WO2013046479A1 - 制御装置、制御方法、プログラムおよび記録媒体 - Google Patents

制御装置、制御方法、プログラムおよび記録媒体 Download PDF

Info

Publication number
WO2013046479A1
WO2013046479A1 PCT/JP2011/080367 JP2011080367W WO2013046479A1 WO 2013046479 A1 WO2013046479 A1 WO 2013046479A1 JP 2011080367 W JP2011080367 W JP 2011080367W WO 2013046479 A1 WO2013046479 A1 WO 2013046479A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
air conditioner
air
identification information
air conditioners
Prior art date
Application number
PCT/JP2011/080367
Other languages
English (en)
French (fr)
Inventor
若浩 川井
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP11873114.0A priority Critical patent/EP2746688B1/en
Priority to CN201180073032.9A priority patent/CN103782110B/zh
Priority to JP2013535813A priority patent/JP6081365B2/ja
Publication of WO2013046479A1 publication Critical patent/WO2013046479A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/60Energy consumption
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/15Power, e.g. by voltage or current

Definitions

  • the present invention relates to a control device that controls air conditioning in an air conditioning target area (for example, a production factory) in which equipment that generates heat when operating is installed.
  • an air conditioning target area for example, a production factory
  • heating equipment constituting the line, or equipment such as motors, controllers, transformers, etc. of the production equipment generates heat and releases a large amount of heat into the air.
  • air conditioning is performed to keep the temperature in the production plant at a substantially constant value for the purpose of stabilizing the processing accuracy of the products, etc.
  • an air conditioner with high cooling capacity is used.
  • Patent Document 1 discloses environmental data (air temperature, CO 2 concentration, power consumption) in an air-conditioning target area, and the operation status of a device in the target area and human activity. There has been proposed a method of changing the set temperature of the air conditioner to an optimum value from the increase / decrease of environmental data that changes depending on the presence or absence. According to the method of Patent Literature 1, since the temperature change in the air conditioning target region can be predicted in advance and the operating capacity of the air conditioner can be set, waste of power consumption due to excessive cooling or the like can be suppressed.
  • Patent Document 2 calculates the time required to reach the set temperature from the power consumption of the equipment in the air-conditioning target area and the current temperature, and selects the optimal air-conditioning control pattern from the calculation result to select the power consumption. There has been proposed a method for reducing this.
  • Japanese Patent Publication Japanese Unexamined Patent Publication No. 2011-64416 (published on March 31, 2011)”
  • Japanese Patent Publication Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2011-38705 (published on February 24, 2011)”
  • Patent Document 1 sets the operating capacity of the air conditioner by changing the set temperature, and is not suitable for use in a production factory that requires control to a constant temperature.
  • it is necessary to derive the relationship between the environmental data and the set temperature in advance, but the relationship varies depending on the combination of various data such as the size of the target area, the outside air temperature, equipment, people, and the arrangement of air conditioners. It is difficult to accurately grasp in advance in the production factory.
  • Patent Document 2 is applicable to a production factory because it is controlled at a constant temperature setting, but it is necessary to derive the relationship between environmental data and control patterns in advance. Therefore, even when the method of Patent Document 2 is applied to a production factory, an accurate relationship among various data combinations such as the size of the target area, the outside air temperature, the device, the person, the arrangement of the air conditioner, etc. The problem remains that it cannot be set.
  • the present invention has been made to solve the above-described problems, and provides a control device, a control method, a program, and a recording medium that can easily perform appropriate air-conditioning control according to the state of heat radiation from equipment.
  • the purpose is to do.
  • a control device of the present invention is a control device that controls a plurality of air conditioners, and the plurality of air conditioners are divided into a first group and a second group, and the first group
  • the air conditioner belonging to is operated regardless of the operating state of the facility
  • the air conditioner belonging to the second group includes a control unit that controls the operation according to the operating state of the facility.
  • control method of the present invention is a control method for controlling a plurality of air conditioners, and the plurality of air conditioners are divided into a first group and a second group, and for the air conditioners belonging to the first group,
  • the air conditioner belonging to the second group is operated regardless of the operating state of the equipment, and includes a step of controlling the operation according to the operating state of the equipment.
  • FIG. 1 is a block diagram illustrating a schematic configuration of a control system according to a first embodiment. It is a figure which shows an example of the group information which a group information storage part memorize
  • 6 is a diagram illustrating an example of an air conditioning-line correspondence table stored in an air conditioning-line correspondence table storage unit according to the first embodiment.
  • FIG. It is a flowchart which shows the flow of the control processing (cooling operation) of the air conditioner in Embodiment 1. It is a flowchart which shows the flow of the control processing (heating operation) of the air conditioner in Embodiment 1.
  • FIG. It is a block diagram which shows schematic structure of the control system which concerns on Embodiment 2.
  • FIG. It is a figure which shows an example of the peripheral device information which a peripheral device information storage part memorize
  • FIG. It is a figure which shows an example of the air-conditioning-line correspondence table which the air-conditioning-line correspondence table memory
  • FIG. 1 is a schematic diagram showing a production factory to which a control system according to an embodiment of the present invention is applied.
  • FIG. 2 is a block diagram showing a schematic configuration of the control system.
  • the control system 1 of the present embodiment includes a plurality of production lines (equipment) 11 to 19, a plurality of air conditioners 21 to 28, and a control device 50 installed in one production factory (air conditioning target area) 10. Prepare.
  • Each of the production lines 11 to 19 is a facility that generates heat when operated, including various manufacturing apparatuses for processing or assembling products.
  • Each of the production lines 11 to 19 is connected to wattmeters 41 to 49 that measure the amount of power consumed in the production line.
  • the air conditioners 21, 22, 25, and 26 are ceiling-suspended air conditioners, and the air conditioners 23, 24, 27, and 28 are floor-type air conditioners.
  • Each of the air conditioners 21 to 28 is connected to one of the corresponding attached outdoor units 31 to 38.
  • the number of outdoor units connected to the air conditioner is not particularly limited.
  • the air conditioner 24 is connected to two outdoor units 33 and 34
  • the air conditioner 28 is connected to two outdoor units 37 and 38
  • the other air conditioners are connected to one outdoor unit.
  • the air conditioning capability of the air conditioner can be increased by increasing the number of connected outdoor units.
  • one outdoor unit may be shared by a plurality of air conditioners.
  • the air conditioner 21 and the air conditioner 22 share the outdoor unit 31, and the air conditioner 25 and the air conditioner 26 share the outdoor unit 35.
  • the air conditioners 21 to 28 measure the ambient temperature during operation, and are controlled so that the measured temperature becomes a preset temperature. For example, during the cooling operation, the air conditioners 21 to 28 perform an operation of lowering the room temperature (temperature lowering operation) when the measured temperature is higher than the set temperature, and temporarily stop when the measured temperature is lower than the set temperature. During the heating operation, the air conditioners 21 to 28 temporarily stop when the measured temperature is higher than the set temperature, and perform an operation (temperature increase operation) for raising the temperature of the room when the measured temperature is lower than the set temperature.
  • the control device 50 controls the operation of the plurality of air conditioners 21 to 28.
  • the control device 50 divides the plurality of air conditioners 21 to 28 into a first group that operates regardless of the operation of the production lines 11 to 19 and a second group that is operated and controlled according to the operation of the production line. Control according to the group.
  • the control device 50 includes a group information storage unit 51, an air conditioning-line correspondence table storage unit (facility identification information storage unit) 52, a control unit 53, and an input unit 54. .
  • the group information storage unit 51 is a group indicating the air conditioners belonging to the first group that are operated regardless of the operation of the production lines 11 to 19 and the air conditioners belonging to the second group that are operation-controlled according to the operation of the production lines.
  • FIG. 3 is a diagram illustrating an example of group information stored in the group information storage unit 51. As shown in FIG. 3, here, the air conditioners 21 and 25 belong to the first group, and the other air conditioners 22 to 24 and 26 to 28 belong to the second group.
  • the group information storage unit 51 stores group information according to user input to the input unit 54. Therefore, when changing the group to which a certain air conditioner belongs, the user inputs the fact to the input unit 54, and the group information storage unit 51 updates the group information according to the input.
  • the air conditioner-line correspondence table storage unit 52 includes, for each of the air conditioners 22 to 24 and 26 to 28 belonging to the second group, the air conditioner identification information indicating the air conditioner and the manufacturing installed closest to the air conditioner.
  • An air conditioning-line correspondence table in which first line identification information (first facility identification information) for identifying a line is associated with a first threshold value for determining the stop of the production line is stored.
  • FIG. 4 is a diagram showing an example of the air conditioning-line correspondence table stored in the air conditioning-line correspondence table storage unit 52. As shown in FIG.
  • the first threshold value is smaller than the power consumption during a predetermined period (for example, 10 minutes) when the corresponding production line is operating, and is smaller than the power consumption during the predetermined period when the production line is stopped. A slightly larger value is set.
  • the air conditioning / line correspondence table storage unit 52 stores an air conditioning / line correspondence table corresponding to a user input to the input unit 54. Therefore, when the layout in the production factory 10 is changed, the user inputs an instruction to change the first line identification information corresponding to the new layout to the input unit 54, and the air conditioning-line correspondence table storage unit 52 performs the air conditioning- Update the line correspondence table.
  • the control unit 53 controls the air conditioners 21 to 28 according to the group.
  • the control unit 53 controls the air conditioners 21 and 25 belonging to the first group so as to perform an operation according to a conventional set temperature. That is, the air conditioners 21 and 25 belonging to the first group operate so that the measured temperature becomes the set temperature.
  • control unit 53 air-conditions the first line identification information and the first threshold value corresponding to the air conditioner identification information indicating the air conditioner for each of the air conditioners 22 to 24 and 26 to 28 belonging to the second group. -Read from the line correspondence table. Based on the measurement data of the wattmeter connected to the production line indicated by the read first line identification information, the control unit 53 uses the power consumption amount for a predetermined period (for example, a period 10 minutes past the current time) ( Hereinafter, the first power consumption amount) is calculated and compared with the first threshold value.
  • a predetermined period for example, a period 10 minutes past the current time
  • the first threshold value is smaller than the power consumption amount in a predetermined period (for example, 10 minutes) when the production line is operating (operating), and the predetermined period when the manufacturing line is stopped. A value slightly larger than the amount of power consumption in is set. Therefore, when the calculated first power consumption amount is lower than the first threshold, the control unit 53 can determine that the production line indicated by the first line identification information is stopped. When the calculated first power consumption is equal to or greater than the first threshold, the control unit 53 can determine that the production line indicated by the first line identification information is operating.
  • control unit 53 determines that the production line is stopped, the control unit 53 stops the operation of the air conditioner during the cooling operation, and operates the air conditioner during the heating operation. On the other hand, when it is determined that the production line is operating, the control unit 53 operates the air conditioner during the cooling operation and stops the air conditioner during the heating operation.
  • the air conditioner controlled to operate by the control unit 53 is controlled so that the measured temperature becomes the set temperature.
  • the control unit 53 divides the plurality of air conditioners 21 to 28 into the first group and the second group, and the air conditioners 21 and 25 belonging to the first group depend on the operating state of the production lines 11 to 19.
  • the air conditioners 22 to 24 and 26 to 28 belonging to the second group are controlled in accordance with the operating states of the production lines 11 to 19. Therefore, the second group of air conditioners 22 to 24 and 26 to 28 can be operated according to the heat radiation amount of the production lines 11 to 19. As a result, the second group of air conditioners 22 to 24 and 26 to 28 can avoid unnecessary operation in accordance with the heat radiation from the production lines 11 to 19 and can save power.
  • the production lines 11 to 19 are stopped and there is no heat radiation, useless operation can be avoided by stopping the cooling operation of the second group of air conditioners 22 to 24 and 26 to 28. Further, the air conditioners 21 and 25 belonging to the first group are operated regardless of the operating state of the production lines 11 to 19. Therefore, for example, at the time of cooling operation, the temperature in the production factory is maintained at the set temperature by the air conditioner belonging to the first group even when the equipment is not operating.
  • the temperature of the production plant can be kept constant without consuming unnecessary power. That is, it is not necessary to acquire in detail the environmental data that changes according to the conditions of the production factory as in Patent Documents 1 and 2. Further, even if the layout of the equipment and air conditioners in the air conditioning target area is changed, it is not necessary to acquire environmental data as in Patent Documents 1 and 2 again.
  • FIG. 5 is a flowchart showing a flow of control processing of the air conditioners 21 to 28 in the present embodiment.
  • FIG. 5 shows an example in which the air conditioners 21 to 28 are in a cooling operation in summer.
  • control unit 53 selects one of the air conditioners 21 to 28 to be controlled. Then, the control unit 53 determines whether or not the air conditioner to be controlled belongs to the second group (S1). The control unit 53 determines S1 by referring to the group information stored in the group information storage unit 51.
  • the control unit 53 uses the air conditioner to control the air conditioner to be controlled.
  • the measured temperature is compared with the set temperature (S2).
  • the control unit 53 causes the air-conditioning apparatus to be controlled to perform a temperature lowering operation (S3).
  • the control unit 53 temporarily stops the air conditioner to be controlled (S4).
  • the control unit 53 air-conditions the first line identification information and the first threshold corresponding to the air conditioner identification information indicating the air conditioner to be controlled. Read from the line correspondence table (S5). Thereby, the control part 53 can pinpoint the manufacturing line nearest to the air conditioner of control object.
  • the control unit 53 determines the first period of a predetermined period (for example, a period of 10 minutes past the current time) from the measurement data of the wattmeter connected to the production line indicated by the first line identification information read in S5. One power consumption is calculated.
  • the control unit 53 can calculate the first power consumption amount by accumulating the past measurement data of the wattmeters 41 to 49 corresponding to the respective production lines 11 to 19. And the control part 53 judges whether the calculated 1st power consumption is more than the 1st threshold value read by S5 (S6).
  • the control unit 53 determines that the production line is operating, and shifts to the process of S2 for the air conditioner to be controlled. That is, the control unit 53 causes the controlled air conditioner to perform a normal operation according to the set temperature without reducing the air conditioning capacity.
  • the control unit 53 determines that the production line is stopped, and stops the operation of the controlled air conditioner (S7).
  • the control target placed on the floor in the vicinity of the production line 12 The operation of the air conditioner 23 is stopped.
  • the control target installed immediately above the production line 15 The operation of an air conditioner 26 is stopped. Thereafter, the process returns to S1 again, and the processes of S1 to S7 are repeated.
  • the control unit 53 executes the processing from S1 to S7 for all the air conditioners 21 to 28.
  • the control unit 53 determines, for each of the air conditioners belonging to the second group, (1) the first power consumption amount of the production line (facility) indicated by the first line identification information corresponding to the air conditioner is predetermined. If the air conditioner is less than the first threshold value, the air conditioner is stopped. (2) If the first power consumption is equal to or greater than the first threshold value, the air conditioner is operated without reducing the air conditioning capacity.
