WO2013047832A1 - Metal oxide and carbon nanotube composite, manufacturing method for same, and electrode and electrochemical element using same - Google Patents

Metal oxide and carbon nanotube composite, manufacturing method for same, and electrode and electrochemical element using same Download PDF

Info

Publication number
WO2013047832A1
WO2013047832A1 PCT/JP2012/075233 JP2012075233W WO2013047832A1 WO 2013047832 A1 WO2013047832 A1 WO 2013047832A1 JP 2012075233 W JP2012075233 W JP 2012075233W WO 2013047832 A1 WO2013047832 A1 WO 2013047832A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
carbon nanotubes
composite
dispersed
dispersed carbon
Prior art date
Application number
PCT/JP2012/075233
Other languages
French (fr)
Japanese (ja)
Inventor
勝彦 直井
俊造 末松
大輔 堀井
和子 直井
Original Assignee
日本ケミコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ケミコン株式会社 filed Critical 日本ケミコン株式会社
Publication of WO2013047832A1 publication Critical patent/WO2013047832A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a composite of a metal oxide active material and a carbon nanotube, a manufacturing method thereof, an electrode and an electrochemical device using the composite.
  • lithium titanate whose oxidation-reduction potential is higher than the reduction potential of the electrolytic solution, has been studied.
  • lithium titanate has a problem of low output characteristics.
  • it is a composite of lithium titanate nanoparticles and a carbon material it is difficult to reduce the carbon content, and it is difficult to improve the capacity characteristics.
  • the present invention has been proposed in order to solve the above-mentioned problems of the prior art, and its object is to provide an electrode or an electrochemical element that achieves output characteristics and high energy density.
  • An object of the present invention is to provide a composite of an oxide active material and a carbon nanotube, and a method for producing the same.
  • Another object of the present invention is to provide an electrode and an electrochemical device using the composite.
  • the composite of the metal oxide and the carbon nanotube of the present invention is produced by applying shear stress and centrifugal force to the carbon nanotube and the reaction product containing the reaction inhibitor in the rotating reactor. And a metal oxide nanoparticle supported in a highly dispersed manner on the dispersed carbon nanotube, and the bundle is at least partially dissociated by colliding jets of a solution containing the carbon nanotube with the carbon nanotube. It is characterized by being dispersed.
  • An electrode formed by molding a composite of the metal oxide and the carbon nanotube using a binder is also an embodiment of the present invention.
  • An electrochemical element using the electrode is also an embodiment of the present invention.
  • a method for producing a composite of a metal oxide and a carbon nanotube is also an embodiment of the present invention.
  • a large-capacity charge / discharge characteristic can be exhibited by performing a pretreatment step on the carbon nanotubes.
  • the composite of the metal oxide active material and the carbon nanotube according to the present embodiment is (1) As a pretreatment step, carbon nanotubes (hereinafter referred to as CNT) are dispersed by “ultra-high pressure dispersion treatment”. (2) As a UC treatment process, metal oxide nanoparticles are added to CNTs (dispersed carbon nanotubes) dispersed by “ultracentrifugal treatment”, and ultracentrifugal treatment (Ultra-) is one of the mechanochemical reactions. Centrifugal force processing method (hereinafter referred to as UC processing) (1) The product obtained in the processing step (2) is vacuum dried and then fired.
  • CNT carbon nanotubes
  • ultra- ultracentrifugal treatment
  • the pre-treatment step for dispersing CNTs by “ultra-high pressure dispersion treatment” includes (a) mixing step, (b) stirring step, and (c) ultra-high pressure dispersion treatment. And (d) a concentration and drying step.
  • each step (a) to (e) will be described in detail.
  • (a) Mixing step In the mixing step, CNT and a solvent are mixed to produce a mixed solvent.
  • the existing method can be used for the mixing method of CNT and a solvent.
  • a homogenizer described later can be used.
  • the ratio of CNT to solvent is preferably 0.5 to 1 g of CNT per 1 l of solvent.
  • CNT used in this example is a material in which a six-membered ring network (graphene sheet) made of carbon is formed into a single-layer or multilayer coaxial tube.
  • CNT includes single-wall single-wall nanotubes (hereinafter referred to as SWCNT) and multi-wall multi-wall nanotubes (hereinafter referred to as MWCNT).
  • SWCNT single-wall single-wall nanotubes
  • MWCNT multi-wall multi-wall nanotubes
  • the bundle diameter is 0.05 ⁇ m or less, there is an inconvenience that the interaction between the CNTs increases and reaggregation occurs.
  • the bundle diameter is more than 1 ⁇ m, there is a problem that the rate characteristics of the obtained composite electrode deteriorate.
  • solvent mixed with CNTs alcohols, water, and mixed solvents thereof can be used.
  • a mixed solvent in which acetic acid and lithium acetate are dissolved in a mixture of isopropanol and water can be used.
  • ammonium persulfate can be used as a solvent.
  • the stirring step is a step of stirring the mixed solvent that has passed through the mixing step to uniformly disperse the CNTs in the solvent and pulverizing the CNTs.
  • a homogenizer is used and stirred under the conditions of 2000 rpm and 30 minutes.
  • Homogenizer is a kind of generator. This homogenizer is composed of a drive unit, a fixed outer blade, and a rotating inner blade, and performs a series of homogenization from high speed dispersion to fine crushing to homogenization.
  • (c) Ultra-high pressure dispersion treatment process In the ultra-high pressure dispersion treatment process, a known method generally called jet mixing is used. That is, a pair of nozzles are provided at positions facing each other on the inner wall of the cylindrical chamber, and the mixed solvent pressurized by the high-pressure pump is ejected from each nozzle to cause a frontal collision in the chamber. Thereby, the bundle of CNT can be pulverized and dispersed and homogenized. As an example, the treatment is performed at a pressure and concentration of 200 MPa, 3 Pass, 0.5 g / l.
  • FIG. 2 is a view showing the state of SWCNT when jet mixing is performed on an aggregate of 2 ⁇ m SWCNT and when it is not performed. From this figure, the bundle diameter of the agglomerates is increased by jet mixing. It can be seen that the thickness is 1 ⁇ m (50 nm).
  • FIG. 3 is a view showing the state of SWCNT when jet mixing is performed on an aggregate of 2 ⁇ m SWCNT and when it is not performed. From this figure, the bundle diameter of the agglomerates is increased by jet mixing. It can be seen that the thickness is 0.05 ⁇ m (25 nm).
  • concentration and drying step the highly dispersed solution obtained by the ultra-high pressure treatment is concentrated and dried.
  • concentration a known method can be used.
  • the metal alkoxide used in this example is preferably a titanium alkoxide, and a metal alkoxide having a reaction rate constant of 10 ⁇ 5 mol ⁇ 1 sec ⁇ 1 or more is preferred.
  • metals include tin, zirconia, and cesium.
  • lithium compound As the lithium compound, lithium acetate (CH3COOLi, manufactured by Wako Pure Chemical Industries, Ltd., special grade) can be used. As a lithium source other than lithium acetate, lithium hydroxide, lithium sulfate, or the like can be used.
  • the lithium compound solution was prepared by dissolving lithium acetate in a mixed solution of distilled water, acetic acid and isopropyl alcohol.
  • reaction inhibitor When, for example, titanium alkoxide is used as the metal alkoxide, there is a problem that the reaction is too fast and titanium oxide is formed when producing lithium titanate, so that lithium titanate cannot be produced.
  • a predetermined compound that forms a complex with the metal alkoxide as a reaction inhibitor, it is possible to suppress the chemical reaction from being accelerated too much.
  • substances that can form a complex with a metal alkoxide include acetic acid, carboxylic acids such as citric acid, succinic acid, formic acid, lactic acid, tartaric acid, fumaric acid, succinic acid, propionic acid, and repuric acid, and aminopolyesters such as EDTA.
