WO2013035189A1 - Solid-state image pickup device - Google Patents

Solid-state image pickup device Download PDF

Info

Publication number
WO2013035189A1
WO2013035189A1 PCT/JP2011/070534 JP2011070534W WO2013035189A1 WO 2013035189 A1 WO2013035189 A1 WO 2013035189A1 JP 2011070534 W JP2011070534 W JP 2011070534W WO 2013035189 A1 WO2013035189 A1 WO 2013035189A1
Authority
WO
WIPO (PCT)
Prior art keywords
island
conductor layer
region
semiconductor
layer
Prior art date
Application number
PCT/JP2011/070534
Other languages
French (fr)
Japanese (ja)
Inventor
舛岡 富士雄
原田 望
Original Assignee
ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ユニサンティス エレクトロニクス シンガポール プライベート リミテッド filed Critical ユニサンティス エレクトロニクス シンガポール プライベート リミテッド
Priority to KR1020137005981A priority Critical patent/KR20130061723A/en
Priority to CN2011800431859A priority patent/CN103119719A/en
Priority to JP2013511423A priority patent/JP5281215B1/en
Priority to PCT/JP2011/070534 priority patent/WO2013035189A1/en
Priority to TW101131985A priority patent/TW201312736A/en
Priority to US13/606,823 priority patent/US8564034B2/en
Publication of WO2013035189A1 publication Critical patent/WO2013035189A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures

Definitions

  • the present invention relates to a solid-state imaging device including an SGT (Surround Gate Transistor) in which a channel region is formed in a semiconductor having an island-shaped semiconductor structure, and to a solid-state imaging device having a pixel and a drive output circuit.
  • SGT Square Gate Transistor
  • CMOS solid-state imaging devices are widely used for video cameras, still cameras, and the like. These solid-state imaging devices are composed of a pixel and a drive output circuit connected to the pixel. Further, there is a constant demand for performance improvements such as higher pixel density, higher resolution, lower color mixing in color imaging, and higher sensitivity in solid-state imaging devices. On the other hand, technological innovations such as higher pixel density have been performed in order to achieve higher resolution of solid-state imaging devices.
  • FIG. 8A to 8D show a conventional solid-state imaging device.
  • FIG. 8A shows a cross-sectional structure diagram of a solid-state imaging device in which one pixel is configured in one island-like semiconductor 100 according to the conventional example (see, for example, Patent Document 1).
  • N + region a signal line N + region 102
  • N + region is a semiconductor region containing a lot of donor impurities on a substrate 101. .
  • a P region 103 (hereinafter, a semiconductor region containing an acceptor impurity is referred to as a “P region”) is formed on the signal line N + region 102, and an insulating layer 104 is formed on the outer periphery of the P region 103.
  • a gate conductor layer 105 is formed with the insulating layer 104 interposed therebetween.
  • An N region (hereinafter, a semiconductor region containing donor impurities is referred to as an “N region”) 106 is formed on the outer peripheral portion of the P region 103 in the upper portion of the gate conductor layer 105.
  • a P + region (hereinafter, a semiconductor region containing a lot of acceptor impurities is referred to as a “P + region”) 107 is formed on the island-shaped semiconductor 100.
  • the P + region 107 is connected to the pixel selection line conductor layer 108.
  • the insulating layers 104 described above are connected to each other so as to surround the outer periphery of the island-shaped semiconductor 100.
  • the gate conductor layers 105 are connected to each other so as to surround the outer periphery of the island-shaped semiconductor 100.
  • incident light is irradiated from the P + region 107 side on the upper surface of the island-shaped semiconductor 100.
  • a photodiode region including a P region 103 and an N region 106 is formed in the island-like semiconductor 100.
  • signal charges here, free electrons
  • This signal charge is accumulated in the N region 106 of the photodiode region.
  • a junction transistor is configured with the N region 106 as a gate, the P + region 107 as a source, and the P region 103 near the signal line N + region 102 as a drain.
  • the drain-source current (output signal) of the junction transistor changes corresponding to the amount of signal charge accumulated in the N region 106, and is extracted from the signal line N + region 102 and read out.
  • the N region 106 of the photodiode region is the source
  • the gate conductor layer 105 is the reset gate
  • the signal line N + region 102 is the drain
  • the P between the N region 106 and the signal line N + region 102 is the P between the N region 106 and the signal line N + region 102.
  • a reset MOS transistor using the region 103 as a channel is formed (hereinafter, this gate conductor layer is referred to as “reset gate conductor layer”).
  • the signal charge accumulated in the N region 106 is removed to the signal line N + region 102 by applying a plus-on voltage to the reset gate conductor layer 105 of the reset MOS transistor.
  • the imaging operation of this solid-state imaging device includes the following operations. That is, in a state where the ground voltage (0 V) is applied to the signal line N + region 102, the reset gate conductor layer 105, and the P + region 107, the photoelectric conversion region (photographing region) is irradiated by irradiation of light incident from the upper surface of the island-shaped semiconductor 100.
  • FIG. 8B is a schematic diagram of a solid-state imaging device having a drive output circuit around a pixel region in which island-shaped semiconductors P11 to P33 (corresponding to the island-shaped semiconductor 100 of FIG. 8A) constituting pixels are arranged two-dimensionally. A plan view is shown (see, for example, Patent Document 2). As shown in FIG. 8B, island-like semiconductors P11 to P33 constituting pixels are formed on the signal line N + regions 102a, 102b, and 102c (corresponding to 102 in FIG. 8A). Pixel selection line conductor layers 108a, 108b, and 108c (corresponding to 108 in FIG.
  • the reset gate conductor layers 105a, 105b, and 105c are connected to each horizontal column of the island-shaped semiconductors P11 to P33 constituting the pixel, and the pixel region It is connected to a reset line vertical scanning circuit 112 provided in the periphery.
  • This reset line vertical scanning circuit 112 includes CMOS inverter circuits 113a, 113b, 113c made of SGT connected to the respective reset gate conductor layers 105a, 105b, 105c, and a shift register 114 connected to the CMOS inverter circuits 113a, 113b, 113c.
  • the CMOS inverter circuits 113a, 113b, and 113c are configured using, for example, two P-channel SGTs and one N-channel SGT.
  • CMOS inverter circuit 113a, 113b the low-level voltage to the input terminal of the shift register 114 of 113c is applied, the reset-on voltage V RH from the output terminal is reset gate conductor layer 105a, 105b, while being applied to 105c , when the high level voltage is applied, the reset-off voltage V RL is reset gate conductor layer 105a, 105b, is applied to 105c from the output terminal.
  • the lower part of each signal line N + region 102a, 102b, 102c is connected to the switches SGT 115a, 115b, 115c, and the gate of each switch SGT 115a, 115b, 115c is connected to the signal line horizontal scanning circuit 116.
  • SGT Short Gate Transistor
  • SGT refers to a transistor having a structure in which a gate conductor layer is formed on the outer periphery of a silicon pillar via a gate insulating layer.
  • the signal line N + regions 102a, 102b, and 102c are applied with an off voltage from the signal line horizontal scanning circuit 116 to the gates of the switches SGTs 115a, 115b, and 115c, and the switch circuits 118a, 118b, and 118c by becoming the ground voltage side, condition that the ground voltage, the reset gate conductor layer 105a, 105b, a state in which the reset-off voltage V RL is applied to 105c, the pixel selection line conductor layers 108a, 108b, a ground voltage to 108c In a state where is applied.
  • a reset / off voltage VRL is applied to the reset gate conductor layers 105a, 105b, and 105c, a high-level voltage is applied to the pixel selection line conductor layers 108a, 108b, and 108c of the pixel to be read, and reading is performed.
  • An ON voltage is applied to the gates of the switches SGT 115a, 115b, and 115c connected to the pixel signal line N + regions 102a, 102b, and 102c, the output terminals of the switch circuits 118a, 118b, and 118c are floating, and the input terminal of the output circuit 117 is low.
  • the output circuit 117 takes in the source / drain current of the junction transistor of the pixel to be read out.
  • the signal charge removal operation the pixel-like semiconductors P11 to P11 for removing the accumulated signal charge are removed in a state where all the pixel selection line conductor layers 108a, 108b, and 108c are at the ground voltage and all the switches SGT115a, 115b, and 115c are off.
  • reset gate conductor layer 105a connected to the P33, 105b, reset-on voltage is applied to 105c, the switch circuits 118a, 118b, an output terminal of 118c is performed by going reset voltage V RD.
  • FIG. 8C shows a schematic plan view of a region A surrounded by a two-dot chain line in FIG. 8B.
  • the island-shaped semiconductor P11 constituting the pixel is formed on the signal line N + region 102a
  • the island-shaped semiconductor 119a constituting the N-channel SGT of the CMOS inverter circuit 113a is formed on the first semiconductor layer 120a
  • the P-channel SGT Are formed on the second semiconductor layer 120b.
  • a P well region 121a is formed above the first semiconductor layer 120a so as to be connected to a lower portion of the island-shaped semiconductor 119a constituting the N channel SGT (overlapping in the drawing).
  • An N well region 121b is formed above the second semiconductor layer 120b so as to be connected to the lower portion of the island-shaped semiconductors 119b and 119c constituting the P channel SGT (overlapping in the drawing).
  • a lower portion of the island-shaped semiconductor 119a constituting the N channel SGT and an N + region 122a connected to the lower portion are formed.
  • the N well region 121b lower portions of the island-shaped semiconductors 119b and 119c constituting the P channel SGT and a P + region 122b connected thereto are formed.
  • Drain N + region 123a of the N-channel SGT is formed on top of the island-like semiconductor 119a for N-channel, the drain N + region 123a via a contact hole 124a, the reset-off voltage V RL is applied It is connected to the first metal wiring layer 125a (shown with a one-dot chain line).
  • the drain P + regions 123b and 123c of the P channel SGT are formed on the island-shaped semiconductors 119b and 119c for the P channel, and the drain P + regions 123b and 123c are reset via the contact holes 124b and 124c. It is connected to the first-layer metal wiring layer 125b (denoted by a one-dot chain line) to which the on-voltage VRH is applied.
  • N-channel SGT and P-channel SGT gate conductor layer 126 are formed so as to be connected, and first-layer metal wiring layer 125c (denoted by an alternate long and short dash line) in which this gate conductor layer 126 is connected to shift register circuit 114 through contact hole 127a It is connected to the.
  • the reset gate conductor layer 105a of the island-shaped semiconductor P11 and the drain P + region 122b of the P-channel SGT constituting the pixel are first-layer metal wiring layers 125e (shown by alternate long and short dash lines) through contact holes 127e and 127f. It is connected.
  • the source P + region 122b of the P channel SGT and the drain N + region 122a of the N channel SGT are connected to each other by a first layer metal wiring layer 125b (shown by a one-dot chain line) via contact holes 127b and 127d. ing.
  • the P well region 121a is connected to a second metal wiring layer 128a (shown by a dotted line) located above the first metal wiring layers 125a, 125b, 125c, 125d, and 125e through a contact hole 127c. Yes.
  • the N well region 121b is connected to a second metal wiring layer 128b (shown by a dotted line) located above the first metal wiring layers 125a, 125b, 125c, 125d, and 125e through a contact hole 127e.
  • a second metal wiring layer 128a shown by a dotted line
  • FIG. 8D shows a cross-sectional structure diagram taken along the line BB ′ of FIG. 8C.
  • the cross-sectional structure of the island-shaped semiconductor P11 constituting the pixel is the same as that shown in FIG. 8A.
  • a pixel signal line N + region 102a, a first semiconductor layer 120a, and a second semiconductor layer 120b are formed on a substrate 100 (for example, a SiO 2 layer).
  • the island-shaped semiconductor P11 that forms the pixel is formed on the signal line N + region 102a, and the island-shaped semiconductor 119a that forms the N-channel SGT is formed on the first semiconductor layer 120a, and the island-shaped semiconductor that forms the P-channel SGT Semiconductors 119b and 119c are formed on the second semiconductor layer 120b.
  • a P well region 121a is formed above the first semiconductor layer 120a, and an N well region 121b is formed above the second semiconductor layer 120b.
  • a source N + region 122a is formed above the P-well region 121a and below the island-shaped semiconductor 119a constituting the N-channel SGT.
  • a source P + region 122b is formed above the N well region 121b and below the island-shaped semiconductors 119b and 119c constituting the P channel SGT.
  • a drain N + region 123a is formed on the island-shaped semiconductor 119a constituting the N channel SGT. Then, drain P + regions 123b and 123c are formed above the island-shaped semiconductors 119b and 119c constituting the P channel SGT.
  • the channel of the N-channel SGT is the P region 131a, and the source / drain of the island-shaped semiconductor constituting the P-channel SGT Between the P + regions 122b and 123b, 123c, the channels of the P channel SGT are the N regions 131b, 131c.
  • An N-channel SGT gate insulating layer 129a is formed on the outer periphery of the island-shaped semiconductor 119a constituting the N-channel SGT, and an insulating layer 132a is formed on the outer periphery of the first semiconductor layer 120a so as to be connected to the N-channel SGT gate insulating layer 129a. Is formed.
  • P-channel SGT gate insulating layers 129b and 129c are formed on the outer peripheral portions of the island-shaped semiconductors 119a and 119c constituting the P-channel SGT, and the second connected to the gate insulating layers 129b and 129c constituting the P-channel SGT.
  • An insulating layer 132b is formed on the outer periphery of the semiconductor layer 120b.
  • the reset gate conductor layer 105a of the reset MOS transistor connected to the outer periphery of the island-shaped semiconductor P11 constituting the pixel is connected to the first-layer metal wiring layer 125e through the contact hole 127f, and this first-layer metal wiring layer 125e is connected to the source P + region 122b connected to the lower part of the island-shaped semiconductors 119b and 119c constituting the P-channel SGT through the contact hole 127b.
  • the N-channel SGT and the P-channel SGT gate conductor layer 126 are formed between the island-shaped semiconductor 119a constituting the N-channel SGT and the island-shaped semiconductors 119b and 119c constituting the P-channel SGT, and between the gate insulating layers 129b and 129c.
  • the first metal wiring layer 125c is connected to the outer periphery and connected to the shift register circuit through the contact hole 127a.
  • the drain N + region 123a is connected to the first metal wiring layer 125a to which the reset / off voltage VRL is applied via the contact hole 124a.
  • the drain P + regions 123b and 123c of the P channel SGT are connected to the first metal wiring layer 125b to which the reset-on voltage VRH is applied via the contact holes 124b and 124c.
  • the first interlayer insulating layer 130a, the second interlayer insulating layer 130b, the third interlayer insulating layer 130c, the fourth interlayer insulating layer 130d, and the fifth interlayer insulating layer 130e are formed between the semiconductor P11 and on the substrate 100. Is formed.
  • the pixel reset gate conductor layer 105a is wired on the first interlayer insulating layer 130a, the P-channel / N-channel SGT gate conductor layer 126 is wired on the second interlayer insulating layer 130b, and the third interlayer insulating layer 130d.
  • the pixel selection line conductor layer 108a is wired thereon, the first metal wiring layers 125a, 125b, 125c, 125e are formed on the fourth interlayer insulating layer 130d, and the P-well is formed on the fifth interlayer insulating layer 130e.
  • a second metal wiring layer 128a connected to region 121a and a second metal wiring layer 128b connected to N well region 121b are formed.
  • the reset gate conductor layer 105a of the reset MOS transistor in the island-shaped semiconductor P11 constituting the pixel is at the bottom of the island-shaped semiconductor P11 constituting the pixel, whereas the CMOS inverter
  • the SGT gate conductor layer 126 of the circuit 113a is at the bottom of the island-shaped semiconductors 119a, 119b, and 119c constituting the SGT on the first and second semiconductor layers 120a and 120b.
  • the photodiode region of the island-shaped semiconductor P11 constituting the pixel has a height of 2.5 to 3 ⁇ m in order to efficiently absorb light incident from the upper surface of the island-shaped semiconductor P11 constituting the pixel. Necessary (see Non-Patent Document 1).
  • the height of the reset gate conductor layer 105a and the SGT gate conductor layer 126 may be about 0.1 ⁇ m or less.
  • semiconductor layers 120a and 120b having the same thickness as the sum of the signal line N + region 102a and the island-shaped semiconductor P11 constituting the pixel are formed in the drive output circuit region including the CMOS inverter circuit 113a. Thereafter, island-shaped semiconductors P11 and 119b that form SGT and island-shaped semiconductors P11 that form pixels are formed.
  • the height difference between the reset gate conductor layer 105a of the island-shaped semiconductor P11 constituting the pixel and the height direction of the SGT gate conductor layer 126 inevitably differs in the height of the island-shaped semiconductor P11 constituting the pixel. Occurs. Since the reset gate conductor layer 105a is formed on the first interlayer insulating layer 130a and the SGT gate conductor layer 126 is formed on the second interlayer insulating layer 130b, the reset gate conductor layer 105a and the SGT gate are formed. The conductor layer 126 must be formed separately. Similarly, the signal line N + region 102a and the source N + region 122a of the N channel SGT must be formed separately.
  • this solid-state imaging device requires a step of forming an SGT that constitutes the drive output circuit in addition to the step of forming the structure of the island-shaped semiconductor P11 that constitutes the pixel. This leads to a decrease in yield and an increase in cost of the solid-state imaging device.
  • a P well region 121a and an N well region 121b are formed above the first and second semiconductor layers 120a and 120b. Due to the presence of the P well region 121a and the N well region 121b, for example, current generated by leakage light incident on the first and second semiconductor layers 120a and 120b causes the source N + region 122a of the N channel SGT and the source of the P channel SGT. This prevents the CMOS inverter circuit 113a from malfunctioning by preventing it from flowing into the P + region 122b.
  • the CMOS inverter circuit 113a can be made more stable. It can be operated.
  • the N channel / P channel SGT is a drive output circuit other than the CMOS inverter circuit 113a, which is a shift register 114 of the reset line vertical scanning circuit 112, a pixel selection scanning circuit 110, a horizontal scanning circuit 116, an output circuit 117, a switch SGT 115a, 115b and 115c and switch circuits 118a, 118b, and 118c are also formed, resulting in a problem that leads to a decrease in yield and an increase in cost of the solid-state imaging device described above.
  • the reset gate conductor layer 105a of the reset MOS transistor in the island-shaped semiconductor P11 constituting the pixel is at the bottom of the island-shaped semiconductor P11 constituting the pixel, whereas in the drive output circuit
  • the SGT gate conductor layer 126 is located on the island-shaped semiconductors 119a and 119b constituting the SGT on the first and second semiconductor layers 120a and 120b, which are substantially at the same height as the upper surface of the island-shaped semiconductor P11 constituting the pixel.
  • the difference in height between the reset gate conductor layer 105a of the reset MOS transistor and the SGT gate conductor layer 126 in the drive output circuit is as large as 2.5 to 3 ⁇ m necessary for the photodiode region of the island-shaped semiconductor P11 constituting the pixel.
  • the reset gate conductor layer 105a of the reset MOS transistor and the SGT gate conductor layer 126 in the drive output circuit are formed on different interlayer insulating layers 130a and 130b. Therefore, inevitably, the reset gate conductor layer 105a of the reset MOS transistor and the SGT gate conductor layer 126 in the drive output circuit must be formed separately. Similarly, the signal line N + region 102a and the source N + region 122a of the N channel SGT must be formed separately.
  • the step of forming the SGT in the drive output circuit is required.
  • a solid-state imaging device in which the island-shaped semiconductor P11 that constitutes the pixel and the SGT that constitutes the drive output circuit are formed on the same substrate 100, a solid-state imaging device that can suppress a decrease in yield and an increase in cost is desired. It is done.
  • the present invention has been made in view of the above circumstances, and an object thereof is to realize a solid-state imaging device capable of suppressing a decrease in yield and an increase in cost.
  • the solid-state imaging device of the present invention includes: In a solid-state imaging device having two-dimensionally arranged pixels, and a drive output circuit that drives the pixels and reads signals from the pixels,
  • the pixel has a first island-shaped semiconductor formed on a substrate,
  • the drive output circuit has at least one second island-shaped semiconductor formed on the substrate to have the same height as the first island-shaped semiconductor,
  • the first island-shaped semiconductor is A first semiconductor region formed at the bottom of the first island-shaped semiconductor;
  • a second semiconductor region formed on the first semiconductor region and made of a semiconductor having a conductivity type opposite to that of the first semiconductor region or an intrinsic type;
  • a first gate insulating layer formed at a lower portion and an outer periphery of the second semiconductor region;
  • a first gate conductor layer formed so as to surround the first gate insulating layer;
  • a third semiconductor region formed on the outer periphery of the second semiconductor region adjacent to the first gate conductor layer and made of a semiconductor having the same conductivity type as the first semiconductor region;
  • the height of the first gate conductor layer and the second gate conductor layer may be the same.
  • a third gate conductor layer formed so as to surround a part of the second island-shaped semiconductors among the plurality of second island-shaped semiconductors; Among the two island-shaped semiconductors, the third gate conductor layer is formed so as to surround the second island-shaped semiconductor different from the second island-shaped semiconductor surrounded by the third gate conductor layer, And a fourth gate conductor layer made of a different material.
  • the heights of the third gate conductor layer and the fourth gate conductor layer may be different from each other.
  • the height of the third gate conductor layer and the fourth gate conductor layer may be the same.
  • the seventh semiconductor region is formed on the sixth semiconductor region, and a conductor layer made of a silicide layer or a metal layer is formed on the seventh semiconductor region. It can be said.
  • a metal layer may be provided so as to surround the sixth semiconductor region.
  • a conductor layer formed inside the third island-shaped semiconductor is connected to at least one of the first semiconductor region and the fifth semiconductor region at a lower portion of the third island-shaped semiconductor. It can be said that.
  • FIG. 3 is a cross-sectional structure diagram for explaining a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment.
  • FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. It is a cross-section figure for demonstrating the manufacturing method of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on the 2nd Embodiment of this invention.
  • FIG. 1 It is a cross-sectional structure figure of the pixel and CMOS inverter circuit of the solid-state imaging device concerning a 2nd embodiment. It is a cross-section figure for demonstrating the manufacturing method of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on the 3rd Embodiment of this invention. It is sectional structure drawing for demonstrating the manufacturing method of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on 3rd Embodiment. It is sectional structure drawing for demonstrating the manufacturing method of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on 3rd Embodiment. FIG.
  • FIG. 6 is a cross-sectional structure diagram of a pixel and a CMOS inverter circuit of a solid-state imaging device according to a third embodiment. It is a cross-section figure of a pixel and CMOS inverter circuit of a solid imaging device concerning a 4th embodiment of the present invention. It is a cross-sectional structure figure of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on the 5th Embodiment of this invention. It is a cross-section figure for demonstrating the manufacturing method of the pixel of the solid-state imaging device which concerns on the 6th Embodiment of this invention, and a CMOS inverter circuit.
  • FIG. 1A shows a schematic circuit diagram of a region A surrounded by a two-dot chain line in the schematic plan view of the solid-state imaging device shown in FIG. 8B.
  • the reset gate conductor layer 105 a is connected to a CMOS inverter circuit 113 a composed of two P-channel SGTs 4 aa and 4 bb and one N-channel SGT 4 cc.
  • the CMOS inverter circuit 113 a is connected to the shift register 114.
  • the reset-on voltage V RH is applied to the reset gate conductor layer 105a from the output terminal, the input terminal of the CMOS inverter circuit 113a
  • the reset-off voltage VRL is applied from the output terminal to the reset gate conductor layer 105a.
  • FIG. 1B shows a schematic plan view of FIG. 1A.
  • the signal line N + region 102a in the pixel region, the source plate N + region 3a of the N channel SGT4cc in the CMOS inverter circuit 113a region, and the source plate of the P channels SGT4aa and 4bb A shaped P + region 3b is formed.
  • an island-shaped semiconductor P11 that constitutes a pixel is formed on the signal line N + region 102a, and an island-like semiconductor 4a that constitutes an N-channel SGT4cc is formed on the source plate-like N + region 3a, and the P-channel SGT4aa, Island-like semiconductors 4b and 4c constituting P-channel SGTs 4aa and 4bb are formed on the 4bb source plate-like P + region 3b.
  • a continuous gate conductor layer 7a is formed so as to surround the island-shaped semiconductor constituting the N-channel SGT4cc and the island-shaped semiconductor constituting the P-channel SGT4aa, 4bb, and surrounds the island-shaped semiconductor P11 constituting the pixel in the horizontal direction.
  • a connected reset gate conductor layer 105a is formed.
  • a contact hole 9a is formed on the gate conductor layer 7a, and the gate conductor layer 7a is connected to the first metal wiring layer 12a (one-dot chain line) connected to the shift register 114 via the contact hole 9a.
  • a contact hole 9b is formed on the reset gate conductor layer 105a, and the reset gate conductor layer 105a is connected to the first metal wiring layer 12e (one-dot chain line) through the contact hole 9b.
  • a contact hole 9c is formed on the boundary between the source plate N + region 3a of the N channel SGT4cc and the source plate P + region 3b of the P channels SGT4aa and 4bb, and the N channel SGT4cc of the N channel SGT4cc is formed via the contact hole 9c.
  • the source plate N + region 3a and the source plate P + regions 3b of the P channels SGT4aa and 4bb are connected to the first metal wiring layer 12e (one-dot chain line).
  • Drain N + region 8b of the drain N + region on 8a at the top of the island-like semiconductor 4a constituting the N-channel SGT4cc to form a contact hole 11a, the top of the island-like semiconductor 4b constituting P-channel SGT4aa, the 4bb, Contact holes 11b and 11c are formed on 8c.
  • the drain N + region 8a is connected to the first metal wiring layer 12b (one-dot chain line) to which the reset low level voltage VRL is applied via the contact hole 11a, and the drain P + regions 8b and 8c are in contact with each other.
  • the holes are connected to the first metal wiring layers 12c and 12d (one-dot chain lines) to which the reset high level voltage VRH is applied through the holes 11b and 11c.
  • the first metal wiring layers 12c and 12d are connected to the second metal wiring layer 14 (dotted line) to which the reset on voltage VRH is applied.
  • FIG. 1C shows a cross-sectional structure diagram along line AA ′ of FIG. 1B.
  • the cross-sectional structure of the island-shaped semiconductor P11 constituting the pixel is the same as that shown in FIG. 8D.
  • a signal line N + region 102a of a pixel, a source N + region 3a of an N channel SGT 4cc, and a source P + region 3b of P channels SGT 4aa and 4bb are formed on the substrate 1 (for example, SiO 2 layer).
  • the island-shaped semiconductor P11 constituting the pixel is formed on the signal line N + region 102a, and the island-shaped semiconductor 4a constituting the N-channel SGT4cc is formed on the source semiconductor layer N + region 3a to constitute the P-channel SGT4aa and 4bb. Insulating semiconductors 4a and 4b are formed on the source P + region 3b.
  • the source N + region 3a is connected to the lower portion of the island-shaped semiconductor 4a constituting the N-channel SGT4cc
  • the source P + region 3b is connected to the lower portion of the island-shaped semiconductors 4b and 4c constituting the P-channel SGT4aa and 4bb. .
  • the channel P region 5a of the N channel SGT4cc is connected to the source N + region 3a, the channel N regions 5b and 5c of the P channels SGT4aa and 4bb are connected to the source P + region 3b, and the signal line N + region 2 of the pixel is connected. It is connected to the channel of the reset MOS transistor and the P region which becomes the drain of the junction transistor (the channel semiconductor regions 5a, 5b and 5c, and the P region 5d region of the island-shaped semiconductor P11 constituting the pixel may be an intrinsic type. ).
  • a gate insulating layer 6a of the N-channel SGT4cc is formed on the outer periphery of the island-shaped semiconductor 4a constituting the N-channel SGT4cc connected to the source N + region 3a, and P-channel SGT4aa and 4bb connected to the source P + region 3b are formed.
  • Gate insulating layers 6b and 6c of P-channel SGTs 4aa and 4bb are formed on the outer periphery of the island-shaped semiconductors 4b and 4c.
  • a reset MOS gate insulating film 6d is formed on the outer periphery of the island-shaped semiconductor P11 constituting the pixel connected to the signal line N + region 102a of the pixel.
  • the outer periphery of the gate insulating layer 6a of the N-channel SGT4cc and the gate insulating layers 6b and 6c of the P-channel SGT4aa and 4bb is connected to the first interlayer insulating layer 14a formed on the substrate 1 and connected to the N-channel P Gate conductor layers 7a of channels SGT4aa, 4bb, 4cc are formed.
  • the reset gate conductor layer 105a of the pixel includes the outer periphery of the gate insulating film 6d of the reset MOS, and is connected to the first interlayer insulating layer 14a.
  • a drain N + region 8a is formed in the island-like semiconductor 4a constituting the N-channel SGT4cc adjacent to the upper portion of the N-channel SGT4cc gate conductor layer 7a.
  • Drain P + regions 8b and 8c are formed in the island-like semiconductors 4b and 4c constituting the channels SGT4aa and 4bb.
  • a photodiode region composed of a P region 5d and an N region 8d formed so as to surround the P region 5d is formed in the island-shaped semiconductor P11 constituting the pixel adjacent to the upper portion of the reset gate conductor layer 105a of the pixel.
  • the drain N + region 8a of the N channel SGT4cc and the drain P + regions 8b, 8c of the P channels SGT4aa, 4bb are formed so as to be connected to the top surfaces of the island-like semiconductors 4a, 4b, 4c constituting the SGT.
  • the pixel selection P + region 10 is formed on the upper surface of the island-shaped semiconductor P11 constituting the pixel.
  • the pixel selection P + region 10 is connected to a pixel selection line conductor layer 108a formed on the third interlayer insulating layer 14c on the second interlayer insulating layer 14b.
  • N-channel / P-channel SGT4aa, 4bb, 4cc gate conductor layer 7a is formed on fourth interlayer insulating layer 14d through contact hole 9a, and is connected to first-layer metal interconnection layer 12a connected to the shift register. ing.
  • the drain N + region 8a above the island-shaped semiconductor 4a constituting the N channel SGT4cc is connected to the first metal wiring layer 12b to which the reset off voltage VRL is applied via the contact hole 11a.
  • the drain P + regions 8b and 8c above the island-shaped semiconductors 4b and 4c constituting the P-channel SGT are applied to the first layer metal to which the reset-on voltage VRH is applied via the contact holes 11b and 11c.
  • the wiring layers 12c and 12d are connected.
  • the reset gate conductor layer 105a of the pixel is electrically connected to the source N + region 3a of the N channel SGT4cc and the source P + region 3b of the P channels SGT4aa and 4bb on the fourth interlayer insulating layer 14d through the contact hole 9b. Is connected to the first-layer metal wiring layer 12e.
  • the first-layer metal wiring layers 12c and 12d are formed on the fifth interlayer insulating layer 14e through the contact holes 15a and 15b, and the second-layer metal wiring to which the reset-on voltage VRH is applied. Connected to layer 16.
  • the solid-state imaging device of this embodiment has the following structural features.
  • the first feature is that a semiconductor containing donor or acceptor impurities of the source N + region 3a, the P + region 3b, and the signal line N + region 102a of the N channel / P channel SGT4aa, 4bb, 4cc directly on the substrate 1. Regions are formed and they are formed in the same layer.
  • the second feature is that an N-channel / P-channel SGT4aa, 4bb, 4cc gate conductor layer 7a and a pixel reset gate conductor layer 105a are formed on the same first interlayer insulating layer 14a, and each island-shaped It is formed on the outer periphery of the gate insulating films 6a, 6b, 6c, 6d connected to the bottoms of the semiconductors 4a, 4b, 4c, P11, and is formed in the same layer.
  • the third feature is that the SGT channel P region 5a or N regions 5b and 5c and the pixel reset MOS channel P region 5d are formed in the same layer.
  • the fourth feature is that the drain N + region 8a of the N-channel SGT4cc and the drain P + regions 8b, 8c of the P-channel SGT4aa, 4bb are arranged on the island-shaped semiconductors 4a, 4b, 4c constituting the SGT.
  • the N region 8d and the selective P + region 10 constituting the photodiode are formed in the same layer.
  • the present embodiment has the following advantages.
  • the first advantage is that in the solid-state imaging device of the conventional example (FIG. 8D), the island-shaped semiconductors 119a, 119b, and 119c constituting the SGT and the island-shaped semiconductor P11 constituting the pixel are individually formed.
  • the island-shaped semiconductors 4a, 4b, and 4c constituting the SGT and the island-shaped semiconductor P11 constituting the pixel can be formed in the same process.
  • the second advantage is that the N + region 3a of the N channel SGT4cc and the source P + region 3b of the P channels SGT4aa and 4bb are formed directly on the substrate 1, so that the conventional solid state imaging device (FIG. 8D) is used.
  • a third advantage is that the N + region 3a of the N-channel SGT4cc formed individually in the conventional solid-state imaging device (see FIG. 8D) can be formed in the same process as the pixel signal line N + region 102a. It is.
  • the fourth advantage is that in the conventional solid-state imaging device (see FIG. 8D), the N-channel / P-channel SGT4aa, 4bb, 4cc gate conductor layer 7a and the pixel reset gate conductor layer 105a are formed in the same process. This is a possible point.
  • a fifth advantage is that contact holes 9a and 9b formed on the gate conductor layers 7a and 105a, which are individually formed in the solid-state imaging device of the conventional example (see FIG. 8D), can be formed in the same process.
  • the solid-state imaging device of the present invention can be manufactured with a smaller number of processes than the conventional solid-state imaging device. Thereby, cost reduction of a solid-state imaging device is implement
  • a manufacturing method for forming the solid-state imaging device according to the first embodiment of the present invention will be described with reference to FIGS. 2A to 2Q, and AA ′ in the plan view of the pixel portion and CMOS inverter circuit portion in FIG. 1B.
  • the manufacturing method which forms the cross-sectional structure along a line is shown.
  • a single crystal semiconductor silicon layer (hereinafter simply referred to as “Si layer”) 22 is formed on a SiO 2 substrate 21.
  • the SiO 2 layer 23 formed by oxidizing the Si layer 22 surface, and the silicon nitride layer on the SiO 2 layer 23 (which is hereafter written as SiN layer) 24, CVD (Chemical Vapor Deposition ) method using SiO 2 layer 25 Form.
  • the SiO 2 layer 25 by the CVD method serves as an etching mask in etching the Si layer 22 by the RIE (Reactive Ion Etching) method.
  • the SiN layer 24 serves as a stopper layer in planarizing a CMP (Chemical Mechanical Polishing) SiO 2 film in a later process.
  • the SiO 2 layer 23 on the Si layer 22 serves as a buffer layer for stress relaxation between the Si layer 22 and the SiN layer 24.
  • the silicon layer constituting the N channel SGT is etched by etching the Si layer 22 of the N channel SGT part, the P channel SGT part, and the pixel part using the SiO 2 layer 25 as an etching mask.
  • Si pillar will be referred to as “Si pillar”.
  • 26a, Si pillars 26b and 26c constituting the P channel SGT, and Si pillar 26d constituting the pixel are formed, and a plate-like Si is formed at the bottom of the Si layer 22.
  • the layers 22a and 22b are left.
  • etching plate Si layer 22a, the Si layer 22 of 22b region to SiO 2 substrate 21 surface, then Si pillars 26a, 26b, 26c, by forming 26d form the structure of FIG. 2B.
  • SiO 2 layers 27a, 27b, 27c, and 27d are formed on the outer periphery of the Si pillars 26a, 26b, 26c, and 26d and the plate-like Si layers 225a and 22b.
  • polycrystalline Si layers 28a, 28b, 28c, and 28d are formed surrounding the SiO 2 layers 27a, 27b, 27c, and 27d of the Si pillars 26a, 26b, 26c, and 26d, and a photoresist layer is formed except for the P-channel SGT portion.
  • the polycrystalline Si layers 28a, 28b, 28c, 28d are stopper layers for preventing boron ions from being implanted into the Si pillars 26a, 26b, 26c, 26d when boron ions are implanted.
  • the photoresist layer 29 is removed, and the plate-like Si layer 22a and the pixel-like plate-like Si layer 22b in the N-channel SGT portion are formed by the same photolithography technique and donor impurity phosphorus (P) or arsenic (As) ion implantation. N + regions are formed.
  • the polycrystalline Si layers 28a, 28b, 28c, 28d are removed and heat treatment is performed, so that the Si pillars 26a, 26b, 26c, N + regions 31a, 31c, and P + regions 31b connected to the lower portion of 26d are formed.
  • a photoresist layer 32 is formed by photolithography so as to cover the Si pillars 26b and 26c constituting the P channel SGT, and ion implantation of acceptor impurities such as boron (B) is further performed. Then, P regions 33a and 33d are formed in the Si pillar 26a constituting the N channel SGT and the Si pillar 26d constituting the pixel. Thereafter, the photo resist layer 32 is removed.
  • a photoresist layer is formed by photolithography so as to cover the Si pillar 26a constituting the N channel SGT and the Si pillar 26d constituting the pixel, and arsenic (As), phosphorus (P).
  • As arsenic
  • P phosphorus
  • N regions 33b and 33c are formed in the Si pillars 26b and 26c constituting the P channel SGT by performing ion implantation of donor impurities such as the above and further removing the photo resist layer and performing heat treatment.
  • the first interlayer insulating layer 34a is formed, and the SiO 2 layers 27a, 27b, 27c, 27d are removed (at the same time, the SiO 2 layers 25a, 25b, 25c, 25d are removed).
  • the gate insulating layers 35a, 35b, 35c, and 35d made of a high dielectric constant insulating material such as SiO 2 and hafnium oxide (HfO 2 ) are formed on the outer periphery of the Si pillars 26a, 26b, 26c, and 26d.
  • polycrystalline Si, tungsten (W), cobalt (Co), platinum (Pt), silicide material by CVD (Chemical Vapor Deposition) method so as to surround the Si pillars 26a, 26b, 26c, and 26d on the interlayer insulating layer 34a Is formed on the gate region of the N channel / P channel SGT, and the photo resist layer 37a is formed on the pixel reset gate region.
  • CVD Chemical Vapor Deposition
  • the first interlayer insulating layer 34a is formed by depositing a SiO 2 film to a position higher than the Si pillars 26a, 26b, 26c, and 26d by the CVD method, and forming the Si pillars 26a, 26b, 26c, and 26d by the CMP (Chemical Mechanical Polishing) method. It is formed by polishing and flattening to a height and then performing etching by RIE (hereinafter referred to as etch back).
  • etch back etch back
  • the SiN so as to surround the plate-like N + regions 31a and 31c, the plate-like P + region 31b, and the Si pillars 26a, 26b, 26c, and 26d on the SiO 2 substrate 1.
  • a film may be deposited and the SiN film surrounding the Si pillars 26a, 26b, 26c, and 26d may be removed after the SiO 2 film is etched back.
  • the SiN film serves as a protective film for preventing the Si pillars 26a, 26b, 26c, and 26d from being etched during the etch back.
  • the conductor layer 36 is etched using the photoresist layers 37a and 37b as a mask. Thereafter, the photoresist layers 37a and 37b are removed. Subsequently, as shown in FIG. 2H, a second interlayer insulating layer 34b is formed. Similarly to the first interlayer insulating film 34a, the second interlayer insulating layer 34b is also formed by SiO 2 film deposition by the CVD method, SiO 2 film polishing by the CMP method, and etch back by the RIE method.
  • the gate conductor layers 36aa and 36bb exposed so as to surround the Si pillars 26a, 26b, 26c and 26d without being covered with the second interlayer insulating layer 34b are etched.
  • an N-channel / P-channel SGT gate conductor layer 36a and a pixel reset gate conductor layer 36b are formed.
  • the N-channel / P-channel SGT gate conductor layer 36a is formed so as to surround the outer periphery of the lower portion of the Si pillars 26a, 26b, and 26c constituting the SGT and to be connected to the first interlayer insulating layer 34a.
  • an SiN layer 38 is formed on the second interlayer insulating layer 34b, and an SiO 2 layer 39 formed by CVD is formed so as to cover the second interlayer insulating layer 34b and the Si pillar.
  • a SiN layer 40 is formed on the formed and planarized SiO 2 layer 39, and a photoresist layer 41 in which holes are formed in the Si pillars 26b and 26c constituting the P channel SGT is formed using a photolithography technique.
  • SiN layer 38 plays a role of etch quenching stopper layer of the SiO 2 layer 39
  • SiN layer 40 on the SiO 2 layer 39 serves as an etching mask layer of SiO 2 layer 39.
  • the SiN layer 40 on the Si pillars 26b and 26c constituting the P-channel SGT is etched using the photoresist layer 41 as a mask, and after removing the photoresist layer 41, an SiO 2 layer is formed using the SiN layer 40 as an etching mask. 39 is etched to the surface of the SiN layer 38 by RIE. Thereafter, the gate insulating layers 35b and 35c on the outer periphery of the Si pillars 26b and 26c are removed.
  • a SiO 2 layer 42b containing an acceptor impurity such as boron (B) is formed by a CVD method.
  • the SiO 2 layer 42b containing the acceptor impurity is first deposited up to the SiN layer 40, and then polished to the SiN layer 40 by CMP to form a flat surface.
  • the SiN layer 40 is removed, a new SiN layer 43 is deposited, and a hole is formed on the Si pillar 26a constituting the N channel SGT of the SiN layer 43 by forming a resist layer by photolithography and SiN etching. To do.
  • the SiN layer 43 as an etching mask, the SiO 2 layer 39 is etched to the surface of the SiN layer 36.
  • a SiO2 layer 42a containing donor impurities such as phosphorus (P) and arsenic (As) is formed.
  • donor impurities and acceptor impurities are diffused from the SiO 2 layers 42a and 42b formed by the CVD method in the Si pillars 26a, 26b, and 26c, and N + in the Si pillars 26a, 26b, and 26c.
  • Region 37a and P + regions 37b and 37c are formed.
  • the SiON containing donor impurities is formed on the SiN layer 38 in the Si pillar 26d region constituting the pixel.
  • a two- layer 42c is formed, and an N region 43 is formed on the outer periphery of the Si pillar 26d by heat treatment.
  • the amount of donor impurities contained in the SiO 2 layer 42c is less than that of the SiO 2 layer 42a for forming the N + region 37a.
  • the SiO 2 layers 39, 42a, 42b, and 42c are removed.
  • the surfaces of the Si pillars 26a, 26b, 26c, and 26d where the Si surface is exposed are oxidized to form SiO 2 layers 45a, 45b, 45c, and 45d.
  • the SiN layers 24a, 24b, 24c, 24d, and 38 are removed to form a third interlayer insulating layer 34c. Boron (B) using the photolithography technique and the photoresist layer formed thereby as a mask.
  • the P + region 47 is formed on the Si pillar 26d constituting the pixel by ion implantation of acceptor impurities such as.
  • Si pillars 26a, 26b, 26c, the SiO 2 layer 23a on the 26 d, 2b, 23c, and 23d, the SiO 2 layer at the top than the third interlayer insulating layer 34c is removed.
  • a pixel selection line conductor layer 48 such as aluminum (Al), tungsten (W), titanium nitride (TiN), tantalum nitride (TaN) is formed, and a fourth interlayer insulating layer 34d is formed thereon, and a gate A contact hole 50a is formed on the conductor layer 36a, contact holes 50b, 50c and 50d are formed on the Si pillars 26a, 26b and 26c constituting the SGT, and a contact hole 50e is formed on the pixel reset gate conductor layer 36b.
  • the SGT gate conductor layer 36a and the first metal wiring layer 51a Si pillar 26a constituting the SGT, 26b, 26c of N + regions 37a, P + regions 37b, 37c and the first layer metal interconnection layers 51b, 51c, 51d and the reset gate conductor layer 36b and the first layer metal Connection to the wiring layer 51e is performed.
  • a fifth interlayer insulating layer 34e is formed, contact holes 51a and 51b are formed, and the first metal wiring layers 51c and 51d are formed through the contact holes 51a and 51b. Are connected to the second metal wiring layer 52.
  • FIG. 3E shows a cross-sectional structure of the solid-state imaging device according to the present embodiment
  • FIGS. 3A to 3D show a manufacturing method leading to this
  • 3A to 3E show a cross-sectional structure along the line AA ′ in the plan view of the pixel portion and CMOS inverter circuit portion in FIG. 1B, as in FIGS. 2A to 2Q.
  • the N-channel / P-channel SGT gate conductor layer 7a is formed by being connected with the same material, whereas in the solid-state imaging device of the present embodiment, a plurality of gates formed with different materials. It is characterized by being composed of a conductor layer.
  • the technical idea of the present invention is applied to a solid-state imaging device in which an N-channel SGT and a pixel gate conductor layer are formed of the same material and a P-channel SGT gate conductor layer is formed of different materials.
  • the gate insulating layers 35a, 35b, and 35c made of a high dielectric constant insulating material such as SiO 2 and hafnium oxide (HfO 2 ) are disposed on the outer periphery of the Si pillars 26a, 26b, 26c, and 26d. , 35d and surrounding the Si pillars 26a, 26b, 26c, 26d on the first interlayer insulating layer 34a, for example, polycrystalline Si, tungsten (W), cobalt (Co) by CVD (Chemical Vapor Deposition) method Then, a conductor layer 36 of platinum (Pt) and a silicide material is formed.
  • a high dielectric constant insulating material such as SiO 2 and hafnium oxide (HfO 2 )
  • a SiN layer 55 is deposited on the entire surface.
  • the photoresist layers 56a.. are covered by photolithography so as to cover the N channel SGT portion and the pixel portion. 56b is formed.
  • the SiN layer 55 and the conductor layer 36 are etched using the photoresist layers 56a and 56b as a mask.
  • the SiN layers 55a and 55b are formed by etching so as to be side-etched inside the regions covered with the photoresist layers 56a and 56b.
  • the photoresist layers 56a and 56b are removed.
  • an N channel SGT part conductor layer 57a covering the N channel SGT part and a pixel part conductor layer 57b covering the pixel part are formed.
  • a second conductor layer 58 is formed so as to cover the entire structure.
  • a photoresist layer 59 is formed by using a photolithography technique so as to cover the P channel SGT portion.
  • the second conductor layer 58 is etched to form a P-channel SGT portion conductor layer 58a.
  • the photoresist layer 59 is removed.
  • the SiN layers 55a and 55b here serve as etching protective films for the N-channel SGT portion conductor layer 57a and the pixel portion conductor layer 57b in the etching of the conductor layer 58.
  • the SiN layers 55a and 55b are removed.
  • N channel SGT part conductor layer 57a, P channel SGT part conductor layer 58a, and pixel part conductor layer 57b are etched using first interlayer insulating layer 34a as a mask to form N channel SGT part gate conductor layer 57aa and P channel SGT.
  • the part gate conductor layer 58bb and the pixel part reset gate conductor layer 57bb are formed.
  • the N channel SGT gate conductor layer 57aa, the P channel SGT gate conductor layer 58bb, and the pixel portion reset gate conductor layer 57bb are connected to the gate insulating layer 35a on the outer periphery of the Si pillar 26a constituting the N channel SGT and the P channel SGT.
  • 3F is the same as FIG. 2Q except that the P-channel SGT part gate conductor layer 58bb is different from the N-channel SGT part gate conductor layer 57aa and the pixel part gate conductor layer 57bb.
  • the second embodiment of the present invention has the same features as the first embodiment.
  • the P region 33aa of the Si pillar 26a constituting the N channel SGT, the Si pillar 26bb constituting the P channel SGT, the N regions 33b and 33c of 26cc, and the P region 33d of the Si pillar constituting the pixel are intrinsic types. Also good.
  • the threshold voltages of the N channel / P channel SGT and the pixel reset transistor are set according to the work functions of the gate conductor layers 57aa, 58bb, and 57bb.
  • the photolithography process for forming the P regions 33a and 33d and the N regions 33b and 33c described with reference to FIGS. 2E and 2F in the first embodiment, and the ion implantation process of acceptor impurities and donor impurities are performed. It becomes unnecessary.
  • FIG. 4D shows a cross-sectional structure of the solid-state imaging device according to the present embodiment
  • FIGS. 4A to 4C show a manufacturing method leading to FIG. 4D
  • 4A to 4D show the pixel portion of FIG. 1B and the cross-sectional structure along the line AA ′ in the plan view of the CMOS inverter circuit portion, as in FIGS. 2A to 2Q.
  • FIG. 4D shows a cross-sectional structure of the solid-state imaging device according to the present embodiment
  • FIGS. 4A to 4C show a manufacturing method leading to FIG. 4D
  • 4A to 4D show the pixel portion of FIG. 1B and the cross-sectional structure along the line AA ′ in the plan view of the CMOS inverter circuit portion, as in FIGS. 2A to 2Q.
  • the N + region 8a which is the drain of the N channel SGT and the P + region 8b which is the drain of the P channel SGT above the Si pillars 4a, 4b and 4c constituting the SGT.
  • 8c are connected to the first metal wiring layers 12b, 12c, 12d through the contact holes 11a, 11b, 11c from the upper surfaces of the Si pillars 4a, 4b, 4c.
  • the drain resistance of the N channel / P channel SGT is determined by the resistance values of the N + region 8a and the P + regions 8b and 8c. The smaller the resistance value, the better.
  • the present embodiment is characterized in that the electrical resistance value is reduced by forming the upper portion of the N + region 8a and the P + regions 8b and 8c as a silicide layer.
  • FIG. 4A the process before the SiN layer 38 in FIG. 2M is formed on the first interlayer insulating layer 34a is formed in the same process as in FIGS. 2A to 2L, and a new SiN layer 38a is formed in the first interlayer insulating layer 34a.
  • the N + region 37a and the Si pillars 26b and 26c constituting the P channel SGT are formed on the insulating layer 34a and formed on the Si pillar 26a constituting the N channel SGT through the same process as shown in FIGS. 2M and 2N.
  • P + regions 26b and 26c are formed on the upper portion, an N region 43 is formed on the outer periphery of the upper portion of the Si pillar 26d constituting the pixel, and a P + region 47 is formed on the upper surface of the Si pillar 26d constituting the pixel.
  • 26c, and 26d the cross-sectional structure in the case where the insulating layers 45a, 45b, 35c, and 45d are formed on the outer peripheral portion is shown.
  • the insulating layers 45a, 45b, 45c on the outer periphery of the Si pillars 26a, 26b, 26c constituting the N-channel / P-channel SGT are removed.
  • the entire structure is covered with, for example, tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), or a metal layer 54 containing these, and heat treatment is performed.
  • the silicide layers 55a, 55b, and 55c are formed on the Si pillars 26a, 26b, and 26c constituting the N channel / P channel SGT.
  • N + regions 56a and P + regions 56b and 56c are formed below the silicide layers 55a, 55b and 55c. It is formed. Thereafter, the metal layer 54 is removed.
  • the N + region 56a and the P + regions 56b and 56c become the drains of the N channel / P channel SGT, and the N + region 56a, the P + regions 56b and 56c, and the first metal wiring layers 51b, 51c and 51d. Is performed through silicide layers 55a, 55b, and 55c having lower electrical resistance values.
  • tungsten (W), platinum (Pt), nickel (Ni), and cobalt (N) are enclosed so as to surround the N + region 55 a, the P + region 55 b, and the P + region 55 c.
  • Co or metal layers 56a, 56b and 56c containing them.
  • the SiO 2 layer 45d formed on the outer periphery of the Si pillar 26d constituting the pixel is connected to the P + region on the upper surface of the Si pillar 26d constituting the pixel at the same time.
  • the pixel selection line metal layer 56d surrounding the pixel selection line, it is not necessary to separately form the pixel selection line conductor layer 108a in FIG. 1C.
  • the pixel selection line conductor layer 108a is formed so as to surround the N region 43 of the photodiode portion which is a photoelectric conversion region, so that light incident on the Si pillar 26d constituting the pixel from an oblique direction can be obtained.
  • the pixel selection line conductor layer 108a is formed so as to surround the N region 43 of the photodiode portion which is a photoelectric conversion region, so that light incident on the Si pillar 26d constituting the pixel from an oblique direction can be obtained.
  • silicide layers 55a, 55b, and 55c are provided on the drain N + region 56a in the N channel SGT and the drain P + regions 56b and 56c in the P channel SGT.
  • the electrical resistance values between the drain N + region 56a and P + regions 56b and 56c and the first metal wiring layers 51b, 51c and 51d are lowered.
  • the present embodiment is characterized in that copper (Cu) metal layers 58a, 58b, and 58c are formed in place of the silicide layers 55a, 55b, and 55c, as shown in FIG.
  • the electrical resistance value between the drain N + region 56a and P + regions 56b and 56c and the first metal wiring layers 51b, 51c and 51d can be further reduced.
  • the Cu metal layers 58a, 58b, and 58c are formed by the damascene technique, the N + regions 56a and P + are interposed between the Cu metal layers 58a, 58b, and 58c and the insulating layers 57a, 57b, and 57c.
  • a material layer such as TiN, TaN, or Cu for preventing reaction / diffusion with the Cu metal layers 58a, 58b, 58c and maintaining adhesion of the Cu metal layers 58a, 58b, 58c on the upper surfaces of the regions 56b, 56c.
  • barrier seed layers 59a, 59b and 59c are formed.
  • FIG. 7C shows a cross-sectional structure diagram of the solid-state imaging device of the present embodiment
  • FIGS. 7A and 7B show a manufacturing method leading to that.
  • the N-channel / P-channel SGT gate conductor layer 7a and the reset gate conductor layer 105a of the pixel are connected to the first metal wiring layer 12a, deep contact holes 9a, 9b. 12e.
  • These contact holes 9a and 9e are formed by etching the N-channel / P-channel SGT gate conductor layer 7a and the first, second and third interlayer insulating layers 14a, 14b and 14c on the reset gate conductor layer 105a of the pixel. To do. In this case, it is necessary to stop the etching of the deep contact holes 9a and 9b on the N-channel / P-channel SGT gate conductor layer 7a and the pixel reset gate conductor layer 105a with good control. Further, the N channel / P channel SGT gate conductor layer 7a and the pixel reset gate conductor layer 105a and the pixel reset gate conductor layer 7b are not removed by the overetching at this time. It is necessary to increase the thickness. This embodiment can further improve such manufacturing difficulties.
  • insulating layers 35e and 35f are formed on the outer peripheral portions of the Si pillars 26e and 26f constituting the gate conductor layer contact.
  • the first interlayer insulating layer 34a is formed, and the SGT gate conductor layer 36aa is formed so as to surround the Si pillars 26a, 26b, 26c constituting the SGT and the Si pillar 26e constituting the gate conductor layer contact.
  • the pixel reset gate conductor layer 36bb is formed so as to surround the Si pillar 26d constituting the pixel and the Si pillar 26f constituting the gate conductor layer contact.
  • the gate conductor layer 36aa and the reset gate conductor layer 36bb are wired on the first interlayer insulating layer 34a, and the second interlayer insulating layer 34b so as to surround the Si pillars 26a, 26b, 26c, 26d, 26e, and 26f. Formed at the same height.
  • the previous steps are basically the same as those shown in FIGS. 2A to 2I.
  • the silicide layers 55a, 55b, and 55c and the drain N + regions 56a and P + regions 56b and 56c in the SGT are formed on the Si pillars 26a, 26b, and 26c constituting the SGT. Then, the silicide layers 55a, 55b, and 55c are removed. Thereby, as shown in FIG. 7B, holes 60a, 60b, and 60c are formed on the drain N + region 56a and the P + regions 56b and 56c of the Si pillars 26a, 26b, and 26c constituting the SGT.
  • the Si layers 33e and 33f of the Si pillars 26e and 26f constituting the gate conductor layer contact are etched to a position lower than the upper end positions of the gate conductor layer 36aa and the pixel reset gate conductor layer 36bb.
  • the SiO 2 layers 35e and 35f exposed by this etching are removed to form holes 60d and 60e.
  • a conductive material layer such as TiN, TaN, or Cu for preventing the reaction / diffusion with Cu and maintaining the adhesion of the Cu metal layer 62, which is necessary for the formation of the Cu layer 62 by the damascene technology.
  • the barrier seed layer 61 is formed on the inner surfaces of the holes 60a, 60b, 60c, 60d, 60e and the fourth interlayer insulating layer 34d. Then, a Cu layer 62 is formed in the holes 60a, 60b, 60c, 60d, and 60e and on the fourth interlayer insulating layer 34d by plating. As a result, the SGT gate conductor layer 33aa and the pixel reset gate conductor layer 36bb are electrically connected to the Cu layer 62 via the barrier / seed layer 61 which is a conductor material layer.
  • the Cu layer 62 and the barrier / seed layer 61 are etched to form first metal wiring layers 62a, 62b, 62c, 62d, and 62e.
  • the entire structure is covered with the fifth interlayer insulating layer 34e, contact holes 63a and 63b are formed on the P-channel SGT first-layer metal wiring layers 62c and 62d, and the P-channel SGT first-layer is formed.
  • the metal wiring layers 62c and 62d are connected to the second metal wiring layer 64 formed on the fifth interlayer insulating layer 34e through contact holes 63a and 63b.
  • the etching of the Si layers 33e and 33f of the Si pillars 26e and 26f constituting the gate conductor layer contact is performed to a position lower than the upper end positions of the gate conductor layer 36aa and the pixel reset gate conductor layer 36bb. may be etched, it may be etched until the SiO 2 substrate 21 upper surface. For this reason, this etching process becomes easy. Further, in this etching, since the SGT gate conductor layer 36aa and the reset gate conductor layer 36bb are protected by the SiO 2 layers 35e and 35f, as shown in FIG. 1C, the gate conductor layer 36aa, the pixel reset gate It is not necessary to increase the thickness of the conductor layer 36bb.
  • the SGT gate conductor layer 36aa and the pixel reset gate conductor layer 36bb surround the Si pillars 26e and 26f constituting the gate conductor layer contact, the Si pillar 26d constituting the pixel, and the Si pillars 26a, 26b and 26c constituting the SGT. , Simultaneously and at the same height. This facilitates the manufacturing process as described above.
  • the silicide layers 55a, 55b, and 55c are all removed. However, some silicide on the drain N + region 56a and the P + regions 56b and 56c may remain. . Further, the silicide layers 55a, 55b, and 55c may be replaced with N + regions 8a and P + regions 8b and 8c as shown in FIG. 1C. Further, the metal material formed inside the holes 60a, 60b, 60c, 60d, and 60e may be a conductive material layer containing W, Co, Ni, Ti, or these substances instead of Cu.
  • the island-shaped semiconductors P11 to P33 constituting the pixel are present in the pixel region, and the SGT is present in the drive output circuit.
  • the SGT is present in the pixel region. Needless to say, the technical idea of the present invention can be applied even when the SGTs are formed adjacent to each other.
  • the N regions 8d and 43 constituting the photodiode are formed on the outer surface of the Si pillar P11 constituting the island-like semiconductor constituting the pixel.
  • the charge on the surface of the Si pillar P11 that forms the pixel on the outer periphery of the N regions 8d and 43 is opposite to the signal charge (free electrons). It is also possible to form a P + region that accumulates (holes).
  • the pixel reset gate conductor layers 7b, 36b, and 36bb formed at the same height as the SGT gate conductor layers 7a, 36a, and 36aa are connected to the signal line N + regions 2 and 31c of the signal charges accumulated in the photodiode. It may be provided as a light shielding layer instead of removing the light.
  • the SGT gate conductor layer 36aa and the pixel reset gate conductor layer 36bb are connected to the first layer via the Cu layer 62 formed on the Si pillars 26e and 26f constituting the gate conductor layer contact.
  • the case where the metal wiring layers 62a and 62e are connected has been described.
  • the pixel reset gate conductor layer 7b (gate conductor layer 36bb in FIG. 7C) and the SGT source N + region 3a (in FIG. 7C).
  • N + region 31a) and P + region 3b (P + region 31bb in FIG. 7C) are connected to each other via contact hole 9 and first metal wiring layer 12e. Can be applied.
  • a Si pillar constituting a contact is formed on the contact hole 9 and the pixel reset gate conductor layer 7b (the gate conductor layer 36bb in FIG. 7C) and the SGT source are formed in the same manner as in FIGS. 7A to 7C. Connection to the N + region 3a (N + region 31a in FIG. 7C) and the P + region 3b (P + region 31bb in FIG. 7C) can be made.
  • the present invention can be widely applied to semiconductor devices in which circuit elements are formed in columnar semiconductors such as solid-state imaging devices and SGTs.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