  • the air conditioners 22 to 24 and 26 to 28 belonging to the second group are cooled so that the measured temperature becomes the set temperature only when the nearest production line is in operation. It is stopped when the production line installed nearby is stopped. As a result, when the production line is stopped and there is no heat radiation from the production line, the nearby air conditioner is not operated wastefully, and overcooling can be prevented. Further, when the production line is in operation, a nearby air conditioner can be operated, and a temperature increase due to heat radiation from the production line can be effectively prevented.
  • FIG. 6 shows an example in which the air conditioners 21 to 28 are operated for heating in winter.
  • the control unit 53 performs the same processing of S1 as in FIG.
  • the control unit 53 uses the air conditioner to control the air conditioner to be controlled.
  • the measured temperature is compared with the set temperature (S8).
  • the control unit 53 causes the air conditioning device to be controlled to perform a temperature raising operation (S9).
  • the control unit 53 temporarily stops the air conditioner to be controlled (S4).
  • the control unit 53 performs the processes of S5 and S6 as in the first embodiment. That is, the control unit 53 calculates the first power consumption amount for a predetermined period in the production line closest to the air conditioner to be controlled, and compares it with the first threshold value.
  • the control unit 53 determines that the production line is stopped, and shifts to the process of S8 for the air conditioner to be controlled. That is, the air conditioner to be controlled is caused to perform a normal operation according to the set temperature without lowering the air conditioning capacity.
  • the control unit 53 determines that the production line is operating and stops the operation of the air conditioner to be controlled (S7). Thereafter, the process returns to S1 again, and the processes of S1 to S9 (excluding S2 and S3) are repeated.
  • the control part 53 performs the process of S1 to S9 (except S2 and S3) shown in FIG. 6 about all the air conditioners.
  • control unit 53 determines, for each of the air conditioners belonging to the second group, (1) the first power consumption amount of the production line (facility) indicated by the first line identification information corresponding to the air conditioner is predetermined.
  • the air conditioner is stopped when it is equal to or greater than the first threshold, and (2) when the first power consumption is less than the first threshold, the air conditioner is operated without reducing the air conditioning capacity.
  • the air conditioners 22 to 24 and 26 to 28 belonging to the second group are heated so that the measured temperature becomes the set temperature only when the nearest production line is stopped. It is stopped when a nearby production line is in operation. As a result, when the production line is in operation and there is heat radiation from the production line, a nearby air conditioner is not heated unnecessarily. In addition, when the production line is stopped, a nearby air conditioner can be operated for heating, and a temperature decrease due to the absence of heat radiation from the production line can be effectively prevented.
  • the air conditioning / line correspondence table storage unit 52 stores information indicating the production line closest to the air conditioning apparatus as the first line identification information.
  • the air conditioning-line correspondence table storage unit 52 may store information indicating the nearby manufacturing lines in the air conditioning apparatus as the first line identification information. For example, when the heat radiation amount when the second closest production line is operated is much larger than the heat radiation amount when the nearest production line is operated, information indicating the second closest production line is displayed. You may set as 1 line identification information. Thereby, it is possible to control the operation of the air conditioner according to the operation of a production line installed in the vicinity and having a large amount of heat radiation.
  • the air conditioning capability when any air conditioner is stopped due to a failure, if the air conditioner adjacent to the air conditioner is stopped in the process of S7, the air conditioning capability may be extremely reduced. Moreover, when an adjacent production line stops simultaneously, the adjacent air conditioner also stops simultaneously. Therefore, depending on the layout of the production factory, the air conditioning capability may be extremely reduced. In the present embodiment, such a problem can be solved.
  • FIG. 7 is a diagram illustrating the control system 101 according to the second embodiment. As shown in FIG. 7, each air conditioner 21 to 28 is different from the first embodiment in that it is connected to wattmeters 61 to 68 that measure the amount of power consumed by the air conditioner.
  • the control device 150 of the present embodiment is different from the control device 50 of the first embodiment in that the control device 150 includes a control unit 153 instead of the control unit 53 and further includes a peripheral device information storage unit 155.
  • the peripheral device information storage unit 155 includes, for each of the air conditioners 22 to 24 and 26 to 28 belonging to the second group, air conditioner identification information for identifying the air conditioner, and an air conditioner (peripheral position) around the air conditioner. Peripheral device information in which peripheral device identification information (device identification information) for identifying the air conditioner) is associated with a second threshold value for determining the stop of the peripheral air conditioner is stored.
  • FIG. 8 is a diagram illustrating an example of peripheral device information.
  • the second threshold is smaller than the power consumption during a predetermined period (for example, 10 minutes) when the corresponding air conditioner is operating, and is smaller than the power consumption during the predetermined period when the air conditioner is stopped. A slightly larger value is set.
  • Peripheral device information storage unit 155 stores peripheral device information according to user input to input unit 54. Therefore, when the layout in the production factory is changed, the user inputs an instruction to change peripheral device information according to the new layout to the input unit 54, and the peripheral device information storage unit 155 updates the peripheral device information according to the input.
  • the control unit 153 controls each of the air conditioners 21 to 28 according to the group, like the control unit 53 of the first embodiment. However, the control processing for the air conditioners 22 to 24 and 26 to 28 belonging to the second group is different from that of the first embodiment.
  • the control unit 153 For each of the air conditioners 22 to 24 and 26 to 28 belonging to the second group, the control unit 153 sets the first line identification information and the first threshold corresponding to the air conditioner identification information indicating the air conditioner to the air conditioning line. Read from the correspondence table. Based on the measurement data of the wattmeter connected to the production line indicated by the read first line identification information, the control unit 153 performs the first power consumption for a predetermined period (for example, a period that goes back 10 minutes from the current time). An amount is calculated and compared to a first threshold. Then, similarly to the first embodiment, the control unit determines that the production line is stopped when the calculated first power consumption is lower than the first threshold, and the calculated first power consumption is the first power consumption.
  • a predetermined period for example, a period that goes back 10 minutes from the current time.
  • the control unit 153 operates the air conditioner when it is determined that the production line is stopped during the heating operation, and operates the air conditioner when it is determined that the production line is operating during the cooling operation.
  • control unit 153 determines that the production line is stopped during the cooling operation or when it is determined that the production line is operating during the heating operation, the control unit 153 performs the following processing. That is, the control unit 153 reads the peripheral device identification information and the second threshold corresponding to the air conditioner identification information indicating the air conditioner to be controlled from the peripheral device information. And the control part 153 is based on the measurement data of the wattmeter of the air conditioner shown by the read peripheral device identification information, and is the power consumption amount (henceforth, the following 10 minutes from the present time) 2nd power consumption amount) is calculated and compared with the second threshold value.
  • the second threshold value is a value that is smaller than the power consumption amount during the predetermined period when the air conditioner is operating and slightly larger than the power consumption amount during the predetermined period when the air conditioner is stopped. Is set. Therefore, when the second power consumption amount is lower than the second threshold, the control unit 153 can determine that the air conditioner is stopped.
  • the control unit 153 determines that the surrounding air conditioner is operating, and stops the air conditioner to be controlled. On the other hand, when the second power consumption amount is less than the second threshold, the control unit 153 determines that the surrounding air conditioner is stopped, and operates the controlled air conditioner without stopping. The air conditioner controlled to operate by the control unit 153 is controlled so that the measured temperature becomes the set temperature.
  • FIG. 9 is a flowchart showing a flow of control processing of the air conditioner in the present embodiment.
  • FIG. 9 is an example in the case of air-conditioning operation of an air conditioner in summer. Since the processing from S1 to S6 is the same as that of the first embodiment (see FIG. 5), the description is omitted here.
  • the control unit 153 sets the peripheral device identification information and the second threshold value corresponding to the air conditioner identification information indicating the air conditioner to be controlled as the peripheral device information.
  • the air conditioner located around the air conditioner to be controlled is specified (S11).
  • the control unit 153 calculates the second power consumption amount for a predetermined period (for example, a period 10 minutes past the current time) based on the measurement data of the power meter of the air conditioner indicated by the peripheral device identification information. To do.
  • the control unit 153 can calculate the second power consumption amount by accumulating the past measurement data of the power meters 61 to 68 corresponding to the air conditioners 21 to 28, respectively. Then, the control unit 153 compares the calculated second power consumption amount with the second threshold value read in S11 (S12).
  • the control unit 153 determines that the surrounding air conditioner is operating, and stops the controlled air conditioner (S7). On the other hand, when the second power consumption is less than the second threshold (No in S12), the control unit 153 determines that the surrounding air conditioner is stopped, and proceeds to the process of S2. That is, the air conditioner to be controlled is caused to perform a normal operation according to the set temperature without lowering the air conditioning capacity.
  • the control unit 153 executes the processes from S1 to S12 shown in FIG. 9 for all the air conditioners 21 to 28.
  • the control unit 153 determines, for each of the air conditioners belonging to the second group, (1) the first power consumption amount of the production line indicated by the first line identification information corresponding to the air conditioner is less than the first threshold value. And when the second power consumption of the air conditioner indicated by the peripheral device identification information corresponding to the air conditioner is equal to or greater than a predetermined second threshold, the air conditioner is stopped, and (2) the first When the power consumption is greater than or equal to the first threshold or the second power consumption is less than the second threshold, the air conditioner is operated without reducing the air conditioning capacity.
  • the air conditioners 22 to 24 and 26 to 28 belonging to the second group are in the cooling operation only when the nearest production line is stopped and the surrounding air conditioners are in operation. Is stopped. As a result, it is possible to prevent an extreme decrease in the air conditioning capacity in the production factory.
  • FIG. 10 shows an example in which the air conditioners 21 to 28 are operated for heating in winter.
  • the control unit 153 sets the peripheral device identification information and the second threshold corresponding to the air conditioner identification information indicating the air conditioner to be controlled as the peripheral device information.
  • the air conditioner located around the air conditioner to be controlled is specified (S11).
  • the control unit 153 calculates the second power consumption amount for a predetermined period (for example, a period 10 minutes past the current time) based on the measurement data of the power meter of the air conditioner indicated by the peripheral device identification information. To do.
  • the control unit 153 can calculate the second power consumption amount by accumulating the past measurement data of the power meters 61 to 68 corresponding to the air conditioners 21 to 28, respectively. Then, the control unit 153 compares the calculated second power consumption amount with the second threshold value read in S11 (S12).
  • the control unit 153 determines that the surrounding air conditioner is operating, and stops the controlled air conditioner (S7). On the other hand, when the second power consumption is less than the second threshold (No in S12), the control unit 153 determines that the surrounding air conditioner is stopped, and proceeds to the process of S2. That is, the air conditioner to be controlled is operated according to the normal set temperature without reducing the air conditioning capacity.
  • the control unit 153 executes the processing from S1 to S12 shown in FIG. 10 for all the air conditioners 21 to 28.
  • the control unit 153 has (1) the first power consumption of the production line indicated by the first line identification information corresponding to the air conditioner for the air conditioners belonging to the second group. If the second power consumption amount of the air conditioner indicated by the peripheral device identification information corresponding to the air conditioner is equal to or greater than the predetermined second threshold, the air conditioner is stopped, and (2) When the first power consumption amount is less than the first threshold value or the second power consumption amount is less than the second threshold value, the air conditioner is operated without reducing the air conditioning capability.
  • the air conditioners 22 to 24 and 26 to 28 belonging to the second group are heated only when the nearest production line is in operation and the surrounding air conditioners are in operation. Is stopped. As a result, it is possible to prevent an extreme decrease in the air conditioning capacity in the production factory.
  • a production line may include a heating device, but a surrounding production line may not include a heating device.
  • Such an air conditioner installed in the vicinity of a production line that does not include a heating device plays a role of preventing a temperature rise due to heat radiation from the production line including the heating device around the production line. Therefore, if the air conditioner in the vicinity thereof is stopped in synchronization with the stop of the production line that does not include the heating device as in the first embodiment, the air conditioning capability in the production factory may be extremely reduced. There is. In the present embodiment, such a problem can be solved.
  • FIG. 11 is a diagram showing the control system 201 of the present embodiment.
  • the control device 250 of this embodiment includes a control unit 253 instead of the control unit 53, and an air conditioning-line correspondence table storage unit 252 instead of the air-conditioning / line correspondence table storage unit 52. This is different from the control device 50 of the first embodiment.
  • the air conditioner-line correspondence table storage unit 252 is installed for each of the air conditioners 22 to 24 and 26 to 28 belonging to the second group at the position closest to the air conditioner identification information indicating the air conditioner.
  • Peripheral manufacturing which is the first line identification information for identifying the production line, the first threshold value for determining the stop of the production line, and the production line installed around the production line and selected as the line to be monitored
  • FIG. 12 is a diagram illustrating an example of the air conditioning-line correspondence table stored in the air conditioning-line correspondence table storage unit 252.
  • the third threshold value is smaller than the power consumption during a predetermined period (for example, 10 minutes) when the corresponding peripheral manufacturing line is operating (operating), and is the predetermined value when the peripheral manufacturing line is stopped. A value slightly larger than the power consumption during the period is set.
  • the peripheral production line for example, a production line with a large heat dissipation amount including a heating device is appropriately selected.
  • the second line identification information is not set for the air conditioner 27. This is because the production lines 15 and 17 around the production line 16 closest to the air conditioner 27 do not include a heating device, and the amount of heat radiation is small, so that monitoring is not necessary.
  • a plurality of second line identification information and third threshold values may be set for one air conditioner.
  • the air conditioning / line correspondence table storage unit 252 stores an air conditioning / line correspondence table corresponding to a user input to the input unit 54. Therefore, when the layout in the production factory 10 is changed, the user inputs an instruction to change the first line identification information and the second line identification information according to the new layout to the input unit 54, and the air conditioning-line correspondence table storage unit 252 updates the air conditioning-line correspondence table according to the input.
  • the control unit 253 controls each of the air conditioners 21 to 28 according to the group, like the control unit 53 of the first embodiment. However, the control processing for the air conditioners 22 to 24 and 26 to 28 belonging to the second group is different from that of the first embodiment.
