WO2012033250A1 - Carbon dioxide absorbent and preparation method thereof - Google Patents

Carbon dioxide absorbent and preparation method thereof Download PDF

Info

Publication number
WO2012033250A1
WO2012033250A1 PCT/KR2010/006679 KR2010006679W WO2012033250A1 WO 2012033250 A1 WO2012033250 A1 WO 2012033250A1 KR 2010006679 W KR2010006679 W KR 2010006679W WO 2012033250 A1 WO2012033250 A1 WO 2012033250A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
absorbent
weight
parts
slurry
Prior art date
Application number
PCT/KR2010/006679
Other languages
French (fr)
Korean (ko)
Inventor
이중범
류청걸
엄태형
위영호
전원식
김동현
백점인
류정호
최동혁
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Publication of WO2012033250A1 publication Critical patent/WO2012033250A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/80Semi-solid phase processes, i.e. by using slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/043Carbonates or bicarbonates, e.g. limestone, dolomite, aragonite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3234Inorganic material layers
    • B01J20/3236Inorganic material layers containing metal, other than zeolites, e.g. oxides, hydroxides, sulphides or salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/602Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/606Carbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • B01D2255/2042Barium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20738Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20746Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20753Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20792Zinc
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/92Dimensions
    • B01D2255/9202Linear dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present invention relates to a carbon dioxide absorbent comprising a metal oxide containing an active ingredient, a support, an inorganic binder and a transition metal.
  • climate change response In response to the occurrence of climate change due to global warming, climate change response has emerged as a top priority for the international and domestic sectors. Therefore, countries around the world have secured measures to reduce their own greenhouse gases through technology development, creating new growth engines and preoccupying the global market.
  • Carbon dioxide (CO 2 ) is recognized as one of the major substances that cause climate change, and there are more than 7900 large-scale facilities that emit more than 100,000 tons of CO 2 annually, and about 13.5 billion tons Emits carbon dioxide. This represents 55% of the world's annual emissions of 22.4 billion tons. Therefore, in order to stabilize carbon dioxide in the atmosphere, it is desirable to first remove carbon dioxide from a large-scale carbon dioxide emission facility.
  • the method uses solid particles instead of the liquid solvent used in conventional wet chemical cleaning, reacts the solid particles with carbon dioxide present in the exhaust gas to form a stable compound, and then uses pure water and additional heat sources to produce pure carbon dioxide. Separate.
  • the absorbent from which the carbon dioxide is separated can be recycled and reused repeatedly and continuously. In addition, since the fluidized bed process is applied, the installation area is small, the heat transfer characteristics are excellent, and the operation is easy.
  • the regeneration absorption technology generates little wastewater, less corrosion problems, and can be used for various materials at low cost.
  • the above patents are mainly for application of active materials, supports, combinations of inorganic and organic binders, combinations of active materials and supports, or the active ingredient itself or for applications in completely different applications.
  • the production methods such as the production by physical mixing and the production by a supporting method are different, and are not suitable for producing the absorbent in large quantities.
  • the solid absorbent particles are not suitable for the process of continuously collecting and separating carbon dioxide while continuously circulating between two reactors for absorption and regeneration of the fluidized bed process.
  • the present invention effectively captures carbon dioxide while minimizing the effects of sulfur dioxide contained in the flue-gas before discharging it to the atmosphere, and can be easily regenerated by an additional heat source, repeatedly absorbing and regenerating between the two reactors. It is an object of the present invention to provide a carbon dioxide absorbent that can be used for a long time and a method for producing the same.
  • the present invention as a means for solving the above problems, an active ingredient, a support, an inorganic binder and
  • It provides a carbon dioxide absorbent composition comprising a metal oxide containing a transition metal.
  • the present invention provides a slurry composition comprising a solvent and a solid raw material containing the absorbent composition as another means for solving the above problems.
  • the present invention as another means for solving the above problems, (A) drying the slurry composition to produce a solid particle; And;
  • (B) it provides a method for producing a carbon dioxide absorbent comprising the step of preparing the absorbent by drying and firing the prepared solid particles.
  • the present invention as another means for solving the above problems, active ingredient, support, inorganic binder and
  • It provides a carbon dioxide absorbent comprising a metal oxide containing a transition metal.
  • the present invention provides a first step of converting carbon monoxide into carbon dioxide and hydrogen and at the same time collecting the carbon dioxide in the absorbent;
  • the absorbent provides a carbon dioxide separation method comprising a metal oxide containing an active ingredient, a support, an inorganic binder and a transition metal.
  • the present invention as another means for solving the above problems, the step of collecting the carbon dioxide contained in the exhaust gas as an absorbent; And
  • the absorbent provides a carbon dioxide separation method comprising a metal oxide containing an active ingredient, a support, an inorganic binder and a transition metal.
  • the CO 2 absorbent according to the present invention has excellent physical properties such as packing density and abrasion resistance, CO conversion rate, CO 2 absorption capacity and regeneration performance, and SO 2 endothelial toxicity. Can be collected and separated.
  • mass production is easy, and the production yield is high and the cost is low, so it can be used as a low cost pre-combustion CO 2 recovery technology for coal gasification combined cycle, fuel cell, coal liquefaction process, compound production process.
  • the synthesis gas conditions of high temperature and high pressure can be used as it is in the process such as accelerated water gas conversion reaction, so that the reduction of efficiency due to the recovery of CO 2 can be minimized and the compression cost is remarkably reduced. Can be lowered.
  • the absorption reaction and the regeneration reaction proceed under low temperature synthesis gas conditions such as power plants, steelmaking, oil refining and cement industries, thereby improving energy efficiency and reducing costs.
  • FIG. 1 is a process chart showing a process for preparing a carbon dioxide absorbent according to the present invention.
  • FIG. 2 is a process chart illustrating a process of preparing a mixture of a solid raw material and a solvent into a slurry.
  • FIG. 3 is a process chart showing a process of forming a solid particle by spray drying the slurry.
  • Figure 4 is a process chart showing a process of manufacturing the absorbent by dry baking the solid particles molded by the spray drying method.
  • Example 5 is a SEM photograph of the absorbent prepared by Example 1 according to the present invention.
  • Figure 6 is a graph showing the results of evaluating the CO 2 absorption capacity of the absorbent prepared in Example 1 according to the present invention.
  • Example 7 is a SEM photograph of the absorbent prepared by Example 2 according to the present invention.
  • Example 8 is a SEM photograph of the absorbent prepared by Example 3 according to the present invention.
  • Example 9 is a graph showing the sulfur dioxide impact evaluation of the absorbent prepared in Example 3 according to the present invention.
  • Example 10 is a SEM photograph of the absorbent prepared by Example 4 according to the present invention.
  • 11 and 12 are graphs showing the sulfur dioxide influence evaluation of the absorbent prepared by Example 3 according to the present invention.
  • the present invention is an active ingredient, a support, an inorganic binder and
  • a carbon dioxide absorbent composition comprising a metal oxide containing a transition metal.
  • the active ingredient is a substance that selectively reacts with carbon dioxide to efficiently collect and separate carbon dioxide from the gas stream.
  • the active ingredient examples include, for example, alkali metal oxides, alkaline earth metal oxides, alkali metal carbonates, alkali metal bicarbonates, alkaline earth metal carbonates, alkaline earth metal bicarbonates, alkali metal hydroxides, alkaline earth metal hydroxides and carbonate precursors.
  • the carbonate precursor means a material that can be converted to carbonate.
  • the active ingredient may specifically include at least one selected from the group consisting of potassium carbonate, potassium bicarbonate, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium oxide and zinc oxide. .
  • the content of the active ingredient may include 5 to 70 parts by weight, and preferably 10 to 60 parts by weight with respect to the absorbent composition. If the content is less than 10 parts by weight, there is a possibility that the collection efficiency of carbon dioxide is lowered, if it exceeds 70 parts by weight, the active ingredient can not be used efficiently, the spherical shape of the absorbent may be deformed, and the physical properties (Strength, Filling Density) may be lowered.
  • the purity of the active ingredient is preferably 98% or more.
  • the support of the absorbent composition is a substance which makes the active ingredient well distributed in the absorbent particles, thereby increasing the utility of the active ingredient and facilitating adsorption and absorption of carbon dioxide and water required for the reaction.
  • the type of the support may have a large specific surface area, and for example, one or more selected from the group consisting of alumina, hydrotalcite, silica, ceramic, and magnesia may be used.
  • the alumina used may have an Al 2 O 3 content of about 99.8% and a specific surface area of 150 to 300 m 2 / g.
  • the hydrotalcite may include 20 wt% or more of magnesium oxide (MgO), the specific surface area may be 100 to 300 m 2 / g, and the magnesia may have a specific surface area of 20 to 100 m 2 / g.
  • MgO magnesium oxide
  • the specific surface area may be 100 to 300 m 2 / g
  • the magnesia may have a specific surface area of 20 to 100 m 2 / g.
  • the content of the support may include 5 to 70 parts by weight, and preferably 10 to 60 parts by weight with respect to the absorbent composition. If the content is less than 10 parts by weight, there is a fear that the physical strength is lowered, if it exceeds 70 parts by weight, the active ingredient is relatively low, there is a fear that the performance is lowered.
  • the inorganic binder can be densely packed between the absorbent compositions to prepare a high density absorbent, increase the binding strength of the active ingredient and the support, give strength to the absorbent, and can use the absorbent without loss due to prolonged wear. It is a substance to make.
  • the type of the inorganic binder in the present invention for example, one or more selected from the group consisting of cements, clays, ceramics, and the like may be used. At this time, specific types of the clays include bentonite or kaolin, and specific types of ceramics include alumina sol, silica sol or boehmite, and the like. Silicates, calcium aluminate, and the like.
  • bentonite may use any commercial bentonite including natural sodium bentonite, synthetic sodium bentonite, and is not particularly limited thereto, specifically, synthetic sodium bentonite (63.1% SiO 2 , 16.6% Al 2 O 3 , 3.28% Fe 2 O 3 , 3.07% CaO, 2.82% MgO, 3.86% Na 2 O, 8.11% moisture).
  • synthetic sodium bentonite 63.1% SiO 2 , 16.6% Al 2 O 3 , 3.28% Fe 2 O 3 , 3.07% CaO, 2.82% MgO, 3.86% Na 2 O, 8.11% moisture.
  • boehmite has similar characteristics to alumina sol in water, acidic and basic aqueous solution, and all types of boehmite can be used. Specifically, boehmite (pseudo-Boehmite: Versal 900, size 60) can be used. -65 mu m) can be used.
  • the content of the inorganic binder may include 5 to 70 parts by weight, and preferably 10 to 60 parts by weight with respect to the absorbent composition. If the content is less than 5 parts by weight, physical properties may be reduced by lowering the bonding strength between the raw materials (active ingredient, support and inorganic binder), and if it exceeds 70 parts by weight, the content of the active ingredient is relatively reduced This may fall.
  • the metal oxide containing the transition metal serves as an accelerator, and can repeatedly use the absorption reaction and the regeneration reaction without degrading the reaction caused by the repeated use of the absorbent, and at the same time, It is a material that minimizes the effect and facilitates long-term use of the absorbent.
  • the metal oxide containing the transition metal include, for example, titanium oxide, zirconium oxide, barium titania (BaTiO 2 ), molybdenum oxide, nickel oxide, cobalt oxide, iron oxide, copper oxide, zinc oxide, and the like.
  • One or more selected from the group consisting of Yttria-stabilized zirconia and the like may be used, and preferably, titanium dioxide (TiO 2 ) and zinc oxide (ZnO) may be used.
  • the content of the metal oxide containing the transition metal may include 5 to 70 parts by weight, and preferably 5 to 60 parts by weight based on the absorbent composition. If the content is less than 5 parts by weight, there is a fear that the role of the accelerator may not be fully exhibited. If the content is more than 70 parts by weight, the content of the active ingredient may be relatively reduced, resulting in the use of the accelerator as an accelerator.
  • the present invention also relates to a slurry composition comprising the above-mentioned solid raw material and a solvent by using the above-described absorbent composition, that is, a composition comprising a metal oxide containing an active ingredient, a support, an inorganic binder, and a transition metal.
  • the metal oxide containing the active ingredient, the support, the inorganic binder, and the transition metal may be used without limitation the above-described kind, and the content thereof may also be used in the above-mentioned amounts.
  • the kind of the solvent is not particularly limited, and a solvent generally used in the art may be used. Specifically, water or alcohols such as methanol and ethanol can be used, and water is preferably used.
  • the content of the solid raw material in the present invention may be included, for example, 20 to 50 parts by weight with respect to the slurry composition, preferably 20 to 40 parts by weight. If the content of the solid raw material is less than 20 parts by weight, the amount of the slurry for the absorbent preparation is increased and ultimately the absorbent manufacturing efficiency may be lowered. If it exceeds 50 parts by weight, the viscosity of the slurry increases with increasing the concentration of the slurry The fluidity of the furnace may be lowered, making it difficult to carry out spray drying.
  • the slurry composition according to the present invention further comprises at least one organic additive selected from the group consisting of dispersants, antifoaming agents and organic binders for controlling homogenization of solid raw materials, concentration, viscosity, stability, flowability and strength and density of slurry. It may include.
  • a dispersant is used to prevent agglomeration between particles in the grinding process, which will be described below. That is, in the grinding process for controlling the particle size of the solid raw material constituting the absorbent, the dispersant may be used to prevent the reduction of the grinding efficiency by agglomeration of the pulverized fine powder particles.
  • dispersant in the present invention for example, at least one selected from the group consisting of anionic dispersants, cationic dispersants, amphoteric dispersants and nonionic dispersants may be used, and preferably anionic dispersants and nonionics.
  • Systemic dispersants can be used.
  • anionic dispersant polycarboxylic acid, polycarboxylic acid amine, polycarboxylic acid amine salt, polycarboxylic acid soda salt, or the like may be used.
  • nonionic dispersant a fluorine-based surfactant may be used.
  • the anionic dispersant may be used in an amount of 0.1 to 10 parts by weight based on a solid raw material, and a nonionic dispersant may be used in an amount of 0.01 to 0.3 parts by weight based on a solid raw material. In this range, the dispersion effect of the particles is excellent.
  • a defoamer may be used to remove bubbles in the slurry to which the dispersant and the organic binder are applied.
  • the antifoaming agent may include, for example, at least one selected from the group consisting of silicone, metal soap, amide, polyether, polyester, polyglycol, organophosphoric acid and alcohol.
  • a metal soap type and polyester type nonionic surfactant can be used.
  • the antifoaming agent may be used in an amount of 0.01 to 0.2 parts by weight based on the solid raw material.
  • the organic binder imparts plasticity and fluidity to the slurry and ultimately gives strength to the solid particles formed during spray drying, thereby facilitating handling of the particles before drying and firing.
  • the type of the organic binder for example, one or more selected from the group consisting of polyvinyl alcohol, polyglycol, and methyl cellulose may be used.
  • the content of the organic binder is not particularly limited. For example, 0.5 to 5 parts by weight may be used based on the solid raw material. If the content is less than 0.05 parts by weight, it may be difficult to maintain the spherical shape until the drying and firing due to a decrease in the bonding strength of the spray-dried solid particles, if the content exceeds 5 parts by weight of the final material There is a risk of deterioration in performance.
  • a pH adjusting agent may be further added to adjust the pH of the slurry composition.
  • organic amine, aqueous ammonia, etc. can be used, for example.
  • the pH adjusting agent may be used in an amount of 0.01 to 10 parts by weight based on the solid material.
  • the method for producing the carbon dioxide absorbent in the present invention is not particularly limited.
  • (B) it may be prepared by a method comprising the step of preparing the absorbent by drying and firing the prepared solid particles.
  • the slurry composition in step (A) may be prepared by mixing the aforementioned solid raw material in a solvent.
  • the solid raw material may include a metal oxide containing an active ingredient, a support, an inorganic binder, and a transition metal, and the metal oxide containing the active ingredient, the support, an inorganic binder, and a transition metal may be used without limitation. Its content may also be used within the aforementioned content range.
  • the slurry composition according to the present invention comprises the steps of preparing a mixture of a solvent and a solid raw material
  • the mixture may be prepared by a method including stirring and pulverizing.
  • the solvent may be used without limitation the above-described type, specifically, water may be used.
  • the content of the solid raw material in the present invention may be included in 20 to 50 parts by weight based on the slurry composition.
  • the organic additive in the step of adding the organic additive to the mixture of the present invention, one or more selected from the group consisting of a dispersant, an antifoaming agent and an organic binder may be used, and preferably all of the above are used.
  • the dispersant, the antifoaming agent and the organic binder may be used without limitation the above-described kind, the content thereof is as described above.
  • the mixture of the present invention may further add a pH adjusting agent in addition to the organic additive.
  • the stirring may be performed in the process of adding the components included in the mixture, and / or in a state where all of them are added, and may be performed using a stirrer.
  • a stirrer examples include, for example, a general mechanical stirrer, a double helix mixer, a high speed emulsifier, a homogenizer, a high shear blender, or an ultrasonic homogenizer. Ultrasonic homogenizer) may be used and may be selectively used depending on the amount of raw material to be added.
  • the solid raw material particles can be dispersed more homogeneously in the slurry.
  • additional defoaming and dispersing agents may be added as necessary during the grinding, and a more stable slurry may be prepared using a pH adjuster.
  • a wet milling method may be used to improve the grinding effect and to solve problems such as blowing of particles generated during dry grinding.
  • the pulverization is performed using a pulverizer, in which the kind of pulverizer used is, for example, a roller mill, a ball mill, an attrition mill, a preener A mill mill, bead mill, or high energy bead mill may be used.
  • a high energy bead mill can be preferably used.
  • the filling amount of the bead (grind), which is the pulverization medium is preferably 60% to 80% based on the volume of the grinding container when grinding and homogenizing.
  • Beads, which are grinding media may use Yttria stabilized zirconia beads, which are excellent in strength and stability.
  • the size of the ball is preferably 0.3 mm to 1.25 mm.
  • the grinding may be performed two or more times to produce a homogeneous slurry.
  • a dispersant and an antifoaming agent may be added to the slurry (mixture) in order to perform the next pulverization, thereby controlling the fluidity of the slurry to facilitate the transfer through the pump.
  • an organic binder may be added prior to final grinding to uniformly mix the slurry.
  • the average diameter of the particles in the ground mixture may be 3 ⁇ m or less, preferably 1 ⁇ m or less.
  • the pulverized slurry can be dispersed, defoamer, or additional solvent to adjust the specificity such as concentration and viscosity.
  • the grinding process may be omitted.
  • Preparation of the slurry composition of the present invention may further comprise the step of removing the foreign matter contained in the slurry after preparing the slurry composition.
  • the step of removing the foreign matter contained in the slurry after preparing the slurry composition Through the above step, it is possible to remove the foreign matter or agglomerated raw materials that may cause the nozzle clogging during spray molding. Removal of the foreign matter may be carried out through sieving.
  • Drying of the slurry composition in the step of drying the slurry composition of the present invention into solid particles may be performed using a spray dryer, and preferably, may be performed using a spray dryer.
  • the slurry composition is transferred to a spray dryer using a pump, and then the transferred slurry composition is sprayed into the spray dryer through a pump or the like to form solid particles.
  • the viscosity of the slurry transferable to the pump is not particularly limited, but may be sprayed at 300 cP or more.
  • Operating conditions of the spray dryer for molding the absorbent in the spray dryer in the present invention may apply the operating conditions generally used in this field.
  • the spraying method of the slurry composition is not particularly limited, and for example, a countercurrent spraying method may be used in which the spray nozzle is sprayed in a direction opposite to the flow of drying air. That is, in order to control the average particle size of the absorbent in the spray dryer, a countercurrent spray method may be used in which a pressurized nozzle is installed at the bottom of the dryer to increase the residence time of the particles sprayed in the dryer.
  • the shape, particle size, particle distribution and structure of the absorbent of the slurry composition are affected by the concentration, viscosity, dispersion degree, injection pressure of the slurry, injection amount, drying capacity and temperature of the spray dryer, the spray dryer
  • the structure and spray form of can be adjusted to suit.
  • the injection pressure of the spray dryer is 5 to 15 kg / cm 2
  • the inner diameter of the pressure nozzle is 0.4 to 1.6 mm
  • the inlet temperature of the dryer may be 260 to 300 °C
  • the outlet temperature may be 90 to 150 °C.
  • the particle size distribution of the solid particles produced in the step is preferably 30 to 330 ⁇ m.
  • step (B) is a step of drying and calcining the solid particles prepared in step (A) to prepare an absorbent.
  • step (B) the solid particles may be dried and then fired to prepare an absorbent.
  • Drying in the present invention may be carried out by drying the molded solid particles in a reflux dryer of 110 to 150 °C or more for 2 hours. At this time, drying is performed in an air atmosphere.
  • the dried particles are placed in a high temperature firing furnace to raise the final firing temperature to 350 to 1000 ° C. at a rate of 0.5 to 10 ° C./min, and then fired for 2 hours or more.
  • the stagnation section of each 30 minutes or more at a stagnation temperature of two or more steps up to the final firing temperature may be fired.
  • firing may use a firing furnace such as a muffle furnace, a tubular furnace, or a kiln.
  • a firing furnace such as a muffle furnace, a tubular furnace, or a kiln.
  • the firing may be performed in an atmosphere of air, nitrogen, hellum, hydrogen, water, or reducing gas, and the flow rate of the atmospheric gas may be 60 ml / min or more.
  • the organic additives (dispersant, antifoaming agent and organic binder) introduced during the preparation of the slurry by the firing are burned, and the strength of the particles is improved by bonding between the raw materials.
  • the present invention is an active ingredient, a support, an inorganic binder and
  • a carbon dioxide absorbent comprising a metal oxide containing a transition metal.
  • the absorbent according to the invention may be spherical in shape. If the shape is not spherical, but donut-shaped or grooved, the wear loss of the particles is increased.
  • the particle size and particle distribution of the absorbent may be, for example, 100 to 150 ⁇ m and 30 to 303 ⁇ m, respectively.
  • the packing density of the absorbent of the present invention may be, for example, 0.6 to 2.0 g / cc.
  • the wear resistance is represented by the wear index (AI), the lower the wear index means that the wear resistance is better.
  • the wear resistance of the absorbent may be, for example, 40% or less, and preferably 30% or less. When the wear resistance exceeds 40%, a lot of fine powder may be generated, which may make it difficult to use the carbon dioxide removal process.
  • the lower limit of the wear resistance is not particularly limited, but is preferably more than 0%.
  • the absorbent capacity of the absorbent may be, for example, 3 to 10% by weight.
  • the regeneration performance of the absorbent of the present invention may be, for example, 70% or more, preferably 80% or more.
  • the upper limit of the regeneration performance may be 100%, the regeneration performance is excellent in the above range can be reused the absorbent many times.
  • the present invention is 5 to 40 parts by weight of at least one active ingredient selected from the group consisting of alkali metal carbonate, alkali metal bicarbonate, and alkali metal hydroxide;
  • At least one inorganic binder selected from the group consisting of calcium silicate, bentonite, and boehmite;
  • It relates to a carbon dioxide absorbent comprising 1 to 20 parts by weight of a metal oxide containing a transition metal.
  • the present invention is 30 to 50 parts by weight of at least one active ingredient selected from the group consisting of alkali metal carbonate and alkali metal bicarbonate;
  • It relates to a carbon dioxide absorbent comprising 1 to 30 parts by weight of a metal oxide containing a transition metal.
  • the present invention comprises the first step of converting carbon monoxide into carbon dioxide and hydrogen at the same time to capture the carbon dioxide in the absorbent;
  • the absorbent may provide a carbon dioxide separation method comprising a metal oxide containing an active ingredient, a support, an inorganic binder, and a transition metal.
  • the carbon dioxide absorbent used in the carbon dioxide separation method may include the aforementioned absorbent component.
  • Syngas produced in a gasifier or the like contains carbon monoxide and hydrogen as main components.
  • the conversion of carbon monoxide may be activated by a catalyst.
  • the catalyst may be used a general catalyst used in this field.
  • Carbon dioxide produced by the reaction may be captured by the absorbent.
  • the first step may be performed at 150 to 300 ° C.
  • the second step is to regenerate the absorbent trapped carbon dioxide, the regeneration may be carried out by reacting the absorbent with water vapor.
  • Feeding the absorbent with water vapor and additional heat sources separates the carbon dioxide in the absorbent and regenerates the absorbent.
  • the absorbent regenerated in the present invention may be carried out again in the first step of capturing carbon dioxide.
  • the present invention comprises the steps of collecting the carbon dioxide contained in the exhaust gas as an absorbent.
  • the absorbent may provide a carbon dioxide separation method comprising a metal oxide containing an active ingredient, a support, an inorganic binder, and a transition metal.
  • the step of collecting the carbon dioxide contained in the exhaust gas as an absorbent may be performed at 50 to 150 °C.
  • FIG. 1 is a process chart showing a process for preparing a carbon dioxide absorbent according to the present invention.
  • Figure 2 of the present invention is a process chart showing a process for producing a mixture of a solid raw material and a solvent as a slurry.
  • the slurry is prepared by mixing a solid material in water (solvent) to prepare a mixture (11), adding an organic additive, etc. to the mixture (12), stirring the mixture ( 13) pulverizing and homogenizing the solid raw material 14 and removing the foreign matter contained in the slurry (15).
  • organic additive one or more selected from the group consisting of a dispersant, an antifoaming agent, and an organic binder may be used, and preferably all may be used.
  • FIG. 3 is a process chart showing a process of forming a solid particle by spray drying the slurry.
  • the spray drying of the slurry to form the solid particles comprises a step 21 of transferring the slurry to the spray dryer and a step 22 of spraying the transferred slurry into the spray dryer.
  • Figure 4 is a process chart showing a process of manufacturing the absorbent by dry baking the solid particles molded by the spray drying method.
  • the solid particles (absorbent) firstly dried in the spray drying step are prepared through the drying process 31 and then the final absorbent through a calcination process 32.
  • the shape of the absorbent was measured using the naked eye, an industrial microscope or an electron scanning microscope (SEM).
  • Average particle size and particle size distribution of the absorbent were measured according to the standard method ASTM E-11. At this time, 10 g of the absorbent sample was sieved in a sieve shaker for 30 minutes, and then the average particle size and size distribution were calculated according to the calculation method presented.
  • the packing density of the absorbent was measured according to the apparatus and method presented in the standard ASTM D 4164-88.
  • the specific surface area and pore volume of the absorbent were measured using a quantachrome multi BET surface area meter and an Hg porosity meter, respectively.
  • the wear resistance of the absorbent was measured in accordance with the test method and procedure given in the specification using a 3-hole attrition tester manufactured according to ASTM D 5757-95.
  • the wear index (AI) calculated according to the method proposed by ASTM, is expressed as the ratio of the initial sample amount (50 g) of fine powder generated by wear in a wear tube for 5 hours at a flow rate of 10 slpm (standard liters per minute).
  • One of the important indicators of the (fluidized bed or high velocity fluidized bed) process is less than 30% in the fluidized bed process.
  • the wear index (AI) expressed in wear resistance indicates that the smaller the value, the higher the wear strength.
  • the absorption and regeneration reactions of the prepared absorbents were measured using pressurized thermogravimetric analysis.
  • the weight and total flow rate of the sample used were 10 mg and 50 ml / min in Example 1, respectively, and 10 mg and 60 ml / min in Examples 2 to 4, respectively.
  • Example 1 using the active ingredient for high temperature, the CO 2 absorption reaction was measured at 200 °C and 20 bar, the regeneration reaction was measured at 400 °C and 20 bar.
  • the calcined composition used for the absorption reaction was 37% carbon dioxide in volume percentage, 10% water as steam, and 57% nitrogen as balance gas.
  • the gas composition used for the regeneration reaction is nitrogen containing 10% of water as steam.
  • the calcined composition used in the absorption reaction was 14.4% carbon dioxide, 5.4% oxygen, 10% water as steam, and 70.2% nitrogen as balance gas.
  • the gas composition used for the regeneration reaction is nitrogen.
  • Absorption and regeneration of the absorbent were performed by using a Batch fluidized bed (2 cm ID) reactor for at least 1.5 cycles (absorption-regeneration-absorption) to evaluate the absorbent's first and second CO 2 absorption capacity. Denotes the ratio of the second absorbent capacity to the first absorbent capacity as a percentage.
  • the first absorption reaction to SO 2 Assessment is carried out in the absence of the SO 2 gas and 2 in the second absorption reaction fourth absorption reaction is Rate CO 2 absorption capacity in terms containing SO 2 gas of 40 ppm and SO 2 is It was compared with the first absorption capacity and fourth absorption capacity not included.
  • a solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry.
  • the content of the solid raw material was about 25 parts by weight based on 100 parts by weight of the mixed slurry.
  • the dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials.
  • the antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant was added or during the stirring of the slurry.
  • the slurry was sufficiently stirred for 10 minutes or more at a speed of 10000 to 25000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
  • the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry.
  • additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid material, and the pH, or to facilitate the operation.
  • Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
  • the final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign matter that can be introduced during the manufacturing process.
  • the final temperature After drying the prepared slurry for 2 hours or more at 120 °C in a dryer of an air atmosphere, the final temperature after raising the temperature at a heating rate of 0.5 to 10 °C / min to a final firing temperature 500 °C to 650 °C in a Muffle Furnace (Muffle Furnace)
  • the final absorbent was prepared by maintaining at least for 2 hours.
  • each one hour was maintained at 200 ° C., 400 ° C. and 500 ° C. before reaching the final firing temperature.
  • Table 2 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbent (A ⁇ M) prepared in Example 1.
  • Figure 5 shows the shape of the absorbent prepared in Example 1, the shape of the absorbent is spherical.
  • Example 6 is a graph showing the results of evaluating absorbency for the absorbent prepared in Example 1;
  • the CO 2 absorption capacity has a high value of more than 6% by weight even if the absorbent is reused several times.
  • Absorbent according to Example 1 of the present invention has a spherical shape, the particle size of 100 to 180 ⁇ m, particle distribution 30 to 330 ⁇ m, filling density 0.5g / cc or more, CO 2 absorption capacity 6 to 17% by weight, regeneration performance More than 60% and wear resistance of less than 40% to meet all the physical properties required in the fluidized bed promoted water gas shift process, it can be easily used in the fluidized bed promoted water gas shift reaction. .
  • a solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry.
  • the content of the solid raw material was about 25 to 40 parts by weight based on 100 parts by weight of the mixed slurry.
  • the dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials.
  • the antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant or stirring the slurry.
  • the slurry was sufficiently stirred for 10 minutes or more at a speed of 10000 to 25000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
  • the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry.
  • additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid material, and the pH, or to facilitate the operation.
  • Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
  • the final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign matter that can be introduced during the manufacturing process.
  • the final temperature After drying the prepared slurry for 2 hours or more at 120 °C in a dryer of an air atmosphere, the final temperature after raising the temperature at a heating rate of 0.5 to 10 °C / min to a final firing temperature 500 °C to 650 °C in a Muffle Furnace (Muffle Furnace)
  • the final absorbent was prepared by maintaining at least for 2 hours.
  • each one hour was maintained at 200 ° C., 400 ° C. and 500 ° C. before reaching the final firing temperature.
  • Figure 7 is a photograph of the SEM photograph of the absorbent prepared in Example 2, as shown above, the absorbent showed a spherical shape.
  • the solid absorbent according to the second embodiment of the present invention spherical shape, particle size 100 to 150 ⁇ m, particle distribution 30 to 400 ⁇ m, packing density 0.6 g / cc or more, CO 2 absorption ability 5 wt% or more, regeneration performance 75 It can be seen that not only satisfies all the physical properties required by the dry carbon dioxide absorption process, but also has excellent carbon dioxide absorption ability and regeneration performance of less than 10% and less than 10% of abrasion resistance.
  • Solid materials were prepared using at least 3 to 20 parts by weight selected from the group consisting of titanium dioxide, barium titania, molybdenum oxide, iron oxide, copper oxide and zinc oxide as parts by weight and additives.
  • a solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry.
  • the content of the solid raw material was about 20 parts by weight to 40 parts by weight based on 100 parts by weight of the mixed slurry.
  • the dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials.
  • the antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant or stirring the slurry.
  • the slurry was sufficiently stirred for 10 minutes or more at a speed of 10000 to 25000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
  • the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry.
  • additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid material, and the pH, or to facilitate the operation.
  • Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
  • the final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign matter that can be introduced during the manufacturing process.
  • the final temperature After drying the prepared slurry for 2 hours or more at 120 °C in a dryer of an air atmosphere, the final temperature after raising the temperature at a heating rate of 0.5 to 10 °C / min to a final firing temperature 500 °C to 650 °C in a Muffle Furnace (Muffle Furnace)
  • the final absorbent was prepared by maintaining at least for 2 hours.
  • each one hour was maintained at 200 ° C., 400 ° C. and 500 ° C. before reaching the final firing temperature.
  • Table 6 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbents (S to W) prepared in Example 3.
  • Figure 8 is a SEM photograph of the absorbent prepared in Example 3, as shown above, the absorbent showed a spherical shape.
  • the present invention includes a regeneration enhancer containing a transition metal acid fraction, and an absorbent prepared by spray drying may be used in a fluidized bed dry carbon dioxide capture process.
  • Figure 9 is a graph showing the sulfur dioxide impact evaluation of the absorbent V prepared in Example 3.
  • the impact assessment was performed for at least 4 cycles (absorption-regeneration-absorption) using a thermogravimetric analyzer, as described above.
  • the carbon dioxide absorption capacity was about 7% under the condition of not containing sulfur dioxide gas (1 cycle), and 5 to 6% in the gas containing sulfur dioxide (2 to 4 cycles). The above results show that even if the absorbent is reused several times, there is no deterioration of the absorbent capacity, and in particular, since there is little change in the absorbent capacity in 2 cycles and 4 cycles, it can be seen that the absorbent is hardly affected by sulfur dioxide. .
  • the solid absorbent according to Example 3 of the present invention has a spherical shape, particle size of 100 to 140 ⁇ m, particle distribution of 40 to 400 ⁇ m, packing density of 0.8 g / cc or more, CO 2 absorption ability of 5% by weight or more, regeneration performance Not only satisfies all the physical properties required in the process with 75 to 87% and 30% or less abrasion resistance, and also has excellent CO 2 absorption and reproducibility. It was found that this is a strong absorbent.
  • a solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry.
  • the content of the solid raw material was about 20 to 40 parts by weight based on 100 parts by weight of the mixed slurry.
  • the dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials.
  • the antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant or stirring the slurry.
  • the slurry was sufficiently stirred for 10 minutes or more at a speed of 10000 to 25000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
  • the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry.
  • additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid material, and the pH, or to facilitate the operation.
  • Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
  • the final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign matter that can be introduced during the manufacturing process.
  • the prepared slurry was dried at 120 ° C. for 2 hours or more in an air atmosphere dryer, and then heated in a box-type firing furnace (Muffle Furnace) to a final firing temperature of 500 ° C. to 650 ° C. at a heating rate of 0.5 to 10 ° C./min, and then to a final temperature.
  • the final absorbent was prepared by maintaining at least for 2 hours.
  • each was maintained at 200 ° C., 400 ° C. and 500 ° C. for 1 hour before reaching the final firing temperature.
  • Table 8 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbent (X to AG) prepared in Example 4.
  • FIG. 10 is a SEM photograph of the absorbent prepared in Example 4, and as shown above, the absorbent exhibited a spherical shape.
  • Table 9 and FIG. 11 are tables and graphs showing the results of the sulfur dioxide effect evaluation of the absorbent prepared in Example 4.
  • the absorbents did not show a decrease in carbon dioxide absorption capacity or a decrease in regeneration even after repeated absorption and regeneration reactions under conditions containing sulfur dioxide.
  • the present invention includes a regeneration enhancer containing a transition metal oxide, and the absorbent prepared by the spray drying technique may be used in a fluidized bed dry carbon dioxide capture process.
  • the absorbent has a spherical shape, particle size of 100 to 140 ⁇ m, particle distribution of 40 to 303 ⁇ m, packing density of 0.9 g / cc or more, carbon dioxide absorbing ability of 5% by weight or more, regeneration performance of 75% or more, wear resistance of 5% or less, After assessing the impact of 4 cycles of sulfur dioxide, it not only satisfies all the physical properties required in the dry carbon dioxide capture process, such as maintaining more than 70% of the initial performance, but also shows excellent CO 2 absorption and regeneration, and particularly good endothelial toxicity to SO 2 . have

