WO2013039168A1 - 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子 - Google Patents

液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子 Download PDF

Info

Publication number
WO2013039168A1
WO2013039168A1 PCT/JP2012/073515 JP2012073515W WO2013039168A1 WO 2013039168 A1 WO2013039168 A1 WO 2013039168A1 JP 2012073515 W JP2012073515 W JP 2012073515W WO 2013039168 A1 WO2013039168 A1 WO 2013039168A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
formula
group
alignment film
crystal alignment
Prior art date
Application number
PCT/JP2012/073515
Other languages
English (en)
French (fr)
Inventor
隆夫 堀
直樹 作本
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to JP2013533717A priority Critical patent/JP6056759B2/ja
Priority to KR1020147009609A priority patent/KR101951507B1/ko
Priority to CN201280056047.9A priority patent/CN103946738B/zh
Publication of WO2013039168A1 publication Critical patent/WO2013039168A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • C08G73/1078Partially aromatic polyimides wholly aromatic in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present invention relates to a method for producing a liquid crystal alignment film for a photo-alignment method, a liquid crystal alignment film obtained by this production method, and a liquid crystal display device comprising the obtained liquid crystal alignment film.
  • a liquid crystal alignment film for controlling the alignment state of liquid crystals is usually provided in the element.
  • the most widely used liquid crystal alignment film in the industry is made of a polyamic acid formed on an electrode substrate and / or a polyimide film obtained by imidizing the same with a cloth such as cotton, nylon or polyester. It is manufactured by performing a so-called rubbing process that rubs in the direction.
  • the rubbing treatment of the film surface in the alignment process of the liquid crystal alignment film is an industrially useful method that is simple and excellent in productivity.
  • Patent Document 1 proposes that a polyimide film having an alicyclic structure such as a cyclobutane ring in the main chain is used for the photo-alignment method.
  • the liquid crystal alignment film obtained by the photo-alignment method has a problem that anisotropy with respect to the alignment direction of the polymer liquid crystal alignment film is smaller than that by rubbing. If the anisotropy is small, sufficient liquid crystal orientation cannot be obtained, and when a liquid crystal display element is formed, there is a problem that an afterimage is generated.
  • Patent Literature As a method for increasing the anisotropy of a liquid crystal alignment film obtained by a photo-alignment method, it has been proposed to remove a low molecular weight component generated by cutting the polyimide main chain by light irradiation after light irradiation (Patent Literature). 2).
  • the object of the present invention is to increase the anisotropy of the liquid crystal alignment film obtained by the photo-alignment method, and to suppress the unevenness that occurs during the process, and the method of manufacturing the liquid crystal alignment film And a liquid crystal display element comprising the liquid crystal alignment film obtained by the method for producing the liquid crystal alignment film.
  • the present inventors irradiate a film obtained by applying and baking a polyimide film or a polyimide precursor with polarized radiation, By performing contact treatment such as immersion using a solution containing an organic solvent, the anisotropy of the obtained liquid crystal alignment film can be remarkably improved, and the above-described problem of unevenness occurring in the liquid crystal alignment film can be solved. I found it.
  • the present invention has the following gist. 1. Polarized radiation on an imidized film obtained by applying and baking a liquid crystal aligning agent containing at least one polymer selected from the group consisting of polyimide and a precursor of the polyimide and an organic solvent on a substrate And then at least selected from the group consisting of the following formula (A-1), formula (A-2), formula (A-3), formula (A-4), and formula (A-5) A method for producing a liquid crystal alignment film, wherein the contact treatment is performed with a solution containing one kind of organic solvent.
  • a 1 is a hydrogen atom or an acetyl group
  • a 2 is an alkyl group having 1 to 6 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • n is 1 or 2
  • a 3 is an alkyl group having 1 to 4 carbon atoms
  • R 3 and R 4 are each independently a hydrogen atom or
  • a 5 and A 6 each independently represents an alkyl group having 1 to 4 carbon atoms
  • A-5 represents 3 carbon atoms. 6 to 6 alkyl groups or cycloalkyl groups.
  • the organic solvent is 1-methoxy-2-propanol, ethyl lactate, diacetone alcohol, methyl 3-methoxypropionate, or ethyl 3-ethoxypropionate.
  • the polymer contains at least one polymer selected from the group consisting of a polyimide precursor having a structural unit represented by the following formula (3) and an imidized polymer of the polyimide precursor.
  • the manufacturing method of the liquid crystal aligning film in any one of.
  • X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9), and Y 1 is a divalent organic group.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms. Group, alkenyl group, or phenyl group.
  • 5. From the group consisting of a polyimide precursor in which the polymer contains 60 mol% or more of the structural unit represented by the formula (3) with respect to 1 mol of the whole polymer, and an imidized polymer of the polyimide precursor. 5.
  • Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
  • a contact treatment solution for an alignment film which is selected from the group consisting of Formula (A-1), Formula (A-2), Formula (A-3), Formula (A-4), and Formula (A-5).
  • a contact treatment liquid for a liquid crystal alignment film comprising a solution containing at least one organic solvent.
  • 11. 10 A liquid crystal alignment film obtained by the method for producing a liquid crystal alignment film according to any one of 1 to 9 above. 12 12.
  • a liquid crystal display device comprising the liquid crystal alignment film as described in 11 above.
  • the liquid crystal alignment film according to the production method of the present invention has a high anisotropy and thus has a high liquid crystal alignment regulating force, an excellent afterimage characteristic, and a high-quality liquid crystal display element when used in a liquid crystal display element.
  • the liquid crystal alignment film when the contact treatment is performed with a solution containing at least one organic solvent selected from the group consisting of the compounds represented by the above formulas (A-1) to (A-5) in the present invention, the liquid crystal alignment film
  • the improvement in the anisotropy is greatly improved, and at the same time, the occurrence of unevenness in the obtained liquid crystal alignment film can be remarkably suppressed.
  • ⁇ Polyimide and precursor of the polyimide> at least one polymer selected from the group consisting of a polyimide to which anisotropy is imparted by irradiation with polarized radiation and a precursor of the polyimide (hereinafter also simply referred to as a polymer). ) Is used. If it is the polyimide or polyimide precursor which satisfy
  • a polyimide precursor having a structural unit represented by the following formula (3) is particularly preferable.
  • R 1 is a hydrogen atom or an alkyl group having 1 to 4 carbon atoms. From the viewpoint of ease of imidization by heating, a hydrogen atom or a methyl group is particularly preferable.
  • X 1 is at least one selected from the group consisting of structures represented by the following formulas (X1-1) to (X1-9).
  • R 3 , R 4 , R 5 , and R 6 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, or an alkenyl group having 2 to 6 carbon atoms.
  • An alkenyl group or a phenyl group which may be the same or different.
  • R 3 , R 4 , R 5 , and R 6 are each independently preferably a hydrogen atom, a halogen atom, a methyl group, or an ethyl group, and more preferably a hydrogen atom or a methyl group.
  • X 1 is more preferably at least one selected from the group consisting of structures represented by the following formulas (X1-10) and (X1-11).
  • Y 1 is a divalent organic group, and its structure is not particularly limited. Since the obtained liquid crystal alignment film has high anisotropy, it is preferably at least one selected from the group consisting of structures represented by the following formulas (Y1-1) and (Y1-2).
  • Z 1 is a single bond, an ester bond, an amide bond, a thioester bond, or a divalent organic group having 2 to 10 carbon atoms.
  • the ester bond is represented by —C (O) O— or —OC (O) —.
  • R is an alkyl group, alkenyl group, alkynyl group, aryl group, or a combination thereof having 1 to 10 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a t-butyl group, a hexyl group, an octyl group, a cyclopentyl group, a cyclohexyl group, and a bicyclohexyl group.
  • alkenyl group examples include those in which one or more CH 2 —CH 2 structures present in the above alkyl group are replaced with a CH ⁇ CH structure, and more specifically, vinyl groups, allyl groups, 1- Examples include propenyl group, isopropenyl group, 2-butenyl group, 1,3-butadienyl group, 2-pentenyl group, 2-hexenyl group, cyclopropenyl group, cyclopentenyl group, cyclohexenyl group and the like.
  • Alkynyl groups include those in which one or more CH 2 —CH 2 structures present in the alkyl group are replaced with C ⁇ C structures, and more specifically, ethynyl groups, 1-propynyl groups, 2 -Propynyl group and the like.
  • Examples of the aryl group include a phenyl group.
  • Z 1 is an organic group having 2 to 10 carbon atoms, it can be represented by the structure of the following formula (6).
  • Z 4 , Z 5 , and Z 6 are each independently a single bond, —O—, —S—, —NR 11 —, an ester bond, an amide bond, a thioester bond, a urea bond, It is a carbonate bond or a carbamate bond.
  • R 11 is a hydrogen atom, a methyl group, or a t-butoxycarbonyl group.
  • the ester bond, amide bond, and thioester bond in Z 4 , Z 5 , and Z 6 can have the same structure as the ester bond, amide bond, and thioester bond described above.
  • urea bond a structure represented by —NH—C (O) NH— or —NR—C (O) NR— can be shown.
  • R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof having 1 to 10 carbon atoms, and these groups are the same examples as the above-mentioned alkyl group, alkenyl group, alkynyl group, and aryl group. Can be mentioned.
  • carbonate bond a structure represented by —O—C (O) —O— can be shown.
  • the carbamate bond is —NH—C (O) —O—, —O—C (O) —NH—, —NR—C (O) —O—, or —O—C (O) —NR—.
  • R is an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a combination thereof having 1 to 10 carbon atoms, and these groups are the same examples as the above-mentioned alkyl group, alkenyl group, alkynyl group, and aryl group. Can be mentioned.
  • R 9 and R 10 in the formula (6) are each independently a structure selected from a single bond, an alkylene group having 1 to 10 carbon atoms, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof. .
  • R 9 and R 10 is a single bond
  • either R 9 or R 10 is an alkylene group, an alkenylene group, an alkynylene group, an arylene group, or a combination thereof having 2 to 10 carbon atoms.
  • As said alkylene group the structure remove
  • a methylene group, 1,1-ethylene group, 1,2-ethylene group, 1,2-propylene group, 1,3-propylene group, 1,4-butylene group, 1,2-butylene group 1,2-pentylene group, 1,2-hexylene group, 2,3-butylene group, 2,4-pentylene group, 1,2-cyclopropylene group, 1,2-cyclobutylene group, 1,3- A cyclobutylene group, a 1,2-cyclopentylene group, a 1,2-cyclohexylene group and the like can be mentioned.
  • the alkenylene group includes a structure in which one hydrogen atom is removed from the alkenyl group. More specifically, 1,1-ethenylene group, 1,2-ethenylene group, 1,2-ethenylenemethylene group, 1-methyl-1,2-ethenylene group, 1,2-ethenylene-1,1- Ethylene group, 1,2-ethenylene-1,2-ethylene group, 1,2-ethenylene-1,2-propylene group, 1,2-ethenylene-1,3-propylene group, 1,2-ethenylene-1, Examples include 4-butylene group and 1,2-ethenylene-1,2-butylene group.
  • the alkynylene group includes a structure in which one hydrogen atom is removed from the alkynyl group.
  • an ethynylene group an ethynylene methylene group, an ethynylene-1,1-ethylene group, an ethynylene-1,2-ethylene group, an ethynylene-1,2-propylene group, an ethynylene-1,3-propylene group
  • Examples include ethynylene-1,4-butylene group, ethynylene-1,2-butylene group and the like.
  • the arylene group includes a structure in which one hydrogen atom is removed from the aryl group. More specific examples include 1,2-phenylene group, 1,3-phenylene group, 1,4-phenylene group and the like. If the linearity contains a high structural and rigid structure to Y 1, since the liquid crystal alignment film having good liquid crystal alignment property can be obtained, as the structure of Z 1, a single bond, or the following formula (A1-1) The structure of (A15-25) is more preferable.
  • the structure represented by the above formula (4) is particularly preferable as the Y 1 structure.
  • the ratio of the structural unit represented by the above formula (3) is the total of all the polymers. 60 to 100 mol% is preferable with respect to 1 mol of the structural unit. The higher the ratio of the structural unit represented by the above formula (3), the better the liquid crystal alignment film having good liquid crystal alignment, so 80-100 mol% is more preferable, and 90-100 mol% is more preferable.
  • the polymer component of the present invention may be a polyimide precursor containing a structural unit represented by the following formula (7) and the polyimide precursor.
  • R 1 is the same as defined for R 1 in the formula (3).
  • X 3 is a tetravalent organic group, and its structure is not particularly limited. Specific examples include structures of the following formulas (X-9) to (X-42). From the viewpoint of availability of the compound, the structure of X 3 is preferably X-17, X-25, X-26, X-27, X-28, X-32, or X-39. Further, from the viewpoint of alleviation of the accumulated residual charge obtained fast liquid crystal alignment film by a DC voltage, it is preferable to use a tetracarboxylic dianhydride having an aromatic ring structure, the structure of X 3 is, X -26, X-27, X-28, X-32, X-35, or X-37 are more preferred.
  • Y 4 is a divalent organic group, and its structure is not particularly limited. Specific examples of Y 4 include structures of the following formulas (Y-1) to (Y-74).
  • Y 4 in the formula (7) is Y-8, Y-20, Y-21, Y-22, Y-28, Y-29, Y- in order to improve the solubility of the polymer component in the organic solvent. It is preferable to contain a structural unit having a structure of 30, Y-72, Y-73, or Y-74. When the ratio of the structural unit represented by the above formula (7) in the polymer component is high, the ratio of the structural unit represented by the above formula (7) is the total structure in order to reduce the liquid crystal orientation of the liquid crystal alignment film. The amount is preferably 0 to 40 mol%, more preferably 0 to 20 mol%, based on 1 mol of the unit.
  • the polyamic acid ester which is a polyimide precursor used in the present invention can be synthesized by the following methods (1) to (3).
  • the polyamic acid ester can be synthesized by esterifying a polyamic acid obtained from tetracarboxylic dianhydride and diamine. Specifically, the polyamic acid and the esterifying agent are synthesized by reacting them in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. be able to.
  • N N-dimethylformamide dimethyl acetal, N, N-dimethylformamide diethyl acetal, N, N-dimethylformamide dipropyl acetal, N, N-dimethylformamide Dineopentyl butyl acetal, N, N-dimethylformamide di-t-butyl acetal, 1-methyl-3-p-tolyltriazene, 1-ethyl-3-p-tolyltriazene, 1-propyl-3-p -Tolyltriazene, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride and the like.
  • the addition amount of the esterifying agent is preferably 2 to 6 molar equivalents, more preferably 2 to 4 molar equivalents per 1 mol of the polyamic acid repeating unit.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. from the solubility of the polymer, and these are used alone or in combination of two or more. May be.
  • the concentration of the polymer in the organic solvent at the time of synthesis is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that the polymer hardly precipitates and a high molecular weight product is easily obtained.
  • Polyamic acid ester can be synthesized from tetracarboxylic acid diester dichloride and diamine. Specifically, tetracarboxylic acid diester dichloride and diamine are reacted in the presence of a base and an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 hours. Can be synthesized.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times mol, preferably 2 to 3 times mol with respect to tetracarboxylic acid diester dichloride, from the viewpoint of easy removal and high molecular weight. More preferred.
  • the organic solvent used in the above reaction is preferably N-methyl-2-pyrrolidone, ⁇ -butyrolactone or the like in view of the solubility of the monomer and polymer, and these may be used alone or in combination.