  • the control unit 253 sets, for each of the air conditioners 22 to 24 and 26 to 28 belonging to the second group, the first line identification information and the first threshold value corresponding to the air conditioner identification information indicating the air conditioner. Read from the correspondence table. Based on the measurement data of the wattmeter connected to the production line indicated by the read first line identification information, the control unit 253 performs the first power consumption for a predetermined period (for example, a period that goes back 10 minutes from the current time). An amount is calculated and compared to a first threshold. Then, similarly to the first embodiment, the control unit 253 determines that the production line is stopped when the calculated first power consumption is lower than the first threshold, and the calculated first power consumption is If it is equal to or greater than the first threshold, it is determined that the production line is operating. The control unit 253 operates the air conditioner when it is determined that the production line is stopped during the heating operation, and operates the air conditioner when it is determined that the production line is operating during the cooling operation.
  • a predetermined period for example, a period that goes back 10 minutes
  • the control unit 253 determines that the production line is stopped during the cooling operation or when it is determined that the production line is operating during the heating operation, the control unit 253 performs the following processing. That is, the control unit 253 reads out the second line identification information and the third threshold corresponding to the air conditioner to be controlled from the air conditioning-line correspondence table, and measures the wattmeter of the production line indicated by the read second line identification information. Based on the data, a power consumption amount (hereinafter, referred to as a third power consumption amount) for a predetermined period (for example, a period 10 minutes past the current time) is calculated and compared with a third threshold value.
  • a power consumption amount hereinafter, referred to as a third power consumption amount
  • the third threshold value is smaller than the power consumption amount in a predetermined period when the corresponding peripheral manufacturing line is operating (operating), and in the predetermined period when the peripheral manufacturing line is stopped. A value slightly larger than the power consumption is set. Therefore, when the calculated third power consumption is lower than the third threshold, the control unit 253 can determine that the peripheral manufacturing line is stopped. When the third power consumption is equal to or less than the third threshold, the control unit 253 determines that the peripheral production line is in operation and operates the controlled air conditioner without stopping it. On the other hand, when the third power consumption amount is less than the third threshold, the control unit 253 determines that the peripheral manufacturing line is stopped, and stops the controlled air conditioner. The air conditioner controlled to operate by the control unit 253 is controlled so that the measured temperature becomes the set temperature.
  • FIG. 13 is a flowchart showing a flow of control processing of the air conditioner in the present embodiment.
  • FIG. 13 is an example of a case where the air conditioner is operated for cooling in summer. Since the processing from S1 to S6 is the same as that of the first embodiment (see FIG. 5), the description is omitted here.
  • the control unit 253 sets the second line identification information and the third threshold value corresponding to the air conditioner identification information indicating the air conditioner to be controlled. Is determined based on the air-conditioning-line correspondence table (S13).
  • the control unit 253 determines that there is no peripheral production line to be monitored, and controls the air conditioning to be controlled.
  • the apparatus is stopped (S7).
  • the control unit 253 reads out the second line identification information and the third threshold.
  • the read second line identification information indicates the peripheral production line to be monitored.
  • the control unit 253 calculates the third power consumption amount for a predetermined period (for example, a period 10 minutes past the current time) based on the measurement data of the power meter of the production line indicated by the second line identification information. To do.
  • the control unit 253 compares the calculated third power consumption amount with the third threshold value (S14).
  • the control unit 253 determines that the peripheral production line to be monitored is stopped, and stops the controlled air conditioner (S7).
  • the control unit 253 determines that the peripheral manufacturing line to be monitored is operating, and proceeds to the process of S2. That is, the air conditioner to be controlled is operated according to the normal set temperature without reducing the air conditioning capacity.
  • the air conditioner 26 is operated.
  • the air conditioner 26 is stopped. Thereby, when the production line 16 is operated and dissipates heat, the air conditioner 26 is operated, so that an extreme decrease in the air conditioning capacity in the production factory can be prevented. Further, when the production line 16 is stopped, useless power consumption can be prevented by stopping the air conditioner 26.
  • the air conditioner 23 in which a plurality of peripheral production lines are set may be processed as follows in S14.
  • the control unit 253 reads out the combination of the second line identification information and the third threshold value for each peripheral production line. And the 3rd power consumption calculated
  • the third power consumption of the production line 11 is less than the third threshold (1 kW), and the third power consumption of the production line 13 is less than the third threshold (1 kW). If so, the process proceeds to S7. Or you may transfer to the process of S7, when the 3rd power consumption of at least one of the production line 11 and the production line 12 is less than a 3rd threshold value.
  • the control unit 253 executes the processing from S1 to S14 shown in FIG. 13 for all the air conditioners 21 to 28.
  • the air conditioner is stopped, 2)
  • the air conditioner is operated without reducing the air conditioning capacity.
  • the air conditioners 22 to 24 and 26 to 28 belonging to the second group can be used only when the nearest production line is stopped and the peripheral production line to be monitored is also stopped. Stopped. As a result, it is possible to prevent an extreme decrease in the air conditioning capacity in the production factory.
  • FIG. 14 shows an example in which the air conditioners 21 to 28 are operated for heating in winter.
  • the control unit 253 sets the second line identification information and the third threshold value corresponding to the air conditioner identification information indicating the controlled air conditioner. Is determined based on the air-conditioning-line correspondence table (S13).
  • the control unit 253 determines that there is no peripheral production line to be monitored, and controls the air conditioning to be controlled.
  • the apparatus is stopped (S7).
  • the control unit 253 reads out the second line identification information and the third threshold.
  • the read second line identification information indicates the peripheral production line to be monitored.
  • the control unit 253 calculates the third power consumption amount for a predetermined period (for example, a period 10 minutes past the current time) based on the measurement data of the power meter of the production line indicated by the second line identification information. To do.
  • the control unit 253 compares the calculated third power consumption amount with the third threshold value (S14).
  • the control unit 253 determines that the peripheral production line to be monitored is stopped, and proceeds to the process of S8. That is, the air conditioner to be controlled is operated according to the normal set temperature without reducing the air conditioning capacity.
  • the control unit 253 determines that the peripheral production line to be monitored is operating and stops the controlled air conditioner ( S7).
  • the control unit 253 executes the processing from S1 to S14 shown in FIG. 14 for all the air conditioners 21 to 28.
  • the air conditioners 22 to 24 and 26 to 28 belonging to the second group can be used only when the nearest production line is in operation and the peripheral production line to be monitored is also in operation. Stopped. As a result, it is possible to prevent an extreme decrease in the air conditioning capacity in the production factory.
  • control units 53, 153, and 253 stop the air conditioner to be controlled in step S7.
  • the control units 53, 153, and 253 may perform control to reduce the air conditioning capability of the air conditioner to be controlled. For example, when connected to two outdoor units such as the air conditioner 24 and the air conditioner 28, the operation of the air conditioners 24 and 28 is performed by reducing the air conditioning capability by stopping only one of the outdoor units. You may let them.
  • the air conditioner 24 is connected to two outdoor units like the air conditioner 24 and the air conditioner 28 and the air conditioning capacity is reduced by stopping one of the outdoor units in S7, the following processing may be performed. . That is, in S7, it is determined whether one of the two outdoor units has already stopped. And when one has already stopped, since the air-conditioning capability has already fallen, the other one is maintained as it is without stopping. On the other hand, when both of the two outdoor units are operating, one of them is stopped to reduce the air conditioning capacity.
  • a calculation unit such as a CPU (Central Processing Unit) is stored in a storage unit such as a ROM (Read Only Memory) or a RAM (Random Access Memory). It can be realized by executing the program and controlling input means such as a keyboard, output means such as a display, or communication means such as an interface circuit. Therefore, the computer having these means can realize various functions and various processes of the control devices 50, 150, and 250 of the present embodiment only by reading the recording medium in which the program is recorded and executing the program. it can. In addition, by recording the program on a removable recording medium, the various functions and various processes described above can be realized on an arbitrary computer.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • a program medium such as a memory (not shown) such as a ROM may be used for processing by the microcomputer, and a program reading device is provided as an external storage device (not shown). It may be a program medium that can be read by inserting a recording medium there.
  • the stored program is preferably configured to be accessed and executed by a microprocessor. Furthermore, it is preferable that the program is read out, and the read program is downloaded to a program storage area of the microcomputer and the program is executed. It is assumed that this download program is stored in advance in the main unit.
  • the program medium is a recording medium configured to be separable from the main body, such as a tape system such as a magnetic tape or a cassette tape, a magnetic disk such as a flexible disk or a hard disk, or a disk such as a CD / MO / MD / DVD.
  • Fixed disk system card system such as IC card (including memory card), or semiconductor memory such as mask ROM, EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), flash ROM, etc.
  • the recording medium is preferably a recording medium that fluidly carries the program so as to download the program from the communication network.
  • the download program is stored in the main device in advance or installed from another recording medium.
  • control device of the present invention is a control device for controlling a plurality of air conditioners, and the air conditioners belonging to the first group are divided into a first group and a second group.
  • the air conditioner belonging to the second group is provided with a control unit that controls the operation according to the operating state of the equipment.
  • the operation of the air conditioners belonging to the second group is controlled according to the operating state of the facility.
  • the amount of heat released from the equipment depends on the operating state of the equipment. Therefore, by operating the second group of air conditioners according to the operating state of the facility, the second group of air conditioners can be operated according to the heat radiation amount of the facility.
  • the second group of air conditioners useless operation can be avoided in accordance with heat radiation from the facility, and power saving can be achieved.
  • the air conditioners belonging to the first group are operated regardless of the operating state of the equipment. Therefore, for example, at the time of cooling operation, the temperature in the production factory is maintained at the set temperature by the air conditioner belonging to the first group even when the equipment is not operating.
  • wasteful power is generated by a simple setting of dividing a plurality of air conditioners into a first group that is operated regardless of the operating state of the facility and a second group that is controlled according to the operating state of the facility.
  • the temperature of the production plant can be kept constant without consuming energy. That is, it is not necessary to acquire in detail the environmental data that changes according to the conditions of the production factory as in Patent Documents 1 and 2. Further, even if the layout of the equipment and air conditioners in the air conditioning target area is changed, it is not necessary to acquire environmental data as in Patent Documents 1 and 2 again.
  • control unit determines an operating state of the facility based on the power consumption amount of the facility, and controls the operation of the air conditioners belonging to the second group according to the determination result. May be.
  • the control unit (1) stops the air conditioners belonging to the second group when the power consumption of the facility is less than a predetermined first threshold value.
  • the air conditioners belonging to the second group are operated without reducing the air conditioning capacity.
  • the air conditioner is in a heating operation, and the control unit (1) stops the air conditioner belonging to the second group when the power consumption of the facility is equal to or greater than a predetermined first threshold value. Or (2) When the power consumption of the facility is less than the first threshold, the air conditioners belonging to the second group are operated without reducing the air conditioning capacity. Let When the power consumption of the facility is greater than or equal to the first threshold, the heat dissipation from the facility is relatively large. For this reason, it is possible to prevent the air-conditioning target area from being excessively warmed by stopping the air-conditioning apparatus belonging to the second group or operating with the air-conditioning capacity being lowered, thereby saving the air-conditioning apparatus of the second group. Electricity can be achieved.
  • the control device further includes a facility identification information storage unit that stores a plurality of facilities and stores first facility identification information for identifying facilities installed in the vicinity of the air conditioners belonging to the second group.
  • the control unit may control the operation of the air conditioners belonging to the second group according to the operating state of the equipment indicated by the first equipment identification information.
  • the air conditioners belonging to the second group are controlled in accordance with the operating state of the equipment installed in the vicinity thereof. Thereby, air conditioning can be appropriately performed according to the heat radiation of the nearby equipment.
  • the control device of the present invention includes a plurality of facilities, and a facility identification information storage unit that stores first facility identification information for identifying facilities installed in the vicinity of the air conditioners belonging to the second group, A peripheral device information storage unit for storing device identification information for identifying other air conditioning devices installed in the vicinity of the air conditioning device belonging to the second group, and the control unit is indicated by the first facility identification information
  • the operation of the air conditioners belonging to the second group may be controlled according to the operating state of the equipment and the operation state of the air conditioner indicated by the device identification information.
  • the operation of the air conditioner can be controlled according to not only the operating state of the equipment installed in the vicinity but also the operating state of the surrounding air conditioner.
  • control device of the present invention there are a plurality of the facilities, and the first facility identification information for identifying the first facility installed in the vicinity of the air conditioner belonging to the second group, and the vicinity of the first facility.
  • a facility identification information storage unit that associates and stores second facility identification information for identifying the second facility installed in the system, and the control unit includes an operating state of the facility indicated by the first facility identification information, and The operation of the air conditioners belonging to the second group may be controlled according to the operating state of the equipment indicated by the second equipment identification information.
  • the operation of the air conditioner is controlled according to not only the operating state of the equipment installed in the vicinity but also the operating state of the surrounding equipment. Therefore, it is possible to control the operation of the air conditioner in consideration of the heat radiation amount of a plurality of facilities.
  • the air conditioner may be connected to a plurality of outdoor units, and the control unit may operate the air conditioner with a reduced air conditioning capability by stopping a part of the plurality of outdoor units.
  • control device may be realized by a computer.
  • a program that causes the computer to function as each unit of the control device, and a computer-readable recording medium that records the program are also included in the present invention. Enter the category.
  • the present invention can be applied to a system that air-conditions a production factory or the like where a production line is installed with a plurality of air conditioners.
  • Control system 1.101.201 Control system 10 Production factory (area subject to air conditioning) 11-19 Production line (equipment) 21 to 28 Air conditioner 31 to 38 Outdoor unit 41 to 49 Power meter 50/150/250 Control device 51 Group information storage unit 52/152 Air conditioning / line correspondence table storage unit (facility identification information storage unit) 53, 153, 253 Control unit 61-68 Wattmeter 155 Peripheral device information storage unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