Abstract

The present invention relates to a carbon dioxide absorbent composition comprising an active ingredient, a support, an inorganic binder, and a metal oxide containing a transition metal. According to the present invention, the CO2 absorbent has excellent physical properties such as bulk density, abrasion resistance and the like, CO conversion rate, CO2 absorbing capability and regenerating performance, and has excellent SO2 poisoning resistance, and thus it is possible to effectively capture and separate carbon dioxide contained in synthetic fossil fuel gas.

Description

이산화탄소 흡수제 및 그 제조 방법Carbon Dioxide Absorber and Manufacturing Method Thereof
본 발명은 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 흡수제에 관한 것이다.The present invention relates to a carbon dioxide absorbent comprising a metal oxide containing an active ingredient, a support, an inorganic binder and a transition metal.
지구온난화로 인한 기후변화 발생에 따라 기후변화 대응이 국제 및 국내의 최우선 의제로 부상하고 있다. 따라서, 세계 각국은 기술개발을 통해 자국의 온실가스를 감축하는 방안을 확보하여 신 성장 동력 창출 및 세계시장 선점의 노력을 지속하고 있다. In response to the occurrence of climate change due to global warming, climate change response has emerged as a top priority for the international and domestic sectors. Therefore, countries around the world have secured measures to reduce their own greenhouse gases through technology development, creating new growth engines and preoccupying the global market.
이산화탄소(CO2)는 기후변화를 유발하는 주요 물질중의 하나로 인식되고 있고, 전세계적으로 연간 10만 톤 이상의 CO2를 배출하는 대규모 설비의 수는 7900여 개이며, 상기 설비에서 약 135억 톤의 이산화탄소를 배출하고 있다. 이는 전 세계 1년 배출치인 244억 톤의 55%를 차지하는 양이다. 따라서 대기중의 이산화탄소를 안정화시키기 위해서는 우선적으로 대규모 이산화탄소 배출 설비를 대상으로 이산화탄소를 제거하는 것이 바람직하다.Carbon dioxide (CO 2 ) is recognized as one of the major substances that cause climate change, and there are more than 7900 large-scale facilities that emit more than 100,000 tons of CO 2 annually, and about 13.5 billion tons Emits carbon dioxide. This represents 55% of the world's annual emissions of 22.4 billion tons. Therefore, in order to stabilize carbon dioxide in the atmosphere, it is desirable to first remove carbon dioxide from a large-scale carbon dioxide emission facility.
상기 대규모 이산화탄소 배출 설비로부터 이산화탄소를 제거하는 방법으로는 습식 화학세정(Wet chemical absorption), 흡착(Absorption), 막분리(Membranes) 또는 저온 냉각분리 등의 다양한 방법이 있다. 그러나 이러한 방법들은 회수비용이 높거나 발전소나 대규모 산업체에 적용하기 어렵다는 문제점이 있다.There are various methods of removing carbon dioxide from the large-scale carbon dioxide discharge facility, such as wet chemical absorption, absorption, membrane separation, or low temperature cooling separation. However, these methods have a high recovery cost or are difficult to apply to power plants or large industries.
배가스에서 이산화탄소를 효과적으로 제거하는 방법으로 건식 CO2 포집기술(Dry CO2 capture technology)이 있다. 상기 방법은 기존의 습식화학세정에서 사용하는 액체용매 대신에 고체 입자를 사용하고, 상기 고체 입자를 배가스 중에 존재하는 이산화탄소와 반응시켜 안정된 화합물로 만든 후, 수증기와 추가의 열원을 사용하여 순수한 이산화탄소를 분리한다. 상기 이산화탄소가 분리된 흡수제는 재생하여 반복, 연속적으로 재사용할 수 있다. 또한 유동층 공정을 적용하므로, 설치면적이 적고 열전달 특성이 우수하며 운전하기 용이하다.There is a way to efficiently remove carbon dioxide from the off-gas dry CO 2 capture technology (Dry CO 2 capture technology). The method uses solid particles instead of the liquid solvent used in conventional wet chemical cleaning, reacts the solid particles with carbon dioxide present in the exhaust gas to form a stable compound, and then uses pure water and additional heat sources to produce pure carbon dioxide. Separate. The absorbent from which the carbon dioxide is separated can be recycled and reused repeatedly and continuously. In addition, since the fluidized bed process is applied, the installation area is small, the heat transfer characteristics are excellent, and the operation is easy.
그리고, 재생 흡수기술은 폐수가 거의 발생하지 않고, 부식문제가 적으며, 저가의 다양한 소재 사용이 가능하다. 또한, 설계 유연성(Design flexibility), 친환경성, 저에너지 재생 및 고효율 이산화탄소 흡수력(흡수성과 반응성)등 여러 측면에서 다른 기술에 비해 지속성장 가능한 잠재력이 크다.In addition, the regeneration absorption technology generates little wastewater, less corrosion problems, and can be used for various materials at low cost. In addition, there are many potential for sustainable growth compared to other technologies in terms of design flexibility, eco-friendliness, low energy recovery and high efficiency CO2 absorption (absorption and reactivity).
이러한 건식 재생 이산화탄소 포집기술과 관련된 종래의 특허로는 US 7045483, US 6280503, US 7314847, US7314847B1, US 7314877B1, US 4515900, US7067456, US 5214019, JP2007-090208A 및 US20070072769A1 등이 있다.Conventional patents related to this dry regeneration carbon dioxide capture technology include US 7045483, US 6280503, US 7314847, US7314847B1, US 7314877B1, US 4515900, US7067456, US 5214019, JP2007-090208A and US20070072769A1.
상기의 특허들은 주로 활성물질, 지지체, 무기 및 유기 바인더들의 조합, 활성물질과 지지체의 조합 또는 활성성분 자체에 관련된 것이거나 전혀 다른 응용분야의 적용을 위한 것이다. 또한, 물리적 혼합에 의한 제조 및 담지방법에 의한 제조 등 제조방법이 상이하여 대량으로 흡수제를 제조하기에 적당하지 않다. 특히 고체 흡수제 입자가 유동층 공정의 흡수와 재생 두 반응기 사이를 연속적으로 순환하면서 연속적으로 이산화탄소를 포집 분리하는 공정에 적용하기에 부적당하다. 따라서, 발전소, 철강, 정유 및 시멘트 산업과 같은 대량의 이산화탄소를 배출하는 산업공정에 적용하는데 비효율적이며, 특히 상기의 산업의 배가스에 포함된 SO2의 영향을 최소화할 수 없어 고체 흡수제의 장기 사용에 문제점이 있다.The above patents are mainly for application of active materials, supports, combinations of inorganic and organic binders, combinations of active materials and supports, or the active ingredient itself or for applications in completely different applications. In addition, the production methods such as the production by physical mixing and the production by a supporting method are different, and are not suitable for producing the absorbent in large quantities. Particularly, the solid absorbent particles are not suitable for the process of continuously collecting and separating carbon dioxide while continuously circulating between two reactors for absorption and regeneration of the fluidized bed process. In some, and efficient for the application to industrial processes that discharge a large amount of carbon dioxide, such as power plants, steel, refining and cement industry, in particular the long-term use of the solid absorbent can not minimize the effect of the SO 2 contained in the industrial off-gas There is a problem.
본 발명은 이산화탄소를 대기로 배출하기 전에 배가스에 포함된 이산화황의 영향을 최소화하면서 이산화탄소를 효과적으로 포집하고, 추가의 열원에 의해 용이하게 재생할 수 있어, 흡수와 재생 두 반응기 사이를 연속적으로 순환하면서 반복적으로 장기간 사용할 수 있는 이산화탄소 흡수제 및 그 제조 방법을 제공하는 것을 목적으로 한다.The present invention effectively captures carbon dioxide while minimizing the effects of sulfur dioxide contained in the flue-gas before discharging it to the atmosphere, and can be easily regenerated by an additional heat source, repeatedly absorbing and regenerating between the two reactors. It is an object of the present invention to provide a carbon dioxide absorbent that can be used for a long time and a method for producing the same.
본 발명은 상기 과제를 해결하기 위한 수단으로서, 활성성분, 지지체, 무기결합제 및 The present invention as a means for solving the above problems, an active ingredient, a support, an inorganic binder and
전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 흡수제 조성물을 제공한다.It provides a carbon dioxide absorbent composition comprising a metal oxide containing a transition metal.
본 발명은 상기 과제를 해결하기 위한 다른 수단으로서, 상기 흡수제 조성물을 함유하는 고체원료 및 용매를 포함하는 슬러리 조성물을 제공 한다.The present invention provides a slurry composition comprising a solvent and a solid raw material containing the absorbent composition as another means for solving the above problems.
본 발명은 상기 과제를 해결하기 위한 다른 수단으로서, (A) 슬러리 조성물을 건조시켜 고체 입자를 제조하는 단계; 및; The present invention as another means for solving the above problems, (A) drying the slurry composition to produce a solid particle; And;
(B) 상기 제조된 고체 입자를 건조 소성시켜 흡수제를 제조하는 단계를 포함하는 이산화탄소 흡수제의 제조 방법을 제공 한다.(B) it provides a method for producing a carbon dioxide absorbent comprising the step of preparing the absorbent by drying and firing the prepared solid particles.
본 발명은 상기 과제를 해결하기 위한 다른 수단으로서, 활성성분, 지지체, 무기결합제 및The present invention as another means for solving the above problems, active ingredient, support, inorganic binder and
전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 흡수제를 제공 한다.It provides a carbon dioxide absorbent comprising a metal oxide containing a transition metal.
본 발명은 상기 과제를 해결하기 위한 다른 수단으로서, 일산화탄소를 이산화탄소 및 수소로 전환시키는 동시에 이산화탄소를 흡수제에 포집하는 제 1 단계; 및In another aspect, the present invention provides a first step of converting carbon monoxide into carbon dioxide and hydrogen and at the same time collecting the carbon dioxide in the absorbent; And
상기 이산화탄소가 포집된 흡수제를 재생하는 제 2 단계를 포함하는 이산화탄소 분리 방법에 있어서, In the carbon dioxide separation method comprising a second step of regenerating the absorbent trapped by the carbon dioxide,
상기 흡수제는 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물을 포함하는 것을 특징으로 하는 이산화탄소 분리 방법을 제공 한다. The absorbent provides a carbon dioxide separation method comprising a metal oxide containing an active ingredient, a support, an inorganic binder and a transition metal.
본 발명은 상기 과제를 해결하기 위한 다른 수단으로서, 배가스 중에 포함된 이산화탄소를 흡수제로 포집하는 단계; 및The present invention as another means for solving the above problems, the step of collecting the carbon dioxide contained in the exhaust gas as an absorbent; And
상기 포집된 이산화탄소를 재생하는 단계를 포함하는 이산화탄소 분리 방법에 있어서, In the carbon dioxide separation method comprising the step of regenerating the collected carbon dioxide,
상기 흡수제는 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 분리 방법을 제공 한다.The absorbent provides a carbon dioxide separation method comprising a metal oxide containing an active ingredient, a support, an inorganic binder and a transition metal.
본 발명에 따른 CO2 흡수제는 충진밀도 및 내마모도 등의 물리적 특성, CO 전환율, CO2 흡수능력 및 재생성능이 우수하고, SO2 내피독성 등이 우수하여 화석연료의 합성가스에 포함된 이산화탄소를 효과적으로 포집, 분리할 수 있다. 또한, 분무기술을 적용함으로 대량생산이 용이하고, 생산 수율이 높아 비용발생이 적기 때문에 석탄가스화 복합발전, 연료전지, 석탄액화 공정, 화합물 생산공정 등에 저비용 연소전 CO2 회수기술로 사용할 수 있다. The CO 2 absorbent according to the present invention has excellent physical properties such as packing density and abrasion resistance, CO conversion rate, CO 2 absorption capacity and regeneration performance, and SO 2 endothelial toxicity. Can be collected and separated. In addition, by applying the spray technology, mass production is easy, and the production yield is high and the cost is low, so it can be used as a low cost pre-combustion CO 2 recovery technology for coal gasification combined cycle, fuel cell, coal liquefaction process, compound production process.
아울러, 고온용 활성물질을 사용하는 경우, 촉진수성가스전환반응 등의 공정에서 고온 및 고압의 합성가스 조건을 그대로 이용할 수 있으므로, CO2 회수에 따른 효율저감을 최소화 할 수 있고, 압축비용을 현저히 낮출 수 있다. 또한, 저온용 활성물질을 사용하는 경우, 발전소, 제철, 정유 및 시멘트 산업 등의 저온의 합성가스 조건에서 흡수반응 및 재생반응이 진행되므로, 에너지 효율 향상 미 비용절감 문제를 해결할 수 있다.In addition, in the case of using the active material for high temperature, the synthesis gas conditions of high temperature and high pressure can be used as it is in the process such as accelerated water gas conversion reaction, so that the reduction of efficiency due to the recovery of CO 2 can be minimized and the compression cost is remarkably reduced. Can be lowered. In addition, when the low temperature active material is used, the absorption reaction and the regeneration reaction proceed under low temperature synthesis gas conditions such as power plants, steelmaking, oil refining and cement industries, thereby improving energy efficiency and reducing costs.
도 1은 본 발명에 따른 이산화탄소 흡수제를 제조하는 과정을 나타낸 공정도이다.1 is a process chart showing a process for preparing a carbon dioxide absorbent according to the present invention.
도 2는 고체원료 및 용매의 혼합물을 슬러리로 제조하는 과정을 나타낸 공정도이다.2 is a process chart illustrating a process of preparing a mixture of a solid raw material and a solvent into a slurry.
도 3은 슬러리를 분무건조하여 고체 입자로 성형하는 과정을 나타낸 공정도이다.3 is a process chart showing a process of forming a solid particle by spray drying the slurry.
도 4는 분무건조법으로 성형된 고체 입자를 건조 소성시켜 흡수제로 제조하는 과정을 나타낸 공정도이다.Figure 4 is a process chart showing a process of manufacturing the absorbent by dry baking the solid particles molded by the spray drying method.
도 5는 본 발명에 따른 실시예 1에 의해 제조된 흡수제의 SEM 사진이다.5 is a SEM photograph of the absorbent prepared by Example 1 according to the present invention.
도 6은 본 발명에 따른 실시예1에 의해 제조된 흡수제의 CO2 흡수능력 평가 결과를 나타내는 그래프이다.Figure 6 is a graph showing the results of evaluating the CO 2 absorption capacity of the absorbent prepared in Example 1 according to the present invention.
도 7은 본 발명에 따른 실시예 2에 의해 제조된 흡수제의 SEM 사진이다. 7 is a SEM photograph of the absorbent prepared by Example 2 according to the present invention.
도 8은 본 발명에 따른 실시예 3에 의해 제조된 흡수제의 SEM 사진이다.8 is a SEM photograph of the absorbent prepared by Example 3 according to the present invention.
도 9은 본 발명에 따른 실시예 3에 의해 제조된 흡수제의 이산화황 영향 평가를 나타내는 그래프이다.9 is a graph showing the sulfur dioxide impact evaluation of the absorbent prepared in Example 3 according to the present invention.
도 10은 본 발명에 따른 실시예 4에 의해 제조된 흡수제의 SEM 사진이다.10 is a SEM photograph of the absorbent prepared by Example 4 according to the present invention.
도 11 및 도 12는 본 발명에 따른 실시예 3에 의해 제조된 흡수제의 이산화황 영향 평가를 나타내는 그래프이다.11 and 12 are graphs showing the sulfur dioxide influence evaluation of the absorbent prepared by Example 3 according to the present invention.
본 발명은 활성성분, 지지체, 무기결합제 및 The present invention is an active ingredient, a support, an inorganic binder and
전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 흡수제 조성물에 관한 것이다.A carbon dioxide absorbent composition comprising a metal oxide containing a transition metal.
이하, 본 발명에 따른 이산화탄소 흡수제 조성물을 보다 상세하게 설명 한다. Hereinafter, the carbon dioxide absorbent composition according to the present invention will be described in more detail.
본 발명에서 활성성분은 이산화탄소와 선택적으로 반응하여 가스기류에서 이산화탄소를 효율적으로 포집, 분리하는 물질이다. In the present invention, the active ingredient is a substance that selectively reacts with carbon dioxide to efficiently collect and separate carbon dioxide from the gas stream.
상기 활성성분의 종류로는, 예를 들면, 알칼리 금속산화물, 알칼리 토금속산화물, 알칼리 금속탄산염, 알칼리 금속 중탄산염, 알칼리 토금속 탄산염, 알칼리 토금속 중탄산염, 알칼리 금속 수산화물, 알칼리 토금속 수산화물 및 탄산염 전구체로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. 여기서, 탄산염 전구체는 탄산염으로 전환될 수 있는 물질을 의미한다. Examples of the active ingredient include, for example, alkali metal oxides, alkaline earth metal oxides, alkali metal carbonates, alkali metal bicarbonates, alkaline earth metal carbonates, alkaline earth metal bicarbonates, alkali metal hydroxides, alkaline earth metal hydroxides and carbonate precursors. You can use one or more selected. Here, the carbonate precursor means a material that can be converted to carbonate.
본 발명에서 상기 활성성분은 구체적으로 탄산칼륨, 중탄산칼륨, 수산화 칼륨, 탄산나트륨, 중탄산나트륨, 수산화나트륨, 수산화칼슘, 수산화마그네슘, 산화마그네슘, 산화칼슘 및 산화아연으로 이루어진 그룹으로부터 선택된 하나 이상을 들 수 있다.In the present invention, the active ingredient may specifically include at least one selected from the group consisting of potassium carbonate, potassium bicarbonate, potassium hydroxide, sodium carbonate, sodium bicarbonate, sodium hydroxide, calcium hydroxide, magnesium hydroxide, magnesium oxide, calcium oxide and zinc oxide. .
본 발명에서 상기 활성성분의 함량은 흡수제 조성물에 대하여, 5 내지 70 중량부를 포함할 수 있으며, 바람직하게는 10 내지 60 중량부를 포함할 수 있다. 상기 함량이 10 중량부 미만이면, 이산화탄소의 포집 효율이 저하될 우려가 있으며, 70 중량부를 초과하면, 활성성분을 효율적으로 이용할 수 없고, 흡수제의 구형의 형상이 변형될 수 있으며, 또한, 물리적 특성(강도, 충진밀도)이 저하될 우려가 있다.In the present invention, the content of the active ingredient may include 5 to 70 parts by weight, and preferably 10 to 60 parts by weight with respect to the absorbent composition. If the content is less than 10 parts by weight, there is a possibility that the collection efficiency of carbon dioxide is lowered, if it exceeds 70 parts by weight, the active ingredient can not be used efficiently, the spherical shape of the absorbent may be deformed, and the physical properties (Strength, Filling Density) may be lowered.
본 발명에서 상기 활성성분의 순도는 98% 이상인 것이 좋다.In the present invention, the purity of the active ingredient is preferably 98% or more.
본 발명에서 흡수제 조성물의 지지체는 활성성분을 흡수제 입자 내에 잘 분포되게 하여 상기 활성성분의 활용성을 높이고, 반응에 필요한 이산화탄소 및 수분의 흡착 및 흡수를 용이하게 하는 물질이다. 상기 지지체의 종류는 큰 비표면적을 가질 수 있으며, 그 종류로는 예를 들면, 알루미나, 하이드로탈사이트, 실리카, 세라믹 및 마그네시아로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. 이 때, 사용되는 알루미나는 Al2O3의 함량이 약 99.8 %이고, 비표면적이 150 내지 300 ㎡/g 일 수 있다. 또한, 하이드로탈사이트는 20 wt% 이상의 산화마그네슘(MgO)을 포함할 수 있고, 비표면적은 100 내지 300 ㎡/g일 수 있으며, 마그네시아는 비표면적이 20 내지 100 ㎡/g일 수 있다. In the present invention, the support of the absorbent composition is a substance which makes the active ingredient well distributed in the absorbent particles, thereby increasing the utility of the active ingredient and facilitating adsorption and absorption of carbon dioxide and water required for the reaction. The type of the support may have a large specific surface area, and for example, one or more selected from the group consisting of alumina, hydrotalcite, silica, ceramic, and magnesia may be used. In this case, the alumina used may have an Al 2 O 3 content of about 99.8% and a specific surface area of 150 to 300 m 2 / g. In addition, the hydrotalcite may include 20 wt% or more of magnesium oxide (MgO), the specific surface area may be 100 to 300 m 2 / g, and the magnesia may have a specific surface area of 20 to 100 m 2 / g.
본 발명에서 상기 지지체의 함량은, 흡수제 조성물에 대하여, 5 내지 70 중량부를 포함할 수 있으며, 바람직하게는 10 내지 60 중량부를 포함할 수 있다. 상기 함량이 10 중량부 미만이면, 물리적 강도가 저하될 우려가 있으며, 70 중량부를 초과하면, 상대적으로 활성성분이 낮아져 성능이 저하될 우려가 있다.In the present invention, the content of the support may include 5 to 70 parts by weight, and preferably 10 to 60 parts by weight with respect to the absorbent composition. If the content is less than 10 parts by weight, there is a fear that the physical strength is lowered, if it exceeds 70 parts by weight, the active ingredient is relatively low, there is a fear that the performance is lowered.