  • the polymer concentration in the organic solvent at the time of synthesis is preferably 1 to 30% by mass and more preferably 5 to 20% by mass from the viewpoint that the polymer is hardly precipitated and a high molecular weight product is easily obtained.
  • the organic solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and the reaction is preferably performed in a nitrogen atmosphere to prevent contamination of the outside air. .
  • the polyamic acid ester can be synthesized by polycondensation of a tetracarboxylic acid diester and a diamine. Specifically, tetracarboxylic diester and diamine are reacted in the presence of a condensing agent, a base, and an organic solvent at 0 to 150 ° C., preferably 0 to 100 ° C., for 30 minutes to 24 hours, preferably 3 to 15 hours. Can be synthesized.
  • condensing agent examples include triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazide.
  • Nylmethylmorpholinium O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N , N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxazolyl) phosphonate diphenyl, and the like.
  • the addition amount of the condensing agent is preferably 2 to 3 times by mole, more preferably 2 to 2.5 times by mole with respect to the tetracarboxylic acid diester.
  • tertiary amines such as pyridine and triethylamine can be used.
  • the addition amount of the base is preferably 2 to 4 times mol, more preferably 2 to 3 times mol with respect to the diamine component, from the viewpoint of easy removal and high molecular weight.
  • the organic solvent include N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N, N-dimethylformamide and the like.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0.1 to 5 times mol, more preferably 2 to 3 times mol for the diamine component.
  • a high molecular weight polyamic acid ester is obtained, and thus the synthesis method (1) or (2) is particularly preferable.
  • the polyamic acid ester solution obtained as described above can be polymerized by being poured into a poor solvent while being well stirred. Precipitation is performed several times, and after washing with a poor solvent, a purified polyamic acid ester powder can be obtained at room temperature or by heating and drying.
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • the polyamic acid which is a polyimide precursor used in the present invention can be synthesized by the following method. Specifically, tetracarboxylic dianhydride and diamine are reacted in the presence of an organic solvent at ⁇ 20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 12 hours. Can be synthesized.
  • the organic solvent used in the above reaction is preferably N, N-dimethylformamide, N-methyl-2-pyrrolidone, ⁇ -butyrolactone, etc. in view of the solubility of the monomer and polymer. These may be used alone or in combination of two or more. May be used.
  • the concentration of the polymer is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the polyamic acid obtained as described above can be recovered by precipitating the polymer by pouring into the poor solvent while thoroughly stirring the reaction solution. Moreover, the powder of polyamic acid refine
  • the poor solvent is not particularly limited, and examples thereof include water, methanol, ethanol, 2-propanol, hexane, butyl cellosolve, acetone, toluene and the like, and water, methanol, ethanol, 2-propanol and the like are preferable.
  • the polyimide used in the present invention can be produced by imidizing the polyamic acid ester or polyamic acid.
  • chemical imidization in which a basic catalyst is added to the polyamic acid solution obtained by dissolving the polyamic acid ester solution or the polyamic acid ester resin powder in an organic solvent is simple.
  • Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer is hardly lowered during the imidization process.
  • Chemical imidation can be performed by stirring the polyamic acid ester to be imidized in an organic solvent in the presence of a basic catalyst.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, triethylamine is preferred because it has sufficient basicity to allow the reaction to proceed.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the amic acid ester group.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the catalyst amount, temperature, and reaction time.
  • the chemical imidation which adds a catalyst to the solution of the said polyamic acid obtained by reaction of a diamine component and tetracarboxylic dianhydride is simple. Chemical imidization is preferable because the imidization reaction proceeds at a relatively low temperature and the molecular weight of the polymer does not easily decrease during the imidization process.
  • Chemical imidation can be performed by stirring a polymer to be imidized in an organic solvent in the presence of a basic catalyst and an acid anhydride.
  • a basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferred because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the temperature for carrying out the imidization reaction is ⁇ 20 to 140 ° C., preferably 0 to 100 ° C., and the reaction time can be 1 to 100 hours.
  • the amount of the basic catalyst is 0.5 to 30 times mol, preferably 2 to 20 times mol of the polyamic acid group, and the amount of acid anhydride is 1 to 50 times mol, preferably 3 to 30 times mol of the polyamic acid group. Is a mole.
  • the imidation ratio of the resulting polymer can be controlled by adjusting the amount of catalyst, temperature, and reaction time.
  • the liquid crystal aligning agent of the present invention is preferable.
  • the polyimide solution obtained as described above can be polymerized by pouring into a poor solvent while thoroughly stirring. Precipitation is performed several times, and after washing with a poor solvent, a polymer powder purified by drying at normal temperature or by heating can be obtained.
  • the poor solvent examples include, but are not limited to, methanol, 2-propanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and the like. Methanol, ethanol, 2-propanol, Acetone is preferred.
  • the liquid crystal aligning agent used in the present invention has a form of a solution in which a polymer component is dissolved in an organic solvent.
  • the molecular weight of the polymer is preferably 2,000 to 500,000 in terms of weight average molecular weight, more preferably 5,000 to 300,000, and still more preferably 10,000 to 100,000.
  • the number average molecular weight is preferably 1,000 to 250,000, more preferably 2,500 to 150,000, and still more preferably 5,000 to 50,000.
  • the concentration of the polymer of the liquid crystal aligning agent used in the present invention can be appropriately changed depending on the thickness of the coating film to be formed. % From the viewpoint of storage stability of the solution, and preferably 10% by mass or less. A particularly preferred polymer concentration is 2 to 8% by mass.
  • the organic solvent contained in the liquid crystal aligning agent used for this invention will not be specifically limited if a polymer component melt
  • N-dimethylformamide N, N-diethylformamide, N, N-dimethylacetamide
  • N-methyl-2-pyrrolidone N-ethyl-2-pyrrolidone
  • N-methylcaprolactam examples include 2-pyrrolidone, N-vinyl-2-pyrrolidone, dimethyl sulfoxide, dimethyl sulfone, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like. You may use these 1 type or in mixture of 2 or more types. Moreover, even if it is a solvent which cannot melt
  • the liquid crystal aligning agent used for this invention may contain the solvent for improving the coating-film uniformity at the time of apply
  • a solvent a solvent having a surface tension lower than that of the organic solvent is generally used. Specific examples thereof include ethyl cellosolve, butyl cellosolve, ethyl carbitol, butyl carbitol, ethyl carbitol acetate, ethylene glycol, 1-methoxy-2-propanol, 1-ethoxy-2-propanol, and 1-butoxy-2-propanol.
  • the purpose is to change the electrical properties such as the dielectric constant and conductivity of the polymer other than the polymer and the liquid crystal aligning film as long as the effects of the present invention are not impaired.
  • an imidization accelerator for the purpose of efficiently imidizing the polyamic acid may be added.
  • the method for producing a liquid crystal alignment film of the present invention comprises a step of applying a liquid crystal aligning agent to a substrate and baking, a step of irradiating the obtained film with polarized radiation, and contacting the irradiated film with a specific solvent. A step of processing.
  • substrate, and baking The liquid crystal aligning agent obtained as mentioned above was apply
  • the substrate to which the liquid crystal aligning agent used in the present invention is applied is not particularly limited as long as it is a highly transparent substrate, and a glass substrate, a silicon nitride substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate, or the like can be used. From the viewpoint of simplification of the process, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed.
  • an opaque material such as a silicon wafer can be used as long as only one substrate is used.
  • a material that reflects light such as aluminum can be used.
  • Examples of the method for applying the liquid crystal aligning agent used in the present invention include a spin coating method, a printing method, and an ink jet method.
  • the drying and baking steps after applying the liquid crystal aligning agent can be selected at any temperature and time. Usually, in order to sufficiently remove the organic solvent contained, it is dried at 50 to 120 ° C., preferably 60 to 100 ° C. for 1 to 10 minutes, and then 150 to 300 ° C., preferably 200 to 250 at 5 to 120. It is fired in minutes.
  • the thickness of the coating film after firing is not particularly limited, but if it is too thin, the reliability of the liquid crystal display element may be lowered, and therefore it is 5 to 300 nm, preferably 10 to 200 nm.
  • a step of irradiating the obtained film with polarized radiation The film obtained by the method of (1) above is irradiated with polarized radiation (hereinafter also referred to as photo-alignment treatment), thereby polarizing the film. Anisotropy is imparted in the direction perpendicular to the direction.
  • photo-alignment treatment there is a method in which the surface of the coating film is irradiated with radiation polarized in a certain direction, and in some cases, a heat treatment is further performed at a temperature of 150 to 250 ° C. to impart liquid crystal alignment ability. Can be mentioned.
  • the wavelength of radiation ultraviolet rays and visible rays having a wavelength of 100 to 800 nm can be used.
  • ultraviolet rays having a wavelength of 100 to 400 nm are preferable, and those having a wavelength of 200 to 400 nm are particularly preferable.
  • Dose of the radiation is preferably in the range of 1 ⁇ 10,000mJ / cm 2, and particularly preferably in the range of 100 ⁇ 5,000mJ / cm 2.
  • the process of contact-treating the film irradiated with radiation with a solution containing an organic solvent is then contact-treated with a solution containing a specific organic solvent.
  • the organic solvent used here is selected from the group consisting of the following (A-1), formula (A-2), formula (A-3), formula (A-4), and formula (A-5). At least one organic solvent or organic solvent.
  • a 1 is a hydrogen atom or an acetyl group
  • a 2 is an alkyl group having 1 to 6 carbon atoms
  • R 2 is a hydrogen atom or a methyl group
  • n is 1 or 2 Is an integer.
  • a 3 is an alkyl group having 1 to 4 carbon atoms.
  • R 3 and R 4 are each independently a hydrogen atom or a methyl group.
  • a 5 and A 6 are each independently an alkyl group having 1 to 4 carbon atoms.
  • a 6 is an alkyl group or cycloalkyl group having 3 to 6 carbon atoms.
  • the organic solvents of the above formulas (A-1) to (A-5) are preferably water-soluble having a boiling point of preferably 100 to 180 ° C., more preferably 110 to 160 ° C. If the boiling point is high, it will remain in the film and adversely affect the properties of the liquid crystal alignment film. On the other hand, if the boiling point is low, the film tends to volatilize, which tends to cause unevenness in the film. .
  • the organic solvents represented by the above formulas (A-1) to (A-5) have high anisotropy and are easy to obtain a uniform liquid crystal alignment film.
  • 1-methoxy-2-propanol 1- At least one selected from the group consisting of methoxy-2-propanol acetate, butyl cellosolve, ethyl lactate, methyl lactate, diacetone alcohol, methyl 3-methoxypropionate, ethyl 3-ethoxypropionate, propyl acetate, butyl acetate, and cyclohexyl acetate Species are preferred.
  • at least one selected from the group consisting of 1-methoxy-2-propanol and ethyl lactate is preferable.
  • the solution containing the organic solvent used for the contact treatment may contain other solvents or solvents other than the organic solvents represented by the above formulas (A-1) to (A-5) as long as the effects of the present invention are not impaired.
  • other solvents include, but are not limited to, water, methanol, ethanol, 2-propanol, acetone, and methyl ethyl ketone.
  • water is more preferable from the viewpoints of versatility and safety.
  • the content of the at least one organic solvent selected from the group consisting of the above formulas (A-1) to (A-5) is the amount of the solution used for the contact treatment.
  • the amount is preferably 10 to 100% by mass, more preferably 30 to 100% by mass, and particularly preferably 50 to 100% by mass with respect to the total amount.
  • the contact treatment between the film irradiated with polarized radiation and the solution containing the organic solvent is a treatment such that the film and the liquid are preferably in sufficient contact with each other, such as immersion treatment or spraying treatment.
  • a method of immersing the film in a solution containing an organic solvent preferably 10 seconds to 1 hour, more preferably 1 to 30 minutes is preferable.
  • the contact treatment may be performed at room temperature or preferably at 10 to 80 ° C., more preferably 20 to 50 ° C.
  • a means for enhancing contact such as ultrasonic waves can be applied as necessary.
  • rinsing or rinsing with a low boiling point solvent such as water, methanol, ethanol, 2-propanol, acetone, methyl ethyl ketone, or both are used. May be done.
  • the temperature for drying is preferably from 80 to 250 ° C, more preferably from 80 to 150 ° C.
  • the liquid crystal display element of the present invention is a liquid crystal cell obtained by a known method after obtaining a substrate with a liquid crystal alignment film obtained from the liquid crystal aligning agent obtained by the production method of the present invention, and using the liquid crystal cell. It is a liquid crystal display element.
  • a liquid crystal display element having a passive matrix structure will be described as an example. Note that an active matrix liquid crystal display element in which a switching element such as a TFT (Thin Film Transistor) is provided in each pixel portion constituting the image display may be used.
  • a transparent glass substrate is prepared, a common electrode is provided on one substrate, and a segment electrode is provided on the other substrate.
  • These electrodes can be ITO electrodes, for example, and are patterned so as to display a desired image.
  • an insulating film is provided on each substrate so as to cover the common electrode and the segment electrode.
  • the insulating film can be, for example, a film made of SiO 2 —TiO 2 formed by a sol-gel method.
  • the liquid crystal alignment film of the present invention is formed on each substrate.
  • the other substrate is superposed on one substrate so that the alignment film surfaces face each other, and the periphery is bonded with a sealant.
  • a spacer is usually mixed in the sealing material.
  • a liquid crystal material is injected into the space surrounded by the two substrates and the sealing material through the opening provided in the sealing material. Thereafter, the opening is sealed with an adhesive.
  • a vacuum injection method may be used, or a method utilizing capillary action in the atmosphere may be used.
  • a polarizing plate is installed. Specifically, a pair of polarizing plates is attached to the surfaces of the two substrates opposite to the liquid crystal layer.
  • the molecular weight of the polyamic acid ester was measured by a GPC (room temperature gel permeation chromatography) apparatus, and the number average molecular weight (Mn) and the weight average molecular weight (Mw) were calculated as polyethylene glycol and polyethylene oxide equivalent values.
  • GPC device manufactured by Shodex (GPC-101) Column: manufactured by Shodex (series of KD803 and KD805) Column temperature: 50 ° C Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr ⁇ H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) is 10 ml / L) Flow rate: 1.0 ml / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (weight average molecular weight (Mw) of about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polymer laboratory Polyethylene glycol manufactured by the company (peak top molecular weight (Mp) of about 12,000, 4,000, 1,000). In order to avoid the overlapping of peaks, the measurement was performed by mixing four types of 900,000,