  • Examples include complexing agents represented by amino alcohols such as carboxylic acid and triethanolamine.
  • the UC process used in the present invention is a process using a mechanochemical reaction.
  • This mechanochemical reaction is a process of a chemical reaction, and a chemical reaction is promoted by applying a shear stress and a centrifugal force to the reactants in a rotating reactor in the process of a rotating reaction.
  • This reaction method can be performed, for example, using a reactor as shown in FIG.
  • the reactor includes an outer cylinder 1 having a cough plate 1-2 at an opening and an inner cylinder 2 having a through hole 2-1 and swirling.
  • the reactant inside the inner cylinder moves to the inner wall 1-3 of the outer cylinder through the through hole of the inner cylinder by the centrifugal force.
  • the reaction product collides with the inner wall of the outer cylinder by the centrifugal force of the inner cylinder, and forms a thin film and slides up to the upper part of the inner wall.
  • the thickness of the thin film is 5 mm or less, preferably 2.5 mm or less, more preferably 1.0 mm or less.
  • the thickness of the thin film can be set according to the width of the dam plate and the amount of the reaction solution.
  • the centrifugal force applied to the reactants in the inner cylinder necessary for the present invention is 1500 N (kgms -2) or more, preferably 60000N (kgms -2) or more, more preferably 270000N (kgms -2) or more.
  • lithium titanate be highly dispersed and supported on CNTs by a two-step UC process. That is, as the first UC treatment, CNT, titanium alkoxide, and isopropyl alcohol are charged into the inner cylinder of the reactor, and the inner cylinder is turned to obtain a mixed solution in which CNT and titanium alkoxide are uniformly dispersed.
  • the precursor of the lithium titanate is uniformly dispersed and supported on the CNT, and the aggregation of the lithium titanate nanoparticles is caused. Prevented and improved output characteristics.
  • CNTs in which a lithium titanate precursor is dispersed and supported can also be generated by a one-step UC treatment.
  • CNT, titanium alkoxide, reaction inhibitor, and water are put into the inner cylinder of the reactor, and the inner cylinder is swirled to mix and disperse them and proceed with hydrolysis and condensation reaction, Promote chemical reactions.
  • CNTs in which a lithium titanate precursor is dispersed and supported can be obtained.
  • the precursor of lithium titanate obtained by UC treatment was highly dispersed and supported on CNTs.
  • the CNTs are heated in the range of 300 ° C. to 900 ° C. in a vacuum or nitrogen gas. Thereby, aggregation of lithium titanate particles is prevented, and the capacity and output characteristics of an electrode or an electrochemical element using the electrode material of the present embodiment are improved.
  • Electrode The composite powder in which the metal oxide nanoparticles obtained by this embodiment are highly dispersed and supported on carbon nanotubes is dissolved in isopropyl alcohol, and CNT is added and stirred to prepare a slurry. The slurry is filtered to form a sheet. This sheet can be rolled and molded to form an electrode of an electrochemical element, that is, an electrode for storing electrical energy, and the electrode exhibits high output characteristics and high capacity characteristics.
  • lithium titanate has been described above, similar effects can be obtained with metal oxides such as lithium iron phosphate.
  • a lithium source such as lithium acetate, an iron source such as iron acetate, a phosphorus source such as phosphoric acid and citric acid as a complexing agent are used, and no reaction inhibitor is used.
  • Electrochemical element An electrochemical element that can use this electrode is an electrochemical capacitor or a battery that uses an electrolytic solution containing a metal ion such as lithium or magnesium. That is, the electrode of the present invention can occlude and desorb metal ions, and operates as a negative electrode and a positive electrode.
  • the electrode of the present invention is laminated by sandwiching a separator between an electrode such as activated carbon as a counter electrode, carbon or metal oxide that occludes and desorbs metal ions, and uses an electrolytic solution containing metal ions.
  • Chemical capacitors and batteries can be configured.
  • the rate characteristics were compared according to the type of CNT.
  • Examples and comparative examples used in the first characteristic comparison are as follows.
  • Example 1 In Example 1, as shown in FIG. 5, SWCNT is used as CNT, isopropyl alcohol is used as a solvent mixed with CNT in the pretreatment process, and the two-stage UC treatment is performed in the subsequent UC treatment process. did. (Example 2) In Example 2, as shown in FIG. 6, MWCNT is used as CNT, isopropyl alcohol is used as a solvent mixed with CNT in the pretreatment process, and the two-stage UC treatment is performed in the subsequent UC treatment process. did. (Comparative Example 1) In Comparative Example 1, SWCNT was used as the CNT, and only the two-stage UC treatment was performed without performing the ultra-high pressure dispersion treatment. (Comparative Example 2) In Comparative Example 2, MWCNT was used as the CNT, and only the two-stage UC treatment was performed without performing the ultra-high pressure dispersion treatment.
  • CNT of Example 1 (diameter 1 to 2 nm, length 0.01 to 0.1 mm, 400 m 2 / g), CNT of Example 2 (diameter 5 to 10 nm, length 0.01 to 0.02 mm, 250 m 2 / G) was weighed about 1 g and mixed in 2 L of isopropyl alcohol to prepare a mixed solvent. The mixed solvent is stirred using a homogenizer at 2000 rpm for 30 minutes.
  • this mixed solvent was sprayed from a pair of nozzles provided in the chamber at a pressure and concentration of 200 MPa, 3 Pass, 0.5 g / l, and the fluids collided with each other to prepare a CNT / isopropyl alcohol dispersion solution. .
  • the resulting dispersion was concentrated and dried.
  • a mixed solvent was prepared by dissolving 0.12 g of the CNT dispersion solutions of Examples 1 and 2 and Comparative Examples 1 and 2 and 1.77 g of tetrabutoxytitanium in 18.7 g of isopropyl alcohol. This mixed solvent was put into a swirl reactor, and the inner cylinder was swirled at 40 m / s for 300 seconds to apply high shear dispersion by applying shear stress and centrifugal force to the mixed solvent. A highly dispersed mixture of CNT and titanium as an intermediate product was obtained for each of the two.
  • a mixed solvent was prepared by dissolving 0.7 g of acetic acid and 0.34 g of lithium acetate in a mixture of 2.28 g of isopropyl alcohol and 0.93 g of water. This mixed solvent is put into a swirl reactor in which a mixture for each of the above-described Examples 1 and 2 and Comparative Examples 1 and 2 is formed, and the inner cylinder is swung for 300 seconds at 40 m / s. A thin film of the reaction product was formed on the inner wall of the material, and a chemical reaction was promoted by applying shear stress and centrifugal force to the reaction product to obtain a CNT having a highly dispersed precursor of lithium titanate as a final product. .
  • Example 1 and 2 and Comparative Examples 1 and 2 in which the precursor of lithium titanate was highly dispersed and supported on the CNTs after two-stage firing processes of 300 ° C. for 1 hour and 900 ° C. for 4 minutes Obtained.
  • the amount of titanium alkoxide and CNT charged into the swirl reactor was adjusted so that the weight ratio of lithium titanate and CNT was about 8: 2. did.
  • a lithium foil was opposed to the obtained electrode as a counter electrode through a separator, and an electrochemical cell was prepared using 1M LiBF 4 / PC as an electrolytic solution.
  • results as shown in FIGS. 7 and 8 were obtained.
  • FIG. 7 is a graph showing the rate characteristic evaluation of Example 1 and Comparative Example 1 using SWCNT as CNT.
  • FIG. 8 is a diagram showing rate characteristic evaluation of Example 2 and Comparative Example 2 using MWCNT as CNT. 7 and 8, it can be seen that both the SWCNT and the MWCNT have higher rate characteristics in the example in which the pretreatment process is performed than in the comparative example in which the CNT is not subjected to the pretreatment process.