In this solid-state image pickup device, a pixel has a first island-like semiconductor section (P11) formed on a substrate (1), and a drive output circuit has second island-like semiconductor sections (4a-4c), which are formed on the substrate with a height same as that of the first island-like semiconductor section (P11). The first island-like semiconductor section (P11) has a first gate insulating layer (6b) formed on the outer circumference of the first island-like semiconductor section, and a first gate conductor layer (105a) that surrounds the first gate insulating layer (6b). The second island-like semiconductor sections (4a-4c) have a second gate insulating layer (6a) formed on the outer circumference of the second island-like semiconductor sections, and a second gate conductor layer (7a) that surrounds the second gate insulating layer (6a). The first gate conductor layer (105a) and the second gate conductor layer (7a) have respective bottom portions positioned on a same plane.

Description

固体撮像装置Solid-state imaging device
 本発明は、島状半導体構造を有する半導体内にチャネル領域が形成されているSGT(Surround Gate Transistor)を備える固体撮像装置に関し、画素と駆動出力回路を有する固体撮像装置に関する。 The present invention relates to a solid-state imaging device including an SGT (Surround Gate Transistor) in which a channel region is formed in a semiconductor having an island-shaped semiconductor structure, and to a solid-state imaging device having a pixel and a drive output circuit.
 現在、CMOS固体撮像装置は、ビデオカメラ、スチールカメラなどに広く用いられている。これら固体撮像装置は、画素と、画素に繋がった駆動出力回路から構成されている。そして、固体撮像装置の高画素密度化、高解像度化、カラー撮像における低混色化、高感度化などの性能向上が常に求められている。これに対し、固体撮像装置の高解像度化を実現するために画素高密度化などによる技術革新が行われてきた。 Currently, CMOS solid-state imaging devices are widely used for video cameras, still cameras, and the like. These solid-state imaging devices are composed of a pixel and a drive output circuit connected to the pixel. Further, there is a constant demand for performance improvements such as higher pixel density, higher resolution, lower color mixing in color imaging, and higher sensitivity in solid-state imaging devices. On the other hand, technological innovations such as higher pixel density have been performed in order to achieve higher resolution of solid-state imaging devices.
 図8A~図8Dに従来例の固体撮像装置を示す。
 図8Aに、従来例に係る、1個の島状半導体100に、1個の画素が構成されている固体撮像装置の断面構造図を示す(例えば、特許文献1を参照)。
 図8Aに示すように、この画素を構成する島状半導体100においては、基板101上に、信号線N領域102(以下、「N領域」をドナー不純物が多く含まれた半導体領域とする。)が形成されている。この信号線N領域102上にP領域103(以下、アクセプタ不純物が含まれた半導体領域を「P領域」とする。)が形成され、このP領域103の外周部に絶縁層104が形成され、この絶縁層104を介在させてゲート導体層105が形成されている。このゲート導体層105の上方部位におけるP領域103の外周部に、N領域(以下、ドナー不純物が含まれた半導体領域を「N領域」とする。)106が形成されている。このN領域106及びP領域103上において、島状半導体100の上部にP領域(以下、アクセプタ不純物が多く含まれた半導体領域を「P領域」とする。)107が形成されている。このP領域107は、画素選択線導体層108に接続されている。上述した絶縁層104は、島状半導体100の外周部を囲んだ状態で互いに繋がっている。同様に、ゲート導体層105も、島状半導体100の外周部を囲んだ状態で互いに繋がっている。
8A to 8D show a conventional solid-state imaging device.
FIG. 8A shows a cross-sectional structure diagram of a solid-state imaging device in which one pixel is configured in one island-like semiconductor 100 according to the conventional example (see, for example, Patent Document 1).
As shown in FIG. 8A, in an island-shaped semiconductor 100 constituting this pixel, a signal line N + region 102 (hereinafter referred to as “N + region”) is a semiconductor region containing a lot of donor impurities on a substrate 101. .) Is formed. A P region 103 (hereinafter, a semiconductor region containing an acceptor impurity is referred to as a “P region”) is formed on the signal line N + region 102, and an insulating layer 104 is formed on the outer periphery of the P region 103. A gate conductor layer 105 is formed with the insulating layer 104 interposed therebetween. An N region (hereinafter, a semiconductor region containing donor impurities is referred to as an “N region”) 106 is formed on the outer peripheral portion of the P region 103 in the upper portion of the gate conductor layer 105. On the N region 106 and the P region 103, a P + region (hereinafter, a semiconductor region containing a lot of acceptor impurities is referred to as a “P + region”) 107 is formed on the island-shaped semiconductor 100. The P + region 107 is connected to the pixel selection line conductor layer 108. The insulating layers 104 described above are connected to each other so as to surround the outer periphery of the island-shaped semiconductor 100. Similarly, the gate conductor layers 105 are connected to each other so as to surround the outer periphery of the island-shaped semiconductor 100.
 本固体撮像装置では、入射光が、島状半導体100の上面にあるP領域107側から照射される。島状半導体100内において、P領域103とN領域106とからなるフォトダイオード領域が形成されており、この光照射によって、当該フォトダイオード領域における光電変換領域にて信号電荷(ここでは、自由電子)が発生する。そして、この信号電荷は、フォトダイオード領域のN領域106に蓄積される。また、島状半導体100内において、このN領域106をゲート、P領域107をソースとし、信号線N領域102近傍のP領域103をドレインとした接合トランジスタが構成されている。そして、接合トランジスタのドレイン・ソース間電流(出力信号)が、N領域106に蓄積された信号電荷量に対応して変化し、信号線N領域102から外部に取り出され、読み出される。さらに、島状半導体100内には、フォトダイオード領域のN領域106をソース、ゲート導体層105をリセットゲート、信号線N領域102をドレイン、N領域106と信号線N領域102間のP領域103をチヤネルとしたリセットMOSトランジスタが形成されている(以後、このゲート導体層を「リセットゲート導体層」と称する。)。そして、このN領域106に蓄積された信号電荷は、リセットMOSトランジスタのリセットゲート導体層105にプラス・オン電圧が印加されることによって、信号線N領域102に除去される。 In the solid-state imaging device, incident light is irradiated from the P + region 107 side on the upper surface of the island-shaped semiconductor 100. In the island-like semiconductor 100, a photodiode region including a P region 103 and an N region 106 is formed. By this light irradiation, signal charges (here, free electrons) are generated in the photoelectric conversion region in the photodiode region. Will occur. This signal charge is accumulated in the N region 106 of the photodiode region. Further, in the island-shaped semiconductor 100, a junction transistor is configured with the N region 106 as a gate, the P + region 107 as a source, and the P region 103 near the signal line N + region 102 as a drain. Then, the drain-source current (output signal) of the junction transistor changes corresponding to the amount of signal charge accumulated in the N region 106, and is extracted from the signal line N + region 102 and read out. Further, in the island-shaped semiconductor 100, the N region 106 of the photodiode region is the source, the gate conductor layer 105 is the reset gate, the signal line N + region 102 is the drain, and the P between the N region 106 and the signal line N + region 102. A reset MOS transistor using the region 103 as a channel is formed (hereinafter, this gate conductor layer is referred to as “reset gate conductor layer”). The signal charge accumulated in the N region 106 is removed to the signal line N + region 102 by applying a plus-on voltage to the reset gate conductor layer 105 of the reset MOS transistor.
 この固体撮像装置の撮像動作は、以下の動作から構成される。即ち、信号線N領域102、リセットゲート導体層105、P領域107にグランド電圧(0V)が印加された状態で、島状半導体100の上面から入射した光線の照射によって光電変換領域(フォトダイオード領域)に発生した信号電荷をN領域106に蓄積する信号電荷蓄積動作と、信号線N領域102及びリセットゲート導体層105にグランド電圧が印加されるとともに、P領域107にプラス電圧が印加された状態で、蓄積信号電荷量に応じて変化したN領域106の電位により変調された接合トランジスタのソース・ドレイン電流を信号電流として読み出す信号電荷読み出し動作と、この信号電荷読み出し動作の後に、P領域107にグランド電圧が印加されるとともに、リセットゲート導体層105及び信号線N領域102にプラス電圧が印加された状態で、N領域106に蓄積されている信号電荷を信号線N領域102に除去するリセット動作と、から構成される。 The imaging operation of this solid-state imaging device includes the following operations. That is, in a state where the ground voltage (0 V) is applied to the signal line N + region 102, the reset gate conductor layer 105, and the P + region 107, the photoelectric conversion region (photographing region) is irradiated by irradiation of light incident from the upper surface of the island-shaped semiconductor 100. A signal charge accumulation operation for accumulating signal charges generated in the diode region) in the N region 106, a ground voltage is applied to the signal line N + region 102 and the reset gate conductor layer 105, and a positive voltage is applied to the P + region 107. In the applied state, after the signal charge read operation for reading the source / drain current of the junction transistor modulated by the potential of the N region 106 changed according to the accumulated signal charge amount as the signal current, and after this signal charge read operation, with the ground voltage is applied to the P + region 107, reset gate conductor layer 105 and the signal line + In the region 102 in a state where positive voltage is applied, a reset operation for removing the signal charges accumulated in the N region 106 to the signal line N + region 102, and a.
 図8Bに、画素を構成する島状半導体P11~P33(図8Aの島状半導体100に対応する。)が2次元状に配列された画素領域の周辺に駆動出力回路を有する固体撮像装置の模式平面図を示す(例えば、特許文献2を参照)。
 図8Bに示すように、信号線N領域102a,102b,102c(図8Aの102に対応する。)上に画素を構成する島状半導体P11~P33が形成されている。画素島状半導体P11~P33の水平列毎に画素選択線導体層108a,108b,108c(図8Aの108に対応する。)が繋がって形成され、画素領域の周辺に設けられた画素選択線垂直走査回路110に接続されている。同様に、画素を構成する島状半導体P11~P33の水平列毎にリセットゲート導体層105a,105b,105c(図8Aに示すゲート導体層105に対応する。)が繋がって形成され、画素領域の周辺に設けられたリセット線垂直走査回路112に接続されている。このリセット線垂直走査回路112は、各リセットゲート導体層105a,105b,105cに繋がるSGTからなるCMOSインバータ回路113a,113b,113cと、このCMOSインバータ回路113a,113b,113cに繋がるシフトレジスタ114とからなる。そして、このCMOSインバータ回路113a,113b,113cは、例えば2個のPチャネルSGTと1個のNチャネルSGTを使用した構成になっている。CMOSインバータ回路113a,113b,113cの入力端子にシフトレジスタ114から低レベル電圧が印加されると、出力端子からリセット・オン電圧VRHがリセットゲート導体層105a,105b,105cに印加される一方で、高レベル電圧が印加されると、出力端子からリセット・オフ電圧VRLがリセットゲート導体層105a,105b,105cに印加される。各信号線N領域102a,102b,102cの下方部位はスイッチSGT115a,115b,115cに接続され、各スイッチSGT115a,115b,115cのゲートは信号線水平走査回路116に接続されている。そして、各スイッチSGT115a,115b,115cのドレインは出力回路117に接続されている。信号電荷蓄積動作時にはグランド電圧(=0V)、信号電荷読出し動作時にはフローティング、信号電荷除去動作時にはリセット電圧VRDが印加されるスイッチ回路118a,118b,118cが、各信号線N領域102a,102b,102cの上部に繋がるように形成されている。
 ここで、SGT(Surrounding Gate Transistor)とは、シリコン柱の外周にゲート絶縁層を介してゲート導体層を形成した構造のトランジスタをいう。
FIG. 8B is a schematic diagram of a solid-state imaging device having a drive output circuit around a pixel region in which island-shaped semiconductors P11 to P33 (corresponding to the island-shaped semiconductor 100 of FIG. 8A) constituting pixels are arranged two-dimensionally. A plan view is shown (see, for example, Patent Document 2).
As shown in FIG. 8B, island-like semiconductors P11 to P33 constituting pixels are formed on the signal line N + regions 102a, 102b, and 102c (corresponding to 102 in FIG. 8A). Pixel selection line conductor layers 108a, 108b, and 108c (corresponding to 108 in FIG. 8A) are connected to each horizontal column of the pixel island-shaped semiconductors P11 to P33, and the pixel selection line vertical provided in the periphery of the pixel region is formed. It is connected to the scanning circuit 110. Similarly, the reset gate conductor layers 105a, 105b, and 105c (corresponding to the gate conductor layer 105 shown in FIG. 8A) are connected to each horizontal column of the island-shaped semiconductors P11 to P33 constituting the pixel, and the pixel region It is connected to a reset line vertical scanning circuit 112 provided in the periphery. This reset line vertical scanning circuit 112 includes CMOS inverter circuits 113a, 113b, 113c made of SGT connected to the respective reset gate conductor layers 105a, 105b, 105c, and a shift register 114 connected to the CMOS inverter circuits 113a, 113b, 113c. Become. The CMOS inverter circuits 113a, 113b, and 113c are configured using, for example, two P-channel SGTs and one N-channel SGT. CMOS inverter circuit 113a, 113b, the low-level voltage to the input terminal of the shift register 114 of 113c is applied, the reset-on voltage V RH from the output terminal is reset gate conductor layer 105a, 105b, while being applied to 105c , when the high level voltage is applied, the reset-off voltage V RL is reset gate conductor layer 105a, 105b, is applied to 105c from the output terminal. The lower part of each signal line N + region 102a, 102b, 102c is connected to the switches SGT 115a, 115b, 115c, and the gate of each switch SGT 115a, 115b, 115c is connected to the signal line horizontal scanning circuit 116. The drains of the switches SGT115a, 115b, and 115c are connected to the output circuit 117. The switch circuits 118a, 118b, and 118c to which the ground voltage (= 0V) is applied during the signal charge accumulation operation, the floating operation is performed during the signal charge read operation, and the reset voltage VRD is applied during the signal charge removal operation are the signal lines N + regions 102a and 102b. , 102c.
Here, SGT (Surrounding Gate Transistor) refers to a transistor having a structure in which a gate conductor layer is formed on the outer periphery of a silicon pillar via a gate insulating layer.
 信号電荷蓄積動作は、信号線N領域102a,102b,102cが、スイッチSGT115a,115b,115cのゲートに信号線水平走査回路116からオフ電圧が印加され、かつ、スイッチ回路118a,118b,118cがグランド電圧側になることで、グランド電圧となった状態、リセットゲート導体層105a,105b,105cにリセット・オフ電圧VRLが印加された状態、画素選択線導体層108a,108b,108cにグランド電圧が印加されている状態、において行われる。
 信号電荷読出し動作は、リセットゲート導体層105a,105b,105cにリセット・オフ電圧VRLが印加され、読み出す画素の画素選択線導体層108a,108b,108cに高レベル電圧が印加され、かつ、読み出す画素の信号線N領域102a,102b,102cに繋がるスイッチSGT115a,115b,115cのゲートにオン電圧が印加され、スイッチ回路118a,118b,118cの出力端子がフローティング、出力回路117の入力端子が低レベル電圧の状態において、読み出す画素の接合トランジスタのソース・ドレイン電流が出力回路117に取り込まれることによって行われる。
 信号電荷除去動作は、全画素選択線導体層108a,108b,108cがグランド電圧、全スイッチSGT115a,115b,115cがオフになっている状態において、蓄積信号電荷を除去する画素の島状半導体P11~P33に繋がるリセットゲート導体層105a,105b,105cにリセット・オン電圧が印加され、スイッチ回路118a,118b,118cの出力端子がリセット電圧VRDになることによって行われる。
In the signal charge accumulation operation, the signal line N + regions 102a, 102b, and 102c are applied with an off voltage from the signal line horizontal scanning circuit 116 to the gates of the switches SGTs 115a, 115b, and 115c, and the switch circuits 118a, 118b, and 118c by becoming the ground voltage side, condition that the ground voltage, the reset gate conductor layer 105a, 105b, a state in which the reset-off voltage V RL is applied to 105c, the pixel selection line conductor layers 108a, 108b, a ground voltage to 108c In a state where is applied.
In the signal charge reading operation, a reset / off voltage VRL is applied to the reset gate conductor layers 105a, 105b, and 105c, a high-level voltage is applied to the pixel selection line conductor layers 108a, 108b, and 108c of the pixel to be read, and reading is performed. An ON voltage is applied to the gates of the switches SGT 115a, 115b, and 115c connected to the pixel signal line N + regions 102a, 102b, and 102c, the output terminals of the switch circuits 118a, 118b, and 118c are floating, and the input terminal of the output circuit 117 is low. In the level voltage state, the output circuit 117 takes in the source / drain current of the junction transistor of the pixel to be read out.
In the signal charge removal operation, the pixel-like semiconductors P11 to P11 for removing the accumulated signal charge are removed in a state where all the pixel selection line conductor layers 108a, 108b, and 108c are at the ground voltage and all the switches SGT115a, 115b, and 115c are off. reset gate conductor layer 105a connected to the P33, 105b, reset-on voltage is applied to 105c, the switch circuits 118a, 118b, an output terminal of 118c is performed by going reset voltage V RD.
 図8Cに、図8Bにおいて2点鎖線で囲まれた領域Aにおける模式平面図を示す。画素を構成する島状半導体P11は信号線N領域102a上に形成され、CMOSインバータ回路113aのNチャネルSGTを構成する島状半導体119aは第1の半導体層120a上に形成され、PチャネルSGTを構成する島状半導体119b,119cは第2の半導体層120b上に形成されている。NチャネルSGTを構成する島状半導体119aの下方部位に繋がるように、第1の半導体層120aの上部にPウエル領域121aが形成されている(図面では重なっている)。そして、PチャネルSGTを構成する島状半導体119b、119cの下方部位に繋がるように、第2の半導体層120bの上部にNウエル領域121bが形成されている(図面では重なっている)。Pウエル領域121a内にあって、NチャネルSGTを構成する島状半導体119aの下方部位と、これに繋がるN領域122aが形成されている。そして、Nウエル領域121b内にあって、PチャネルSGTを構成する島状半導体119b、119cの下方部位と、これに繋がったP領域122bが形成されている。NチャネルSGTのドレインN領域123aがNチャネルのための島状半導体119aの上部に形成され、このドレインN領域123aがコンタクトホール124aを介して、リセット・オフ電圧VRLが印加された第1層目金属配線層125a(一点鎖線で記載)に接続されている。 FIG. 8C shows a schematic plan view of a region A surrounded by a two-dot chain line in FIG. 8B. The island-shaped semiconductor P11 constituting the pixel is formed on the signal line N + region 102a, the island-shaped semiconductor 119a constituting the N-channel SGT of the CMOS inverter circuit 113a is formed on the first semiconductor layer 120a, and the P-channel SGT Are formed on the second semiconductor layer 120b. A P well region 121a is formed above the first semiconductor layer 120a so as to be connected to a lower portion of the island-shaped semiconductor 119a constituting the N channel SGT (overlapping in the drawing). An N well region 121b is formed above the second semiconductor layer 120b so as to be connected to the lower portion of the island-shaped semiconductors 119b and 119c constituting the P channel SGT (overlapping in the drawing). In the P well region 121a, a lower portion of the island-shaped semiconductor 119a constituting the N channel SGT and an N + region 122a connected to the lower portion are formed. In the N well region 121b, lower portions of the island-shaped semiconductors 119b and 119c constituting the P channel SGT and a P + region 122b connected thereto are formed. Drain N + region 123a of the N-channel SGT is formed on top of the island-like semiconductor 119a for N-channel, the drain N + region 123a via a contact hole 124a, the reset-off voltage V RL is applied It is connected to the first metal wiring layer 125a (shown with a one-dot chain line).
 そして、PチャネルSGTのドレインP領域123b,123cがPチャネルのための島状半導体119b,119cの上部に形成され、このドレインP領域123b,123cがコンタクトホール124b,124cを介して、リセット・オン電圧VRHが印加された第1層目金属配線層125b(一点鎖線で記載)に接続されている。NチャネルSGTとPチャネルSGTゲート導体層126が繋がるように形成され、このゲート導体層126がコンタクトホール127aを介してシフトレジスタ回路114に繋がる第1層目金属配線層125c(一点鎖線で記載)に接続されている。画素を構成する島状半導体P11のリセットゲート導体層105aとPチャネルSGTのドレインP領域122bとは、コンタクトホール127e,127fを介して第1層目金属配線層125e(一点鎖線で記載)で接続されている。そして、PチャネルSGTのソースP領域122bとNチャネルSGTのドレインN領域122aとは、コンタクトホール127b,127dを介して、第1層目金属配線層125b(一点鎖線で記載)で接続されている。Pウエル領域121aは、コンタクトホール127cを介して、第1層目金属配線層125a,125b,125c,125d,125eの上部にある第2層目金属配線層128a(点線で記載)に接続されている。そして、Nウエル領域121bは、コンタクトホール127eを介して、第1層目金属配線層125a,125b,125c,125d,125eの上部にある第2層目金属配線層128b(点線で記載)に接続されている。 The drain P + regions 123b and 123c of the P channel SGT are formed on the island-shaped semiconductors 119b and 119c for the P channel, and the drain P + regions 123b and 123c are reset via the contact holes 124b and 124c. It is connected to the first-layer metal wiring layer 125b (denoted by a one-dot chain line) to which the on-voltage VRH is applied. N-channel SGT and P-channel SGT gate conductor layer 126 are formed so as to be connected, and first-layer metal wiring layer 125c (denoted by an alternate long and short dash line) in which this gate conductor layer 126 is connected to shift register circuit 114 through contact hole 127a It is connected to the. The reset gate conductor layer 105a of the island-shaped semiconductor P11 and the drain P + region 122b of the P-channel SGT constituting the pixel are first-layer metal wiring layers 125e (shown by alternate long and short dash lines) through contact holes 127e and 127f. It is connected. The source P + region 122b of the P channel SGT and the drain N + region 122a of the N channel SGT are connected to each other by a first layer metal wiring layer 125b (shown by a one-dot chain line) via contact holes 127b and 127d. ing. The P well region 121a is connected to a second metal wiring layer 128a (shown by a dotted line) located above the first metal wiring layers 125a, 125b, 125c, 125d, and 125e through a contact hole 127c. Yes. The N well region 121b is connected to a second metal wiring layer 128b (shown by a dotted line) located above the first metal wiring layers 125a, 125b, 125c, 125d, and 125e through a contact hole 127e. Has been.
 図8Dに、図8CのB-B’線に沿った断面構造図を示す。画素を構成する島状半導体P11の断面構造は、図8Aに示したものと同じである。基板100(例えばSiO層)上に、画素の信号線N領域102aと、第1の半導体層120aと、第2の半導体層120bと、が形成されている。画素を構成する島状半導体P11が信号線N領域102a上に形成され、NチャネルSGTを構成する島状半導体119aが第1の半導体層上120aに形成され、PチャネルSGTを構成する島状半導体119b、119cが第2の半導体層120b上に形成されている。第1の半導体層120aの上部にPウエル領域121aが形成され、第2の半導体層120bの上部にNウエル領域121bが形成されている。Pウエル領域121a上部であって、NチャネルSGTを構成する島状半導体119aの下方部位には、ソースN領域122aが形成されている。そして、Nウエル領域121bの上部であって、PチャネルSGTを構成する島状半導体119b、119cの下方部位には、ソースP領域122bが形成されている。NチャネルSGTを構成する島状半導体119aの上部にはドレインN領域123aが形成されている。そして、PチャネルSGTを構成する島状半導体119b、119cの上部にはドレインP領域123b、123cが形成されている。NチャネルSGTを構成する島状半導体119aのソース・ドレインN領域122a,123aの間においては、NチャネルSGTのチャネルはP領域131aであり、PチャネルSGTを構成する島状半導体のソース・ドレインP領域122bと123b,123cとの間においては、PチャネルSGTのチャネルはN領域131b,131cである。NチャネルSGTを構成する島状半導体119aの外周部に、NチャネルSGTゲート絶縁層129aが形成され、このNチャネルSGTゲート絶縁層129aに繋がるように第1の半導体層120a外周に絶縁層132aが形成されている。 FIG. 8D shows a cross-sectional structure diagram taken along the line BB ′ of FIG. 8C. The cross-sectional structure of the island-shaped semiconductor P11 constituting the pixel is the same as that shown in FIG. 8A. A pixel signal line N + region 102a, a first semiconductor layer 120a, and a second semiconductor layer 120b are formed on a substrate 100 (for example, a SiO 2 layer). The island-shaped semiconductor P11 that forms the pixel is formed on the signal line N + region 102a, and the island-shaped semiconductor 119a that forms the N-channel SGT is formed on the first semiconductor layer 120a, and the island-shaped semiconductor that forms the P- channel SGT Semiconductors 119b and 119c are formed on the second semiconductor layer 120b. A P well region 121a is formed above the first semiconductor layer 120a, and an N well region 121b is formed above the second semiconductor layer 120b. A source N + region 122a is formed above the P-well region 121a and below the island-shaped semiconductor 119a constituting the N-channel SGT. A source P + region 122b is formed above the N well region 121b and below the island-shaped semiconductors 119b and 119c constituting the P channel SGT. A drain N + region 123a is formed on the island-shaped semiconductor 119a constituting the N channel SGT. Then, drain P + regions 123b and 123c are formed above the island-shaped semiconductors 119b and 119c constituting the P channel SGT. Between the source / drain N + regions 122a and 123a of the island-shaped semiconductor 119a constituting the N-channel SGT, the channel of the N-channel SGT is the P region 131a, and the source / drain of the island-shaped semiconductor constituting the P-channel SGT Between the P + regions 122b and 123b, 123c, the channels of the P channel SGT are the N regions 131b, 131c. An N-channel SGT gate insulating layer 129a is formed on the outer periphery of the island-shaped semiconductor 119a constituting the N-channel SGT, and an insulating layer 132a is formed on the outer periphery of the first semiconductor layer 120a so as to be connected to the N-channel SGT gate insulating layer 129a. Is formed.
 そして、PチャネルSGTを構成する島状半導体119a,119cの外周部に、PチャネルSGTゲート絶縁層129b,129cが形成され、このPチャネルSGTを構成するゲート絶縁層129b,129cに繋がった第2の半導体層120bの外周部に絶縁層132bが形成されている。画素を構成する島状半導体P11の外周部に繋がったリセットMOSトランジスタのリセットゲート導体層105aはコンタクトホール127fを介して第1層目金属配線層125eに接続され、この第1層目金属配線層125eはコンタクトホール127bを介して、PチャネルSGTを構成する島状半導体119b、119cの下方部位に繋がるソースP領域122bに接続されている。NチャネルSGTとPチャネルSGTゲート導体層126が、NチャネルSGTを構成する島状半導体119aとPチャネルSGTを構成する島状半導体119b、119cとの間と、それらのゲート絶縁層129b,129cの外周に繋がり、コンタクトホール127aを介してシフトレジスタ回路に繋がる第1層目金属配線層125cに接続されている。 Then, P-channel SGT gate insulating layers 129b and 129c are formed on the outer peripheral portions of the island-shaped semiconductors 119a and 119c constituting the P-channel SGT, and the second connected to the gate insulating layers 129b and 129c constituting the P-channel SGT. An insulating layer 132b is formed on the outer periphery of the semiconductor layer 120b. The reset gate conductor layer 105a of the reset MOS transistor connected to the outer periphery of the island-shaped semiconductor P11 constituting the pixel is connected to the first-layer metal wiring layer 125e through the contact hole 127f, and this first-layer metal wiring layer 125e is connected to the source P + region 122b connected to the lower part of the island-shaped semiconductors 119b and 119c constituting the P-channel SGT through the contact hole 127b. The N-channel SGT and the P-channel SGT gate conductor layer 126 are formed between the island-shaped semiconductor 119a constituting the N-channel SGT and the island-shaped semiconductors 119b and 119c constituting the P-channel SGT, and between the gate insulating layers 129b and 129c. The first metal wiring layer 125c is connected to the outer periphery and connected to the shift register circuit through the contact hole 127a.
 ドレインN領域123aがコンタクトホール124aを介して、リセット・オフ電圧VRLが印加された第1層目金属配線層125aに接続されている。そして、PチャネルSGTのドレインP領域123b、123cがコンタクトホール124b、124cを介して、リセット・オン電圧VRHが印加された第1層目金属配線層125bに接続されている。第1の半導体層120a、第2の半導体層120b、信号線N領域102a、NチャネルSGTを構成する島状半導体119a、PチャネルSGTを構成する島状半導体119b,119c、画素を構成する島状半導体P11の間と、基板100上に第1の層間絶縁層130a、第2の層間絶縁層130b、第3の層間絶縁層130c、第4の層間絶縁層130d、第5の層間絶縁層130eが形成されている。第1の層間絶縁層130a上に画素のリセットゲート導体層105aが配線され、第2の層間絶縁層130b上にPチャネル・NチャネルSGTゲート導体層126が配線され、第3の層間絶縁層130d上に画素選択線導体層108aが配線され、第4の層間絶縁層130d上に第1層目金属配線層125a,125b,125c,125eが形成され、第5の層間絶縁層130e上にPウエル領域121aに接続された第2層目金属配線層128aと、Nウエル領域121bに接続された第2層目金属配線層128bとが形成されている。 The drain N + region 123a is connected to the first metal wiring layer 125a to which the reset / off voltage VRL is applied via the contact hole 124a. The drain P + regions 123b and 123c of the P channel SGT are connected to the first metal wiring layer 125b to which the reset-on voltage VRH is applied via the contact holes 124b and 124c. First semiconductor layer 120a, second semiconductor layer 120b, signal line N + region 102a, island-shaped semiconductor 119a constituting N-channel SGT, island-shaped semiconductors 119b and 119c constituting P-channel SGT, island constituting pixels The first interlayer insulating layer 130a, the second interlayer insulating layer 130b, the third interlayer insulating layer 130c, the fourth interlayer insulating layer 130d, and the fifth interlayer insulating layer 130e are formed between the semiconductor P11 and on the substrate 100. Is formed. The pixel reset gate conductor layer 105a is wired on the first interlayer insulating layer 130a, the P-channel / N-channel SGT gate conductor layer 126 is wired on the second interlayer insulating layer 130b, and the third interlayer insulating layer 130d. The pixel selection line conductor layer 108a is wired thereon, the first metal wiring layers 125a, 125b, 125c, 125e are formed on the fourth interlayer insulating layer 130d, and the P-well is formed on the fifth interlayer insulating layer 130e. A second metal wiring layer 128a connected to region 121a and a second metal wiring layer 128b connected to N well region 121b are formed.
 図8Dの断面構造図に示すように、画素を構成する島状半導体P11におけるリセットMOSトランジスタのリセットゲート導体層105aが、画素を構成する島状半導体P11の底部にあるのに対して、CMOSインバータ回路113aのSGTゲート導体層126は、第1・第2の半導体層120a,120b上のSGTを構成する島状半導体119a,119b,119cの底部にある。画素を構成する島状半導体P11のフォトダイオード領域は、画素を構成する島状半導体P11の上面より入射した光をこのフォトダイオード領域で効率良く吸収するために、2.5~3μmの高さが必要である(非特許文献1を参照)。
 これに対して、リセットゲート導体層105aとSGTゲート導体層126の高さは0.1μm程度、またはそれ以下であっても良い。通常、最初に信号線N領域102aに画素を構成する島状半導体P11を加えた厚さと、同じ厚さの半導体層120a,120bを、CMOSインバータ回路113aを含む駆動出力回路領域に形成し、その後に画素を構成する島状半導体P11とSGTを構成する島状半導体119a,119bを形成する。このため、画素を構成する島状半導体P11のリセットゲート導体層105aと、SGTゲート導体層126の高さ方向の位置に、必然的に、ほぼ画素を構成する島状半導体P11の高さの違いが生じる。そして、リセットゲート導体層105aは第1の層間絶縁層130a上に形成されており、SGTゲート導体層126は第2の層間絶縁層130b上に形成されるため、リセットゲート導体層105aとSGTゲート導体層126は、必然的に、別々に形成しなければいけない。同様に、信号線N領域102aとNチャネルSGTのソースN領域122aは別々に形成しなければいけない。このため、この固体撮像装置の製造は、画素を構成する島状半導体P11の構造を形成する工程に加えて、駆動出力回路を構成するSGTを形成する工程が必要になる。これは、本固体撮像装置の歩留り低下、コスト増加に繋がる。
8D, the reset gate conductor layer 105a of the reset MOS transistor in the island-shaped semiconductor P11 constituting the pixel is at the bottom of the island-shaped semiconductor P11 constituting the pixel, whereas the CMOS inverter The SGT gate conductor layer 126 of the circuit 113a is at the bottom of the island-shaped semiconductors 119a, 119b, and 119c constituting the SGT on the first and second semiconductor layers 120a and 120b. The photodiode region of the island-shaped semiconductor P11 constituting the pixel has a height of 2.5 to 3 μm in order to efficiently absorb light incident from the upper surface of the island-shaped semiconductor P11 constituting the pixel. Necessary (see Non-Patent Document 1).