  • the anisotropy of the alignment film was measured as follows. Measurement was performed using an ultraviolet-visible-near infrared spectrophotometer (UV-3100PC) manufactured by Shimadzu Corporation. The degree of anisotropy was measured from the absorbance (value of 235 nm) with respect to the alignment direction of the obtained alignment film and the absorbance with respect to the direction perpendicular to the alignment direction. [Membrane unevenness] For the evaluation of film unevenness, the film-coated substrate after the immersion treatment was visually observed and classified as follows. ⁇ : No unevenness ⁇ : Some unevenness was observed ⁇ : Large unevenness or whitening was observed
  • Example 1 The liquid crystal aligning agent A obtained in Synthesis Example 2 was filtered through a 1.0 ⁇ m filter, spin-coated on a glass substrate, dried on a hot plate at a temperature of 80 ° C. for 3 minutes, and then baked at 230 ° C. for 10 minutes. A polyimide film having a thickness of 100 nm was obtained. The coating surface was irradiated with 254 nm ultraviolet light through a polarizing plate at 1.2 J / cm 2 . Next, the film-coated substrate obtained above was immersed in PGME (boiling point: 120 ° C.) at 25 ° C. for 3 minutes, rinsed with IPA for 1 minute, and dried in an oven at 80 ° C. for 10 minutes.
  • PGME roofing point: 120 ° C.
  • Example 2 In the same manner as in Example 1, using the liquid crystal aligning agent A obtained in Synthesis Example 2, a polyimide substrate coated, dried and baked on a substrate was irradiated with ultraviolet rays to form a substrate with a film PGMEA ( (Boiling point: 146 ° C.) at 25 ° C. for 3 minutes, rinsed with IPA for 1 minute, and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.51. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 4 In the same manner as in Example 1, using the liquid crystal aligning agent A obtained in Synthesis Example 2, a film-coated substrate obtained by irradiating ultraviolet rays onto a polyimide film coated, dried and baked on a substrate was converted into ethyl lactate. After being immersed in (boiling point: 154 ° C.) at 25 ° C. for 3 minutes, it was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film. The anisotropic magnitude
  • Example 5 In the same manner as in Example 1, using the liquid crystal aligning agent A obtained in Synthesis Example 2, a polyimide substrate coated, dried and baked on a substrate was irradiated with ultraviolet rays, and a substrate with a film was obtained from a butyl cellosolve ( (Boiling point: 169 ° C.) for 10 minutes at 25 ° C., rinsed with IPA for 1 minute, and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.69. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 6> In the same manner as in Example 1, using the liquid crystal aligning agent A obtained in Synthesis Example 2, a polyimide substrate coated, dried and baked on a substrate was irradiated with ultraviolet rays, and a substrate with a film was obtained from PGME ( (Boiling point: 124 ° C.) at 25 ° C. for 3 minutes, rinsed with water for 1 minute, and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.82. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 7 In the same manner as in Example 1, using the liquid crystal aligning agent A obtained in Synthesis Example 2, a film-coated substrate obtained by irradiating ultraviolet rays onto a polyimide film coated, dried and baked on a substrate was converted into ethyl lactate. After being immersed in (boiling point: 154 ° C.) at 25 ° C. for 3 minutes, it was rinsed with water for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film. The anisotropic magnitude
  • Example 8> In the same manner as in Example 1, the liquid crystal aligning agent A obtained in Synthesis Example 2 was used, and the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was converted into diacetone. After being immersed in alcohol (boiling point: 169 ° C.) at 25 ° C. for 3 minutes, rinsed with water for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film. The anisotropic magnitude
  • Example 9 In the same manner as in Example 1, using the liquid crystal aligning agent A obtained in Synthesis Example 2, a substrate with a film obtained by irradiating ultraviolet rays onto a polyimide film coated, dried and baked on the substrate was converted into MMP ( (Boiling point: 145 ° C.) at 25 ° C. for 3 minutes, rinsed with water for 1 minute, and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.77. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 10 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • a polyimide substrate coated, dried and baked on a substrate was irradiated with ultraviolet rays, and a substrate with a film was added to PGME (boiling point: 120 ° C.) at 25 ° C.
  • PGME roofing point: 120 ° C.
  • the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.72. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 11 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the film-coated substrate was added to ethyl lactate (boiling point: 154 ° C.) at 25 ° C.
  • the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 2.11. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 12 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • PGME glassing point: 120 ° C.
  • the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.53. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 13 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was treated with ethyl lactate (boiling point: 154 ° C.) at 25 After immersing at 3 ° C. for 3 minutes, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.94. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 14 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the liquid crystal aligning agent D obtained in Synthesis Example 8 the polyimide substrate coated, dried and baked on the substrate was irradiated with ultraviolet rays, and the substrate with a film was added to PGME (boiling point: 120 ° C.) at 25 ° C. After immersing for 3 minutes, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.40. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 15 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the polyimide film coated, dried and baked on the substrate was irradiated with ultraviolet rays, and the film-coated substrate was added to ethyl lactate (boiling point: 154 ° C.) at 25.
  • the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.70. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 16 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the liquid crystal aligning agent A obtained in Synthesis Example 2 the polyimide substrate coated, dried and baked on the substrate was irradiated with ultraviolet rays, and the substrate with a film was added to PGME (boiling point: 120 ° C.) at 25 ° C. After immersing for 3 minutes, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.37. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 17 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • a polyimide film coated, dried and baked on a substrate was irradiated with ultraviolet rays, and a film-coated substrate was added to ethyl lactate (boiling point: 154 ° C.) at 25.
  • the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.77. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 18 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • PGME glassing point: 120 ° C.
  • the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.33. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 19 Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was treated with ethyl lactate (boiling point: 154 ° C.) at 25 ° C. After immersing at 3 ° C. for 3 minutes, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.2. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 20> The procedure was the same as Example 1 except that 1.0 J / cm 2 of 254 nm ultraviolet light was irradiated.
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was added to PGME (boiling point: 120 ° C.) at 25 ° C.
  • PGME roofing point: 120 ° C.
  • the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.15. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 21 The procedure was the same as Example 1 except that 1.0 J / cm 2 of 254 nm ultraviolet light was irradiated.
  • a substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was added to ethyl lactate (boiling point: 154 ° C.) at 25 ° C.
  • IPA ethyl lactate
  • the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.12. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 22 The procedure was the same as Example 1 except that 1.0 J / cm 2 of 254 nm ultraviolet light was irradiated.
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was added to PGME (boiling point: 120 ° C.) at 25 ° C.
  • the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.11. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • Example 23 The procedure was the same as Example 1 except that 1.0 J / cm 2 of 254 nm ultraviolet light was irradiated.
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was treated with ethyl lactate (boiling point: 154 ° C.) at 25 ° C. After immersing at 3 ° C. for 3 minutes, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.10. Further, when the liquid crystal alignment film was visually observed, no unevenness was observed.
  • IPA (Boiling point: 82.4 ° C.) at 25 ° C. for 3 minutes and then dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.2. Further, when the alignment film was visually observed, a little unevenness was observed.
  • ⁇ Comparative example 2> In the same manner as in Example 1, using the liquid crystal aligning agent A obtained in Synthesis Example 2, a polyimide film coated, dried and baked on the substrate was irradiated with ultraviolet rays, and the film-coated substrate was treated with water ( (Boiling point: 100 ° C.) for 3 minutes, rinsed with IPA for 1 minute, and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.25. Further, when the liquid crystal alignment film was visually observed, some unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with the film was made IPA (boiling point: 82.4 ° C.). After being immersed for 3 minutes at 25 ° C., it was dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.19. Further, when the alignment film was visually observed, a little unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was placed in water (boiling point: 100 ° C.) for 3 minutes. After being immersed, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.17. Further, when the liquid crystal alignment film was visually observed, some unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • Anisotropy with respect to the alignment direction of the liquid crystal alignment film on the film-coated substrate obtained by irradiating the polyimide film coated, dried and baked on the substrate using the liquid crystal alignment agent B obtained in Synthesis Example 4 The magnitude of the property was 1.12. No film unevenness of the liquid crystal alignment film was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was applied to IPA (boiling point: 82.4 ° C.). After being immersed for 3 minutes at 25 ° C., it was dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.12. Further, when the alignment film was visually observed, a little unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was placed in water (boiling point: 100 ° C.) for 3 minutes. After being immersed, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.16. Further, when the liquid crystal alignment film was visually observed, some unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the magnitude of the property was 1.11. No film unevenness of the liquid crystal alignment film was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with the film was applied to IPA (boiling point: 82.4 ° C.). After being immersed for 3 minutes at 25 ° C., it was dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.19. Further, when the alignment film was visually observed, a little unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was placed in water (boiling point: 100 ° C.) for 3 minutes. After the immersion, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.19. Further, when the liquid crystal alignment film was visually observed, some unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the size of was 1.12. No film unevenness of the liquid crystal alignment film was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was changed to IPA (boiling point: 82.4 ° C.). After being immersed for 3 minutes at 25 ° C., it was dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.17. Further, when the alignment film was visually observed, a little unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was placed in water (boiling point: 100 ° C.) for 3 minutes. After being immersed, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.17. Further, when the liquid crystal alignment film was visually observed, some unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • Anisotropy with respect to the alignment direction of the liquid crystal alignment film on the substrate with the film obtained by irradiating the polyimide film coated, dried and baked on the substrate using the liquid crystal alignment agent A obtained in Synthesis Example 2 The magnitude of the property was 1.12. No film unevenness of the liquid crystal alignment film was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was applied to IPA (boiling point: 82.4 ° C.). After being immersed for 3 minutes at 25 ° C., it was dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.11. Further, when the alignment film was visually observed, a little unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was placed in water (boiling point: 100 ° C.) for 3 minutes. After the immersion, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.11. Further, when the liquid crystal alignment film was visually observed, some unevenness was observed.
  • Example 1 was repeated except that 254 nm ultraviolet rays were irradiated at 0.5 J / cm 2 .
  • Anisotropy with respect to the alignment direction of the liquid crystal alignment film on the substrate with the film obtained by irradiating the polyimide film coated, dried and baked on the substrate using the liquid crystal alignment agent E obtained in Synthesis Example 10 The magnitude of the property was 1.08. No film unevenness of the liquid crystal alignment film was observed.
  • Example 22 The procedure was the same as Example 1 except that 1.0 J / cm 2 of 254 nm ultraviolet light was irradiated.
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was applied to IPA (boiling point: 82.4 ° C.). After being immersed for 3 minutes at 25 ° C., it was dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.04. Further, when the alignment film was visually observed, unevenness was observed.
  • Example 23 The procedure was the same as Example 1 except that 1.0 J / cm 2 of 254 nm ultraviolet light was irradiated.
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was placed in water (boiling point: 100 ° C.) for 3 minutes. After being immersed, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.10. Further, when the liquid crystal alignment film was visually observed, some unevenness was observed.
  • Example 25 The procedure was the same as Example 1 except that 1.0 J / cm 2 of 254 nm ultraviolet light was irradiated.
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was applied to IPA (boiling point: 82.4 ° C.). After being immersed for 3 minutes at 25 ° C., it was dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.09. Further, when the alignment film was visually observed, unevenness was observed.
  • Example 26 The procedure was the same as Example 1 except that 1.0 J / cm 2 of 254 nm ultraviolet light was irradiated.
  • the substrate with a film obtained by irradiating the polyimide film coated, dried and baked on the substrate with ultraviolet rays was placed in water (boiling point: 100 ° C.) for 3 minutes. After being immersed, the substrate was rinsed with IPA for 1 minute and dried in an oven at 80 ° C. for 10 minutes to obtain a liquid crystal alignment film.
  • size with respect to the orientation direction of the obtained liquid crystal aligning film was 1.09. Further, when the liquid crystal alignment film was visually observed, some unevenness was observed.
  • Table 1 summarizes the types of solvents used, the degree of anisotropy of the obtained liquid crystal alignment film, and film unevenness for Examples 1 to 22 and Comparative Examples 1 to 27 described above.
  • the liquid crystal alignment film obtained by the production method of the present invention has high anisotropy, and is widely useful for TN devices, STN devices, TFT liquid crystal devices, and vertical alignment type liquid crystal display devices. Furthermore, by imparting high anisotropy, afterimages derived from liquid crystal orientation, for example, afterimages caused by alternating current drive generated in liquid crystal display elements of the IPS drive method or the FFS drive method can be reduced. This is particularly useful as a liquid crystal alignment film of a liquid crystal display element of an LCD system or FFS driving system or a liquid crystal television.
  • the entire contents of the specification, claims and abstract of Japanese Patent Application No. 2011-202229 filed on September 15, 2011 are incorporated herein as the disclosure of the specification of the present invention. Is.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