 制御装置(50)は、複数の空調装置(21~28)を第1グループと第2グループとに分け、第1グループに属する空調装置については、製造ライン(11~19)の稼動状態にかかわらず運転させ、前記第2グループに属する空調装置については、製造ライン(11~19)の稼動状態に応じて運転を制御する制御部(53)を備える。

Description

制御装置、制御方法、プログラムおよび記録媒体
 本発明は、稼動することにより熱を発する設備が設置された空調対象領域(例えば、生産工場など)の空調を制御する制御装置に関するものである。
 製品の加工あるいは組み立て等を行う製造ラインでは、ラインを構成する加熱装置、あるいは、製造装置のモータ、コントローラ、トランス等の設備が発熱し、空気中に大量の熱を放出している。
 他方、半導体等の製造に要するクリーンルーム、あるいは、印刷ライン、精密加工ライン等では、製品の加工精度等を安定させる目的で生産工場内の温度を略一定値に保つ空調が行われており、上記した設備からの放熱による温度上昇を抑えるために、冷却能力の高い空調装置を用いている。
 このため、製造ラインが停止して放熱がないような場合、能力の高い空調装置が稼動し、設定温度を超えて生産工場内を冷却してしまい(オーバーシュート)、消費電力の無駄が発生するという問題があった。
 このような問題を解決する方法として、特許文献1には、空調対象領域内の環境データ(空気温度、CO濃度、消費電力量)を計測し、対象領域内の装置の稼動状況や人の存在の有無により変化する環境データの増減から、空調装置の設定温度を最適値に変更する方法が提案されている。特許文献1の方法によれば、空調対象領域における温度変化を事前に予測して空調装置の稼動能力を設定できるため、冷やし過ぎ等による消費電力の無駄を抑制できる。
 さらに、特許文献2には、空調対象領域内の設備の消費電力と現在の温度から設定温度に達するのに必要な時間を算出し、該算出結果から最適な空調制御パターンを選択して消費電力の削減を図る方法が提案されている。
日本国公開特許公報「特開2011-64416号公報(2011年3月31日公開)」 日本国公開特許公報「特開2011-38705号公報(2011年2月24日公開)」
 しかしながら、特許文献1の方法では、設定温度の変更により空調装置の稼動能力を設定するため、一定温度への制御を必要とする生産工場での利用には不適である。また、環境データと設定温度との関係を事前に導出しておく必要があるが、対象領域の広さ、外気温度、装置、人、空調装置の配置等、多様なデータの組み合わせで変化する関係を、生産工場において正確に事前に把握することは困難である。
 また、特許文献2の方法では、一定の温度設定での制御であるため生産工場への適用は可能であるが、環境データと制御パターンの関係を事前に導出しておく必要がある。そのため、特許文献2の方法を生産工場に適用する場合にも、対象領域の広さ、外気温度、装置、人、空調装置の配置等、多様なデータの組み合わせの中で正確な関係を事前に設定することができないという課題が残る。
 本発明は、上記課題を解決するためになされたものであり、設備からの放熱の状況に応じた適切な空調制御を簡易に行うことが可能な制御装置、制御方法、プログラムおよび記録媒体を提供することを目的とする。
 上記の課題を解決するために、本発明の制御装置は、複数の空調装置を制御する制御装置であって、前記複数の空調装置を第1グループと第2グループとに分け、前記第1グループに属する空調装置については、設備の稼動状態にかかわらず運転させ、前記第2グループに属する空調装置については、前記設備の稼動状態に応じて運転を制御する制御部を備えることを特徴とする。
 また、本発明の制御方法は、複数の空調装置を制御する制御方法であって、前記複数の空調装置を第1グループと第2グループとに分け、前記第1グループに属する空調装置については、設備の稼動状態にかかわらず運転させ、前記第2グループに属する空調装置については、前記設備の稼動状態に応じて運転を制御するステップを含むことを特徴とする。
 以上のように、本発明によれば、設備からの放熱の状況に応じた適切な空調制御を簡易に行うことができるという効果を奏する。
本発明の一実施形態に係る制御システムが適用される生産工場を示す模式図である。 実施形態1に係る制御システムの概略構成を示すブロック図である。 グループ情報記憶部が記憶するグループ情報の一例を示す図である。 実施形態1に係る空調-ライン対応テーブル記憶部が記憶する空調-ライン対応テーブルの一例を示す図である。 実施形態1における空調装置の制御処理(冷房運転)の流れを示すフローチャートである。 実施形態1における空調装置の制御処理(暖房運転)の流れを示すフローチャートである。 実施形態2に係る制御システムの概略構成を示すブロック図である。 周辺装置情報記憶部が記憶する周辺装置情報の一例を示す図である。 実施形態2における空調装置の制御処理(冷房運転)の流れを示すフローチャートである。 実施形態2における空調装置の制御処理(暖房運転)の流れを示すフローチャートである。 実施形態3に係る制御システムの概略構成を示すブロック図である。 実施形態3に係る空調-ライン対応テーブル記憶部が記憶する空調-ライン対応テーブルの一例を示す図である。 実施形態3における空調装置の制御処理(冷房運転)の流れを示すフローチャートである。 実施形態3における空調装置の制御処理(暖房運転)の流れを示すフローチャートである。
 <実施形態1>
  (制御システムの全体構成)
 以下、図面を参照して本発明の一実施形態を詳細に説明する。図1は、本発明の一実施形態に係る制御システムが適用される生産工場を示す模式図である。また、図2は、当該制御システムの概略構成を示すブロック図である。
 本実施形態の制御システム1は、一つの生産工場(空調対象領域)10に設置された、複数の製造ライン(設備)11~19と、複数の空調装置21~28と、制御装置50とを備える。
 製造ライン11~19の各々は、製品の加工あるいは組み立て等を行う各種の製造装置を含む、稼動することにより熱を発する設備である。製造ライン11~19の各々は、当該製造ラインで消費された電力量を計測する電力計41~49と接続されている。
 空調装置21・22・25・26は、天井吊型の空調装置であり、空調装置23・24・27・28は、床置型の空調装置である。また、空調装置21~28の各々は、対応する付属の室外機31~38のいずれかと接続されている。空調装置と接続される室外機の数は特に限定されない。例えば、空調装置24は2つの室外機33・34と接続され、空調装置28は2つの室外機37・38と接続され、それ以外の空調装置は、1つの室外機と接続されている。接続される室外機の数を増やすことで空調装置の空調能力を上げることができる。さらに、複数の空調装置によって1つの室外機を共用してもよい。例えば、空調装置21および空調装置22は室外機31を共用しており、空調装置25および空調装置26は室外機35を共用している。
 空調装置21~28は、運転している際、周囲の温度を測定し、その測定温度が予め定められた設定温度になるように制御される。例えば冷房運転時には、空調装置21~28は、測定温度が設定温度よりも高い場合に室内を降温させる動作(降温動作)を行い、測定温度が設定温度よりも低い場合に一時停止する。また暖房運転時には、空調装置21~28は、測定温度が設定温度よりも高い場合に一時停止し、測定温度が設定温度よりも低い場合に室内を昇温させる動作(昇温動作)を行う。
 制御装置50は、複数の空調装置21~28の動作を制御するものである。制御装置50は、複数の空調装置21~28を、製造ライン11~19の稼動と関係なく運転させる第1グループと、製造ラインの稼動に応じて運転制御される第2グループとに分け、各グループに応じた制御を行う。
  (制御装置の構成)
 次に制御装置50の内部構成について説明する。図2に示されるように、制御装置50は、グループ情報記憶部51と、空調-ライン対応テーブル記憶部(設備識別情報記憶部)52と、制御部53と、入力部54とを備えている。
 グループ情報記憶部51は、製造ライン11~19の稼動に関係なく運転させる第1グループに属する空調装置と、製造ラインの稼動に応じて運転制御される第2グループに属する空調装置とを示すグループ情報を記憶する。図3は、グループ情報記憶部51が記憶するグループ情報の一例を示す図である。図3に示されるように、ここでは、空調装置21・25が第1グループに属しており、他の空調装置22~24・26~28が第2グループに属している。
 グループ情報記憶部51は、入力部54へのユーザ入力に応じたグループ情報を記憶する。そのため、ある空調装置が属するグループを変更する場合、ユーザはその旨を入力部54に入力し、グループ情報記憶部51は入力に従ってグループ情報を更新する。
 空調-ライン対応テーブル記憶部52は、第2グループに属する空調装置22~24・26~28の各々について、当該空調装置を示す空調装置識別情報と、当該空調装置の最も近くに設置された製造ラインを識別する第1ライン識別情報(第1設備識別情報)と、当該製造ラインの停止を判断するための第1閾値とを対応付けた空調-ライン対応テーブルを記憶する。図4は、空調-ライン対応テーブル記憶部52が記憶する空調-ライン対応テーブルの一例を示す図である。
 なお、第1閾値は、対応する製造ラインが稼動しているときの所定期間(例えば10分間)における消費電力量よりも小さく、当該製造ラインが停止しているときの所定期間における消費電力量よりもわずかに大きい値が設定されている。
 空調-ライン対応テーブル記憶部52は、入力部54へのユーザ入力に応じた空調-ライン対応テーブルを記憶する。そのため、生産工場10内のレイアウトを変更した場合、ユーザは新たなレイアウトに応じた第1ライン識別情報の変更指示を入力部54に入力し、空調-ライン対応テーブル記憶部52は入力に従って空調-ライン対応テーブルを更新する。
 制御部53は、グループに応じて各空調装置21~28を制御するものである。制御部53は、第1グループに属する空調装置21・25に対して、従来の設定温度に応じた動作を行うように制御する。すなわち、第1グループに属する空調装置21・25は、測定温度が設定温度になるように動作する。
 また、制御部53は、第2グループに属する空調装置22~24・26~28の各々に対して、当該空調装置を示す空調装置識別情報に対応する第1ライン識別情報および第1閾値を空調-ライン対応テーブルから読み出す。制御部53は、読み出した第1ライン識別情報で示される製造ラインに接続された電力計の計測データに基づいて、所定期間(例えば、現時刻から過去10分遡った期間)の消費電力量(以下、第1消費電力量という)を算出し、第1閾値と比較する。
 第1閾値は、上述したように、製造ラインが運転(稼動)しているときの所定期間(例えば10分間)における消費電力量よりも小さく、当該製造ラインが運転停止しているときの所定期間における消費電力量よりもわずかに大きい値が設定されている。そのため、算出した第1消費電力量が第1閾値よりも低い場合、制御部53は、第1ライン識別情報で示される製造ラインが停止しているものと判断することができる。また、算出した第1消費電力量が第1閾値以上である場合、制御部53は、第1ライン識別情報で示される製造ラインが稼動しているものと判断することができる。
 そして、制御部53は、製造ラインが停止していると判断した場合、冷房運転時には空調装置の運転を停止し、暖房運転時には空調装置を運転させる。一方、制御部53は、製造ラインが稼動していると判断した場合、冷房運転時には空調装置を運転させ、暖房運転時には空調装置を運転停止させる。制御部53により運転するように制御された空調装置は、測定温度が設定温度になるように動作制御される。
 このように制御部53は、複数の空調装置21~28を第1グループと第2グループとに分け、第1グループに属する空調装置21・25については、製造ライン11~19の稼動状態にかかわらず運転させ、前記第2グループに属する空調装置22~24・26~28については、製造ライン11~19の稼動状態に応じて運転を制御する。そのため、製造ライン11~19の放熱量に応じて第2グループの空調装置22~24・26~28を運転させることができる。その結果、第2グループの空調装置22~24・26~28については、製造ライン11~19からの放熱に応じて無駄な運転を避けることができ、省電力化を図ることができる。例えば、製造ライン11~19が停止し放熱がないときには、第2グループの空調装置22~24・26~28の冷房運転を停止することで、無駄な運転を避けることができる。また、第1グループに属する空調装置21・25は、製造ライン11~19の稼動状態に関係なく運転される。そのため、例えば冷房運転時には、設備が稼動していない場合でも、第1グループに属する空調装置により、生産工場内の温度が設定温度に保たれる。
 このように、複数の空調装置21~28を、第1グループと第2グループとに分けるという簡単な設定により、無駄な電力を消費することなく、生産工場の温度を一定に保つことができる。すなわち、特許文献1・2のような生産工場の条件によって変化する環境データを詳細に取得する必要がない。また、空調対象領域内の設備や空調装置のレイアウトが変更されたとしても、特許文献1・2のような環境データを再度取得する必要がない。
  (空調装置の制御処理の流れ(冷房運転時))
 次に本実施形態における空調装置21~28の制御処理の一例について、図5を参照しながら説明する。図5は、本実施形態における空調装置21~28の制御処理の流れを示すフローチャートである。なお、図5は、夏季において空調装置21~28を冷房運転させる場合の例である。