On the other hand, the height of the reset gate conductor layer 105a and the SGT gate conductor layer 126 may be about 0.1 μm or less. Usually, semiconductor layers 120a and 120b having the same thickness as the sum of the signal line N + region 102a and the island-shaped semiconductor P11 constituting the pixel are formed in the drive output circuit region including the CMOS inverter circuit 113a. Thereafter, island-shaped semiconductors P11 and 119b that form SGT and island-shaped semiconductors P11 that form pixels are formed. For this reason, the height difference between the reset gate conductor layer 105a of the island-shaped semiconductor P11 constituting the pixel and the height direction of the SGT gate conductor layer 126 inevitably differs in the height of the island-shaped semiconductor P11 constituting the pixel. Occurs. Since the reset gate conductor layer 105a is formed on the first interlayer insulating layer 130a and the SGT gate conductor layer 126 is formed on the second interlayer insulating layer 130b, the reset gate conductor layer 105a and the SGT gate are formed. The conductor layer 126 must be formed separately. Similarly, the signal line N + region 102a and the source N + region 122a of the N channel SGT must be formed separately. For this reason, the manufacture of this solid-state imaging device requires a step of forming an SGT that constitutes the drive output circuit in addition to the step of forming the structure of the island-shaped semiconductor P11 that constitutes the pixel. This leads to a decrease in yield and an increase in cost of the solid-state imaging device.
 なお、図8C、図8Dでは、第1・第2の半導体層120a,120bの上部にPウエル領域121a、Nウエル領域121bを形成されている。Pウエル領域121aとNウエル領域121bの存在によって、例えば第1・第2の半導体層120a、120bに入射した漏洩光により発生する電流がNチャネルSGTのソースN領域122a及びPチャネルSGTのソースP領域122bに流入することを防止して、CMOSインバータ回路113aの誤動作が発生しづらくなっている。また、Pウエル領域121aとNウエル領域121bと、コンタクトホール127c,127eを介して接続された第2層目金属配線層128a、128bを、例えばグランド電圧に印加しておくことにより、NチャネルSGTのソースN領域122a及びPチャネルSGTのソースP領域122bを、電気的に浮遊している第1・第2の半導体層120a,120bから分離することにより、CMOSインバータ回路113aをより安定に動作させることができる。 8C and 8D, a P well region 121a and an N well region 121b are formed above the first and second semiconductor layers 120a and 120b. Due to the presence of the P well region 121a and the N well region 121b, for example, current generated by leakage light incident on the first and second semiconductor layers 120a and 120b causes the source N + region 122a of the N channel SGT and the source of the P channel SGT. This prevents the CMOS inverter circuit 113a from malfunctioning by preventing it from flowing into the P + region 122b. Further, by applying the second-layer metal wiring layers 128a and 128b connected to the P well region 121a and the N well region 121b through the contact holes 127c and 127e, for example, to the ground voltage, the N channel SGT By separating the source N + region 122a of the P and the source P + region 122b of the P-channel SGT from the first and second semiconductor layers 120a and 120b that are electrically floating, the CMOS inverter circuit 113a can be made more stable. It can be operated.
 Nチャネル・PチャネルSGTは、このCMOSインバータ回路113a以外の駆動出力回路である、リセット線垂直走査回路112のシフトレジスタ114、画素選択走査回路110、水平走査回路116、出力回路117、スイッチSGT115a,115b,115c、スイッチ回路118a,118b,118cにも形成されるので、上述の本固体撮像装置の歩留り低下、コスト増加に繋がる問題を生じる。 The N channel / P channel SGT is a drive output circuit other than the CMOS inverter circuit 113a, which is a shift register 114 of the reset line vertical scanning circuit 112, a pixel selection scanning circuit 110, a horizontal scanning circuit 116, an output circuit 117, a switch SGT 115a, 115b and 115c and switch circuits 118a, 118b, and 118c are also formed, resulting in a problem that leads to a decrease in yield and an increase in cost of the solid-state imaging device described above.
国際公開第2009/034623号International Publication No. 2009/034623 特開2009-182317号公報JP 2009-182317 A
 従来例の固体撮像装置においては、画素を構成する島状半導体P11におけるリセットMOSトランジスタのリセットゲート導体層105aが、画素を構成する島状半導体P11の底部にあるのに対して、駆動出力回路におけるSGTゲート導体層126が、画素を構成する島状半導体P11上面とほぼ同じ高さにある、第1・第2の半導体層120a,120b上のSGTを構成する島状半導体119a,119bにある。リセットMOSトランジスタのリセットゲート導体層105aと駆動出力回路におけるSGTゲート導体層126の高さの差は、画素を構成する島状半導体P11のフォトダイオード領域として必要な2.5~3μmと大きい。そして、リセットMOSトランジスタのリセットゲート導体層105aと駆動出力回路におけるSGTゲート導体層126が異なる層間絶縁層130a,130b上に形成される。このため、必然的に、リセットMOSトランジスタのリセットゲート導体層105aと駆動出力回路におけるSGTゲート導体層126は、別々に形成しなければいけない。同様に、信号線N領域102aとNチャネルSGTのソースN領域122aも、別々に形成する必要がある。このため、固体撮像装置の製造において、画素を構成する島状半導体P11の構造を形成する工程に加えて、駆動出力回路におけるSGTを形成する工程が必要になる。これは、本固体撮像装置の歩留り低下、コスト増加に繋がる。これに対し、画素を構成する島状半導体P11と駆動出力回路を構成するSGTとを同一の基板100上に形成する固体撮像装置において、歩留まり低下、およびコスト増加を抑制しうる固体撮像装置が求められる。
 本発明は、上記の事情を鑑みてなされたものであり、歩留まり低下、およびコスト増加を抑制しうる固体撮像装置を実現することを目的とする。
In the solid-state imaging device of the conventional example, the reset gate conductor layer 105a of the reset MOS transistor in the island-shaped semiconductor P11 constituting the pixel is at the bottom of the island-shaped semiconductor P11 constituting the pixel, whereas in the drive output circuit The SGT gate conductor layer 126 is located on the island-shaped semiconductors 119a and 119b constituting the SGT on the first and second semiconductor layers 120a and 120b, which are substantially at the same height as the upper surface of the island-shaped semiconductor P11 constituting the pixel. The difference in height between the reset gate conductor layer 105a of the reset MOS transistor and the SGT gate conductor layer 126 in the drive output circuit is as large as 2.5 to 3 μm necessary for the photodiode region of the island-shaped semiconductor P11 constituting the pixel. The reset gate conductor layer 105a of the reset MOS transistor and the SGT gate conductor layer 126 in the drive output circuit are formed on different interlayer insulating layers 130a and 130b. Therefore, inevitably, the reset gate conductor layer 105a of the reset MOS transistor and the SGT gate conductor layer 126 in the drive output circuit must be formed separately. Similarly, the signal line N + region 102a and the source N + region 122a of the N channel SGT must be formed separately. For this reason, in the manufacture of the solid-state imaging device, in addition to the step of forming the structure of the island-shaped semiconductor P11 constituting the pixel, the step of forming the SGT in the drive output circuit is required. This leads to a decrease in yield and an increase in cost of the solid-state imaging device. In contrast, in a solid-state imaging device in which the island-shaped semiconductor P11 that constitutes the pixel and the SGT that constitutes the drive output circuit are formed on the same substrate 100, a solid-state imaging device that can suppress a decrease in yield and an increase in cost is desired. It is done.
The present invention has been made in view of the above circumstances, and an object thereof is to realize a solid-state imaging device capable of suppressing a decrease in yield and an increase in cost.
 上記目的を達成するため、本発明の固体撮像装置は、
 2次元状に配置された画素と、前記画素を駆動するとともに、前記画素からの信号を読み出す駆動出力回路と、を有する固体撮像装置において、
 前記画素は、基板上に形成された第1の島状半導体を有し、
 前記駆動出力回路は、前記基板上に、前記第1の島状半導体と同じ高さになるように形成された少なくとも1つの第2の島状半導体を有し、
 前記第1の島状半導体は、
 前記第1の島状半導体の底部に形成された第1の半導体領域と、
 前記第1の半導体領域上に形成され、前記第1の半導体領域と反対導電型、または真性型の半導体からなる第2の半導体領域と、
 前記第2の半導体領域の下部、かつ、外周に形成された第1のゲート絶縁層と、
 前記第1のゲート絶縁層を囲むように形成された第1のゲート導体層と、
 前記第1のゲート導体層に隣接する前記第2の半導体領域の外周部に形成され、前記第1の半導体領域と同じ導電型の半導体からなる第3の半導体領域と、
 前記第3の半導体領域及び前記第2の半導体領域上に形成され、前記第1の半導体領域と反対の導電型の半導体からなる第4の半導体領域とを、有し、
 前記第2の島状半導体は、
 前記第2の島状半導体の下部に形成された第5の半導体領域と、
 前記第5の半導体領域上に形成され、前記第5の半導体領域と反対導電型、または真性型の半導体からなる第6の半導体領域と、
 前記第6の半導体領域の外周に形成された第2のゲート絶縁層を囲むように形成された第2のゲート導体層と、
 前記第6の半導体領域上に、前記第2のゲート導体層に隣接するように、かつ、前記第2の半導体領域の上方に位置するように形成された第7の半導体領域とを、有し、
 前記第1のゲート導体層及び前記第2のゲート導体層は、それぞれの底部が同じ面上に位置している、
 ことを特徴とする。
In order to achieve the above object, the solid-state imaging device of the present invention includes:
In a solid-state imaging device having two-dimensionally arranged pixels, and a drive output circuit that drives the pixels and reads signals from the pixels,
The pixel has a first island-shaped semiconductor formed on a substrate,
The drive output circuit has at least one second island-shaped semiconductor formed on the substrate to have the same height as the first island-shaped semiconductor,
The first island-shaped semiconductor is
A first semiconductor region formed at the bottom of the first island-shaped semiconductor;
A second semiconductor region formed on the first semiconductor region and made of a semiconductor having a conductivity type opposite to that of the first semiconductor region or an intrinsic type;
A first gate insulating layer formed at a lower portion and an outer periphery of the second semiconductor region;
A first gate conductor layer formed so as to surround the first gate insulating layer;
A third semiconductor region formed on the outer periphery of the second semiconductor region adjacent to the first gate conductor layer and made of a semiconductor having the same conductivity type as the first semiconductor region;
A fourth semiconductor region formed on the third semiconductor region and the second semiconductor region and made of a semiconductor having a conductivity type opposite to the first semiconductor region;
The second island-shaped semiconductor is
A fifth semiconductor region formed under the second island-shaped semiconductor;
A sixth semiconductor region formed on the fifth semiconductor region and made of a semiconductor having a conductivity type opposite to that of the fifth semiconductor region or an intrinsic type;
A second gate conductor layer formed so as to surround a second gate insulating layer formed on the outer periphery of the sixth semiconductor region;
A seventh semiconductor region formed on the sixth semiconductor region so as to be adjacent to the second gate conductor layer and to be positioned above the second semiconductor region; ,
The first gate conductor layer and the second gate conductor layer have their bottoms located on the same plane,
It is characterized by that.
 前記第1のゲート導体層及び前記第2のゲート導体層の高さが互いに同じである、とすることができる。 The height of the first gate conductor layer and the second gate conductor layer may be the same.
 前記第2のゲート導体層が、複数の前記第2の島状半導体の内の一部の前記第2の島状半導体を囲むように形成された第3のゲート導体層と、複数の前記第2の島状半導体の内において、前記第3のゲート導体層が囲む前記第2の島状半導体とは異なる前記第2の島状半導体を囲むように形成され、前記第3のゲート導体層と異なる材料からなる第4のゲート導体層と、から構成されている、とすることができる。 A third gate conductor layer formed so as to surround a part of the second island-shaped semiconductors among the plurality of second island-shaped semiconductors; Among the two island-shaped semiconductors, the third gate conductor layer is formed so as to surround the second island-shaped semiconductor different from the second island-shaped semiconductor surrounded by the third gate conductor layer, And a fourth gate conductor layer made of a different material.
 前記第3のゲート導体層及び前記第4のゲート導体層の高さが互いに異なる、とすることができる。 The heights of the third gate conductor layer and the fourth gate conductor layer may be different from each other.
 前記第3のゲート導体層及び前記第4のゲート導体層の高さが互いに同じである、とすることができる。 The height of the third gate conductor layer and the fourth gate conductor layer may be the same.
 前記第2の島状半導体において、前記第6の半導体領域上に、前記第7の半導体領域が形成され、前記第7の半導体領域上に、シリサイド層又は金属層からなる導体層が形成されている、とすることができる。 In the second island-shaped semiconductor, the seventh semiconductor region is formed on the sixth semiconductor region, and a conductor layer made of a silicide layer or a metal layer is formed on the seventh semiconductor region. It can be said.
 前記第2の島状半導体において、前記第6の半導体領域を囲むように金属層が設けられている、とすることができる。 In the second island-shaped semiconductor, a metal layer may be provided so as to surround the sixth semiconductor region.
 前記第1の島状半導体及び前記第2の島状半導体と、当該第1及び第2の島状半導体と同じ高さに形成された第3の島状半導体と、を有し、
 前記第1の島状半導体を囲むように形成された前記第1のゲート導体層と、前記第2の島状半導体を囲むように形成された前記第2のゲート導体層の内の少なくとも一方が、前記第3の島状半導体を囲むように延在しており、
 前記第1のゲート導体層及び前記第2のゲート導体層の内の少なくとも一方が、前記第3の島状半導体の内部に形成された導体層と、前記第3の島状半導体の下方部位で電気的に接続されている、とすることができる。
The first island-shaped semiconductor and the second island-shaped semiconductor, and a third island-shaped semiconductor formed at the same height as the first and second island-shaped semiconductor,
At least one of the first gate conductor layer formed so as to surround the first island-shaped semiconductor and the second gate conductor layer formed so as to surround the second island-shaped semiconductor; , Extending around the third island-shaped semiconductor,
At least one of the first gate conductor layer and the second gate conductor layer is a conductor layer formed inside the third island-shaped semiconductor, and a lower portion of the third island-shaped semiconductor. It can be electrically connected.
 前記第3の島状半導体の内部に形成された導体層が、前記第1の半導体領域及び前記第5の半導体領域の内の少なくとも一方と、前記第3の島状半導体の下方部位で接続されている、とすることができる。 A conductor layer formed inside the third island-shaped semiconductor is connected to at least one of the first semiconductor region and the fifth semiconductor region at a lower portion of the third island-shaped semiconductor. It can be said that.
 本発明によれば、画素高集積化、高感度化、低コスト化を可能にする固体撮像装置を提供することができる。 According to the present invention, it is possible to provide a solid-state imaging device that enables high pixel integration, high sensitivity, and low cost.
本発明の第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路について説明するための模式回路図である。It is a schematic circuit diagram for demonstrating the pixel and CMOS inverter circuit of the solid-state imaging device which concern on the 1st Embodiment of this invention. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路について説明するための模式平面図である。It is a schematic plan view for demonstrating the pixel and CMOS inverter circuit of the solid-state imaging device which concern on 1st Embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路について説明するための断面構造図である。FIG. 3 is a cross-sectional structure diagram for explaining a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 第1の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。FIG. 5 is a cross-sectional structure diagram for explaining a method of manufacturing a pixel and a CMOS inverter circuit of the solid-state imaging device according to the first embodiment. 本発明の第2の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is a cross-section figure for demonstrating the manufacturing method of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on the 2nd Embodiment of this invention. 第2の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is a cross-section figure for demonstrating the manufacturing method of the pixel of the solid-state imaging device which concerns on 2nd Embodiment, and a CMOS inverter circuit. 第2の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is a cross-section figure for demonstrating the manufacturing method of the pixel of the solid-state imaging device which concerns on 2nd Embodiment, and a CMOS inverter circuit. 第2の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is a cross-section figure for demonstrating the manufacturing method of the pixel of the solid-state imaging device which concerns on 2nd Embodiment, and a CMOS inverter circuit. 第2の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is a cross-section figure for demonstrating the manufacturing method of the pixel of the solid-state imaging device which concerns on 2nd Embodiment, and a CMOS inverter circuit. 第2の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の断面構造図である。It is a cross-sectional structure figure of the pixel and CMOS inverter circuit of the solid-state imaging device concerning a 2nd embodiment. 本発明の第3の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is a cross-section figure for demonstrating the manufacturing method of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on the 3rd Embodiment of this invention. 第3の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is sectional structure drawing for demonstrating the manufacturing method of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on 3rd Embodiment. 第3の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is sectional structure drawing for demonstrating the manufacturing method of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on 3rd Embodiment. 第3の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の断面構造図である。FIG. 6 is a cross-sectional structure diagram of a pixel and a CMOS inverter circuit of a solid-state imaging device according to a third embodiment. 本発明の第4の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の断面構造図である。It is a cross-section figure of a pixel and CMOS inverter circuit of a solid imaging device concerning a 4th embodiment of the present invention. 本発明の第5の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の断面構造図である。It is a cross-sectional structure figure of the pixel and CMOS inverter circuit of the solid-state imaging device which concern on the 5th Embodiment of this invention. 本発明の第6の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is a cross-section figure for demonstrating the manufacturing method of the pixel of the solid-state imaging device which concerns on the 6th Embodiment of this invention, and a CMOS inverter circuit. 第6の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の製造方法について説明するための断面構造図である。It is sectional structure drawing for demonstrating the manufacturing method of the pixel of the solid-state imaging device which concerns on 6th Embodiment, and a CMOS inverter circuit. 第6の実施形態に係る固体撮像装置の画素とCMOSインバータ回路の断面構造図である。It is a sectional structure figure of a pixel of a solid-state imaging device concerning a 6th embodiment, and a CMOS inverter circuit. 従来例の固体撮像装置の画素断面構造図である。It is a pixel cross-section figure of the solid-state imaging device of a prior art example. 従来例の固体撮像装置の模式平面図である。It is a model top view of the solid-state imaging device of a prior art example. 従来例の固体撮像装置における画素とCMOSインバータ回路の模式平面図である。It is a schematic top view of the pixel and CMOS inverter circuit in the solid-state imaging device of a prior art example. 従来例の固体撮像装置における画素とCMOSインバータ回路の断面構造図である。It is sectional drawing of the pixel and CMOS inverter circuit in the solid-state imaging device of a prior art example.
 以下に、本発明の第実施形態に係る固体撮像装置について図面を参照して説明する。 Hereinafter, a solid-state imaging device according to a second embodiment of the present invention will be described with reference to the drawings.
(第1の実施形態)
 以下、図1A~図1Cを参照しながら、本発明の第1の実施形態に係る固体撮像装置について説明する。
(First embodiment)
The solid-state imaging device according to the first embodiment of the present invention will be described below with reference to FIGS. 1A to 1C.
 本実施形態に係る固体撮像装置の模式平面図は、図8Bに示すものと同じである。図1Aに、図8Bに示す固体撮像装置の模式平面図の2点鎖線で囲まれた領域Aの、模式回路図を示す。リセットゲート導体層105aは、2個のPチャネルSGT4aa、4bbと1個のNチャネルSGT4ccからなるCMOSインバータ回路113aに接続され、このCMOSインバータ回路113aはシフトレジスタ114に接続されている。
 そして、このCMOSインバータ回路113aの入力端子にシフトレジスタ114から低レベル電圧が印加されると、出力端子からリセット・オン電圧VRHがリセットゲート導体層105aに印加され、CMOSインバータ回路113aの入力端子にシフトレジスタ114から高レベル電圧が印加されると、出力端子からリセット・オフ電圧VRLがリセットゲート導体層105aに印加される。
The schematic plan view of the solid-state imaging device according to this embodiment is the same as that shown in FIG. 8B. FIG. 1A shows a schematic circuit diagram of a region A surrounded by a two-dot chain line in the schematic plan view of the solid-state imaging device shown in FIG. 8B. The reset gate conductor layer 105 a is connected to a CMOS inverter circuit 113 a composed of two P-channel SGTs 4 aa and 4 bb and one N-channel SGT 4 cc. The CMOS inverter circuit 113 a is connected to the shift register 114.
When the low-level voltage from the shift register 114 to the input terminal of the CMOS inverter circuit 113a is applied, the reset-on voltage V RH is applied to the reset gate conductor layer 105a from the output terminal, the input terminal of the CMOS inverter circuit 113a When a high level voltage is applied from the shift register 114, the reset-off voltage VRL is applied from the output terminal to the reset gate conductor layer 105a.
 図1Bに、図1Aの模式平面図を示す。酸化シリコン基板(SiO基板)1上に、画素領域における信号線N領域102aとCMOSインバータ回路113a領域のNチャネルSGT4ccのソース用板状N領域3aとPチャネルSGT4aa,4bbのソース用板状P領域3bが形成されている。また、信号線N領域102a上に画素を構成する島状半導体P11が形成され、ソース用板状N領域3a上にNチャネルSGT4ccを構成する島状半導体4aが形成され、PチャネルSGT4aa,4bbのソース用板状P領域3b上にPチャネルSGT4aa,4bbを構成する島状半導体4b,4cが形成されている。NチャネルSGT4ccを構成する島状半導体とPチャネルSGT4aa,4bbを構成する島状半導体を囲むように、連続したゲート導体層7aが形成され、画素を構成する島状半導体P11を囲み、水平方向に繋がったリセットゲート導体層105aが形成されている。 FIG. 1B shows a schematic plan view of FIG. 1A. On the silicon oxide substrate (SiO 2 substrate) 1, the signal line N + region 102a in the pixel region, the source plate N + region 3a of the N channel SGT4cc in the CMOS inverter circuit 113a region, and the source plate of the P channels SGT4aa and 4bb A shaped P + region 3b is formed. Further, an island-shaped semiconductor P11 that constitutes a pixel is formed on the signal line N + region 102a, and an island-like semiconductor 4a that constitutes an N-channel SGT4cc is formed on the source plate-like N + region 3a, and the P-channel SGT4aa, Island- like semiconductors 4b and 4c constituting P-channel SGTs 4aa and 4bb are formed on the 4bb source plate-like P + region 3b. A continuous gate conductor layer 7a is formed so as to surround the island-shaped semiconductor constituting the N-channel SGT4cc and the island-shaped semiconductor constituting the P-channel SGT4aa, 4bb, and surrounds the island-shaped semiconductor P11 constituting the pixel in the horizontal direction. A connected reset gate conductor layer 105a is formed.
 ゲート導体層7a上にコンタクトホール9aが形成され、ゲート導体層7aはこのコンタクトホール9aを介してシフトレジスタ114に繋がる第1層目金属配線層12a(一点鎖線)に繋がっている。そして、リセットゲート導体層105a上にコンタクトホール9bが形成され、リセットゲート導体層105aはコンタクトホール9bを介して第1層目金属配線層12e(一点鎖線)に接続されている。NチャネルSGT4ccのソース用板状N領域3aとPチャネルSGT4aa,4bbのソース用板状P領域3bの境界上にコンタクトホール9cが形成され、このコンタクトホール9cを介して、NチャネルSGT4ccのソース用板状N領域3aとPチャネルSGT4aa,4bbのソース用板状P領域3bが第1層目金属配線層12e(一点鎖線)に接続されている。NチャネルSGT4ccを構成する島状半導体4aの上部にあるドレインN領域8a上にコンタクトホール11aを形成し、PチャネルSGT4aa,4bbを構成する島状半導体4bの上部にあるドレインN領域8b、8c上にコンタクトホール11b、11cを形成している。そして、ドレインN領域8aはコンタクトホール11aを介してリセット低レベル電圧VRLが印加されている第1層目金属配線層12b(一点鎖線)に接続され、ドレインP領域8b、8cはコンタクトホール11b、11cを介してリセット高レベル電圧VRHが印加されている第1層目金属配線層12c、12d(一点鎖線)に接続されている。これら第1層目金属配線層12c、12dはリセットオン電圧VRHが印加されている第2層目金属配線層14(点線)に接続されている。 A contact hole 9a is formed on the gate conductor layer 7a, and the gate conductor layer 7a is connected to the first metal wiring layer 12a (one-dot chain line) connected to the shift register 114 via the contact hole 9a. A contact hole 9b is formed on the reset gate conductor layer 105a, and the reset gate conductor layer 105a is connected to the first metal wiring layer 12e (one-dot chain line) through the contact hole 9b. A contact hole 9c is formed on the boundary between the source plate N + region 3a of the N channel SGT4cc and the source plate P + region 3b of the P channels SGT4aa and 4bb, and the N channel SGT4cc of the N channel SGT4cc is formed via the contact hole 9c. The source plate N + region 3a and the source plate P + regions 3b of the P channels SGT4aa and 4bb are connected to the first metal wiring layer 12e (one-dot chain line). Drain N + region 8b of the drain N + region on 8a at the top of the island-like semiconductor 4a constituting the N-channel SGT4cc to form a contact hole 11a, the top of the island-like semiconductor 4b constituting P-channel SGT4aa, the 4bb, Contact holes 11b and 11c are formed on 8c. The drain N + region 8a is connected to the first metal wiring layer 12b (one-dot chain line) to which the reset low level voltage VRL is applied via the contact hole 11a, and the drain P + regions 8b and 8c are in contact with each other. The holes are connected to the first metal wiring layers 12c and 12d (one-dot chain lines) to which the reset high level voltage VRH is applied through the holes 11b and 11c. The first metal wiring layers 12c and 12d are connected to the second metal wiring layer 14 (dotted line) to which the reset on voltage VRH is applied.
 図1Cに、図1BのA-A’線に沿った断面構造図を示す。画素を構成する島状半導体P11の断面構造は、図8Dに示したものと同じである。基板1(例えばSiO層)上に、画素の信号線N領域102aと、NチャネルSGT4ccのソースN領域3aと、PチャネルSGT4aa,4bbのソースP領域3bが形成されている。画素を構成する島状半導体P11が信号線N領域102a上に形成され、NチャネルSGT4ccを構成する島状半導体4aがソース半導体層N領域3a上に形成され、PチャネルSGT4aa,4bbを構成する島状半導体4a,4bがソースP領域3b上に形成されている。NチャネルSGT4ccを構成する島状半導体4aの下方部位にソースN領域3aが繋がるとともに、PチャネルSGT4aa,4bbを構成する島状半導体4b、4cの下方部位にソースP領域3bが繋がっている。ソースN領域3a上にNチャネルSGT4ccのチャネルP領域5aが繋がり、ソースP領域3b上にPチャネルSGT4aa,4bbのチャネルN領域5b、5cが繋がり、画素の信号線N領域2上にリセットMOSトランジスタのチャネル、接合トランジスタのドレインとなるP領域に繋がっている(これらチャネル半導体領域5a、5b、5c、画素を構成する島状半導体P11のP領5d域は真性型であっても良い)。ソースN領域3aに繋がったNチャネルSGT4ccを構成する島状半導体4aの外周部に、NチャネルSGT4ccのゲート絶縁層6aが形成され、ソースP領域3bに繋がったPチャネルSGT4aa,4bbを構成する島状半導体4b,4cの外周部に、PチャネルSGT4aa,4bbのゲート絶縁層6b、6cが形成されている。また、画素の信号線N領域102aに繋がる画素を構成する島状半導体P11の外周部にリセットMOSゲート絶縁膜6dが形成されている。 FIG. 1C shows a cross-sectional structure diagram along line AA ′ of FIG. 1B. The cross-sectional structure of the island-shaped semiconductor P11 constituting the pixel is the same as that shown in FIG. 8D. A signal line N + region 102a of a pixel, a source N + region 3a of an N channel SGT 4cc, and a source P + region 3b of P channels SGT 4aa and 4bb are formed on the substrate 1 (for example, SiO 2 layer). The island-shaped semiconductor P11 constituting the pixel is formed on the signal line N + region 102a, and the island-shaped semiconductor 4a constituting the N-channel SGT4cc is formed on the source semiconductor layer N + region 3a to constitute the P-channel SGT4aa and 4bb. Insulating semiconductors 4a and 4b are formed on the source P + region 3b. The source N + region 3a is connected to the lower portion of the island-shaped semiconductor 4a constituting the N-channel SGT4cc, and the source P + region 3b is connected to the lower portion of the island-shaped semiconductors 4b and 4c constituting the P-channel SGT4aa and 4bb. . The channel P region 5a of the N channel SGT4cc is connected to the source N + region 3a, the channel N regions 5b and 5c of the P channels SGT4aa and 4bb are connected to the source P + region 3b, and the signal line N + region 2 of the pixel is connected. It is connected to the channel of the reset MOS transistor and the P region which becomes the drain of the junction transistor (the channel semiconductor regions 5a, 5b and 5c, and the P region 5d region of the island-shaped semiconductor P11 constituting the pixel may be an intrinsic type. ). A gate insulating layer 6a of the N-channel SGT4cc is formed on the outer periphery of the island-shaped semiconductor 4a constituting the N-channel SGT4cc connected to the source N + region 3a, and P-channel SGT4aa and 4bb connected to the source P + region 3b are formed. Gate insulating layers 6b and 6c of P-channel SGTs 4aa and 4bb are formed on the outer periphery of the island-shaped semiconductors 4b and 4c. Further, a reset MOS gate insulating film 6d is formed on the outer periphery of the island-shaped semiconductor P11 constituting the pixel connected to the signal line N + region 102a of the pixel.
 NチャネルSGT4ccのゲート絶縁層6aとPチャネルSGT4aa,4bbのゲート絶縁層6b、6cの外周部を含み、基板1上に形成された第1の層間絶縁層14a上に、繋がってNチャネル・PチャネルSGT4aa,4bb、4ccのゲート導体層7aが形成されている。同じく、画素のリセットゲート導体層105aがリセットMOSのゲート絶縁膜6dの外周部を含み、第1の層間絶縁層14a上に、繋がって形成されている。NチャネルSGT4ccゲート導体層7aの上部に隣接したNチャネルSGT4ccを構成する島状半導体4a内にドレインN領域8aが形成され、同じく、PチャネルSGT4aa,4bbゲート導体層7aに上部に隣接したPチャネルSGT4aa,4bbを構成する島状半導体4b、4c内にドレインP領域8b、8cが形成されている。また、画素のリセットゲート導体層105aに上部に隣接した画素を構成する島状半導体P11内に、P領域5dと、このP領域5dを囲んで形成されたN領域8dよりなるフォトダイオード領域が形成されている。NチャネルSGT4ccのドレインN領域8a、PチャネルSGT4aa,4bbのドレインP領域8b、8cは、SGTを構成する島状半導体4a,4b,4cの上面まで繋がるように形成されている。また、画素を構成する島状半導体P11の上面に画素選択P領域10が形成されている。この画素選択P領域10は、第2の層間絶縁層14b上にある第3の層間絶縁層14c上に形成された画素選択線導体層108aに接続されている。 The outer periphery of the gate insulating layer 6a of the N-channel SGT4cc and the gate insulating layers 6b and 6c of the P-channel SGT4aa and 4bb is connected to the first interlayer insulating layer 14a formed on the substrate 1 and connected to the N-channel P Gate conductor layers 7a of channels SGT4aa, 4bb, 4cc are formed. Similarly, the reset gate conductor layer 105a of the pixel includes the outer periphery of the gate insulating film 6d of the reset MOS, and is connected to the first interlayer insulating layer 14a. A drain N + region 8a is formed in the island-like semiconductor 4a constituting the N-channel SGT4cc adjacent to the upper portion of the N-channel SGT4cc gate conductor layer 7a. Similarly, the P-channel SGT4aa, Pbb adjacent to the Pbb SGT4aa and 4bb gate conductor layers 7a Drain P + regions 8b and 8c are formed in the island- like semiconductors 4b and 4c constituting the channels SGT4aa and 4bb. In addition, a photodiode region composed of a P region 5d and an N region 8d formed so as to surround the P region 5d is formed in the island-shaped semiconductor P11 constituting the pixel adjacent to the upper portion of the reset gate conductor layer 105a of the pixel. Has been. The drain N + region 8a of the N channel SGT4cc and the drain P + regions 8b, 8c of the P channels SGT4aa, 4bb are formed so as to be connected to the top surfaces of the island- like semiconductors 4a, 4b, 4c constituting the SGT. Further, the pixel selection P + region 10 is formed on the upper surface of the island-shaped semiconductor P11 constituting the pixel. The pixel selection P + region 10 is connected to a pixel selection line conductor layer 108a formed on the third interlayer insulating layer 14c on the second interlayer insulating layer 14b.
