomeration between particles in the grinding process, which will be described below. That is, in the grinding process for controlling the particle size of the solid raw material constituting the absorbent, the dispersant may be used to prevent the reduction of the grinding efficiency by agglomeration of the pulverized fine powder particles.
  • At least one selected from the group consisting of an anionic dispersant, a cationic dispersant, an amphoteric acid dispersant, and a nonionic dispersant may be used, and preferably an anionic dispersant may be used.
  • an anionic dispersant polycarboxylic acid, polycarboxylic acid amine, polycarboxylic acid amine salt, polycarboxylic acid soda salt, or the like may be used.
  • As the nonionic dispersant a fluorine-based surfactant may be used.
  • the anionic dispersant may be used in an amount of 0.1 to 10 parts by weight based on a solid raw material, and a nonionic dispersant may be used in an amount of 0.01 to 0.3 parts by weight based on a solid raw material. In this range, the dispersion effect of the particles is excellent.
  • a defoamer may be used to remove bubbles in the slurry to which the dispersant and the organic binder are applied.
  • a metal soap type and polyester type nonionic surfactant can be used, for example.
  • the antifoaming agent may be used in an amount of 0.01 to 0.2 parts by weight based on the solid raw material.
  • the organic binder imparts plasticity and fluidity to the slurry and ultimately gives strength to the molded solid particles upon spray drying, thereby facilitating handling of the particles before drying and firing.
  • the type of the organic binder for example, one or more selected from the group consisting of polyvinyl alcohol, polyglycol, and methyl cellulose may be used.
  • the content of the organic binder is not particularly limited. For example, 0.5 to 5 parts by weight may be used based on the solid raw material. If the content is less than 0.5 parts by weight, it may be difficult to maintain the spherical shape before drying and firing due to a decrease in the bonding strength of the spray-dried solid particles, if the content exceeds 5 parts by weight of the final material There is a risk of deterioration in performance.
  • a pH adjusting agent may be further added to adjust the pH of the slurry composition.
  • organic amine, aqueous ammonia, etc. can be used, for example.
  • Carbon dioxide absorbent of the present invention (A) spray drying the slurry composition to prepare a solid particle by spray drying; And (B) drying and firing the prepared solid particles to prepare an absorbent.
  • the slurry composition in step (A) may be prepared by mixing the aforementioned solid raw material in a solvent.
  • the solid raw material may include an active ingredient, a support and a regeneration enhancer, the active ingredient, a support and a regeneration enhancer may be used without limitation the above-described type, the content may be used within the above-described content range. .
  • the slurry composition according to the present invention comprises the steps of preparing a mixture of a solvent and a solid raw material
  • the mixture may be prepared by a method including stirring and pulverizing.
  • the solvent may be used without limitation the above-described type, specifically, water may be used.
  • the content of the solid raw material in the present invention may be included in 20 to 50 parts by weight based on the slurry composition.
  • the organic additive in the step of adding the organic additive to the mixture of the present invention, one or more selected from the group consisting of a dispersant, an antifoaming agent and an organic binder may be used, and preferably all of the above are used.
  • the dispersant, the antifoaming agent and the organic binder may be used without limitation the above-described kind, the content thereof is as described above.
  • the mixture of the present invention may further add a pH adjusting agent in addition to the organic additive.
  • the stirring may be performed in the process of adding the components included in the mixture, and / or in a state where all of them are added, and may be performed using a stirrer.
  • a stirrer examples include, for example, a general mechanical stirrer, a double-helix mixer, a high speed emulsifier, a homogenizer, a high shear blender, or an ultrasonic homogenizer. homogenizer) and the like, and may be selectively used depending on the amount of raw material to be added.
  • the solid raw material particles can be dispersed more homogeneously in the slurry.
  • additional defoaming and dispersing agents may be added as necessary during the grinding, and a more stable slurry may be prepared using a pH adjuster.
  • a wet milling method may be used to improve the grinding effect and to solve problems such as blowing of particles generated during dry grinding.
  • the pulverization is performed using a pulverizer, in which the kind of pulverizer used is, for example, a roller mill, a ball mill, an attrition mill, a preener A mill mill, bead mill, or high energy bead mill may be used.
  • a high energy bead mill can be preferably used.
  • the filling amount of the bead (grind), which is the pulverization medium is preferably 60% to 80% based on the volume of the grinding container when grinding and homogenizing.
  • Beads, which are grinding media may use Yttria stabilized zirconia beads, which are excellent in strength and stability.
  • the size of the ball is preferably 0.3 mm to 1.25 mm.
  • the grinding may be performed two or more times to produce a homogeneous slurry.
  • a dispersant and an antifoaming agent may be added to the slurry (mixture) in order to perform the next pulverization, thereby controlling the fluidity of the slurry to facilitate transfer through the pump.
  • an organic binder may be added prior to final grinding to uniformly mix the slurry.
  • the pulverized slurry can be characterized by using a dispersant, antifoaming agent or additional solvent to adjust characteristics such as concentration and viscosity.
  • the grinding process may be omitted.
  • Preparation of the slurry composition of the present invention may further comprise the step of removing the foreign matter contained in the slurry after preparing the slurry composition.
  • the step of removing the foreign matter contained in the slurry after preparing the slurry composition Through the above step, it is possible to remove the foreign matter or agglomerated raw materials that may cause the nozzle clogging during spray molding. Removal of the foreign matter may be carried out through sieving.
  • Spray drying of the slurry composition in the step of spray drying the slurry composition of the present invention into solid particles may be performed using a spray dryer.
  • the slurry composition is transferred to a spray dryer using a pump, and then the transferred slurry composition is sprayed into the spray dryer through a pump or the like to primarily form an absorbent.
  • the viscosity of the slurry composition transferable to the pump is not particularly limited, but may be sprayed at 300 cP or more.
  • the operating conditions of the spray dryer for molding solid particles in the spray dryer in the present invention may apply the operating conditions generally used in this field.
  • the spraying method of the slurry composition is not particularly limited, and for example, a countercurrent spraying method may be used in which the spray nozzle is sprayed in a direction opposite to the flow of drying air. That is, in order to control the average particle size of the solid particles in the spray dryer, a countercurrent spray method may be used in which a pressurized nozzle is installed at the bottom of the dryer to increase the residence time of the particles sprayed in the dryer.
  • the shape, particle size, particle distribution and structure of the absorbent of the slurry composition are affected by the concentration, viscosity, dispersion degree, injection pressure of the slurry, injection amount, drying capacity and temperature of the spray dryer, the spray dryer
  • the structure and spray form of can be adjusted to suit.
  • the injection pressure of the spray dryer is 5 to 15 kg / cm 2
  • the inner diameter of the pressure nozzle is 0.4 to 1.6 mm
  • the inlet temperature of the dryer may be 240 to 300 °C and outlet temperature 110 to 150 °C.
  • the particle size distribution of the solid particles produced in the step is preferably 30 to 330 ⁇ m.
  • Step (B) in the present invention is a step of drying and calcining the solid particles prepared in step (A) to prepare a final absorbent.
  • the drying may be performed by drying the solid particles in a reflux dryer of 110 to 150 °C or more. At this time, drying is performed in an air atmosphere.
  • the dried particles are placed in a high temperature firing furnace to raise the final firing temperature to 350 to 1000 ° C. at a rate of 0.5 to 10 ° C./min, and then fired for 2 hours or more.
  • the stagnation section of each 30 minutes or more at a stagnation temperature of two or more steps up to the final firing temperature may be fired.
  • firing may use a firing furnace such as a muffle furnace, a tubular furnace, or a kiln.
  • a firing furnace such as a muffle furnace, a tubular furnace, or a kiln.
  • the firing may be performed in an atmosphere of air, nitrogen, helium, hydrogen, water, or reducing gas, and the flow rate of the atmospheric gas may be 60 ml / min or more.
  • the organic additives (dispersant, antifoaming agent and organic binder) introduced during the preparation of the slurry by the firing are burned, and the strength of the particles is improved by bonding between the raw materials.
  • the present invention also relates to a carbon dioxide absorbent prepared by the method for producing a carbon dioxide absorbent described above.
  • the absorbent according to the invention may be spherical in shape. If the shape is not spherical, but donut-shaped or grooved, the wear loss of the particles is increased.
  • the particle size and particle distribution of the absorbent may be, for example, 60 to 150 ⁇ m and 30 to 400 ⁇ m, respectively.
  • the packing density of the absorbent of the present invention may be, for example, 0.8 g / cc or more.
  • the wear resistance is represented by the wear index (AI), the lower the wear index means that the wear resistance is better.
  • the wear resistance of the absorbent may be, for example, 30% or less.
  • the lower limit of the wear resistance is not particularly limited, but is preferably more than 0%.
  • the absorbent capacity of the absorbent may be 5% by weight or more.
  • the regeneration performance of the absorbent of the present invention may be, for example, 80% or more.
  • the upper limit of the regeneration performance may be 100%, the regeneration performance is excellent in the above range can be reused the absorbent many times.
  • the present invention comprises the steps of collecting the carbon dioxide contained in the exhaust gas as an absorbent; And it relates to a carbon dioxide separation method comprising the step of regenerating the collected carbon dioxide, the separation method may use the above-described carbon dioxide absorbent as an absorbent.
  • the step of collecting the carbon dioxide contained in the exhaust gas as an absorbent may be carried out at 50 to 150 °C, the regeneration reaction may be carried out at 80 to 180 °C.
  • FIG. 1 is a process chart showing a process for preparing a carbon dioxide absorbent according to the present invention.
  • Figure 2 of the present invention is a process chart showing a process for producing a mixture of a solid raw material and a solvent as a slurry.
  • the slurry is prepared by mixing a solid raw material in water (solvent) to prepare a mixture (11), adding an organic additive, etc. to the mixture (12), stirring the mixture ( 13), pulverizing and homogenizing the solid raw material 14 and removing the foreign matter contained in the slurry (15).
  • organic additive one or more selected from the group consisting of a dispersant, an antifoaming agent, and an organic binder may be used, and preferably all may be used.
  • FIG. 3 is a process chart showing a process of forming a solid particle by spray drying the slurry.
  • the spray drying of the slurry to form the solid particles comprises a step 21 of transferring the slurry to the spray dryer and a step 22 of spraying the transferred slurry into the spray dryer.
  • Figure 4 is a process chart showing the final manufacturing process of the absorbent by drying and sintering the primary molded absorbent by the spray drying method.
  • the first-dried particles (absorbents) in the spray drying step are prepared as a final absorbent through a calcination process 31 after the drying process 30.
  • the shape of the absorbent was measured using the naked eye, an industrial microscope or an electron scanning microscope (SEM).
  • Average particle size and particle size distribution of the absorbent were measured according to the standard method ASTM E-11. At this time, 10 g of the absorbent sample was sieved in a sieve shaker for 30 minutes, and then the average particle size and size distribution were calculated according to the calculation method presented.
  • the packing density of the absorbent was measured according to the apparatus and method presented in the standard ASTM D 4164-88.
  • the specific surface area and pore volume of the absorbent were measured using a quantachrome multi BET surface area meter and an Hg porosity meter, respectively.
  • the wear resistance of the absorbent was measured in accordance with the test method and the procedure given in the specification using a 3-holeattrition tester manufactured according to ASTM D 5757-95.
  • the wear index (AI) calculated according to the method presented in ASTM, is the ratio of the initial sample volume (50 g) to the collected fine powder generated by wear in a wear tube for 5 hours at a flow rate of 10 slpm (standard liters per minute).
  • One of the important indicators of the (fluidized bed or high velocity fluidized bed) process is that less than 30% is preferred for the (fluidized bed) process.
  • the wear index (AI) expressed in wear resistance indicates that the smaller the value, the higher the wear strength.
  • the absorption and regeneration reactions of the prepared absorbents were measured using pressurized thermogravimetric analysis.
  • the weight and total flow rate of the sample used were 10 mg and 60 ml / min, respectively.
  • the gas composition used for the absorption reaction was 14.4% carbon dioxide, 5.4% oxygen, 10% water as steam, and 70.2% nitrogen as balance gas.
  • the gas composition used for the regeneration reaction is nitrogen.
  • Absorption and regeneration of the absorbent were performed by using a Batch Fluidized Bed (2 cm ID) reactor for at least 1.5 cycles (absorption-regeneration-absorption) to evaluate the absorbent's first and second CO2 absorption capacity.
  • the second absorption capacity was used for the first absorption capacity. In particular, in terms of stability to long-term commercial use, it is expressed as the percentage of the third absorption capacity to the second absorption capacity.
  • K2CO3 potassium carbonate
  • MgO magnesium oxide
  • ⁇ -Al2O3 gamma alumina
  • bentonite montmorillon, etc. so that the total mass is 8 kg.
  • a solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry.
  • the content of the solid raw material was about 20 to 40 parts by weight based on 100 parts by weight of the mixed slurry.
  • the dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials.
  • the antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant was added or during the stirring of the slurry.
  • the slurry was sufficiently stirred for 10 minutes or more at a speed of 10,000 to 25,000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
  • the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry.
  • an additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid raw material and the pH, or to facilitate the operation.
  • Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
  • the final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign substances that may be introduced during the manufacturing process.
  • the prepared slurry was dried at 120 ° C. for 2 hours or more in an air atmosphere dryer, and then heated in a box-type firing furnace (Muffle Furnace) to a final firing temperature of 500 ° C. to 650 ° C. at a heating rate of 0.5 to 10 ° C./min, and then to a final temperature.
  • the final absorbent was prepared by maintaining at least for 2 hours.
  • each one hour was maintained at 200 ° C., 400 ° C. and 500 ° C. before reaching the final firing temperature.
  • the content and slurry properties of the components used in the preparation of the absorbent are shown in Table 1 below.
  • the materials used as active materials, inorganic binders and regeneration accelerators may serve as a support.
  • Table 2 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbents prepared in Examples and Comparative Examples.
  • FIG. 5 is an industrial photomicrograph of the absorbent of Examples C (C of FIG. 5) and Example E (E of FIG. 5). As shown in FIG. 5, the absorbent has a spherical shape.
  • An absorbent was prepared in the same manner as in Example 1 except for using the ingredients and contents shown in Table 3 below.
  • the content and slurry properties of the components used in the preparation of the absorbent are shown in Table 3 below.
  • Table 4 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbent prepared by the Examples and Comparative Examples.
  • the absorbent according to the embodiment can be confirmed that the carbon dioxide absorbing ability is 5% or more, the regeneration performance is superior to 80% or more.
  • FIG. 6 is an industrial micrograph of the absorbent of Example H (H of FIG. 6) and Example I (I of FIG. 6). As shown in FIG. 6, the absorbent has a spherical shape.
  • Example N An absorbent was prepared in the same manner as in Example 1 except for using the ingredients and contents shown in Table 5 below. The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 5 below.
  • zirconia and alpha alumina serve as regeneration enhancers and supports.
  • Table 6 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbents prepared in Examples and Comparative Examples.
  • the absorbent according to the present invention was confirmed to have excellent values in carbon dioxide absorption capacity and regeneration performance compared to Comparative Example D using zirconia as a regeneration enhancer.
  • the absorbent according to the embodiment not only satisfies all the physical properties required in the process, but also has excellent carbon dioxide absorption ability and regeneration performance.
  • Example 7 is an industrial micrograph of the absorbents of Comparative Example K (K in FIG. 7) and Example L (L in FIG. 7). As shown in FIG. 7, the absorbent has a spherical shape.
  • Figure 8 shows the results of the 5Cycle repeated experiment of the absorbent according to Example K. As shown in FIG. 8, the absorbent of the present invention has excellent absorption ability even after being regenerated many times.
  • An absorbent was prepared in the same manner as in Example 1, except that the ingredients and contents shown in Table 7 were used.
  • the absorbent according to the embodiment was excellent in the absorbent capacity 10 wt% or more and regeneration 95% or more, it was found to meet all the physical properties required in the process.
  • FIG. 9 is an industrial micrograph of the absorbent of Examples P (P of FIG. 8) and Example Q (Q of FIG. 8). As shown in FIG. 9, the absorbent has a spherical shape.
  • Example 10 shows the results of three cycles of the absorbent according to Example P. As shown in FIG. 10, the absorbent has excellent absorption ability even after being regenerated several times.
  • Absorbent preparation and evaluation were carried out according to the method and procedure shown in Example 1 except that the absorbent was prepared using the ingredients and contents shown in Table 9 below.
  • the content and slurry properties of the components used in the preparation of the absorbent are shown in Table 9 below.
  • the zirconia of Examples S, T and V in Table 9 serves as a support and regeneration enhancer.
  • Table 10 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbents prepared in Examples and Comparative Examples.
  • the absorbent according to the embodiment has an excellent reproducibility of 89 to 100%, which is expressed as a ratio of absorbency of 7 wt% or more and the second absorbency relative to the second absorbency related to long-term stability. It was found to meet all of the characteristics.
  • FIG. 11 is an industrial photomicrograph of the absorbent of Example W (W in FIG. 11) and Example X (X in FIG. 11). As shown in FIG. 11, the absorbent has a spherical shape.
  • FIG. 12 shows the results of experiments for evaluating three cycles of repeated absorption of absorbents according to Example W and Example X. As shown in FIG. 12, the absorbent has excellent absorption ability even after being regenerated several times.
  • Table 12 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbent prepared by the comparative example.