본 발명에서 무기결합제는 흡수제 조성물 사이에 조밀하게 충진되어 고밀도의 흡수제를 제조할 수 있게 하고, 활성성분 및 지지체의 결합력을 증대시켜 흡수제에 강도를 부여하며, 장기간 마모에 의한 손실 없이 흡수제를 사용할 수 있게 하는 물질이다. 본 발명에서 상기 무기결합제의 종류로는, 예를 들면, 시멘트류, 점토류 및 세라믹류 등으로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다. 이 때, 상기 점토류의 구체적인 종류로는 벤토나이트 또는 카올린 등을 들 수 있고, 세라믹류의 구체적인 종류로는 알루미나졸, 실리카졸 또는 보에마이트 등을 들 수 있으며, 시멘트류의 구체적인 종류로는 칼슘 실리케이트 또는 칼슘 알루미네이트 등을 들 수 있다. In the present invention, the inorganic binder can be densely packed between the absorbent compositions to prepare a high density absorbent, increase the binding strength of the active ingredient and the support, give strength to the absorbent, and can use the absorbent without loss due to prolonged wear. It is a substance to make. As the type of the inorganic binder in the present invention, for example, one or more selected from the group consisting of cements, clays, ceramics, and the like may be used. At this time, specific types of the clays include bentonite or kaolin, and specific types of ceramics include alumina sol, silica sol or boehmite, and the like. Silicates, calcium aluminate, and the like.
여기서, 벤토나이트는 자연산 소디움 벤토나이트, 합성 소디움 벤토나이트를 포함한 모든 상업용 벤토나이트를 사용할 수 있으며, 이에 대하여 특별히 제한하는 것은 아니지만, 구체적으로는, 합성 소디움 벤토나이트(synthetic sodium bentonite: 63.1% SiO2, 16.6% Al2O3, 3.28% Fe2O3, 3.07% CaO, 2.82% MgO, 3.86% Na2O, 8.11% 수분)를 사용할 수 있다.Here, bentonite may use any commercial bentonite including natural sodium bentonite, synthetic sodium bentonite, and is not particularly limited thereto, specifically, synthetic sodium bentonite (63.1% SiO 2 , 16.6% Al 2 O 3 , 3.28% Fe 2 O 3 , 3.07% CaO, 2.82% MgO, 3.86% Na 2 O, 8.11% moisture).
또한, 보에마이트는 물, 산성 및 염기성 수용액에서 알루미나 졸과 유사한 특성을 갖는 것으로, 모든 유형의 보에마이트를 사용할 수 있으며, 구체적으로는 유사 보에마이트(pseudo-Boehmite: Versal 900, 크기 60-65㎛)를 사용할 수 있다.In addition, boehmite has similar characteristics to alumina sol in water, acidic and basic aqueous solution, and all types of boehmite can be used. Specifically, boehmite (pseudo-Boehmite: Versal 900, size 60) can be used. -65 mu m) can be used.
본 발명에서 상기 무기결합제의 함량은, 흡수제 조성물에 대하여, 5 내지 70 중량부를 포함할 수 있으며, 바람직하게는 10 내지 60 중량부를 포함할 수 있다. 상기 함량이 5 중량부 미만이면, 원료물질(활성성분, 지지체 및 무기결합제)들 간의 결합력 저하에 의해 물리적 특성이 저하될 우려가 있으며, 70 중량부를 초과하면, 상대적으로 활성성분의 함량이 줄어들어 성능이 저하될 우려가 있다.In the present invention, the content of the inorganic binder may include 5 to 70 parts by weight, and preferably 10 to 60 parts by weight with respect to the absorbent composition. If the content is less than 5 parts by weight, physical properties may be reduced by lowering the bonding strength between the raw materials (active ingredient, support and inorganic binder), and if it exceeds 70 parts by weight, the content of the active ingredient is relatively reduced This may fall.
본 발명에서 전이금속을 함유하는 금속산화물은 촉진제의 역할을 하고, 흡수제의 반복 사용에 따른 반응의 저하 없이 흡수반응과 재생반응을 반복하여 사용할 수 있게 하며, 동시에 배가스 등에 포함된 이산화황과 같은 오염원의 영향을 최소화 하여, 흡수제의 장기간 사용을 용이하게 해주는 물질이다. 상기 전이금속을 함유하는 금속산화물의 종류로는, 예를 들면, 산화티타늄, 산화지르코늄, 바륨티티아나(BaTiO2), 산화몰리브데늄, 산화니켈, 산화코발트, 산화철, 산화구리, 산화아연 및 이트리아 안정화 지르코니아(Yttria-stabilized zirconia) 등으로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있으며, 바람직하게는 이산화티타니아(TiO2) 및 산화아연(ZnO)을 사용할 수 있다. In the present invention, the metal oxide containing the transition metal serves as an accelerator, and can repeatedly use the absorption reaction and the regeneration reaction without degrading the reaction caused by the repeated use of the absorbent, and at the same time, It is a material that minimizes the effect and facilitates long-term use of the absorbent. Examples of the metal oxide containing the transition metal include, for example, titanium oxide, zirconium oxide, barium titania (BaTiO 2 ), molybdenum oxide, nickel oxide, cobalt oxide, iron oxide, copper oxide, zinc oxide, and the like. One or more selected from the group consisting of Yttria-stabilized zirconia and the like may be used, and preferably, titanium dioxide (TiO 2 ) and zinc oxide (ZnO) may be used.
본 발명에서 상기 전이금속을 함유하는 금속산화물의 함량은 흡수제 조성물에 대하여, 5 내지 70 중량부를 포함할 수 있으며, 바람직하게는 5 내지 60 중량부를 포함할 수 있다. 상기 함량이 5 중량부 미만이면, 촉진제의 역할을 충분히 발휘할 수 없을 우려가 있으며, 70 중량부를 초과하면, 상대적으로 활성성분의 함량이 줄어들어 촉진제로서의 사용밤위가 벗어날 우려가 있다.In the present invention, the content of the metal oxide containing the transition metal may include 5 to 70 parts by weight, and preferably 5 to 60 parts by weight based on the absorbent composition. If the content is less than 5 parts by weight, there is a fear that the role of the accelerator may not be fully exhibited. If the content is more than 70 parts by weight, the content of the active ingredient may be relatively reduced, resulting in the use of the accelerator as an accelerator.
또한, 본 발명은 전술한 흡수제 조성물, 즉 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물을 포함하는 조성물을 고체원료로 하여, 상기 고체원료 및 용매를 포함하는 슬러리 조성물에 관한 것이다.The present invention also relates to a slurry composition comprising the above-mentioned solid raw material and a solvent by using the above-described absorbent composition, that is, a composition comprising a metal oxide containing an active ingredient, a support, an inorganic binder, and a transition metal.
본 발명에서 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물은 앞에서 전술한 종류를 제한 없이 사용할 수 있으며, 그 함량도 전술한 양으로 사용할 수 있다.In the present invention, the metal oxide containing the active ingredient, the support, the inorganic binder, and the transition metal may be used without limitation the above-described kind, and the content thereof may also be used in the above-mentioned amounts.
본 발명에서 상기 용매의 종류는 특별히 제한되지 않으며, 이 분야에서 일반적으로 사용되는 용매를 사용될 수 있다. 구제적으로는 물, 또는 메탄올 및 에탄올 등의 알코올을 사용할 수 있으며, 물을 사용하는 것이 바람직하다. In the present invention, the kind of the solvent is not particularly limited, and a solvent generally used in the art may be used. Specifically, water or alcohols such as methanol and ethanol can be used, and water is preferably used.
또한, 본 발명에서 고체원료의 함량은 예를 들면, 슬러리 조성물에 대하여 20 내지 50 중량부로 포함될 수 있으며, 바람직하게는 20 내지 40 중량부로 포함될 수 있다. 상기 고체원료의 함량이 20 중량부 미만이면, 흡수제 제조를 위한 슬러리의 양이 증가하여 궁극적으로 흡수제 제조 효율이 저하될 우려가 있으며, 50 중량부를 초과하면, 슬러리의 농도 증가에 따른 슬러리의 점도 증가로 유동성이 저하되어 분무 건조의 수행이 어려워질 우려가 있다. In addition, the content of the solid raw material in the present invention may be included, for example, 20 to 50 parts by weight with respect to the slurry composition, preferably 20 to 40 parts by weight. If the content of the solid raw material is less than 20 parts by weight, the amount of the slurry for the absorbent preparation is increased and ultimately the absorbent manufacturing efficiency may be lowered. If it exceeds 50 parts by weight, the viscosity of the slurry increases with increasing the concentration of the slurry The fluidity of the furnace may be lowered, making it difficult to carry out spray drying.
본 발명에 따른 슬러리 조성물은 고체원료의 균질화, 슬러리의 농도, 점도, 안정성, 유동성과 강도 및 밀도 등을 제어를 위하여, 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택되는 하나 이상의 유기첨가제를 추가로 포함할 수 있다.The slurry composition according to the present invention further comprises at least one organic additive selected from the group consisting of dispersants, antifoaming agents and organic binders for controlling homogenization of solid raw materials, concentration, viscosity, stability, flowability and strength and density of slurry. It may include.
본 발명에서는 분산제, 소포제 및 유기결합제를 모두 사용하는 것이 좋다. In the present invention, it is preferable to use both a dispersant, an antifoaming agent and an organic binder.
본 발명에서 분산제(dispersant)는 하기에 설명할 분쇄과정에서 입자끼리 응집되는 현상을 방지하기 위해 사용된다. 즉, 흡수제를 구성하는 고체원료들의 입자크기를 제어하기 위한 분쇄 과정에서, 분쇄된 미세 분말 입자들의 응집에 의한 분쇄효율의 저하를 방지하기 위해 상기 분산제를 사용할 수 있다.In the present invention, a dispersant is used to prevent agglomeration between particles in the grinding process, which will be described below. That is, in the grinding process for controlling the particle size of the solid raw material constituting the absorbent, the dispersant may be used to prevent the reduction of the grinding efficiency by agglomeration of the pulverized fine powder particles.
본 발명에서 분산제의 종류로는, 예를 들면, 음이온계 분산제, 양이온계 분산제, 양쪽성 분산제 및 비이온계 분산제로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있으며, 바람직하게는 음이온계 분산제 및 비이온계 분산제를 사용할 수 있다. 상기 음이온계 분산제로는 폴리카르복실산, 폴리카르복실산 아민, 폴리카르복실산 아민염 또는 폴리카르복실산 소다염 등을 사용할 수 있으며, 비이온계 분산제로는 불소계 계면활성제를 사용할 수 있다. As the type of dispersant in the present invention, for example, at least one selected from the group consisting of anionic dispersants, cationic dispersants, amphoteric dispersants and nonionic dispersants may be used, and preferably anionic dispersants and nonionics. Systemic dispersants can be used. As the anionic dispersant, polycarboxylic acid, polycarboxylic acid amine, polycarboxylic acid amine salt, polycarboxylic acid soda salt, or the like may be used. As the nonionic dispersant, a fluorine-based surfactant may be used.
상기 음이온계 분산제는 고체원료를 기준으로 0.1 내지 10 중량부를 사용할 수 있으며, 비이온계 분산제는 고체원료를 기준으로 0.01 내지 0.3 중량부를 사용할 수 있다. 상기 범위에서, 입자들의 분산 효과과 우수하다.The anionic dispersant may be used in an amount of 0.1 to 10 parts by weight based on a solid raw material, and a nonionic dispersant may be used in an amount of 0.01 to 0.3 parts by weight based on a solid raw material. In this range, the dispersion effect of the particles is excellent.
본 발명에서 소포제(defoamer)는 분산제 및 유기결합제가 적용된 슬러리의 기포를 제거하기 위해 사용될 수 있다. 상기 소포제의 종류로는, 예를 들면, 실리콘계, 금속비누계, 아마이드계, 폴리에테르계, 폴리에스테르계, 폴리글라이콜계, 유기인산계 및 알코올계로 이루어진 그룹으로부터 선택된 하나 이상을 포함할 수 있고, 바람직하게는 금속비누계 및 폴리에스테르계의 비이온성 계면활성제를 사용할 수 있다. In the present invention, a defoamer may be used to remove bubbles in the slurry to which the dispersant and the organic binder are applied. The antifoaming agent may include, for example, at least one selected from the group consisting of silicone, metal soap, amide, polyether, polyester, polyglycol, organophosphoric acid and alcohol. Preferably, a metal soap type and polyester type nonionic surfactant can be used.
상기 소포제는 고체원료를 기준으로 0.01 내지 0.2 중량부를 사용할 수 있다. The antifoaming agent may be used in an amount of 0.01 to 0.2 parts by weight based on the solid raw material.
본 발명에서 유기결합제(organic binder)는 슬러리에 가소성 및 유동성을 부여하고, 궁국적으로는 분무 건조 시 성형된 고체 입자에 강도를 부여함으로써, 건조 및 소성 전에 상기 입자의 취급을 용이하게 할 수 있다. 본 발명에서 상기 유기결합제의 종류로는, 예를 들면, 폴리비닐알코올계, 폴리글라이콜계 및 메틸셀룰로즈로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있다.In the present invention, the organic binder imparts plasticity and fluidity to the slurry and ultimately gives strength to the solid particles formed during spray drying, thereby facilitating handling of the particles before drying and firing. . In the present invention, as the type of the organic binder, for example, one or more selected from the group consisting of polyvinyl alcohol, polyglycol, and methyl cellulose may be used.
본 발명에서 상기 유기결합제의 함량은 특별히 제한되지 않으며, 예를 들면, 고체원료를 기준으로 0.5 내지 5 중량부를 사용할 수 있다. 상기 함량이 0.05 중량부 미만이면, 분무건조 성형된 고체 입자의 결합력 저하로 건조 및 소성전까지 구형의 형상을 유지하는 것이 어려워질 우려가 있으며, 5 중량부를 초과하면 소성 후 잔여 화분에 의해 최종물질의 성능이 저하될 우려가 있다.In the present invention, the content of the organic binder is not particularly limited. For example, 0.5 to 5 parts by weight may be used based on the solid raw material. If the content is less than 0.05 parts by weight, it may be difficult to maintain the spherical shape until the drying and firing due to a decrease in the bonding strength of the spray-dried solid particles, if the content exceeds 5 parts by weight of the final material There is a risk of deterioration in performance.
본 발명에서는 상기 슬러리 조성물의 pH를 조절하기 위하여 pH 조절제를 추가로 첨가할 수 있다. 상기 pH 조절제의 종류로는, 예를 들면, 유기아민 또는 암모니아수 등을 사용할 수 있다. 상기 pH 조절제는 고체원료에 대하여 0.01 내지 10 중량부를 사용할 수 있다.In the present invention, a pH adjusting agent may be further added to adjust the pH of the slurry composition. As a kind of said pH adjuster, organic amine, aqueous ammonia, etc. can be used, for example. The pH adjusting agent may be used in an amount of 0.01 to 10 parts by weight based on the solid material.
본 발명에서 이산화탄소 흡수제를 제조하는 방법은 특별히 제한되지 않는다. 본 발명에서는, 예를 들면, (A) 슬러리 조성물을 건조시켜 고체 입자를 제조하는 단계; 및The method for producing the carbon dioxide absorbent in the present invention is not particularly limited. In the present invention, for example, (A) drying the slurry composition to produce solid particles; And
(B) 상기 제조된 고체 입자를 건조 소성시켜 흡수제를 제조하는 단계를 포함하는 방법으로 제조할 수 있다. (B) it may be prepared by a method comprising the step of preparing the absorbent by drying and firing the prepared solid particles.
본 발명에서 단계 (A)에서 상기 슬러리 조성물은 앞에서 전술한 고체원료를 용매에 혼합하여 제조할 수 있다.In the present invention, the slurry composition in step (A) may be prepared by mixing the aforementioned solid raw material in a solvent.
상기 고체원료는 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물을 포함할 수 있고, 상기 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물은 앞에서 전술 한 종류를 제한 없이 사용할 수 있으며, 그 함량도 앞에서 전술한 함량 범위 내에서 사용될 수 있다.The solid raw material may include a metal oxide containing an active ingredient, a support, an inorganic binder, and a transition metal, and the metal oxide containing the active ingredient, the support, an inorganic binder, and a transition metal may be used without limitation. Its content may also be used within the aforementioned content range.
본 발명에 따른 슬러리 조성물은, 용매 및 고체원료의 혼합물을 제조하는 단계;The slurry composition according to the present invention comprises the steps of preparing a mixture of a solvent and a solid raw material;
상기 혼합물에 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상의 유기첨가제를 첨가하는 단계; 및Adding at least one organic additive selected from the group consisting of a dispersing agent, an antifoaming agent and an organic binder to the mixture; And
상기 혼합물을 교반하고, 분쇄하는 단계를 포함하는 방법으로 제조될 수 있다.The mixture may be prepared by a method including stirring and pulverizing.
본 발명에서 용매는 앞에서 전술한 종류를 제한 없이 사용할 수 있으며, 구체적으로는 물을 사용할 수 있다.In the present invention, the solvent may be used without limitation the above-described type, specifically, water may be used.
또한, 본 발명에서 고체원료의 함량은 전술한 바와 같이, 슬러리 조성물에 대하여 20 내지 50 중량부로 포함될 수 있다.In addition, the content of the solid raw material in the present invention, as described above, may be included in 20 to 50 parts by weight based on the slurry composition.
본 발명의 혼합물에 유기첨가제를 첨가하는 단계에서 유기첨가제로는 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있으며, 바람직하게는 상기를 모두 사용하는 것이 좋다. 상기 분산제, 소포제 및 유기결합제는 앞에서 전술한 종류를 제한없이 사용할 수 있으며, 그 함량도 전술한 바와 같다. In the step of adding the organic additive to the mixture of the present invention, as the organic additive, one or more selected from the group consisting of a dispersant, an antifoaming agent and an organic binder may be used, and preferably all of the above are used. The dispersant, the antifoaming agent and the organic binder may be used without limitation the above-described kind, the content thereof is as described above.
본 발명의 혼합물은 유기첨가제 외에 pH 조절제를 추가로 첨가할 수 있다.The mixture of the present invention may further add a pH adjusting agent in addition to the organic additive.
본 발명에서 교반은 혼합물에 포함되는 성분들을 첨가하는 과정 또는/및 모두 첨가된 상태에서 이루어질 수 있으며, 교반기를 사용하여 수행할 수 있다. 상기 사용되는 교반기의 종류로는, 예를 들면, 일반적인 교반기(Mechanical stirrer), 이중나선 교반기(Double helix mixer), 고속 유화기, 균질기(Homogenizer), 혼합기(High shear blender) 또는 초음파 균질기(Ultrasonic homogenizer) 등을 사용할 수 있으며, 투입되는 원료의 양에 따라 선택적으로 사용할 수 있다.In the present invention, the stirring may be performed in the process of adding the components included in the mixture, and / or in a state where all of them are added, and may be performed using a stirrer. Examples of the type of agitator used include, for example, a general mechanical stirrer, a double helix mixer, a high speed emulsifier, a homogenizer, a high shear blender, or an ultrasonic homogenizer. Ultrasonic homogenizer) may be used and may be selectively used depending on the amount of raw material to be added.
본 발명에서 분쇄를 수행함으로써, 고체원료 입자는 슬러리 내에 더욱 균질하게 분산될 수 있다. 본 발명에서는 상기 분쇄 시 필요에 따라 추가의 소포제 및 분산제를 첨가할 수 있으며, pH 조절제를 사용하여 더욱 안정된 슬러리를 제조할 수 있다. By carrying out the grinding in the present invention, the solid raw material particles can be dispersed more homogeneously in the slurry. In the present invention, additional defoaming and dispersing agents may be added as necessary during the grinding, and a more stable slurry may be prepared using a pH adjuster.
본 발명에서는 분쇄효과를 향상시키고, 건식 분쇄 시 발생하는 입자의 날림 등의 문제를 해결하기 위하여 습식 분쇄(Wet milling) 방법을 사용할 수 있다. In the present invention, a wet milling method may be used to improve the grinding effect and to solve problems such as blowing of particles generated during dry grinding.
본 발명에서는 분쇄기를 사용하여 분쇄를 수행하며, 이 때, 사용되는 분쇄기의 종류로는, 예를 들면, 롤러밀(Roller mill), 볼밀(Ball mill), 마모밀(Attrition mill), 프레너터리 밀(Planertary mill), 비드밀(Bead mill) 또는 고에너지 비드밀(High energy bead mill) 등을 사용할 수 있다. 본 발명에서는 바람직하게 고에너지 비드밀을 사용할 수 있다. In the present invention, the pulverization is performed using a pulverizer, in which the kind of pulverizer used is, for example, a roller mill, a ball mill, an attrition mill, a preener A mill mill, bead mill, or high energy bead mill may be used. In the present invention, a high energy bead mill can be preferably used.
상기 고에너지 비드밀을 사용할 경우, 분쇄 및 균질화할 때 분쇄미드질인 비드(Bead)의 충진량은 분쇄용기의 부피 기준으로 60% 내지 80%가 바람직하다. 분쇄매질인 비드는 강도와 안정성이 뛰어난 이트리아 안정화 지르코니움 볼(Yttria stabilized zirconia bead)을 사용할 수 있다. 볼의 크기는 0.3 ㎜ 내지 1.25 ㎜ 인 것이 좋다. In the case of using the high energy bead mill, the filling amount of the bead (grind), which is the pulverization medium, is preferably 60% to 80% based on the volume of the grinding container when grinding and homogenizing. Beads, which are grinding media, may use Yttria stabilized zirconia beads, which are excellent in strength and stability. The size of the ball is preferably 0.3 mm to 1.25 mm.
본 발명에서 분쇄는 균질한 슬러리를 제조하기 위하여 2 번 이상 수행할 수 있다. 분쇄 후 다음의 분쇄를 수행하기 위하여 슬러리(혼합물)에 분산제 및 소포제를 첨가하여 슬러리의 유동성을 조절하여 펌프를 통한 이송을 용이하게 할 수 있다.In the present invention, the grinding may be performed two or more times to produce a homogeneous slurry. After pulverization, a dispersant and an antifoaming agent may be added to the slurry (mixture) in order to perform the next pulverization, thereby controlling the fluidity of the slurry to facilitate the transfer through the pump.
또한, 최종 분쇄 전에는 유기결합제를 첨가하여 슬러리가 균일하게 혼합되도록 할 수 있다.In addition, prior to final grinding, an organic binder may be added to uniformly mix the slurry.
분쇄가 완료된 후, 분쇄된 혼합물 내의 입자의 평균직경은 3 ㎛ 이하일 수 있으며, 바람직하게는 1 ㎛ 이하일 수 있다. After the grinding is complete, the average diameter of the particles in the ground mixture may be 3 μm or less, preferably 1 μm or less.