 Nチャネル・PチャネルSGT4aa,4bb,4ccのゲート導体層7aはコンタクトホール9aを介して、第4の層間絶縁層14d上に形成され、シフトレジスタに繋がる第1層目金属配線層12aに接続されている。NチャネルSGT4ccを構成する島状半導体4aの上部にあるドレインN領域8aは、コンタクトホール11aを介してリセットオフ電圧VRLが印加されている第1層目金属配線層12bに接続されている。また、PチャネルSGTを構成する島状半導体4b,4cの上部にあるドレインP領域8b,8cは、コンタクトホール11b、11cを介してリセットオン電圧VRHが印加されている第1層目金属配線層12c、12dに接続されている。画素のリセットゲート導体層105aはコンタクトホール9bを介して、第4の層間絶縁層14d上にある、NチャネルSGT4ccのソースN領域3a、PチャネルSGT4aa,4bbのソースP領域3bと電気的に接続された第1層目金属配線層12eに接続されている。また、第1層目金属配線層12c、12dはコンタクトホール15a,15bを介して、第5の層間絶縁層14e上に形成された、リセットオン電圧VRHが印加された第2層目金属配線層16に接続されている。 N-channel / P-channel SGT4aa, 4bb, 4cc gate conductor layer 7a is formed on fourth interlayer insulating layer 14d through contact hole 9a, and is connected to first-layer metal interconnection layer 12a connected to the shift register. ing. The drain N + region 8a above the island-shaped semiconductor 4a constituting the N channel SGT4cc is connected to the first metal wiring layer 12b to which the reset off voltage VRL is applied via the contact hole 11a. . The drain P + regions 8b and 8c above the island-shaped semiconductors 4b and 4c constituting the P-channel SGT are applied to the first layer metal to which the reset-on voltage VRH is applied via the contact holes 11b and 11c. The wiring layers 12c and 12d are connected. The reset gate conductor layer 105a of the pixel is electrically connected to the source N + region 3a of the N channel SGT4cc and the source P + region 3b of the P channels SGT4aa and 4bb on the fourth interlayer insulating layer 14d through the contact hole 9b. Is connected to the first-layer metal wiring layer 12e. The first-layer metal wiring layers 12c and 12d are formed on the fifth interlayer insulating layer 14e through the contact holes 15a and 15b, and the second-layer metal wiring to which the reset-on voltage VRH is applied. Connected to layer 16.
 図1Cの断面構造図に示されるように、本実施形態の固体撮像装置においては、以下のような構造的特徴を有する。
 第1の特徴は、基板1上に直接に、Nチャネル・PチャネルSGT4aa,4bb,4ccのソースN領域3a、P領域3b、信号線N領域102aのドナー又はアクセプタ不純物を含んだ半導体領域が形成され、それらが同層に形成されている点である。
 第2の特徴は、Nチャネル・PチャネルSGT4aa,4bb,4ccのゲート導体層7aと画素のリセットゲート導体層105aとが、同じ第1の層間絶縁層14a上に形成されると共に、各島状半導体4a,4b,4c,P11の底部に繋がる、ゲート絶縁膜6a,6b,6c,6dの外周に形成され、互いに同層に形成されている点である。
 第3の特徴は、SGTのチャネルP領域5aまたはN領域5b,5cと、画素のリセットMOSチャネルのP領域5dと、が互いに同層に形成されている点である。
 第4の特徴は、SGTを構成する島状半導体4a,4b,4cの上部において、NチャネルSGT4ccのドレインN領域8aと、PチャネルSGT4aa,4bbのドレインP領域8b,8cとが、画素の島状半導体P11の上部において、フォトダイオードを構成するN領域8dと選択P領域10とが、互いに同層に形成されている。
As shown in the cross-sectional structure diagram of FIG. 1C, the solid-state imaging device of this embodiment has the following structural features.
The first feature is that a semiconductor containing donor or acceptor impurities of the source N + region 3a, the P + region 3b, and the signal line N + region 102a of the N channel / P channel SGT4aa, 4bb, 4cc directly on the substrate 1. Regions are formed and they are formed in the same layer.
The second feature is that an N-channel / P-channel SGT4aa, 4bb, 4cc gate conductor layer 7a and a pixel reset gate conductor layer 105a are formed on the same first interlayer insulating layer 14a, and each island-shaped It is formed on the outer periphery of the gate insulating films 6a, 6b, 6c, 6d connected to the bottoms of the semiconductors 4a, 4b, 4c, P11, and is formed in the same layer.
The third feature is that the SGT channel P region 5a or N regions 5b and 5c and the pixel reset MOS channel P region 5d are formed in the same layer.
The fourth feature is that the drain N + region 8a of the N-channel SGT4cc and the drain P + regions 8b, 8c of the P-channel SGT4aa, 4bb are arranged on the island-shaped semiconductors 4a, 4b, 4c constituting the SGT. In the upper part of the island-shaped semiconductor P11, the N region 8d and the selective P + region 10 constituting the photodiode are formed in the same layer.
 これらの構造的な特徴によって本実施形態は、以下のような利点を有する。
 第1の利点は、従来例の固体撮像装置(図8D)では、SGTを構成する島状半導体119a,119b,119cと画素を構成する島状半導体P11とを個別に形成していたのに対して、本実施形態においては、SGTを構成する島状半導体4a,4b,4cと画素を構成する島状半導体P11とを同じ工程で形成することができる点である。
 第2の利点は、NチャネルSGT4ccのN領域3a、PチャネルSGT4aa,4bbのソースP領域3bが、基板1上に直接形成されるため、従来例の固体撮像装置(図8D)のようなNウエル層121bや、Pウエル層121aを必要としない点である。
 第3の利点は、従来例の固体撮像装置(図8D参照)では個別に形成した、NチャネルSGT4ccのN領域3aを、画素信号線N領域102aと同じ工程で形成することができる点である。
 第4の利点は、従来例の固体撮像装置(図8D参照)では個別に形成したNチャネル・PチャネルSGT4aa,4bb,4ccのゲート導体層7a、画素のリセットゲート導体層105aを同じ工程で形成できる点である。
 第5の利点は、従来例の固体撮像装置(図8D参照)では個別に形成した、これらゲート導体層7a,105a上に形成するコンタクトホール9a,9bを同じ工程で形成できる点である。
Due to these structural features, the present embodiment has the following advantages.
The first advantage is that in the solid-state imaging device of the conventional example (FIG. 8D), the island-shaped semiconductors 119a, 119b, and 119c constituting the SGT and the island-shaped semiconductor P11 constituting the pixel are individually formed. In the present embodiment, the island-shaped semiconductors 4a, 4b, and 4c constituting the SGT and the island-shaped semiconductor P11 constituting the pixel can be formed in the same process.
The second advantage is that the N + region 3a of the N channel SGT4cc and the source P + region 3b of the P channels SGT4aa and 4bb are formed directly on the substrate 1, so that the conventional solid state imaging device (FIG. 8D) is used. The N well layer 121b and the P well layer 121a are not required.
A third advantage is that the N + region 3a of the N-channel SGT4cc formed individually in the conventional solid-state imaging device (see FIG. 8D) can be formed in the same process as the pixel signal line N + region 102a. It is.
The fourth advantage is that in the conventional solid-state imaging device (see FIG. 8D), the N-channel / P-channel SGT4aa, 4bb, 4cc gate conductor layer 7a and the pixel reset gate conductor layer 105a are formed in the same process. This is a possible point.
A fifth advantage is that contact holes 9a and 9b formed on the gate conductor layers 7a and 105a, which are individually formed in the solid-state imaging device of the conventional example (see FIG. 8D), can be formed in the same process.
 これらの利点は、従来例の固体撮像装置と比べて、本発明の固体撮像装置を少ない工程数で製作できることを意味している。これにより、固体撮像装置の低コスト化が実現される。 These advantages mean that the solid-state imaging device of the present invention can be manufactured with a smaller number of processes than the conventional solid-state imaging device. Thereby, cost reduction of a solid-state imaging device is implement | achieved.
 図2A~図2Qを参照しながら、本発明の第1の実施形態に係る固体撮像装置を形成するための製造方法を示し、図1Bの画素部とCMOSインバータ回路部平面図のA-A’線に沿った断面構造を形成する製造方法を示す。 A manufacturing method for forming the solid-state imaging device according to the first embodiment of the present invention will be described with reference to FIGS. 2A to 2Q, and AA ′ in the plan view of the pixel portion and CMOS inverter circuit portion in FIG. 1B. The manufacturing method which forms the cross-sectional structure along a line is shown.
 図2Aに示すように、SiO基板21上に単結晶半導体シリコン層(以下、単に「Si層」とする。)22を形成している。このSi層22表面を酸化してSiO層23を形成し、このSiO層23上にシリコン窒化層(以後SiN層と記載する)24と、CVD(Chemical Vapor Deposition)法によるSiO層25を形成する。
 ここで、CVD法によるSiO層25はSi層22をRIE(Reactive Ion Etching)法によるエッチングにおけるエッチングマスクの役割をする。SiN層24は、後工程におけるCMP(Chemical Mechanical Polishing)SiO膜平坦化におけるストッパ層の役割をする。また、Si層22上のSiO層23は、Si層22とSiN層24との応力緩和のためのバッファ層となる。
As shown in FIG. 2A, a single crystal semiconductor silicon layer (hereinafter simply referred to as “Si layer”) 22 is formed on a SiO 2 substrate 21. The SiO 2 layer 23 formed by oxidizing the Si layer 22 surface, and the silicon nitride layer on the SiO 2 layer 23 (which is hereafter written as SiN layer) 24, CVD (Chemical Vapor Deposition ) method using SiO 2 layer 25 Form.
Here, the SiO 2 layer 25 by the CVD method serves as an etching mask in etching the Si layer 22 by the RIE (Reactive Ion Etching) method. The SiN layer 24 serves as a stopper layer in planarizing a CMP (Chemical Mechanical Polishing) SiO 2 film in a later process. The SiO 2 layer 23 on the Si layer 22 serves as a buffer layer for stress relaxation between the Si layer 22 and the SiN layer 24.
 次に、図2Bに示すように、NチャネルSGT部、PチャネルSGT部、画素部のSi層22を、SiO層25をエッチングマスクにして、エッチングして、NチャネルSGTを構成するシリコン柱(以下、「シリコン柱」を「Si柱」とする。)26a、PチャネルSGTを構成するSi柱26b,26c、画素を構成するSi柱26dを形成し、Si層22の底部に板状Si層22a,22bを残存させる。
 ここでは、板状Si層22a,22b領域のSi層22をSiO基板21表面までエッチングして、次にSi柱26a,26b,26c,26dを形成することによって図2Bの構造を形成する。
Next, as shown in FIG. 2B, the silicon layer constituting the N channel SGT is etched by etching the Si layer 22 of the N channel SGT part, the P channel SGT part, and the pixel part using the SiO 2 layer 25 as an etching mask. (Hereinafter, the “silicon pillar” will be referred to as “Si pillar”.) 26a, Si pillars 26b and 26c constituting the P channel SGT, and Si pillar 26d constituting the pixel are formed, and a plate-like Si is formed at the bottom of the Si layer 22. The layers 22a and 22b are left.
Here, etching plate Si layer 22a, the Si layer 22 of 22b region to SiO 2 substrate 21 surface, then Si pillars 26a, 26b, 26c, by forming 26d form the structure of FIG. 2B.
 続いて、図2Cに示すように、Si柱26a,26b,26c,26dと板状Si層225a,22bの外周にSiO層27a,27b,27c,27dを形成する。続いて、Si柱26a,26b,26c,26dのSiO層27a,27b,27c,27dを囲んで多結晶Si層28a,28b,28c,28dを形成し、PチャネルSGT部以外をフォトレジスト層29で覆い、この上からアクセプタ不純物のボロン(B)イオン注入を行い、板状Si層25aにP領域30を形成する。なお、フォトレジスト層29の形成は、フォトリソグラフィ(photolithography)技術を用いて行う。ここで、多結晶Si層28a,28b,28c,28dはボロンイオン注入のとき、Si柱26a,26b,26c,26d内にボロンイオンを注入させないためのストッパ層である。
 その後、フォトレジスト層29を除去し、同様なフォトリソグラフィ技術とドナー不純物リン(P)または砒素(As)イオン注入により、NチャネルSGT部の板状Si層22aと画素用板状Si層22bにN領域を形成する。
Subsequently, as shown in FIG. 2C, SiO 2 layers 27a, 27b, 27c, and 27d are formed on the outer periphery of the Si pillars 26a, 26b, 26c, and 26d and the plate-like Si layers 225a and 22b. Subsequently, polycrystalline Si layers 28a, 28b, 28c, and 28d are formed surrounding the SiO 2 layers 27a, 27b, 27c, and 27d of the Si pillars 26a, 26b, 26c, and 26d, and a photoresist layer is formed except for the P-channel SGT portion. Then, boron (B) ions of acceptor impurities are implanted from above, and a P + region 30 is formed in the plate-like Si layer 25a. The formation of the photoresist layer 29 is performed using a photolithography technique. Here, the polycrystalline Si layers 28a, 28b, 28c, 28d are stopper layers for preventing boron ions from being implanted into the Si pillars 26a, 26b, 26c, 26d when boron ions are implanted.
Thereafter, the photoresist layer 29 is removed, and the plate-like Si layer 22a and the pixel-like plate-like Si layer 22b in the N-channel SGT portion are formed by the same photolithography technique and donor impurity phosphorus (P) or arsenic (As) ion implantation. N + regions are formed.
 次に、図2Dに示すように、多結晶Si層28a,28b,28c,28dを除去し、熱処理を行うことにより、熱拡散により板状Si層25a,25bからSi柱26a,26b,26c,26dの下方部位に繋がったN領域31a,31c,P領域31bが形成される。 Next, as shown in FIG. 2D, the polycrystalline Si layers 28a, 28b, 28c, 28d are removed and heat treatment is performed, so that the Si pillars 26a, 26b, 26c, N + regions 31a, 31c, and P + regions 31b connected to the lower portion of 26d are formed.
 続いて、図2Eに示すように、PチャネルSGTを構成するSi柱26b,26cを覆うようにフォトレシスト層32をフォトリソグラフィ技術で形成し、さらにボロン(B)などのアクセプタ不純物のイオン注入を行い、NチャネルSGTを構成するSi柱26a、画素を構成するSi柱26dに、P領域33a,33dを形成する。その後、フォトレシスト層32を除去する。 Subsequently, as shown in FIG. 2E, a photoresist layer 32 is formed by photolithography so as to cover the Si pillars 26b and 26c constituting the P channel SGT, and ion implantation of acceptor impurities such as boron (B) is further performed. Then, P regions 33a and 33d are formed in the Si pillar 26a constituting the N channel SGT and the Si pillar 26d constituting the pixel. Thereafter, the photo resist layer 32 is removed.
 続いて、これと同様にして、NチャネルSGTを構成するSi柱26a、画素を構成するSi柱26dを覆うようにフォトリソグラフィ技術によりフォトレシスト層を形成し、砒素(As),リン(P)などのドナー不純物のイオン注入を行い、さらにフォトレシスト層を除去し熱処理することにより、図2Fに示すように、PチャネルSGTを構成するSi柱26b,26cにN領域33b、33cを形成する。 Subsequently, in the same manner, a photoresist layer is formed by photolithography so as to cover the Si pillar 26a constituting the N channel SGT and the Si pillar 26d constituting the pixel, and arsenic (As), phosphorus (P). As shown in FIG. 2F, N regions 33b and 33c are formed in the Si pillars 26b and 26c constituting the P channel SGT by performing ion implantation of donor impurities such as the above and further removing the photo resist layer and performing heat treatment.
 続いて、図2Gに示すように、第1の層間絶縁層34aを形成し、SiO層27a,27b,27c,27dを除去し(このとき同時にSiO層25a,25b,25c,25dが除去される)、Si柱26a,26b,26c,26dの外周にSiO、酸化ハフニウム(HfO2)などの高誘電率絶縁材料によるゲート絶縁層35a,35b,35c,35dを形成し、第1の層間絶縁層34a上、Si柱26a,26b,26c,26dを囲むように、例えばCVD(Chemical Vapor Deposition)法による多結晶Si、タングステン(W)、コバルト(Co)、白金(Pt)、シリサイド材料による導体層36を形成し、Nチャネル・PチャネルSGTのゲート領域上にフォトレシスト層37a、画素リセットゲート領域にフォトレジスト層37bを形成する。
 第1の層間絶縁層34aは、CVD法でSiO膜をSi柱26a,26b,26c,26dより高い位置まで堆積し、CMP(Chemical Mechanical Polishing)法によりSi柱26a,26b,26c,26dの高さまで研磨・平坦化して、そのあとRIE法によるエッチング(以後、エッチバックと記載する)を行うことで形成する。ここでは、CVD法によるSiO膜の堆積前に、SiO基板1上、板状N領域31a,31c、板状P領域31b、Si柱26a,26b,26c,26dを囲むようにSiN膜を堆積し、SiO膜のエッチバック後にSi柱26a,26b,26c,26dを囲むSiN膜を除去してもよい。この場合、このSiN膜はエッチバック時においてSi柱26a,26b,26c,26dがエッチングされないための保護膜の役割を果たす。
Subsequently, as shown in FIG. 2G, the first interlayer insulating layer 34a is formed, and the SiO 2 layers 27a, 27b, 27c, 27d are removed (at the same time, the SiO 2 layers 25a, 25b, 25c, 25d are removed). The gate insulating layers 35a, 35b, 35c, and 35d made of a high dielectric constant insulating material such as SiO 2 and hafnium oxide (HfO 2 ) are formed on the outer periphery of the Si pillars 26a, 26b, 26c, and 26d. For example, polycrystalline Si, tungsten (W), cobalt (Co), platinum (Pt), silicide material by CVD (Chemical Vapor Deposition) method so as to surround the Si pillars 26a, 26b, 26c, and 26d on the interlayer insulating layer 34a Is formed on the gate region of the N channel / P channel SGT, and the photo resist layer 37a is formed on the pixel reset gate region. To form a layer 37b.
The first interlayer insulating layer 34a is formed by depositing a SiO 2 film to a position higher than the Si pillars 26a, 26b, 26c, and 26d by the CVD method, and forming the Si pillars 26a, 26b, 26c, and 26d by the CMP (Chemical Mechanical Polishing) method. It is formed by polishing and flattening to a height and then performing etching by RIE (hereinafter referred to as etch back). Here, before the SiO 2 film is deposited by the CVD method, the SiN so as to surround the plate-like N + regions 31a and 31c, the plate-like P + region 31b, and the Si pillars 26a, 26b, 26c, and 26d on the SiO 2 substrate 1. A film may be deposited and the SiN film surrounding the Si pillars 26a, 26b, 26c, and 26d may be removed after the SiO 2 film is etched back. In this case, the SiN film serves as a protective film for preventing the Si pillars 26a, 26b, 26c, and 26d from being etched during the etch back.
 続いて、フォトレジスト層37a,37bをマスクとして、導体層36をエッチングする。その後、フォトレジスト層37a,37bを除去する。
 続いて、図2Hに示すように、第2の層間絶縁層34bを形成する。この第2の層間絶縁層34bも、第1の層間絶縁膜34aと同様に、CVD法によるSiO膜堆積、CMP法によるSiO膜研磨、RIE法によるエッチバックにより形成する。
Subsequently, the conductor layer 36 is etched using the photoresist layers 37a and 37b as a mask. Thereafter, the photoresist layers 37a and 37b are removed.
Subsequently, as shown in FIG. 2H, a second interlayer insulating layer 34b is formed. Similarly to the first interlayer insulating film 34a, the second interlayer insulating layer 34b is also formed by SiO 2 film deposition by the CVD method, SiO 2 film polishing by the CMP method, and etch back by the RIE method.
 続いて、図2Iに示すように、第2の層間絶縁層34bで覆われることなくSi柱26a,26b,26c,26dを囲むように露出しているゲート導体層36aa,36bbをエッチングする。これによって、Nチャネル・PチャネルSGTゲート導体層36aと画素リセットゲート導体層36bが形成される。
 ここでは、Nチャネル・PチャネルSGTゲート導体層36aは、SGTを構成するSi柱26a,26b,26cの下方部位の外周を囲み、第1の層間絶縁層34a上に繋がって形成される。
Subsequently, as shown in FIG. 2I, the gate conductor layers 36aa and 36bb exposed so as to surround the Si pillars 26a, 26b, 26c and 26d without being covered with the second interlayer insulating layer 34b are etched. As a result, an N-channel / P-channel SGT gate conductor layer 36a and a pixel reset gate conductor layer 36b are formed.
Here, the N-channel / P-channel SGT gate conductor layer 36a is formed so as to surround the outer periphery of the lower portion of the Si pillars 26a, 26b, and 26c constituting the SGT and to be connected to the first interlayer insulating layer 34a.
 続いて、図2Jに示すように、第2の層間絶縁層34b上にSiN層38を形成し、この第2の層間絶縁層34bとSi柱とを覆うようにCVD法によるSiO層39を形成し、平坦化したSiO層39上にSiN層40を形成し、さらにフォトリソグラフィ技術を用いてPチャネルSGTを構成するSi柱26b,26cに孔を形成したフォトレジスト層41を形成する。
 ここでは、SiN層38は、SiO層39のエッチチング・ストッパ層の役割を果たし、SiO層39上のSiN層40は、SiO層39のエッチングマスク層の役割を果たす。
Subsequently, as shown in FIG. 2J, an SiN layer 38 is formed on the second interlayer insulating layer 34b, and an SiO 2 layer 39 formed by CVD is formed so as to cover the second interlayer insulating layer 34b and the Si pillar. A SiN layer 40 is formed on the formed and planarized SiO 2 layer 39, and a photoresist layer 41 in which holes are formed in the Si pillars 26b and 26c constituting the P channel SGT is formed using a photolithography technique.
Here, SiN layer 38 plays a role of etch quenching stopper layer of the SiO 2 layer 39, SiN layer 40 on the SiO 2 layer 39 serves as an etching mask layer of SiO 2 layer 39.
 続いて、フォトレシスト層41をマスクにPチャネルSGTを構成するSi柱26b,26c上のSiN層40をエッチングし、フォトレジスト層41を除去した後に、SiN層40をエッチングマスクにしてSiO層39をSiN層38表面までRIE法エッチングする。その後に、Si柱26b,26cの外周にあるゲート絶縁層35b,35cを除去する。
 続いて、図2Kに示すように、CVD法によってボロン(B)などのアクセプタ不純物を含んだSiO層42bを形成する。
 ここでは、アクセプタ不純物を含んだSiO層42bは、最初SiN層40上まで堆積した後、CMP法によってSiN層40まで研磨し、平坦にして形成する。
Subsequently, the SiN layer 40 on the Si pillars 26b and 26c constituting the P-channel SGT is etched using the photoresist layer 41 as a mask, and after removing the photoresist layer 41, an SiO 2 layer is formed using the SiN layer 40 as an etching mask. 39 is etched to the surface of the SiN layer 38 by RIE. Thereafter, the gate insulating layers 35b and 35c on the outer periphery of the Si pillars 26b and 26c are removed.
Subsequently, as shown in FIG. 2K, a SiO 2 layer 42b containing an acceptor impurity such as boron (B) is formed by a CVD method.
Here, the SiO 2 layer 42b containing the acceptor impurity is first deposited up to the SiN layer 40, and then polished to the SiN layer 40 by CMP to form a flat surface.
 続いて、SiN層40を除去し、新たなSiN層43を堆積し、フォトリソグラフィ法でのレジスト層形成とSiNエッチングにより、SiN層43のNチャネルSGTを構成するSi柱26a上に孔を形成する。このSiN層43をエッチングマスクにしてSiO層39をSiN層36の表面までエッチングする。
 続いて、図2Lに示すように、Si柱のゲート絶縁膜35aを除去した後、リン(P)、砒素(As)などのドナー不純物を含んだSiO2層42aを形成する。
 続いて、熱処理を行うことにより、Si柱26a,26b,26c内にCVD法で形成したSiO層42a、42bからドナー不純物とアクセプタ不純物を拡散し、Si柱26a,26b,26c内にN領域37aと、P領域37b,37cを形成する。
Subsequently, the SiN layer 40 is removed, a new SiN layer 43 is deposited, and a hole is formed on the Si pillar 26a constituting the N channel SGT of the SiN layer 43 by forming a resist layer by photolithography and SiN etching. To do. Using the SiN layer 43 as an etching mask, the SiO 2 layer 39 is etched to the surface of the SiN layer 36.
Subsequently, as shown in FIG. 2L, after removing the Si pillar gate insulating film 35a, a SiO2 layer 42a containing donor impurities such as phosphorus (P) and arsenic (As) is formed.
Subsequently, by performing heat treatment, donor impurities and acceptor impurities are diffused from the SiO 2 layers 42a and 42b formed by the CVD method in the Si pillars 26a, 26b, and 26c, and N + in the Si pillars 26a, 26b, and 26c. Region 37a and P + regions 37b and 37c are formed.
 続いて、図2Mに示すように、N領域37a、P領域37b,37cを形成する方法と同様に、画素を構成するSi柱26d領域のSiN層38上に、ドナー不純物を含んだSiO層42cを形成し、熱処理により、Si柱26dの外周部にN領域43を形成する。
 ここでは、SiO層42cに含まれたドナー不純物の量は、N領域37aを形成するためのSiO層42aより少ない。
Subsequently, as shown in FIG. 2M, in a manner similar to the method of forming the N + region 37a and the P + regions 37b and 37c, the SiON containing donor impurities is formed on the SiN layer 38 in the Si pillar 26d region constituting the pixel. A two- layer 42c is formed, and an N region 43 is formed on the outer periphery of the Si pillar 26d by heat treatment.
Here, the amount of donor impurities contained in the SiO 2 layer 42c is less than that of the SiO 2 layer 42a for forming the N + region 37a.
 続いて、SiO層39,42a,42b,42cを除去する。次に、図2Nに示すように、Si面が露出したSi柱26a,26b,26c,26dの表面を酸化してSiO層45a,45b,45c,45dを形成する。
 続いて、SiN層24a,24b,24c,24d,38を除去し、第3の層間絶縁層34cを形成し、フォトリソグラフィ技術と、これにより形成したフォトレジスト層をマスクにしてのボロン(B)などのアクセプタ不純物のイオン注入により、画素を構成するSi柱26dの上部にP領域47を形成する。
Subsequently, the SiO 2 layers 39, 42a, 42b, and 42c are removed. Next, as shown in FIG. 2N, the surfaces of the Si pillars 26a, 26b, 26c, and 26d where the Si surface is exposed are oxidized to form SiO 2 layers 45a, 45b, 45c, and 45d.
Subsequently, the SiN layers 24a, 24b, 24c, 24d, and 38 are removed to form a third interlayer insulating layer 34c. Boron (B) using the photolithography technique and the photoresist layer formed thereby as a mask. The P + region 47 is formed on the Si pillar 26d constituting the pixel by ion implantation of acceptor impurities such as.
 続いて、図2Pに示すように、Si柱26a,26b,26c,26d上のSiO層23a,2b,23c,23dと、第3の層間絶縁層34cよりも上部にあるSiO層を除去し、アルミニウム(Al)、タングステン(W)、窒化チタン(TiN)、窒化タンタル(TaN)などの画素選択線導体層48を形成し、その上に第4の層間絶縁層34dを形成し、ゲート導体層36a上にコンタクトホール50aを形成し、SGTを構成するSi柱26a,26b,26c上にコンタクトホール50b,50c,50dを形成し、画素リセットゲート導体層36b上にコンタクトホール50eを形成し、これらコンタクトホール50a,50b,50c,50d,50eを介して、SGTゲート導体層36aと第1層目金属配線層51a、SGTを構成するSi柱26a,26b,26cのN領域37a、P領域37b,37cと、第1層目金属配線層51b,51c,51dと、リセットゲート導体層36bと第1層目金属配線層51eとの接続を行う。 Subsequently, as shown in FIG. 2P, Si pillars 26a, 26b, 26c, the SiO 2 layer 23a on the 26 d, 2b, 23c, and 23d, the SiO 2 layer at the top than the third interlayer insulating layer 34c is removed Then, a pixel selection line conductor layer 48 such as aluminum (Al), tungsten (W), titanium nitride (TiN), tantalum nitride (TaN) is formed, and a fourth interlayer insulating layer 34d is formed thereon, and a gate A contact hole 50a is formed on the conductor layer 36a, contact holes 50b, 50c and 50d are formed on the Si pillars 26a, 26b and 26c constituting the SGT, and a contact hole 50e is formed on the pixel reset gate conductor layer 36b. Through the contact holes 50a, 50b, 50c, 50d, and 50e, the SGT gate conductor layer 36a and the first metal wiring layer 51a Si pillar 26a constituting the SGT, 26b, 26c of N + regions 37a, P + regions 37b, 37c and the first layer metal interconnection layers 51b, 51c, 51d and the reset gate conductor layer 36b and the first layer metal Connection to the wiring layer 51e is performed.
 続いて、図2Qに示すように、第5の層間絶縁層34eを形成し、コンタクトホール51a,51bを形成し、このコンタクトホール51a,51bを介して、第1層目金属配線層51c、51dと第2層目金属配線層52とを接続する。 Subsequently, as shown in FIG. 2Q, a fifth interlayer insulating layer 34e is formed, contact holes 51a and 51b are formed, and the first metal wiring layers 51c and 51d are formed through the contact holes 51a and 51b. Are connected to the second metal wiring layer 52.
(第2の実施形態)
 以下、図3A~図3Eを参照しながら、本発明の第2の実施形態に係る固体撮像装置について説明する。
 図3Eに、本実施形態に係る固体撮像装置の断面構造を示し、図3A~図3Dに、これに至る製造方法を示す。また、図3A~3Eは、図2A~図2Qと同じく、図1Bの画素部とCMOSインバータ回路部平面図のA-A’線に沿った断面構造を示す。第1の実施形態では、Nチャネル・PチャネルSGTゲート導体層7aが、同じ材料で繋がって形成されていたのに対し、本実施形態の固体撮像装置では、異なる材料で形成された複数のゲート導体層で構成されているという特徴を有する。例えば、NチャネルSGTと画素のゲート導体層を同じ材料で形成し、PチャネルSGTゲート導体層を異なる材料で形成される固体撮像装置に本発明の技術思想を適用したものである。
(Second Embodiment)
Hereinafter, a solid-state imaging device according to the second embodiment of the present invention will be described with reference to FIGS. 3A to 3E.
FIG. 3E shows a cross-sectional structure of the solid-state imaging device according to the present embodiment, and FIGS. 3A to 3D show a manufacturing method leading to this. 3A to 3E show a cross-sectional structure along the line AA ′ in the plan view of the pixel portion and CMOS inverter circuit portion in FIG. 1B, as in FIGS. 2A to 2Q. In the first embodiment, the N-channel / P-channel SGT gate conductor layer 7a is formed by being connected with the same material, whereas in the solid-state imaging device of the present embodiment, a plurality of gates formed with different materials. It is characterized by being composed of a conductor layer. For example, the technical idea of the present invention is applied to a solid-state imaging device in which an N-channel SGT and a pixel gate conductor layer are formed of the same material and a P-channel SGT gate conductor layer is formed of different materials.
 図3Aは、図2Gにおける場合と同様に、Si柱26a,26b,26c,26dの外周部にSiO、酸化ハフニウム(HfO2)などの高誘電率絶縁材料によるゲート絶縁層35a,35b,35c,35dを形成し、第1の層間絶縁層34a上のSi柱26a,26b,26c,26dを囲んで、例えばCVD(Chemical Vapor Deposition)法による多結晶Si、タングステン(W)、コバルト(Co)、白金(Pt)、シリサイド材料による導体層36を形成する。それ以前の工程は、図2A~図2Fで説明した工程と同じである。そして、全体にSiN層55を堆積する。その後、NチャネルSGT部と画素部を覆うように、フォトリソグラフィ技術を用いてフォトレジスト層56a.56bを形成する。 In FIG. 3A, as in the case of FIG. 2G, the gate insulating layers 35a, 35b, and 35c made of a high dielectric constant insulating material such as SiO 2 and hafnium oxide (HfO 2 ) are disposed on the outer periphery of the Si pillars 26a, 26b, 26c, and 26d. , 35d and surrounding the Si pillars 26a, 26b, 26c, 26d on the first interlayer insulating layer 34a, for example, polycrystalline Si, tungsten (W), cobalt (Co) by CVD (Chemical Vapor Deposition) method Then, a conductor layer 36 of platinum (Pt) and a silicide material is formed. The previous steps are the same as those described with reference to FIGS. 2A to 2F. Then, a SiN layer 55 is deposited on the entire surface. Thereafter, the photoresist layers 56a.. Are covered by photolithography so as to cover the N channel SGT portion and the pixel portion. 56b is formed.
 次に、図3Bに示すように、フォトレジスト層56a,56bをマスクにしてSiN層55と導体層36をエッチングする。この場合、SiN層55のエッチングでは、フォトレジスト層56a,56bの覆われている領域より内側にサイドエッチングされるようにエッチングしてSiN層55a,55bを形成する。
 続いて、フォトレジスト層56a,56bを除去する。これによって、NチャネルSGT部を覆うNチャネルSGT部導体層57aと、画素部を覆う画素部導体層57bとを形成する。
Next, as shown in FIG. 3B, the SiN layer 55 and the conductor layer 36 are etched using the photoresist layers 56a and 56b as a mask. In this case, in the etching of the SiN layer 55, the SiN layers 55a and 55b are formed by etching so as to be side-etched inside the regions covered with the photoresist layers 56a and 56b.
Subsequently, the photoresist layers 56a and 56b are removed. Thus, an N channel SGT part conductor layer 57a covering the N channel SGT part and a pixel part conductor layer 57b covering the pixel part are formed.
 続いて、図3Cに示すように、構造物の全体を覆うように第2の導体層58を形成する。 Subsequently, as shown in FIG. 3C, a second conductor layer 58 is formed so as to cover the entire structure.
 続いて、図3Dに示すように、PチャネルSGT部を覆うように、フォトリソグラフィ技術を用いてフォトレジスト層59を形成する。
 続いて、このフォトレジスト層59をマスクに、第2の導体層58をエッチングして、PチャネルSGT部導体層58aを形成する。その後、フォトレジスト層59を除去する。ここでのSiN層55a,55bは、導体層58のエッチングにおけるNチャネルSGT部導体層57aと画素部導体層57bのエッチング保護膜の役割を果たしている。
Subsequently, as shown in FIG. 3D, a photoresist layer 59 is formed by using a photolithography technique so as to cover the P channel SGT portion.
Subsequently, with the photoresist layer 59 as a mask, the second conductor layer 58 is etched to form a P-channel SGT portion conductor layer 58a. Thereafter, the photoresist layer 59 is removed. The SiN layers 55a and 55b here serve as etching protective films for the N-channel SGT portion conductor layer 57a and the pixel portion conductor layer 57b in the etching of the conductor layer 58.
 これによって、図3Eに示すように、NチャネルSGT部を覆うNチャネルSGT部導体層57aと、PチャネルSGT部を覆うPチャネルSGT部導体層58aと、画素部を覆う画素部導体層57bとが形成される。NチャネルSGT部導体層57aとPチャネルSGT部導体層58aとは、この2つの導体層57a,58aとの境界部60において、互いに重なり、かつ電気的に接続される。続いて、SiN層55a,55bを除去する。 As a result, as shown in FIG. 3E, an N-channel SGT portion conductor layer 57a covering the N-channel SGT portion, a P-channel SGT portion conductor layer 58a covering the P-channel SGT portion, and a pixel portion conductor layer 57b covering the pixel portion. Is formed. The N channel SGT part conductor layer 57a and the P channel SGT part conductor layer 58a overlap each other and are electrically connected at a boundary part 60 between the two conductor layers 57a and 58a. Subsequently, the SiN layers 55a and 55b are removed.