 異方性を高め、処理によって生じるムラを抑制できる液晶配向膜の製造方法を提供する。 ポリイミド及び該ポリイミドの前駆体からなる群から選ばれる少なくとも1種類の重合体を含有する液晶配向剤を基版上に塗布、焼成して得られる膜に、偏光された放射線を照射し、次いで、下記の式(A-1)、式(A-2)、式(A-3)、式(A-4)、及び式(A-5)からなる群から選ばれる少なくとも1種の有機溶媒を含む溶液で接触処理する。 (Aは水素原子又はアセチル基、Aは炭素数1~6のアルキル基、Rは水素原子又はメチル基、nは1又は2。Aは炭素数1~4のアルキル基。R、Rは、水素原子又はメチル基。A、Aは、炭素数1~4のアルキル基。Aは炭素数3~6のアルキル基又はシクロアルキル基。)

Description

液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
 本発明は、光配向法用の液晶配向膜の製造方法、この製造方法によって得られる液晶配向膜、及び得られた液晶配向膜を具備する液晶表示素子に関する。
 液晶テレビ、液晶ディスプレイなどに用いられる液晶表示素子は、通常、液晶の配列状態を制御するための液晶配向膜が素子内に設けられている。
 現在、工業的に最も普及している液晶配向膜は、電極基板上に形成されたポリアミック酸及び/又はこれをイミド化したポリイミドからなる膜の表面を、綿、ナイロン、ポリエステル等の布で一方向に擦る、いわゆるラビング処理を行うことで作製されている。
 液晶配向膜の配向過程における膜面のラビング処理は、簡便で生産性に優れた工業的に有用な方法である。しかし、液晶表示素子の高性能化、高精細化、大型化への要求は益々高まり、ラビング処理によって発生する配向膜の表面の傷、発塵、機械的な力や静電気による影響、更には、配向処理面内の不均一性などの種々の問題が明らかとなってきている。
 ラビング処理に代わる方法としては、偏光された放射線を照射することにより、液晶配向能を付与する光配向法が知られている。光配向法による液晶配向処理は、光異性化反応を利用したもの、光架橋反応を利用したもの、光分解反応を利用したものなどが提案されている(非特許文献1参照)。
 一方、ポリイミドを光配向用液晶配向膜に用いる場合、他に比べて高い耐熱性を有することからその有用性が期待されている。
 特許文献1では、主鎖にシクロブタン環などの脂環構造を有するポリイミド膜を光配向法に用いることが提案されている。
 しかし、光配向法により得られる液晶配向膜は、ラビングによるものに比べて、高分子液晶配向膜の配向方向に対する異方性が小さいという問題がある。異方性が小さいと十分な液晶配向性が得られず、液晶表示素子とした場合に、残像が発生するなども問題が発生する。光配向法により得られる液晶配向膜の異方性を高める方法として、光照射後に、光照射によって前記ポリイミドの主鎖が切断され生成した低分子量成分を除去することが提案されている(特許文献2参照)。
日本特開平9-297313号公報 日本特開2011-107266号公報
「液晶光配向膜」木戸脇、市村 機能材料 1997年11月号  Vol.17、 No.11 13~22ページ
 本願発明者らが検討した結果、ポリイミド膜、又はポリイミド前駆体を塗布、焼成して得られるポリイミド膜に偏光された放射線を照射した後、水、又は有機溶媒中に浸漬するなどの処理をすることにより、得られる液晶配向膜の異方性が高くなることが確認された。しかし、これらの処理をした場合、得られる液晶配向膜にはムラが発生するなどの問題が発生し、液晶配向膜の特性を大きく棄損されることが見出された。
 本発明の目的は、光配向法により得られる液晶配向膜の異方性を高め、且つ処理する過程で発生するムラを抑制することができる液晶配向膜の製造方法、この液晶配向膜の製造方法によって得られる液晶配向膜、及びこの液晶配向膜の製造方法によって得られた液晶配向膜を具備する液晶表示素子を提供することにある。
 本発明者らは、上記の目的を達成するため、鋭意検討を重ねた結果、ポリイミド膜、又はポリイミド前駆体を塗布、焼成して得られる膜に偏光された放射線を照射し、次いで、特定の有機溶媒を含む溶液を用いて浸漬などの接触処理することにより、得られる液晶配向膜の異方性を顕著に改善し、かつ上記した液晶配向膜に発生するムラの問題が解決し得ることを見出した。
 かくして、本発明は、下記を要旨とするものである。
1.ポリイミド及び該ポリイミドの前駆体からなる群から選ばれる少なくとも1種類の重合体と有機溶媒とを含有する液晶配向剤を基板上に塗布、焼成して得られるイミド化した膜に、偏光された放射線を照射し、次いで、下記の式(A-1)、式(A-2)、式(A-3)、式(A-4)、及び式(A-5)からなる群から選ばれる少なくとも1種の有機溶媒を含む溶液で接触処理することを特徴とする液晶配向膜の製造方法。
Figure JPOXMLDOC01-appb-C000007
(式(A-1)において、Aは水素原子又はアセチル基であり、Aは炭素数1~6のアルキル基であり、Rは水素原子又はメチル基であり、nは1又は2の整数である。式(A-2)において、Aは炭素数1~4のアルキル基である。式(A-3)において、R及びRは、それぞれ独立して、水素原子又はメチル基である。式(A-4)において、A及びAは、それぞれ独立して、炭素数1~4のアルキル基である。式(A-5)において、Aは炭素数3~6のアルキル基又はシクロアルキル基である。)
2.前記有機溶媒が、沸点として100~180℃を有する前記1に記載の液晶配向膜の製造方法。
3.前記有機溶媒が、1-メトキシ-2-プロパノール、乳酸エチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、又は3-エトキシプロピオン酸エチルである前記1又は2に記載の液晶配向膜の製造方法。
4.前記重合体が、下記式(3)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含有する前記1~3のいずれかに記載の液晶配向膜の製造方法。
Figure JPOXMLDOC01-appb-C000008
(式(3)において、Xは下記式(X1-1)~(X1-9)で表される構造からなる群から選ばれる少なくとも1種類であり、Yは2価の有機基であり、Rは、水素原子、又は炭素数1~4のアルキル基である。)
Figure JPOXMLDOC01-appb-C000009
(式(X1-1)において、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルケニル基、又はフェニル基である。)
5.前記重合体が、前記式(3)で表される構造単位を、全重合体1モルに対して、60モル%以上含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種である前記4に記載の液晶配向膜の製造方法。
6.前記式(3)において、Xが前記式(X1-1)で表される前記4に記載の液晶配向膜の製造方法。
7.前記式(3)において、Xが下記式(X1-10)~(X1-11)で表される構造からなる群から選ばれる少なくとも1種である前記4に記載の液晶配向膜の製造方法。
Figure JPOXMLDOC01-appb-C000010
8.前記式(3)において、Yが下記式(4)及び(5)で表される構造からなる群から選ばれる少なくとも1種である前記4に記載の液晶配向膜の製造方法。
Figure JPOXMLDOC01-appb-C000011
(式(5)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。)
9.前記式(3)において、Yが前記式(4)で表される構造である前記8に記載の液晶配向膜の製造方法。
10.ポリイミド及び該ポリイミドの前駆体からなる群から選ばれる少なくとも1種類の重合体を含有する液晶配向剤を基版上に塗布、焼成して得られる膜に、偏光された放射線を照射してなる液晶配向膜の接触処理液であり、前記式(A-1)、式(A-2)、式(A-3)、式(A-4)、及び式(A-5)からなる群から選ばれる少なくとも1種の有機溶媒を含む溶液からなることを特徴とする液晶配向膜の接触処理液。
11.前記1~9のいずれかに記載の液晶配向膜の製造方法によって得られる液晶配向膜。
12.前記11に記載の液晶配向膜を具備する液晶表示素子。
 本発明の液晶配向膜の製造方法によれば、光配向法で配向処理した高い異方性を有する液晶配向膜が得られ、同時に、得られる液晶配向膜は、膜ムラのない均質な膜が得られる。
 かくして、本発明の製造方法による液晶配向膜は、異方性が高いために液晶配向規制力が高く、残像特性に優れ、液晶表示素子に用いた場合、高品位の液晶表示素子が得られる。
 本発明の液晶配向膜の製造方法により達成される上記の異方性の向上の効果や、処理時における膜ムラの発生の抑制の効果は、後記する実施例と比較例とを対比した「表1」から明らかなように、使用される溶媒によって大きな差異がある。
 すなわち、後記する「表1」に見られるように、溶媒として、水、イソプロピルルコールなどを使用した場合は、得られる液晶配向膜の異方性の向上はほとんど見られず、同時に、これらの溶媒を使用した場合には、得られる液晶配向膜にムラも発生してしまう。
 しかし、本発明における上記記式(A-1)~(A-5)で表される化合物からなる群から選ばれる少なくとも1種の有機溶媒を含む溶液で接触処理した場合には、液晶配向膜の異方性の向上は大きく改善される、同時に、得られる液晶配向膜にムラの発生を顕著に抑制できる。
<ポリイミド及び該ポリイミドの前駆体>
 本発明において、偏光された放射線を照射することにより、異方性が付与されるポリイミド及び該ポリイミドの前駆体からなる群から選ばれる少なくとも1種の重合体(以下、単に、重合体ともいう。)が使用される。この条件を満たすポリイミド、又はポリイミド前駆体であれば、その構造は特に限定されるものではない。
 具体例を挙げるならば、得られる液晶配向膜の異方性が高いため、本発明に用いられる重合体としては、下記式(3)で表される構造単位を有するポリイミド前駆体、及び該ポリイミド前駆体のイミド化重合体が好ましい。有機溶媒への溶解性の観点から、下記式(3)で表される構造単位を有するポリイミド前駆体が特に好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(3)において、Rは、水素原子、又は炭素数1~4のアルキル基である。加熱によるイミド化のしやすさの観点から、水素原子、又はメチル基が特に好ましい。
 Xは、下記式(X1-1)~(X1-9)で表される構造からなる群から選ばれる少なくとも1種である。
Figure JPOXMLDOC01-appb-C000013
 式(X1-1)において、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルケニル基、又はフェニル基であり、同一でも異なってもよい。液晶配向性の観点から、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、メチル基、又はエチル基が好ましく、水素原子、又はメチル基がより好ましい。Xは、さらに好ましくは、下記式(X1-10)及び(X1-11)で表される構造からなる群から選ばれる少なくとも1種類である。
Figure JPOXMLDOC01-appb-C000014
 Yは、2価の有機基であり、その構造は特に限定されるものではない。得られる液晶配向膜の異方性が高いため、下記式(Y1-1)及び(Y1-2)で表される構造からなる群から選ばれる少なくとも1種類であることが好ましい。
Figure JPOXMLDOC01-appb-C000015
 式(5)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。
 Zにおいて、エステル結合としては、-C(O)O-、又は-OC(O)-で表される。アミド結合としては、-C(O)NH-、-C(O)NR-、-NHC(O)-、又は-NRC(O)-で表される構造を示すことができる。Rは炭素数1~10の、アルキル基、アルケニル基、アルキニル基、アリール基、又はこれらの組み合わせである。
 上記アルキル基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘキシル基、オクチル基、シクロペンチル基、シクロヘキシル基、ビシクロヘキシル基などが挙げられる。アルケニル基としては、上記のアルキル基に存在する1つ以上のCH-CH構造を、CH=CH構造に置き換えたものが挙げられ、より具体的には、ビニル基、アリル基、1-プロペニル基、イソプロペニル基、2-ブテニル基、1,3-ブタジエニル基、2-ペンテニル基、2-ヘキセニル基、シクロプロペニル基、シクロペンテニル基、シクロヘキセニル基などが挙げられる。アルキニル基としては、前記のアルキル基に存在する1つ以上のCH-CH構造をC≡C構造に置き換えたものが挙げられ、より具体的には、エチニル基、1-プロピニル基、2-プロピニル基などが挙げられる。アリール基としては、例えばフェニル基が挙げられる。
 チオエステル結合としては-C(O)S-、又は-SC(O)-で表される構造を示すことができる。
 Zが炭素数2~10の有機基である場合、下記式(6)の構造で表すことができる。
Figure JPOXMLDOC01-appb-C000016
 式(6)において、Z4、Z、及びZは、それぞれ独立して、単結合、-O-、-S-、-NR11-、エステル結合、アミド結合、チオエステル結合、ウレア結合、カーボネート結合、又はカルバメート結合である。R11は、水素原子、メチル基、又はt-ブトキシカルボニル基である。
 Z、Z、及びZにおけるエステル結合、アミド結合、及びチオエステル結合については、前記のエステル結合、アミド結合、及びチオエステル結合と同様の構造を示すことができる。
 ウレア結合としては、-NH-C(O)NH-、又は-NR-C(O)NR-で表される構造を示すことができる。Rは炭素数1~10の、アルキル基、アルケニル基、アルキニル基、アリール基、又はこれらの組み合わせであり、これらの基は前記のアルキル基、アルケニル基、アルキニル基、及びアリール基と同様の例を挙げることができる。
 カーボネート結合としては、-O-C(O)-O-で表される構造を示すことができる。
 カルバメート結合としては、-NH-C(O)-O-、-O-C(O)-NH-、-NR-C(O)-O-、又は-O-C(O)-NR-で表される構造を示すことができる。Rは炭素数1~10の、アルキル基、アルケニル基、アルキニル基、アリール基、又はこれらの組み合わせであり、これらの基は前記のアルキル基、アルケニル基、アルキニル基、及びアリール基と同様の例を挙げることができる。
 式(6)中のR及びR10はそれぞれ独立して、単結合、炭素数1~10のアルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はこれらを組み合わせた基から選ばれる構造である。R及びR10の何れかが単結合の場合、R又はR10の何れかは、炭素数2~10の、アルキレン基、アルケニレン基、アルキニレン基、アリーレン基、又はこれらを組み合わせた基から選ばれる構造である。
 上記アルキレン基としては、前記アルキル基から水素原子を1つ除いた構造が挙げられる。より具体的には、メチレン基、1,1-エチレン基、1,2-エチレン基、1,2-プロピレン基、1,3-プロピレン基、1,4-ブチレン基、1,2-ブチレン基、1,2-ペンチレン基、1,2-へキシレン基、2,3-ブチレン基、2,4-ペンチレン基、1,2-シクロプロピレン基、1,2-シクロブチレン基、1,3-シクロブチレン基、1,2-シクロペンチレン基、1,2-シクロへキシレン基などが挙げられる。
 アルケニレン基としては、前記アルケニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,1-エテニレン基、1,2-エテニレン基、1,2-エテニレンメチレン基、1-メチル-1,2-エテニレン基、1,2-エテニレン-1,1-エチレン基、1,2-エテニレン-1,2-エチレン基、1,2-エテニレン-1,2-プロピレン基、1,2-エテニレン-1,3-プロピレン基、1,2-エテニレン-1,4-ブチレン基、1,2-エテニレン-1,2-ブチレン基などが挙げられる。
 アルキニレン基としては、前記アルキニル基から水素原子を1つ除いた構造が挙げられる。より具体的には、エチニレン基、エチニレンメチレン基、エチニレン-1,1-エチレン基、エチニレン-1,2-エチレン基、エチニレン-1,2-プロピレン基、エチニレン-1,3-プロピレン基、エチニレン-1,4-ブチレン基、エチニレン-1,2-ブチレン基などが挙げられる。
 アリーレン基としては、前記アリール基から水素原子を1つ除いた構造が挙げられる。より具体的には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基などが挙げられる。
 Yに直線性が高い構造や剛直な構造を含有する場合、良好な液晶配向性を有する液晶配向膜が得られるため、Zの構造としては、単結合、又は下記式(A1-1)~(A15-25)の構造がより好ましい。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 Yの構造が剛直な構造であるほど、液晶配向性に優れた液晶配向膜が得られるため、Yの構造としては、上記式(4)で表される構造が特に好ましい。
 上記式(3)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体において、上記式(3)で表される構造単位の比率は、全重合体中の全構造単位1モルに対して、60~100モル%が好ましい。上記式(3)で表される構造単位の比率が高いほど、良好な液晶配向性を有する液晶配向膜が得られるため、80~100モル%がより好ましく、90~100モル%がさらに好ましい。
 本発明の重合体成分は上記式(3)で表される構造単位以外に、下記式(7)で表される構造単位を含有するポリイミド前駆体及び該ポリイミド前駆体であってもよい。
Figure JPOXMLDOC01-appb-C000019
 式(7)において、Rは上記式(3)のRと同様の定義である。
 Xは4価の有機基であり、その構造は特に限定されない。具体的例を挙げるならば、下記式(X-9)~(X-42)の構造が挙げられる。化合物の入手性の観点から、Xの構造は、X-17、X-25、X-26,X-27、X-28、X-32、又はX-39が好ましい。また、直流電圧により蓄積した残留電荷の緩和が早い液晶配向膜を得られるという観点からは、芳香族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xの構造としては、X-26,X-27、X-28、X-32、X-35、又はX-37がより好ましい。
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
 上記式(7)において、Yは2価の有機基であり、その構造は特に限定されない。Yの具体例を挙げるならば、下記記式(Y-1)~(Y-74)の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
 重合体成分の有機溶媒に対する溶解性に優れるために、式(7)におけるYとしては、Y-8、Y-20、Y-21、Y-22、Y-28、Y-29、Y-30、Y-72、Y-73、又はY-74の構造を有する構造単位を含有することが好ましい。
 重合体成分における上記式(7)で表される構造単位の比率が高い場合、液晶配向膜の液晶配向性を低下させるため、上記式(7)で表される構造単位の比率は、全構造単位1モルに対して0~40モル%が好ましく、0~20モル%がさらに好ましい。
<ポリアミック酸エステルの製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸エステルは、以下に示す(1)~(3)の方法で合成することができる。
(1)ポリアミック酸から合成する場合
 ポリアミック酸エステルは、テトラカルボン酸二無水物とジアミンから得られるポリアミック酸をエステル化することによって合成することができる。
 具体的には、ポリアミック酸とエステル化剤を有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 エステル化剤としては、精製によって容易に除去できるものが好ましく、N,N-ジメチルホルムアミドジメチルアセタール、N,N-ジメチルホルムアミドジエチルアセタール、N,N-ジメチルホルムアミドジプロピルアセタール、N,N-ジメチルホルムアミドジネオペンチルブチルアセタール、N,N-ジメチルホルムアミドジ-t-ブチルアセタール、1-メチル-3-p-トリルトリアゼン、1-エチル-3-p-トリルトリアゼン、1-プロピル-3-p-トリルトリアゼン、4-(4,6-ジメトキシー1,3,5-トリアジンー2-イル)-4-メチルモルホリニウムクロリドなどが挙げられる。エステル化剤の添加量は、ポリアミック酸の繰り返し単位1モルに対して、2~6モル当量が好ましく、2~4モル当量がより好ましい。
 上記の反応に用いる有機溶媒は、重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時における有機溶媒中の重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
(2)テトラカルボン酸ジエステルジクロリドとジアミンとの反応により合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルジクロリドとジアミンから合成することができる。
 具体的には、テトラカルボン酸ジエステルジクロリドとジアミンとを、塩基と有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって合成することができる。
 前記塩基には、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためにピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましく、2~3倍モルがより好ましい。
 上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 合成時における有機溶媒中の重合体濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる有機溶媒は、できるだけ脱水されていることが好ましく、反応は窒素雰囲気中で行い、外気の混入を防ぐのが好ましい。
(3)テトラカルボン酸ジエステルとジアミンからポリアミック酸を合成する場合
 ポリアミック酸エステルは、テトラカルボン酸ジエステルとジアミンを重縮合することにより合成することができる。
 具体的には、テトラカルボン酸ジエステルとジアミンを縮合剤、塩基、及び有機溶媒の存在下で0~150℃、好ましくは0~100℃において、30分~24時間、好ましくは3~15時間反応させることによって合成することができる。
 前記縮合剤には、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニルなどが使用できる。縮合剤の添加量は、テトラカルボン酸ジエステルに対して2~3倍モルであることが好ましく、2~2.5倍モルがより好ましい。
 前記塩基には、ピリジン、トリエチルアミンなどの3級アミンが使用できる。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、ジアミン成分に対して2~4倍モルが好ましく、2~3倍モルがより好ましい。
 前記有機溶媒としては、N-メチル-2-ピロリドン、γ-ブチロラクトン、N,N-ジメチルホルムアミドなどが挙げられる。
 また、上記反応において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量はジアミン成分に対して0.1~5倍モルが好ましく、2~3倍モルがより好ましい。
 上記3つのポリアミック酸エステルの合成方法の中でも、高分子量のポリアミック酸エステルが得られるため、上記(1)又は(2)の合成法が特に好ましい。
 上記のようにして得られるポリアミック酸エステルの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製されたポリアミック酸エステルの粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノールなどが好ましい。
<ポリアミック酸の製造方法>
 本発明に用いられるポリイミド前駆体であるポリアミック酸は、以下に示す方法により合成することができる。
 具体的には、テトラカルボン酸二無水物とジアミンとを有機溶媒の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~12時間反応させることによって合成できる。
 上記の反応に用いる有機溶媒は、モノマー及び重合体の溶解性からN,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、γ-ブチロラクトンなどが好ましく、これらは1種又は2種以上を混合して用いてもよい。
 重合体の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、1~30質量%が好ましく、5~20質量%がより好ましい。