Abstract

The present invention relates to a carbon dioxide absorbent composition comprising a regeneration promoter containing an active component, a support, and two or more materials selected from the group consisting of titania, zirconia, α-alumina, vanadium sulfate and manganese oxide, and a preparation method thereof. According to the present invention, the CO2 absorbent has excellent physical properties such as packing density, abrasion resistance and the like, and regeneration performance such as a CO conversion rate and a CO2 absorption ability, and thus can effectively collect and separate carbon dioxide contained in a synthetic gas of fossil fuel.

Description

이산화탄소 흡수제 및 그 제조방법Carbon Dioxide Absorber and Manufacturing Method Thereof
본 발명은 이산화탄소를 효과적으로 포집할 수 있고 물리적 특성이 우수한 이산화탄소 흡수제 조성물 및 그 제조방법에 관한 것이다. The present invention relates to a carbon dioxide absorbent composition and a method for producing the same, which can effectively collect carbon dioxide and have excellent physical properties.
이산화탄소는 기후변화를 유발하는 주요 물질 중의 하나로 인식되고 있으며, 전 세계적으로 연간 10만톤 이상의 CO2를 배출하는 대규모 설비의 수는 7900여개, 135억톤의 이산화탄소를 배출하고 있어 전 세계 1년 배출치 244억 톤의 55%를 차지하고 있다. 따라서 대기 중의 이산화탄소를 안정화시키기 위해서 우선적으로 대규모 이산화탄소 배출설비를 대상으로 CO2를 포집하는 것이 바람직하다.Carbon dioxide is recognized as one of the major substances that cause climate change, and the global number of large-scale facilities that emit more than 100,000 tons of CO 2 annually emits 7900 units and 13.5 billion tons of carbon dioxide. It accounts for 55% of the billion tons. Therefore, in order to stabilize carbon dioxide in the atmosphere, it is desirable to first collect CO 2 in a large-scale carbon dioxide emission facility.
대규모 이산화탄소 발생 설비로부터 이산화탄소를 제거하는 방법으로는 습식화학세정(Wet chemical absorption), 흡착(Absorption), 막분리(Membranes), 저온냉각분리 등의 다양한 방법이 있다. 그러나 이러한 방법들은 회수비용이 높거나 발전소나 대규모 산업체에 적용하기 어렵다는 문제점이 있다.There are various methods of removing carbon dioxide from large-scale carbon dioxide generating facilities, such as wet chemical absorption, absorption, membrane separation, and low temperature cooling separation. However, these methods have a high recovery cost or are difficult to apply to power plants or large industries.
배가스에서 이산화탄소를 효과적으로 제거하는 방법으로 건식 CO2 포집기술(Dry CO2 capture technology)이 있다. 이 방법은 기존의 습식화학세정에서 사용하는 액체용매 대신에 고체입자를 사용하여 배가스 중에 존재하는 이산화탄소와 반응시켜 안정된 화합물로 만든 후 수증기와 추가의 열원을 사용하여 순수한 이산화탄소를 분리하고, 흡수제는 재생하여 반복, 연속적으로 재사용하는 기술이다. 또한 유동층 공정을 적용하므로 설치 면적이 적고 열전달 특성이 우수하며 운전하기 용이하다.There is a way to efficiently remove carbon dioxide from the off-gas dry CO 2 capture technology (Dry CO 2 capture technology). This method uses solid particles instead of the liquid solvent used in conventional wet chemical cleaning to react with carbon dioxide in the flue gas to make it a stable compound, and separates pure carbon dioxide using water vapor and an additional heat source. It is a technique to reuse repeatedly and continuously. In addition, because of the fluidized bed process, the installation area is small, the heat transfer characteristics are excellent, and the operation is easy.
건식 재생 흡수기술의 특징은 폐수가 거의 발생하지 않고 부식문제가 적으며 저가의 다양한 소재 사용이 가능하며, 재생하여 반복 사용가능하다. 또한, 설계 유연성(Design flexibility), 친환경성, 저에너지 재생, 고효율 이산화탄소 흡수력(흡수성과 반응성) 등 여러 측면에서 다른 기술에 비해 지속성장 가능한 잠재력이 큰 분야이다.Dry Regeneration Absorption technology is characterized by almost no waste water, less corrosion problems, and can be used for a variety of inexpensive materials. In addition, it has a great potential for sustainable growth compared to other technologies in many aspects such as design flexibility, eco-friendliness, low energy regeneration, and high efficiency carbon dioxide absorption (absorption and reactivity).
종래의 건식 이산화탄소 포집기술은 주로 활성물질, 지지체, 무기 및 유기 바인더들의 조합 또는 활성물질과 지지체의 조합 또는 활성성분 자체에 관련된 것이거나 전혀 다른 응용분야의 적용을 위한 것으로, 물리적 혼합에 의한 제조 또는 담지 방법에 의한 제조 등 제조방법이 상이하여 대량으로 흡수제를 제조하기에 적당하지 않으며, 특히 고체 흡수제 입자가 유동층 공정의 흡수와 재생 두 반응기 사이를 연속적으로 순환하면서 연속적으로 이산화탄소를 포집 분리하는 공정에 적용하기에 부적당하다. 따라서, 발전소, 철강, 정유 및 시멘트 산업과 같은 대량의 이산화탄소를 배출하는 산업공정에 적용하는데 비효율적이다.Conventional dry carbon dioxide capture technology is primarily for the combination of active materials, supports, inorganic and organic binders or for combinations of active materials and supports, or for the active ingredient itself, or for applications in totally different applications, which may be prepared by physical mixing or It is not suitable for producing absorbent in large quantities because of different manufacturing methods such as manufacturing by supporting method.In particular, in the process of solid absorbent particles collecting and separating carbon dioxide continuously while continuously circulating between two reactors for absorption and regeneration of fluidized bed process Not suitable for application Therefore, it is inefficient to apply to industrial processes that emit a large amount of carbon dioxide, such as power plants, steel, refinery and cement industries.
본 발명의 목적은 이산화탄소를 대기로 배출하기 전에 배가스에 포함된 이산화탄소를 효과적으로 포집하고, 추가의 열원에 의해 쉽게 재생할 수 있어 흡수와 재생 두 반응기 사이를 연속적으로 순환하면서 반복적으로 장기간 사용할 수 있어 결과적으로 이산화탄소 포집비용을 절감할 수 있는 이산화탄소 흡수제 조성물을 제공하는 것이다. The object of the present invention is to effectively capture the carbon dioxide contained in the flue-gas before discharging it to the atmosphere, and to be easily regenerated by an additional heat source so that it can be repeatedly used for a long period of time while continuously cycling between the two reactors for absorption and regeneration. It is to provide a carbon dioxide absorbent composition that can reduce the carbon dioxide capture cost.
본 발명은 활성성분, 지지체, 및 티타니아, 지르코니아, α-알루미나, 황산바나디움 및 산화망간으로 이루어진 그룹으로부터 선택된 2 이상을 함유하는 재생증진제를 포함하는 이산화탄소 흡수제 조성물을 제공한다.The present invention provides a carbon dioxide absorbent composition comprising an active ingredient, a support, and a regenerative enhancer containing two or more selected from the group consisting of titania, zirconia, α-alumina, vanadium sulfate and manganese oxide.
본 발명은 또한 (A) 상기 이산화탄소 흡수제 조성물을 포함하는 슬러리 조성물을 분무 건조시켜 고체 입자를 제조하는 단계; 및 (B) 상기 제조된 고체 입자를 건조 소성시켜 흡수제를 제조하는 단계;를 포함하는 이산화탄소 흡수제의 제조 방법을 제공한다.The present invention also comprises the steps of (A) spray drying the slurry composition comprising the carbon dioxide absorbent composition to produce solid particles; And (B) drying and firing the prepared solid particles to prepare an absorbent.
본 발명에 따른 이산화탄소 흡수제 조성물은 공정에서 요구되는 흡수제의 조건으로서 구형의 형상과 평균입자 크기 및 크기 분포, 충진밀도, 내마모도 등 물리적 특성이 충족될 뿐만 아니라, 특히 CO2 흡수능과 재생성이 우수하여 반복하여 재사용 가능하다. The carbon dioxide absorbent composition according to the present invention not only satisfies physical properties such as spherical shape, average particle size and size distribution, packing density, abrasion resistance as conditions of the absorbent required in the process, and is particularly excellent in CO 2 absorption ability and reproducibility. It can be reused.
또한, 분무기술을 적용함으로 대량생산이 용이하고 생산 수율이 높아 비용발생이 적기 때문에 발전소, 제철, 정유, 시멘트 산업 등 대규모 배출원의 CO2를 저비용으로 포집할 수 있는 장점이 있다. In addition, by applying the spray technology, mass production is easy and the production yield is high, so the cost is low, and there is an advantage that it is possible to collect CO 2 of large-scale sources such as power plants, steelmaking, oil refining, and cement industries at low cost.
또 배가스 온도 범위에서 흡수반응(50 내지 110℃)이 진행되고, 재생에 필요한 추가 열원의 공급을 최소화(재생 반응 온도 범위: 80 내지 180℃)하여 공정에 필요한 에너지 소모량을 줄임으로서 에너지 효율향상 및 비용절감 문제를 동시에 해결할 수 있다.In addition, the absorption reaction (50 to 110 ℃) proceeds in the exhaust gas temperature range, and by minimizing the supply of additional heat source (regeneration reaction temperature range: 80 to 180 ℃) to reduce the energy consumption required for the process to improve energy efficiency and Cost reduction problem can be solved at the same time.
도 1은 본 발명에 따른 이산화탄소 흡수제의 제조과정을 나타내는 공정도이다.1 is a process chart showing the manufacturing process of the carbon dioxide absorbent according to the present invention.
도 2는 슬러리 조성물을 제조하는 과정을 구체적으로 나타낸 공정도이다.2 is a process chart showing in detail a process for preparing a slurry composition.
도 3은 제조된 슬러리 조성물을 분무 건조시켜 고체 입자를 성형하는 과정을 나타낸 공정도이다.3 is a process chart showing a process of forming solid particles by spray drying the prepared slurry composition.
도 4는 성형된 고체 입자를 건조 및 소성시켜 흡수제를 제조하는 과정을 나타낸 공정도이다.4 is a process chart illustrating a process of preparing an absorbent by drying and firing molded solid particles.
도 5 ~ 도 7은 본 발명의 실시예 및 비교예에서 제조한 흡수제의 사진이다.5 to 7 are photographs of the absorbents prepared in Examples and Comparative Examples of the present invention.
도 8은 본 발명의 실시예 K 에서 제조한 흡수제의 5 cycle 반복 실험 결과를 보여주는 그래프이다.8 is a graph showing the results of 5 cycles repeated experiments of the absorbent prepared in Example K of the present invention.
도 9는 본 발명의 실시예에서 제조한 흡수제의 사진이다.Figure 9 is a photograph of the absorbent prepared in the embodiment of the present invention.
도 10은 본 발명의 실시예 P에서 제조한 흡수제의 3 cycle 반복 실험 결과를 보여주는 그래프이다.10 is a graph showing the results of 3 cycles repeated experiments of the absorbent prepared in Example P of the present invention.
도 11은 본 발명의 실시예에서 제조한 흡수제의 사진이다.Figure 11 is a photograph of the absorbent prepared in the embodiment of the present invention.
도 12는 본 발명의 실시예 W 및 Y에서 제조한 흡수제의 3 cycle 반복 실험 결과를 보여주는 그래프이다.12 is a graph showing the results of 3 cycle repetition experiments of the absorbents prepared in Examples W and Y of the present invention.
도 13은 비교예 K의 cycle 반복 실험 결과를 보여주는 그래프이다.13 is a graph showing the results of cycle repeat experiments of Comparative Example K.
도 14는 비교예 L의 cycle 반복 실험 결과를 보여주는 그래프이다.14 is a graph showing the cycle repeat experiment results of Comparative Example L.
도 15는 비교예 M의 cycle 반복 실험 결과를 보여주는 그래프이다.15 is a graph showing the results of cycle repeat experiments of Comparative Example M.
이하, 본 발명에 따른 이산화탄소 흡수제 조성물을 보다 상세하게 설명한다.Hereinafter, the carbon dioxide absorbent composition according to the present invention will be described in more detail.
본 발명은 활성성분; 지지체; 및 티타니아, 지르코니아, α-알루미나, 황산바나디움 및 산화망간으로 이루어진 그룹으로부터 선택된 2 이상을 함유하는 재생증진제를 포함하는 이산화탄소 흡수제 조성물에 관한 것이다.The present invention is an active ingredient; Support; And a regeneration enhancer containing at least two selected from the group consisting of titania, zirconia, α-alumina, vanadium sulfate and manganese oxide.
본 발명에서 활성성분은 이산화탄소와 선택적으로 반응하여 가스기류에서 이산화탄소를 효율적으로 포집, 분리하는 물질이다.In the present invention, the active ingredient is a substance that selectively reacts with carbon dioxide to efficiently collect and separate carbon dioxide from the gas stream.
상기 활성성분의 종류로는, 예를 들면, 알칼리 금속산화물, 알칼리 토금속산화물, 알칼리 금속탄산염, 알칼리 금속 중탄산염, 알칼리 토금속 탄산염, 알칼리 토금속 중탄산염 및 이들의 전구체로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. 여기서, 이들의 전구체는 상기 활성성분으로 전환될 수 있는 물질을 의미한다.As the type of the active ingredient, for example, one or more selected from the group consisting of alkali metal oxides, alkaline earth metal oxides, alkali metal carbonates, alkali metal bicarbonates, alkaline earth metal carbonates, alkaline earth metal bicarbonates and precursors thereof can be used. . Here, their precursors refer to materials that can be converted into the active ingredient.
본 발명에서 활성성분은 구체적으로 탄산칼륨, 중탄산칼륨, 수산화칼륨, 탄산나트륨, 중탄산나트륨, 수산화나트륨, 수산화칼슘, 수산화마그네슘, 산화마그네슘, 산화칼슘 및 산화아연으로 이루어진 그룹으로부터 선택된 하나 이상을 들 수 있다.In the present invention, the active ingredient may include at least one selected from the group consisting of potassium carbonate, potassium bicarbonate, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium oxide and zinc oxide.
본 발명에서 상기 활성성분은 흡수제 조성물 100 중량부에 대하여, 5 내지 80 중량부를 포함할 수 있으며, 바람직하게는 25 내지 75 중량부를 포함할 수 있다. 상기 함량이 5 중량부 미만이면, 이산화탄소의 포집 효율이 저하될 우려가 있으며, 80중량부를 초과하면, 활성성분을 효율적으로 이용할 수 없고, 흡수제의 구형의 형상이 변형될 수 있으며, 또한, 물리적 특성(강도, 충진밀도)이 저하될 우려가 있다.In the present invention, the active ingredient may include 5 to 80 parts by weight, preferably 25 to 75 parts by weight, based on 100 parts by weight of the absorbent composition. If the content is less than 5 parts by weight, there is a possibility that the collection efficiency of carbon dioxide is lowered, if it exceeds 80 parts by weight, the active ingredient can not be used efficiently, the spherical shape of the absorbent may be deformed, and the physical properties (Strength, Filling Density) may be lowered.
본 발명에서 상기 활성성분의 순도는 98% 이상인 것이 바람직하다.In the present invention, the purity of the active ingredient is preferably 98% or more.