 それ以後、図2H~図2Qに示す工程と同じ工程を経ることにより、図3Fに示す断面構造が形成される。第1の層間絶縁層34aをマスクにしてNチャネルSGT部導体層57aと、PチャネルSGT部導体層58aと、画素部導体層57bをエッチングしてNチャネルSGT部ゲート導体層57aa、PチャネルSGT部ゲート導体層58bb、画素部リセットゲート導体層57bbを形成する。これによって、NチャネルSGTゲート導体層57aa、PチャネルSGTゲート導体層58bb、画素部リセットゲート導体層57bbが、NチャネルSGTを構成するSi柱26aの外周のゲート絶縁層35aと、PャネルSGTを構成するSi柱26b,26cの外周のゲート絶縁層35b,35cと、画素を構成するSi柱の外周のゲート絶縁層35dと、を囲み、同じ第1の層間絶縁層34a上に配線されて形成される。 Thereafter, through the same steps as those shown in FIGS. 2H to 2Q, the cross-sectional structure shown in FIG. 3F is formed. N channel SGT part conductor layer 57a, P channel SGT part conductor layer 58a, and pixel part conductor layer 57b are etched using first interlayer insulating layer 34a as a mask to form N channel SGT part gate conductor layer 57aa and P channel SGT. The part gate conductor layer 58bb and the pixel part reset gate conductor layer 57bb are formed. As a result, the N channel SGT gate conductor layer 57aa, the P channel SGT gate conductor layer 58bb, and the pixel portion reset gate conductor layer 57bb are connected to the gate insulating layer 35a on the outer periphery of the Si pillar 26a constituting the N channel SGT and the P channel SGT. Surrounding the gate insulating layers 35b and 35c on the outer periphery of the Si pillars 26b and 26c constituting and the gate insulating layer 35d on the outer periphery of the Si pillar constituting the pixel, and formed by wiring on the same first interlayer insulating layer 34a Is done.
 図3Fの断面構造図は、図2Qのそれに対して、PチャネルSGT部ゲート導体層58bbが、NチャネルSGT部ゲート導体層57aa、画素部ゲート導体層57bbと材料が異なる以外は同じである。これによって、本発明の第2の実施形態は、第1の実施形態と同じ特徴を有する。 3F is the same as FIG. 2Q except that the P-channel SGT part gate conductor layer 58bb is different from the N-channel SGT part gate conductor layer 57aa and the pixel part gate conductor layer 57bb. Thus, the second embodiment of the present invention has the same features as the first embodiment.
 また、NチャネルSGTを構成するSi柱26aのP領域33aa、PチャネルSGTを構成するSi柱26bb,26ccのN領域33b,33c、画素を構成するSi柱のP領域33dは真性型であってもよい。この場合、Nチャネル・PチャネルSGT、画素リセットトランジスタの閾値電圧をゲート導体層57aa,58bb,57bbの仕事関数の違いにより設定する。ここでは、第1の実施形態における図2E、図2Fによって説明した、P領域33a,33d、N領域33b,33cを形成するためのフォトリソグラフィ工程と、アクセプタ不純物とドナー不純物のイオン注入工程とが不要となる。 In addition, the P region 33aa of the Si pillar 26a constituting the N channel SGT, the Si pillar 26bb constituting the P channel SGT, the N regions 33b and 33c of 26cc, and the P region 33d of the Si pillar constituting the pixel are intrinsic types. Also good. In this case, the threshold voltages of the N channel / P channel SGT and the pixel reset transistor are set according to the work functions of the gate conductor layers 57aa, 58bb, and 57bb. Here, the photolithography process for forming the P regions 33a and 33d and the N regions 33b and 33c described with reference to FIGS. 2E and 2F in the first embodiment, and the ion implantation process of acceptor impurities and donor impurities are performed. It becomes unnecessary.
(第3の実施形態)
 以下、図4A~図4Dを参照しながら、本発明の第3の実施形態に係る固体撮像装置について説明する。図4Dに本実施形態に係る固体撮像装置の断面構造を示し、図4A~図4Cに、図4Dに至る製造方法を示す。また、図4A~図4Dは、図2A~図2Qと同様に、図1Bの画素部と、CMOSインバータ回路部平面図のA-A’線に沿った断面構造とを示す。
 第1の実施形態を説明した図1Cでは、SGTを構成するSi柱4a,4b,4cの上部にあるNチャネルSGTのドレインであるN領域8a,PチャネルSGTのドレインであるP領域8b、8cは、Si柱4a,4b,4cの上面から、コンタクトホール11a,11b,11cを介して、第1層目金属配線層12b,12c,12dと接続されている。この場合、Nチャネル・PチャネルSGTのドレイン抵抗は、N領域8a、P領域8b,8cの抵抗値により決定される。この抵抗値は、小さいほど望ましい。本実施形態は、N領域8a、P領域8b,8cの上部をシリサイド層にすることで、その電気抵抗値を小さくしている特徴を有する。
(Third embodiment)
Hereinafter, a solid-state imaging device according to a third embodiment of the present invention will be described with reference to FIGS. 4A to 4D. FIG. 4D shows a cross-sectional structure of the solid-state imaging device according to the present embodiment, and FIGS. 4A to 4C show a manufacturing method leading to FIG. 4D. 4A to 4D show the pixel portion of FIG. 1B and the cross-sectional structure along the line AA ′ in the plan view of the CMOS inverter circuit portion, as in FIGS. 2A to 2Q.
In FIG. 1C illustrating the first embodiment, the N + region 8a which is the drain of the N channel SGT and the P + region 8b which is the drain of the P channel SGT above the Si pillars 4a, 4b and 4c constituting the SGT. , 8c are connected to the first metal wiring layers 12b, 12c, 12d through the contact holes 11a, 11b, 11c from the upper surfaces of the Si pillars 4a, 4b, 4c. In this case, the drain resistance of the N channel / P channel SGT is determined by the resistance values of the N + region 8a and the P + regions 8b and 8c. The smaller the resistance value, the better. The present embodiment is characterized in that the electrical resistance value is reduced by forming the upper portion of the N + region 8a and the P + regions 8b and 8c as a silicide layer.
 図4Aに、図2MにおけるSiN層38を第1の層間絶縁層34a上に形成する前までの工程を、図2A~図2Lと同じ工程で形成し、新たなSiN層38aを第1の層間絶縁層34a上に形成し、図2M、図2Nに示す工程と同じ工程を経てNチャネルSGTを構成するSi柱26aの上部にN領域37a、PチャネルSGTを構成するSi柱26b、26cの上部にP領域26b,26c、画素を構成するSi柱26dの上部の外周部にN領域43、画素を構成するSi柱26dの上面にP領域47をそれぞれ形成し、Si柱26a,26b,26c,26dの外周部に絶縁層45a,45b,35c,45dを形成した場合の断面構造を示す。 In FIG. 4A, the process before the SiN layer 38 in FIG. 2M is formed on the first interlayer insulating layer 34a is formed in the same process as in FIGS. 2A to 2L, and a new SiN layer 38a is formed in the first interlayer insulating layer 34a. The N + region 37a and the Si pillars 26b and 26c constituting the P channel SGT are formed on the insulating layer 34a and formed on the Si pillar 26a constituting the N channel SGT through the same process as shown in FIGS. 2M and 2N. P + regions 26b and 26c are formed on the upper portion, an N region 43 is formed on the outer periphery of the upper portion of the Si pillar 26d constituting the pixel, and a P + region 47 is formed on the upper surface of the Si pillar 26d constituting the pixel. , 26c, and 26d, the cross-sectional structure in the case where the insulating layers 45a, 45b, 35c, and 45d are formed on the outer peripheral portion is shown.
 次に、図4Bに示すように、Nチャネル・PチャネルSGTを構成するSi柱26a,26b,26cの外周にある絶縁層45a,45b,45cを除去する。 Next, as shown in FIG. 4B, the insulating layers 45a, 45b, 45c on the outer periphery of the Si pillars 26a, 26b, 26c constituting the N-channel / P-channel SGT are removed.
 続いて、図4Cに示すように、例えばタングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)、またはこれらを含む金属層54で構造物の全体を被覆するとともに熱処理を行い、Nチャネル・PチャネルSGTを構成するSi柱26a,26b,26cにシリサイド層55a,55b,55cを形成する。このとき、シリサイドとSiでのアクセプタ・ドナー不純物の偏析係数の違いによる雪かき効果(Snow-plow effect)により、シリサイド層55a,55b,55cの下方にN領域56a、P領域56b,56cが形成される。その後、金属層54を除去する。 Subsequently, as shown in FIG. 4C, the entire structure is covered with, for example, tungsten (W), platinum (Pt), nickel (Ni), cobalt (Co), or a metal layer 54 containing these, and heat treatment is performed. The silicide layers 55a, 55b, and 55c are formed on the Si pillars 26a, 26b, and 26c constituting the N channel / P channel SGT. At this time, due to the snow-plow effect due to the difference in the segregation coefficients of acceptor / donor impurities between silicide and Si, N + regions 56a and P + regions 56b and 56c are formed below the silicide layers 55a, 55b and 55c. It is formed. Thereafter, the metal layer 54 is removed.
 その後、図2N~図2Qに示した工程と同じ工程を経て、図4Dに示す断面構造が得られる。 Thereafter, the cross-sectional structure shown in FIG. 4D is obtained through the same steps as those shown in FIGS. 2N to 2Q.
 これにより、N領域56a、P領域56b,56cはNチャネル・PチャネルSGTのドレインとなり、これらN領域56a、P領域56b,56cと第1層目金属配線層51b,51c,51dとの間は、電気抵抗値がより低いシリサイド層55a,55b,55cを介して行われる。 As a result, the N + region 56a and the P + regions 56b and 56c become the drains of the N channel / P channel SGT, and the N + region 56a, the P + regions 56b and 56c, and the first metal wiring layers 51b, 51c and 51d. Is performed through silicide layers 55a, 55b, and 55c having lower electrical resistance values.
(第4の実施形態)
 以下、図5を参照しながら、本発明の第4の実施形態に係る固体撮像装置について説明する。
(Fourth embodiment)
Hereinafter, a solid-state imaging device according to a fourth embodiment of the present invention will be described with reference to FIG.
 本実施形態では、図5に示すように、N領域55a、P領域55b、及びP領域55cを囲むように、例えばタングステン(W)、白金(Pt)、ニッケル(Ni)、コバルト(Co)、またはこれらを含む金属層56a,56b,56cが形成されている。これによって、チャネル33aa,33bb,33ccの上端から第1層目金属配線層51b,51c,51d間の接続は、電気抵抗値がより低い金属層56a,56b,56cを介して行われるようになる。これにより、第4の実施形態と同じ効果が得られる。 In the present embodiment, as shown in FIG. 5, for example, tungsten (W), platinum (Pt), nickel (Ni), and cobalt (N) are enclosed so as to surround the N + region 55 a, the P + region 55 b, and the P + region 55 c. Co) or metal layers 56a, 56b and 56c containing them. As a result, the connection between the upper ends of the channels 33aa, 33bb and 33cc and the first metal wiring layers 51b, 51c and 51d is made through the metal layers 56a, 56b and 56c having lower electrical resistance values. . Thereby, the same effect as the fourth embodiment can be obtained.
 なお、金属層56a,56b,56cを形成するとき、同時に、画素を構成するSi柱26dの上面にあるP領域に接続し、画素を構成するSi柱26dの外周に形成したSiO層45dを囲む画素選択線金属層56dを形成することで、図1Cにおける画素選択線導体層108aを、別途形成する必要がない。さらに、ここでは、画素選択線導体層108aが光電変換領域であるフォトダイオード部のN領域43を囲むように形成されることにより、画素を構成するSi柱26dに斜め方向から入射した光線が、互いに隣接する画素を構成するSi柱に入射することにより発生するカラー撮像での混色、解像度低下を防止できるという特徴がある。 Note that when forming the metal layers 56a, 56b, and 56c, the SiO 2 layer 45d formed on the outer periphery of the Si pillar 26d constituting the pixel is connected to the P + region on the upper surface of the Si pillar 26d constituting the pixel at the same time. By forming the pixel selection line metal layer 56d surrounding the pixel selection line, it is not necessary to separately form the pixel selection line conductor layer 108a in FIG. 1C. Further, here, the pixel selection line conductor layer 108a is formed so as to surround the N region 43 of the photodiode portion which is a photoelectric conversion region, so that light incident on the Si pillar 26d constituting the pixel from an oblique direction can be obtained. There is a feature that it is possible to prevent color mixing and a decrease in resolution in color imaging caused by being incident on Si pillars constituting adjacent pixels.
(第5の実施形態)
 以下、図6を参照しながら、本発明の第5の実施形態に係る固体撮像装置について説明する。
(Fifth embodiment)
Hereinafter, a solid-state imaging device according to a fifth embodiment of the present invention will be described with reference to FIG.
 図4Dに示す第3の実施形態においては、NチャネルSGTにおけるドレインのN領域56a、PチャネルSGTにおけるドレインのP領域56b,56c上に、シリサイド層55a,55b,55cを設けることによって、ドレインのN領域56a、P領域56b,56cと第1層目金属配線層51b,51c,51d間の電気抵抗値を低くさせていた。これに対し、本実施形態では、図6に示すように、シリサイド層55a,55b,55cの代わりに銅(Cu)の金属層58a,58b,58cを形成していることを特徴としている。これによって、ドレインのN領域56a、P領域56b,56cと第1層目金属配線層51b,51c,51dとの間の電気抵抗値をさらに低くすることができる。なお、Cu金属層58a,58b,58cをダマシン(Damascene)技術により形成する場合には、Cu金属層58a,58b,58cと絶縁層57a,57b,57cとの間、N領域56a、P領域56b,56cの上面に、Cu金属層58a,58b,58cとの反応・拡散を防止するとともに、Cu金属層58a,58b,58cの付着力を保つためのTiN、TaN、Cuなどの材料層によるバリヤ・シード層59a,59b,59cが形成される。 In the third embodiment shown in FIG. 4D, silicide layers 55a, 55b, and 55c are provided on the drain N + region 56a in the N channel SGT and the drain P + regions 56b and 56c in the P channel SGT. The electrical resistance values between the drain N + region 56a and P + regions 56b and 56c and the first metal wiring layers 51b, 51c and 51d are lowered. In contrast, the present embodiment is characterized in that copper (Cu) metal layers 58a, 58b, and 58c are formed in place of the silicide layers 55a, 55b, and 55c, as shown in FIG. As a result, the electrical resistance value between the drain N + region 56a and P + regions 56b and 56c and the first metal wiring layers 51b, 51c and 51d can be further reduced. When the Cu metal layers 58a, 58b, and 58c are formed by the damascene technique, the N + regions 56a and P + are interposed between the Cu metal layers 58a, 58b, and 58c and the insulating layers 57a, 57b, and 57c. A material layer such as TiN, TaN, or Cu for preventing reaction / diffusion with the Cu metal layers 58a, 58b, 58c and maintaining adhesion of the Cu metal layers 58a, 58b, 58c on the upper surfaces of the regions 56b, 56c. Thus, barrier seed layers 59a, 59b and 59c are formed.
(第6の実施形態)
 以下、図7A~図7Cを参照しながら、本発明の第6の実施形態に係る固体撮像装置について説明する。図7Cは、本実施形態の固体撮像装置の断面構造図を示し、図7A、図7Bに、それに至る製造方法を示す。
 図1Cに示す第1の実施形態においては、Nチャネル・PチャネルSGTゲート導体層7a、画素のリセットゲート導体層105aが、深いコンタクトホール9a,9bを介して第1層目金属配線層12a,12eに接続されていた。これらコンタクトホール9a,9eは、Nチャネル・PチャネルSGTゲート導体層7a、画素のリセットゲート導体層105a上の第1・第2・第3の層間絶縁層14a,14b,14cをエッチングして形成する。この場合、深いコンタクトホール9a,9bのエッチングを制御良くNチャネル・PチャネルSGTゲート導体層7a、画素のリセットゲート導体層105a上で停止する必要がある。また、このときのオーバーエッチングにNチャネル・PチャネルSGTゲート導体層7a、画素のリセットゲート導体層105aが除去されないように、Nチャネル・PチャネルSGTゲート導体層7a、画素のリセットゲート導体層7bの厚さを厚くする必要がある。このような製造上の困難性を、本実施形態はより改善できるものである。
(Sixth embodiment)
Hereinafter, a solid-state imaging device according to a sixth embodiment of the present invention will be described with reference to FIGS. 7A to 7C. FIG. 7C shows a cross-sectional structure diagram of the solid-state imaging device of the present embodiment, and FIGS. 7A and 7B show a manufacturing method leading to that.
In the first embodiment shown in FIG. 1C, the N-channel / P-channel SGT gate conductor layer 7a and the reset gate conductor layer 105a of the pixel are connected to the first metal wiring layer 12a, deep contact holes 9a, 9b. 12e. These contact holes 9a and 9e are formed by etching the N-channel / P-channel SGT gate conductor layer 7a and the first, second and third interlayer insulating layers 14a, 14b and 14c on the reset gate conductor layer 105a of the pixel. To do. In this case, it is necessary to stop the etching of the deep contact holes 9a and 9b on the N-channel / P-channel SGT gate conductor layer 7a and the pixel reset gate conductor layer 105a with good control. Further, the N channel / P channel SGT gate conductor layer 7a and the pixel reset gate conductor layer 105a and the pixel reset gate conductor layer 7b are not removed by the overetching at this time. It is necessary to increase the thickness. This embodiment can further improve such manufacturing difficulties.
 SiO基板21上に、画素信号線N領域31c、SGT部のN領域31a、P領域31bと、画素を構成するSi柱26d、SGTを構成するSi柱26a,26b,26cと、これと同時にゲート導体層コンタクトを構成するSi柱31d,31eとSi柱26e,26fとをそれぞれ形成する(ゲート導体層コンタクトを構成するSi柱26e,26f内部のSi層33e,33fはP型、N型、真性型のいずれであってもよい)。
 続いて、ゲート絶縁層35a,35b,35c,35dと同時に、ゲート導体層コンタクトを構成するSi柱26e,26fの外周部に絶縁層35e,35fを形成する。
 続いて、第1の層間絶縁層34aを形成し、SGTゲート導体層36aaを、SGTを構成するSi柱26a,26b,26cとゲート導体層コンタクトを構成するSi柱26eとを囲むように形成し、これと同様に、画素リセットゲート導体層36bbを画素を構成するSi柱26dとゲート導体層コンタクトを構成するSi柱26fとを囲むように形成する。ゲート導体層36aaとリセットゲート導体層36bbとは、第1の層間絶縁層34a上に配線され、Si柱26a,26b,26c,26d,26e,26fを囲むように第2の層間絶縁層34bと同じ高さで形成される。それ以前の工程は、図2A~図2Iまでと基本的に同じ工程である。
On the SiO 2 substrate 21, the pixel signal line N + region 31 c, the N + region 31 a and the P + region 31 b of the SGT part, the Si pillar 26 d constituting the pixel, the Si pillars 26 a, 26 b and 26 c constituting the SGT, At the same time, Si pillars 31d and 31e and Si pillars 26e and 26f constituting the gate conductor layer contact are formed (the Si layers 33e and 33f inside the Si pillars 26e and 26f constituting the gate conductor layer contact are P-type, N-type or intrinsic type may be used).
Subsequently, simultaneously with the gate insulating layers 35a, 35b, 35c, and 35d, insulating layers 35e and 35f are formed on the outer peripheral portions of the Si pillars 26e and 26f constituting the gate conductor layer contact.
Subsequently, the first interlayer insulating layer 34a is formed, and the SGT gate conductor layer 36aa is formed so as to surround the Si pillars 26a, 26b, 26c constituting the SGT and the Si pillar 26e constituting the gate conductor layer contact. Similarly, the pixel reset gate conductor layer 36bb is formed so as to surround the Si pillar 26d constituting the pixel and the Si pillar 26f constituting the gate conductor layer contact. The gate conductor layer 36aa and the reset gate conductor layer 36bb are wired on the first interlayer insulating layer 34a, and the second interlayer insulating layer 34b so as to surround the Si pillars 26a, 26b, 26c, 26d, 26e, and 26f. Formed at the same height. The previous steps are basically the same as those shown in FIGS. 2A to 2I.
 続いて、図4Dに示す工程と同様の工程により、SGTを構成するSi柱26a,26b,26cにシリサイド層55a,55b,55cとSGTにおけるドレインのN領域56a,P領域56b,56cを形成し、さらにシリサイド層55a,55b,55cを除去する。
 これにより、図7Bに示すように、SGTを構成するSi柱26a,26b,26cのドレインN領域56a、P領域56b,56c上に孔60a,60b,60cを形成する。
 続いて、ゲート導体層コンタクトを構成するSi柱26e,26fのSi層33e,33fを、ゲート導体層36aa、画素リセットゲート導体層36bbの上端位置より低い位置までエッチングする。
 そして、このエッチングにより露出したSiO層35e,35fを除去して、孔60d,60eを形成する。
 その後、ダマシン(Damascene)技術によるCu層62の形成に必要となる、Cuとの反応・拡散を防止し、Cu金属層62の付着力を保つためのTiN,TaN,Cuなどの導体材料層によるバリヤ・シード層61を、孔60a,60b,60c,60d,60e内部表面と第4の層間絶縁層34d上に形成する。
 そして、メッキ法によってCu層62を孔60a,60b,60c,60d,60e内部と第4の層間絶縁層34d上とに形成する。これによって、SGTゲート導体層33aa、画素リセットゲート導体層36bbが導体材料層であるバリヤ・シード層61を介して、Cu層62と電気的に接続される。
4D, the silicide layers 55a, 55b, and 55c and the drain N + regions 56a and P + regions 56b and 56c in the SGT are formed on the Si pillars 26a, 26b, and 26c constituting the SGT. Then, the silicide layers 55a, 55b, and 55c are removed.
Thereby, as shown in FIG. 7B, holes 60a, 60b, and 60c are formed on the drain N + region 56a and the P + regions 56b and 56c of the Si pillars 26a, 26b, and 26c constituting the SGT.
Subsequently, the Si layers 33e and 33f of the Si pillars 26e and 26f constituting the gate conductor layer contact are etched to a position lower than the upper end positions of the gate conductor layer 36aa and the pixel reset gate conductor layer 36bb.
Then, the SiO 2 layers 35e and 35f exposed by this etching are removed to form holes 60d and 60e.
After that, with a conductive material layer such as TiN, TaN, or Cu for preventing the reaction / diffusion with Cu and maintaining the adhesion of the Cu metal layer 62, which is necessary for the formation of the Cu layer 62 by the damascene technology. The barrier seed layer 61 is formed on the inner surfaces of the holes 60a, 60b, 60c, 60d, 60e and the fourth interlayer insulating layer 34d.
Then, a Cu layer 62 is formed in the holes 60a, 60b, 60c, 60d, and 60e and on the fourth interlayer insulating layer 34d by plating. As a result, the SGT gate conductor layer 33aa and the pixel reset gate conductor layer 36bb are electrically connected to the Cu layer 62 via the barrier / seed layer 61 which is a conductor material layer.
 次に、図7Cに示すように、Cu層62とバリヤ・シード層61をエッチングして第1層目金属配線層62a,62b,62c,62d,62eを形成する。
 続いて、第5の層間絶縁層34eを構造物の全体に被覆し、PチャネルSGT第1層目金属配線層62c,62d上にコンタクトホール63a,63bを形成し、PチャネルSGT第1層目金属配線層62c,62dと、第5の層間絶縁層34e上に形成する第2層目金属配線層64と、を、コンタクトホール63a,63bを介して接続する。
Next, as shown in FIG. 7C, the Cu layer 62 and the barrier / seed layer 61 are etched to form first metal wiring layers 62a, 62b, 62c, 62d, and 62e.
Subsequently, the entire structure is covered with the fifth interlayer insulating layer 34e, contact holes 63a and 63b are formed on the P-channel SGT first-layer metal wiring layers 62c and 62d, and the P-channel SGT first-layer is formed. The metal wiring layers 62c and 62d are connected to the second metal wiring layer 64 formed on the fifth interlayer insulating layer 34e through contact holes 63a and 63b.
 本実施形態の固体撮像装置において、ゲート導体層コンタクトを構成するSi柱26e,26fのSi層33e,33fのエッチングについては、ゲート導体層36aa、画素リセットゲート導体層36bbの上端位置より低い位置までエッチングすればよく、SiO基板21上面までエッチングしてもよい。このため、このエッチング工程は容易となる。さらに、このエッチングでは、SGTゲート導体層36aa、リセットゲート導体層36bbは、SiO層35e,35fで保護されているために、図1Cに示す場合のように、ゲート導体層36aa、画素リセットゲート導体層36bbを厚くすることが必要でない。 In the solid-state imaging device of this embodiment, the etching of the Si layers 33e and 33f of the Si pillars 26e and 26f constituting the gate conductor layer contact is performed to a position lower than the upper end positions of the gate conductor layer 36aa and the pixel reset gate conductor layer 36bb. may be etched, it may be etched until the SiO 2 substrate 21 upper surface. For this reason, this etching process becomes easy. Further, in this etching, since the SGT gate conductor layer 36aa and the reset gate conductor layer 36bb are protected by the SiO 2 layers 35e and 35f, as shown in FIG. 1C, the gate conductor layer 36aa, the pixel reset gate It is not necessary to increase the thickness of the conductor layer 36bb.
 本実施形態の特徴は、以下の諸点である。即ち、
 画素を構成するSi柱26d、SGTを構成するSi柱26a,26b,26cと同時に、画素を構成するSi柱26d、SGTを構成するSi柱26a,26b,26cと同じ高さのSGTゲート導体層36aa、画素のリセットゲート導体層36bbを構成するSi柱26e,26fが形成されている点、
 SGTゲート導体層36aa,画素リセットゲート導体層36bbが、Si柱26e,26fの内部のSi層33e,33fに置換されて形成されたCuで形成された第2層目金属配線層62a、62eと直接に接続されている点、
 SGTゲート導体層36aa,画素リセットゲート導体層36bbが、ゲート導体層コンタクトを構成するSi柱26e,26f、画素を構成するSi柱26d、SGTを構成するSi柱26a,26b,26cを囲むように、同時に、かつ、同じ高さで形成されている点、である。
 これによって、上述したような、製造上の容易化が実現される。
The features of this embodiment are the following points. That is,
A SGT gate conductor layer having the same height as the Si pillars 26d and SGTs constituting the pixels and the Si pillars 26a, 26b and 26c constituting the pixels, simultaneously with the Si pillars 26d and SGTs constituting the pixels. 36aa, Si pillars 26e and 26f constituting the reset gate conductor layer 36bb of the pixel are formed,
Second metal wiring layers 62a and 62e made of Cu formed by replacing the SGT gate conductor layer 36aa and the pixel reset gate conductor layer 36bb with the Si layers 33e and 33f inside the Si pillars 26e and 26f, and Directly connected point,
The SGT gate conductor layer 36aa and the pixel reset gate conductor layer 36bb surround the Si pillars 26e and 26f constituting the gate conductor layer contact, the Si pillar 26d constituting the pixel, and the Si pillars 26a, 26b and 26c constituting the SGT. , Simultaneously and at the same height.
This facilitates the manufacturing process as described above.
 なお、図7A~図7Cに示す工程においては、シリサイド層55a,55b,55cを全て除去したが、ドレインN領域56a、P領域56b,56c上の一部のシリサイドを残存させてもよい。
 また、シリサイド層55a,55b,55cは、それに代えて、図1Cに示すようなN領域8a、P領域8b,8cであってもよい。
 また、孔60a,60b,60c,60d,60eの内部に形成する金属材料は、Cuに代えて、W、Co、Ni、Tiまたはこれらの物質を含む導体材料層であっても良い。
7A to 7C, the silicide layers 55a, 55b, and 55c are all removed. However, some silicide on the drain N + region 56a and the P + regions 56b and 56c may remain. .
Further, the silicide layers 55a, 55b, and 55c may be replaced with N + regions 8a and P + regions 8b and 8c as shown in FIG. 1C.
Further, the metal material formed inside the holes 60a, 60b, 60c, 60d, and 60e may be a conductive material layer containing W, Co, Ni, Ti, or these substances instead of Cu.
 なお、第1~第6の実施形態では、画素領域には画素を構成する島状半導体P11~P33が存在し、SGTは、駆動出力回路に存在する場合について説明したが、画素領域の画素に隣接するように、SGTが形成されている場合においても、本発明の技術思想が適用できることは言うまでもない。 In the first to sixth embodiments, the island-shaped semiconductors P11 to P33 constituting the pixel are present in the pixel region, and the SGT is present in the drive output circuit. However, the SGT is present in the pixel region. Needless to say, the technical idea of the present invention can be applied even when the SGTs are formed adjacent to each other.
 第1~第6の実施形態における画素を構成する島状半導体P11では、画素を構成する島状半導体を構成するSi柱P11の外周部の表層にフォトダイオードを構成するN領域8d,43が形成されている場合としたが、暗電流・ノイズ低減のため、N領域8d,43の外周部であって画素を構成するSi柱P11の表層に、信号電荷(自由電子)と逆極性の電荷(正孔)を蓄積するP領域を形成することもできる。 In the island-like semiconductor P11 constituting the pixel in the first to sixth embodiments, the N regions 8d and 43 constituting the photodiode are formed on the outer surface of the Si pillar P11 constituting the island-like semiconductor constituting the pixel. However, in order to reduce dark current and noise, the charge on the surface of the Si pillar P11 that forms the pixel on the outer periphery of the N regions 8d and 43 is opposite to the signal charge (free electrons). It is also possible to form a P + region that accumulates (holes).
 SGTゲート導体層7a,36a,36aaと同時に、かつ同じ高さで形成される画素リセットゲート導体層7b,36b,36bbは、フォトダイオードに蓄積された信号電荷の信号線N領域2,31cへの除去のためでなく、光遮蔽層として設けられているものであってもよい。 The pixel reset gate conductor layers 7b, 36b, and 36bb formed at the same height as the SGT gate conductor layers 7a, 36a, and 36aa are connected to the signal line N + regions 2 and 31c of the signal charges accumulated in the photodiode. It may be provided as a light shielding layer instead of removing the light.
 図7A~図7Cを参照して、SGTゲート導体層36aa、画素リセットゲート導体層36bbを、ゲート導体層コンタクトを構成するSi柱26e,26fに形成されたCu層62を介して第1層目金属配線層62a,62eに接続した場合について説明したが、例えば図1Bの模式平面図において、画素リセットゲート導体層7b(図7Cにおけるゲート導体層36bb)とSGTソースN領域3a(図7CにおけるN領域31a)、P領域3b(図7CにおけるP領域31bb)とを、コンタクトホール9と、第1層目金属配線層12eとを介して接続する場合にも、本発明の技術思想を適用できる。この場合には、コンタクトホール9部上にコンタクトを構成するSi柱を形成し、図7A~図7Cと同様な方法によって、画素リセットゲート導体層7b(図7Cにおけるゲート導体層36bb)とSGTソースN領域3a(図7CにおけるN領域31a)、P領域3b(図7CにおけるP領域31bb)との接続が行なえる。 7A to 7C, the SGT gate conductor layer 36aa and the pixel reset gate conductor layer 36bb are connected to the first layer via the Cu layer 62 formed on the Si pillars 26e and 26f constituting the gate conductor layer contact. The case where the metal wiring layers 62a and 62e are connected has been described. For example, in the schematic plan view of FIG. 1B, the pixel reset gate conductor layer 7b (gate conductor layer 36bb in FIG. 7C) and the SGT source N + region 3a (in FIG. 7C). N + region 31a) and P + region 3b (P + region 31bb in FIG. 7C) are connected to each other via contact hole 9 and first metal wiring layer 12e. Can be applied. In this case, a Si pillar constituting a contact is formed on the contact hole 9 and the pixel reset gate conductor layer 7b (the gate conductor layer 36bb in FIG. 7C) and the SGT source are formed in the same manner as in FIGS. 7A to 7C. Connection to the N + region 3a (N + region 31a in FIG. 7C) and the P + region 3b (P + region 31bb in FIG. 7C) can be made.
 なお、本発明は、本発明の広義の精神と範囲を逸脱することなく、様々な実施形態及び変形が可能とされるものである。また、上述した実施形態は、本発明の一実施例を説明するためのものであり、本発明の範囲を限定するものではない。 The present invention is capable of various embodiments and modifications without departing from the broad spirit and scope of the present invention. Further, the above-described embodiment is for describing an example of the present invention, and does not limit the scope of the present invention.
 本発明は、固体撮像装置、SGTなどの柱状半導体に回路素子を形成した半導体装置に広く適用できる。 The present invention can be widely applied to semiconductor devices in which circuit elements are formed in columnar semiconductors such as solid-state imaging devices and SGTs.
 P11~P33、4a、4b、4c、26a、26b、26c、26d 島状半導体
 1、21 基板
 3a、31a SGTソースN領域(ソース用板状半導体N領域)
 3b、31b SGTソースP領域(ソース用板状半導体P領域)
 4aa、4bb PチャネルSGT
 4cc NチャネルSGT
 6a、6b、6c、6d、35a、35b、35c、35d ゲート絶縁層
 7a、36a ゲート導体層
 8a ドレインN領域
 8b、8c ドレインP領域
 9a、9b、11a、11b、11c コンタクトホール
 10 P領域
 12a、12b、12c、12d、12e、51a、51b、51c、51d、51e 第1層目金属配線層
 14a、34a 第1の層間絶縁層
 14b、34b 第2の層間絶縁層
 14c、34c 第3の層間絶縁層
 14d、34d 第4の層間絶縁層
 14e、34e 第5の層間絶縁層
 16、52 第2層目金属配線層
 23a、23b、23c、2d、25a、25b、25c、25d、27a、27b、27c、27d、39 SiO層(酸化シリコン層)
 24a、24b、24c、24e、38、40、43、55、55a、55b SiN層
 31c、102a 信号線N領域
 32、37a、37b、41、56a、56b フォトレジスト層
 33a、33d P領域
 33b、33c N領域
 36 導体層
 36a、57a、58a ゲート導体層
 36b、57b リセットゲート導体層
 42a、42b、42c ドナーまたはアクセプタ不純物を含んだSiO
 43 フォトダイオードN領域
 55a、55b、55c シリサイド層
 58a、58b、58c、62、 Cu層
 105a、36b リセットゲート導体層
 108a 画素選択線導体層
P11 to P33, 4a, 4b, 4c, 26a, 26b, 26c, 26d Island- like semiconductor 1, 21 Substrate 3a, 31a SGT source N + region (source plate-like semiconductor N + region)
3b, 31b SGT source P + region (source plate semiconductor P + region)
4aa, 4bb P channel SGT
4cc N channel SGT
6a, 6b, 6c, 6d, 35a, 35b, 35c, 35d Gate insulating layer 7a, 36a Gate conductor layer 8a Drain N + region 8b, 8c Drain P + region 9a, 9b, 11a, 11b, 11c Contact hole 10P + Regions 12a, 12b, 12c, 12d, 12e, 51a, 51b, 51c, 51d, 51e First-layer metal wiring layers 14a, 34a First interlayer insulating layers 14b, 34b Second interlayer insulating layers 14c, 34c Third Interlayer insulating layers 14d, 34d Fourth interlayer insulating layers 14e, 34e Fifth interlayer insulating layers 16, 52 Second metal wiring layers 23a, 23b, 23c, 2d, 25a, 25b, 25c, 25d, 27a, 27b, 27c, 27d, 39 SiO 2 layer (silicon oxide layer)
24a, 24b, 24c, 24e, 38, 40, 43, 55, 55a, 55b SiN layer 31c, 102a Signal line N + region 32, 37a, 37b, 41, 56a, 56b Photoresist layer 33a, 33d P region 33b, 33c N region 36 Conductor layer 36a, 57a, 58a Gate conductor layer 36b, 57b Reset gate conductor layer 42a, 42b, 42c SiO 2 layer containing donor or acceptor impurities 43 Photodiode N region 55a, 55b, 55c Silicide layer 58a, 58b, 58c, 62, Cu layer 105a, 36b Reset gate conductor layer 108a Pixel selection line conductor layer