 上記のようにして得られたポリアミック酸は、反応溶液をよく撹拌させながら貧溶媒に注入することで、重合体を析出させて回収することができる。また、析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥することで精製されたポリアミック酸の粉末を得ることができる。貧溶媒は、特に限定されないが、水、メタノール、エタノール、2-プロパノール、ヘキサン、ブチルセロソルブ、アセトン、トルエン等が挙げられ、水、メタノール、エタノール、2-プロパノールなどが好ましい。
<ポリイミドの製造方法>
 本発明に用いられるポリイミドは、前記ポリアミック酸エステル又はポリアミック酸をイミド化することにより製造することができる。
 ポリアミック酸エステルからポリイミドを製造する場合、前記ポリアミック酸エステル溶液、又はポリアミック酸エステル樹脂粉末を有機溶媒に溶解させて得られるポリアミック酸溶液に塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の過程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたいポリアミック酸エステルを、有機溶媒中において塩基性触媒存在下で撹拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はアミック酸エステル基の0.5~30倍モル、好ましくは2~20倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸からポリイミドを製造する場合、ジアミン成分とテトラカルボン酸二無水物との反応で得られた前記ポリアミック酸の溶液に触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
 化学的イミド化は、イミド化させたい重合体を、有機溶媒中において塩基性触媒と酸無水物の存在下で攪拌することにより行うことができる。有機溶媒としては前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。また、酸無水物としては無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。
 イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、反応時間は1~100時間で行うことができる。塩基性触媒の量はポリアミック酸基の0.5~30倍モル、好ましくは2~20倍モルであり、酸無水物の量はポリアミック酸基の1~50倍モル、好ましくは3~30倍モルである。得られる重合体のイミド化率は、触媒量、温度、反応時間を調節することで制御することができる。
 ポリアミック酸エステル又はポリアミック酸のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
 上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して精製された重合体の粉末を得ることができる。
 前記貧溶媒は、特に限定されないが、メタノール、2-プロパノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられ、メタノール、エタノール、2-プロパノール、アセトンなどが好ましい。
<液晶配向剤>
 本発明に用いられる液晶配向剤は、重合体成分が有機溶媒中に溶解された溶液の形態を有する。重合体の分子量は、重量平均分子量で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。また、数平均分子量は、好ましくは、1,000~250,000であり、より好ましくは、2,500~150,000であり、さらに好ましくは、5,000~50,000である。
 本発明に用いられる液晶配向剤の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができるが、均一で欠陥のない塗膜を形成させるという点から1質量%以上であることが好ましく、溶液の保存安定性の点からは10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。
 本発明に用いられる液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-ビニル-2-ピロリドン、ジメチルスルホキシド、ジメチルスルホン、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等を挙げることができる。これらは1種又は2種以上を混合して用いてもよい。また、単独では重合体成分を均一に溶解できない溶媒であっても、重合体が析出しない範囲であれば、上記の有機溶媒に混合してもよい。
 本発明に用いられる液晶配向剤は、重合体成分を溶解させるための有機溶媒の他に、液晶配向剤を基板へ塗布する際の塗膜均一性を向上させるための溶媒を含有してもよい。かかる溶媒は、一般的に上記有機溶媒よりも低表面張力の溶媒が用いられる。その具体例としては、エチルセロソルブ、ブチルセロソルブ、エチルカルビトール、ブチルカルビトール、エチルカルビトールアセテート、エチレングリコール、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ブチルセロソルブアセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等が挙げられる。これらの溶媒は2種上を併用してもよい。
 本発明の液晶配向剤には、上記の他、本発明の効果が損なわれない範囲であれば、重合体以外の重合体、液晶配向膜の誘電率や導電性などの電気特性を変化させる目的の誘電体若しくは導電物質、液晶配向膜と基板との密着性を向上させる目的のシランカップリング剤、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物、さらには塗膜を焼成する際にポリアミック酸のイミド化を効率よく進行させる目的のイミド化促進剤等を添加しても良い。
<液晶配向膜の製造方法>
 本発明の液晶配向膜の製造方法は、液晶配向剤を基板に塗布し、焼成する工程、得られた膜に偏光された放射線を照射する工程、放射線を照射した膜を特定の有溶媒で接触処理する工程を有する。
(1)液晶配向剤を基板に塗布し、焼成する工程
 上記のようにして得られた液晶配向剤を基板に塗布し、乾燥し、焼成することによりポリイミド膜、又はポリイミド前駆体がイミド化した膜が得られる。
 本発明に用いられる液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板等のプラスチック基板等を用いることができ、液晶駆動のためのITO電極等が形成された基板を用いることがプロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。本発明に用いられる液晶配向剤の塗布方法としては、スピンコート法、印刷法、インクジェット法などが挙げられる。
 液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される有機溶媒を十分に除去するために、50~120℃、好ましくは60~100℃で1~10分乾燥させ、その後150~300℃、好ましくは200~250で5~120分焼成される。焼成後の塗膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nm、好ましくは10~200nmである。
(2)得られた膜に偏光された放射線を照射する工程
 上記(1)の方法で得られた膜に、偏光された放射線を照射する(以下、光配向処理とも言う。)ことにより、偏光方向に対して垂直方向に異方性が付与される。
 光配向処理の具体例としては、前記塗膜表面に、一定方向に偏光した放射線を照射し、場合によっては、さらに150~250℃の温度で加熱処理を行い、液晶配向能を付与する方法が挙げられる。放射線の波長としては、100~800nmの波長を有する紫外線及び可視光線を用いることができる。このうち、100~400nmの波長を有する紫外線が好ましく、200~400nmの波長を有するものが特に好ましい。
 前記放射線の照射量は、1~10,000mJ/cmの範囲にあることが好ましく、100~5,000mJ/cmの範囲にあることが特に好ましい。
(3)放射線を照射した膜を有機溶媒を含む溶液で接触処理する工程
 上記で、偏光された放射線を照射した膜は、次いで特定の有機溶媒を含む溶液で接触処理される。ここで用いられる有機溶媒は、下記の(A-1)、式(A-2)、式(A-3)、式(A-4)、及び式(A-5)からなる群から選ばれる少なくとも1種の有機溶媒又は有機溶剤である。
Figure JPOXMLDOC01-appb-C000027
 式(A-1)において、Aは水素原子、又はアセチル基であり、Aは炭素数1~6のアルキル基であり、Rは水素原子又はメチル基であり、nは1又は2の整数である。
 式(A-2)において、Aは炭素数1~4のアルキル基である。
 式(A-3)において、R及びRは、それぞれ独立して、水素原子又はメチル基である。
 式(A-4)において、A及びAは、それぞれ独立して、炭素数1~4のアルキル基である。
 式(A-5)において、Aは炭素数3~6のアルキル基又はシクロアルキル基である。
 上記式(A-1)~(A-5)の有機溶媒は、沸点が好ましくは、100~180℃、より好ましくは、110~160℃の水溶性のものが好適である。沸点が高い場合には、膜中に残存し、液晶配向膜の特性に悪影響を与えることになり、一方、沸点が低い場合には、揮発しやすいために膜にムラが発生しやすくなり好ましくない。
 上記式(A-1)~(A-5)の有機溶媒は、なかでも、異方性が高く、ムラのない液晶配向膜が得られ易いことから、1-メトキシ-2-プロパノール、1-メトキシ-2-プロパノールアセテート、ブチルセロソルブ、乳酸エチル、乳酸メチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸プロピル、酢酸ブチル、及び酢酸シクロヘキシルからなる群から選ばれる少なくとも1種が好ましい。特に、1-メトキシ-2-プロパノール及び乳酸エチルからなる群から選ばれる少なくとも1種が好ましい。
 接触処理に使用する有機溶剤を含む溶液は、本発明の効果を損なわない範囲で、上記式(A-1)~(A-5)の有機溶媒以外の他の溶媒又は溶剤を含んでもよい。他の溶媒としては、特に限定されるものではないが、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどが挙げられる。特に、汎用性及び安全性の観点から水がより好ましい。
 上記の他の溶媒を含有する場合にも、上記式(A-1)~(A-5)からなる群から選ばれる少なくとも1種の有機溶媒の含有量は、接触処理に使用される溶液の全量に対して、10~100質量%が好ましく、30~100質量%がより好ましく、50~100質量%が特に好ましい。
 本発明において、偏光された放射線を照射した膜と有機溶媒を含む溶液との接触処理は、浸漬処理、噴霧(スプレー)処理などの、膜と液とが好ましくは十分に接触するような処理で行なわれる。なかでも、有機溶媒を含む溶液中に膜を、好ましくは10秒~1時間、より好ましくは1~30分浸漬処理する方法が好ましい。接触処理は常温でも加温してもよいが、好ましくは10~80℃、より好ましくは20~50℃で実施される。また、必要に応じて超音波などの接触を高める手段を施すことができる。
 上記接触処理の後に、使用した溶液中の有機溶媒を除去する目的で、水、メタノール、エタノール、2-プロパノール、アセトン、メチルエチルケトンなどの低沸点溶媒によるすすぎ(リンス)や乾燥のいずれか、又は両方を行ってよい。乾燥する場合の温度としては、80~250℃が好ましく、80~150℃がより好ましい。
<液晶表示素子>
 本発明の液晶表示素子は、本発明の製造方法によって得られ液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して液晶表示素子としたものである。
 液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。尚、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構造の液晶表示素子であってもよい。
 まず、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされる。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。
 次に、各基板の上に、本発明の液晶配向膜を形成する。
 次に、一方の基板に他方の基板を互いの配向膜面が対向するようにして重ね合わせ、周辺をシール材で接着する。シール材には、基板間隙を制御するために、通常、スペーサを混入しておく。また、シール材を設けない面内部分にも、基板間隙制御用のスペーサを散布しておくことが好ましい。シール材の一部には、外部から液晶を充填可能な開口部を設けておく。
 次に、シール材に設けた開口部を通じて、2枚の基板とシール材で包囲された空間内に液晶材料を注入する。その後、この開口部を接着剤で封止する。注入には、真空注入法を用いてもよいし、大気中で毛細管現象を利用した方法を用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付ける。以上の工程を経ることにより、本発明の液晶表示素子が得られる。この液晶表示素子は、液晶配向膜として本発明の液晶配向膜の製造方法により得られた液晶配向膜を使用していることから、残像特性に優れたものとなり、大画面で高精細の液晶テレビなどに好適に利用可能である。
 以下に実施例を挙げ、本発明をさらに詳しく説明するが、本発明はこれらに限定されるものではない。
 実施例及び比較例で使用した化合物の略号、及び各特性の測定方法は、以下のとおりである。
NMP:N-メチル-2-ピロリドン
GBL:γ-ブチロラクトン
BCS:ブチルセロソルブ
IPA:2-プロパノール
PGMEA:1-メトキシ-2-プロパノールアセテート
PG:プロピレングリコール
MMP:メチル-3-メトキシプロピオネート
DE-1:下記式(DE-1)
DA-1:下記式(DA-1)
DA-2:下記式(DA-2)
DA-3:下記式(DA-3)
添加剤A:N-α―(9-フルオレニルメトキシカルボニル)-N-τ-t-ブトキシカルボニル-L-ヒスチジン 
Figure JPOXMLDOC01-appb-C000028
 以下に、分子量、配向膜の異方性、及び膜ムラの評価方法を示す。
[分子量]
 ポリアミック酸エステルの分子量はGPC(常温ゲル浸透クロマトグラフィー)装置によって測定し、ポリエチレングリコール、及びポリエチレンオキシド換算値として数平均分子量(Mn)と重量平均分子量(Mw)を算出した。
GPC装置:Shodex社製(GPC-101)
カラム:Shodex社製(KD803、KD805の直列)
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(重量平均分子量(Mw) 約900,000、150,000、100,000、30,000)、及び、ポリマーラボラトリー社製 ポリエチレングリコール(ピークトップ分子量(Mp) 約12,000、4,000、1,000)。測定は、ピークが重なるのを避けるため、900,000、100,000、12,000、1,000の4種類を混合したサンプル、及び150,000、30,000、4,000の3種類を混合したサンプルの2サンプルについて別々に行った。
[配向膜の異方性]
 配向膜の異方性の測定は以下のようにして行った。
 島津製作所社製の紫外-可視-近赤外分光光度計(UV-3100PC)を用いて測定を行った。得られた配向膜の配向方向に対する吸光度(235nmの値)と配向方向の垂直方向に対する吸光度から異方性の大きさを測定した。
Figure JPOXMLDOC01-appb-I000029
[膜ムラ]
 膜ムラの評価は、浸漬処理後の膜付き基板を目視で観察し、以下のように分類した。
○ :ムラなし
△ :ムラが少し見られた
× :大きなムラや白化が見られた
<合成例1>
 撹拌装置付きの500mLの四つ口フラスコ内を窒素雰囲気とし、p-フェニレンジアミンを4.58g(42.4mmol)入れ、さらにDA-1を1.79g (4.71mmol)入れた後、NMPを84.7g、GBLを254g、及び塩基としてピリジン8.40g(106mmol) を加え、撹拌して溶解させた。次に、このジアミン溶液を撹拌しながら、DE-1を14.4g(44.2mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロライドを1.23g (13.6mmol) 加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、1477gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、738gのIPAで5回洗浄し、乾燥することで白色のポリアミック酸エステル樹脂粉末17.3gを得た。収率は、96.9%であった。また、このポリアミック酸エステルの分子量はMn=14,288、Mw=29,956であった。
 得られたポリアミック酸エステル樹脂粉末3.69gを100mL三角フラスコにとりGBLを33.2g加え、室温で24時間攪拌し溶解させて、ポリアミック酸エステル溶液とした。
<合成例2>
 攪拌子を入れた20mLサンプル管に、合成例1で得られたポリアミック酸エステル溶液を5.26gとり、GBLを3.16g、BCSを2.11g、及び添加剤Aを0.19g加え、マグネチックスターラーで30分間攪拌し、液晶配向剤Aを得た。
<合成例3>
 撹拌装置付きの500mLの四つ口フラスコ内を窒素雰囲気とし、p-フェニレンジアミンを2.50g (23.1mmol)入れ、さらにDA-2を0.59g (1.22mmol)入れた後、NMPを42.8g、GBLを129g、及び塩基としてピリジン4.34g(54.9mmol) を加え、撹拌して溶解させた。次に、このジアミン溶液を撹拌しながら、DE-1を7.44g(22.9mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロライドを0.63g (7.01mmol) 加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、574gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、382gのIPAで5回洗浄し、乾燥して白色のポリアミック酸エステル樹脂粉末8.82gを得た。収率は、97.8%であった。また、このポリアミック酸エステルの分子量は、Mn=16617、Mw=37387であった。
 得られたポリアミック酸エステル樹脂粉末0.80gを100mL三角フラスコに採り、GBLを7.20g加えて、室温で24時間攪拌し、溶解させて、ポリアミック酸エステル溶液とした。
<合成例4>
 攪拌子を入れた20mLサンプル管に、合成例3で得られたポリアミック酸エステル溶液を8.00g採り、GBLを8.01g、BCSを4.00g、及び添加剤Aを0.28g加えて、マグネチックスターラーで30分間攪拌し、液晶配向剤Bを得た。
<合成例5>
 撹拌装置付きの500mLの四つ口フラスコ内を窒素雰囲気とし、p-フェニレンジアミンを1.23g(11.3mmol)入れ、さらに4,4’-ジアミノ-1,2-ジフェニルエタンを0.80g (3.77mmol)入れた後、NMPを27.0g、GBLを91.2g、及び塩基としてピリジン2.69g(34.0mmol) を加え、撹拌して溶解させた。次に、このジアミン溶液を撹拌しながら、DE-1を4.61g(14.2mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロライドを0.39g (4.34mmol) 加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、384gのIPAに撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、256gのIPAで5回洗浄し、乾燥して白色のポリアミック酸エステル樹脂粉末5.11gを得た。収率は、89.6%であった。また、このポリアミック酸エステルの分子量は、Mn=14806、Mw=32719であった。
 得られたポリアミック酸エステル樹脂粉末0.80gを100mL三角フラスコに採り、GBLを7.20g加えて、室温で24時間攪拌し、溶解させて、ポリアミック酸エステル溶液とした。
<合成例6>
 攪拌子を入れた20mLサンプル管に、合成例5で得られたポリアミック酸エステル溶液を8.01g採り、GBLを8.01g、BCSを4.00g、及び添加剤Aを0.28g加えて、マグネチックスターラーで30分間攪拌し、液晶配向剤Cを得た。
<合成例7>
 撹拌装置付きの500mLの四つ口フラスコ内を窒素雰囲気とし、p-フェニレンジアミンを2.80g(25.9mmol)入れ、さらにDA-3を1.45g (6.47mmol)入れた後、NMPを111g、及び塩基としてピリジン6.18g(78.1mmol) を加え、撹拌して溶解させた。次に、このジアミン溶液を撹拌しながら、DE-1を9.89g(30.4mmol)添加し、15℃で一晩反応させた。一晩攪拌後、アクリロイルクロライドを0.38g (4.21mmol) 加えて、15℃で4時間反応させた。得られたポリアミック酸エステルの溶液を、1230gの水に撹拌しながら投入し、析出した白色沈殿をろ取し、続いて、1230gのIPAで5回洗浄し、乾燥して白色のポリアミック酸エステル樹脂粉末10.2gを得た。収率は、83.0%であった。また、このポリアミック酸エステルの分子量は、Mn=20,786、Mw=40,973であった。
 得られたポリアミック酸エステル樹脂粉末0.798gを100mL三角フラスコに採り、GBLを7.18g加え、室温で24時間攪拌し、溶解させて、ポリアミック酸エステル溶液とした。
<合成例8>
 攪拌子を入れた20mLサンプル管に、合成例7で得られたポリアミック酸エステル溶液を7.98g採り、GBLを8.03g、BCSを4.00g、及び添加剤Aを0.28g加えて、マグネチックスターラーで30分間攪拌し、液晶配向剤Dを得た。
<合成例9>
 撹拌装置及び窒素導入管付きの300mL四つ口フラスコ内に、p-フェニレンジアミンを46.0g(0.43mol)、DA-3を17.8g(0.075mol)、及びNMPを1389g入れて、撹拌して溶解させた。この溶液を撹拌しながら、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸二無水物を107g(0.48mol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-1)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は215mPa・sであった。また、このポリアミック酸の分子量は、Mn=12629、Mw=29521であった。
<合成例10>
 撹拌子を入れた50mlサンプル管に、合成例9で得られたポリアミック酸溶液(PAA-1)11.0g、NMPを5.00g、BCSを4.01g、及び添加剤Aを0.15g採り、マグネチックスターラーで30分間撹拌し、液晶配向剤Eを得た。
<合成例11>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコ内に、4,4’-ジアミノ-1,2-ジフェニルエタンを4.25g(20.0mmol)採り、NMPを70.9g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、1,2,3,4-シクロブタンテトラカルボン酸二無水物を3.82g(19.5mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-2)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は156mPa・sであった。また、このポリアミック酸の分子量は、Mn=13966、Mw=33163であった。
<合成例12>
 撹拌子を入れた20mlサンプル管に、合成例11で得られたポリアミック酸溶液(PAA-2)を12.2g採り、NMPを5.12g、及びBCSを2.90g加えて、マグネチックスターラーで30分間撹拌し、液晶配向剤Fを得た。
<合成例13>
 撹拌装置及び窒素導入管付きの100mL四つ口フラスコ内に、1,3-ビス(4-アミノフェノキシ)プロパンを5.17g(20.0mmol)採り、NMPを72.0g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、1,2,3,4-シクロブタンテトラカルボン酸二無水物を3.79g(19.3mmol)添加し、更に固形分濃度が10質量%になるようにNMPを加え、室温で24時間撹拌してポリアミック酸(PAA-3)の溶液を得た。このポリアミック酸溶液の温度25℃における粘度は162mPa・sであった。また、このポリアミック酸の分子量は、Mn=25902、Mw=40413であった。
<合成例14>
 撹拌子を入れた20mlサンプル管に、合成例13で得られたポリアミック酸溶液(PAA-3)を11.9g採り、NMPを3.98g、及びBCSを3.97g加えて、マグネチックスターラーで30分間撹拌し、液晶配向剤Gを得た。