 まず、制御部53は、制御対象となる空調装置21~28を一つ選択する。そして、制御部53は、制御対象の空調装置が第2グループに属するか否かを判断する(S1)。制御部53は、グループ情報記憶部51が記憶するグループ情報を参照することでS1の判断を行う。
 制御対象の空調装置が第2グループに属さない場合(S1でNo)、つまり、制御対象の空調装置が第1グループに属する場合、制御部53は、制御対象の空調装置について、当該空調装置による測定温度と設定温度とを比較する(S2)。測定温度が設定温度よりも高い場合(S2でYes)、制御部53は、制御対象の空調装置について降温動作を行わせる(S3)。一方、測定温度が設定温度以下である場合(S2でNo)、制御部53は、制御対象の空調装置を一時停止させる(S4)。
 また、制御対象の空調装置が第2グループに属する場合(S1でYes)、制御部53は、制御対象の空調装置を示す空調装置識別情報に対応する第1ライン識別情報および第1閾値を空調-ライン対応テーブルから読み出す(S5)。これにより、制御部53は、制御対象の空調装置に最も近い製造ラインを特定することができる。
 次に、制御部53は、S5で読み出した第1ライン識別情報で示される製造ラインに接続された電力計の計測データから、所定期間(例えば、現時刻から過去10分遡った期間)の第1消費電力量を算出する。制御部53は、各製造ライン11~19に対応する電力計41~49の過去の計測データを蓄積しておくことで、第1消費電力量を算出することができる。そして、制御部53は、算出した第1消費電力量がS5で読み出した第1閾値以上であるか否かを判断する(S6)。
 第1消費電力量が第1閾値以上である場合(S6でYes)、制御部53は、製造ラインが稼動していると判断し、制御対象の空調装置についてS2の処理に移行する。すなわち、制御部53は、制御対象の空調装置について、空調能力を下げることなく、設定温度に応じた通常の運転をさせる。
 一方、第1消費電力量が第1閾値未満である場合(S6でNo)、制御部53は、製造ラインが停止していると判断し、制御対象の空調装置の運転を停止する(S7)。例えば、第1ライン識別情報で示される製造ライン12の第1消費電力量が第1閾値(0.5kW、図4参照)よりも低いとき、製造ライン12の近傍に床置きされた、制御対象である空調装置23の運転を停止させる。また、第1ライン識別情報で示される製造ライン15の第1消費電力量が第1閾値(0.3kW、図4参照)よりも低いとき、製造ライン15の直上に設置された、制御対象である空調装置26の運転を停止させる。その後、再度S1に戻り、S1~S7の処理を繰り返す。
 制御部53は、全ての空調装置21~28について、S1からS7の処理を実行する。
 このように、制御部53は、第2グループに属する空調装置の各々について、(1)当該空調装置に対応する第1ライン識別情報で示される製造ライン(設備)の第1消費電力量が所定の第1閾値未満である場合に、当該空調装置を停止させ、(2)第1消費電力量が第1閾値以上である場合に、空調能力を低下させることなく当該空調装置を運転させる。
 これにより、第2グループに属する空調装置22~24・26~28は、最も近くに設置された製造ラインが稼動しているときに限り、測定温度が設定温度になるように冷房運転され、最も近くに設置された製造ラインが停止しているときには停止される。その結果、製造ラインが停止しており、当該製造ラインからの放熱がない場合において、近傍の空調装置を無駄に運転させることがなくなり、過冷却を防止できる。また、製造ラインが稼動しているときには、近傍の空調装置を運転させることができ、製造ラインからの放熱による温度上昇を効果的に防ぐことができる。
  (空調装置の制御処理の流れ(暖房運転時))
 次に本実施形態における空調装置21~28の制御処理の他例について、図6を参照しながら説明する。なお、図6は、冬季において空調装置21~28を暖房運転させる場合の例である。
 まず、制御部53は、図5と同様のS1の処理を行う。制御対象の空調装置が第2グループに属さない場合(S1でNo)、つまり、制御対象の空調装置が第1グループに属する場合、制御部53は、制御対象の空調装置について、当該空調装置による測定温度と設定温度とを比較する(S8)。測定温度が設定温度よりも低い場合(S8でYes)、制御部53は、制御対象の空調装置について昇温動作を行わせる(S9)。一方、測定温度が設定温度以上である場合(S8でNo)、制御部53は、制御対象の空調装置を一時停止させる(S4)。
 また、制御対象の空調装置が第2グループに属する場合(S1でYes)、制御部53は、実施形態1と同様に、S5およびS6の処理を行う。すなわち、制御部53は、制御対象の空調装置に最も近い製造ラインにおける所定期間の第1消費電力量を算出し、第1閾値と比較する。
 第1消費電力量が第1閾値未満である場合(S6でNo)、制御部53は、製造ラインが停止していると判断し、制御対象の空調装置についてS8の処理に移行する。すなわち、制御対象の空調装置について、空調能力を下げることなく、設定温度に応じた通常の運転をさせる。
 一方、第1消費電力量が第1閾値以上である場合(S6でYes)、制御部53は、製造ラインが稼動していると判断し、制御対象の空調装置の運転を停止する(S7)。その後、再度S1に戻り、S1~S9(S2、S3を除く)の処理を繰り返す。
 制御部53は、全ての空調装置について、図6に示すS1からS9(S2、S3を除く)の処理を実行する。
 このように、制御部53は、第2グループに属する空調装置の各々について、(1)当該空調装置に対応する第1ライン識別情報で示される製造ライン(設備)の第1消費電力量が所定の第1閾値以上である場合に、当該空調装置を停止させ、(2)第1消費電力量が第1閾値未満である場合に、空調能力を低下させることなく当該空調装置を運転させる。
 これにより、第2グループに属する空調装置22~24・26~28は、最も近くに設置された製造ラインが停止しているときに限り、測定温度が設定温度になるように暖房運転され、最も近くに設置された製造ラインが稼動しているときには停止される。その結果、製造ラインが稼動しており、当該製造ラインからの放熱がある場合において、近傍の空調装置を無駄に暖房運転させることがなくなる。また、製造ラインが停止しているときには、近傍の空調装置を暖房運転させることができ、製造ラインからの放熱がないことによる温度低下を効果的に防ぐことができる。
 なお、上記の説明では、空調-ライン対応テーブル記憶部52は、空調装置に最も近い製造ラインを示す情報を第1ライン識別情報として記憶するものとした。しかしながら、これに限定されず、空調-ライン対応テーブル記憶部52は、空調装置に近傍の製造ラインを示す情報を第1ライン識別情報として記憶してもよい。例えば、最も近い製造ラインが稼動するときの放熱量に比べて、2番目に近い製造ラインが稼動するときの放熱量が格段に大きい場合には、当該2番目に近い製造ラインを示す情報を第1ライン識別情報として設定してもよい。これにより、近傍に設置され、かつ、放熱量の大きい製造ラインの稼動に応じて空調装置の運転を制御することができる。
 <実施形態2>
 本発明の他の実施形態について説明する。なお、説明の便宜上、実施形態1と同様の機能を有する部材には実施形態1と同じ符号を付し、その説明を省略する。
 上記の実施形態1では、何れかの空調装置が故障で停止しているときに、その空調装置に隣接する空調装置をS7の処理で停止させると、空調能力が極端に低下する可能性がある。また、隣接する製造ラインが同時に停止した場合も、隣接する空調装置が同時に停止する。そのため、生産工場のレイアウトによっては空調能力が極端に低下する可能性がある。本実施形態は、このような問題をも解消できる形態である。
 図7は、本実施形態2の制御システム101を示す図である。図7に示されるように、各空調装置21~28は、当該空調装置で消費された電力量を計測する電力計61~68と接続されている点で、実施形態1と異なる。また、本実施形態の制御装置150は、制御部53の代わりに制御部153を備え、さらに周辺装置情報記憶部155を備える点で実施形態1の制御装置50と異なる。
 周辺装置情報記憶部155は、第2グループに属する空調装置22~24・26~28の各々について、当該空調装置を識別する空調装置識別情報と、当該空調装置の周辺の位置する空調装置(周辺空調装置)を識別する周辺装置識別情報(装置識別情報)と、当該周辺空調装置の停止を判断するための第2閾値とを対応付けた周辺装置情報を記憶するものである。図8は、周辺装置情報の一例を示す図である。
 なお、第2閾値は、対応する空調装置が運転しているときの所定期間(例えば10分間)における消費電力量よりも小さく、空調装置が停止しているときの所定期間における消費電力量よりもわずかに大きい値が設定されている。
 周辺装置情報記憶部155は、入力部54へのユーザ入力に応じた周辺装置情報を記憶する。そのため、生産工場内のレイアウトを変更した場合、ユーザは新たなレイアウトに応じた周辺装置情報の変更指示を入力部54に入力し、周辺装置情報記憶部155は入力に従って周辺装置情報を更新する。
 制御部153は、実施形態1の制御部53と同様に、グループに応じて各空調装置21~28を制御する。ただし、第2グループに属する空調装置22~24・26~28に対する制御処理が実施形態1と異なる。
 制御部153は、第2グループに属する空調装置22~24・26~28の各々に対して、当該空調装置を示す空調装置識別情報に対応する第1ライン識別情報および第1閾値を空調-ライン対応テーブルから読み出す。制御部153は、読み出した第1ライン識別情報で示される製造ラインに接続された電力計の計測データに基づいて、所定期間(例えば、現時刻から過去10分遡った期間)の第1消費電力量を算出し、第1閾値と比較する。そして、制御部は、実施形態1と同様に、算出した第1消費電力量が第1閾値よりも低い場合に製造ラインが停止しているものと判断し、算出した第1消費電力量が第1閾値以上である場合に製造ラインが稼動しているものと判断する。制御部153は、暖房運転時に製造ラインが停止していると判断した場合、空調装置を運転させ、冷房運転時に製造ラインが稼動していると判断した場合、空調装置を運転させる。
 一方、制御部153は、冷房運転時に製造ラインが停止していると判断した場合、もしくは、暖房運転時に製造ラインが稼動していると判断した場合、以下のような処理を行う。すなわち、制御部153は、制御対象の空調装置を示す空調装置識別情報に対応する周辺装置識別情報および第2閾値を周辺装置情報から読み出す。そして、制御部153は、読み出した周辺装置識別情報で示される空調装置の電力計の計測データに基づいて、所定期間(例えば、現時刻から過去10分遡った期間)の消費電力量(以下、第2消費電力量という)を算出し、第2閾値と比較する。
 上述したように、第2閾値は、空調装置が運転しているときの所定期間における消費電力量よりも小さく、空調装置が停止しているときの所定期間における消費電力量よりもわずかに大きい値が設定されている。そのため、第2消費電力量が第2閾値よりも低い場合、制御部153は、空調装置が停止しているものと判断することができる。
 第2消費電力量が第2閾値以下である場合、制御部153は、周辺の空調装置が運転していると判断し、制御対象の空調装置を停止させる。一方、第2消費電力量が第2閾値未満である場合、制御部153は、周辺の空調装置が停止していると判断し、制御対象の空調装置を停止させずに運転させる。なお、制御部153により運転するように制御された空調装置は、測定温度が設定温度になるように動作制御される。
  (空調装置の制御処理の流れ(冷房運転時))
 次に本実施形態における空調装置の制御処理の一例について、図9を参照しながら説明する。図9は、本実施形態における空調装置の制御処理の流れを示すフローチャートである。なお、図9は、夏季において空調装置を冷房運転させる場合の例である。S1からS6の処理については実施形態1(図5参照)と同様であるのでここでは説明を省略する。
 S6において第1消費電力量が第1閾値未満である場合(No)、制御部153は、制御対象の空調装置を示す空調装置識別情報に対応する周辺装置識別情報および第2閾値を周辺装置情報から読み出し、制御対象の空調装置の周辺に位置する空調装置を特定する(S11)。
 次に、制御部153は、周辺装置識別情報で示される空調装置の電力計の計測データに基づいて、所定期間(例えば、現時刻から過去10分遡った期間)の第2消費電力量を算出する。制御部153は、各空調装置21~28に対応する電力計61~68の過去の計測データを蓄積しておくことで、第2消費電力量を算出することができる。そして、制御部153は、算出した第2消費電力量とS11で読み出した第2閾値とを比較する(S12)。
 第2消費電力量が第2閾値以上である場合(S12でYes)、制御部153は、周辺の空調装置が運転していると判断し、制御対象の空調装置を停止させる(S7)。一方、第2消費電力量が第2閾値未満である場合(S12でNo)、制御部153は、周辺の空調装置が停止していると判断し、S2の処理に移行する。すなわち、制御対象の空調装置について、空調能力を下げることなく、設定温度に応じた通常の運転をさせる。
 例えば、制御対象の空調装置26に対して、最も近い製造ライン15が停止していたとしても、空調装置26の周辺の空調装置27(図8参照)が停止している場合には、空調装置26を運転させる。一方、空調装置26の周辺の空調装置27(図8参照)が運転している場合には、空調装置26を停止させる。これにより、隣接する空調装置26および空調装置27の両方が停止することによる、生産工場内の空調能力の極端な低下を防止できる。また、周辺の空調装置27が運転している場合に空調装置26を停止させることで無駄な電力消費を防止できる。