Claims (9)

  1.  2次元状に配置された画素と、前記画素を駆動するとともに、前記画素からの信号を読み出す駆動出力回路と、を有する固体撮像装置において、
     前記画素は、基板上に形成された第1の島状半導体を有し、
     前記駆動出力回路は、前記基板上に、前記第1の島状半導体と同じ高さになるように形成された少なくとも1つの第2の島状半導体を有し、
     前記第1の島状半導体は、
     前記第1の島状半導体の底部に形成された第1の半導体領域と、
     前記第1の半導体領域上に形成され、前記第1の半導体領域と反対導電型、または真性型の半導体からなる第2の半導体領域と、
     前記第2の半導体領域の下部、かつ、外周に形成された第1のゲート絶縁層と、
     前記第1のゲート絶縁層を囲むように形成された第1のゲート導体層と、
     前記第1のゲート導体層に隣接する前記第2の半導体領域の外周部に形成され、前記第1の半導体領域と同じ導電型の半導体からなる第3の半導体領域と、
     前記第3の半導体領域及び前記第2の半導体領域上に形成され、前記第1の半導体領域と反対の導電型の半導体からなる第4の半導体領域とを、有し、
     前記第2の島状半導体は、
     前記第2の島状半導体の下部に形成された第5の半導体領域と、
     前記第5の半導体領域上に形成され、前記第5の半導体領域と反対導電型、または真性型の半導体からなる第6の半導体領域と、
     前記第6の半導体領域の外周に形成された第2のゲート絶縁層を囲むように形成された第2のゲート導体層と、
     前記第6の半導体領域上に、前記第2のゲート導体層に隣接するように、かつ、前記第2の半導体領域の上方に位置するように形成された第7の半導体領域とを、有し、
     前記第1のゲート導体層及び前記第2のゲート導体層は、それぞれの底部が同じ面上に位置している、
     ことを特徴とする固体撮像装置。
    In a solid-state imaging device having two-dimensionally arranged pixels, and a drive output circuit that drives the pixels and reads signals from the pixels,
    The pixel has a first island-shaped semiconductor formed on a substrate,
    The drive output circuit has at least one second island-shaped semiconductor formed on the substrate to have the same height as the first island-shaped semiconductor,
    The first island-shaped semiconductor is
    A first semiconductor region formed at the bottom of the first island-shaped semiconductor;
    A second semiconductor region formed on the first semiconductor region and made of a semiconductor having a conductivity type opposite to that of the first semiconductor region or an intrinsic type;
    A first gate insulating layer formed at a lower portion and an outer periphery of the second semiconductor region;
    A first gate conductor layer formed so as to surround the first gate insulating layer;
    A third semiconductor region formed on the outer periphery of the second semiconductor region adjacent to the first gate conductor layer and made of a semiconductor having the same conductivity type as the first semiconductor region;
    A fourth semiconductor region formed on the third semiconductor region and the second semiconductor region and made of a semiconductor having a conductivity type opposite to the first semiconductor region;
    The second island-shaped semiconductor is
    A fifth semiconductor region formed under the second island-shaped semiconductor;
    A sixth semiconductor region formed on the fifth semiconductor region and made of a semiconductor having a conductivity type opposite to that of the fifth semiconductor region or an intrinsic type;
    A second gate conductor layer formed so as to surround a second gate insulating layer formed on the outer periphery of the sixth semiconductor region;
    A seventh semiconductor region formed on the sixth semiconductor region so as to be adjacent to the second gate conductor layer and to be positioned above the second semiconductor region; ,
    The first gate conductor layer and the second gate conductor layer have their bottoms located on the same plane,
    A solid-state imaging device.
  2.  前記第1のゲート導体層及び前記第2のゲート導体層の高さが互いに同じである、
     ことを特徴とする請求項1に記載の固体撮像装置。
    The first gate conductor layer and the second gate conductor layer have the same height;
    The solid-state imaging device according to claim 1.
  3.  前記第2のゲート導体層が、複数の前記第2の島状半導体の内の一部の前記第2の島状半導体を囲むように形成された第3のゲート導体層と、複数の前記第2の島状半導体の内において、前記第3のゲート導体層が囲む前記第2の島状半導体とは異なる前記第2の島状半導体を囲むように形成され、前記第3のゲート導体層と異なる材料からなる第4のゲート導体層と、から構成されている、
     ことを特徴とする請求項1に記載の固体撮像装置。
    A third gate conductor layer formed so as to surround a part of the second island-shaped semiconductors among the plurality of second island-shaped semiconductors; Among the two island-shaped semiconductors, the third gate conductor layer is formed so as to surround the second island-shaped semiconductor different from the second island-shaped semiconductor surrounded by the third gate conductor layer, A fourth gate conductor layer made of a different material, and
    The solid-state imaging device according to claim 1.
  4.  前記第3のゲート導体層及び前記第4のゲート導体層の高さが互いに異なる、
     ことを特徴とする請求項3に記載の固体撮像装置。
    The third gate conductor layer and the fourth gate conductor layer have different heights from each other;
    The solid-state imaging device according to claim 3.
  5.  前記第3のゲート導体層及び前記第4のゲート導体層の高さが互いに同じである、
     ことを特徴とする請求項3に記載の固体撮像装置。
    The third gate conductor layer and the fourth gate conductor layer have the same height;
    The solid-state imaging device according to claim 3.
  6.  前記第2の島状半導体において、前記第6の半導体領域上に、前記第7の半導体領域が形成され、前記第7の半導体領域上に、シリサイド層又は金属層からなる導体層が形成されている、
     ことを特徴とする請求項1に記載の固体撮像装置。
    In the second island-shaped semiconductor, the seventh semiconductor region is formed on the sixth semiconductor region, and a conductor layer made of a silicide layer or a metal layer is formed on the seventh semiconductor region. Yes,
    The solid-state imaging device according to claim 1.
  7.  前記第2の島状半導体において、前記第6の半導体領域を囲むように金属層が設けられている、
     ことを特徴とする請求項1に記載の固体撮像装置。
    In the second island-shaped semiconductor, a metal layer is provided so as to surround the sixth semiconductor region.
    The solid-state imaging device according to claim 1.
  8.  前記第1の島状半導体及び前記第2の島状半導体と、当該第1及び第2の島状半導体と同じ高さに形成された第3の島状半導体と、を有し、
     前記第1の島状半導体を囲むように形成された前記第1のゲート導体層と、前記第2の島状半導体を囲むように形成された前記第2のゲート導体層の内の少なくとも一方が、前記第3の島状半導体を囲むように延在しており、
     前記第1のゲート導体層及び前記第2のゲート導体層の内の少なくとも一方が、前記第3の島状半導体の内部に形成された導体層と、前記第3の島状半導体の下方部位で電気的に接続されている、
     ことを特徴とする請求項1に記載の固体撮像装置。
    The first island-shaped semiconductor and the second island-shaped semiconductor, and a third island-shaped semiconductor formed at the same height as the first and second island-shaped semiconductor,
    At least one of the first gate conductor layer formed so as to surround the first island-shaped semiconductor and the second gate conductor layer formed so as to surround the second island-shaped semiconductor; , Extending around the third island-shaped semiconductor,
    At least one of the first gate conductor layer and the second gate conductor layer is a conductor layer formed inside the third island-shaped semiconductor, and a lower portion of the third island-shaped semiconductor. Electrically connected,
    The solid-state imaging device according to claim 1.
  9.  前記第3の島状半導体の内部に形成された導体層が、前記第1の半導体領域及び前記第5の半導体領域の内の少なくとも一方と、前記第3の島状半導体の下方部位で接続されている、
     ことを特徴とする請求項1に記載の固体撮像装置。
    A conductor layer formed inside the third island-shaped semiconductor is connected to at least one of the first semiconductor region and the fifth semiconductor region at a lower portion of the third island-shaped semiconductor. ing,
    The solid-state imaging device according to claim 1.
PCT/JP2011/070534 2011-09-08 2011-09-08 Solid-state image pickup device WO2013035189A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020137005981A KR20130061723A (en) 2011-09-08 2011-09-08 Solid-state imaging device
CN2011800431859A CN103119719A (en) 2011-09-08 2011-09-08 Solid-state image pickup device
JP2013511423A JP5281215B1 (en) 2011-09-08 2011-09-08 Solid-state imaging device
PCT/JP2011/070534 WO2013035189A1 (en) 2011-09-08 2011-09-08 Solid-state image pickup device
TW101131985A TW201312736A (en) 2011-09-08 2012-09-03 Solid-state imaging device
US13/606,823 US8564034B2 (en) 2011-09-08 2012-09-07 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/070534 WO2013035189A1 (en) 2011-09-08 2011-09-08 Solid-state image pickup device