본 발명에서 지지체는 활성성분을 흡수제 입자 내에 잘 분포되게 하여 상기 활성성분의 활용성을 높이고, 반응에 필요한 이산화탄소 및 수분의 흡착 및 흡수를 용이하게 하는 물질이다. In the present invention, the support is a substance which makes the active ingredient well distributed in the absorbent particles to increase the utility of the active ingredient, and facilitates the adsorption and absorption of carbon dioxide and water required for the reaction.
상기 지지체는 큰 비표면적을 가지는 것이 바람직하며, 예를 들면, 알루미나, 마그네시아, 실리카, 점토류, 하이드로탈사이트, 지르코니아 등을 사용할 수 있다. It is preferable that the support has a large specific surface area, and for example, alumina, magnesia, silica, clays, hydrotalcite, zirconia and the like can be used.
지지체로 사용되는 알루미나는 알파-알루미나 및 감마-알루미나로 이루어진 그룹으로부터 선택된 하나 이상일 수 있으며, 비표면적은 10 내지 300 ㎡/g 일 수 있다. 실리카는 비표면적이 90 내지 300 ㎡/g일 수 있으며, 마그네시아는 비표면적이 20 내지 100 ㎡/g일 수 있다. 통상적으로 같은 물질일 경우 비표면적이 너무 작을 경우 활성물질이 분산이 좋지 않아 반응성이 떨어질 수 있으며, 반대로 너무 비표면적이 클 경우 반응성은 우수할 수 있으나 내마모도 등 물리적 특성이 떨어질 우려가 있다. 또한, 점토류로는 벤토나이트, 몬트모릴로나이트, 카올리나이트 및 세피올라이트로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. 상기 하이드로탈사이트는 마그네시아와 알루미나로 구성된 것으로 마그네시아 함량 30% 이상인 것을 사용하는 것이 바람직하다.The alumina used as the support may be at least one selected from the group consisting of alpha-alumina and gamma-alumina, and the specific surface area may be 10 to 300 m 2 / g. Silica may have a specific surface area of 90 to 300 m 2 / g, and magnesia may have a specific surface area of 20 to 100 m 2 / g. In general, when the same material is too small, the specific surface area is too small, the active material is not good dispersion, the reactivity may be reduced, on the contrary, if the specific surface area is too large, the reactivity may be excellent, but the physical properties such as wear resistance may fall. In addition, as the clay, one or more selected from the group consisting of bentonite, montmorillonite, kaolinite and sepiolite may be used. The hydrotalcite is composed of magnesia and alumina, it is preferable to use a magnesia content of 30% or more.
본 발명에서 상기 지지체는 흡수제 조성물 100 중량부에 대하여, 1 내지 70 중량부를 포함할 수 있으며, 바람직하게는 5 내지 50 중량부를 포함할 수 있다. 상기 함량이 1 중량부 미만이면, 물리적 강도가 저하될 우려가 있으며, 70 중량부를 초과하면, 상대적으로 활성성분이 낮아져 성능이 저하될 우려가 있다.In the present invention, the support may include 1 to 70 parts by weight, preferably 5 to 50 parts by weight, based on 100 parts by weight of the absorbent composition. If the content is less than 1 part by weight, the physical strength may be lowered. If the content is more than 70 parts by weight, the active ingredient may be relatively low, resulting in a decrease in performance.
본 발명에서 재생증진제는 흡수제의 반복 사용에 따른 반응성의 저하 없이 흡수 반응과 재생 반응을 반복하여 사용할 수 있게 해주며, 동시에 오염원의 영향을 최소화 하여, 흡수제의 장기간 사용을 용이하게 해준다. In the present invention, the regeneration enhancer makes it possible to repeatedly use the absorption reaction and the regeneration reaction without decreasing the reactivity due to the repeated use of the absorbent.
상기 재생증진제로는 예를 들어, 티타니아, 지르코니아, α-알루미나, 황산바나디움 및 산화망간으로 이루어진 그룹으로부터 선택된 2 이상을 함유하는 혼합물을 사용할 수 있다. 바람직하게 재생증진제로는 제 1 성분으로 지르코니아를 포함하고, 제 2 성분으로 티타니아, α-알루미나, 황산바나디움 및 산화망간으로 이루어진 그룹으로부터 선택된 하나 이상을 포함하는 혼합물을 사용할 수 있으며, 보다 바람직하게는 티타니아와 지르코니아의 혼합물, 지르코니아와 α-알루미나의 혼합물, 황산바나디움과 지르코니아의 혼합물, 지르코니아, α-알루미나 및 산화망간의 혼합물 또는 지르코니아와 산화망간의 혼합물을 사용할 수 있다.As the regeneration enhancer, for example, a mixture containing two or more selected from the group consisting of titania, zirconia, α-alumina, vanadium sulfate and manganese oxide may be used. Preferably, as a regeneration enhancer, a mixture including zirconia as a first component and at least one selected from the group consisting of titania, α-alumina, vanadium sulfate, and manganese oxide may be used, and more preferably, Mixtures of titania and zirconia, mixtures of zirconia and α-alumina, mixtures of vanadium sulfate and zirconia, mixtures of zirconia, α-alumina and manganese oxide or mixtures of zirconia and manganese oxide can be used.
본 발명에서 상기 재생증진제는 흡수제 조성물 100 중량부에 대하여, 1 내지 60 중량부를 포함할 수 있으며, 바람직하게는 3 내지 50 중량부를 포함할 수 있다. 상기 함량이 1 중량부 미만이면, 흡수제의 재생성이 저하될 우려가 있으며, 60 중량부를 초과하면, 상대적으로 활성성분의 함량이 줄어들어 성능이 저하될 우려가 있다.In the present invention, the regeneration enhancer may include 1 to 60 parts by weight, preferably 3 to 50 parts by weight, based on 100 parts by weight of the absorbent composition. If the content is less than 1 part by weight, there is a fear that the regeneration of the absorbent is lowered, if it exceeds 60 parts by weight, the content of the active ingredient is relatively reduced, there is a fear that the performance is lowered.
또한, 본 발명에서는 무기결합제를 더 포함할 수 있다. 상기 무기결합제는 흡수제 조성물 사이에 조밀하게 충진되어 고밀도의 흡수제를 제조할 수 있게 하고, 활성성분 및 지지체의 결합력을 증대시켜 흡수제에 강도를 부여하며, 장기간 마모에 의한 손실 없이 흡수제를 사용할 수 있게 하는 물질이다. In addition, the present invention may further include an inorganic binder. The inorganic binder is densely packed between the absorbent compositions to prepare a high-density absorbent, increases the binding strength of the active ingredient and the support, gives strength to the absorbent, and allows the absorbent to be used without loss due to prolonged wear. It is a substance.
본 발명에서 상기 무기결합제의 종류로는, 예를 들면, 시멘트류, 점토류 및 세라믹류로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. 이 때, 상기 점토류의 구체적인 종류로는 벤토나이트 또는 카올린 등을 들 수 있고, 세라믹류의 구체적인 종류로는 알루미나졸, 실리카졸 또는 보에마이트 등을 들 수 있으며, 시멘트류의 구체적인 종류로는 칼슘 실리케이트 또는 칼슘 알루미네이트 등을 들 수 있다.As the type of the inorganic binder in the present invention, for example, one or more selected from the group consisting of cements, clays and ceramics may be used. At this time, specific types of the clays include bentonite or kaolin, and specific types of ceramics include alumina sol, silica sol or boehmite, and the like. Silicates, calcium aluminate, and the like.
본 발명에서 상기 무기결합제는 흡수제 조성물 100 중량부에 대하여, 1 내지 70 중량부를 포함할 수 있으며, 바람직하게는 5 내지 40 중량부를 포함할 수 있다. 상기 함량이 1 중량부 미만이면, 원료물질(활성성분, 지지체 및 재생증진제)들 간의 결합력 저하에 의해 물리적 특성이 저하될 우려가 있으며, 70 중량부를 초과하면, 상대적으로 활성성분의 함량이 줄어들어 성능이 저하될 우려가 있다.In the present invention, the inorganic binder may include 1 to 70 parts by weight, and preferably 5 to 40 parts by weight based on 100 parts by weight of the absorbent composition. If the content is less than 1 part by weight, physical properties may be reduced by lowering the bonding strength between the raw materials (active ingredient, support and regeneration enhancer). If the content is more than 70 parts by weight, the content of the active ingredient is relatively decreased and the performance is reduced. This may fall.
또한, 본 발명은 전술한 흡수제 조성물, 즉 활성성분, 지지체 및 재생증진제를 포함하는 흡수제 조성물을 고체원료로 하여, 상기 고체원료 및 용매를 포함하는 슬러리 조성물에 관한 것이다.The present invention also relates to a slurry composition comprising the above-mentioned solid material and a solvent, using the above-described absorbent composition, that is, the absorbent composition containing the active ingredient, the support, and the regeneration enhancer as a solid raw material.
본 발명에서 활성성분, 지지체 및 재생증진제는 앞에서 전술한 종류를 제한 없이 사용할 수 있으며, 그 함량도 전술한 양으로 사용할 수 있다.In the present invention, the active ingredient, the support, and the regenerator may be used without limitation the above-described type, and the amount thereof may also be used in the above-mentioned amount.
본 발명에서 상기 용매의 종류는 특별히 제한되지 않으며, 이 분야에서 일반적으로 사용되는 용매를 사용될 수 있다. 구제적으로는 물 또는 메탄올 및 에탄올 등의 알코올을 사용할 수 있으며, 물을 사용하는 것이 바람직하다.In the present invention, the kind of the solvent is not particularly limited, and a solvent generally used in the art may be used. Specifically, water or alcohols such as methanol and ethanol can be used, and water is preferably used.
또한, 본 발명에서 고체원료는 예를 들면, 슬러리 조성물에 대하여 20 내지 50 중량부로 포함될 수 있으며, 바람직하게는 20 내지 40 중량부로 포함될 수 있다. 상기 고체원료의 함량이 20 중량부 미만이면, 흡수제 제조를 위한 슬러리의 양이 증가하여 궁극적으로 흡수제 제조 효율이 저하될 우려가 있으며, 50 중량부를 초과하면, 슬러리의 농도 증가에 따른 슬러리의 점도 증가로 유동성이 저하되어 분무 건조의 수행이 어려워질 우려가 있다.In addition, the solid raw material in the present invention may be included, for example, 20 to 50 parts by weight with respect to the slurry composition, preferably 20 to 40 parts by weight. If the content of the solid raw material is less than 20 parts by weight, the amount of the slurry for the absorbent preparation is increased and ultimately the absorbent manufacturing efficiency may be lowered. If it exceeds 50 parts by weight, the viscosity of the slurry increases with increasing the concentration of the slurry The fluidity of the furnace may be lowered, making it difficult to carry out spray drying.
본 발명에 따른 슬러리 조성물은 고체원료의 용매인 물 등에 혼합하는 과정에서 가소성과 분산성을 부여하기 위하여 첨가제를 필요로 한다. 즉, 고체원료의 균질화, 슬러리의 농도, 점도, 안정성, 유동성과 강도 및 밀도 등 제어를 위하여, 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택되는 하나 이상의 유기첨가제를 추가로 포함할 수 있다.The slurry composition according to the present invention requires an additive to impart plasticity and dispersibility in the process of mixing with water, which is a solvent of a solid raw material. That is, at least one organic additive selected from the group consisting of a dispersant, an antifoaming agent, and an organic binder may be further included for controlling the homogenization of the solid material, the concentration of the slurry, the viscosity, the stability, the flowability and the strength and the density.
본 발명에서는 분산제, 소포제 및 유기결합제를 모두 사용하는 것이 바람직하다.In the present invention, it is preferable to use both a dispersant, an antifoaming agent and an organic binder.
본 발명에서 분산제(dispersant)는 하기에 설명할 분쇄과정에서 입자끼리 응집되는 현상을 방지하기 위해 사용된다. 즉, 흡수제를 구성하는 고체원료들의 입자크기를 제어하기 위한 분쇄 과정에서, 분쇄된 미세 분말 입자들의 응집에 의한 분쇄효율의 저하를 방지하기 위해 상기 분산제를 사용할 수 있다.In the present invention, a dispersant is used to prevent agglomeration between particles in the grinding process, which will be described below. That is, in the grinding process for controlling the particle size of the solid raw material constituting the absorbent, the dispersant may be used to prevent the reduction of the grinding efficiency by agglomeration of the pulverized fine powder particles.
본 발명에서 분산제의 종류로는, 예를 들면, 음이온계 분산제, 양이온계 분산제, 양쪽성분산제 및 비이온계 분산제로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있으며, 바람직하게는 음이온계 분산제를 사용할 수 있다. 상기 음이온계 분산제로는 폴리카르복실산, 폴리카르복실산 아민, 폴리카르복실산 아민염 또는 폴리카르복실산 소다염 등을 사용할 수 있으며, 비이온계 분산제로는 불소계 계면활성제를 사용할 수 있다.As the type of dispersant in the present invention, for example, at least one selected from the group consisting of an anionic dispersant, a cationic dispersant, an amphoteric acid dispersant, and a nonionic dispersant may be used, and preferably an anionic dispersant may be used. have. As the anionic dispersant, polycarboxylic acid, polycarboxylic acid amine, polycarboxylic acid amine salt, polycarboxylic acid soda salt, or the like may be used. As the nonionic dispersant, a fluorine-based surfactant may be used.
상기 음이온계 분산제는 고체원료를 기준으로 0.1 내지 10 중량부를 사용할 수 있으며, 비이온계 분산제는 고체원료를 기준으로 0.01 내지 0.3 중량부를 사용할 수 있다. 상기 범위에서, 입자들의 분산 효과가 우수하다.The anionic dispersant may be used in an amount of 0.1 to 10 parts by weight based on a solid raw material, and a nonionic dispersant may be used in an amount of 0.01 to 0.3 parts by weight based on a solid raw material. In this range, the dispersion effect of the particles is excellent.
본 발명에서 소포제(defoamer)는 분산제 및 유기결합제가 적용된 슬러리의 기포를 제거하기 위해 사용될 수 있다. 상기 소포제의 종류로는, 예를 들면, 금속비누계 및 폴리에스테르계의 비이온성 계면활성제를 사용할 수 있다.In the present invention, a defoamer may be used to remove bubbles in the slurry to which the dispersant and the organic binder are applied. As a kind of said antifoamer, a metal soap type and polyester type nonionic surfactant can be used, for example.
상기 소포제는 고체원료를 기준으로 0.01 내지 0.2 중량부를 사용할 수 있다.The antifoaming agent may be used in an amount of 0.01 to 0.2 parts by weight based on the solid raw material.
본 발명에서 유기결합제(organic binder)는 슬러리에 가소성 및 유동성을 부여하고, 궁극적으로는 분무 건조 시 성형된 고체 입자에 강도를 부여함으로써, 건조 및 소성 전에 상기 입자의 취급을 용이하게 할 수 있다. 본 발명에서 상기 유기결합제의 종류로는, 예를 들면, 폴리비닐알코올계, 폴리글라이콜계 및 메틸셀룰로즈로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다.In the present invention, the organic binder imparts plasticity and fluidity to the slurry and ultimately gives strength to the molded solid particles upon spray drying, thereby facilitating handling of the particles before drying and firing. In the present invention, as the type of the organic binder, for example, one or more selected from the group consisting of polyvinyl alcohol, polyglycol, and methyl cellulose may be used.