<実施例1>
 合成例2で得られた液晶配向剤Aを1.0μmのフィルターで濾過した後、ガラス基板上にスピンコートし、温度80℃のホットプレート上で3分間の乾燥後、230℃で10分焼成し、膜厚100nmのポリイミド膜を得た。この塗膜面に偏光板を介して254nmの紫外線を1.2J/cm照射した。
 次いで、上記で得られた膜付き基板を、PGME(沸点:120℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし(濯ぎ)、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。得られた液晶配向膜の配向方向に対する異方性を測定した結果、異方性の大きさは1.84であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例2>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGMEA(沸点:146℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.51であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例3>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGME/水=1/1(体積比)混合溶媒に3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.69であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例4>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、エチルラクテート(沸点:154℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.9であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例5>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、ブチルセロソルブ(沸点:169℃)に25℃にて10分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.69であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例6>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGME(沸点:124℃)に25℃にて3分間浸漬させた後、水で1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.82であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例7>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、エチルラクテート(沸点:154℃)に25℃にて3分間浸漬させた後、水で1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.84であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例8>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、ジアセトンアルコール(沸点:169℃)に25℃にて3分間浸漬させた後、水で1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.77であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例9>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、MMP(沸点:145℃)に25℃にて3分間浸漬させた後、水で1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.77であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例10>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例4で得られた液晶配向剤Bを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGME(沸点:120℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.72であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例11>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例4で得られた液晶配向剤Bを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、エチルラクテート(沸点:154℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは2.11であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例12>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例6で得られた液晶配向剤Cを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGME(沸点:120℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.53であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例13>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例6で得られた液晶配向剤Cを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、エチルラクテート(沸点:154℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.94であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例14>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例8で得られた液晶配向剤Dを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGME(沸点:120℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.40であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例15>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例8で得られた液晶配向剤Dを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、エチルラクテート(沸点:154℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.70であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例16>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGME(沸点:120℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.37であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例17>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、エチルラクテート(沸点:154℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.77であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例18>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例10で得られた液晶配向剤Eを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGME(沸点:120℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.33であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例19>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例10で得られた液晶配向剤Eを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、エチルラクテート(沸点:154℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.2であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例20>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例12で得られた液晶配向剤Fを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGME(沸点:120℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.15であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例21>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例12で得られた液晶配向剤Fを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、エチルラクテート(沸点:154℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.12であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例22>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例14で得られた液晶配向剤Gを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PGME(沸点:120℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.11であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<実施例23>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例14で得られた液晶配向剤Gを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、エチルラクテート(沸点:154℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.10であった。また液晶配向膜を目視で観察したところ、ムラは見られなかった。
<比較例1>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、IPA(沸点:82.4℃)に25℃にて3分間浸漬させた後、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.2であった。また配向膜を目視で観察したところ、少しムラが見られた。
<比較例2>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、水(沸点:100℃)に3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.25であった。また液晶配向膜を目視で観察したところ、ムラが少し見られた。
<比較例3>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、PG(沸点:187℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.45であった。また配向膜を目視で観察したところ、大きなムラや白化が見られた。
<比較例4>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、GBL(沸点:204℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜は、膜が全て溶解し、異方性の測定及び膜厚の測定は不可能であった。
<比較例5>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、NMP(沸点:202℃)に25℃にて3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜は、膜が全て溶解し、異方性の測定及び膜厚の測定は不可能であった。
<比較例6>
 実施例1と同様にして、合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板上の液晶配向膜の配向方向に対する異方性の大きさは1.18であった。液晶配向膜の膜ムラは観察しなかった。
<比較例7>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例4で得られた液晶配向剤Bを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、IPA(沸点:82.4℃)に25℃にて3分間浸漬させた後、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.19であった。また配向膜を目視で観察したところ、少しムラが見られた。
<比較例8>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例4で得られた液晶配向剤Bを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、水(沸点:100℃)に3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.17であった。また液晶配向膜を目視で観察したところ、ムラが少し見られた。
<比較例9>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例4で得られた液晶配向剤Bを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に、紫外線を照射して得られた膜付き基板上の液晶配向膜の配向方向に対する異方性の大きさは1.12であった。液晶配向膜の膜ムラは観察しなかった。
<比較例10>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例6で得られた液晶配向剤Cを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、IPA(沸点:82.4℃)に25℃にて3分間浸漬させた後、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.12であった。また配向膜を目視で観察したところ、少しムラが見られた。
<比較例11>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例6で得られた液晶配向剤Cを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、水(沸点:100℃)に3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.16であった。また液晶配向膜を目視で観察したところ、ムラが少し見られた。
<比較例12>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例6で得られた液晶配向剤Cを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に、紫外線を照射して得られた膜付き基板上の液晶配向膜の配向方向に対する異方性の大きさは1.11であった。液晶配向膜の膜ムラは観察しなかった。
<比較例13>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例8で得られた液晶配向剤Dを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、IPA(沸点:82.4℃)に25℃にて3分間浸漬させた後、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.19であった。また配向膜を目視で観察したところ、少しムラが見られた。
<比較例14>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例8で得られた液晶配向剤Dを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、水(沸点:100℃)に3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.19であった。また液晶配向膜を目視で観察したところ、ムラが少し見られた。
<比較例15>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例8で得られた液晶配向剤Dを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板上の液晶配向膜の配向方向に対する異方性の大きさは1.12であった。液晶配向膜の膜ムラは観察しなかった。
<比較例16>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、IPA(沸点:82.4℃)に25℃にて3分間浸漬させた後、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.17であった。また配向膜を目視で観察したところ、少しムラが見られた。
<比較例17>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、水(沸点:100℃)に3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.17であった。また液晶配向膜を目視で観察したところ、ムラが少し見られた。
<比較例18>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例2で得られた液晶配向剤Aを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に、紫外線を照射して得られた膜付き基板上の液晶配向膜の配向方向に対する異方性の大きさは1.12であった。液晶配向膜の膜ムラは観察しなかった。
<比較例19>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例10で得られた液晶配向剤Eを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、IPA(沸点:82.4℃)に25℃にて3分間浸漬させた後、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.11であった。また配向膜を目視で観察したところ、少しムラが見られた。
<比較例20>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例10で得られた液晶配向剤Eを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、水(沸点:100℃)に3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.11であった。また液晶配向膜を目視で観察したところ、ムラが少し見られた。
<比較例21>
 254nmの紫外線を0.5J/cm照射した以外は、実施例1と同様にした。合成例10で得られた液晶配向剤Eを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に、紫外線を照射して得られた膜付き基板上の液晶配向膜の配向方向に対する異方性の大きさは1.08であった。液晶配向膜の膜ムラは観察しなかった。
<比較例22>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例12で得られた液晶配向剤Fを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、IPA(沸点:82.4℃)に25℃にて3分間浸漬させた後、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.04であった。また配向膜を目視で観察したところ、ムラが見られた。
<比較例23>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例12で得られた液晶配向剤Fを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、水(沸点:100℃)に3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.10であった。また液晶配向膜を目視で観察したところ、ムラが少し見られた。
<比較例24>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例12で得られた液晶配向剤Fを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に、紫外線を照射して得られた膜付き基板上の液晶配向膜の配向方向に対する異方性の大きさは1.06であった。液晶配向膜の膜ムラは観察しなかった。
<比較例25>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例14で得られた液晶配向剤Gを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、IPA(沸点:82.4℃)に25℃にて3分間浸漬させた後、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.09であった。また配向膜を目視で観察したところ、ムラが見られた。
<比較例26>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例14で得られた液晶配向剤Gを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に紫外線を照射して得られた膜付き基板を、水(沸点:100℃)に3分間浸漬させた後、IPAで1分間リンスし、80℃のオーブンで10分間乾燥させて、液晶配向膜を得た。
 得られた液晶配向膜の配向方向に対する異方性の大きさは1.09であった。また液晶配向膜を目視で観察したところ、ムラが少し見られた。
<比較例27>
 254nmの紫外線を1.0J/cm照射した以外は、実施例1と同様にした。合成例14で得られた液晶配向剤Gを使用し、基板上に塗布、乾燥、焼成したポリイミド膜に、紫外線を照射して得られた膜付き基板上の液晶配向膜の配向方向に対する異方性の大きさは1.07であった。液晶配向膜の膜ムラは観察しなかった。
 上記した実施例1~22及び比較例1~27について、用いた溶媒の種類、得られた液晶配向膜の異方性の大きさ、及び膜ムラを、表1にまとめて示した。
Figure JPOXMLDOC01-appb-T000030
 本発明の製造方法により得られる液晶配向膜は、高い異方性を有し、TN素子、STN素子、TFT液晶素子、更には、垂直配向型の液晶表示素子などに広く有用である。さらに、高い異方性が付与されることにより、液晶配向性に由来する残像、例えば、IPS駆動方式やFFS駆動方式の液晶表示素子において発生する交流駆動による残像を低減することができ、IPS駆動方式やFFS駆動方式の液晶表示素子や液晶テレビの液晶配向膜として特に有用である。
 なお、2011年9月15日に出願された日本特許出願2011-202229号の明細書、特許請求の範囲、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (12)