Abstract

The present invention relates to the process of making a composite from a metal oxide and carbon nanotubes, a metal oxide and carbon composite in which a carbonized film is formed on the surface of the metal oxide, and a manufacturing method for the same. First, a pretreatment step is performed in which jet streams of a solution containing carbon nanotubes are made to collide with each other so as to at least partially separate and disperse carbon nanotube bundles. Next, a step for producing a first composite is performed, in which the carbon nanotubes which have undergone the pretreatment step and a metal alkoxide which is the starting material for metal oxide nanoparticles are dispersed and mixed by the application of shearing stress and centrifugal force in a spinning reaction vessel. Next, the composite is fabricated by performing a step in which shearing stress and centrifugal force are applied to the first composite and a reactant in a spinning reaction vessel to form metal oxide nanoparticles that are highly dispersed and supported on the dispersed carbon nanotubes.

Description

金属酸化物とカーボンナノチューブとの複合体、その製造方法、この複合体を用いた電極及び電気化学素子COMPOSITE OF METAL OXIDE AND CARBON NANOTUBE, PROCESS FOR PRODUCING THE SAME, ELECTRODE AND ELECTROCHEMICAL DEVICE USING THE COMPOSITION
 本発明は、金属酸化物活物資とカーボンナノチューブとの複合体と、その製造方法、この複合体を用いた電極及び電気化学素子に関する。 The present invention relates to a composite of a metal oxide active material and a carbon nanotube, a manufacturing method thereof, an electrode and an electrochemical device using the composite.
 現在、リチウム電池の電極としてリチウムを貯蔵、放出するカーボン材料等が用いられているが、酸化還元電位が電解液の還元電位より低いため、電解液が分解する可能性がある。そこで、酸化還元電位が電解液の還元電位より高いチタン酸リチウムが検討されているが、チタン酸リチウムは出力特性が低いという問題点がある。これに対して、チタン酸リチウムをナノ粒子化して、出力特性を向上する試みがある。しかしながら、チタン酸リチウムナノ粒子とカーボン材料との複合体と言えど、カーボンの含有率を下げることは困難であり、容量特性を向上させることは難しかった。 Currently, carbon materials that store and release lithium are used as electrodes of lithium batteries, but the electrolyte solution may be decomposed because the oxidation-reduction potential is lower than the reduction potential of the electrolyte solution. Therefore, lithium titanate, whose oxidation-reduction potential is higher than the reduction potential of the electrolytic solution, has been studied. However, lithium titanate has a problem of low output characteristics. On the other hand, there is an attempt to improve output characteristics by making lithium titanate into nanoparticles. However, even though it is a composite of lithium titanate nanoparticles and a carbon material, it is difficult to reduce the carbon content, and it is difficult to improve the capacity characteristics.
 そこで、旋回する反応器内で反応物にずり応力と遠心力を加えて、化学反応を促進させる方法(一般に、メカノケミカル反応と呼ばれる)によって、カーボンに分散担持されたチタン酸リチウムを得るものが知られている。(例えば特許文献1,2参照) Therefore, by applying shear stress and centrifugal force to the reactants in a swirling reactor to promote a chemical reaction (generally called mechanochemical reaction), what obtains lithium titanate dispersed and supported on carbon is obtained. Are known. (For example, see Patent Documents 1 and 2)
特開2007-160151号公報JP 2007-160151 A 特開2008-270795号公報JP 2008-270795 A
 特許文献1,2に記載のチタン酸リチウムナノ粒子を担持したカーボンを使用した電極は、優れた出力特性を発揮するものの、最近では、この種の電極において、さらに出力特性を向上させ、電気伝導度を向上させる要求がある。 Although the electrode using carbon carrying lithium titanate nanoparticles described in Patent Documents 1 and 2 exhibits excellent output characteristics, recently, in this type of electrode, the output characteristics have been further improved and the electric conduction is improved. There is a demand to improve the degree.
 本発明は、上述したような従来技術の問題点を解決するために提案されたものであって、その目的は、出力特性及び高エネルギー密度を達成した電極や電気化学素子を得ることのできる金属酸化物活物資とカーボンナノチューブとの複合体、及びその製造方法を提供することにある。また、本発明の他の目的は、前記複合体を用いた電極及び電気化学素子を提供することにある。 The present invention has been proposed in order to solve the above-mentioned problems of the prior art, and its object is to provide an electrode or an electrochemical element that achieves output characteristics and high energy density. An object of the present invention is to provide a composite of an oxide active material and a carbon nanotube, and a method for producing the same. Another object of the present invention is to provide an electrode and an electrochemical device using the composite.
 前記の目的を達成するため、本発明の金属酸化物とカーボンナノチューブとの複合体は、カーボンナノチューブと、旋回する反応器内で反応抑制剤を含む反応物にずり応力と遠心力を加えて生成し、前記分散カーボンナノチューブに高分散担持した金属酸化物ナノ粒子と、からなり、前記カーボンナノチューブを、該カーボンナノチューブを含有する溶液の噴射流同士を衝突させてバンドルを少なくとも部分的に解離させて分散したことを特徴とする。 In order to achieve the above object, the composite of the metal oxide and the carbon nanotube of the present invention is produced by applying shear stress and centrifugal force to the carbon nanotube and the reaction product containing the reaction inhibitor in the rotating reactor. And a metal oxide nanoparticle supported in a highly dispersed manner on the dispersed carbon nanotube, and the bundle is at least partially dissociated by colliding jets of a solution containing the carbon nanotube with the carbon nanotube. It is characterized by being dispersed.
 前記金属酸化物とカーボンナノチューブとの複合体をバインダーを用いて成形することによって形成された電極も本発明の一態様である。 An electrode formed by molding a composite of the metal oxide and the carbon nanotube using a binder is also an embodiment of the present invention.
 前記電極を用いた電気化学素子も本発明の一態様である。 An electrochemical element using the electrode is also an embodiment of the present invention.
 また、金属酸化物とカーボンナノチューブとの複合体の製造方法も本発明の一態様である。 Further, a method for producing a composite of a metal oxide and a carbon nanotube is also an embodiment of the present invention.
 本発明によれば、カーボンナノチューブに対して前処理工程を施すことにより、大容量の充放電特性を発現することができる。 According to the present invention, a large-capacity charge / discharge characteristic can be exhibited by performing a pretreatment step on the carbon nanotubes.
本発明の実施形態における前処理工程の作業手順を示したブロック図である。It is the block diagram which showed the work procedure of the pre-processing process in embodiment of this invention. 本発明の実施形態おいて単層のシングルウォールナノチューブにジェットミキシング(噴流衝合)を行った場合のCNTのバンドルを表した図である。It is a figure showing the bundle of CNT at the time of carrying out jet mixing (jet flow collision) to the single-walled single wall nanotube in the embodiment of the present invention. 本発明の実施形態おいて多層のマルチウォールナノチューブにジェットミキシング(噴流衝合)を行った場合のCNTのバンドルを表した図である。It is a figure showing the bundle of CNT at the time of performing jet mixing (jet flow collision) to the multi-walled multi-wall nanotube in the embodiment of the present invention. 本発明の製造方法に使用する反応器の一例を示す斜視図である。It is a perspective view which shows an example of the reactor used for the manufacturing method of this invention. 本発明の実施形態におけるシングルウォールナノチューブに対する作業手順を示したブロック図である。It is the block diagram which showed the operation | movement procedure with respect to the single wall nanotube in embodiment of this invention. 本発明の実施形態におけるマルチウォールナノチューブに対する前処理工程の作業手順を示したブロック図である。It is the block diagram which showed the work procedure of the pre-processing process with respect to the multi-wall nanotube in embodiment of this invention. 本発明の実施例1及び比較例1の電極のレート特性評価を示したグラフである。It is the graph which showed the rate characteristic evaluation of the electrode of Example 1 and Comparative Example 1 of this invention. 本発明の実施例2及び比較例2の電極のレート特性評価を示したグラフである。It is the graph which showed the rate characteristic evaluation of the electrode of Example 2 and Comparative Example 2 of this invention.
 以下、本発明を実施する形態について、説明する。なお、本発明は、以下に説明する実施形態に限定されるものでない。 Hereinafter, embodiments for carrying out the present invention will be described. In addition, this invention is not limited to embodiment described below.
 本実施の形態に係る金属酸化物活物資とカーボンナノチューブとの複合体は、
(1)前処理工程として、カーボンナノチューブ(以下、CNT)を「超高圧分散処理」によって分散化し、
(2)UC処理工程として、「超遠心力処理」によって分散化されたCNT(分散カーボンナノチューブ)に金属酸化物ナノ粒子を加えて、メカノケミカル反応の一つである超遠心力処理(Ultra-Centrifugal force processing method:以下、UC処理という)し、
 (1)(2)の処理工程を得たその生成物を真空乾燥し、その後、焼成することにより、得られる。
The composite of the metal oxide active material and the carbon nanotube according to the present embodiment is
(1) As a pretreatment step, carbon nanotubes (hereinafter referred to as CNT) are dispersed by “ultra-high pressure dispersion treatment”.