Publications (1)

Publication Number Publication Date
WO2013035189A1 true WO2013035189A1 (en) 2013-03-14

Family

ID=47831674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/070534 WO2013035189A1 (en) 2011-09-08 2011-09-08 Solid-state image pickup device

Country Status (5)

Country Link
JP (1) JP5281215B1 (en)
KR (1) KR20130061723A (en)
CN (1) CN103119719A (en)
TW (1) TW201312736A (en)
WO (1) WO2013035189A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212644A1 (en) * 2016-06-10 2017-12-14 株式会社ソシオネクスト Semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111771266A (en) * 2018-05-08 2020-10-13 新加坡优尼山帝斯电子私人有限公司 Method for manufacturing columnar semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024799A (en) * 2004-07-08 2006-01-26 Sharp Corp Solid-state imaging apparatus and method for manufacturing same
WO2009034731A1 (en) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. Solid-state imaging element
WO2011111662A1 (en) * 2010-03-08 2011-09-15 日本ユニサンティスエレクトロニクス株式会社 Solid-state image pickup device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024799A (en) * 2004-07-08 2006-01-26 Sharp Corp Solid-state imaging apparatus and method for manufacturing same
WO2009034731A1 (en) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. Solid-state imaging element
WO2009034623A1 (en) * 2007-09-12 2009-03-19 Unisantis Electronics (Japan) Ltd. Solid-state image sensor
WO2011111662A1 (en) * 2010-03-08 2011-09-15 日本ユニサンティスエレクトロニクス株式会社 Solid-state image pickup device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212644A1 (en) * 2016-06-10 2017-12-14 株式会社ソシオネクスト Semiconductor device
JPWO2017212644A1 (en) * 2016-06-10 2019-04-11 株式会社ソシオネクスト Semiconductor device

Also Published As

Publication number Publication date
CN103119719A (en) 2013-05-22
JPWO2013035189A1 (en) 2015-03-23
KR20130061723A (en) 2013-06-11
JP5281215B1 (en) 2013-09-04
TW201312736A (en) 2013-03-16

Similar Documents

Publication Publication Date Title
US8564034B2 (en) Solid-state imaging device
US8987852B2 (en) Solid-state image pickup apparatus, image pickup system including solid-state image pickup apparatus, and method for manufacturing solid-state image pickup apparatus
KR100745985B1 (en) Image sensor
JP5938946B2 (en) Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
JP2019125784A (en) Image sensors
EP3706172A1 (en) Solid-state image pickup device
WO2014103150A1 (en) Solid state imaging device and method for manufacturing same
JP4972924B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
JP6193695B2 (en) Semiconductor device and manufacturing method thereof
WO2012035702A1 (en) Solid-stage imaging device and manufacturing method therefor
JP4843951B2 (en) Solid-state imaging device manufacturing method, solid-state imaging device, and camera
JP4746639B2 (en) Semiconductor device
JP2019165212A (en) Imaging apparatus
JP2012060076A (en) Solid state image pickup device and manufacturing method therefor
US20060199295A1 (en) Image sensor and methods of forming the same
JP2017045838A (en) Imaging apparatus and manufacturing method of the same
JP6325904B2 (en) Solid-state imaging device manufacturing method, solid-state imaging device, and camera
JP5281215B1 (en) Solid-state imaging device
WO2021251010A1 (en) Imaging element
TW201351621A (en) Image sensor device and method for manufacturing the same
KR101517849B1 (en) Cmos image sensor having impurity filtering layer and method for manufacturing the same
JP4867226B2 (en) Solid-state imaging device, manufacturing method thereof, and camera
JP2008193050A (en) Solid-state imaging apparatus and imaging apparatus
CN220963352U (en) Integrated chip and semiconductor structure
JP2018117156A (en) Method for manufacturing solid-state image pickup device, solid-state image pickup device, and camera

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043185.9

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2013511423

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20137005981

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872112

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872112

Country of ref document: EP

Kind code of ref document: A1