분쇄가 완료된 슬러리는 분산제, 소포제 또는 추가의 용매를 사용하여 농도 및 점도 등의 특정을 조절할 수 있다. The pulverized slurry can be dispersed, defoamer, or additional solvent to adjust the specificity such as concentration and viscosity.
한편, 고체원료 입자의 입경이 수 마이크론 이하이면, 분쇄과정을 생략할 수도 있다. On the other hand, if the particle size of the solid raw material particles are several microns or less, the grinding process may be omitted.
본 발명의 슬러리 조성물의 제조는 슬러리 조성물을 제조한 뒤, 슬러리에 포함된 이물질을 제거하는 단계를 추가로 포함할 수 있다. 상기 단계를 통하여, 분무 성형 시 노즐 막힘 등의 원인이 될 수 있는 이물질이나 덩어리진 원료를 제거할 수 있다. 상기 이물질의 제거는 체거름을 통해 수행될 수 있다. Preparation of the slurry composition of the present invention may further comprise the step of removing the foreign matter contained in the slurry after preparing the slurry composition. Through the above step, it is possible to remove the foreign matter or agglomerated raw materials that may cause the nozzle clogging during spray molding. Removal of the foreign matter may be carried out through sieving.
본 발명에 의해 제조된 최종 슬러리 조성물의 유동성에 대한 특별한 제한은 없으며, 펌프로 이송이 가능하다면 어떤 점도도 가능하다.There is no particular limitation on the flowability of the final slurry composition produced by the present invention, and any viscosity is possible if it can be transferred to a pump.
본 발명 슬러리 조성물을 건조시켜 고체 입자로 제조하는 단계에서 슬러리 조성물의 건조는 분무 건조기를 사용할 수 있으며, 바람직하게는 분무 건조기를 사용하여 수행될 수 있다. Drying of the slurry composition in the step of drying the slurry composition of the present invention into solid particles may be performed using a spray dryer, and preferably, may be performed using a spray dryer.
상기 단계는 슬러리 조성물을 펌프를 이용해 분무 건조기로 이송시킨 뒤, 상기 이송된 슬러리 조성물을 펌프 등을 통해 분무 건조기 내로 분사하여 고체 입자를 형성한다. 상기 펌프로 이송가능한 슬러리의 점도는 특별히 제한되지 않으나, 300 cP 이상으로 하여 분사할 수 있다. In the step, the slurry composition is transferred to a spray dryer using a pump, and then the transferred slurry composition is sprayed into the spray dryer through a pump or the like to form solid particles. The viscosity of the slurry transferable to the pump is not particularly limited, but may be sprayed at 300 cP or more.
본 발명에서 분무 건조기 내에서 흡수제를 성형하기 위한 분무 건조기의 운전조건은 이 분야에서 일반적으로 사용되는 운전조건을 적용할 수 있다.Operating conditions of the spray dryer for molding the absorbent in the spray dryer in the present invention may apply the operating conditions generally used in this field.
또한, 본 발명에서 상기 슬러리 조성물의 분무방식은 특별히 제한되지 않으며, 예를 들면, 가압노즐을 사용하여 건조용 공기의 흐름과 반대 방향으로 분사하는 향류식 분무방식을 사용할 수 있다. 즉, 분무 건조기에서 흡수제의 평균입자크기를 제어하기 위해 건조기 내부에서 분사된 입자들의 체류시간을 증가시키기 위해 건조기 하부에 가압노즐을 설치한 향류식 분무 방식을 사용할 수 있다.In addition, in the present invention, the spraying method of the slurry composition is not particularly limited, and for example, a countercurrent spraying method may be used in which the spray nozzle is sprayed in a direction opposite to the flow of drying air. That is, in order to control the average particle size of the absorbent in the spray dryer, a countercurrent spray method may be used in which a pressurized nozzle is installed at the bottom of the dryer to increase the residence time of the particles sprayed in the dryer.
슬러리 조성물의 농도, 점도, 분산 정도, 슬러리의 주입 압력, 주입양, 분무 건조기의 건조용량 및 온도 등에 의해 흡수제 입자의 형상, 입자크기, 입자분포 및 흡수제 조직 등이 영향을 받으므로, 상기 분무 건조기의 구조 및 분무 형태를 알맞게 조절하여 사용할 수 있다.Since the shape, particle size, particle distribution and structure of the absorbent of the slurry composition are affected by the concentration, viscosity, dispersion degree, injection pressure of the slurry, injection amount, drying capacity and temperature of the spray dryer, the spray dryer The structure and spray form of can be adjusted to suit.
본 발명에서 분무 건조기의 주입압력은 5 내지 15 kg/cm2, 가압노즐의 내경은 0.4 내지 1.6 mm, 건조기의 입구온도는 260 내지 300℃ 및 출구온도는 90 내지 150℃일 수 있다.In the present invention, the injection pressure of the spray dryer is 5 to 15 kg / cm 2 , the inner diameter of the pressure nozzle is 0.4 to 1.6 mm, the inlet temperature of the dryer may be 260 to 300 ℃ and the outlet temperature may be 90 to 150 ℃.
상기 단계에서 제조되는 고체 입자의 입자 크기 분포는 30 내지 330 ㎛인 것이 바람직하다.The particle size distribution of the solid particles produced in the step is preferably 30 to 330 ㎛.
본 발명에서 단계 (B)는 단계 (A)에서 제조된 고체 입자를 건조 소성시켜 흡수제를 제조하는 단계이다. In the present invention, step (B) is a step of drying and calcining the solid particles prepared in step (A) to prepare an absorbent.
상기 단계 (B)는 고체 입자를 건조한 후, 소성시켜 흡수제를 제조할 수 있다.In step (B), the solid particles may be dried and then fired to prepare an absorbent.
본 발명에서 건조는 성형된 고체 입자를 110 내지 150℃의 환류 건조기에서 2시간 이상 건조하여 수행할 수 있다. 이 때, 건조는 공기 분위기에서 이루어 진다.Drying in the present invention may be carried out by drying the molded solid particles in a reflux dryer of 110 to 150 ℃ or more for 2 hours. At this time, drying is performed in an air atmosphere.
상기 건조가 완료되면, 건조된 입자를 고온 소성로에 넣고 0.5 내지 10℃/min의 속도로 최종 소성 온도를 350 내지 1000℃까지 올린 뒤, 2 시간 이상 동안 소성시킨다. 본 발명에서는 최종 소성 온도에 이르기까지 2 단계 이상의 정체 온도에서 각 30 분 이상의 정체 구간을 부여한 뒤 소성될 수 있다. When the drying is completed, the dried particles are placed in a high temperature firing furnace to raise the final firing temperature to 350 to 1000 ° C. at a rate of 0.5 to 10 ° C./min, and then fired for 2 hours or more. In the present invention, after the stagnation section of each 30 minutes or more at a stagnation temperature of two or more steps up to the final firing temperature may be fired.
본 발명에서 소성은 박스형로(muffle furnace), 튜브형로(tubular furnace) 또는 킬른(kiln) 등의 소성로를 사용할 수 있다. In the present invention, firing may use a firing furnace such as a muffle furnace, a tubular furnace, or a kiln.
또한, 본 발명에서 소성은 공기, 질소, 헬룸, 수소, 수중기 또는 환원가스 분위기하에서 수행될 수 있으며, 이 때 분위기 가스의 유량은 60 ml/min 이상일 수 있다. In addition, in the present invention, the firing may be performed in an atmosphere of air, nitrogen, hellum, hydrogen, water, or reducing gas, and the flow rate of the atmospheric gas may be 60 ml / min or more.
본 발명에서는 상기 소성에 의해 슬러리의 제조 시 투입된 유기첨가제(분산제, 소포제 및 유기결합제)는 연소되고, 원료물질들 간의 결합이 이루어져 입자의 강도가 향상하게 된다.In the present invention, the organic additives (dispersant, antifoaming agent and organic binder) introduced during the preparation of the slurry by the firing are burned, and the strength of the particles is improved by bonding between the raw materials.
또한, 본 발명은 활성성분, 지지체, 무기결합제 및 In addition, the present invention is an active ingredient, a support, an inorganic binder and
전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 흡수제에 관한 것이다. A carbon dioxide absorbent comprising a metal oxide containing a transition metal.
본 발명에 따른 흡수제는 형상은 구형일 수 있다. 상기 형상이 구형이 아닌 도우넛 형 또는 홈이 파인 형태일 경우, 입자의 마모손실이 커지게 된다.The absorbent according to the invention may be spherical in shape. If the shape is not spherical, but donut-shaped or grooved, the wear loss of the particles is increased.
그리고, 상기 흡수제의 입자크기 및 입자분포는, 예를 들면, 각각 100 내지 150 ㎛ 및 30 내지 303 ㎛ 일 수 있다.The particle size and particle distribution of the absorbent may be, for example, 100 to 150 μm and 30 to 303 μm, respectively.
본 발명의 흡수제의 충진밀도는, 예를 들면, 0.6 내지 2.0 g/cc 일 수 있다. The packing density of the absorbent of the present invention may be, for example, 0.6 to 2.0 g / cc.
본 발명에서 내마모도는 마모지수(AI)로 표현되며, 상기 마모지수가 낮을수록 내마모도가 좋다는 것을 의미한다. 상기 흡수제의 내마모도는, 예를 들면, 40%이하일 수 있으며, 바람직하게는 30% 이하일 수 있다. 상기 내마모도가 40%를 초과하면, 미세분말 등이 많이 발생하여 이산화탄소 제거 공정 등에 사용하기 어려워질 수 있다. 상기 내마모도의 하한은 특별히 제한되지 않으나, 0%를 초과하는 것이 좋다. In the present invention, the wear resistance is represented by the wear index (AI), the lower the wear index means that the wear resistance is better. The wear resistance of the absorbent may be, for example, 40% or less, and preferably 30% or less. When the wear resistance exceeds 40%, a lot of fine powder may be generated, which may make it difficult to use the carbon dioxide removal process. The lower limit of the wear resistance is not particularly limited, but is preferably more than 0%.
본 발명에서 흡수제의 흡수능력, 예를 들면, 3 내지 10 중량% 일 수 있다.In the present invention, the absorbent capacity of the absorbent may be, for example, 3 to 10% by weight.
또한, 본 발명의 흡수제의 재생성능은, 예를 들면, 70% 이상일 수 있으며, 바람직하게는 80% 이상일 수 있다. 상기 재생성능의 상한은 100%일 수 있으며, 상기 범위에서 재생성능이 우수하여 흡수제를 여러 번 재사용 할 수 있다.In addition, the regeneration performance of the absorbent of the present invention may be, for example, 70% or more, preferably 80% or more. The upper limit of the regeneration performance may be 100%, the regeneration performance is excellent in the above range can be reused the absorbent many times.
또한, 본 발명은 알칼리 금속탄산염, 알칼리 금속 중탄산염, 및 알칼리 금속 수산화물로 이루어진 그룹 중에서 선택된 하나 이상의 활성성분 5 내지 40 중량부;In addition, the present invention is 5 to 40 parts by weight of at least one active ingredient selected from the group consisting of alkali metal carbonate, alkali metal bicarbonate, and alkali metal hydroxide;
알칼리 토금속 산화물 및 알칼리 토금속 수산화물로 이루어진 그룹 중에서 선택된 하나 이상의 추가 활성성분 0 내지 40 중량부;0 to 40 parts by weight of one or more additional active ingredients selected from the group consisting of alkaline earth metal oxides and alkaline earth metal hydroxides;
알루미나 및 하이드로탈사이트로 이루어진 그룹 중에서 선택된 하나 이상의 지지체 30 내지 70 중량부; 30 to 70 parts by weight of at least one support selected from the group consisting of alumina and hydrotalcite;
칼슘실리케이트, 벤토나이트, 및 보에마이트로 이루어진 그룹 중에서 선택된 하나 이상의 무기결합제 5 내지 30 중량부; 및5 to 30 parts by weight of at least one inorganic binder selected from the group consisting of calcium silicate, bentonite, and boehmite; And
전이금속을 함유하는 금속산화물 1 내지 20 중량부를 포함하는 이산화탄소 흡수제에 관한 것이다. It relates to a carbon dioxide absorbent comprising 1 to 20 parts by weight of a metal oxide containing a transition metal.
또한, 본 발명은 알칼리 금속탄산염 및 알칼리 금속 중탄산염으로 이루어진 그룹 중에서 선택된 하나 이상의 활성성분 30 내지 50 중량부;In addition, the present invention is 30 to 50 parts by weight of at least one active ingredient selected from the group consisting of alkali metal carbonate and alkali metal bicarbonate;
알루미나 및 마그네시아로 이루어진 그룹 중에서 선택된 하나 이상의 지지체 20 내지 50 중량부; 20 to 50 parts by weight of at least one support selected from the group consisting of alumina and magnesia;
칼슘실리케이트, 벤토나이트, 및 보에마이트로 이루어진 그룹 중에서 선택된 하나 이상의 무기결합제 10 내지 25 중량부; 및10 to 25 parts by weight of at least one inorganic binder selected from the group consisting of calcium silicate, bentonite, and boehmite; And
전이금속을 함유하는 금속산화물 1 내지 30 중량부를 포함하는 이산화탄소 흡수제에 관한 것이다.. It relates to a carbon dioxide absorbent comprising 1 to 30 parts by weight of a metal oxide containing a transition metal.
또한 본 발명에서는 일산화탄소를 이산화탄소 및 수소로 전환시키는 동시에 이산화탄소를 흡수제에 포집하는 제 1 단계; 및In addition, the present invention comprises the first step of converting carbon monoxide into carbon dioxide and hydrogen at the same time to capture the carbon dioxide in the absorbent; And
상기 이산화탄소가 포집된 흡수제를 재생하는 제 2 단계를 포함하는 이산화탄소 분리 방법에 있어서, In the carbon dioxide separation method comprising a second step of regenerating the absorbent trapped by the carbon dioxide,
상기 흡수제는 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물을 포함하는 것을 특징으로 하는 이산화탄소 분리 방법을 제공할 수 있다.  The absorbent may provide a carbon dioxide separation method comprising a metal oxide containing an active ingredient, a support, an inorganic binder, and a transition metal.
상기 이산화탄소 분리 방법에서 사용되는 이산화탄소 흡수제는 전술한 흡수제 성분을 포함할 수 있다. The carbon dioxide absorbent used in the carbon dioxide separation method may include the aforementioned absorbent component.
가스화기 등에서 생성된 합성가스는 일산화탄소 및 수소를 주성분으로 포함한다.Syngas produced in a gasifier or the like contains carbon monoxide and hydrogen as main components.
상기 제 1 단계에서 합성가스 내의 일산화탄소는 물과 반응하여 하기 반응식 1과 같이 이산화탄소 및 수소로 전환되게 된다. In the first step, carbon monoxide in the synthesis gas reacts with water and is converted into carbon dioxide and hydrogen as shown in Scheme 1 below.
<반응식 1><Scheme 1>
CO + H2O → CO2 + H2 CO + H 2 O → CO 2 + H 2
상기 일산화탄소의 전환은 촉매에 의해 활성화 될 수 있다. 여기서, 상기 촉매는 이 분야에서 사용되는 일반적인 촉매를 사용할 수 있다.The conversion of carbon monoxide may be activated by a catalyst. Here, the catalyst may be used a general catalyst used in this field.
상기 반응에 의해 생성된 이산화탄소는 흡수제에 의해 포집될 수 있다. Carbon dioxide produced by the reaction may be captured by the absorbent.
본 발명에서 상기 제 1 단계는 150 내지 300℃에 수행될 수 있다. In the present invention, the first step may be performed at 150 to 300 ° C.
제 2 단계는 이산화탄소가 포집된 흡수제를 재생하는 단계로, 상기 재생은 흡수제를 수증기와 반응시켜 수행될 수 있다. The second step is to regenerate the absorbent trapped carbon dioxide, the regeneration may be carried out by reacting the absorbent with water vapor.
상기 흡수제에 수증기 및 추가의 열원을 공급하면 흡수제 내의 이산화탄소는 분리되며, 상기 흡수제는 재생된다. Feeding the absorbent with water vapor and additional heat sources separates the carbon dioxide in the absorbent and regenerates the absorbent.
본 발명에서 재생된 흡수제는 이산화탄소를 포집하는 제 1단계의 공정을 재 수행할 수 있다.The absorbent regenerated in the present invention may be carried out again in the first step of capturing carbon dioxide.
또한, 본 발명에서는 배가스 중에 포함된 이산화탄소를 흡수제로 포집하는 단계; 및In addition, the present invention comprises the steps of collecting the carbon dioxide contained in the exhaust gas as an absorbent; And
상기 포집된 이산화탄소를 재생하는 단계를 포함하는 이산화탄소 분리 방법에 있어서, In the carbon dioxide separation method comprising the step of regenerating the collected carbon dioxide,
상기 흡수제는 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 분리 방법을 제공할 수 있다.The absorbent may provide a carbon dioxide separation method comprising a metal oxide containing an active ingredient, a support, an inorganic binder, and a transition metal.
본 발명에서 배가스 중에 포함된 이산화탄소를 흡수제로 포집하는 단계는 50 내지 150℃에 수행될 수 있다.In the present invention, the step of collecting the carbon dioxide contained in the exhaust gas as an absorbent may be performed at 50 to 150 ℃.
이하, 본 발명의 일 예에 따른 이산화탄소 흡수제의 제조방법을 첨부한 도면을 따라 상세하게 설명한다.Hereinafter, a method of manufacturing a carbon dioxide absorbent according to an embodiment of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명에 따른 이산화탄소 흡수제를 제조하는 과정을 나타낸 공정도이다.1 is a process chart showing a process for preparing a carbon dioxide absorbent according to the present invention.
도 1에 나타난 바와 같이, 상기 흡수제의 제조는 고체원료를 용매 등에 혼합하여 슬러리를 제조하는 단계(10), 제조된 슬러리를 분무 건조시켜 고체 입자(일차 제조된 흡수제)로 제조하는 단계(20) 및 고체 입자를 건조 소성시켜 최종 흡수제를 제조하는 단계(30)를 포함할 수 있다.As shown in FIG. 1, in the preparation of the absorbent, a step of preparing a slurry by mixing a solid material with a solvent (10) and spray drying the prepared slurry to prepare solid particles (primary manufactured absorbent) (20) And drying 30 the solid particles to prepare a final absorbent.
본 발명의 도 2는 고체원료 및 용매의 혼합물을 슬러리로 제조하는 과정을 나타낸 공정도이다.Figure 2 of the present invention is a process chart showing a process for producing a mixture of a solid raw material and a solvent as a slurry.
도 2에 나타난 바와 같이, 슬러리의 제조는 고체원료를 물(용매)에 혼합하여 혼합물을 제조하는 단계(11), 혼합물에 유기첨가제 등을 첨가하는 단계(12), 상기 혼합물을 교반하는 단계(13), 고체원료를 분쇄하고 균일화하는 단계(14) 및 슬러리에 포함된 이물질을 제거하는 단계(15)로 이루어진다.As shown in Figure 2, the slurry is prepared by mixing a solid material in water (solvent) to prepare a mixture (11), adding an organic additive, etc. to the mixture (12), stirring the mixture ( 13) pulverizing and homogenizing the solid raw material 14 and removing the foreign matter contained in the slurry (15).
여기서, 유기첨가제로는 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상을 사용할 수 있으며, 바람직하게는 모두를 사용할 수 있다. Here, as the organic additive, one or more selected from the group consisting of a dispersant, an antifoaming agent, and an organic binder may be used, and preferably all may be used.
도 3은 슬러리를 분무건조하여 고체 입자로 성형하는 과정을 나타낸 공정도이다.3 is a process chart showing a process of forming a solid particle by spray drying the slurry.
도 3에 나타난 바와 같이, 슬러리를 분무건조하여 고체 입자를 성형하는 단계는 슬러리를 분무 건조기로 이송하는 단계(21) 및 이송된 슬러리를 분무 건조기 내로 분사하는 단계(22)로 이루어진다.As shown in FIG. 3, the spray drying of the slurry to form the solid particles comprises a step 21 of transferring the slurry to the spray dryer and a step 22 of spraying the transferred slurry into the spray dryer.
도 4는 분무건조법으로 성형된 고체 입자를 건조 소성시켜 흡수제로 제조하는 과정을 나타낸 공정도이다.Figure 4 is a process chart showing a process of manufacturing the absorbent by dry baking the solid particles molded by the spray drying method.
도 4에 나타난 바와 같이, 분무 건조단계에서 1차 건조된 고체 입자(흡수제)는 건조과정(31)을 거친 후, 소성과정(32)을 통해 최종 흡수제로 제조된다.As shown in FIG. 4, the solid particles (absorbent) firstly dried in the spray drying step are prepared through the drying process 31 and then the final absorbent through a calcination process 32.
실시예 Example
<실시예에 제조되는 흡수제의 물성 측정><Measurement of Physical Properties of Absorbents Prepared in Examples>
1) 흡수제의 형상 측정1) Measurement of shape of absorbent
흡수제의 형상은 육안, 산업용 현미경 또는 전자주사 현미경(SEM)을 이용하여 측정하였다.The shape of the absorbent was measured using the naked eye, an industrial microscope or an electron scanning microscope (SEM).
2) 평균 입자 크기 및 입자 크기 분포의 측정2) Measurement of Average Particle Size and Particle Size Distribution
흡수제의 평균 입자 크기 및 입자 크기 분포는 표준체 방법인 ASTM E-11에 따라 측졍하였다. 이 때, 10g의 흡수제 시료를 시브쉐이커(sieve shaker)에 30분 동안 체거름한 후 제시된 계산방법에 따라 평균입자 크기 및 크기분포를 계산하였다. Average particle size and particle size distribution of the absorbent were measured according to the standard method ASTM E-11. At this time, 10 g of the absorbent sample was sieved in a sieve shaker for 30 minutes, and then the average particle size and size distribution were calculated according to the calculation method presented.
3) 충진 밀도 측정3) Fill density measurement
흡수제의 충진 밀도는 표준 규격인 ASTM D 4164-88에서 제시한 장치 및 방법에 따라 측정하였다. The packing density of the absorbent was measured according to the apparatus and method presented in the standard ASTM D 4164-88.
4) 비표면적(BET) 및 기공부피 측정4) Specific surface area (BET) and pore volume measurement
흡수제의 비표면적 및 기공부피는 각각 비표면적 측정기(quantachrome multi BET surface area meter)와 부피 측정기(Hg porosity meter)를 사용하여 측정하였다.The specific surface area and pore volume of the absorbent were measured using a quantachrome multi BET surface area meter and an Hg porosity meter, respectively.
5) 내마모도(AI) 측정5) Wear Resistance (AI) Measurement
흡수제의 내마모도는 ASTM D 5757-95를 준용하여 제작된 내마모 측정장치(3-hole attrition tester)를 이용하여 규격에서 제시하는 시험방법과 순서에 따라 측정하였다 The wear resistance of the absorbent was measured in accordance with the test method and procedure given in the specification using a 3-hole attrition tester manufactured according to ASTM D 5757-95.