(2) As a UC treatment process, metal oxide nanoparticles are added to CNTs (dispersed carbon nanotubes) dispersed by “ultracentrifugal treatment”, and ultracentrifugal treatment (Ultra-) is one of the mechanochemical reactions. Centrifugal force processing method (hereinafter referred to as UC processing)
(1) The product obtained in the processing step (2) is vacuum dried and then fired.
(1)前処理工程について
 CNTを「超高圧分散処理」によって分散化する前処理工程は、図1に示すように、(a)混合工程、(b)攪拌工程、(c)超高圧分散処理工程、及び(d) 濃縮及び乾燥化工程からなる。以下、(a)~(e)の各工程について詳述する。
(1) Pre-treatment step As shown in FIG. 1, the pre-treatment step for dispersing CNTs by “ultra-high pressure dispersion treatment” includes (a) mixing step, (b) stirring step, and (c) ultra-high pressure dispersion treatment. And (d) a concentration and drying step. Hereinafter, each step (a) to (e) will be described in detail.
(a)混合工程
 混合工程では、CNTと溶媒とを混合させ混合溶媒を生成する。CNTと溶媒との混合方法は、既存の方法を用いることができる。一例としては、後述するホモジナイザーを用いることができる。CNTと溶媒は、溶媒1lに対して、CNT0.5~1gの比率が好ましい。
(a) Mixing step In the mixing step, CNT and a solvent are mixed to produce a mixed solvent. The existing method can be used for the mixing method of CNT and a solvent. As an example, a homogenizer described later can be used. The ratio of CNT to solvent is preferably 0.5 to 1 g of CNT per 1 l of solvent.
 本実施例で使用するCNTは、炭素によって作られる六員環ネットワーク(グラフェンシート)が単層あるいは多層の同軸管状になった物質である。CNTには、単層のシングルウォールナノチューブ(以下、SWCNTとする)と、多層のマルチウォールナノチューブ(以下、MWCNTとする)がある。本実施例のCNTとしては、SWCNTではバンドル径が0.05~1μmのCNTを、MWCNTとしてはバンドル径が0.05~1μmのCNTを用いることが好ましい。バンドル径が0.05μm以下の場合は、CNT同士の相互作用が大きくなって、再凝集するという不都合がある。一方、バンドル径が1μm超の場合は、得られた複合体電極のレート特性が低下するという問題がある。 CNT used in this example is a material in which a six-membered ring network (graphene sheet) made of carbon is formed into a single-layer or multilayer coaxial tube. CNT includes single-wall single-wall nanotubes (hereinafter referred to as SWCNT) and multi-wall multi-wall nanotubes (hereinafter referred to as MWCNT). As the CNT of this embodiment, it is preferable to use CNT having a bundle diameter of 0.05 to 1 μm for SWCNT and CNT having a bundle diameter of 0.05 to 1 μm for MWCNT. When the bundle diameter is 0.05 μm or less, there is an inconvenience that the interaction between the CNTs increases and reaggregation occurs. On the other hand, when the bundle diameter is more than 1 μm, there is a problem that the rate characteristics of the obtained composite electrode deteriorate.
 CNTと混合する溶媒としては、アルコール類、水、これらの混合溶媒を用いることができる。例えば、酢酸と酢酸リチウムをイソプロパノールと水の混合物に溶解した混合溶媒を使用することができる。また、溶媒として、過硫酸アンモニウムを使用することができる。 As the solvent mixed with CNTs, alcohols, water, and mixed solvents thereof can be used. For example, a mixed solvent in which acetic acid and lithium acetate are dissolved in a mixture of isopropanol and water can be used. Moreover, ammonium persulfate can be used as a solvent.
(b)攪拌工程
 攪拌工程では、混合工程を経た混合溶媒を攪拌させCNTを溶媒中に均一に分散させると共に、CNTの微砕を行う工程である。一例としては、ホモジナイザーを使用し、2000rpm、30minの条件で攪拌する。
(b) Stirring step The stirring step is a step of stirring the mixed solvent that has passed through the mixing step to uniformly disperse the CNTs in the solvent and pulverizing the CNTs. As an example, a homogenizer is used and stirred under the conditions of 2000 rpm and 30 minutes.
 ホモジナイザーとは、ジェネレータの一種である。このホモジナイザーは、ドライブユニットと固定外刃と回転内刃からなり、高速分散~微砕~均一化の一連のホモジネーションを行うものである。 Homogenizer is a kind of generator. This homogenizer is composed of a drive unit, a fixed outer blade, and a rotating inner blade, and performs a series of homogenization from high speed dispersion to fine crushing to homogenization.
(c)超高圧分散処理工程
 超高圧分散処理工程では、一般的にジェットミキシング(噴流衝合)と呼ばれる既知の方法を用いる。すなわち、筒状のチャンバの内壁の互いに対向する位置に一対のノズルを設け、高圧ポンプにより加圧された混合溶媒を、各ノズルから噴射してチャンバ内で正面衝突させる。これにより、CNTのバンドルが粉砕され、分散及び均質化することができる。一例としては、200MPa,3Pass,0.5g/lの圧力及び濃度で処理を行う。
(c) Ultra-high pressure dispersion treatment process In the ultra-high pressure dispersion treatment process, a known method generally called jet mixing is used. That is, a pair of nozzles are provided at positions facing each other on the inner wall of the cylindrical chamber, and the mixed solvent pressurized by the high-pressure pump is ejected from each nozzle to cause a frontal collision in the chamber. Thereby, the bundle of CNT can be pulverized and dispersed and homogenized. As an example, the treatment is performed at a pressure and concentration of 200 MPa, 3 Pass, 0.5 g / l.
 図2は、2μmのSWCNTの凝集体に対してジェットミックスを行った場合と、行わなかった場合のSWCNTの様子を示した図である。この図からは、ジェットミックスを行うことにより、凝集体のバンドル径が.1μm(50nm)となることが判る。また、図3は、2μmのSWCNTの凝集体に対してジェットミックスを行った場合と、行わなかった場合のSWCNTの様子を示した図である。この図からは、ジェットミックスを行うことにより、凝集体のバンドル径が.0.05μm(25nm)となることが判る。 FIG. 2 is a view showing the state of SWCNT when jet mixing is performed on an aggregate of 2 μm SWCNT and when it is not performed. From this figure, the bundle diameter of the agglomerates is increased by jet mixing. It can be seen that the thickness is 1 μm (50 nm). FIG. 3 is a view showing the state of SWCNT when jet mixing is performed on an aggregate of 2 μm SWCNT and when it is not performed. From this figure, the bundle diameter of the agglomerates is increased by jet mixing. It can be seen that the thickness is 0.05 μm (25 nm).
(d)濃縮及び乾燥工程
 濃縮及び乾燥工程は、上記の超高圧処理によって得られた高分散溶液を濃縮すると共に、乾燥を行う。濃縮は、既知の方法を用いることができる。
(d) Concentration and drying step In the concentration and drying step, the highly dispersed solution obtained by the ultra-high pressure treatment is concentrated and dried. For the concentration, a known method can be used.
(2)UC処理工程について
 UC処理工程では、前処理工程を経たCNTに、アルコキシド、リチウム化合物及び反応抑制剤を加えて、メカノケミカル反応の一つである超遠心力処理(Ultra-Centrifugal force processing method:以下、UC処理という)をする。
(2) About the UC treatment process In the UC treatment process, an alkoxide, a lithium compound and a reaction inhibitor are added to the CNT that has undergone the pretreatment process, and ultracentrifugal force processing (Ultra-Centrifugal force processing). method: hereinafter referred to as UC processing).
(金属アルコキシド)
 本実施例で使用する金属アルコキシドとしては、チタンアルコキシドが好ましく、その他、金属アルコキシドの加水分解反応の反応速度定数が10-5mol-1sec-1以上のものが好ましい。このような金属としては、スズ、ジルコニア、セシウム等を挙げることができる。
(Metal alkoxide)
The metal alkoxide used in this example is preferably a titanium alkoxide, and a metal alkoxide having a reaction rate constant of 10 −5 mol −1 sec −1 or more is preferred. Examples of such metals include tin, zirconia, and cesium.
(リチウム化合物)
 リチウム化合物として酢酸リチウム(CH3COOLi、和光純薬工業株式会社製、特級)を用いることができる。酢酸リチウム以外のリチウム源としては、水酸化リチウム、硫酸リチウムなどを利用することができる。リチウム化合物の溶液は、蒸留水、酢酸、イソプロピルアルコールの混合溶液に、酢酸リチウムを溶解させることにより調製した。
(Lithium compound)
As the lithium compound, lithium acetate (CH3COOLi, manufactured by Wako Pure Chemical Industries, Ltd., special grade) can be used. As a lithium source other than lithium acetate, lithium hydroxide, lithium sulfate, or the like can be used. The lithium compound solution was prepared by dissolving lithium acetate in a mixed solution of distilled water, acetic acid and isopropyl alcohol.
(反応抑制剤)
 金属アルコキシドとして例えばチタンアルコキシドを用いた場合、反応が早すぎて、チタン酸リチウムを作製する際に酸化チタンが形成されてしまい、チタン酸リチウムを作製することができないといった問題点があった。
(Reaction inhibitor)
When, for example, titanium alkoxide is used as the metal alkoxide, there is a problem that the reaction is too fast and titanium oxide is formed when producing lithium titanate, so that lithium titanate cannot be produced.
 そこで、反応抑制剤として該金属アルコキシドと錯体を形成する所定の化合物を添加することにより、化学反応が促進しすぎるのを抑制することができる。金属アルコキシドと錯体を形成することができる物質としては、酢酸の他、クエン酸、蓚酸、ギ酸、乳酸、酒石酸、フマル酸、コハク酸、プロピオン酸、レプリン酸等のカルボン酸、EDTA等のアミノポリカルボン酸、トリエタノールアミン等のアミノアルコールに代表される錯化剤が挙げられる。 Therefore, by adding a predetermined compound that forms a complex with the metal alkoxide as a reaction inhibitor, it is possible to suppress the chemical reaction from being accelerated too much. Examples of substances that can form a complex with a metal alkoxide include acetic acid, carboxylic acids such as citric acid, succinic acid, formic acid, lactic acid, tartaric acid, fumaric acid, succinic acid, propionic acid, and repuric acid, and aminopolyesters such as EDTA. Examples include complexing agents represented by amino alcohols such as carboxylic acid and triethanolamine.
(UC処理)
 本発明で用いるUC処理は、メカノケミカル反応を利用した処理である。このメカノケミカル反応は、化学反応の過程で、旋回する反応の過程で、旋回する反応器内で反応物にずり応力と遠心力を加えて化学反応を促進させる。