  1.  ポリイミド及び該ポリイミドの前駆体からなる群から選ばれる少なくとも1種類の重合体と有機溶媒とを含有する液晶配向剤を基板上に塗布、焼成して得られるイミド化した膜に、偏光された放射線を照射し、次いで、下記式(A-1)、式(A-2)、式(A-3)、式(A-4)、及び式(A-5)からなる群から選ばれる少なくとも1種の有機溶媒を含む溶液で接触処理することを特徴とする液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(A-1)において、Aは水素原子又はアセチル基であり、Aは炭素数1~6のアルキル基であり、Rは水素原子又はメチル基であり、nは1又は2の整数である。式(A-2)において、Aは炭素数1~4のアルキル基である。式(A-3)において、R及びRは、それぞれ独立して、水素原子又はメチル基である。式(A-4)において、A及びAは、それぞれ独立して、炭素数1~4のアルキル基である。式(A-5)において、Aは炭素数3~6のアルキル基又はシクロアルキル基である。)
  2.  前記有機溶媒が、沸点として100~180℃を有する請求項1に記載の液晶配向膜の製造方法。
  3.  前記有機溶媒が、1-メトキシ-2-プロパノール、乳酸エチル、ジアセトンアルコール、3-メトキシプロピオン酸メチル、又は3-エトキシプロピオン酸エチルである請求項1又は2に記載の液晶配向膜の製造方法。
  4.  前記重合体が、下記式(3)で表される構造単位を有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種の重合体を含有する請求項1~3のいずれかに記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (式(3)において、Xは下記式(X1-1)~(X1-9)で表される構造からなる群から選ばれる少なくとも1種類であり、Yは2価の有機基であり、Rは、水素原子、又は炭素数1~4のアルキル基である。)
    Figure JPOXMLDOC01-appb-C000003
    (式(X1-1)において、R、R、R、及びRは、それぞれ独立して、水素原子、ハロゲン原子、炭素数1~6のアルキル基、炭素数2~6のアルケニル基、アルケニル基、又はフェニル基である。)
  5.  前記重合体が、前記式(3)で表される構造単位を、全重合体1モルに対して、60モル%以上含有するポリイミド前駆体及び該ポリイミド前駆体のイミド化重合体からなる群から選ばれる少なくとも1種類である請求項4に記載の液晶配向膜の製造方法。
  6.  前記式(3)において、Xが前記式(X1-1)で表される請求項4に記載の液晶配向膜の製造方法。
  7.  前記式(3)において、Xが下記式(X1-10)及び(X1-11)で表される構造からなる群から選ばれる少なくとも1種である請求項4に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000004
  8.  前記式(3)において、Yが下記式(4)及び(5)で表される構造からなる群から選ばれる少なくとも1種類である請求項4に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(5)において、Zは単結合、エステル結合、アミド結合、チオエステル結合、又は炭素数2~10の2価の有機基である。)
  9.  前記式(3)において、Yが前記式(4)で表される構造である請求項8に記載の液晶配向膜の製造方法。
  10.  ポリイミド及び該ポリイミドの前駆体からなる群から選ばれる少なくとも1種類の重合体を含有する液晶配向剤を基版上に塗布、焼成して得られる膜に、偏光された放射線を照射してなる液晶配向膜の接触処理液であり、下記式(A-1)、式(A-2)、式(A-3)、式(A-4)、及び式(A-5)からなる群から選ばれる少なくとも1種の有機溶媒を含む溶液からなることを特徴とする液晶配向膜の接触処理液。
    Figure JPOXMLDOC01-appb-C000006
    (式(A-1)において、Aは水素原子又はアセチル基であり、Aは炭素数1~6のアルキル基であり、Rは水素原子又はメチル基であり、nは1又は2の整数である。式(A-2)において、Aは炭素数1~4のアルキル基である。式(A-3)において、R及びRは、それぞれ独立して、水素原子又はメチル基である。式(A-4)において、A及びAは、それぞれ独立して、炭素数1~4のアルキル基である。式(A-5)において、Aは炭素数3~6のアルキル基又はシクロアルキル基である。)
  11.  請求項1~9のいずれかに記載の液晶配向膜の製造方法によって得られる液晶配向膜。
  12.  請求項11に記載の液晶配向膜を具備する液晶表示素子。
PCT/JP2012/073515 2011-09-15 2012-09-13 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子 WO2013039168A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013533717A JP6056759B2 (ja) 2011-09-15 2012-09-13 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
KR1020147009609A KR101951507B1 (ko) 2011-09-15 2012-09-13 액정 배향막의 제조 방법, 액정 배향막, 및 액정 표시 소자
CN201280056047.9A CN103946738B (zh) 2011-09-15 2012-09-13 液晶取向膜的制造方法、液晶取向膜及液晶显示元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011202229 2011-09-15
JP2011-202229 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013039168A1 true WO2013039168A1 (ja) 2013-03-21