ASTM에서 제시한 방법에 따라 계산되는 마모 지수(AI)는 10 slpm (분당 표준 리터) 유량으로 5시간 동안 마모관에서 마모에 의해 발생되어 포집된 미분말의 초기 시료량(50g)의 비율로 나타낸 것이다. (유동층 또는 고속 유동층)공정의 요구 조건중 중요한 지표의 하나로 (유동층)공정에서는 30% 미만을 선호한다. 내마모도로 표현되는 마모지수(AI)는 그 값이 작을수록 마모강도가 높음을 나타낸다.The wear index (AI), calculated according to the method proposed by ASTM, is expressed as the ratio of the initial sample amount (50 g) of fine powder generated by wear in a wear tube for 5 hours at a flow rate of 10 slpm (standard liters per minute). One of the important indicators of the (fluidized bed or high velocity fluidized bed) process is less than 30% in the fluidized bed process. The wear index (AI) expressed in wear resistance indicates that the smaller the value, the higher the wear strength.
6) 이산화탄소 흡수능력 및 재생성능 측정6) Carbon dioxide absorption capacity and regeneration performance measurement
상기 제조된 흡수제의 흡수반응과 재생반응은 가압 열중량 분석법(Thermogravimetric analysis)을 이용하여 측정하였다. 사용한 시료의 무게와 총유량은 실시예 1에서 각각 10mg과 50ml/min이며, 실시예 2 내지 4에서는 10mg과 60ml/min이다. The absorption and regeneration reactions of the prepared absorbents were measured using pressurized thermogravimetric analysis. The weight and total flow rate of the sample used were 10 mg and 50 ml / min in Example 1, respectively, and 10 mg and 60 ml / min in Examples 2 to 4, respectively.
고온용 활성성분을 사용한 실시예 1의 경우, CO2 흡수반응은 200℃ 및 20 bar에서 측정하였으며, 재생반응은 400℃ 및 20 bar에서 측정하였다. In Example 1 using the active ingredient for high temperature, the CO 2 absorption reaction was measured at 200 ℃ and 20 bar, the regeneration reaction was measured at 400 ℃ and 20 bar.
이 때, 흡수반응에 사용한 가소 조성은 부피 백분율로 이산화탄소 37%, 증기로서 물 10% 및 밸런스 가스로서 질소 57%이다. 재생반응에 사용한 가스 조성은 증기로서 물 10%를 포함하는 질소이다. At this time, the calcined composition used for the absorption reaction was 37% carbon dioxide in volume percentage, 10% water as steam, and 57% nitrogen as balance gas. The gas composition used for the regeneration reaction is nitrogen containing 10% of water as steam.
저온용 활성성분을 사용한 실시예 2 내지 4의 경우, CO2 흡수반응은 70℃에서 측정하였으며, 재생반응은 140℃에서 측정하였다. In Examples 2 to 4 using the active ingredient for low temperature, the CO 2 absorption reaction was measured at 70 ℃, regeneration reaction was measured at 140 ℃.
이 때, 흡수반응에 사용한 가소 조성은 부피 백분율로 이산화탄소 14.4%, 산소 5.4%, 증기로서 물 10% 및 밸런스 가스로서 질소 70.2%이다. 재생반응에 사용한 가스 조성은 질소이다.At this time, the calcined composition used in the absorption reaction was 14.4% carbon dioxide, 5.4% oxygen, 10% water as steam, and 70.2% nitrogen as balance gas. The gas composition used for the regeneration reaction is nitrogen.
흡수제의 흡수반응 및 재생반응은 베치 유동층(2 cm ID)반응기를 이용하여 최소 1.5사이클(흡수-재생-흡수)을 수행하여 흡수제의 첫 번째, 두 번째 CO2 흡수 능력을 평가하였으며 흡수제의 재생성능을 첫 번째 흡수 능력에 대한 두 번째 흡수능력의 비를 백분율로 표시하였다.Absorption and regeneration of the absorbent were performed by using a Batch fluidized bed (2 cm ID) reactor for at least 1.5 cycles (absorption-regeneration-absorption) to evaluate the absorbent's first and second CO 2 absorption capacity. Denotes the ratio of the second absorbent capacity to the first absorbent capacity as a percentage.
7) 이산화황 내피독성 평가7) Sulfur dioxide endothelial toxicity evaluation
상기 제조된 흡수제의 이산화황 내피독성은 열 중량분석기를 이용하여 최소 4사이클(흡수-재생-흡수)을 수행하였다.Sulfur dioxide endothelial toxicity of the prepared absorbents was performed using a thermogravimetric analyzer at least 4 cycles (absorption-regeneration-absorption).
SO2 영향 평가를 위해 첫 번째 흡수반응은 SO2 가스가 없는 조건에서 수행하고 2번째 흡수반응에서 4번째 흡수반응은 40 ppm의 SO2 가스를 포함하는 조건에서 CO2 흡수능을 평가하여 SO2가 포함하지 않는 첫 번째 흡수능과 4번째 흡수능과 비교하였다.The first absorption reaction to SO 2 Assessment is carried out in the absence of the SO 2 gas and 2 in the second absorption reaction fourth absorption reaction is Rate CO 2 absorption capacity in terms containing SO 2 gas of 40 ppm and SO 2 is It was compared with the first absorption capacity and fourth absorption capacity not included.
실시예 1Example 1
총 질량이 8 kg이 되도록 고온용 활성성분으로 산화마그네슘, 수산화마그네슘, 산화칼슘, 수산화칼슘, 탄산칼륨, 중탄산칼륨, 탄산나트륨, 중탄산나트륨 및 수산화나트륨 20 내지 50 중량부, 지지체로 감마알루미나(γ-Al2O3) 및 하이드로탈사이트 20 내지 60 중량부, 무기결합제로 칼슘 실리케이트, 벤토나이트 및 유사 보에마이트 5 중량부 내지 20 중량부 및 첨가제로 이산화티탄 5 내지 20 중량부를 사용하여 고체원료를 제조하였다.Magnesium oxide, magnesium hydroxide, calcium oxide, calcium hydroxide, potassium carbonate, potassium bicarbonate, sodium carbonate, sodium bicarbonate and sodium hydroxide 20 to 50 parts by weight, so that the total mass is 8 kg, gamma alumina (γ-Al2O3) as a support And 20 to 60 parts by weight of hydrotalcite, 5 to 20 parts by weight of calcium silicate, bentonite and similar boehmite as inorganic binders, and 5 to 20 parts by weight of titanium dioxide as an additive.
물에 고체원료를 교반기로 교반하면서 첨가하여 혼합 슬러리를 제조하였다. 여기서, 혼합 슬러리 100 중량부에 대하여, 고체원료의 함량은 약 25 중량부였다. 분산제는 고체물질의 용이한 혼합과 분산을 위해 원료를 투입하기 전에 투입하거나, 원료의 순차적인 투입과정에서 혼합 슬러리의 점도, 교반의 정도에 따라 소량 투입하였다. 소포제는 분산제 투입 후 또는 슬러리의 교반과정에서 발생하는 기포의 정도에 따라 소량 투입하였다.A solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry. Here, the content of the solid raw material was about 25 parts by weight based on 100 parts by weight of the mixed slurry. The dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials. The antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant was added or during the stirring of the slurry.
상기 슬러리를 고체원료 중 상대적으로 비중이 크거나 크기가 큰 입자들의 침강을 방지하기 위해 이중나선 교반기를 이용해 10000 내지 25000 rpm의 속도로 10분 이상 충분히 교반하였다.The slurry was sufficiently stirred for 10 minutes or more at a speed of 10000 to 25000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
교반 뒤, 슬러리를 2회 이상 고에너지 비드밀을 이용하여 고체원료 입자를 분쇄하고 균질화하여 최종 슬러리를 제조하였다. 이 때, 슬러리의 점도, 고체원료의 농도 및 pH등 슬러리의 특성을 제어하거나 작업의 용이성을 위해 추가의 물, 분산제, 소포제 및 pH 조절제(유기 아민)를 첨가하였다. 유기 결합제로 폴리에틸글리콜(Poly ethyl glycol)을 슬러리에 균질하게 분산되도록 최종 분쇄 전에 첨가하였다.After stirring, the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry. At this time, additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid material, and the pH, or to facilitate the operation. Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
상기와 같은 슬러리의 특성 제어를 통해 얻어진 최종 슬러리는 제조과정에서 유입될 수 있는 이물질을 제거하기 위해서 체거름하였다.The final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign matter that can be introduced during the manufacturing process.
상기 제조된 슬러리를 공기분위기의 건조기에서 120℃로 2시간 이상 건조한 후, 박스형 소성로(Muffle Furnace)에서 최종 소성온도 500℃ 내지 650℃까지 0.5 내지 10℃/min의 승온 속도로 승온한 후 최종 온도에서 2시간 이상 유지하여 최종 흡수제를 제조하였다.After drying the prepared slurry for 2 hours or more at 120 ℃ in a dryer of an air atmosphere, the final temperature after raising the temperature at a heating rate of 0.5 to 10 ℃ / min to a final firing temperature 500 ℃ to 650 ℃ in a Muffle Furnace (Muffle Furnace) The final absorbent was prepared by maintaining at least for 2 hours.
슬러리 제조과정에서 첨가된 유기 첨가제와 유기 결합제를 효과적으로 제거하기 위하여 최종 소성온도 도달 전 200℃, 400℃ 및 500℃에서 각 1시간씩 유지하였다. In order to effectively remove the organic additives and the organic binder added during the slurry manufacturing process, each one hour was maintained at 200 ° C., 400 ° C. and 500 ° C. before reaching the final firing temperature.
상기 흡수제의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 1에 나타내었다.The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 1 below.
표 1
A B C D F G H I J K L M
MgO(중량부) 15 15 20
Mg(OH)2(중량부) 30
CaO(중량부) 20
Ca(OH)2(중량부) 20
K2CO3(중량부) 15 15 35 25
KHCO3(중량부) 25
Na2CO3(중량부) 10 10 10 10 25
NaHCO3(중량부) 25
NaOH(중량부) 25
γ-Alumina(중량부) 43 43 43 43 43 43 40 40 40 40
MgO/Al2O3(중량부) 43 33 17 20 20 20 20
칼슘 실리케이트(중량부) 10 10 7 10 10 10 10
벤토나이트(중량부) 5 5 5 5 5 5 5 5 5 5 5 5
유사보에마이트-A(중량부) 5 5 5 5 5 5 5 5
유사보에마이트-B(중량부) 5 5 5 5
TiO2(중량부) 7 7 5 5 7 7 7 7 5 5 5 5
ZnO(중량부) 10
총고체원료(중량부) 100 100 100 100 100 100 100 100 100 100 100 100
비이온계분산제(중량부) 0.01 ~ 0.1
음이온계분산제(중량부) 0.1 ~ 3
소포제(중량부) 0.01 ~ 0.1
유기결합제(중량부) 1.0 ~ 5.0
슬러리농도(중량부) 25.1 27.5 29.8 25.7 27.1 25.5 30.5 29.8 26.2 32.9 30.4 27.0
슬러리 pH 11.98 11.18 11.24 10.93 11.71 10.88 10.66 11.04 8.98 10.67 11.68 8.66
점도(cP) 56000 56000 2160 1300 97000 21000 11100 23300 16100 54000 30960 30130
Table 1
A B C D F G H I J K L M
MgO (parts by weight) 15 15 20
Mg (OH) 2 (parts by weight) 30
CaO (parts by weight) 20
Ca (OH) 2 (parts by weight) 20
K 2 CO 3 (parts by weight) 15 15 35 25
KHCO 3 (parts by weight) 25
Na 2 CO 3 (parts by weight) 10 10 10 10 25
NaHCO 3 (parts by weight) 25
NaOH (part by weight) 25
γ-Alumina (part by weight) 43 43 43 43 43 43 40 40 40 40
MgO / Al 2 O 3 (parts by weight) 43 33 17 20 20 20 20
Calcium silicate (parts by weight) 10 10 7 10 10 10 10
Bentonite (parts by weight) 5 5 5 5 5 5 5 5 5 5 5 5
Pseudoboehmite-A (parts by weight) 5 5 5 5 5 5 5 5
Pseudoboehmite-B (parts by weight) 5 5 5 5
TiO 2 (parts by weight) 7 7 5 5 7 7 7 7 5 5 5 5
ZnO (parts by weight) 10
Total Solid Raw Materials (parts by weight) 100 100 100 100 100 100 100 100 100 100 100 100
Nonionic Dispersant (parts by weight) 0.01 to 0.1
Anionic Dispersant (parts by weight) 0.1 to 3
Defoamer (part by weight) 0.01 to 0.1
Organic binder (part by weight) 1.0 to 5.0
Slurry Concentration (parts by weight) 25.1 27.5 29.8 25.7 27.1 25.5 30.5 29.8 26.2 32.9 30.4 27.0
Slurry pH 11.98 11.18 11.24 10.93 11.71 10.88 10.66 11.04 8.98 10.67 11.68 8.66
Viscosity (cP) 56000 56000 2160 1300 97000 21000 11100 23300 16100 54000 30960 30130
상기 실시예 1에 의해 제조된 흡수제(A~M)의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 2에 나타냈다.Table 2 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbent (A ~ M) prepared in Example 1.
표 2
제조예 A B C D F G H I J K L M
형상 ss ss ss ss ss ss ss ss ss ss ss ss
입자크기 ㎛ 124 135 112 108 135 143 163 179 150 137 128 144
입자분포 ㎛ 42-303 49-303- 43-303 42-303 49-303 37-303 37-303 49-303 42-303 37-303 37-303 37-303
충진밀도 g/ml 0.63 0.70 0.84 0.76 0.55 0.51 0.58 0.61 0.65 0.70 1016 0.60
내마모도% 11.88 13.14 4.44 2.64 16.32 31.94 13.42 26.23 13.80 4.40 1.44 11.60
TGA CO2 흡수능력 1 st 9.0 6.10 9.70 17.60 6.70 11.60 7.90 10.80 14.10 8.60 14.90 13.80
2st 8.60 7.00 10.00 16.20 6.00 7.50 - 6.60 11.90 8.30 10.40 9.40
재생성능, % 96 100 100 92 90 65 - 61 84 97 70 68
최종 소성 온도 600 600 600 600 600 600 600 600 600 600 600 600
TABLE 2
Production Example A B C D F G H I J K L M
shape ss ss ss ss ss ss ss ss ss ss ss ss
Particle Size μm 124 135 112 108 135 143 163 179 150 137 128 144
Particle Distribution μm 42-303 49-303- 43-303 42-303 49-303 37-303 37-303 49-303 42-303 37-303 37-303 37-303
Packing density g / ml 0.63 0.70 0.84 0.76 0.55 0.51 0.58 0.61 0.65 0.70 1016 0.60
Wear resistance% 11.88 13.14 4.44 2.64 16.32 31.94 13.42 26.23 13.80 4.40 1.44 11.60
TGA CO2 Absorption Capacity 1 st 9.0 6.10 9.70 17.60 6.70 11.60 7.90 10.80 14.10 8.60 14.90 13.80
2st 8.60 7.00 10.00 16.20 6.00 7.50 - 6.60 11.90 8.30 10.40 9.40
Regeneration Performance,% 96 100 100 92 90 65 - 61 84 97 70 68
Final firing temperature 600 600 600 600 600 600 600 600 600 600 600 600
도 5는 상기 실시예 1에 의해 제조된 흡수제의 형상을 나타낸 것으로, 상기 흡수제의 형상은 구형이다. Figure 5 shows the shape of the absorbent prepared in Example 1, the shape of the absorbent is spherical.
도 6은 상기 실시예 1에 의해 제조된 흡수제에 대한 흡수능력 평가 결과를 나타낸 그래프이다. 6 is a graph showing the results of evaluating absorbency for the absorbent prepared in Example 1;
도 6에 나타난 바와 같이, CO2 흡수능력은 상기 흡수재를 여러 번 재사용하여도 6 중량% 이상으로 높은 값을 가지게 된다. As shown in Figure 6, the CO 2 absorption capacity has a high value of more than 6% by weight even if the absorbent is reused several times.
본 발명의 실시예 1에 따른 흡수제는 구형의 형상을 지니고, 입자크기 100 내지 180㎛, 입자분포 30 내지 330㎛, 충진밀도 0.5g/cc 이상, CO2 흡수능력 6 내지 17 중량%, 재생성능 60% 이상 및 내마모도 40% 이하로 유동층 촉진수성가스전환 공정에서 요구하는 물리적 특성을 모두 충족시키므로, 상기 유동층 촉진수성가스전환 반응에 용이하게 사용될 수 있다. .Absorbent according to Example 1 of the present invention has a spherical shape, the particle size of 100 to 180㎛, particle distribution 30 to 330㎛, filling density 0.5g / cc or more, CO 2 absorption capacity 6 to 17% by weight, regeneration performance More than 60% and wear resistance of less than 40% to meet all the physical properties required in the fluidized bed promoted water gas shift process, it can be easily used in the fluidized bed promoted water gas shift reaction. .
실시예 2 Example 2
총 질량이 8 kg이 되도록 저온용 활성성분으로 탄산칼륨 또는 중탄산칼륨 20 내지 50 중량부, 지지체로 감마알루미나(γ-Al2O3) 20 내지 50 중량부, 무기결합제로 칼슘 실리케이트, 벤토나이트 및 유사 보에마이트 15 내지 20 중량부 및 첨가제로 이산화티탄 및 이산화지르코늄 3 내지 20 중량부를 사용하여 고체원료를 제조하였다.20 to 50 parts by weight of potassium carbonate or potassium bicarbonate as an active ingredient for low temperature, 20 to 50 parts by weight of gamma alumina (γ-Al2O3) as a support, calcium silicate, bentonite and similar boehmite as inorganic binders so that the total mass is 8 kg Solid materials were prepared using 15 to 20 parts by weight and 3 to 20 parts by weight of titanium dioxide and zirconium dioxide as additives.
물에 고체원료를 교반기로 교반하면서 첨가하여 혼합 슬러리를 제조하였다. 여기서, 혼합 슬러리 100 중량부에 대하여, 고체원료의 함량은 약 25 내지 40 중량부였다. 분산제는 고체물질의 용이한 혼합과 분산을 위해 원료를 투입하기 전에 투입하거나, 원료의 순차적인 투입과정에서 혼합 슬러리의 점도, 교반의 정도에 따라 소량 투입하였다. 소포제는 분산제 투입후 또는 슬러리의 교반과정에서 발생하는 기포의 정도에 따라 소량 투입하였다.A solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry. Here, the content of the solid raw material was about 25 to 40 parts by weight based on 100 parts by weight of the mixed slurry. The dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials. The antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant or stirring the slurry.
상기 슬러리를 고체원료 중 상대적으로 비중이 크거나 크기가 큰 입자들의 침강을 방지하기 위해 이중나선 교반기를 이용해 10000 내지 25000 rpm의 속도로 10분 이상 충분히 교반하였다.The slurry was sufficiently stirred for 10 minutes or more at a speed of 10000 to 25000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
교반 뒤, 슬러리를 2회 이상 고에너지 비드밀을 이용하여 고체원료 입자를 분쇄하고 균질화하여 최종 슬러리를 제조하였다. 이 때, 슬러리의 점도, 고체원료의 농도 및 pH등 슬러리의 특성을 제어하거나 작업의 용이성을 위해 추가의 물, 분산제, 소포제 및 pH 조절제(유기 아민)를 첨가하였다. 유기 결합제로 폴리에틸글리콜(Poly ethyl glycol)을 슬러리에 균질하게 분산되도록 최종 분쇄 전에 첨가하였다.After stirring, the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry. At this time, additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid material, and the pH, or to facilitate the operation. Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
상기와 같은 슬러리의 특성 제어를 통해 얻어진 최종 슬러리는 제조과정에서 유입될 수 있는 이물질을 제거하기 위해서 체거름하였다.The final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign matter that can be introduced during the manufacturing process.
상기 제조된 슬러리를 공기분위기의 건조기에서 120℃로 2시간 이상 건조한 후, 박스형 소성로(Muffle Furnace)에서 최종 소성온도 500℃ 내지 650℃까지 0.5 내지 10℃/min의 승온 속도로 승온한 후 최종 온도에서 2시간 이상 유지하여 최종 흡수제를 제조하였다.After drying the prepared slurry for 2 hours or more at 120 ℃ in a dryer of an air atmosphere, the final temperature after raising the temperature at a heating rate of 0.5 to 10 ℃ / min to a final firing temperature 500 ℃ to 650 ℃ in a Muffle Furnace (Muffle Furnace) The final absorbent was prepared by maintaining at least for 2 hours.
슬러리 제조과정에서 첨가된 유기 첨가제와 유기 결합제를 효과적으로 제거하기 위하여 최종 소성온도 도달 전 200℃, 400℃ 및 500℃에서 각 1시간씩 유지하였다. In order to effectively remove the organic additives and the organic binder added during the slurry manufacturing process, each one hour was maintained at 200 ° C., 400 ° C. and 500 ° C. before reaching the final firing temperature.
상기 흡수제의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 3에 나타내었다.The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 3 below.
표 3
N O P Q R
K2CO3(중량부) 35 35 35 35
KHCO3(중량부) 35
γ-Alumina(중량부) 43 43 38 33 28
칼슘 실리케이트(중량부) 7 7 7 7 7
벤토나이트(중량부) 5 5 5 5 5
유사보에마이트-A(중량부) 5 5
유사보에마이트-B(중량부) 5 5 5
TiO2(중량부)
ZrO(중량부) 5 5 10 15 20
하이드로탈사이트(중량부)
총고체원료(중량부) 100 100 100 100 100
비이온계분산제(중량부) 0.01 ~ 0.1
음이온계분산제(중량부) 0.1 ~ 3
소포제(중량부) 0.01 ~ 0.1
유기결합제(중량부) 1.0 ~ 5.0
슬러리농도(중량부) 34.0 30.9 28.6 29.8 29.9
슬러리 pH 10.8 8.8 11.7 11.7 11.3
pH 조절제(유기아민)(중량부) 0.10
점도(cP) 1710 1790 1313 2130 2860
TABLE 3
N O P Q R
K 2 CO 3 (parts by weight) 35 35 35 35
KHCO 3 (parts by weight) 35
γ-Alumina (part by weight) 43 43 38 33 28
Calcium silicate (parts by weight) 7 7 7 7 7
Bentonite (parts by weight) 5 5 5 5 5
Pseudoboehmite-A (parts by weight) 5 5
Pseudoboehmite-B (parts by weight) 5 5 5
TiO 2 (parts by weight)
ZrO (parts by weight) 5 5 10 15 20
Hydrotalcite (parts by weight)
Total Solid Raw Materials (parts by weight) 100 100 100 100 100
Nonionic Dispersant (parts by weight) 0.01 to 0.1
Anionic Dispersant (parts by weight) 0.1 to 3
Defoamer (part by weight) 0.01 to 0.1
Organic binder (part by weight) 1.0 to 5.0
Slurry Concentration (parts by weight) 34.0 30.9 28.6 29.8 29.9
Slurry pH 10.8 8.8 11.7 11.7 11.3
pH adjuster (organic amine) (parts by weight) 0.10
Viscosity (cP) 1710 1790 1313 2130 2860
상기 실시예 2에 의해 제조된 흡수제(N~R)의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 4에 나타냈다.The results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbents (N to R) prepared in Example 2 are shown in Table 4 below.
표 4
N O P Q R
형상 ss ss ss ss Ss
입자크기 ㎛ 112 150 122 107 114
입자분포 ㎛ 37-303 68-303 53-212 45-180 53-250
충진밀도 g/ml 0.87 0.66 0.88 0.90 0.95
비표면적 m2/g 46.8 41.95 - - -
Hg porosity % 52.64 64.84 - - -
내마모도 % 0.4 8.94 0.56 0.68 0.12
TGA CO2 흡수능력 1 st 8.93 5.17 9.03 7.91 8.72
2st 7.04 5.20 7.05 6.03 6.90
재상성능, % 79 100 78 76 79
최종 소성 온도 550 550 550 550 550
Table 4
N O P Q R
shape ss ss ss ss Ss
Particle Size μm 112 150 122 107 114
Particle Distribution μm 37-303 68-303 53-212 45-180 53-250
Packing density g / ml 0.87 0.66 0.88 0.90 0.95
Specific surface area m 2 / g 46.8 41.95 - - -
Hg porosity% 52.64 64.84 - - -
% Wear resistance 0.4 8.94 0.56 0.68 0.12
TGA CO2 Absorption Capacity 1 st 8.93 5.17 9.03 7.91 8.72
2st 7.04 5.20 7.05 6.03 6.90
Reburn performance,% 79 100 78 76 79
Final firing temperature 550 550 550 550 550
도 7은 상기 실시예 2에 의해 제조된 흡수제의 SEM 사진을 사진으로, 상기에 나타난 바와 같이, 흡수제는 구형의 형상을 나타내었다.Figure 7 is a photograph of the SEM photograph of the absorbent prepared in Example 2, as shown above, the absorbent showed a spherical shape.
특히, 본 발명의 실시예2에 따른 고체 흡수제는, 구형의 형상, 입자크기 100 내지 150 ㎛, 입자분포 30 내지 400 ㎛, 충진밀도 0.6 g/cc 이상, CO2 흡수능 5 중량% 이상, 재생성능 75% 이상, 내마모도 10% 이하로, 건식 이산화탄소 흡수 공정에서 요구하는 물리적 특성을 모두 충족시킬 뿐만 아니라, 이산화탄소 흡수능력과 재생성능이 우수함을 알 수 있다.In particular, the solid absorbent according to the second embodiment of the present invention, spherical shape, particle size 100 to 150 ㎛, particle distribution 30 to 400 ㎛, packing density 0.6 g / cc or more, CO 2 absorption ability 5 wt% or more, regeneration performance 75 It can be seen that not only satisfies all the physical properties required by the dry carbon dioxide absorption process, but also has excellent carbon dioxide absorption ability and regeneration performance of less than 10% and less than 10% of abrasion resistance.
실시예 3Example 3
총 질량이 8 kg이 되도록 저온용 활성성분으로 탄산칼륨 20 내지 50 중량부, 지지체로 감마알루미나(γ-Al2O3) 20 내지 50 중량부, 무기결합제로 칼슘 실리케이트, 벤토나이트 및 유사 보에마이트 15 내지 20 중량부 및 첨가제로 이산화티탄, 바륨티타니아, 산화몰리브데늄, 산화철, 산화구리 및 산화아연으로 이루어진 그룹으로부터 선택된 하나 이상 3 내지 20 중량부를 사용하여 고체원료를 제조하였다.20 to 50 parts by weight of potassium carbonate as active ingredient for low temperature, 20 to 50 parts by weight of gamma alumina (γ-Al2O3) as a support, calcium silicate, bentonite and similar boehmite as inorganic binders, so that the total mass is 8 kg Solid materials were prepared using at least 3 to 20 parts by weight selected from the group consisting of titanium dioxide, barium titania, molybdenum oxide, iron oxide, copper oxide and zinc oxide as parts by weight and additives.
물에 고체원료를 교반기로 교반하면서 첨가하여 혼합 슬러리를 제조하였다. 여기서, 혼합 슬러리 100 중량부에 대하여, 고체원료의 함량은 약 20 중량부 내지 40 중량부였다. 분산제는 고체물질의 용이한 혼합과 분산을 위해 원료를 투입하기 전에 투입하거나, 원료의 순차적인 투입과정에서 혼합 슬러리의 점도, 교반의 정도에 따라 소량 투입하였다. 소포제는 분산제 투입후 또는 슬러리의 교반과정에서 발생하는 기포의 정도에 따라 소량 투입하였다.A solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry. Here, the content of the solid raw material was about 20 parts by weight to 40 parts by weight based on 100 parts by weight of the mixed slurry. The dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials. The antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant or stirring the slurry.
상기 슬러리를 고체원료 중 상대적으로 비중이 크거나 크기가 큰 입자들의 침강을 방지하기 위해 이중나선 교반기를 이용해 10000 내지 25000 rpm의 속도로 10분 이상 충분히 교반하였다.The slurry was sufficiently stirred for 10 minutes or more at a speed of 10000 to 25000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
교반 뒤, 슬러리를 2회 이상 고에너지 비드밀을 이용하여 고체원료 입자를 분쇄하고 균질화하여 최종 슬러리를 제조하였다. 이 때, 슬러리의 점도, 고체원료의 농도 및 pH등 슬러리의 특성을 제어하거나 작업의 용이성을 위해 추가의 물, 분산제, 소포제 및 pH 조절제(유기 아민)를 첨가하였다. 유기 결합제로 폴리에틸글리콜(Poly ethyl glycol)을 슬러리에 균질하게 분산되도록 최종 분쇄 전에 첨가하였다.After stirring, the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry. At this time, additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid material, and the pH, or to facilitate the operation. Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
상기와 같은 슬러리의 특성 제어를 통해 얻어진 최종 슬러리는 제조과정에서 유입될 수 있는 이물질을 제거하기 위해서 체거름하였다.The final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign matter that can be introduced during the manufacturing process.
상기 제조된 슬러리를 공기분위기의 건조기에서 120℃로 2시간 이상 건조한 후, 박스형 소성로(Muffle Furnace)에서 최종 소성온도 500℃ 내지 650℃까지 0.5 내지 10℃/min의 승온 속도로 승온한 후 최종 온도에서 2시간 이상 유지하여 최종 흡수제를 제조하였다.After drying the prepared slurry for 2 hours or more at 120 ℃ in a dryer of an air atmosphere, the final temperature after raising the temperature at a heating rate of 0.5 to 10 ℃ / min to a final firing temperature 500 ℃ to 650 ℃ in a Muffle Furnace (Muffle Furnace) The final absorbent was prepared by maintaining at least for 2 hours.
슬러리 제조과정에서 첨가된 유기 첨가제와 유기 결합제를 효과적으로 제거하기 위하여 최종 소성온도 도달 전 200℃, 400℃ 및 500℃에서 각 1시간씩 유지하였다. In order to effectively remove the organic additives and the organic binder added during the slurry manufacturing process, each one hour was maintained at 200 ° C., 400 ° C. and 500 ° C. before reaching the final firing temperature.
상기 흡수제의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 5에 나타내었다.The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 5 below.
표 5
S T U V W
K2CO3(중량부) 35 35 35 35 35
γ-Alumina(중량부) 40 40 43 43 43
칼슘 실리케이트(중량부) 7 7 7 7 7
벤토나이트(중량부) 5 5 5 5 5
유사보에마이트-A(중량부) 5 5 5 5 5
TiO2(중량부) 5 5
Fe2O3(중량부) 3
CuO(중량부) 3
BaTiO2(중량부) 5
MoO3(중량부) 5
ZnO(중량부) 5
총고체원료(중량부) 100 100 100 100 100
비이온계분산제(중량부) 0.01 ~ 0.1
음이온계분산제(중량부) 0.1 ~ 3
소포제(중량부) 0.01 ~ 0.1
유기결합제(중량부) 1.0 ~ 5.0
슬러리농도(중량부) 30.9 29.9 27.7 21.2 29.3
슬러리 pH 11.69 11.65 11.46 10.74 11.87
pH 조절제(유기아민)(중량부) 0.10
점도(cP) 537 613 1830 1270 4270
Table 5
S T U V W
K 2 CO 3 (parts by weight) 35 35 35 35 35
γ-Alumina (part by weight) 40 40 43 43 43
Calcium silicate (parts by weight) 7 7 7 7 7
Bentonite (parts by weight) 5 5 5 5 5
Pseudoboehmite-A (parts by weight) 5 5 5 5 5
TiO 2 (parts by weight) 5 5
Fe 2 O 3 (parts by weight) 3
CuO (parts by weight) 3
BaTiO 2 (parts by weight) 5
MoO 3 (parts by weight) 5
ZnO (parts by weight) 5
Total Solid Raw Materials (parts by weight) 100 100 100 100 100
Nonionic Dispersant (parts by weight) 0.01 to 0.1
Anionic Dispersant (parts by weight) 0.1 to 3
Defoamer (part by weight) 0.01 to 0.1
Organic binder (part by weight) 1.0 to 5.0
Slurry Concentration (parts by weight) 30.9 29.9 27.7 21.2 29.3
Slurry pH 11.69 11.65 11.46 10.74 11.87
pH adjuster (organic amine) (parts by weight) 0.10
Viscosity (cP) 537 613 1830 1270 4270
상기 실시예 3에 의해 제조된 흡수제(S 내지 W)의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 6에 나타냈다.Table 6 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbents (S to W) prepared in Example 3.
표 6
S T U V W
형상 ss ss ss ss Ss
입자크기 ㎛ 133 131 122 109 112
입자분포 ㎛ 57-303 57-303 60-220 45-270 45-180
충진밀도 g/ml 0.95 0.98 0.81 0.93 0.87
비표면적 m2/g 17.93 12.96
Hg porosity % 65.45 69.64
내마모도 % 15.10 30.0 0.90 10.40 1.06
TGA CO2 흡수능력 1 st 6.40 7.17 9.57 7.35 8.08
2st 5.59 5.61 7.13 5.51 7.02
재상성능, % 87 78 85 85 87
최종 소성 온도 550 550 550 550 550
Table 6
S T U V W
shape ss ss ss ss Ss
Particle Size μm 133 131 122 109 112
Particle Distribution μm 57-303 57-303 60-220 45-270 45-180
Packing density g / ml 0.95 0.98 0.81 0.93 0.87
Specific surface area m 2 / g 17.93 12.96
Hg porosity% 65.45 69.64
% Wear resistance 15.10 30.0 0.90 10.40 1.06
TGA CO2 Absorption Capacity 1 st 6.40 7.17 9.57 7.35 8.08
2st 5.59 5.61 7.13 5.51 7.02
Reburn performance,% 87 78 85 85 87
Final firing temperature 550 550 550 550 550
도 8은 상기 실시예 3에 의해 제조된 흡수제의 SEM 사진을 사진으로, 상기에 나타난 바와 같이, 흡수제는 구형의 형상을 나타내었다.Figure 8 is a SEM photograph of the absorbent prepared in Example 3, as shown above, the absorbent showed a spherical shape.
상기 실시예 3에서 보는 바와 같이, 본 발명에서는 전이금속 산분물을 함유하는 재생증진제를 포함하고, 분무 건조기술을 이용하여 제조한 흡수제는 유동층 건식 이산화탄소 포집 공정에 사용될 수 있다.As shown in Example 3, the present invention includes a regeneration enhancer containing a transition metal acid fraction, and an absorbent prepared by spray drying may be used in a fluidized bed dry carbon dioxide capture process.
본 발명에서 도 9는 실시예 3에 의해 제조된 흡수제 V의 이산화황 영향 평가를 나타내는 그래프이다. In the present invention, Figure 9 is a graph showing the sulfur dioxide impact evaluation of the absorbent V prepared in Example 3.
상기 영향 평가는 앞에서 전술한 바와 같이, 열 중량분석기를 이용하여 최소 4사이클(흡수-재생-흡수) 동안 수행하였다.The impact assessment was performed for at least 4 cycles (absorption-regeneration-absorption) using a thermogravimetric analyzer, as described above.
이산화황 가스를 포함하지 않는 조건(1 사이클)에서 이산화탄소 흡수능력은 약 7%였고, 이산화황을 포함하는 가스(2 내지 4 사이클)에서는 5 내지 6% 였다. 상기 결과는 흡수제를 여러 번 재사용하여도 흡수능력의 저하를 가져오지 않으며, 특히, 2 사이클 및 4 사이클에서의 흡수능력의 변화가 거의 없으므로, 이는 흡수제가 이산화황의 영향을 거의 받지 않는다는 것을 알 수 있다. The carbon dioxide absorption capacity was about 7% under the condition of not containing sulfur dioxide gas (1 cycle), and 5 to 6% in the gas containing sulfur dioxide (2 to 4 cycles). The above results show that even if the absorbent is reused several times, there is no deterioration of the absorbent capacity, and in particular, since there is little change in the absorbent capacity in 2 cycles and 4 cycles, it can be seen that the absorbent is hardly affected by sulfur dioxide. .
즉, 본 발명의 실시예 3에 따른 고체 흡수제는, 구형의 형상, 입자크기 100 내지 140 ㎛, 입자분포 40 내지 400 ㎛, 충진밀도 0.8 g/cc 이상, CO2 흡수능 5중량% 이상, 재생성능 75 내지 87%, 내마모도 30% 이하로 공정에서 요구하는 물리적 특성을 모두 충족시킬 뿐만 아니라 CO2 흡수능과 재생성이 우수하며, 특히 4사이클 후의 흡수능 및 재생성이 75% 이상을 유지하고 있어 SO2에 내피독성이 강한 흡수제임을 알 수 있었다.That is, the solid absorbent according to Example 3 of the present invention has a spherical shape, particle size of 100 to 140 μm, particle distribution of 40 to 400 μm, packing density of 0.8 g / cc or more, CO 2 absorption ability of 5% by weight or more, regeneration performance Not only satisfies all the physical properties required in the process with 75 to 87% and 30% or less abrasion resistance, and also has excellent CO 2 absorption and reproducibility. It was found that this is a strong absorbent.
실시예 4Example 4
총 질량이 8 kg이 되도록 저온용 활성성분으로 탄산칼륨 20 내지 50 중량부, 지지체로 감마알루미나(γ-Al2O3) 및 산화마그네슘 20 내지 50 중량부, 무기결합제로 칼슘 실리케이트, 벤토나이트 및 유사 보에마이트 15 내지 20 중량부 및 첨가제로 이산화티탄, 산화지르코니아, 바륨티타니아, 산화몰리브데늄, 이트리아 안정화 지르코니아로 이루어진 그룹으로부터 선택된 하나 이상 3 내지 20 중량부를 사용하여 고체원료를 제조하였다.20 to 50 parts by weight of potassium carbonate as active ingredient for low temperature, gamma alumina (γ-Al2O3) and magnesium oxide as support, 20 to 50 parts by weight, calcium silicate, bentonite and similar boehmite as inorganic binder Solid materials were prepared using 15 to 20 parts by weight and one or more 3 to 20 parts by weight of one selected from the group consisting of titanium dioxide, zirconia oxide, barium titania, molybdenum oxide, and yttria stabilized zirconia.
물에 고체원료를 교반기로 교반하면서 첨가하여 혼합 슬러리를 제조하였다. 여기서, 혼합 슬러리 100 중량부에 대하여, 고체원료의 함량은 약 20 내지 40 중량부였다. 분산제는 고체물질의 용이한 혼합과 분산을 위해 원료를 투입하기 전에 투입하거나, 원료의 순차적인 투입과정에서 혼합 슬러리의 점도, 교반의 정도에 따라 소량 투입하였다. 소포제는 분산제 투입후 또는 슬러리의 교반과정에서 발생하는 기포의 정도에 따라 소량 투입하였다.A solid slurry was added to water while stirring with a stirrer to prepare a mixed slurry. Here, the content of the solid raw material was about 20 to 40 parts by weight based on 100 parts by weight of the mixed slurry. The dispersant was added prior to the input of raw materials for easy mixing and dispersion of the solid material, or a small amount of the dispersant was added depending on the viscosity of the mixed slurry and the degree of agitation in the sequential loading of the raw materials. The antifoaming agent was added in small amounts depending on the degree of bubbles generated after the dispersant or stirring the slurry.
상기 슬러리를 고체원료 중 상대적으로 비중이 크거나 크기가 큰 입자들의 침강을 방지하기 위해 이중나선 교반기를 이용해 10000 내지 25000 rpm의 속도로 10분 이상 충분히 교반하였다.The slurry was sufficiently stirred for 10 minutes or more at a speed of 10000 to 25000 rpm using a double spiral stirrer to prevent sedimentation of particles having a relatively high specific gravity or large sizes in the solid raw material.
교반 뒤, 슬러리를 2회 이상 고에너지 비드밀을 이용하여 고체원료 입자를 분쇄하고 균질화하여 최종 슬러리를 제조하였다. 이 때, 슬러리의 점도, 고체원료의 농도 및 pH등 슬러리의 특성을 제어하거나 작업의 용이성을 위해 추가의 물, 분산제, 소포제 및 pH 조절제(유기 아민)를 첨가하였다. 유기 결합제로 폴리에틸글리콜(Poly ethyl glycol)을 슬러리에 균질하게 분산되도록 최종 분쇄 전에 첨가하였다.After stirring, the slurry was pulverized and homogenized using a high energy bead mill two or more times to prepare a final slurry. At this time, additional water, a dispersant, an antifoaming agent, and a pH adjusting agent (organic amine) were added to control the properties of the slurry, such as the viscosity of the slurry, the concentration of the solid material, and the pH, or to facilitate the operation. Polyethylglycol as an organic binder was added before final grinding to homogeneously disperse the slurry.
상기와 같은 슬러리의 특성 제어를 통해 얻어진 최종 슬러리는 제조과정에서 유입될 수 있는 이물질을 제거하기 위해서 체거름하였다.The final slurry obtained through the characteristics control of the slurry as described above was sieved to remove foreign matter that can be introduced during the manufacturing process.
상기 제조된 슬러리를 공기분위기의 건조기에서 120℃로 2시간 이상 건조한 후, 박스형 소성로(Muffle Furnace)에서 최종 소성온도 500℃ 내지 650℃까지 0.5 내지 10℃/min의 승온 속도로 승온한 후 최종 온도에서 2시간 이상 유지하여 최종 흡수제를 제조하였다.The prepared slurry was dried at 120 ° C. for 2 hours or more in an air atmosphere dryer, and then heated in a box-type firing furnace (Muffle Furnace) to a final firing temperature of 500 ° C. to 650 ° C. at a heating rate of 0.5 to 10 ° C./min, and then to a final temperature. The final absorbent was prepared by maintaining at least for 2 hours.
슬러리 제조과정에서 첨가된 유기 첨가제와 유기 결합제를 효과적으로 제거하기 위하여 최종 소성온도 도달 전 200℃, 400℃ 및 500℃에서 각 1시간씩 유지하였다. In order to effectively remove the organic additives and the organic binder added during the slurry production process, each was maintained at 200 ° C., 400 ° C. and 500 ° C. for 1 hour before reaching the final firing temperature.
상기 흡수제의 제조에 사용된 성분들의 함량 및 슬러리 특성을 하기 표 7에 나타내었다.The content and slurry properties of the components used in the preparation of the absorbent are shown in Table 7 below.
표 7
제조예 X Y Z AA AB AC AD AE AF AG
K2CO3(중량부) 35 35 35 40 40 40 40 40 40 40
γ-Alumina(중량부) 38 33 23 38 38
MgO(중량부) 43 43
MgO(중량부) 23 18 18
칼슘 실리케이트(중량부) 7 7 7 7 7 7 7 7 7 7
벤토나이트(중량부) 5 5 5 5 5 5 5 5 5 5
유사보에마이트-A(중량부) 5 5 5 5 5 5 5 5 5 5
TiO2(중량부) 5 20
ZrO2 (중량부) 5 5 5 20 20 20
Yitria atabilized zirconium(중량부) 5
BaTiO2(중량부) 5
MoO3(중량부) 5 5 5 5
총고체원료(중량부) 100 100 100 100 100 100 100 100 100 100
비이온계분산제(중량부) 0.01 ~ 0.1
음이온계분산제(중량부) 0.1 ~ 3
소포제(중량부) 0.01 ~ 0.1
유기결합제(중량부) 1.0 ~ 5.0
슬러리농도(중량부) 29.5 32.1 28.9 30.2 30.6 31.6 29.5 26.6 28.9 29.6
슬러리 pH 13.65 13.73 10.99 11.06 11.68 13.93 13.2 10.68 11.91 11.81
유기아민(중량부) 0.10
점도(cP) 17000 2880 1280 1320 2130 2860 3030 9300 1580 1200
TABLE 7
Production Example X Y Z AA AB AC AD AE AF AG
K 2 CO 3 (parts by weight) 35 35 35 40 40 40 40 40 40 40
γ-Alumina (part by weight) 38 33 23 38 38
MgO (parts by weight) 43 43
MgO (parts by weight) 23 18 18
Calcium silicate (parts by weight) 7 7 7 7 7 7 7 7 7 7
Bentonite (parts by weight) 5 5 5 5 5 5 5 5 5 5
Pseudoboehmite-A (parts by weight) 5 5 5 5 5 5 5 5 5 5
TiO 2 (parts by weight) 5 20
ZrO 2 (parts by weight) 5 5 5 20 20 20
Yitria atabilized zirconium (parts by weight) 5
BaTiO 2 (parts by weight) 5
MoO 3 (parts by weight) 5 5 5 5
Total Solid Raw Materials (parts by weight) 100 100 100 100 100 100 100 100 100 100
Nonionic Dispersant (parts by weight) 0.01 to 0.1
Anionic Dispersant (parts by weight) 0.1 to 3
Defoamer (part by weight) 0.01 to 0.1
Organic binder (part by weight) 1.0 to 5.0
Slurry Concentration (parts by weight) 29.5 32.1 28.9 30.2 30.6 31.6 29.5 26.6 28.9 29.6
Slurry pH 13.65 13.73 10.99 11.06 11.68 13.93 13.2 10.68 11.91 11.81
Organic amine (parts by weight) 0.10
Viscosity (cP) 17000 2880 1280 1320 2130 2860 3030 9300 1580 1200
상기 실시예 4에 의해 제조된 흡수제(X 내지 AG)의 물성 및 이산화탄소 반응특성을 측정하여 측정된 결과를 하기 표 8에 나타냈다.Table 8 shows the results measured by measuring the physical properties and carbon dioxide reaction characteristics of the absorbent (X to AG) prepared in Example 4.
표 8
X Y Z AA AB AC AF AG
형상 ss ss ss ss ss ss ss Ss
입자크기 ㎛ 110 113 139 112 109 105 119 119
입자분포 ㎛ 53-110 53-212 45-230 80-303 45-270 45-250 45-250 45-212
충진밀도 g/ml 0.93 0.99 0.91 1.01 1.10 1.19 1.05 0.89
내마모도 % 0.98 3.26 0.36 0.24 0.02 0.01 0.10 0.68
TGA CO2 흡수능력 1 st 8.34 7.42 6.91 7.05 7.86 6.59 6.33 7.57
2st 7.90 6.47 5.16 7.93 6.17 5.67 5.57 7.63
재상성능, % 95 87 75 89 79 86 88 100
최종 소성 온도 550 550 550 550 550 550 550 550
Table 8
X Y Z AA AB AC AF AG
shape ss ss ss ss ss ss ss Ss
Particle Size μm 110 113 139 112 109 105 119 119
Particle Distribution μm 53-110 53-212 45-230 80-303 45-270 45-250 45-250 45-212
Packing density g / ml 0.93 0.99 0.91 1.01 1.10 1.19 1.05 0.89
% Wear resistance 0.98 3.26 0.36 0.24 0.02 0.01 0.10 0.68
TGA CO2 Absorption Capacity 1 st 8.34 7.42 6.91 7.05 7.86 6.59 6.33 7.57
2st 7.90 6.47 5.16 7.93 6.17 5.67 5.57 7.63
Reburn performance,% 95 87 75 89 79 86 88 100
Final firing temperature 550 550 550 550 550 550 550 550
도 10은 상기 실시예 4에 의해 제조된 흡수제의 SEM 사진을 사진으로, 상기에 나타난 바와 같이, 흡수제는 구형의 형상을 나타내었다.FIG. 10 is a SEM photograph of the absorbent prepared in Example 4, and as shown above, the absorbent exhibited a spherical shape.
하기 표 9 및 도 11은 실시예 4에 의해 제조된 흡수제의 이산화황 영향 평가 결과를 나타낸 표 및 그래프이다. Table 9 and FIG. 11 are tables and graphs showing the results of the sulfur dioxide effect evaluation of the absorbent prepared in Example 4.
표 9
Y AA AB AC AF AG
TGA CO2 흡수능력 1 st 8.64 7.05 7.86 6.59 6.33 7.57
2st 7.79 6.45 6.17 5.67 5.57 7.63
3st 7.64 5.91 5.86 5.54 5.88 6.12
4st 7.17 6.15 6.23 5.63 5.68 6.35
재상성능, % 83 87 79 86 90 84
최종 소성 온도 550 550 550 550 550 550
Table 9
Y AA AB AC AF AG
TGA CO2 Absorption Capacity 1 st 8.64 7.05 7.86 6.59 6.33 7.57
2st 7.79 6.45 6.17 5.67 5.57 7.63
3st 7.64 5.91 5.86 5.54 5.88 6.12
4st 7.17 6.15 6.23 5.63 5.68 6.35
Reburn performance,% 83 87 79 86 90 84
Final firing temperature 550 550 550 550 550 550
상기 도 11, 도 12 및 표 9에서 알 수 있듯이, 흡수제(Y 내지 AG)는 이산화황을 포함하고 있는 조건에서 흡수반응 및 재생반응을 반복 사용하여도 이산화탄소 흡수능력 저하나 재생성 저하가 나타나지 않았다.As can be seen from FIGS. 11, 12, and 9, the absorbents (Y to AG) did not show a decrease in carbon dioxide absorption capacity or a decrease in regeneration even after repeated absorption and regeneration reactions under conditions containing sulfur dioxide.
상기 실시예 4에서 보는 바와 같이, 본 발명에서는 전이금속 산화물을 함유하는 재생증진제를 포함하고, 분무 건조기술을 이용하여 제조한 흡수제는 유동층 건식 이산화탄소 포집 공정에 사용될 수 있었다.As shown in Example 4, the present invention includes a regeneration enhancer containing a transition metal oxide, and the absorbent prepared by the spray drying technique may be used in a fluidized bed dry carbon dioxide capture process.
특히, 흡수제는, 구형의 형상, 입자크기 100 내지 140 ㎛, 입자분포 40 내지 303 ㎛, 충진밀도 0.9 g/cc 이상, 이산화탄소 흡수능력 5 중량% 이상, 재생성능 75% 이상, 내마모도 5% 이하, 4 사이클 이산화황 영향 평가 후 초기 성능의 70% 이상유지 등 건식 이산화탄소 포집 공정에서 요구하는 물리적 특성을 모두 충족시킬 뿐만 아니라 CO2 흡수 능과 재생성이 우수하고 특히 SO2에 대한 내피독성이 우수함을 알 수 있다In particular, the absorbent has a spherical shape, particle size of 100 to 140 μm, particle distribution of 40 to 303 μm, packing density of 0.9 g / cc or more, carbon dioxide absorbing ability of 5% by weight or more, regeneration performance of 75% or more, wear resistance of 5% or less, After assessing the impact of 4 cycles of sulfur dioxide, it not only satisfies all the physical properties required in the dry carbon dioxide capture process, such as maintaining more than 70% of the initial performance, but also shows excellent CO 2 absorption and regeneration, and particularly good endothelial toxicity to SO 2 . have
이상에서 설명한 바와 같이, 본 발명에 따른 바람직한 실시예를 기초로 설명하였으나, 본 발명은 특정 실시예에 한정되는 것은 아니며, 해당분야 통상의 지식을 가진 자가 특허청구범위 내에서 기재된 범주내에서 변경할 수 있다.As described above, the present invention has been described based on the preferred embodiments, but the present invention is not limited to the specific embodiments, and can be changed within the scope described in the claims by those skilled in the art. have.

Claims (37)

  1. 활성성분, 지지체, 무기결합제 및 Active ingredients, supports, inorganic binders and
    전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 흡수제 조성물.Carbon dioxide absorbent composition comprising a metal oxide containing a transition metal.
  2. 제 1 항에 있어서, The method of claim 1,
    활성성분은 알칼리 금속산화물, 알칼리 토금속산화물, 알칼리 금속탄산염, 알칼리 토금속 탄산염, 알칼리 금속 중탄산염, 알칼리 토금속 중탄산염, 알칼리 금속 수산화물, 알칼리 토금속 수산화물 및 이들의 전구체로 이루어진 그룹으로부터 선택된 하나 이상인 이산화탄소 흡수제 조성물.The active ingredient is at least one carbon dioxide absorbent composition selected from the group consisting of alkali metal oxides, alkaline earth metal oxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal bicarbonates, alkaline earth metal bicarbonates, alkali metal hydroxides, alkaline earth metal hydroxides and precursors thereof.
  3. 제 1 항에 있어서, The method of claim 1,
    활성성분의 함량은 흡수제 조성물에 대하여 5 내지 70 중량부인 이산화탄소 흡수제 조성물.The amount of the active ingredient is 5 to 70 parts by weight relative to the absorbent composition carbon dioxide absorbent composition.
  4. 제 1 항에 있어서, The method of claim 1,
    지지체는 알루미나, 하이드로탈사이트, 실리카, 세라믹 및 마그네시아로 이루어진 그룹으로부터 선택된 하나 이상인 이산화탄소 흡수제 조성물.The support is at least one carbon dioxide absorbent composition selected from the group consisting of alumina, hydrotalcite, silica, ceramics and magnesia.
  5. 제 4 항에 있어서, The method of claim 4, wherein
    하이드로탈사이트는 20 wt% 이상의 산화마그네슘(MgO)을 포함하는 이산화탄소 흡수제 조성물.Hydrotalcite comprises at least 20 wt% magnesium oxide (MgO) carbon dioxide absorbent composition.
  6. 제 4 항에 있어서, The method of claim 4, wherein
    알루미나의 비표면적은 150 내지 300 ㎡/g이고, 마그네시아의 비표면적은 20 내지 100 ㎡/g이며, 하이드로탈사이트의 비표면적은 100 ㎡/g 이상인 이산화탄소 흡수제 조성물.The specific surface area of alumina is 150 to 300 m 2 / g, the specific surface area of magnesia is 20 to 100 m 2 / g, and the specific surface area of hydrotalcite is 100 m 2 / g or more.
  7. 제 1 항에 있어서, The method of claim 1,
    지지체의 함량은 흡수제 조성물에 대하여 5 내지 70 중량부인 이산화탄소 흡수제 조성물.The carbon dioxide absorbent composition has a content of 5 to 70 parts by weight based on the absorbent composition.
  8. 제 1 항에 있어서, The method of claim 1,
    무기결합제는 시멘트류, 점토류 및 세라믹류로 이루어진 그룹으로부터 선택된 하나 이상인 이산화탄소 흡수제 조성물.Inorganic binder is at least one carbon dioxide absorbent composition selected from the group consisting of cements, clays and ceramics.
  9. 제 8 항에 있어서, The method of claim 8,
    시멘트류는 칼슘 실리케이트 또는 칼슘 알루미네이트이고, 점토류는 벤토나이트 또는 카올린이며, 세라믹류는 알루미나졸, 실리카졸 또는 보에마이트인 이산화탄소 흡수제 조성물.Cement is calcium silicate or calcium aluminate, clay is bentonite or kaolin, and ceramics are alumina sol, silica sol or boehmite.
  10. 제 1 항에 있어서, The method of claim 1,
    무기결합제의 함량은 흡수제 조성물에 대하여 5 내지 70 중량부인 이산화탄소 흡수제 조성물.The amount of the inorganic binder is 5 to 70 parts by weight based on the absorbent composition.
  11. 제 1 항에 있어서, The method of claim 1,
    전이금속을 함유하는 금속산화물은 산화티타늄, 산화지르코늄, 바륨티티아나(BaTiO2), 산화몰리브데늄, 산화니켈, 산화코발트, 산화철, 산화구리, 산화아연 및 이트리아 안정화 지르코니아(Yttria-stabilized zirconia)로 이루어진 그룹으로부터 선택된 하나 이상인 이산화탄소 흡수제 조성물.Metal oxides containing transition metals include titanium oxide, zirconium oxide, barium titaniumiana (BaTiO 2 ), molybdenum oxide, nickel oxide, cobalt oxide, iron oxide, copper oxide, zinc oxide and yttria stabilized zirconia. At least one carbon dioxide absorbent composition selected from the group consisting of:
  12. 제 1 항에 있어서, The method of claim 1,
    전이금속을 함유하는 금속산화물의 함량은 흡수제 조성물에 대하여 5 내지 70 중량부인 이산화탄소 흡수제 조성물.The amount of the metal oxide containing the transition metal is 5 to 70 parts by weight relative to the absorbent composition.
  13. 고체원료로서 제 1 항에 따른 흡수제 조성물 및 용매를 포함하는 슬러리 조성물.Slurry composition comprising the solvent and the absorbent composition according to claim 1 as a solid raw material.
  14. 제 13 항에 있어서, The method of claim 13,
    슬러리 조성물에 대하여 고체원료 20 내지 50 중량부를 포함하는 슬러리 조성물.Slurry composition comprising 20 to 50 parts by weight of the solid raw material relative to the slurry composition.
  15. 제 13 항에 있어서, The method of claim 13,
    분산제, 소포제 및 유기결합제로 이루어진 군으로부터 선택되는 하나 이상의 유기첨가제를 추가로 포함하는 슬러리 조성물.Slurry composition further comprising at least one organic additive selected from the group consisting of dispersants, defoamers and organic binders.
  16. 제 15 항에 있어서, The method of claim 15,
    분산제는 음이온계 분산제, 양이온계 분산제, 양쪽성 분산제 및 비이온계 분산제로 이루어진 그룹으로부터 선택된 하나 이상인 슬러리 조성물.The dispersant is at least one slurry composition selected from the group consisting of anionic dispersants, cationic dispersants, amphoteric dispersants and nonionic dispersants.
  17. 제 15 항에 있어서, The method of claim 15,
    소포제는 실리콘계, 금속비누계, 아마이드계, 폴리에테르계, 폴리에스테르계, 폴리글라이콜계, 유기인산계 및 알코올계로 이루어진 그룹으로부터 선택된 하나 이상인 슬러리 조성물.Antifoaming agent is a slurry composition of at least one selected from the group consisting of silicone, metal soap, amide, polyether, polyester, polyglycol, organophosphate and alcohol.
  18. 제 15 항에 있어서, The method of claim 15,
    유기결합제는 폴리비닐알코올계, 폴리글라이콜계 및 메틸셀룰로즈로 이루어진 그룹으로부터 선택된 하나 이상인 슬러리 조성물.The organic binder is at least one slurry composition selected from the group consisting of polyvinyl alcohol, polyglycol, and methyl cellulose.
  19. (A) 제 13 항에 따른 슬러리 조성물을 건조시켜 고체 입자를 제조하는 단계; 및; (A) drying the slurry composition according to claim 13 to produce solid particles; And;
    (B) 상기 제조된 고체 입자를 건조 소성시켜 흡수제를 제조하는 단계를 포함하는 이산화탄소 흡수제의 제조 방법.(B) a method of producing a carbon dioxide absorbent comprising the step of drying and firing the prepared solid particles to prepare an absorbent.
  20. 제 19 항에 있어서, The method of claim 19,
    슬러리 조성물은 용매 및 고체원료의 혼합물을 제조하는 단계;The slurry composition comprises the steps of preparing a mixture of a solvent and a solid raw material;
    상기 혼합물에 분산제, 소포제 및 유기결합제로 이루어진 그룹으로부터 선택된 하나 이상의 유기첨가제를 첨가하는 단계; 및Adding at least one organic additive selected from the group consisting of a dispersing agent, an antifoaming agent and an organic binder to the mixture; And
    상기 혼합물을 교반하고, 분쇄하는 단계를 포함하는 방법으로 제조된 이산화탄소 흡수제의 제조 방법.A method for producing a carbon dioxide absorbent prepared by the method comprising the step of stirring and grinding the mixture.
  21. 제 20 항에 있어서, The method of claim 20,
    분쇄된 혼합물 내의 입자의 평균직경은 3 ㎛ 이하인 이산화탄소 흡수제의 제조 방법.A method for producing a carbon dioxide absorbent, wherein the average diameter of the particles in the ground mixture is 3 μm or less.
  22. 제 20 항에 있어서, The method of claim 20,
    교반 및 분쇄된 슬러리 조성물 중의 이물질을 제거하는 단계를 추가로 포함하는 이산화탄소 흡수제의 제조 방법.A method of producing a carbon dioxide absorbent further comprising the step of removing foreign matter in the stirred and pulverized slurry composition.
  23. 제 19 항에 있어서, The method of claim 19,
    단계 (A)의 슬러리 조성물은 분무 건조기를 사용하여 건조되는 이산화탄소 흡수제 제조 방법.The slurry composition of step (A) is dried using a spray dryer.
  24. 제 23 항에 있어서, The method of claim 23,
    분무 건조기의 주입압력은 5 내지 15 ㎏/㎠이고, 가압노즐의 내경은 0.4 내지 1.6 ㎜이며, 건조기 입구온도는 260 내지 300℃이고, 건조기 출구온도는 90 내지 150℃인 이산화탄소 흡수제 제조 방법.Injection pressure of the spray dryer is 5 to 15 kg / ㎠, the inner diameter of the pressurized nozzle is 0.4 to 1.6 mm, the dryer inlet temperature is 260 to 300 ℃, dryer outlet temperature is 90 to 150 ℃ manufacturing method of carbon dioxide absorbent.
  25. 제 19 항에 있어서, The method of claim 19,
    단계 (B)의 건조는 공기 분위기 하에서 110 내지 150℃에서 수행되는 이산화탄소 흡수제 제조 방법.The drying of step (B) is carried out at 110 to 150 ° C. under an air atmosphere.
  26. 제 19 항에 있어서, The method of claim 19,
    소성은 350 내지 1000℃에서 수행되는 이산화탄소 흡수제 제조 방법.Firing is carried out at 350 to 1000 ° C.
  27. 제 19 항에 있어서, The method of claim 19,
    소성은 공기, 질소, 헬륨, 수소, 수증기 또는 환원가스 분위기에서 이루어지며, 가스 유량은 60 ml/min 이상인 이산화탄소 흡수제 제조 방법.Firing is carried out in air, nitrogen, helium, hydrogen, water vapor or reducing gas atmosphere, the gas flow rate is more than 60 ml / min carbon dioxide absorbent manufacturing method.
  28. 활성성분, 지지체, 무기결합제 및Active ingredients, supports, inorganic binders and
    전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 흡수제.A carbon dioxide absorbent comprising a metal oxide containing a transition metal.
  29. 제 28 항에 있어서, The method of claim 28,
    평균 입자크기는 100 내지 180 ㎛이고, 입자분포는 30 내지 310 ㎛이며, 충진밀도는 0.5 내지 2.0 g/cc인 이산화탄소 흡수제.The average particle size is 100 to 180 ㎛, the particle distribution is 30 to 310 ㎛, the packing density is 0.5 to 2.0 g / cc carbon dioxide absorbent.
  30. 제 28 항에 있어서, The method of claim 28,
    내마모도는 40% 이하인 이산화탄소 흡수제.Abrasion resistance is 40% or less carbon dioxide absorbent.
  31. 제 28 항에 있어서, The method of claim 28,
    이산화탄소 흡수능력은 3 내지 17 중량%이고, 재생성능은 60% 이상인 이산화탄소 흡수제.The carbon dioxide absorbent is 3 to 17% by weight, the regeneration performance is more than 60% carbon dioxide absorbent.
  32. 알칼리 금속탄산염, 알칼리 금속 중탄산염, 및 알칼리 금속 수산화물로 이루어진 그룹 중에서 선택된 하나 이상의 활성성분 5 내지 40 중량부;5 to 40 parts by weight of one or more active ingredients selected from the group consisting of alkali metal carbonates, alkali metal bicarbonates, and alkali metal hydroxides;
    알칼리 토금속 산화물 및 알칼리 토금속 수산화물로 이루어진 그룹 중에서 선택된 하나 이상의 추가 활성성분 0 내지 40 중량부;0 to 40 parts by weight of one or more additional active ingredients selected from the group consisting of alkaline earth metal oxides and alkaline earth metal hydroxides;
    알루미나 및 하이드로탈사이트로 이루어진 그룹 중에서 선택된 하나 이상의 지지체 30 내지 70 중량부; 30 to 70 parts by weight of at least one support selected from the group consisting of alumina and hydrotalcite;
    칼슘실리케이트, 벤토나이트, 및 보에마이트로 이루어진 그룹 중에서 선택된 하나 이상의 무기결합제 5 내지 30 중량부; 및5 to 30 parts by weight of at least one inorganic binder selected from the group consisting of calcium silicate, bentonite, and boehmite; And
    전이금속을 함유하는 금속산화물 1 내지 20 중량부를 포함하는 이산화탄소 흡수제.Carbon dioxide absorbent comprising 1 to 20 parts by weight of a metal oxide containing a transition metal.
  33. 알칼리 금속탄산염 및 알칼리 금속 중탄산염으로 이루어진 그룹 중에서 선택된 하나 이상의 활성성분 30 내지 50 중량부;30 to 50 parts by weight of one or more active ingredients selected from the group consisting of alkali metal carbonates and alkali metal bicarbonates;
    알루미나 및 마그네시아로 이루어진 그룹 중에서 선택된 하나 이상의 지지체 20 내지 50 중량부; 20 to 50 parts by weight of at least one support selected from the group consisting of alumina and magnesia;
    칼슘실리케이트, 벤토나이트, 및 보에마이트로 이루어진 그룹 중에서 선택된 하나 이상의 무기결합제 10 내지 25 중량부; 및10 to 25 parts by weight of at least one inorganic binder selected from the group consisting of calcium silicate, bentonite, and boehmite; And
    전이금속을 함유하는 금속산화물 1 내지 30 중량부를 포함하는 이산화탄소 흡수제.Carbon dioxide absorbent comprising 1 to 30 parts by weight of a metal oxide containing a transition metal.
  34. 일산화탄소를 이산화탄소 및 수소로 전환시키는 동시에 이산화탄소를 흡수제에 포집하는 제 1 단계; 및Converting carbon monoxide into carbon dioxide and hydrogen and simultaneously trapping carbon dioxide in the absorbent; And
    상기 이산화탄소가 포집된 흡수제를 재생하는 제 2 단계를 포함하는 이산화탄소 분리 방법에 있어서, In the carbon dioxide separation method comprising a second step of regenerating the absorbent trapped by the carbon dioxide,
    상기 흡수제는 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물을 포함하는 것을 특징으로 하는 이산화탄소 분리 방법. The absorbent comprises a metal oxide containing an active ingredient, a support, an inorganic binder and a transition metal.
  35. 제 34 항에 있어서,The method of claim 34, wherein
    이산화탄소를 흡수제에 포집하는 제 1 단계는 150 내지 300℃에 수행되는 이산화탄소 분리 방법.The first step of capturing carbon dioxide in the absorbent is carried out at 150 to 300 ℃.
  36. 배가스 중에 포함된 이산화탄소를 흡수제로 포집하는 단계; 및Collecting carbon dioxide contained in the flue gas as an absorbent; And
    상기 포집된 이산화탄소를 재생하는 단계를 포함하는 이산화탄소 분리 방법에 있어서, In the carbon dioxide separation method comprising the step of regenerating the collected carbon dioxide,
    상기 흡수제는 활성성분, 지지체, 무기결합제 및 전이금속을 함유하는 금속산화물을 포함하는 이산화탄소 분리 방법.The absorbent comprises a metal oxide containing an active ingredient, a support, an inorganic binder and a transition metal.
  37. 제 36항에 있어서,The method of claim 36,
    배가스 중에 포함된 이산화탄소를 흡수제로 포집하는 단계는 50 내지 150℃에 수행되는 이산화탄소 분리 방법.Capturing the carbon dioxide contained in the exhaust gas with an absorbent is carried out at 50 to 150 ℃.
PCT/KR2010/006679 2010-09-08 2010-09-30 Carbon dioxide absorbent and preparation method thereof WO2012033250A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0087715 2010-09-08
KR1020100087715A KR101823328B1 (en) 2010-09-08 2010-09-08 Carbon dioxide sorbent and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2012033250A1 true WO2012033250A1 (en) 2012-03-15

Family

ID=45810832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/006679 WO2012033250A1 (en) 2010-09-08 2010-09-30 Carbon dioxide absorbent and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101823328B1 (en)
WO (1) WO2012033250A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120159804A1 (en) * 2010-12-22 2012-06-28 Süd-Chemie-Ag Drying device containing a titanium aluminum phosphate
US9808783B2 (en) 2012-07-19 2017-11-07 Research Triangle Institute Regenerable sorbent for carbon dioxide removal
TWI619803B (en) * 2014-07-18 2018-04-01 行政院原子能委員會核能研究所 Method of fabricating pelletized middle-high-temperature ca-al-co3 sorbent for capturing co2
CN109967051A (en) * 2019-04-12 2019-07-05 中国地质科学院水文地质环境地质研究所 A method of utilizing nano iron oxide efficient absorption arsenic from underwater

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102020950B1 (en) * 2013-01-02 2019-09-16 한국전력공사 Oxygen carrier using industrial waste and method for manufacturing thereof
GB201313850D0 (en) * 2013-08-02 2013-09-18 Johnson Matthey Plc Getter composition
KR101502238B1 (en) * 2013-11-13 2015-03-12 한국화학연구원 Carbon dioxide absorbent and carbon dioxide capture process thereof
KR101541994B1 (en) 2014-02-03 2015-08-04 한국에너지기술연구원 Apparatus and process for carbon dioxide capture related to generate electricity
KR102465990B1 (en) * 2021-12-30 2022-11-10 한국생산기술연구원 A low-temperature selective catalytic reduction complex system for a simultaneous removal of vapor and carbon dioxide using dry absorbent with alkali earth metal compound

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549918A (en) * 1991-08-10 1993-03-02 Kuraray Chem Corp Carbon dioxide adsorbent
KR19980052532A (en) * 1996-12-24 1998-09-25 김종진 Carbon dioxide high temperature adsorbent and its manufacturing method
KR20010067059A (en) * 1999-08-06 2001-07-12 마쉬 윌리엄 에프 Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures
US6387337B1 (en) * 2000-07-14 2002-05-14 The United States Of America As Represented By The United States Department Of Energy Carbon dioxide capture process with regenerable sorbents
KR20060079589A (en) * 2005-01-03 2006-07-06 한국전력공사 Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
KR20090033300A (en) * 2007-09-29 2009-04-02 한국전력공사 Alkali metal-based solid sorbent for carbon dioxide capture with low temperature regeneration

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803325B1 (en) * 2006-11-06 2008-02-13 한국전력공사 Titanium dioxide added alkali-carbonate regenerable sorbent for carbon dioxide removal

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0549918A (en) * 1991-08-10 1993-03-02 Kuraray Chem Corp Carbon dioxide adsorbent
KR19980052532A (en) * 1996-12-24 1998-09-25 김종진 Carbon dioxide high temperature adsorbent and its manufacturing method
KR20010067059A (en) * 1999-08-06 2001-07-12 마쉬 윌리엄 에프 Carbon dioxide adsorbents containing magnesium oxide suitable for use at high temperatures
US6387337B1 (en) * 2000-07-14 2002-05-14 The United States Of America As Represented By The United States Department Of Energy Carbon dioxide capture process with regenerable sorbents
KR20060079589A (en) * 2005-01-03 2006-07-06 한국전력공사 Highly attrition resistant and dry regenerable sorbents for carbon dioxide capture
KR20090033300A (en) * 2007-09-29 2009-04-02 한국전력공사 Alkali metal-based solid sorbent for carbon dioxide capture with low temperature regeneration

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120159804A1 (en) * 2010-12-22 2012-06-28 Süd-Chemie-Ag Drying device containing a titanium aluminum phosphate
US8904667B2 (en) * 2010-12-22 2014-12-09 Clariant Produkte (Deutschland) Gmbh Drying device containing a titanium aluminum phosphate
US9808783B2 (en) 2012-07-19 2017-11-07 Research Triangle Institute Regenerable sorbent for carbon dioxide removal
US10265677B2 (en) 2012-07-19 2019-04-23 Research Triangle Institute Regenerable sorbent for carbon dioxide removal
TWI619803B (en) * 2014-07-18 2018-04-01 行政院原子能委員會核能研究所 Method of fabricating pelletized middle-high-temperature ca-al-co3 sorbent for capturing co2
CN109967051A (en) * 2019-04-12 2019-07-05 中国地质科学院水文地质环境地质研究所 A method of utilizing nano iron oxide efficient absorption arsenic from underwater
CN109967051B (en) * 2019-04-12 2021-11-12 中国地质科学院水文地质环境地质研究所 Method for efficiently adsorbing arsenic in underground water by using nano iron oxide

Also Published As

Publication number Publication date
KR101823328B1 (en) 2018-03-14
KR20120025679A (en) 2012-03-16

Similar Documents

Publication Publication Date Title
WO2012033250A1 (en) Carbon dioxide absorbent and preparation method thereof
WO2013065880A1 (en) Solid carbon dioxide absorbent including amine or a compound thereof for use in the capturing process of dry carbon dioxide, and method for manufacturing same
WO2012043904A1 (en) Hybrid particle for fluidized bed sorption-enhanced water gas shift reaction process and method for preparing same
WO2012043905A1 (en) Catalyst for sorption enhanced water gas shift and preparation method thereof
WO2013048191A2 (en) Carbon dioxide absorbent, and preparation method thereof
US11208350B2 (en) Method for simultaneous exhaust gas cleaning and manufacturing of supplementary cementitous material
WO2012043960A1 (en) Oxygen carrier particles and method for manufacturing same
WO2015046715A1 (en) Solid carbon dioxide absorbent composition and solid carbon dioxide absorbent containing same
WO2017105083A1 (en) System and method for melting aluminum and recycling black dross
WO2012138017A1 (en) Apparatus and method for continuously producing carbon nanotubes
WO2019022555A1 (en) Method for selective recovery of valuable metal from waste denitrification catalyst through alkali fusion
WO2011052829A1 (en) Carbon dioxide absorbent for exhaust gas, and preparation method thereof
WO2012036336A1 (en) Desulfurizing agent and preparation method thereof
WO2018074643A1 (en) Mine backfill composition comprising carbon dioxide-fixed fly ash and bottom ash from circulating fluidized bed combustion boiler
CN112403254B (en) Method for preparing desulfurizer by using red mud as raw material and desulfurizer prepared by method
AU2017394419A1 (en) Fly ash, cement composition, and production method for fly ash
WO2018056766A1 (en) Raw material composition for preparing oxygen carrier particles, oxygen carrier particles prepared by using same, and method for preparing oxygen carrier particles
WO2013169024A1 (en) Solvent-substitution solvent used in aerogel production, and hydrophobised aerogel production method using same
WO2018066751A1 (en) Solid raw material for carbon dioxide absorbent, carbon dioxide absorbent composition comprising same, and carbon dioxide absorbent prepared using same
WO2012138018A1 (en) Continuous manufacturing apparatus and method for carbon nanotubes having gas seperation units
KR101506441B1 (en) Method for producing formed pieces
WO2018079868A1 (en) Low-shrinkage and low-carbon green cement composition comprising carbon-mineralized fly ash and early strength type expansion agent, and concrete having same applied thereto
WO2021080296A1 (en) Method for preparing lightweight porous composition
WO2022123471A1 (en) Method of producing a synthetic carbonated mineral component in a cement manufacturing plant
WO2021075892A1 (en) Lightweight porous composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10857037

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10857037

Country of ref document: EP

Kind code of ref document: A1