(UC processing)
The UC process used in the present invention is a process using a mechanochemical reaction. This mechanochemical reaction is a process of a chemical reaction, and a chemical reaction is promoted by applying a shear stress and a centrifugal force to the reactants in a rotating reactor in the process of a rotating reaction.
 この反応方法は、例えば、図4に示すような反応器を用いて行うことができる。図4に示すように、反応器は、開口部にせき板1-2を有する外筒1と、貫通孔2-1を有し旋回する内筒2からなる。この反応器の内筒内部に反応物を投入し、内筒を旋回することによってその遠心力で内筒内部の反応物が内筒の貫通孔を通って外筒の内壁1-3に移動する。この時反応物は内筒の遠心力によって外筒の内壁に衝突し、薄膜状となって内壁の上部へずり上がる。この状態では反応物には内壁との間のずり応力と内筒からの遠心力の双方が同時に加わり、薄膜状の反応物に大きな機械的エネルギーが加わることになる。この機械的なエネルギーが反応に必要な化学エネルギー、いわゆる活性化エネルギーに転化するものと思われるが、短時間で反応が進行する。 This reaction method can be performed, for example, using a reactor as shown in FIG. As shown in FIG. 4, the reactor includes an outer cylinder 1 having a cough plate 1-2 at an opening and an inner cylinder 2 having a through hole 2-1 and swirling. By putting the reactant into the inner cylinder of this reactor and turning the inner cylinder, the reactant inside the inner cylinder moves to the inner wall 1-3 of the outer cylinder through the through hole of the inner cylinder by the centrifugal force. . At this time, the reaction product collides with the inner wall of the outer cylinder by the centrifugal force of the inner cylinder, and forms a thin film and slides up to the upper part of the inner wall. In this state, both the shear stress between the inner wall and the centrifugal force from the inner cylinder are simultaneously applied to the reactant, and a large mechanical energy is applied to the thin-film reactant. This mechanical energy seems to be converted into chemical energy required for the reaction, so-called activation energy, but the reaction proceeds in a short time.
 この反応において、薄膜状であると反応物に加えられる機械的エネルギーは大きなものとなるため、薄膜の厚みは5mm以下、好ましくは2.5mm以下、さらに好ましくは1.0mm以下である。なお、薄膜の厚みはせき板の幅、反応液の量によって設定することができる。 In this reaction, since the mechanical energy applied to the reaction product becomes large when it is in the form of a thin film, the thickness of the thin film is 5 mm or less, preferably 2.5 mm or less, more preferably 1.0 mm or less. The thickness of the thin film can be set according to the width of the dam plate and the amount of the reaction solution.
 この反応方法は、反応物に加えられるずり応力と遠心力の機械的エネルギーによって実現できるものと考えられるが、このずり応力と遠心力は内筒内の反応物に加えられる遠心力によって生じる。したがって、本発明に必要な内筒内の反応物に加えられる遠心力は1500N(kgms-2)以上、好ましくは60000N(kgms-2)以上、さらに好ましくは270000N(kgms-2)以上である。  This reaction method is considered to be realized by the mechanical energy of the shear stress and the centrifugal force applied to the reactant, and the shear stress and the centrifugal force are generated by the centrifugal force applied to the reactant in the inner cylinder. Thus, the centrifugal force applied to the reactants in the inner cylinder necessary for the present invention is 1500 N (kgms -2) or more, preferably 60000N (kgms -2) or more, more preferably 270000N (kgms -2) or more.
 この反応方法においては、反応物にずり応力と遠心力の双方の機械的エネルギーが同時に加えられることによって、このエネルギーが化学エネルギーに転化することによるものと思われるが、従来にない速度で化学反応を促進させることができる。 In this reaction method, mechanical energy of both shear stress and centrifugal force is applied to the reactant at the same time, which seems to be due to the conversion of this energy into chemical energy. Can be promoted.
 本実施形態においては、二段階のUC処理によってCNTにチタン酸リチウムを高分散担持させることが望ましい。すなわち、一回目のUC処理として、反応器の内筒の内部にCNT、チタンアルコキシド、イソプロピルアルコールを投入し、内筒を旋回してCNTとチタンアルコキシドが均一に分散された混合溶液を得る。 In this embodiment, it is desirable that lithium titanate be highly dispersed and supported on CNTs by a two-step UC process. That is, as the first UC treatment, CNT, titanium alkoxide, and isopropyl alcohol are charged into the inner cylinder of the reactor, and the inner cylinder is turned to obtain a mixed solution in which CNT and titanium alkoxide are uniformly dispersed.
 さらに二回目のUC処理として、内筒を旋回させながら、リチウム化合物、反応抑制剤、水を含む混合溶媒を投入することにより、チタンアルコキシドとリチウム化合物との化学反応が促進され、反応終了と共に、チタン酸リチウムの前駆体を高分散担持したCNTが得られる。 Furthermore, as a second UC treatment, by turning a mixed solvent containing a lithium compound, a reaction inhibitor, and water while turning the inner cylinder, the chemical reaction between the titanium alkoxide and the lithium compound is promoted, and with the completion of the reaction, A CNT carrying a highly dispersed lithium titanate precursor is obtained.
 このように、リチウム化合物との化学反応を開始する前に、チタンアルコキシドとCNTを分散させるため、チタン酸リチウムの前駆体は均一にCNTに分散担持さることとなり、チタン酸リチウムナノ粒子の凝集が予防され、出力特性が向上する。 Thus, since the titanium alkoxide and the CNT are dispersed before starting the chemical reaction with the lithium compound, the precursor of the lithium titanate is uniformly dispersed and supported on the CNT, and the aggregation of the lithium titanate nanoparticles is caused. Prevented and improved output characteristics.
 なお、一段階のUC処理によっても、チタン酸リチウムの前駆体を分散担持させたCNTは生成可能である。この場合はCNT、チタンアルコキシド、反応抑制剤、及び水を反応器の内筒の内部に投入して、内筒を旋回して、これらを混合、分散すると共に加水分解、縮合反応を進行させ、化学反応を促進させる。反応終了と共に、チタン酸リチウムの前駆体を分散担持させたCNTを得ることができる。 It should be noted that CNTs in which a lithium titanate precursor is dispersed and supported can also be generated by a one-step UC treatment. In this case, CNT, titanium alkoxide, reaction inhibitor, and water are put into the inner cylinder of the reactor, and the inner cylinder is swirled to mix and disperse them and proceed with hydrolysis and condensation reaction, Promote chemical reactions. Upon completion of the reaction, CNTs in which a lithium titanate precursor is dispersed and supported can be obtained.
(加熱)
 UC処理によって得られたチタン酸リチウムの前駆体をCNTに高分散担持した。このCNTを300℃~900℃の範囲で真空中または窒素ガス中で加熱する。これによって、チタン酸リチウム粒子の凝集を防止し、本実施形態の電極材料を使用した電極や電気化学素子の容量、出力特性を向上させる。
(heating)
The precursor of lithium titanate obtained by UC treatment was highly dispersed and supported on CNTs. The CNTs are heated in the range of 300 ° C. to 900 ° C. in a vacuum or nitrogen gas. Thereby, aggregation of lithium titanate particles is prevented, and the capacity and output characteristics of an electrode or an electrochemical element using the electrode material of the present embodiment are improved.
(焼成工程)
 加熱したチタン酸リチウムの前駆体を高分散担持したCNTを、例えば300℃で1時間、900℃で4分間という二段階焼成によって、金属酸化物ナノ粒子がカーボンナノチューブに高分散担持された複合体粉末を得る。さらに、900℃の高温で短時間焼成することによって均一な組成のチタン酸リチウムが得られる。チタン酸リチウムの凝集を防ぎ、粒径の小さな結晶性のナノ粒子を形成することができる。
(Baking process)
A composite in which metal oxide nanoparticles are supported on carbon nanotubes in a highly dispersed manner by, for example, two-step firing of a heated CNT having a lithium titanate precursor supported at 300 ° C. for 1 hour and 900 ° C. for 4 minutes. Obtain a powder. Furthermore, lithium titanate having a uniform composition can be obtained by baking at a high temperature of 900 ° C. for a short time. Aggregation of lithium titanate can be prevented, and crystalline nanoparticles having a small particle size can be formed.
(電極)
 本実施形態により得られた金属酸化物ナノ粒子が、カーボンナノチューブに高分散担持された複合体粉末をイソプロピルアルコールに溶解し、CNTを添加して攪拌し、スラリーを作製する。このスラリーをろ過してシートを形成する。このシートを圧延処理し、成型し、電気化学素子の電極、すなわち電気エネルギー貯蔵用電極とすることができ、その電極は高出力特性、高容量特性を示す。以上、チタン酸リチウムについて述べたが、リン酸鉄リチウムなどの金属酸化物についても同様の効果を得ることができる。この場合、反応物としてはは酢酸リチウムなどのリチウム源、酢酸鉄などの鉄源、リン酸などのリン源および錯化剤としてのクエン酸を用い、反応抑制剤は用いない。
(electrode)
The composite powder in which the metal oxide nanoparticles obtained by this embodiment are highly dispersed and supported on carbon nanotubes is dissolved in isopropyl alcohol, and CNT is added and stirred to prepare a slurry. The slurry is filtered to form a sheet. This sheet can be rolled and molded to form an electrode of an electrochemical element, that is, an electrode for storing electrical energy, and the electrode exhibits high output characteristics and high capacity characteristics. Although lithium titanate has been described above, similar effects can be obtained with metal oxides such as lithium iron phosphate. In this case, as the reactant, a lithium source such as lithium acetate, an iron source such as iron acetate, a phosphorus source such as phosphoric acid and citric acid as a complexing agent are used, and no reaction inhibitor is used.
(電気化学素子)