Family

ID=47883385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073515 WO2013039168A1 (ja) 2011-09-15 2012-09-13 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子

Country Status (5)

Country Link
JP (1) JP6056759B2 (ja)
KR (1) KR101951507B1 (ja)
CN (1) CN103946738B (ja)
TW (1) TWI551625B (ja)
WO (1) WO2013039168A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152014A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
KR20150137125A (ko) * 2013-06-17 2015-12-08 엘지디스플레이 주식회사 액정 표시 장치 및 이를 제조하는 방법
WO2016047774A1 (ja) * 2014-09-26 2016-03-31 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
JP2016066044A (ja) * 2014-03-07 2016-04-28 芝浦メカトロニクス株式会社 接液処理装置、接液処理方法、基板処理装置および基板処理方法
JPWO2015182762A1 (ja) * 2014-05-30 2017-05-25 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102278227B1 (ko) 2015-03-10 2021-07-16 동우 화인켐 주식회사 광분해성 폴리이미드 배향막 세정용 조성물
CN108369359B (zh) * 2015-10-07 2021-07-27 日产化学工业株式会社 液晶取向剂、液晶取向膜和液晶表示元件
KR101697336B1 (ko) 2016-03-03 2017-01-17 주식회사 엘지화학 액정 배향막의 제조방법
WO2017164181A1 (ja) * 2016-03-22 2017-09-28 日産化学工業株式会社 新規なジアミンから得られる重合体を含有する液晶配向剤
KR102225386B1 (ko) * 2017-02-28 2021-03-08 제이에스알 가부시끼가이샤 액정 배향제, 액정 배향막 및 그의 제조 방법, 액정 소자, 그리고 중합체
KR102611592B1 (ko) * 2017-05-22 2023-12-07 닛산 가가쿠 가부시키가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
KR102020030B1 (ko) * 2017-08-24 2019-09-10 주식회사 엘지화학 액정 배향제용 중합체, 이를 포함하는 액정 배향제 조성물, 그리고 이를 이용한 액정배향막 및 액정표시소자

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792468A (ja) * 1993-09-28 1995-04-07 Toshiba Corp 液晶表示素子の製造方法
JPH11149077A (ja) * 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd 液晶配向膜の製造方法及びそれを用いた液晶表示装置の製造方法
JPH11183907A (ja) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd 液晶表示素子およびその製造方法
JP2009086685A (ja) * 2008-12-24 2009-04-23 Nec Lcd Technologies Ltd 液晶表示装置の製造方法
JP2011095697A (ja) * 2009-01-30 2011-05-12 Sony Corp 液晶表示装置及びその製造方法
JP2011107266A (ja) * 2009-11-13 2011-06-02 Hitachi Displays Ltd 液晶表示装置及び液晶表示装置の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW305869B (ja) * 1993-12-24 1997-05-21 Nissan Chemical Ind Ltd
JPH08101393A (ja) * 1994-09-30 1996-04-16 Nissan Chem Ind Ltd 液晶配向処理方法及び液晶表示素子
JP3893659B2 (ja) 1996-03-05 2007-03-14 日産化学工業株式会社 液晶配向処理方法
CN1148606C (zh) * 2000-11-30 2004-05-05 中国科学院长春光学精密机械与物理研究所 小分子单体链状光聚合形成液晶取向膜的方法
KR100834801B1 (ko) * 2004-06-18 2008-06-05 제이에스알 가부시끼가이샤 수직 액정 배향제 및 수직 액정 표시 소자
WO2008084944A1 (en) * 2007-01-09 2008-07-17 Lg Chem, Ltd. New copolyimide, liquid crystal aligning layer comprising the same, and liquid crystal display comprising the same
CN101373296B (zh) * 2007-08-24 2012-07-04 株式会社日立显示器 液晶显示装置及其制造方法
KR20100138148A (ko) * 2009-06-24 2010-12-31 동우 화인켐 주식회사 수계세정액 조성물
KR101156107B1 (ko) * 2009-10-07 2012-06-20 주식회사 엘지화학 액정 필름용 조성물, 이를 이용해 제조되는 액정 필름 및 그 제조 방법
CN106635061B (zh) * 2011-09-08 2020-03-31 日产化学工业株式会社 液晶取向处理剂、液晶取向膜及液晶显示元件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792468A (ja) * 1993-09-28 1995-04-07 Toshiba Corp 液晶表示素子の製造方法
JPH11149077A (ja) * 1997-11-18 1999-06-02 Matsushita Electric Ind Co Ltd 液晶配向膜の製造方法及びそれを用いた液晶表示装置の製造方法
JPH11183907A (ja) * 1997-12-19 1999-07-09 Matsushita Electric Ind Co Ltd 液晶表示素子およびその製造方法
JP2009086685A (ja) * 2008-12-24 2009-04-23 Nec Lcd Technologies Ltd 液晶表示装置の製造方法
JP2011095697A (ja) * 2009-01-30 2011-05-12 Sony Corp 液晶表示装置及びその製造方法
JP2011107266A (ja) * 2009-11-13 2011-06-02 Hitachi Displays Ltd 液晶表示装置及び液晶表示装置の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9766501B2 (en) 2013-06-17 2017-09-19 Lg Display Co., Ltd. Liquid crystal display device and method of manufacturing the same
KR20150137125A (ko) * 2013-06-17 2015-12-08 엘지디스플레이 주식회사 액정 표시 장치 및 이를 제조하는 방법
US10082705B2 (en) 2013-06-17 2018-09-25 Lg Display Co., Ltd. Liquid crystal display device and method of manufacturing the same
US10073302B2 (en) 2013-06-17 2018-09-11 Lg Display Co., Ltd. Liquid crystal display device and method of manufacturing the same
KR20160114747A (ko) * 2013-06-17 2016-10-05 엘지디스플레이 주식회사 액정 표시 장치 및 이를 제조하는 방법
KR101869630B1 (ko) * 2013-06-17 2018-06-20 엘지디스플레이 주식회사 액정 표시 장치 및 이를 제조하는 방법
US9846332B2 (en) 2013-06-17 2017-12-19 Lg Display Co., Ltd. Liquid crystal display device and method of manufacturing the same
JP2017211681A (ja) * 2014-03-07 2017-11-30 芝浦メカトロニクス株式会社 接液処理装置、接液処理方法、基板処理装置および基板処理方法
JP2016066044A (ja) * 2014-03-07 2016-04-28 芝浦メカトロニクス株式会社 接液処理装置、接液処理方法、基板処理装置および基板処理方法
WO2015152014A1 (ja) * 2014-03-31 2015-10-08 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
JPWO2015152014A1 (ja) * 2014-03-31 2017-04-13 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
JPWO2015182762A1 (ja) * 2014-05-30 2017-05-25 日産化学工業株式会社 液晶配向剤、液晶配向膜、及び液晶表示素子
JPWO2016047774A1 (ja) * 2014-09-26 2017-07-13 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子
WO2016047774A1 (ja) * 2014-09-26 2016-03-31 日産化学工業株式会社 液晶配向処理剤、液晶配向膜及び液晶表示素子

Also Published As

Publication number Publication date
CN103946738A (zh) 2014-07-23
TWI551625B (zh) 2016-10-01
TW201326258A (zh) 2013-07-01
JP6056759B2 (ja) 2017-01-11
JPWO2013039168A1 (ja) 2015-03-26
KR20140063795A (ko) 2014-05-27
KR101951507B1 (ko) 2019-02-22
CN103946738B (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
JP6056759B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP2019194720A (ja) 液晶配向剤、液晶配向膜、及び液晶配向素子
JP6187457B2 (ja) 光配向法用の液晶配向剤、液晶配向膜、及び液晶表示素子
JP7259328B2 (ja) 液晶配向剤、液晶配向膜、及び液晶表示素子
JP6102745B2 (ja) 液晶配向膜の製造方法
JPWO2015072554A1 (ja) 液晶配向剤及びそれを用いた液晶表示素子
WO2015060360A1 (ja) 熱脱離性基を有するポリイミド前駆体及び/又はポリイミドを含む液晶配向剤
JP6202006B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
JP6083379B2 (ja) 光配向処理法用の液晶配向剤、及びそれを用いた液晶配向膜
WO2015050135A1 (ja) 横電界駆動方式用の液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
WO2015152174A1 (ja) ポリアミック酸エステル-ポリアミック酸共重合体を含有する液晶配向剤、及びそれを用いた液晶配向膜
JP6274407B2 (ja) 横電界駆動用液晶表示素子の製造方法
TWI820011B (zh) 液晶配向劑、液晶配向膜及液晶顯示元件
JP6217648B2 (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
WO2014148440A1 (ja) 横電界駆動用の液晶配向処理剤
JP7193783B2 (ja) 液晶配向剤、液晶配向膜、及びそれを用いた液晶表示素子
JP2018040979A (ja) 液晶配向膜の製造方法、液晶配向膜、及び液晶表示素子
WO2016010084A1 (ja) 光配向用の液晶配向剤、液晶配向膜、及び液晶表示素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013533717

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147009609

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12832520

Country of ref document: EP

Kind code of ref document: A1