 制御部153は、全ての空調装置21~28について、図9に示すS1からS12の処理を実行する。
 このように、制御部153は、第2グループに属する空調装置の各々について、(1)当該空調装置に対応する第1ライン識別情報で示される製造ラインの第1消費電力量が第1閾値未満であり、かつ、当該空調装置に対応する周辺装置識別情報で示される空調装置の第2消費電力量が所定の第2閾値以上である場合に、当該空調装置を停止させ、(2)第1消費電力量が第1閾値以上である、または、第2消費電力量が第2閾値未満である場合に、空調能力を低下させることなく当該空調装置を運転させる。
 これにより、第2グループに属する空調装置22~24・26~28は、最も近くに設置された製造ラインが停止しており、かつ、周辺の空調装置が運転しているときに限り、冷房運転が停止される。その結果、生産工場内の空調能力の極端な低下を防止することができる。
  (空調装置の制御処理の流れ(暖房運転時))
 次に本実施形態における空調装置の制御処理の一例について、図10を参照しながら説明する。なお、図10は、冬季において空調装置21~28を暖房運転させる場合の例である。
 S1,S4~6,S8,S9の処理については図6に示す実施形態1と同様であるのでここでは説明を省略する。
 S6において第1消費電力量が第1閾値以上である場合(Yes)、制御部153は、制御対象の空調装置を示す空調装置識別情報に対応する周辺装置識別情報および第2閾値を周辺装置情報から読み出し、制御対象の空調装置の周辺に位置する空調装置を特定する(S11)。
 次に、制御部153は、周辺装置識別情報で示される空調装置の電力計の計測データに基づいて、所定期間(例えば、現時刻から過去10分遡った期間)の第2消費電力量を算出する。制御部153は、各空調装置21~28に対応する電力計61~68の過去の計測データを蓄積しておくことで、第2消費電力量を算出することができる。そして、制御部153は、算出した第2消費電力量とS11で読み出した第2閾値とを比較する(S12)。
 第2消費電力量が第2閾値以上である場合(S12でYes)、制御部153は、周辺の空調装置が運転していると判断し、制御対象の空調装置を停止させる(S7)。一方、第2消費電力量が第2閾値未満である場合(S12でNo)、制御部153は、周辺の空調装置が停止していると判断し、S2の処理に移行する。すなわち、制御対象の空調装置を、空調能力を下げることなく、通常の設定温度に応じた運転をさせる。
 制御部153は、全ての空調装置21~28について、図10に示すS1からS12の処理を実行する。
 このように、制御部153は、第2グループに属する空調装置の各々について、(1)当該空調装置に対応する第1ライン識別情報で示される製造ラインの第1消費電力量が所定の第1閾値以上であり、かつ、当該空調装置に対応する周辺装置識別情報で示される空調装置の第2消費電力量が所定の第2閾値以上である場合に、当該空調装置を停止させ、(2)第1消費電力量が第1閾値未満である、または、第2消費電力量が第2閾値未満である場合に、空調能力を低下させることなく当該空調装置を運転させる。
 これにより、第2グループに属する空調装置22~24・26~28は、最も近くに設置された製造ラインが稼動しており、かつ、周辺の空調装置が運転しているときに限り、暖房運転が停止される。その結果、生産工場内の空調能力の極端な低下を防止することができる。
 <実施形態3>
 本発明のさらに他の実施形態について説明する。なお、説明の便宜上、実施形態1と同様の機能を有する部材には実施形態1と同じ符号を付し、その説明を省略する。
 生産工場によっては、複数の製造ラインにおける稼動時の放熱量が異なる場合がある。例えば、ある製造ラインには加熱装置が含まれているが、その周辺の製造ラインには加熱装置が含まれていない場合がある。このような、加熱装置が含まれていない製造ラインの近傍に設置された空調装置は、当該製造ラインの周辺の加熱装置を含む製造ラインからの放熱による温度上昇を防止する役割を担っている。そのため、実施形態1のように、加熱装置が含まれていない製造ラインの停止に同期して、その近傍の空調装置を停止させると、生産工場内の空調能力が極端に低下してしまう可能性がある。本実施形態は、このような問題をも解消できる形態である。
 図11は、本実施形態の制御システム201を示す図である。図11に示されるように、本実施形態の制御装置250は、制御部53の代わりに制御部253を、空調-ライン対応テーブル記憶部52の代わりに空調-ライン対応テーブル記憶部252を備える点で実施形態1の制御装置50と異なる。
 空調-ライン対応テーブル記憶部252は、第2グループに属する空調装置22~24・26~28の各々について、当該空調装置を示す空調装置識別情報と、当該空調装置の最も近い位置に設置された製造ラインを識別する第1ライン識別情報と、当該製造ラインの停止を判断するための第1閾値と、当該製造ラインの周辺に設置され、監視すべきラインとして選択された製造ラインである周辺製造ラインを識別する第2ライン識別情報と、周辺製造ラインの停止を判断するための第3閾値とを対応付けた空調-ライン対応テーブルを記憶する。図12は、空調-ライン対応テーブル記憶部252が記憶する空調-ライン対応テーブルの一例を示す図である。
 なお、第3閾値は、対応する周辺製造ラインが運転(稼動)しているときの所定期間(例えば10分間)における消費電力量よりも小さく、当該周辺製造ラインが運転停止しているときの所定期間における消費電力量よりもわずかに大きい値が設定されている。
 周辺製造ラインとしては、例えば、加熱装置を含むような放熱量の大きい製造ラインが適宜選択される。なお、全ての空調装置に対して周辺製造ラインを設定する必要はなく、生産工場内のレイアウトに応じて、一部の空調装置に対してのみ監視対象製造ラインを設定すればよい。例えば、図12に示されるように、空調装置27については、第2ライン識別情報が設定されていない。これは、空調装置27に最も近い製造ライン16の周辺の製造ライン15・17が加熱装置を含んでおらず、放熱量が小さいため、監視する必要がないからである。また、空調装置23のように、1つの空調装置に対して複数の第2ライン識別情報および第3閾値が設定されてもよい。
 空調-ライン対応テーブル記憶部252は、入力部54へのユーザ入力に応じた空調-ライン対応テーブルを記憶する。そのため、生産工場10内のレイアウトを変更した場合、ユーザは新たなレイアウトに応じた第1ライン識別情報および第2ライン識別情報の変更指示を入力部54に入力し、空調-ライン対応テーブル記憶部252は入力に従って空調-ライン対応テーブルを更新する。
 制御部253は、実施形態1の制御部53と同様に、グループに応じて各空調装置21~28を制御する。ただし、第2グループに属する空調装置22~24・26~28に対する制御処理が実施形態1と異なる。
 制御部253は、第2グループに属する空調装置22~24・26~28の各々に対して、当該空調装置を示す空調装置識別情報に対応する第1ライン識別情報および第1閾値を空調-ライン対応テーブルから読み出す。制御部253は、読み出した第1ライン識別情報で示される製造ラインに接続された電力計の計測データに基づいて、所定期間(例えば、現時刻から過去10分遡った期間)の第1消費電力量を算出し、第1閾値と比較する。そして、制御部253は、実施形態1と同様に、算出した第1消費電力量が第1閾値よりも低い場合に製造ラインが停止しているものと判断し、算出した第1消費電力量が第1閾値以上である場合に製造ラインが稼動しているものと判断する。制御部253は、暖房運転時に製造ラインが停止していると判断した場合、空調装置を運転させ、冷房運転時に製造ラインが稼動していると判断した場合、空調装置の運転させる。
 一方、制御部253は、冷房運転時に製造ラインが停止していると判断した場合、もしくは、暖房運転時に製造ラインが稼動していると判断した場合、以下のような処理を行う。すなわち、制御部253は、制御対象の空調装置に対応する第2ライン識別情報および第3閾値を空調-ライン対応テーブルから読み出し、読み出した第2ライン識別情報で示される製造ラインの電力計の計測データに基づいて、所定期間(例えば、現時刻から過去10分遡った期間)の消費電力量(以下、第3消費電力量という)を算出し、第3閾値と比較する。
 上述したように、第3閾値は、対応する周辺製造ラインが運転(稼動)しているときの所定期間における消費電力量よりも小さく、当該周辺製造ラインが運転停止しているときの所定期間における消費電力量よりもわずかに大きい値が設定されている。そのため、算出した第3消費電力量が第3閾値よりも低い場合、制御部253は、周辺製造ラインが停止しているものと判断することができる。第3消費電力量が第3閾値以下である場合、制御部253は、周辺製造ラインが運転していると判断し、制御対象の空調装置を停止させずに運転させる。一方、第3消費電力量が第3閾値未満である場合、制御部253は、周辺製造ラインが停止していると判断し、制御対象の空調装置を停止させる。なお、制御部253により運転するように制御された空調装置は、測定温度が設定温度になるように動作制御される。
  (空調装置の制御処理の流れ(冷房運転時))
 次に本実施形態における空調装置の制御処理の一例について、図13を参照しながら説明する。図13は、本実施形態における空調装置の制御処理の流れを示すフローチャートである。なお、図13は、夏季において空調装置を冷房運転させる場合の例である。S1からS6の処理については実施形態1(図5参照)と同様であるのでここでは説明を省略する。
 S6において第1消費電力量が第1閾値未満である場合(No)、制御部253は、制御対象の空調装置を示す空調装置識別情報に対応する第2ライン識別情報および第3閾値が設定されているか否かを空調-ライン対応テーブルに基づいて判断する(S13)。
 空調装置識別情報に対応する第2ライン識別情報および第3閾値が設定されていない場合(S13でNo)、制御部253は、監視すべき周辺製造ラインがないものと判断し、制御対象の空調装置を停止させる(S7)。
 空調装置識別情報に対応する第2ライン識別情報および第3閾値が設定されている場合(S13でYes)、制御部253は、当該第2ライン識別情報および第3閾値を読み出す。読み出した第2ライン識別情報は、監視すべき周辺製造ラインを示している。そして、制御部253は、第2ライン識別情報で示される製造ラインの電力計の計測データに基づいて、所定期間(例えば、現時刻から過去10分遡った期間)の第3消費電力量を算出する。制御部253は、算出した第3消費電力量と第3閾値とを比較する(S14)。
 第3消費電力量が第3閾値未満である場合(S14でYes)、制御部253は、監視すべき周辺製造ラインが停止していると判断し、制御対象の空調装置を停止させる(S7)。一方、第3消費電力量が第3閾値以上である場合(S14でNo)、制御部253は、監視すべき周辺製造ラインが稼動していると判断し、S2の処理に移行する。すなわち、制御対象の空調装置を、空調能力を下げることなく、通常の設定温度に応じた運転をさせる。
 例えば、制御対象の空調装置26に対して、最も近い製造ライン15が停止していたとしても、その周辺の製造ライン16(図1および図12参照)が稼動している場合には、空調装置26を運転させる。一方、周辺の製造ライン16も停止している場合には、空調装置26を停止させる。これにより、製造ライン16が稼動され放熱している場合に、空調装置26を運転させるため、生産工場内の空調能力の極端な低下を防止できる。また、製造ライン16が停止している場合には、空調装置26を停止させることで無駄な電力消費を防止できる。
 また、図12に示されるように、複数の周辺製造ラインが設定されている空調装置23については、S14において次のように処理を行えばよい。制御部253は、周辺製造ラインごとに、第2ライン識別情報および第3閾値の組合せを読み出す。そして、組合せごとに、第2ライン識別情報で示される製造ラインの電力計の計測データから求めた第3消費電力量を第3閾値と比較する。全ての組合せにおいて第3消費電力量が第3閾値未満である場合にS14でYesと判定し、それ以外の場合にS14でNoと判定する。もしくは、少なくとも1つの組合せにおいて第3消費電力量が第3閾値未満である場合にS14でYesと判定し、それ以外の場合にS14でNoと判定してもよい。例えば、制御対象の空調装置23については、製造ライン11の第3消費電力量が第3閾値(1kW)未満であり、かつ、製造ライン13の第3消費電力量が第3閾値(1kW)未満である場合にS7の処理に移行する。もしくは、製造ライン11および製造ライン12の少なくとも一方の第3消費電力量が第3閾値未満である場合にS7の処理に移行してもよい。
 制御部253は、全ての空調装置21~28について、図13に示すS1からS14の処理を実行する。
 このように、制御部253は、第2グループに属する空調装置の各々について、(1)当該空調装置に対応する第1ライン識別情報で示される製造ラインの第1消費電力量が所定の第1閾値未満であり、かつ、当該空調装置に対応する第2ライン識別情報で示される周辺製造ラインの第3消費電力量が所定の第3閾値未満である場合に、当該空調装置を停止させ、(2)第1消費電力量が第1閾値以上である、または、第3消費電力量が第3閾値以上である場合に、空調能力を低下させることなく当該空調装置を運転させる。