 この電極を用いることができる電気化学素子は、リチウムやマグネシウムなどの金属イオンを含有する電解液を用いる電気化学キャパシタや電池である。すなわち、本発明の電極は、金属イオンの吸蔵、脱着を行うことができ、負極や正極として作動する。例えば、本発明の電極を、対極となる活性炭、金属イオンが吸蔵、脱着するカーボンや金属酸化物等の電極と、セパレータを挟んで積層し、金属イオンを含有する電解液を用いることによって、電気化学キャパシタや電池を構成することができる。
(Electrochemical element)
An electrochemical element that can use this electrode is an electrochemical capacitor or a battery that uses an electrolytic solution containing a metal ion such as lithium or magnesium. That is, the electrode of the present invention can occlude and desorb metal ions, and operates as a negative electrode and a positive electrode. For example, the electrode of the present invention is laminated by sandwiching a separator between an electrode such as activated carbon as a counter electrode, carbon or metal oxide that occludes and desorbs metal ions, and uses an electrolytic solution containing metal ions. Chemical capacitors and batteries can be configured.
 以下、実施例により本発明をさらに具体的に説明する。 Hereinafter, the present invention will be described more specifically with reference to examples.
[第1の特性比較(CNTの種類について)] [First characteristic comparison (type of CNT)]
 第1の特性比較では、CNTの種類によるレート特性の比較を行った。第1の特性比較で使用する実施例及び比較例は、以下の通りである。 In the first characteristic comparison, the rate characteristics were compared according to the type of CNT. Examples and comparative examples used in the first characteristic comparison are as follows.
(実施例1)
 実施例1では、図5に示すように、CNTとしてSWCNTを使用し、前処理工程時にCNTと混合する溶媒としてイソプロピルアルコールを用い、その後のUC処理工程において二段階のUC処理を行うことにより作製した。
(実施例2)
 実施例2では、図6に示すように、CNTとしてMWCNTを使用し、前処理工程時にCNTと混合する溶媒としてイソプロピルアルコールを用い、その後のUC処理工程において二段階のUC処理を行うことにより作製した。
(比較例1)
 比較例1は、CNTとしてSWCNTを使用し、超高圧分散処理は行わずに、二段階のUC処理のみを行った。
(比較例2)
 比較例2は、CNTとしてMWCNTを使用し、超高圧分散処理は行わずに、二段階のUC処理のみを行った。
Example 1
In Example 1, as shown in FIG. 5, SWCNT is used as CNT, isopropyl alcohol is used as a solvent mixed with CNT in the pretreatment process, and the two-stage UC treatment is performed in the subsequent UC treatment process. did.
(Example 2)
In Example 2, as shown in FIG. 6, MWCNT is used as CNT, isopropyl alcohol is used as a solvent mixed with CNT in the pretreatment process, and the two-stage UC treatment is performed in the subsequent UC treatment process. did.
(Comparative Example 1)
In Comparative Example 1, SWCNT was used as the CNT, and only the two-stage UC treatment was performed without performing the ultra-high pressure dispersion treatment.
(Comparative Example 2)
In Comparative Example 2, MWCNT was used as the CNT, and only the two-stage UC treatment was performed without performing the ultra-high pressure dispersion treatment.
(前処理工程)
 実施例1のCNT(直径1~2nm、長さ0.01~0.1mm、400m2/g),実施例2のCNT(直径5~10nm、長さ0.01~0.02mm、250m2/g)を約1g計り取り、2Lのイソプロピルアルコール中に混ぜ、混合溶媒を作製した。この混合溶媒をホモジナイザーを使用し、2000rpm、30minの条件で攪拌する。さらに、この混合溶媒に200MPa,3Pass,0.5g/lの圧力及び濃度で、チャンバ内に設けられた一対のノズルから噴射して流体同士を互いに衝突させ、CNT/イソプロピルアルコール分散溶液を作製した。得られた分散溶液を濃縮すると共に、乾燥した。
(Pretreatment process)
CNT of Example 1 (diameter 1 to 2 nm, length 0.01 to 0.1 mm, 400 m 2 / g), CNT of Example 2 (diameter 5 to 10 nm, length 0.01 to 0.02 mm, 250 m 2 / G) was weighed about 1 g and mixed in 2 L of isopropyl alcohol to prepare a mixed solvent. The mixed solvent is stirred using a homogenizer at 2000 rpm for 30 minutes. Further, this mixed solvent was sprayed from a pair of nozzles provided in the chamber at a pressure and concentration of 200 MPa, 3 Pass, 0.5 g / l, and the fluids collided with each other to prepare a CNT / isopropyl alcohol dispersion solution. . The resulting dispersion was concentrated and dried.
(1回目のUC処理)
 実施例1,2及び比較例1,2のCNT分散溶液0.12gとテトラブトキシチタン1.77gとを、イソプロピルアルコール18.7gに溶解して混合溶媒を作製した。この混合溶媒を旋回反応器内に投入し、40m/sで300秒間、内筒を旋回して混合溶媒にずり応力と遠心力を加えて高圧分散させ、実施例1,2及び比較例1,2のそれぞれについて中間生成物であるCNTとチタンの高分散混合物を得た。
(First UC process)
A mixed solvent was prepared by dissolving 0.12 g of the CNT dispersion solutions of Examples 1 and 2 and Comparative Examples 1 and 2 and 1.77 g of tetrabutoxytitanium in 18.7 g of isopropyl alcohol. This mixed solvent was put into a swirl reactor, and the inner cylinder was swirled at 40 m / s for 300 seconds to apply high shear dispersion by applying shear stress and centrifugal force to the mixed solvent. A highly dispersed mixture of CNT and titanium as an intermediate product was obtained for each of the two.
(2回目のUC処理)
 酢酸0.7g及び酢酸リチウム0.34gを、イソプロピルアルコール2.28gと水0.93gとの混合物に溶解して混合溶媒を作製した。この混合溶媒を、上述の実施例1,2及び比較例1,2のそれぞれについての混合物が形成された旋回反応器内に投入し、40m/sで300秒間、内筒を旋回して外筒の内壁に反応物の薄膜を形成すると共に、反応物にずり応力と遠心力を加えて化学反応を促進させ、最終生成物であるチタン酸リチウムの前駆体を高分散担持させたCNTを得た。
(Second UC process)
A mixed solvent was prepared by dissolving 0.7 g of acetic acid and 0.34 g of lithium acetate in a mixture of 2.28 g of isopropyl alcohol and 0.93 g of water. This mixed solvent is put into a swirl reactor in which a mixture for each of the above-described Examples 1 and 2 and Comparative Examples 1 and 2 is formed, and the inner cylinder is swung for 300 seconds at 40 m / s. A thin film of the reaction product was formed on the inner wall of the material, and a chemical reaction was promoted by applying shear stress and centrifugal force to the reaction product to obtain a CNT having a highly dispersed precursor of lithium titanate as a final product. .
 この後、生成物を縮合し、真空中において80℃で17時間加熱した。さらに、300℃1時間、900℃4分間の二段階の焼成工程を経て、チタン酸リチウムの前駆体がCNTに高分散担持された実施例1,2及び比較例1,2の複合体粉末を得た。なお、実施例1,2及び比較例1,2では、旋回反応器内に投入するチタンアルコキシドとCNTの量を、チタン酸リチウムとCNTの重量比が約8:2となるよう換算して調製した。 After this, the product was condensed and heated in vacuum at 80 ° C. for 17 hours. Furthermore, the composite powders of Examples 1 and 2 and Comparative Examples 1 and 2 in which the precursor of lithium titanate was highly dispersed and supported on the CNTs after two-stage firing processes of 300 ° C. for 1 hour and 900 ° C. for 4 minutes Obtained. In Examples 1 and 2 and Comparative Examples 1 and 2, the amount of titanium alkoxide and CNT charged into the swirl reactor was adjusted so that the weight ratio of lithium titanate and CNT was about 8: 2. did.
[レート特性]
 実施例1,2及び比較例1,2で得られた複合体粉末40重量部、カルボキシメチルセルロース1重量部、アクリル系ゴムバインダー1重量部、水300重量部の混合液を調整し、この混合液を銅箔に塗布、乾燥し、10μmの電極を作製した。
[Rate characteristics]
A mixed solution of 40 parts by weight of the composite powder obtained in Examples 1 and 2 and Comparative Examples 1 and 2, 1 part by weight of carboxymethyl cellulose, 1 part by weight of an acrylic rubber binder, and 300 parts by weight of water was prepared. Was applied to a copper foil and dried to prepare a 10 μm electrode.
 得られた電極に、対極としてリチウム箔をセパレータを介して対向させ、電解液として1M LiBF4/PCを用いて、電気化学セルを作製した。作製したセルについてレート特性評価を行ったところ図7,図8に示すような結果が得られた。 A lithium foil was opposed to the obtained electrode as a counter electrode through a separator, and an electrochemical cell was prepared using 1M LiBF 4 / PC as an electrolytic solution. When the rate characteristics of the fabricated cell were evaluated, results as shown in FIGS. 7 and 8 were obtained.
 図7は、CNTとしてSWCNTを使用した実施例1及び比較例1のレート特性評価を示した図である。図8は、CNTとしてMWCNTを使用した実施例2及び比較例2のレート特性評価を示した図である。この図7,8からは、SWCNT、MWCNT共にCNTに前処理工程を行わなかった比較例よりも、前処理工程を行った実施例の方がレート特性は高い評価を示すことが判る。 FIG. 7 is a graph showing the rate characteristic evaluation of Example 1 and Comparative Example 1 using SWCNT as CNT. FIG. 8 is a diagram showing rate characteristic evaluation of Example 2 and Comparative Example 2 using MWCNT as CNT. 7 and 8, it can be seen that both the SWCNT and the MWCNT have higher rate characteristics in the example in which the pretreatment process is performed than in the comparative example in which the CNT is not subjected to the pretreatment process.
[まとめ]
 すなわち、CNTとしてSWCNT及びMWCNTを使用しても、前処理工程を行うことにより、前処理工程を行わなかった場合に比べて高レート特性を示すことが判る。以上、チタン酸リチウムについて述べたが、リン酸鉄リチウムについて、リチウム源として酢酸リチウム、鉄源として酢酸鉄、リン源としてリン酸、及びクエン酸を用い、同様にして、特性を評価したが、同様の効果が得られた。
[Summary]
That is, even when SWCNT and MWCNT are used as CNTs, it can be seen that performing the pretreatment process exhibits higher rate characteristics than when the pretreatment process is not performed. As mentioned above, lithium titanate was described, but for lithium iron phosphate, lithium acetate as a lithium source, iron acetate as an iron source, phosphoric acid as a phosphorus source, and citric acid were similarly evaluated. Similar effects were obtained.

Claims (10)

  1.  分散カーボンナノチューブと、
     旋回する反応器内で反応物にずり応力と遠心力を加えて生成し、前記分散カーボンナノチューブに高分散担持した金属酸化物ナノ粒子と、からなり、
     前記分散カーボンナノチューブは、カーボンナノチューブを含有する溶液の噴射流同士を衝突させてバンドルを少なくとも部分的に解離させて分散したものであることを特徴とする金属酸化物と分散カーボンナノチューブとの複合体。
    Dispersed carbon nanotubes,
    Metal oxide nanoparticles produced by applying shear stress and centrifugal force to the reactants in a swirling reactor and highly dispersed on the dispersed carbon nanotubes,
    The dispersed carbon nanotube is a composite of a metal oxide and a dispersed carbon nanotube, wherein the bundle of carbon nanotube-containing solutions collides with each other to dissociate the bundle and dissociate the bundle at least partially. .
  2.  前記反応器が、外筒と内筒の同心円筒からなり、内筒の側面に貫通孔を備えるとともに、外筒の開口部にせき板を配置してなり、内筒の旋回による遠心力によって、内筒内の反応抑制剤を含む反応物を内筒の貫通孔を通じて外筒の内壁面に移動させ、外筒の内壁面に反応抑制剤を含む反応物を含む薄膜を生成させると共に、この薄膜にずり応力と遠心力を加えて化学反応を促進、制御させたことを特徴とする請求項1に記載の金属酸化物と分散カーボンナノチューブとの複合体。 The reactor comprises a concentric cylinder of an outer cylinder and an inner cylinder, and has a through-hole on the side surface of the inner cylinder, and a slat plate is disposed at the opening of the outer cylinder, and by centrifugal force due to the turning of the inner cylinder, The reactant containing the reaction inhibitor in the inner cylinder is moved to the inner wall surface of the outer cylinder through the through hole of the inner cylinder, and a thin film containing the reactant containing the reaction inhibitor is formed on the inner wall surface of the outer cylinder. The composite of metal oxide and dispersed carbon nanotubes according to claim 1, wherein a chemical reaction is promoted and controlled by applying a shear stress and a centrifugal force.
  3.  前記薄膜が、その厚さが5mm以下であることを特徴とする請求項2に記載の金属酸化物と分散カーボンナノチューブとの複合体。 3. The composite of metal oxide and dispersed carbon nanotubes according to claim 2, wherein the thin film has a thickness of 5 mm or less.
  4.  前記反応器の内筒内の反応物に加えられる遠心力が、1500N(kgms-2)以上であることを特徴とする請求項1乃至請求項3のいずれか1項に記載の金属酸化物と分散カーボンナノチューブとの複合体。 The metal oxide according to any one of claims 1 to 3, wherein a centrifugal force applied to the reactant in the inner cylinder of the reactor is 1500 N (kgms -2 ) or more. Complex with dispersed carbon nanotubes.
  5.  前記金属酸化物が、チタン酸リチウムであることを特徴とする請求項1乃至請求項4のいずれか1項に記載の金属酸化物と分散カーボンナノチューブとの複合体。 The composite of a metal oxide and a dispersed carbon nanotube according to any one of claims 1 to 4, wherein the metal oxide is lithium titanate.
  6.  前記金属アルコキシドが、チタンアルコキシドであることを特徴とする請求項2乃至5のいずれか1項に記載の金属酸化物と分散カーボンナノチューブとの複合体。 The composite of metal oxide and dispersed carbon nanotubes according to any one of claims 2 to 5, wherein the metal alkoxide is titanium alkoxide.
  7.  前記反応物が反応抑制剤を含むことを特徴とする請求項1乃至請求項6のいずれか1項に記載の金属酸化物と分散カーボンナノチューブとの複合体。 The composite of the metal oxide and the dispersed carbon nanotube according to any one of claims 1 to 6, wherein the reactant includes a reaction inhibitor.
  8.  請求項1乃至請求項6のいずれか1項に記載の金属酸化物と分散カーボンナノチューブとの複合体を含有することを特徴とする電極。 An electrode comprising the composite of the metal oxide according to any one of claims 1 to 6 and dispersed carbon nanotubes.
  9.  前記反応物が反応抑制剤を含むことを特徴とする請求項8に記載の電極。 The electrode according to claim 8, wherein the reactant contains a reaction inhibitor.
  10.  金属酸化物ナノ粒子を高分散担持させた分散カーボンナノチューブからなる電極材料の製造方法であって、
     カーボンナノチューブを含有する溶液の噴射流同士を衝突させてカーボンナノチューブのバンドルを少なくとも部分的に解離させて分散カーボンナノチューブを作製する工程と、
     前記分散カーボンナノチューブと、前記金属酸化物ナノ粒子の出発原料である金属アルコキシドとに、旋回する反応器内でずり応力と遠心力を加えて分散混合し、第1の複合体を作製する工程と、
     前記第1の複合体と、反応抑制剤を含む反応物とに、旋回する反応器内でずり応力と遠心力を加えて、前記分散カーボンナノチューブに高分散担持した金属酸化物ナノ粒子を生成する工程と、からなることを特徴とする電極材料の製造方法。
     