본 발명에서 상기 유기결합제의 함량은 특별히 제한되지 않으며, 예를 들면, 고체원료를 기준으로 0.5 내지 5 중량부를 사용할 수 있다. 상기 함량이 0.5 중량부 미만이면, 분무건조 성형된 고체 입자의 결합력 저하로 건조 및 소성 전까지 구형의 형상을 유지하는 것이 어려워질 우려가 있으며, 5 중량부를 초과하면 소성 후 잔여 화분에 의해 최종물질의 성능이 저하될 우려가 있다.In the present invention, the content of the organic binder is not particularly limited. For example, 0.5 to 5 parts by weight may be used based on the solid raw material. If the content is less than 0.5 parts by weight, it may be difficult to maintain the spherical shape before drying and firing due to a decrease in the bonding strength of the spray-dried solid particles, if the content exceeds 5 parts by weight of the final material There is a risk of deterioration in performance.
본 발명에서는 상기 슬러리 조성물의 pH를 조절하기 위하여 pH 조절제를 추가로 첨가할 수 있다. 상기 pH 조절제의 종류로는, 예를 들면, 유기아민 또는 암모니아수 등을 사용할 수 있다.In the present invention, a pH adjusting agent may be further added to adjust the pH of the slurry composition. As a kind of said pH adjuster, organic amine, aqueous ammonia, etc. can be used, for example.
본 발명의 이산화탄소 흡수제는, (A) 상기 슬러리 조성물을 분무 건조시켜 고체 입자를 제조하는 분무 건조 단계; 및 (B) 상기 제조된 고체 입자를 건조 및 소성시켜 흡수제를 제조하는 단계를 포함하는 방법으로 제조할 수 있다.Carbon dioxide absorbent of the present invention, (A) spray drying the slurry composition to prepare a solid particle by spray drying; And (B) drying and firing the prepared solid particles to prepare an absorbent.
본 발명에서 단계 (A)에서 상기 슬러리 조성물은 앞에서 전술한 고체원료를 용매에 혼합하여 제조할 수 있다.In the present invention, the slurry composition in step (A) may be prepared by mixing the aforementioned solid raw material in a solvent.
상기 고체원료는 활성성분, 지지체 및 재생증진제를 포함할 수 있고, 상기 활성성분, 지지체 및 재생증진제는 앞에서 전술한 종류를 제한 없이 사용할 수 있으며, 그 함량도 앞에서 전술한 함량 범위 내에서 사용할 수 있다.The solid raw material may include an active ingredient, a support and a regeneration enhancer, the active ingredient, a support and a regeneration enhancer may be used without limitation the above-described type, the content may be used within the above-described content range. .
본 발명에 따른 슬러리 조성물은, 용매 및 고체원료의 혼합물을 제조하는 단계;The slurry composition according to the present invention comprises the steps of preparing a mixture of a solvent and a solid raw material;
상기 혼합물에 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상의 유기첨가제를 첨가하는 단계; 및Adding at least one organic additive selected from the group consisting of a dispersing agent, an antifoaming agent and an organic binder to the mixture; And
상기 혼합물을 교반하고, 분쇄하는 단계를 포함하는 방법으로 제조될 수 있다.The mixture may be prepared by a method including stirring and pulverizing.
본 발명에서 용매는 앞에서 전술한 종류를 제한 없이 사용할 수 있으며, 구체적으로는 물을 사용할 수 있다.In the present invention, the solvent may be used without limitation the above-described type, specifically, water may be used.
또한, 본 발명에서 고체원료의 함량은 전술한 바와 같이, 슬러리 조성물에 대하여 20 내지 50 중량부로 포함될 수 있다.In addition, the content of the solid raw material in the present invention, as described above, may be included in 20 to 50 parts by weight based on the slurry composition.
본 발명의 혼합물에 유기첨가제를 첨가하는 단계에서 유기첨가제로는 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있으며, 바람직하게는 상기를 모두 사용하는 것이 좋다. 상기 분산제, 소포제 및 유기결합제는 앞에서 전술한 종류를 제한없이 사용할 수 있으며, 그 함량도 전술한 바와 같다. In the step of adding the organic additive to the mixture of the present invention, as the organic additive, one or more selected from the group consisting of a dispersant, an antifoaming agent and an organic binder may be used, and preferably all of the above are used. The dispersant, the antifoaming agent and the organic binder may be used without limitation the above-described kind, the content thereof is as described above.
본 발명의 혼합물은 유기첨가제 외에 pH 조절제를 추가로 첨가할 수 있다.The mixture of the present invention may further add a pH adjusting agent in addition to the organic additive.
본 발명에서 교반은 혼합물에 포함되는 성분들을 첨가하는 과정 또는/및 모두 첨가된 상태에서 이루어질 수 있으며, 교반기를 사용하여 수행할 수 있다. 상기 사용되는 교반기의 종류로는, 예를 들면, 일반적인 교반기(Mechanical stirrer), 이중나선 교반기(Doublehelix mixer), 고속 유화기, 균질기(Homogenizer), 혼합기(High shear blender) 또는 초음파 균질기(Ultrasonic homogenizer) 등을 사용할 수 있으며, 투입되는 원료의 양에 따라 선택적으로 사용할 수 있다.In the present invention, the stirring may be performed in the process of adding the components included in the mixture, and / or in a state where all of them are added, and may be performed using a stirrer. Examples of the type of agitator used include, for example, a general mechanical stirrer, a double-helix mixer, a high speed emulsifier, a homogenizer, a high shear blender, or an ultrasonic homogenizer. homogenizer) and the like, and may be selectively used depending on the amount of raw material to be added.
본 발명에서 분쇄를 수행함으로써, 고체원료 입자는 슬러리 내에 더욱 균질하게 분산될 수 있다. 본 발명에서는 상기 분쇄 시 필요에 따라 추가의 소포제 및 분산제를 첨가할 수 있으며, pH 조절제를 사용하여 더욱 안정된 슬러리를 제조할 수 있다.By carrying out the grinding in the present invention, the solid raw material particles can be dispersed more homogeneously in the slurry. In the present invention, additional defoaming and dispersing agents may be added as necessary during the grinding, and a more stable slurry may be prepared using a pH adjuster.
본 발명에서는 분쇄효과를 향상시키고, 건식 분쇄 시 발생하는 입자의 날림 등의 문제를 해결하기 위하여 습식 분쇄(Wet milling) 방법을 사용할 수 있다.In the present invention, a wet milling method may be used to improve the grinding effect and to solve problems such as blowing of particles generated during dry grinding.
본 발명에서는 분쇄기를 사용하여 분쇄를 수행하며, 이 때, 사용되는 분쇄기의 종류로는, 예를 들면, 롤러밀(Roller mill), 볼밀(Ball mill), 마모밀(Attrition mill), 프레너터리 밀(Planertary mill), 비드밀(Bead mill) 또는 고에너지 비드밀(High energy bead mill) 등을 사용할 수 있다. 본 발명에서는 바람직하게 고에너지 비드밀을 사용할 수 있다.In the present invention, the pulverization is performed using a pulverizer, in which the kind of pulverizer used is, for example, a roller mill, a ball mill, an attrition mill, a preener A mill mill, bead mill, or high energy bead mill may be used. In the present invention, a high energy bead mill can be preferably used.
상기 고에너지 비드밀을 사용할 경우, 분쇄 및 균질화할 때 분쇄미드질인 비드(Bead)의 충진량은 분쇄용기의 부피 기준으로 60% 내지 80%가 바람직하다. 분쇄매질인 비드는 강도와 안정성이 뛰어난 이트리아 안정화 지르코니움 볼(Yttria stabilized zirconia bead)을 사용할 수 있다. 볼의 크기는 0.3 ㎜ 내지 1.25 ㎜ 인 것이 좋다.In the case of using the high energy bead mill, the filling amount of the bead (grind), which is the pulverization medium, is preferably 60% to 80% based on the volume of the grinding container when grinding and homogenizing. Beads, which are grinding media, may use Yttria stabilized zirconia beads, which are excellent in strength and stability. The size of the ball is preferably 0.3 mm to 1.25 mm.
본 발명에서 분쇄는 균질한 슬러리를 제조하기 위하여 2 번 이상 수행할 수 있다. 분쇄 후 다음의 분쇄를 수행하기 위하여 슬러리(혼합물)에 분산제 및 소포제를 첨가하여 슬러리의 유동성을 조절하여 펌프를 통한 이송을 용이하게 할 수 있다.In the present invention, the grinding may be performed two or more times to produce a homogeneous slurry. After pulverization, a dispersant and an antifoaming agent may be added to the slurry (mixture) in order to perform the next pulverization, thereby controlling the fluidity of the slurry to facilitate transfer through the pump.
또한, 최종 분쇄 전에는 유기결합제를 첨가하여 슬러리가 균일하게 혼합되도록 할 수 있다.In addition, prior to final grinding, an organic binder may be added to uniformly mix the slurry.
분쇄가 완료된 슬러리는 분산제, 소포제 또는 추가의 용매를 사용하여 농도 및 점도 등의 특징을 조절할 수 있다.The pulverized slurry can be characterized by using a dispersant, antifoaming agent or additional solvent to adjust characteristics such as concentration and viscosity.
한편, 고체원료 입자의 입경이 수 마이크론 이하이면, 분쇄과정을 생략할 수도 있다.On the other hand, if the particle size of the solid raw material particles are several microns or less, the grinding process may be omitted.
본 발명의 슬러리 조성물의 제조는 슬러리 조성물을 제조한 뒤, 슬러리에 포함된 이물질을 제거하는 단계를 추가로 포함할 수 있다. 상기 단계를 통하여, 분무 성형 시 노즐 막힘 등의 원인이 될 수 있는 이물질이나 덩어리진 원료를 제거할 수 있다. 상기 이물질의 제거는 체거름을 통해 수행될 수 있다.Preparation of the slurry composition of the present invention may further comprise the step of removing the foreign matter contained in the slurry after preparing the slurry composition. Through the above step, it is possible to remove the foreign matter or agglomerated raw materials that may cause the nozzle clogging during spray molding. Removal of the foreign matter may be carried out through sieving.
본 발명에 의해 제조된 최종 슬러리 조성물의 유동성에 대한 특별한 제한은 없으며, 펌프로 이송이 가능하다면 어떤 점도도 가능하다.There is no particular limitation on the flowability of the final slurry composition produced by the present invention, and any viscosity is possible if it can be transferred to a pump.
본 발명의 슬러리 조성물을 분무 건조시켜 고체 입자로 제조하는 단계에서 슬러리 조성물의 분무 건조는 분무 건조기를 사용하여 수행할 수 있다.Spray drying of the slurry composition in the step of spray drying the slurry composition of the present invention into solid particles may be performed using a spray dryer.
상기 단계는 슬러리 조성물을 펌프를 이용해 분무 건조기로 이송시킨 뒤, 상기 이송된 슬러리 조성물을 펌프 등을 통해 분무 건조기 내로 분사하여 흡수제를 일차적으로 형성한다. 상기 펌프로 이송 가능한 슬러리 조성물의 점도는 특별히 제한되지 않으나, 300cP 이상으로 하여 분사할 수 있다.In the step, the slurry composition is transferred to a spray dryer using a pump, and then the transferred slurry composition is sprayed into the spray dryer through a pump or the like to primarily form an absorbent. The viscosity of the slurry composition transferable to the pump is not particularly limited, but may be sprayed at 300 cP or more.
본 발명에서 분무 건조기 내에서 고체 입자를 성형하기 위한 분무 건조기의 운전조건은 이 분야에서 일반적으로 사용되는 운전조건을 적용할 수 있다.The operating conditions of the spray dryer for molding solid particles in the spray dryer in the present invention may apply the operating conditions generally used in this field.
또한, 본 발명에서 상기 슬러리 조성물의 분무방식은 특별히 제한되지 않으며, 예를 들면, 가압노즐을 사용하여 건조용 공기의 흐름과 반대 방향으로 분사하는 향류식 분무방식을 사용할 수 있다. 즉, 분무 건조기에서 고체 입자의 평균입자크기를 제어하기 위해 건조기 내부에서 분사된 입자들의 체류시간을 증가시키기 위해 건조기 하부에 가압노즐을 설치한 향류식 분무 방식을 사용할 수 있다.In addition, in the present invention, the spraying method of the slurry composition is not particularly limited, and for example, a countercurrent spraying method may be used in which the spray nozzle is sprayed in a direction opposite to the flow of drying air. That is, in order to control the average particle size of the solid particles in the spray dryer, a countercurrent spray method may be used in which a pressurized nozzle is installed at the bottom of the dryer to increase the residence time of the particles sprayed in the dryer.
슬러리 조성물의 농도, 점도, 분산 정도, 슬러리의 주입 압력, 주입양, 분무 건조기의 건조용량 및 온도 등에 의해 흡수제 입자의 형상, 입자크기, 입자분포 및 흡수제 조직 등이 영향을 받으므로, 상기 분무 건조기의 구조 및 분무 형태를 알맞게 조절하여 사용할 수 있다.Since the shape, particle size, particle distribution and structure of the absorbent of the slurry composition are affected by the concentration, viscosity, dispersion degree, injection pressure of the slurry, injection amount, drying capacity and temperature of the spray dryer, the spray dryer The structure and spray form of can be adjusted to suit.
본 발명에서 분무 건조기의 주입압력은 5 내지 15 kg/cm2,가압노즐의 내경은 0.4 내지 1.6 mm, 건조기의 입구온도는 240 내지 300℃ 및 출구온도는 110 내지 150℃일 수 있다.In the present invention, the injection pressure of the spray dryer is 5 to 15 kg / cm 2 , the inner diameter of the pressure nozzle is 0.4 to 1.6 mm, the inlet temperature of the dryer may be 240 to 300 ℃ and outlet temperature 110 to 150 ℃.
상기 단계에서 제조되는 고체 입자의 입자 크기 분포는 30 내지 330 ㎛인 것이 바람직하다.The particle size distribution of the solid particles produced in the step is preferably 30 to 330 ㎛.
본 발명에서 단계 (B)는 단계 (A)에서 제조된 고체 입자를 건조 및 소성하여 최종 흡수제를 제조하는 단계이다.Step (B) in the present invention is a step of drying and calcining the solid particles prepared in step (A) to prepare a final absorbent.
본 발명에서 상기 건조는 고체 입자를 110 내지 150℃의 환류 건조기에서 2시간 이상 건조하여 수행할 수 있다. 이 때, 건조는 공기 분위기에서 이루어 진다.In the present invention, the drying may be performed by drying the solid particles in a reflux dryer of 110 to 150 ℃ or more. At this time, drying is performed in an air atmosphere.
상기 건조가 완료되면, 건조된 입자를 고온 소성로에 넣고 0.5 내지 10℃/min의 속도로 최종 소성 온도를 350 내지 1000℃까지 올린 뒤, 2 시간 이상 동안 소성시킨다. 본 발명에서는 최종 소성 온도에 이르기까지 2 단계 이상의 정체 온도에서 각 30 분 이상의 정체 구간을 부여한 뒤 소성될 수 있다.When the drying is completed, the dried particles are placed in a high temperature firing furnace to raise the final firing temperature to 350 to 1000 ° C. at a rate of 0.5 to 10 ° C./min, and then fired for 2 hours or more. In the present invention, after the stagnation section of each 30 minutes or more at a stagnation temperature of two or more steps up to the final firing temperature may be fired.
본 발명에서 소성은 박스형로(muffle furnace), 튜브형로(tubular furnace) 또는 킬른(kiln) 등의 소성로를 사용할 수 있다.In the present invention, firing may use a firing furnace such as a muffle furnace, a tubular furnace, or a kiln.
또한, 본 발명에서 소성은 공기, 질소, 헬륨, 수소, 수중기 또는 환원가스 분위기하에서 수행될 수 있으며, 이 때 분위기 가스의 유량은 60 ml/min 이상일 수 있다.In addition, in the present invention, the firing may be performed in an atmosphere of air, nitrogen, helium, hydrogen, water, or reducing gas, and the flow rate of the atmospheric gas may be 60 ml / min or more.
본 발명에서는 상기 소성에 의해 슬러리의 제조 시 투입된 유기첨가제(분산제, 소포제 및 유기결합제)는 연소되고, 원료물질들 간의 결합이 이루어져 입자의 강도가 향상하게 된다.In the present invention, the organic additives (dispersant, antifoaming agent and organic binder) introduced during the preparation of the slurry by the firing are burned, and the strength of the particles is improved by bonding between the raw materials.
또한, 본 발명은 전술한 이산화탄소 흡수제의 제조방법에 의해 제조된 이산화탄소 흡수제에 관한 것이다.The present invention also relates to a carbon dioxide absorbent prepared by the method for producing a carbon dioxide absorbent described above.
본 발명에 따른 흡수제는 형상은 구형일 수 있다. 상기 형상이 구형이 아닌 도우넛 형 또는 홈이 파인 형태일 경우, 입자의 마모손실이 커지게 된다.The absorbent according to the invention may be spherical in shape. If the shape is not spherical, but donut-shaped or grooved, the wear loss of the particles is increased.
그리고, 상기 흡수제의 입자크기 및 입자분포는, 예를 들면, 각각 60 내지 150 ㎛ 및 30 내지 400 ㎛ 일 수 있다.The particle size and particle distribution of the absorbent may be, for example, 60 to 150 μm and 30 to 400 μm, respectively.
발명의 흡수제의 충진밀도는, 예를 들면, 0.8 g/cc 이상 일 수 있다.The packing density of the absorbent of the present invention may be, for example, 0.8 g / cc or more.
본 발명에서 내마모도는 마모지수(AI)로 표현되며, 상기 마모지수가 낮을수록 내마모도가 좋다는 것을 의미한다. 상기 흡수제의 내마모도는, 예를 들면, 30%이하일 수 있다.In the present invention, the wear resistance is represented by the wear index (AI), the lower the wear index means that the wear resistance is better. The wear resistance of the absorbent may be, for example, 30% or less.
상기 내마모도가 30%를 초과하면, 미세분말 등이 많이 발생하여 이산화탄소 제거 공정 등에 사용하기 어려워질 수 있다. 상기 내마모도의 하한은 특별히 제한되지 않으나, 0%를 초과하는 것이 좋다.When the wear resistance exceeds 30%, a lot of fine powder may be generated, which may make it difficult to use the carbon dioxide removal process. The lower limit of the wear resistance is not particularly limited, but is preferably more than 0%.
본 발명에서 흡수제의 흡수능력은 5 중량% 이상일 수 있다.In the present invention, the absorbent capacity of the absorbent may be 5% by weight or more.
또한, 본 발명의 흡수제의 재생성능은, 예를 들면, 80% 이상일 수 있다. 상기 재생성능의 상한은 100%일 수 있으며, 상기 범위에서 재생성능이 우수하여 흡수제를 여러 번 재사용 할 수 있다.In addition, the regeneration performance of the absorbent of the present invention may be, for example, 80% or more. The upper limit of the regeneration performance may be 100%, the regeneration performance is excellent in the above range can be reused the absorbent many times.
또한, 본 발명에서는 배가스 중에 포함된 이산화탄소를 흡수제로 포집하는 단계; 및 상기 포집된 이산화탄소를 재생하는 단계를 포함하는 이산화탄소 분리 방법에 관한 것으로, 상기 분리 방법에서는 흡수제로 전술한 이산화탄소 흡수제를 사용할 수 있다.In addition, the present invention comprises the steps of collecting the carbon dioxide contained in the exhaust gas as an absorbent; And it relates to a carbon dioxide separation method comprising the step of regenerating the collected carbon dioxide, the separation method may use the above-described carbon dioxide absorbent as an absorbent.
본 발명에서 배가스 중에 포함된 이산화탄소를 흡수제로 포집하는 단계는 50 내지 150℃에 수행될 수 있으며, 재생 반응은 80 내지 180℃에서 수행될 수 있다.In the present invention, the step of collecting the carbon dioxide contained in the exhaust gas as an absorbent may be carried out at 50 to 150 ℃, the regeneration reaction may be carried out at 80 to 180 ℃.
본 발명의 내용을 하기 도면을 통해 구체적으로 설명하도록 한다.The content of the present invention will be described in detail with reference to the following drawings.
도 1은 본 발명에 따른 이산화탄소 흡수제를 제조하는 과정을 나타낸 공정도이다.1 is a process chart showing a process for preparing a carbon dioxide absorbent according to the present invention.
도 1에 나타난 바와 같이, 상기 흡수제의 제조는 고체원료를 용매 등에 혼합하여 슬러리를 제조하는 단계(10), 제조된 슬러리를 분무 건조시켜 고체 입자(일차 제조된 흡수제)로 제조하는 단계(20) 및 고체 입자를 건조 소성시켜 최종 흡수제를 제조하는 단계(30)를 포함할 수 있다.As shown in FIG. 1, in the preparation of the absorbent, a step of preparing a slurry by mixing a solid material with a solvent (10) and spray drying the prepared slurry to prepare solid particles (primary manufactured absorbent) (20) And drying 30 the solid particles to prepare a final absorbent.
본 발명의 도 2는 고체원료 및 용매의 혼합물을 슬러리로 제조하는 과정을 나타낸 공정도이다.Figure 2 of the present invention is a process chart showing a process for producing a mixture of a solid raw material and a solvent as a slurry.
도 2에 나타난 바와 같이, 슬러리의 제조는 고체원료를 물(용매)에 혼합하여 혼합물을 제조하는 단계(11), 혼합물에 유기첨가제 등을 첨가하는 단계(12), 상기 혼합물을 교반하는 단계(13), 고체원료를 분쇄하고 균일화하는 단계(14) 및 슬러리에 포함된 이물질을 제거하는 단계(15)로 이루어진다.As shown in Figure 2, the slurry is prepared by mixing a solid raw material in water (solvent) to prepare a mixture (11), adding an organic additive, etc. to the mixture (12), stirring the mixture ( 13), pulverizing and homogenizing the solid raw material 14 and removing the foreign matter contained in the slurry (15).
여기서, 유기첨가제로는 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있으며, 바람직하게는 모두를 사용할 수 있다.Here, as the organic additive, one or more selected from the group consisting of a dispersant, an antifoaming agent, and an organic binder may be used, and preferably all may be used.
도 3은 슬러리를 분무 건조하여 고체 입자로 성형하는 과정을 나타낸 공정도이다.3 is a process chart showing a process of forming a solid particle by spray drying the slurry.
도 3에 나타난 바와 같이, 슬러리를 분무 건조하여 고체 입자를 성형하는 단계는 슬러리를 분무 건조기로 이송하는 단계(21) 및 이송된 슬러리를 분무 건조기 내로 분사하는 단계(22)로 이루어진다.As shown in FIG. 3, the spray drying of the slurry to form the solid particles comprises a step 21 of transferring the slurry to the spray dryer and a step 22 of spraying the transferred slurry into the spray dryer.
도 4는 분무 건조법으로 일차 성형된 흡수제를 건조 및 소성시켜 흡수제로 최종 제조하는 과정을 나타낸 공정도이다.Figure 4 is a process chart showing the final manufacturing process of the absorbent by drying and sintering the primary molded absorbent by the spray drying method.
도 4에 나타난 바와 같이, 분무 건조 단계에서 1차 건조된 입자(흡수제)는 건조과정(30)을 거친 후, 소성과정(31)을 통해 최종 흡수제로 제조된다.As shown in FIG. 4, the first-dried particles (absorbents) in the spray drying step are prepared as a final absorbent through a calcination process 31 after the drying process 30.
이하 실시예 및 비교예를 통하여 본 발명을 보다 상세히 설명하나, 본 발명의 범위가 하기 제시된 실시예에 의해 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the scope of the present invention is not limited by the Examples given below.
실시예EXAMPLE
<실시예에 제조되는 흡수제의 물성 측정><Measurement of Physical Properties of Absorbents Prepared in Examples>
1) 흡수제의 형상 측정1) Measurement of shape of absorbent
흡수제의 형상은 육안, 산업용 현미경 또는 전자주사 현미경(SEM)을 이용하여 측정하였다.The shape of the absorbent was measured using the naked eye, an industrial microscope or an electron scanning microscope (SEM).
2) 평균 입자 크기 및 입자 크기 분포의 측정2) Measurement of Average Particle Size and Particle Size Distribution
흡수제의 평균 입자 크기 및 입자 크기 분포는 표준체 방법인 ASTM E-11에 따라 측졍하였다. 이 때, 10g의 흡수제 시료를 시브쉐이커(sieve shaker)에 30분 동안 체거름한 후 제시된 계산방법에 따라 평균입자 크기 및 크기분포를 계산하였다.Average particle size and particle size distribution of the absorbent were measured according to the standard method ASTM E-11. At this time, 10 g of the absorbent sample was sieved in a sieve shaker for 30 minutes, and then the average particle size and size distribution were calculated according to the calculation method presented.
3) 충진 밀도 측정3) Fill density measurement
흡수제의 충진 밀도는 표준 규격인 ASTM D 4164-88에서 제시한 장치 및 방법에 따라 측정하였다.The packing density of the absorbent was measured according to the apparatus and method presented in the standard ASTM D 4164-88.
4) 비표면적(BET) 및 기공부피 측정4) Specific surface area (BET) and pore volume measurement
흡수제의 비표면적 및 기공부피는 각각 비표면적 측정기(quantachrome multi BET surface area meter)와 부피 측정기(Hg porosity meter)를 사용하여 측정하였다.The specific surface area and pore volume of the absorbent were measured using a quantachrome multi BET surface area meter and an Hg porosity meter, respectively.
5) 내마모도(AI) 측정5) Wear Resistance (AI) Measurement
흡수제의 내마모도는 ASTM D 5757-95를 준용하여 제작된 내마모 측정장치(3-holeattrition tester)를 이용하여 규격에서 제시하는 시험방법과 순서에 따라 측정하였다.The wear resistance of the absorbent was measured in accordance with the test method and the procedure given in the specification using a 3-holeattrition tester manufactured according to ASTM D 5757-95.
ASTM에서 제시한 방법에 따라 계산되는 마모 지수(AI)는 10 slpm (분당 표준 리터) 유량으로 5시간 동안 마모관에서 마모에 의해 발생되어 포집된 미분말을 초기 시료량(50g)의 비율로 나타낸 것이다. (유동층 또는 고속 유동층)공정의 요구 조건중 중요한 지표의 하나로 (유동층)공정에서는 30% 미만을 선호한다. 내마모도로 표현되는 마모지수(AI)는 그 값이 작을수록 마모강도가 높음을 나타낸다.The wear index (AI), calculated according to the method presented in ASTM, is the ratio of the initial sample volume (50 g) to the collected fine powder generated by wear in a wear tube for 5 hours at a flow rate of 10 slpm (standard liters per minute). One of the important indicators of the (fluidized bed or high velocity fluidized bed) process is that less than 30% is preferred for the (fluidized bed) process. The wear index (AI) expressed in wear resistance indicates that the smaller the value, the higher the wear strength.
6) 이산화탄소 흡수능력 및 재생성능 측정6) Carbon dioxide absorption capacity and regeneration performance measurement
상기 제조된 흡수제의 흡수반응과 재생반응은 가압 열중량 분석법(Thermogravimetric analysis)을 이용하여 측정하였다. 사용한 시료의 무게와 총유량은 각각 10mg과 60ml/min이다.The absorption and regeneration reactions of the prepared absorbents were measured using pressurized thermogravimetric analysis. The weight and total flow rate of the sample used were 10 mg and 60 ml / min, respectively.
CO2 흡수반응은 70℃에서 측정하였으며, 재생반응은 140℃에서 측정하였다.CO2 absorption reaction was measured at 70 ℃, regeneration reaction was measured at 140 ℃.
이 때, 흡수반응에 사용한 가스 조성은 부피 백분율로 이산화탄소 14.4%, 산소 5.4%, 증기로서 물 10% 및 밸런스 가스로서 질소 70.2%이다. 재생반응에 사용한 가스 조성은 질소이다.At this time, the gas composition used for the absorption reaction was 14.4% carbon dioxide, 5.4% oxygen, 10% water as steam, and 70.2% nitrogen as balance gas. The gas composition used for the regeneration reaction is nitrogen.
흡수제의 흡수반응 및 재생반응은 베치 유동층(2 cm ID)반응기를 이용하여 최소 1.5사이클(흡수-재생-흡수)을 수행하여 흡수제의 첫 번째, 두 번째 CO2 흡수 능력을 평가하였으며 흡수제의 재생성능은 첫 번째 흡수 능력에 대한 두 번째 흡수 능력을 사용하였다. 특히 장기 상용에 대한 안정성 측면에서는 두 번째 흡수 능력에 대한 세 번째 흡수능력의 백분율로 표시하였다.Absorption and regeneration of the absorbent were performed by using a Batch Fluidized Bed (2 cm ID) reactor for at least 1.5 cycles (absorption-regeneration-absorption) to evaluate the absorbent's first and second CO2 absorption capacity. The second absorption capacity was used for the first absorption capacity. In particular, in terms of stability to long-term commercial use, it is expressed as the percentage of the third absorption capacity to the second absorption capacity.
실시예 A~F 및 비교예 AExamples A-F and Comparative Example A
총 질량이 8㎏가 되도록, 활성성분으로 탄산칼륨(K2CO3), 산화마그네슘(MgO, Megchem 30)으로 20 내지 70중량부, 지지체로 감마알루미나(γ-Al2O3), 벤토나이트(Bentonite), 몬트모릴로나이트(Montmirillonite), 카올리나이트(Kaolinite), 세피올라이트(Sepiolite) 5 내지 50중량부, 무기결합제로 칼슘실리케이트(Calcium silicate), 유사 보에마이트(Pseudo-bohemite) 5 내지 20 중량부, 재생증진제로 티타니아(TiO2), 지르코니아(TiO2), 황산바나디움(V2SO4), 알파알루미나(α-Al2O3) 3 내지 20 중량부를 표 1의 조성비로 하여 고체원료를 제조하였다.20 to 70 parts by weight of potassium carbonate (K2CO3), magnesium oxide (MgO, Megchem 30) as an active ingredient, gamma alumina (γ-Al2O3), bentonite, montmorillon, etc. so that the total mass is 8 kg. 5 to 50 parts by weight of knight (Montmirillonite), Kaolinite, Sepiolite, calcium silicate as inorganic binder, 5 to 20 parts by weight of pseudo-bohemite, regeneration accelerator 3-20 parts by weight of titania (TiO 2), zirconia (TiO 2), vanadium sulfate (V 2 SO 4), and alpha alumina (α-Al 2 O 3) were used as the composition ratios of Table 1 to prepare a solid raw material.
물에 고체원료를 교반기로 교반하면서 첨가하여 혼합 슬러리를 제조하였다. 여기서, 혼합 슬러리 100 중량부에 대하여, 고체원료의 함량은 약 20 내지 40 중량부였다. 분산제는 고체물질의 용이한 혼합과 분산을 위해 원료를 투입하기 전에 투입하거나, 원료의 순차적인 투입과정에서 혼합 슬러리의 점도, 교반의 정도에 따라 소량 투입하였다. 소포제는 분산제 투입 후 또는 슬러리의 교반과정에서 발생하는 기포의 정도에 따라 소량 투입하였다.A solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry. Here, the content of the solid raw material was about 20 to 40 parts by weight based on 100 parts by weight of the mixed slurry. The dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials. The antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant was added or during the stirring of the slurry.
상기 슬러리를 고체원료 중 상대적으로 비중이 크거나 크기가 큰 입자들의 침강을 방지하기 위해 이중나선 교반기를 이용해 10,000 내지 25,000 rpm의 속도로 10분 이상 충분히 교반하였다.The slurry was sufficiently stirred for 10 minutes or more at a speed of 10,000 to 25,000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
교반 뒤, 슬러리를 2회 이상 고에너지 비드밀을 이용하여 고체원료 입자를 분쇄하고 균질화하여 최종 슬러리를 제조하였다. 이때, 슬러리의 점도, 고체원료의 농도 및 pH등 슬러리의 특성을 제어하거나 작업의 용이성을 위해 추가의 물, 분산제, 소포제 및 pH 조절제(유기 아민)를 첨가하였다. 유기 결합제로 폴리에틸글리콜(Poly ethyl glycol)을 슬러리에 균질하게 분산되도록 최종 분쇄 전에 첨가하였다.After stirring, the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry. At this time, an additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid raw material and the pH, or to facilitate the operation. Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
상기와 같은 슬러리의 특성 제어를 통해 얻어진 최종 슬러리는 제조과정에서 유입될 수 있는 이물질을 제거하기 위해서 체거름 하였다.The final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign substances that may be introduced during the manufacturing process.
상기 제조된 슬러리를 공기분위기의 건조기에서 120℃로 2시간 이상 건조한 후, 박스형 소성로(Muffle Furnace)에서 최종 소성온도 500℃ 내지 650℃까지 0.5 내지 10℃/min의 승온 속도로 승온한 후 최종 온도에서 2시간 이상 유지하여 최종 흡수제를 제조하였다.The prepared slurry was dried at 120 ° C. for 2 hours or more in an air atmosphere dryer, and then heated in a box-type firing furnace (Muffle Furnace) to a final firing temperature of 500 ° C. to 650 ° C. at a heating rate of 0.5 to 10 ° C./min, and then to a final temperature. The final absorbent was prepared by maintaining at least for 2 hours.
슬러리 제조과정에서 첨가된 유기 첨가제와 유기 결합제를 효과적으로 제거하기 위하여 최종 소성온도 도달 전 200℃, 400℃ 및 500℃에서 각 1시간씩 유지하였다.In order to effectively remove the organic additives and the organic binder added during the slurry manufacturing process, each one hour was maintained at 200 ° C., 400 ° C. and 500 ° C. before reaching the final firing temperature.
상기 흡수제의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 1에 나타내었다. 표 1의 실시예에서 활성물질, 무기결합제 및 재생증진제로 사용된 물질들은 지지체의 역할을 할 수 있다. The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 1 below. In the examples of Table 1, the materials used as active materials, inorganic binders and regeneration accelerators may serve as a support.
표 1
Figure PCTKR2012007935-appb-T000001
Table 1
Figure PCTKR2012007935-appb-T000001
상기 실시예 및 비교예에 의해 제조된 흡수제의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 2에 나타냈다.Table 2 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbents prepared in Examples and Comparative Examples.
표 2
Figure PCTKR2012007935-appb-T000002
TABLE 2
Figure PCTKR2012007935-appb-T000002
표 2에 나타난 바와 같이, 실시예의 흡수제는 비교예 A의 흡수제에 비해 재생성이 향상된 값을 갖는 것을 확인할 수 있다.As shown in Table 2, it can be seen that the absorbent of the example has a value improved reproducibility compared to the absorbent of Comparative Example A.
도 5는 실시예 C(도 5의 C) 및 실시예 E(도 5의 E)의 흡수제의 산업용 현미경 사진이다. 상기 도 5에 나타난 바와 같이, 흡수제는 구형의 형상을 지닌다.FIG. 5 is an industrial photomicrograph of the absorbent of Examples C (C of FIG. 5) and Example E (E of FIG. 5). As shown in FIG. 5, the absorbent has a spherical shape.
실시예 G~J 및 비교예 BExamples G-J and Comparative Example B
하기 표 3에 나타낸 성분 및 함량을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 흡수제를 제조하였다. 상기 흡수제의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 3에 나타내었다.An absorbent was prepared in the same manner as in Example 1 except for using the ingredients and contents shown in Table 3 below. The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 3 below.
표 3
Figure PCTKR2012007935-appb-T000003
TABLE 3
Figure PCTKR2012007935-appb-T000003
상기 실시예 및 비교예에 의해 제조된 흡수제의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 4에 나타냈다.Table 4 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbent prepared by the Examples and Comparative Examples.
표 4
Figure PCTKR2012007935-appb-T000004
Table 4
Figure PCTKR2012007935-appb-T000004
상기 표 4에 나타난 바와 같이, 실시예에 따른 흡수제는 이산화탄소 흡수능력이 5% 이상이고, 재생성능이 80% 이상으로 우수함을 확인할 수 있다.As shown in Table 4, the absorbent according to the embodiment can be confirmed that the carbon dioxide absorbing ability is 5% or more, the regeneration performance is superior to 80% or more.
도 6는 실시예 H(도 6의 H) 및 실시예 I(도 6의 I)의 흡수제의 산업용 현미경 사진이다. 상기 도 6에 나타난 바와 같이, 흡수제는 구형의 형상을 지닌다.FIG. 6 is an industrial micrograph of the absorbent of Example H (H of FIG. 6) and Example I (I of FIG. 6). As shown in FIG. 6, the absorbent has a spherical shape.
실시예 K~O 및 비교예 C~EExamples K-O and Comparative Examples C-E
하기 표 5에 나타낸 성분 및 함량을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 흡수제를 제조하였다. 상기 흡수제의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 5에 나타내었다. 실시예 N에서 지르코니아와 알파알루미나가 재생증진제 및 지지체의 역할을 한다.An absorbent was prepared in the same manner as in Example 1 except for using the ingredients and contents shown in Table 5 below. The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 5 below. In Example N, zirconia and alpha alumina serve as regeneration enhancers and supports.
표 5
Figure PCTKR2012007935-appb-T000005
Table 5
Figure PCTKR2012007935-appb-T000005
상기 실시예 및 비교예에 의해 제조된 흡수제의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 6에 나타냈다.Table 6 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbents prepared in Examples and Comparative Examples.
표 6
Figure PCTKR2012007935-appb-T000006
Table 6
Figure PCTKR2012007935-appb-T000006
상기 표 6에 나타난 바와 같이, 본 발명에 의한 흡수제는 재생증진제로 지르코니아를 사용한 비교예 D에 비해 이산화탄소 흡수능력 및 재생성능에서 우수한 값을 갖는 것으로 확인되었다.As shown in Table 6, the absorbent according to the present invention was confirmed to have excellent values in carbon dioxide absorption capacity and regeneration performance compared to Comparative Example D using zirconia as a regeneration enhancer.
상기 실시예에 의한 흡수제는 공정에서 요구하는 물리적 특성을 모두 충족시킬 뿐 아니라, 이산화탄소 흡수능력 및 재생성능이 우수하다.The absorbent according to the embodiment not only satisfies all the physical properties required in the process, but also has excellent carbon dioxide absorption ability and regeneration performance.
도 7는 비교예 K(도 7의 K) 및 실시예 L(도 7의 L)의 흡수제의 산업용 현미경 사진이다. 상기 도 7에 나타난 바와 같이, 흡수제는 구형의 형상을 지닌다.7 is an industrial micrograph of the absorbents of Comparative Example K (K in FIG. 7) and Example L (L in FIG. 7). As shown in FIG. 7, the absorbent has a spherical shape.
도 8은 실시예 K에 따른 흡수제의 5Cycle 반복실험 결과를 나타낸다. 상기 도 8에 나타나듯이, 본 발명의 흡수제는 여러 번 재생되어도 우수한 흡수 능력을 지닌다.Figure 8 shows the results of the 5Cycle repeated experiment of the absorbent according to Example K. As shown in FIG. 8, the absorbent of the present invention has excellent absorption ability even after being regenerated many times.
실시예 P~R 및 비교예 F~HExamples P-R and Comparative Examples F-H
하기 표 7에 나타낸 성분 및 함량을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 흡수제를 제조하였다.An absorbent was prepared in the same manner as in Example 1, except that the ingredients and contents shown in Table 7 were used.
상기 흡수제의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 7에 나타내었다.The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 7 below.
표 7
Figure PCTKR2012007935-appb-T000007
TABLE 7
Figure PCTKR2012007935-appb-T000007
상기 실시예 및 비교예에 의해 제조된 흡수제의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 8에 나타냈다.The physical properties and carbon dioxide reaction characteristics of the absorbents prepared by Examples and Comparative Examples were measured and shown in Table 8 below.
표 8
Figure PCTKR2012007935-appb-T000008
Table 8
Figure PCTKR2012007935-appb-T000008
또한, 상기 표 8에 나타난 바와 같이, 실시예에 의한 흡수제는 흡수능 10 wt% 이상 및 재생성 95% 이상으로 우수하며, 공정에서 요구하는 물리적 특성을 모두 충족시키는 것으로 나타났다. In addition, as shown in Table 8, the absorbent according to the embodiment was excellent in the absorbent capacity 10 wt% or more and regeneration 95% or more, it was found to meet all the physical properties required in the process.
도 9는 실시예 P(도 8의 P) 및 실시예 Q(도 8의 Q)의 흡수제의 산업용 현미경 사진이다. 상기 도 9에 나타난 바와 같이, 흡수제는 구형의 형상을 지닌다.9 is an industrial micrograph of the absorbent of Examples P (P of FIG. 8) and Example Q (Q of FIG. 8). As shown in FIG. 9, the absorbent has a spherical shape.
도 10은 실시예 P에 따른 흡수제의 3 cycle 반복실험 결과를 나타낸다. 상기 도 10에 나타나듯이, 흡수제는 여러 번 재생되어도 우수한 흡수 능력을 지닌다.10 shows the results of three cycles of the absorbent according to Example P. As shown in FIG. 10, the absorbent has excellent absorption ability even after being regenerated several times.
실시예 S~Y 및 비교예 I~JExamples S-Y and Comparative Examples I-J
하기 표 9에 나타낸 성분 및 함량을 사용하여 흡수제를 제조한 것을 제외하면 실시예 1에서 제시한 방법과 절차에 따라 흡수제 제조 및 평가(물성 및 반응성 평가)가 수행되었다. 상기 흡수제의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 9에 나타내었다. 표 9에서 실시예 S, T 및 V의 지르코니아는 지지체 및 재생증진제의 역할을 한다.Absorbent preparation and evaluation (physical and reactivity evaluation) were carried out according to the method and procedure shown in Example 1 except that the absorbent was prepared using the ingredients and contents shown in Table 9 below. The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 9 below. The zirconia of Examples S, T and V in Table 9 serves as a support and regeneration enhancer.
표 9
Figure PCTKR2012007935-appb-T000009
Table 9
Figure PCTKR2012007935-appb-T000009
상기 실시예 및 비교예에 의해 제조된 흡수제의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 10에 나타냈다.Table 10 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbents prepared in Examples and Comparative Examples.
표 10
Figure PCTKR2012007935-appb-T000010
Table 10
Figure PCTKR2012007935-appb-T000010
상기 표 10에 나타난 바와 같이, 실시예에 의한 흡수제는 흡수능 7 wt% 이상 및 장기 안정성과 관련있는 두 번째 흡수능 대비 세 번째 흡수능 비로 표현된 재생성이 89~100%로 우수하며, 공정에서 요구하는 물리적 특성을 모두 충족시키는 것으로 나타났다. As shown in Table 10, the absorbent according to the embodiment has an excellent reproducibility of 89 to 100%, which is expressed as a ratio of absorbency of 7 wt% or more and the second absorbency relative to the second absorbency related to long-term stability. It was found to meet all of the characteristics.
도 11은 실시예 W(도 11의 W) 및 실시예 X(도 11의 X)의 흡수제의 산업용 현미경 사진이다. 상기 도 11에 나타난 바와 같이, 흡수제는 구형의 형상을 지닌다.FIG. 11 is an industrial photomicrograph of the absorbent of Example W (W in FIG. 11) and Example X (X in FIG. 11). As shown in FIG. 11, the absorbent has a spherical shape.
도 12는 실시예 W와 실시예 X에 따른 흡수제의 3 Cycle 반복 흡수능 평가 실험결과를 나타낸다. 상기 도 12에 나타나듯이, 흡수제는 여러 번 재생되어도 우수한 흡수능력을 지닌다.FIG. 12 shows the results of experiments for evaluating three cycles of repeated absorption of absorbents according to Example W and Example X. As shown in FIG. 12, the absorbent has excellent absorption ability even after being regenerated several times.
비교예 K~MComparative Example K ~ M
하기 표 11에 나타낸 성분 및 함량으로 흡수제를 제조한 것을 제외하면 실시예 1에서 제시한 방법과 절차에 따라 흡수제 제조 및 평가(물성 및 반응성 평가)가 수행되었다.Absorbent preparation and evaluation (physical and reactivity evaluation) were carried out according to the method and procedure shown in Example 1 except that the absorbent was prepared with the ingredients and contents shown in Table 11 below.
표 11
고체 흡수제 비교예 K 비교예 L 비교예 M
활성성분(K2CO3), 중량% 35 35 40
활성성분(KHCO3), 중량%
지지체(γ-Alumina, VGL-15), 중량% 43 43
지지체(γ-Alumina, VGL-25), 중량% 23
무기결합제(calcium silicate), 중량% 7 7 7
무기결합제( bentonite), 중량% 5 5 5
무기결합제(유사보에마이트), 중량% 5 5 5
재생증진제(TiO2), 중량% 5 5 20
재생증진제(ZrO2), 중량% - - -
재생증진제(하이드로탈사이트), 중량% - - -
총 고체원료, 중량% 100 100 100
비이온계 분산제, 중량% 0.01~0.1
음이온계 분산제, 중량% 0.1~3
소포제, 중량% 0.01~0.1
유기결합제, 중량% 1.0~5.0
슬러리 농도, 중량% 32.5 32.5 30.7
슬러리 pH 11.9 11.9 10.86
pH 조절제(유기아민), 중량% - - -
점도, cP 6500 6500 1,180
Table 11
Solid absorbent Comparative Example K Comparative Example L Comparative Example M
Active ingredient (K 2 CO 3 ),% by weight 35 35 40
Active ingredient (KHCO 3 ), wt%
Support (γ-Alumina, VGL-15), wt% 43 43
Support (γ-Alumina, VGL-25), wt% 23
Inorganic binder (calcium silicate), wt% 7 7 7
Bentonite, wt% 5 5 5
Inorganic binder (similar boehmite), wt% 5 5 5
Regenerator (TiO2), wt% 5 5 20
Regenerator (ZrO2), wt% - - -
Regeneration enhancer (hydrotalcite), wt% - - -
Total solids, wt% 100 100 100
Nonionic Dispersant, Weight% 0.01 ~ 0.1
Anionic Dispersant, Weight% 0.1 ~ 3
Antifoam, Weight% 0.01 ~ 0.1
Organic binder, wt% 1.0 ~ 5.0
Slurry concentration,% by weight 32.5 32.5 30.7
Slurry pH 11.9 11.9 10.86
pH adjuster (organic amine), wt% - - -
Viscosity, cP 6500 6500 1,180
상기 비교예에 의해 제조된 흡수제의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 12에 나타냈다.Table 12 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbent prepared by the comparative example.
표 12
sorbents 비교예 K 비교예 L 비교예 M
Shapea SS ss ss
APSb, ㎛ 108 104 118
SDc, ㎛ 37~303 42~355 37~355
Bulk density, g/ml 0.98 0.98 1.12
AIe, % 0.04 0.5 0.04
TGA CO2흡수능,중량% 1st 7.1 6.14 8.04
2st 4.77 4.61 5.60
재생성(2nd/1st), % 67 75 70
최종 소성온도,℃ 550 550 550
Table 12
sorbents Comparative Example K Comparative Example L Comparative Example M
Shape a SS ss ss
APS b , μm 108 104 118
SD c , μm 37-303 42-355 37-355
Bulk density, g / ml 0.98 0.98 1.12
AI e ,% 0.04 0.5 0.04
TGA CO 2 Absorption Capacity, Weight% 1st 7.1 6.14 8.04
2st 4.77 4.61 5.60
Regen (2nd / 1st),% 67 75 70
Final firing temperature, ℃ 550 550 550

Claims (28)

  1. 활성성분;Active ingredient;
    지지체; 및 Support; And
    티타니아, 지르코니아, α-알루미나, 황산바나디움 및 산화망간으로 이루어진 그룹으로부터 선택된 2 이상을 함유하는 재생증진제;를 포함하는 이산화탄소 흡수제 조성물.A carbon dioxide absorbent composition comprising a regeneration enhancer containing two or more selected from the group consisting of titania, zirconia, α-alumina, vanadium sulfate, and manganese oxide.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 활성성분은 알칼리 금속산화물, 알칼리 토금속산화물, 알칼리 금속탄산염, 알칼리 토금속 탄산염, 알칼리 금속 중탄산염, 알칼리 토금속 중탄산염 및 이들의 전구체로 이루어진 그룹으로부터 선택된 하나 이상인 이산화탄소 흡수제 조성물.And the active ingredient is at least one selected from the group consisting of alkali metal oxides, alkaline earth metal oxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal bicarbonates, alkaline earth metal bicarbonates and precursors thereof.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 활성성분의 함량은 상기 흡수제 조성물 100 중량부에 대하여 5 내지 80 중량부인 이산화탄소 흡수제 조성물.The amount of the active ingredient is carbon dioxide absorbent composition is 5 to 80 parts by weight based on 100 parts by weight of the absorbent composition.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 지지체는 알루미나, 마그네시아, 실리카, 점토류 및 하이드로탈사이트로 이루어진 그룹으로부터 선택된 하나 이상인 이산화탄소 흡수제 조성물.The support is at least one carbon dioxide absorbent composition selected from the group consisting of alumina, magnesia, silica, clay and hydrotalcite.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 알루미나는 알파-알루미나 및 감마-알루미나로 이루어진 그룹으로부터 선택된 하나 이상이고, 비표면적이 10 내지 300 m2/g인 이산화탄소 흡수제 조성물.Wherein said alumina is at least one selected from the group consisting of alpha-alumina and gamma-alumina, and has a specific surface area of 10 to 300 m 2 / g.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 실리카는 비표면적이 90 내지 300 m2/g인 이산화탄소 흡수제 조성물.The silica has a specific surface area of 90 to 300 m 2 / g carbon dioxide absorbent composition.
  7. 제 4 항에 있어서,The method of claim 4, wherein
    상기 점토류로는 벤토나이트(Bentonite), 몬트몰릴로나이트(Montmorilonite), 카올리나이트(Kaolinite) 및 세피올라이트(Sepiolite)로 이루어진 그룹으로부터 선택된 하나 이상인 이산화탄소 흡수제 조성물.The clays include at least one carbon dioxide absorbent composition selected from the group consisting of bentonite, montmollonite, kaolinite, and sepiolite.
  8. 제 4 항에 있어서,The method of claim 4, wherein
    상기 마그네시아는 비표면적이 20 내지 100 m2/g인 이산화탄소 흡수제 조성물.The magnesia has a specific surface area of 20 to 100 m 2 / g carbon dioxide absorbent composition.
  9. 제 1 항에 있어서,The method of claim 1,
    상기 지지체의 함량은 흡수제 조성물 100 중량부에 대하여 1 내지 70 중량부인 이산화탄소 흡수제 조성물.The content of the support is carbon dioxide absorbent composition is 1 to 70 parts by weight based on 100 parts by weight of the absorbent composition.
  10. 제 1 항에 있어서,The method of claim 1,
    시멘트류, 점토류 및 세라믹류로 이루어진 그룹으로부터 선택된 하나 이상의 무기결합제를 추가로 포함하는 이산화탄소 흡수제 조성물.Carbon dioxide absorbent composition further comprising at least one inorganic binder selected from the group consisting of cements, clays and ceramics.
  11. 제 10 항에 있어서,The method of claim 10,
    상기 시멘트류는 칼슘 실리케이트 또는 칼슘 알루미네이트이고, 점토류는 벤토나이트 또는 카올린이며, 세라믹류는 알루미나졸, 실리카졸 또는 보에마이트인 이산화탄소 흡수제 조성물.The cements are calcium silicate or calcium aluminate, the clay is bentonite or kaolin, and the ceramics are alumina sol, silica sol or boehmite.
  12. 제 10 항에 있어서,The method of claim 10,
    상기 무기결합제의 함량은 상기 흡수제 조성물 100 중량부에 대하여 1 내지 70 중량부인 이산화탄소 흡수제 조성물.The content of the inorganic binder is 1 to 70 parts by weight based on 100 parts by weight of the absorbent composition carbon dioxide absorbent composition.
  13. 제 1 항에 있어서,The method of claim 1,
    상기 재생증진제는 제 1 성분으로 지르코니아를 포함하고, 제 2 성분으로 티타니아, α-알루미나, 황산바나디움 및 산화망간으로 이루어진 그룹으로부터 선택된 하나 이상을 포함하는 이산화탄소 흡수제 조성물.The regenerative promoter comprises zirconia as a first component and at least one selected from the group consisting of titania, α-alumina, vanadium sulfate and manganese oxide as a second component.
  14. 제 1 항에 있어서,The method of claim 1,
    상기 재생증진제는 티타니아와 지르코니아의 혼합물, 지르코니아와 α-알루미나의 혼합물, 황산바나디움과 지르코니아의 혼합물, 지르코니아, α-알루미나 및 산화망간의 혼합물 또는 지르코니아와 산화망간의 혼합물인 이산화탄소 흡수제 조성물.The regenerative promoter is a carbon dioxide absorbent composition which is a mixture of titania and zirconia, a mixture of zirconia and α-alumina, a mixture of vanadium sulfate and zirconia, a mixture of zirconia, α-alumina and manganese oxide or a mixture of zirconia and manganese oxide.
  15. 제 1 항에 있어서,The method of claim 1,
    상기 재생증진제의 함량은 흡수제 조성물 100 중량부에 대하여 1 내지 60 중량부인 흡수제 조성물.The content of the regenerative enhancer is 1 to 60 parts by weight based on 100 parts by weight of the absorbent composition.
  16. 고체원료로서 제 1 항에 따른 이산화탄소 흡수제 조성물 및 용매를 포함하는 슬러리 조성물.Slurry composition comprising a carbon dioxide absorbent composition according to claim 1 and a solvent as a solid raw material.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 슬러리 조성물은 상기 고체원료를 20 내지 50 중량부로 포함하는 슬러리 조성물.The slurry composition is a slurry composition comprising 20 to 50 parts by weight of the solid raw material.
  18. 제 16 항에 있어서,The method of claim 16,
    분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택되는 하나 이상의 유기첨가제를 추가로 포함하는 슬러리 조성물.Slurry composition further comprising at least one organic additive selected from the group consisting of dispersants, defoamers and organic binders.
  19. 제 18 항에 있어서,The method of claim 18,
    상기 분산제는 음이온계 분산제, 양이온계 분산제, 양쪽성 분산제 및 비이온계 분산제로 이루어진 그룹으로부터 선택된 하나 이상이고, 상기 소포제는 금속비누계 또는 폴리에스테르계이며, 상기 유기결합제는 폴리비닐알코올계, 폴리글라이콜계 및 메틸셀룰로즈로 이루어진 그룹으로부터 선택된 하나 이상인 슬러리 조성물.The dispersant is at least one selected from the group consisting of anionic dispersants, cationic dispersants, amphoteric dispersants, and nonionic dispersants, the antifoaming agent is a metal soap-based or polyester-based, the organic binder is polyvinyl alcohol-based, poly At least one slurry composition selected from the group consisting of glycol-based and methylcellulose.
  20. (A) 제 16 항에 따른 슬러리 조성물을 분무 건조시켜 고체 입자를 제조하는 분무 건조 단계; 및 (A) spray drying the slurry composition according to claim 16 to produce solid particles; And
    (B) 상기 제조된 고체 입자를 건조 및 소성시켜 흡수제를 제조하는 단계;를 포함하는 이산화탄소 흡수제의 제조 방법.(B) drying and calcining the prepared solid particles to prepare an absorbent.
  21. 제 20 항에 있어서,The method of claim 20,
    상기 슬러리 조성물은 용매 및 고체원료의 혼합물을 제조하는 단계; The slurry composition comprises the steps of preparing a mixture of a solvent and a solid raw material;
    상기 혼합물에 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상의 유기첨가제를 첨가하는 단계; 및Adding at least one organic additive selected from the group consisting of a dispersing agent, an antifoaming agent and an organic binder to the mixture; And
    상기 혼합물을 교반하고, 분쇄하는 단계를 포함하는 방법으로 제조되는 이산화탄소 흡수제의 제조 방법.A method of producing a carbon dioxide absorbent prepared by a method comprising stirring and grinding the mixture.
  22. 제 21 항에 있어서,The method of claim 21,
    상기 혼합물의 교반은 롤러밀, 볼밀, 마모밀, 프레너터리 밀 또는 비드밀을 사용하여 수행되는 이산화탄소 흡수제의 제조 방법.The stirring of the mixture is carried out using a roller mill, ball mill, wear mill, a plural mill or a bead mill.
  23. 제 21 항에 있어서,The method of claim 21,
    상기 교반 및 분쇄된 슬러리 조성물 중의 이물질을 제거하는 단계를 추가로 포함하는 이산화탄소 흡수제의 제조 방법.The method of producing a carbon dioxide absorbent further comprising the step of removing foreign matter in the stirred and pulverized slurry composition.
  24. 제 20 항에 있어서,The method of claim 20,
    단계 (B)에서 상기 건조는 공기 분위기 하에서 110 내지 150℃에서 수행되며, 상기 소성은 350 내지 1000℃에서 수행되는 이산화탄소 흡수제의 제조 방법.In step (B), the drying is performed at 110 to 150 ° C. under an air atmosphere, and the firing is performed at 350 to 1000 ° C.
  25. 제 20 항에 있어서,The method of claim 20,
    상기 소성은 공기, 질소, 헬륨, 수소, 수증기 또는 환원가스 분위기에서 이루어지며,가스 유량은 60 ml/min 이상인 이산화탄소 흡수제 제조 방법.The firing is carried out in the atmosphere of air, nitrogen, helium, hydrogen, steam or reducing gas, the gas flow rate is more than 60 ml / min carbon dioxide absorbent manufacturing method.
  26. 제 20 항의 제조 방법에 의해 제조된 이산화탄소 흡수제.A carbon dioxide absorbent prepared by the process according to claim 20.
  27. 제 26 항에 있어서,The method of claim 26,
    형상은 구형이고, 평균 입자크기는 60 내지 150 ㎛이며, 입자분포는 30 내지 400 ㎛이고, 충진밀도는 0.8 g/cc 이상이며, 내마모도는 30% 이하인 이산화탄소 흡수제.The carbon dioxide absorbent having a spherical shape, an average particle size of 60 to 150 µm, a particle distribution of 30 to 400 µm, a packing density of 0.8 g / cc or more, and a wear resistance of 30% or less.
  28. 제 26 항에 있어서,The method of claim 26,
    이산화탄소 흡수능력은 5 중량% 이상이고, 재생성능은 80% 이상인 이산화탄소흡수제.Carbon dioxide absorbent is more than 5% by weight, the regeneration performance is more than 80% carbon dioxide absorbent.
PCT/KR2012/007935 2011-09-28 2012-09-28 Carbon dioxide absorbent, and preparation method thereof WO2013048191A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0098436 2011-09-28
KR1020110098436A KR101904201B1 (en) 2011-09-28 2011-09-28 Additives contained dry regenerable sorbent and its preparation method thereof

Publications (3)

Publication Number Publication Date
WO2013048191A2 true WO2013048191A2 (en) 2013-04-04
WO2013048191A3 WO2013048191A3 (en) 2013-05-23
WO2013048191A9 WO2013048191A9 (en) 2013-07-04

Family

ID=47996651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007935 WO2013048191A2 (en) 2011-09-28 2012-09-28 Carbon dioxide absorbent, and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101904201B1 (en)
WO (1) WO2013048191A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160113A (en) * 2021-12-07 2022-03-11 南京大学 Titanium-zirconium bimetallic oxide catalyst for reinforcing carbon dioxide desorption and application thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150036864A (en) * 2013-09-30 2015-04-08 한국전력공사 Solid sorbent composition to remove CO2 from fossile fuel combustion and Solid sorbent containing the same
US10112170B2 (en) * 2014-03-14 2018-10-30 Reliance Industries Limited Stabilized inorganic oxide supports and adsorbents derived therefrom for carbon dioxide capture
KR101935101B1 (en) 2016-10-07 2019-01-03 한국전력공사 Base material absorbing carbon dioxide, carbon dioxide absorbent composition comprising the same, and carbon dioxide absorbent manufactured by using the same
KR102301771B1 (en) * 2019-11-27 2021-09-16 한국전력공사 Composition for carbon dioxide sorbent, manufacturing method for carbon dioxide sorbent using the same, and carbon dioxide sorbent manufactured using the same
KR102562021B1 (en) * 2021-04-26 2023-08-01 한국전력공사 Composition for carbon dioxide sorbent, manufacturing method for carbon dioxide sorbent using the same, and carbon dioxide sorbent manufactured using the same
KR102627703B1 (en) * 2023-04-13 2024-01-23 한국미래기술(주) Carbon dioxide scavenger for dry type and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097933A1 (en) * 2001-11-23 2003-05-29 Indian Petrochemicals Corporation Limited Adsorbents, method for the manufacture thereof and process for the separation of unsaturated hydrocarbons from gas mixture
KR20060079588A (en) * 2005-01-03 2006-07-06 한국전력공사 Dry regenerable sorbent for carbon oxide capture and method for manufacturing thereof
KR100892044B1 (en) * 2007-09-29 2009-04-03 한국전력공사 Alkali Metal-Based Solid Sorbent for Carbon Dioxide Capture with Low Temperature Regeneration
KR20110047302A (en) * 2009-10-30 2011-05-09 한국전력공사 Co2 sorbent and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100620546B1 (en) 2005-01-03 2006-09-13 한국전력공사 highly attrition resistant and dry regenerable sorbents for carbon dioxide capture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030097933A1 (en) * 2001-11-23 2003-05-29 Indian Petrochemicals Corporation Limited Adsorbents, method for the manufacture thereof and process for the separation of unsaturated hydrocarbons from gas mixture
KR20060079588A (en) * 2005-01-03 2006-07-06 한국전력공사 Dry regenerable sorbent for carbon oxide capture and method for manufacturing thereof
KR100892044B1 (en) * 2007-09-29 2009-04-03 한국전력공사 Alkali Metal-Based Solid Sorbent for Carbon Dioxide Capture with Low Temperature Regeneration
KR20110047302A (en) * 2009-10-30 2011-05-09 한국전력공사 Co2 sorbent and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114160113A (en) * 2021-12-07 2022-03-11 南京大学 Titanium-zirconium bimetallic oxide catalyst for reinforcing carbon dioxide desorption and application thereof

Also Published As

Publication number Publication date
WO2013048191A9 (en) 2013-07-04
WO2013048191A3 (en) 2013-05-23
KR20130034434A (en) 2013-04-05
KR101904201B1 (en) 2018-10-08

Similar Documents

Publication Publication Date Title
WO2013048191A2 (en) Carbon dioxide absorbent, and preparation method thereof
WO2013065880A1 (en) Solid carbon dioxide absorbent including amine or a compound thereof for use in the capturing process of dry carbon dioxide, and method for manufacturing same
WO2015046715A1 (en) Solid carbon dioxide absorbent composition and solid carbon dioxide absorbent containing same
WO2011052829A1 (en) Carbon dioxide absorbent for exhaust gas, and preparation method thereof
US8110523B2 (en) Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
WO2016052838A1 (en) Mesophilic active solid carbon dioxide sorbent, slurry composition, and method for preparing same
WO2012033250A1 (en) Carbon dioxide absorbent and preparation method thereof
WO2012043960A1 (en) Oxygen carrier particles and method for manufacturing same
WO2012036336A1 (en) Desulfurizing agent and preparation method thereof
KR101155303B1 (en) Co2 sorbent and manufacturing method thereof
WO2012043904A1 (en) Hybrid particle for fluidized bed sorption-enhanced water gas shift reaction process and method for preparing same
WO2012043905A1 (en) Catalyst for sorption enhanced water gas shift and preparation method thereof
WO2018066751A1 (en) Solid raw material for carbon dioxide absorbent, carbon dioxide absorbent composition comprising same, and carbon dioxide absorbent prepared using same
KR20130034993A (en) Regenerable carbon dioxide sorbents at intermediate and high temperature
KR20120033128A (en) Hybrid grains for sorption enhanced water gas shift process and preparation method thereof
CN106083060B (en) A kind of preparation method of silicon carbide seperation film
WO2011052828A1 (en) Zinc-based desulfurizing agent formed by spray drying method, and preparation method thereof
JP2006187701A (en) High-strength co2 absorbent for dry regeneration
CN108358621A (en) A method of producing forsterite refractory
KR101191086B1 (en) Zinc oxide-based desulfurization sorbent prepared by spay-drying method and method for producting thereof
Zhiming Preparation of cordierite ceramic using mixtures of Ce4+-modified amorphous powder and oxide powders
CN115536372A (en) Ceramic rock plate, dry-method powder-making ceramic rock plate blank and preparation method thereof

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835055

Country of ref document: EP

Kind code of ref document: A2