 これにより、第2グループに属する空調装置22~24・26~28は、最も近くに設置された製造ラインが停止しており、かつ、監視すべき周辺製造ラインも停止しているときに限り、停止される。その結果、生産工場内の空調能力の極端な低下を防止することができる。
  (空調装置の制御処理の流れ(暖房運転時))
 次に本実施形態における空調装置の制御処理の一例について、図14を参照しながら説明する。なお、図14は、冬季において空調装置21~28を暖房運転させる場合の例である。
 S1,S4~6,S8,S9の処理については図6に示す実施形態1と同様であるのでここでは説明を省略する。
 S6において第1消費電力量が第1閾値以上である場合(Yes)、制御部253は、制御対象の空調装置を示す空調装置識別情報に対応する第2ライン識別情報および第3閾値が設定されているか否かを空調-ライン対応テーブルに基づいて判断する(S13)。
 空調装置識別情報に対応する第2ライン識別情報および第3閾値が設定されていない場合(S13でNo)、制御部253は、監視すべき周辺製造ラインがないものと判断し、制御対象の空調装置を停止させる(S7)。
 空調装置識別情報に対応する第2ライン識別情報および第3閾値が設定されている場合(S13でYes)、制御部253は、当該第2ライン識別情報および第3閾値を読み出す。読み出した第2ライン識別情報は、監視すべき周辺製造ラインを示している。そして、制御部253は、第2ライン識別情報で示される製造ラインの電力計の計測データに基づいて、所定期間(例えば、現時刻から過去10分遡った期間)の第3消費電力量を算出する。制御部253は、算出した第3消費電力量と第3閾値とを比較する(S14)。
 第3消費電力量が第3閾値未満である場合(S14でYes)、制御部253は、監視すべき周辺製造ラインが停止していると判断し、S8の処理に移行する。すなわち、制御対象の空調装置を、空調能力を下げることなく、通常の設定温度に応じた運転をさせる。一方、第3消費電力量が第3閾値以上である場合(S14でNo)、制御部253は、監視すべき周辺製造ラインが稼動していると判断し、制御対象の空調装置を停止させる(S7)。
 制御部253は、全ての空調装置21~28について、図14に示すS1からS14の処理を実行する。
 このように、制御部253は、第2グループに属する空調装置の各々について、(1)当該空調装置に対応する第1ライン識別情報で示される製造ラインの第1消費電力量が所定の第1閾値以上であり、かつ、当該空調装置に対応する第2ライン識別情報で示される周辺製造ラインの第3消費電力量が所定の第3閾値以上である場合に、当該空調装置を停止させ、(2)第1消費電力量が第1閾値未満である、または、第3消費電力量が第3閾値未満である場合に、空調能力を低下させることなく当該空調装置を運転させる。
 これにより、第2グループに属する空調装置22~24・26~28は、最も近くに設置された製造ラインが稼動しており、かつ、監視すべき周辺製造ラインも稼動しているときに限り、停止される。その結果、生産工場内の空調能力の極端な低下を防止することができる。
 <変形例>
 上記の説明では、制御部53・153・253は、S7のステップにおいて、制御対象の空調装置を停止させるものとした。しかしながら、S7のステップにおいて、制御部53・153・253は、制御対象の空調装置の空調能力を低下させる制御を行ってもよい。例えば、空調装置24や空調装置28のように2つの室外機と接続されている場合には、一方の室外機のみを停止させることで、空調装置24・28について、空調能力を低下させて運転させてもよい。
 また、空調装置24や空調装置28のように2つの室外機と接続されており、S7において一方の室外機を停止することにより空調能力を低下させる場合、以下のような処理を行ってもよい。すなわち、S7において、2つの室外機のうち一方が既に停止しているか否かを判断する。そして、既に一方が停止している場合には、既に空調能力が低下しているため、残りの一方を停止させずにそのままの状態を維持する。一方、2つの室外機の両方が稼動している場合には、一方を停止させ、空調能力を低下させる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 なお、上記した各実施形態における制御装置50・150・250の各部は、CPU(Central Processing Unit)などの演算手段が、ROM(Read Only Memory)やRAM(Random Access Memory)などの記憶手段に記憶されたプログラムを実行し、キーボードな
どの入力手段、ディスプレイなどの出力手段、あるいは、インターフェース回路などの通信手段を制御することにより実現することができる。したがって、これらの手段を有するコンピュータが、上記プログラムを記録した記録媒体を読み取り、当該プログラムを実行するだけで、本実施形態の制御装置50・150・250の各種機能および各種処理を実現することができる。また、上記プログラムをリムーバブルな記録媒体に記録することにより、任意のコンピュータ上で上記の各種機能および各種処理を実現することができる。
 この記録媒体としては、マイクロコンピュータで処理を行うために図示しないメモリ、例えばROMのようなものがプログラムメディアであっても良いし、また、図示していないが外部記憶装置としてプログラム読み取り装置が設けられ、そこに記録媒体を挿入することにより読み取り可能なプログラムメディアであっても良い。
 また、何れの場合でも、格納されているプログラムは、マイクロプロセッサがアクセスして実行される構成であることが好ましい。さらに、プログラムを読み出し、読み出されたプログラムは、マイクロコンピュータのプログラム記憶エリアにダウンロードされて、そのプログラムが実行される方式であることが好ましい。なお、このダウンロード用のプログラムは予め本体装置に格納されているものとする。
 また、上記プログラムメディアとしては、本体と分離可能に構成される記録媒体であり、磁気テープやカセットテープ等のテープ系、フレキシブルディスクやハードディスク等の磁気ディスクやCD/MO/MD/DVD等のディスクのディスク系、ICカード(メモリカードを含む)等のカード系、あるいはマスクROM、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、フラッシュROM等による半導体メモリを含めた固定的にプログラム
を担持する記録媒体等がある。
 また、インターネットを含む通信ネットワークを接続可能なシステム構成であれば、通信ネットワークからプログラムをダウンロードするように流動的にプログラムを担持する記録媒体であることが好ましい。
 さらに、このように通信ネットワークからプログラムをダウンロードする場合には、そのダウンロード用のプログラムは予め本体装置に格納しておくか、あるいは別な記録媒体からインストールされるものであることが好ましい。
 以上のように、本発明の制御装置は、複数の空調装置を制御する制御装置であって、前記複数の空調装置を第1グループと第2グループとに分け、前記第1グループに属する空調装置については、設備の稼動状態にかかわらず運転させ、前記第2グループに属する空調装置については、前記設備の稼動状態に応じて運転を制御する制御部を備えることを特徴とする。
 上記の構成によれば、第2グループに属する空調装置については、前記設備の稼動状態に応じて運転を制御する。設備からの放熱量は、設備の稼動状態に依存している。そのため、設備の稼動状態に応じて第2グループの空調装置を運転させることにより、設備の放熱量に応じて第2グループの空調装置を運転させることができる。その結果、第2グループの空調装置については、設備からの放熱に応じて無駄な運転を避けることができ、省電力化を図ることができる。例えば、設備が停止し放熱がないときには、第2グループの空調装置の冷房運転を停止することで、無駄な運転を避けることができる。また、第1グループに属する空調装置は、設備の稼動状態に関係なく運転される。そのため、例えば冷房運転時には、設備が稼動していない場合でも、第1グループに属する空調装置により、生産工場内の温度が設定温度に保たれる。
 このように、複数の空調装置を、設備の稼動状態にかかわらず運転させる第1グループと、設備の稼動状態に応じて運転制御される第2グループとに分けるという簡単な設定により、無駄な電力を消費することなく、生産工場の温度を一定に保つことができる。すなわち、特許文献1・2のような生産工場の条件によって変化する環境データを詳細に取得する必要がない。また、空調対象領域内の設備や空調装置のレイアウトが変更されたとしても、特許文献1・2のような環境データを再度取得する必要がない。
 以上から、設備からの放熱の状況に応じた適切な空調制御を簡易に行うことが可能な制御装置を実現することができる。
 また、本発明の制御装置において、前記制御部は、前記設備の消費電力量に基づいて当該設備の稼動状態を判断し、その判断結果に応じて前記第2グループに属する空調装置の運転を制御してもよい。
 上記の構成によれば、設備の消費電力量を計測するだけで、容易に設備の稼動状態を把握することができる。
 例えば、前記空調装置が冷房運転をしており、前記制御部は、(1)前記設備の消費電力量が所定の第1閾値未満である場合に、前記第2グループに属する空調装置を停止させ、もしくは、空調能力を低下させて運転させ、(2)前記設備の消費電力量が前記第1閾値以上である場合に、前記第2グループに属する空調装置を、空調能力を低下させることなく運転させる。設備の消費電力量が第1閾値未満である場合、設備からの放熱量が相対的に小さくなる。そのため、前記第2グループに属する空調装置を停止させ、もしくは、空調能力を低下させて運転させることにより、空調対象領域を過度に冷やすことを防止することができ、第2グループの空調装置の省電力化を図ることができる。
 また、前記空調装置が暖房運転をしており、前記制御部は、(1)前記設備の消費電力量が所定の第1閾値以上である場合に、前記第2グループに属する空調装置を停止させ、もしくは、空調能力を低下させて運転させ、(2)前記設備の消費電力量が前記第1閾値未満である場合に、前記第2グループに属する空調装置を、空調能力を低下させることなく運転させる。設備の消費電力量が第1閾値以上である場合、設備からの放熱量が相対的に大きくなる。そのため、前記第2グループに属する空調装置を停止させ、もしくは、空調能力を低下させて運転させることにより、空調対象領域を過度に暖めることを防止することができ、第2グループの空調装置の省電力化を図ることができる。
 また、本発明の制御装置は、前記設備が複数であり、前記第2グループに属する空調装置の近傍に設置されている設備を識別する第1設備識別情報を記憶する設備識別情報記憶部を備え、前記制御部は、第1設備識別情報で示される設備の稼動状態に応じて、前記第2グループに属する空調装置の運転を制御してもよい。
 上記の構成によれば、第2グループに属する空調装置は、その近傍に設置されている設備の稼動状態に応じて運転制御される。これにより、近傍の設備の放熱に応じて空調を適切に行うことができる。
 また、本発明の制御装置は、前記設備が複数であり、前記第2グループに属する空調装置の近傍に設置されている設備を識別する第1設備識別情報を記憶する設備識別情報記憶部と、前記第2グループに属する空調装置の近傍に設置されている他の空調装置を識別する装置識別情報を記憶する周辺装置情報記憶部とを備え、前記制御部は、第1設備識別情報で示される設備の稼動状態、および、装置識別情報で示される空調装置の運転状態に応じて、前記第2グループに属する空調装置の運転を制御してもよい。
 上記の構成によれば、近傍に設置された設備の稼動状態だけでなく、周辺の空調装置の運転状態に応じて、空調装置の運転を制御することができる。
 また、本発明の制御装置は、前記設備が複数であり、前記第2グループに属する空調装置の近傍に設置されている第1設備を識別する第1設備識別情報と、当該第1設備の近傍に設置されている第2設備を識別する第2設備識別情報とを対応付けて記憶する設備識別情報記憶部を備え、前記制御部は、第1設備識別情報で示される設備の稼動状態、および、第2設備識別情報で示される設備の稼動状態に応じて、前記第2グループに属する空調装置の運転を制御してもよい。
 上記の構成によれば、近傍に設置された設備の稼動状態だけでなく、その周辺の設備の稼動状態に応じて、空調装置の運転が制御される。そのため、複数の設備の放熱量を考慮して空調装置の運転を制御することができる。
 なお、前記空調装置が複数の室外機と接続されており、前記制御部は、前記複数の室外機の一部を停止させることにより、空調能力を低下させて空調装置を運転させてもよい。
 さらに、前記制御装置は、コンピュータによって実現されてもよく、この場合には、コンピュータを前記制御装置の各部として機能させるプログラム、および、このプログラムを記録したコンピュータ読み取り可能な記録媒体も、本発明の範疇に入る。
 本発明は、製造ラインが設置された生産工場等を複数の空調装置で空調するシステムに適用することができる。
1・101・201 制御システム
10 生産工場(空調対象領域)
11~19 製造ライン(設備)
21~28 空調装置
31~38 室外機
41~49 電力計
50・150・250 制御装置
51 グループ情報記憶部
52・152 空調-ライン対応テーブル記憶部(設備識別情報記憶部)
53・153・253 制御部
61~68 電力計
155 周辺装置情報記憶部