    A method for producing an electrode material comprising dispersed carbon nanotubes in which metal oxide nanoparticles are supported in a highly dispersed manner,
    A step of colliding the jets of a solution containing carbon nanotubes to at least partially dissociate the bundle of carbon nanotubes to produce dispersed carbon nanotubes;
    The dispersion carbon nanotubes and the metal alkoxide that is the starting material of the metal oxide nanoparticles are dispersed and mixed by applying shear stress and centrifugal force in a rotating reactor to produce a first composite, ,
    A shear stress and a centrifugal force are applied to the first composite and the reaction product containing the reaction inhibitor in a swirling reactor to generate metal oxide nanoparticles highly supported on the dispersed carbon nanotubes. And a process for producing an electrode material.
PCT/JP2012/075233 2011-09-30 2012-09-28 Metal oxide and carbon nanotube composite, manufacturing method for same, and electrode and electrochemical element using same WO2013047832A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-218128 2011-09-30
JP2011218128A JP2013075809A (en) 2011-09-30 2011-09-30 Composite of metal oxide and carbon nanotube, production method of the same, and electrode and electrochemical element using the same

Publications (1)

Publication Number Publication Date
WO2013047832A1 true WO2013047832A1 (en) 2013-04-04

Family

ID=47995855

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075233 WO2013047832A1 (en) 2011-09-30 2012-09-28 Metal oxide and carbon nanotube composite, manufacturing method for same, and electrode and electrochemical element using same

Country Status (2)

Country Link
JP (1) JP2013075809A (en)
WO (1) WO2013047832A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696090A (en) * 2016-02-19 2016-06-22 江苏亿茂滤材有限公司 Preparation method of air-filtering carbon nano-tube fibrous membrane
JP2019129142A (en) * 2018-01-23 2019-08-01 ツィンファ ユニバーシティ Method for manufacturing battery electrode
JP2019186188A (en) * 2018-04-03 2019-10-24 ツィンファ ユニバーシティ Battery electrode, method for making battery electrode, and hybrid energy storage device
CN111247095A (en) * 2017-10-30 2020-06-05 霓达株式会社 Carbon nanotube dispersion and method for producing same

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6271865B2 (en) * 2013-05-24 2018-01-31 日本ケミコン株式会社 Method for manufacturing electrode material for power storage device
CN103311528B (en) * 2013-06-14 2016-01-27 天奈(镇江)材料科技有限公司 Spinel type lithium titanate class embedding lithium carbon nanotube electrode material and preparation method
JP2015050170A (en) * 2013-09-04 2015-03-16 日本ケミコン株式会社 Electrode material, power storage material including electrode material, and method of producing electrode material
JP2016072144A (en) * 2014-09-30 2016-05-09 日本ケミコン株式会社 Electrode, electrochemical device and method for producing the electrode
CN110299516B (en) * 2019-06-10 2022-05-10 天津大学 Preparation method of carbon nanotube array loaded lithium titanate flexible electrode material
WO2021066554A1 (en) * 2019-10-04 2021-04-08 주식회사 엘지화학 Electrode and secondary battery comprising same
JP7457228B1 (en) 2023-06-30 2024-03-28 artience株式会社 Method for manufacturing composite for secondary battery electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010173884A (en) * 2009-01-28 2010-08-12 Jsr Corp Carbon nanotube dispersion, film using the same and method of producing the same
WO2010100954A1 (en) * 2009-03-06 2010-09-10 日本ケミコン株式会社 Electrode material and electrode containing the electrode material

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5477624B2 (en) * 2009-09-02 2014-04-23 学校法人 名城大学 Method for producing carbonaceous material mainly composed of double-walled carbon nanotube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010173884A (en) * 2009-01-28 2010-08-12 Jsr Corp Carbon nanotube dispersion, film using the same and method of producing the same
WO2010100954A1 (en) * 2009-03-06 2010-09-10 日本ケミコン株式会社 Electrode material and electrode containing the electrode material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAEDA, Y. ET AL.: "Dispersion of Single-Walled Carbon Nanotube Bundles in Nonaqueous Solution", J. PHYS. CHEM. B, vol. 108, 2004, pages 18395 - 18397, XP003002738 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696090A (en) * 2016-02-19 2016-06-22 江苏亿茂滤材有限公司 Preparation method of air-filtering carbon nano-tube fibrous membrane
CN105696090B (en) * 2016-02-19 2018-04-17 江苏亿茂滤材有限公司 A kind of preparation method of air filtration carbon nano-tube fibre film
CN111247095A (en) * 2017-10-30 2020-06-05 霓达株式会社 Carbon nanotube dispersion and method for producing same
CN111247095B (en) * 2017-10-30 2023-09-05 霓达株式会社 Carbon nanotube dispersion and method for producing the same
JP2019129142A (en) * 2018-01-23 2019-08-01 ツィンファ ユニバーシティ Method for manufacturing battery electrode
JP2019186188A (en) * 2018-04-03 2019-10-24 ツィンファ ユニバーシティ Battery electrode, method for making battery electrode, and hybrid energy storage device

Also Published As

Publication number Publication date
JP2013075809A (en) 2013-04-25

Similar Documents

Publication Publication Date Title
WO2013047832A1 (en) Metal oxide and carbon nanotube composite, manufacturing method for same, and electrode and electrochemical element using same
JP6429458B2 (en) Method for producing electrode material
CN102844913B (en) Metal oxide nanoparticles and the complex of carbon, its manufacture method, use have electrode and the electrochemical element of this complex
JP5180643B2 (en) Reaction method and metal oxide nanoparticles obtained by the method, or carbon carrying the metal oxide nanoparticles, an electrode containing the carbon, and an electrochemical device using the electrode
WO2010100954A1 (en) Electrode material and electrode containing the electrode material
WO2011122046A1 (en) Lithium titanate nanoparticles, composite of lithium titanate nanoparticles and carbon, method for producing said composite, electrode material comprising said composite, electrode using said electrode material, electrochemical element, and electrochemical capacitor
JP2009146773A (en) Olivine type lithium iron phosphorus composite oxide and its manufacturing method
US20140287314A1 (en) Sheet composite, manufacturing method thereof, and electrode and electrochemical element employing said composite
JP2016103479A (en) Manufacturing method of lithium electrode, and lithium secondary battery including lithium electrode
JP6040489B2 (en) Sheet composite, production method thereof, electrode and electrochemical element using the sheet composite
KR20140096581A (en) Composite of grapheme and nano silicon of core-shell structure, method for preparing the same, and electrochemical cell comprising active material thereof
JP7208147B2 (en) Lithium vanadium oxide crystal, electrode material, and storage device
JP2011213556A (en) Lithium titanate nanoparticle, composite of lithium titanate nanoparticle and carbon, method for producing the composite, electrode material comprising the composite, and electrode, electrochemical element and electrochemical capacitor using the electrode material
JP6625821B2 (en) Metal compound particle group, electrode for power storage device including metal compound particle group, and method for producing metal compound particle group
JP5877630B2 (en) Electrochemical capacitor
JP2011216748A (en) Electrochemical capacitor
EP4203109A1 (en) Conductive carbon, method for producing same, method for producing conductive carbon mixture containing said conductive carbon, and method for producing electrode using said conductive carbon or conductive carbon mixture
JP2015227281A (en) Lithium titanate nano-particle, production method of the nano-particle, composite of lithium titanate nano-particle and carbon, electrode material consisting of the composite, electrode using the electrode material, and electrochemical element and electrochemical capacitor
JP5965015B2 (en) Lithium titanate crystal structure
JP5877629B2 (en) Electrochemical capacitor
WO2016098371A1 (en) Method for producing metal compound particle group, metal compound particle group, and electrode for electricity storage device containing metal compound particle group

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835838

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835838

Country of ref document: EP

Kind code of ref document: A1