Claims (11)

  1.  複数の空調装置を制御する制御装置であって、
     前記複数の空調装置を第1グループと第2グループとに分け、前記第1グループに属する空調装置については、設備の稼動状態にかかわらず運転させ、前記第2グループに属する空調装置については、前記設備の稼動状態に応じて運転を制御する制御部を備えることを特徴とする制御装置。
  2.  前記設備が複数であり、
     前記第2グループに属する空調装置の近傍に設置されている設備を識別する第1設備識別情報を記憶する設備識別情報記憶部を備え、
     前記制御部は、第1設備識別情報で示される設備の稼動状態に応じて、前記第2グループに属する空調装置の運転を制御することを特徴とする請求項1に記載の制御装置。
  3.  前記設備が複数であり、
     前記第2グループに属する空調装置の近傍に設置されている設備を識別する第1設備識別情報を記憶する設備識別情報記憶部と、
     前記第2グループに属する空調装置の近傍に設置されている他の空調装置を識別する装置識別情報を記憶する周辺装置情報記憶部とを備え、
     前記制御部は、第1設備識別情報で示される設備の稼動状態、および、装置識別情報で示される空調装置の運転状態に応じて、前記第2グループに属する空調装置の運転を制御することを特徴とする請求項1に記載の制御装置。
  4.  前記設備が複数であり、
     前記第2グループに属する空調装置の近傍に設置されている第1設備を識別する第1設備識別情報と、当該第1設備の近傍に設置されている第2設備を識別する第2設備識別情報とを対応付けて記憶する設備識別情報記憶部を備え、
     前記制御部は、第1設備識別情報で示される設備の稼動状態、および、第2設備識別情報で示される設備の稼動状態に応じて、前記第2グループに属する空調装置の運転を制御することを特徴とする請求項1に記載の制御装置。
  5.  前記制御部は、前記設備の消費電力量に基づいて当該設備の稼動状態を判断し、その判断結果に応じて前記第2グループに属する空調装置の運転を制御することを特徴とする請求項1から4の何れか1項に記載の制御装置。
  6.  前記空調装置が冷房運転をしており、
     前記制御部は、(1)前記設備の消費電力量が所定の第1閾値未満である場合に、前記第2グループに属する空調装置を停止させ、もしくは、空調能力を低下させて運転させ、(2)前記設備の消費電力量が前記第1閾値以上である場合に、前記第2グループに属する空調装置を、空調能力を低下させることなく運転させることを特徴とする請求項1に記載の制御装置。
  7.  前記空調装置が暖房運転をしており、
     前記制御部は、(1)前記設備の消費電力量が所定の第1閾値以上である場合に、前記第2グループに属する空調装置を停止させ、もしくは、空調能力を低下させて運転させ、(2)前記設備の消費電力量が前記第1閾値未満である場合に、前記第2グループに属する空調装置を、空調能力を低下させることなく運転させることを特徴とする請求項1または6に記載の制御装置。
  8.  前記空調装置が複数の室外機と接続されており、
     前記制御部は、前記複数の室外機の一部を停止させることにより、空調能力を低下させて空調装置を運転させることを特徴とする請求項6または7に記載の制御装置。
  9.  複数の空調装置を制御する制御方法であって、
     前記複数の空調装置を第1グループと第2グループとに分け、前記第1グループに属する空調装置については、設備の稼動状態にかかわらず運転させ、前記第2グループに属する空調装置については、前記設備の稼動状態に応じて運転を制御するステップを含むことを特徴とする制御方法。
  10.  複数の空調装置を制御するコンピュータで実行されるプログラムであって、
     前記複数の空調装置を第1グループと第2グループとに分け、前記第1グループに属する空調装置については、設備の稼動状態にかかわらず運転させ、前記第2グループに属する空調装置については、前記設備の稼動状態に応じて運転を制御するステップを、前記コンピュータに実行させるプログラム。
  11.  請求項10に記載のプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2011/080367 2011-09-30 2011-12-28 制御装置、制御方法、プログラムおよび記録媒体 WO2013046479A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11873114.0A EP2746688B1 (en) 2011-09-30 2011-12-28 Control device, control method, program and recording medium
CN201180073032.9A CN103782110B (zh) 2011-09-30 2011-12-28 控制装置及控制方法
JP2013535813A JP6081365B2 (ja) 2011-09-30 2011-12-28 制御装置、制御方法、プログラムおよび記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218259 2011-09-30
JP2011-218259 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013046479A1 true WO2013046479A1 (ja) 2013-04-04

Family

ID=47994576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080367 WO2013046479A1 (ja) 2011-09-30 2011-12-28 制御装置、制御方法、プログラムおよび記録媒体

Country Status (5)

Country Link
EP (1) EP2746688B1 (ja)
JP (2) JP6081365B2 (ja)
CN (1) CN103782110B (ja)
TW (1) TWI448650B (ja)
WO (1) WO2013046479A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129689A (ja) * 1992-10-16 1994-05-13 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JPH06185783A (ja) * 1992-12-15 1994-07-08 Hitachi Ltd 空気調和システム
JP2006064283A (ja) * 2004-08-26 2006-03-09 Ntt Power & Building Facilities Inc 空調機監視システム、および空調機監視方法
JP2006275458A (ja) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp 空気調和装置
JP2008304104A (ja) * 2007-06-06 2008-12-18 Chugoku Electric Power Co Inc:The 電気機器制御システム
JP2009293851A (ja) * 2008-06-05 2009-12-17 Ntt Facilities Inc 空調システムの制御方法
JP2010156494A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 負荷処理バランス設定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3622657B2 (ja) * 2000-09-18 2005-02-23 株式会社日立製作所 空調制御システム
US6978627B2 (en) * 2002-01-31 2005-12-27 Mitsubishi Denki Kabushiki Kaisha Air conditioner control system, central remote controller, and facility controller
KR100565486B1 (ko) * 2003-06-11 2006-03-30 엘지전자 주식회사 에어컨의 중앙제어 시스템 및 그 동작방법
KR100844324B1 (ko) * 2007-01-26 2008-07-07 엘지전자 주식회사 멀티에어컨의 디맨드 제어시스템 및 디맨드 제어방법
KR100844325B1 (ko) * 2007-01-26 2008-07-07 엘지전자 주식회사 멀티에어컨의 디맨드 제어시스템
JP5140016B2 (ja) * 2009-02-06 2013-02-06 日本電信電話株式会社 省エネルギー機器公開システムおよび省エネルギー機器公開方法
JP4980407B2 (ja) * 2009-10-21 2012-07-18 三菱電機株式会社 空気調和機の制御装置、冷凍装置の制御装置
JP5907949B2 (ja) * 2011-03-16 2016-04-26 三菱電機株式会社 空気調和システムの管理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129689A (ja) * 1992-10-16 1994-05-13 Matsushita Electric Ind Co Ltd 空気調和機の制御装置
JPH06185783A (ja) * 1992-12-15 1994-07-08 Hitachi Ltd 空気調和システム
JP2006064283A (ja) * 2004-08-26 2006-03-09 Ntt Power & Building Facilities Inc 空調機監視システム、および空調機監視方法
JP2006275458A (ja) * 2005-03-30 2006-10-12 Mitsubishi Electric Corp 空気調和装置
JP2008304104A (ja) * 2007-06-06 2008-12-18 Chugoku Electric Power Co Inc:The 電気機器制御システム
JP2009293851A (ja) * 2008-06-05 2009-12-17 Ntt Facilities Inc 空調システムの制御方法
JP2010156494A (ja) * 2008-12-26 2010-07-15 Daikin Ind Ltd 負荷処理バランス設定装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2746688A4 *

Also Published As

Publication number Publication date
JP6081365B2 (ja) 2017-02-15
EP2746688B1 (en) 2019-11-13
JP6131998B2 (ja) 2017-05-24
JP2016027305A (ja) 2016-02-18
TWI448650B (zh) 2014-08-11
EP2746688A1 (en) 2014-06-25
TW201314138A (zh) 2013-04-01
CN103782110A (zh) 2014-05-07
CN103782110B (zh) 2017-02-15
JPWO2013046479A1 (ja) 2015-03-26
EP2746688A4 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
US9638435B2 (en) Systems and methods for optimizing the efficiency of HVAC systems
JP4688185B1 (ja) 空調制御システム及びプログラム
JP5185319B2 (ja) サーバ室管理用の空調システムおよび空調制御方法
JP5611850B2 (ja) 空調制御システム及び空調制御方法
JP6005304B2 (ja) 換気制御装置および換気制御方法
JP5835465B2 (ja) 情報処理装置、制御方法、及びプログラム
EP2781851A1 (en) Air conditioning system and air conditioning control method for server room management
JP2016024562A (ja) 空調制御システム及び空調制御方法
JP5601500B2 (ja) 需要電力制御装置および需要電力制御方法
JP2011214738A (ja) ダクト循環方式空調システムにおけるエネルギー消費効率管理方法
WO2011046067A1 (ja) 機器選択システム、機器選択方法、及び機器選択用プログラム
JP6386922B2 (ja) 蒸気弁診断装置および方法
KR101830859B1 (ko) 가상 모델을 이용한 인터넷 데이터 센터의 에너지 진단 방법
JP6131998B2 (ja) 制御装置、制御方法、プログラムおよび記録媒体
JP5997671B2 (ja) 空調制御方法および空調制御システム
JP6443947B2 (ja) デマンド制御システム
JP6117583B2 (ja) 空調システム
JP6002098B2 (ja) 空調制御方法および空調制御システム
JP7361625B2 (ja) 空調システム
CN117889095A (zh) 用于预测风扇马达故障的***及其方法
JP2015055436A (ja) エネルギー管理支援装置、エネルギー管理支援装置の制御方法、制御プログラムおよび記録媒体
JP5567351B2 (ja) 空調制御装置および方法
Murugan et al. Evaluation and Modeling of Data Center Energy Efficiency Measures for an Existing Office Building
JP5805444B2 (ja) 空調分析装置及び空調分析方法
JP2014238197A (ja) 空調制御方法および空調制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11873114

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013535813

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011873114

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE