WO2013031952A1 - 表面被覆切削工具 - Google Patents

表面被覆切削工具 Download PDF

Info

Publication number
WO2013031952A1
WO2013031952A1 PCT/JP2012/072168 JP2012072168W WO2013031952A1 WO 2013031952 A1 WO2013031952 A1 WO 2013031952A1 JP 2012072168 W JP2012072168 W JP 2012072168W WO 2013031952 A1 WO2013031952 A1 WO 2013031952A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
crystal grains
tool
crystal
lower layer
Prior art date
Application number
PCT/JP2012/072168
Other languages
English (en)
French (fr)
Inventor
興平 冨田
長田 晃
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to EP12828780.2A priority Critical patent/EP2752264B1/en
Priority to CN201280042290.5A priority patent/CN103764323B/zh
Priority to KR1020147005832A priority patent/KR20140063666A/ko
Priority to US14/241,681 priority patent/US9636748B2/en
Publication of WO2013031952A1 publication Critical patent/WO2013031952A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/029Graded interfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/403Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • Y10T428/24975No layer or component greater than 5 mils thick

Definitions

  • the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance over a long period of time.
  • a coated tool a surface-coated cutting tool
  • a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet.
  • the lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO).
  • TiCNO carbonitride oxide
  • Al 2 O 3 layer aluminum oxide layer having an ⁇ -type crystal structure in a state where the upper layer is chemically vapor-deposited
  • Patent Document 1 and Patent Document 2 are known for improving the lower layer.
  • Patent Document 1 by reducing the particle width of the TiCN layer of the lower layer and setting the surface of the hard coating layer to an appropriate surface roughness, impact resistance, fracture resistance, The wear resistance is improved.
  • a TiCNO layer having a thickness of at least 2 to 18 ⁇ m is formed as the Ti compound layer.
  • the X-ray diffraction peak maximum intensity surface is the (422) plane or the (311) plane.
  • the amount of oxygen in the TiCNO layer is 0.05 to 3.02% by mass.
  • the coated tool described in Patent Document 2 can prevent coarsening of the hard coating layer surface and formation of local protrusions, Furthermore, the strength of TiCNO itself and the adhesion between the lower layer and the upper layer are improved. Further, for example, Patent Document 3 and Patent Document 4 are known as those relating to improvement of the upper layer.
  • the Al 2 O 3 layer constituting the upper layer has a (030) plane peak intensity I (030) and (104) plane peak intensity I ( By using an Al 2 O 3 layer that is larger than 104), wear resistance and fracture resistance are improved.
  • the Al 2 O 3 layer constituting the upper layer has a two-layer structure including a lower layer and an upper layer, respectively. Furthermore, using a field emission scanning electron microscope, the tilt angle formed by the normal line of the (0001) plane is measured, and the tilt angle number distribution is in the range of 0 to 45 degrees for the upper layer and 45 to 90 degrees for the lower layer.
  • the upper layer has the highest peak in the inclination angle section in the range of 0 to 15 degrees, and the total frequency in this inclination angle section occupies a ratio of 50% or more, while the lower layer
  • the layer has the highest peak in the tilt angle section within the range of 75 to 90 degrees, and the chipping resistance is improved by adopting a two-layer structure in which the total frequency in this tilt angle section accounts for 50% or more. is doing.
  • JP 2007-260851 A Japanese Patent No. 3808648 Japanese Patent No. 3291775 JP 2007-152491 A
  • the present inventors have improved the adhesion between the lower layer made of the Ti compound layer and the upper layer made of the Al 2 O 3 layer, thereby causing abnormal damage such as peeling and chipping.
  • we conducted intensive research we conducted intensive research.
  • the following knowledge was obtained.
  • a coated tool in which a lower layer made of a Ti compound layer and an upper layer made of an Al 2 O 3 layer are coated, by controlling the orientation of Al 2 O 3 crystal grains immediately above the outermost surface layer of the lower layer, The density of fine pores formed at the interface between the layer and the lower layer can be reduced, and the adhesion between the upper layer and the lower layer can be improved.
  • the high-temperature hardness and high-temperature strength of the entire upper layer can be maintained by controlling the orientation of the Al 2 O 3 crystal grains of the entire upper layer. Even when used for high-speed heavy cutting and high-speed intermittent cutting in which a high load / impact load acts on the cutting edge by controlling the orientation of the Al 2 O 3 crystal grains described above, peeling between the upper layer and the lower layer, chipping, etc. Thus, a coated tool that exhibits excellent cutting performance over a long period of use can be obtained.
  • a surface-coated cutting tool comprising a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet, and a hard coating layer deposited on the surface of the tool base, wherein the hard coating layer is And a lower layer formed on the surface of the tool base, and an upper layer formed on the lower layer.
  • the lower layer includes a Ti carbide layer, a nitride layer, and a carbonitride layer.
  • the upper layer is from 2 Comprising an Al 2 O 3 layer having an average layer thickness of 15 ⁇ m and having an ⁇ -type crystal structure in the state of chemical vapor deposition, (c) preparing a tool cross-section polished surface perpendicular to the tool substrate surface, At the interface between the outermost surface layer of the lower layer and the upper layer.
  • the Al 2 O 3 crystal grains on the upper layer using a field emission scanning electron microscope, and irradiated with an electron beam in the crystal grains each having a hexagonal crystal lattice present within the measuring range of the tool section polishing surface
  • the inclination angle formed by the normal line of the (11-20) plane which is the crystal plane of the crystal grain, is measured with respect to the normal line of the surface of the tool base, the inclination angle is 0 to 10 degrees.
  • the area ratio occupied by 2 O 3 crystal grains is 30 to 70 area% of the area of the measurement range.
  • D For the Al 2 O 3 crystal grains of the entire upper layer, using a field emission scanning electron microscope, The crystal grains having a hexagonal crystal lattice existing within the measurement range of the tool cross-section polished surface are irradiated with an electron beam, and are the crystal planes of the crystal grains with respect to the normal line of the surface of the tool base (0001 ) When measuring the tilt angle formed by the normal of the surface, Area ratio inclination angle occupied Al 2 O 3 crystal grains having a 10 degrees from 0, the surface-coated cutting tool, characterized in that at the least 45 area% of the area of the measurement range.
  • the surface-coated cutting tool according to (1) wherein the outermost surface layer of the lower layer includes a Ti carbonitride layer having a layer thickness of at least 500 nm, and the Ti carbonitride layer and the Oxygen is contained only in the depth region up to 500 nm in the thickness direction of the Ti carbonitride layer from the interface with the upper layer, and the average oxygen content contained in the depth region is the depth.
  • a surface-coated cutting tool that is 0.5 to 3 atomic% of the total content of Ti, C, N, and O contained in the region.
  • the coated tool of the embodiment of the present invention for example, an oxygen-containing TiCN layer is formed on the outermost surface of the lower layer of the hard coating layer, and a predetermined area ratio ( 11-20) Oriented Al 2 O 3 crystal grains are formed, and further, an upper layer having (0001) oriented Al 2 O 3 crystal grains having a predetermined area ratio as the entire upper layer is formed.
  • the orientation of the Al 2 O 3 crystal grains immediately above the layer and the orientation of the Al 2 O 3 crystal grains of the entire upper layer are controlled. More preferably, the coated tool of the present invention has a crystal grain number ratio in which the interface between the lower layer and the upper layer is controlled.
  • the coated tool of the present invention can be used for cutting various steels and cast irons at high speeds, high speed heavy cutting conditions where high loads and impact loads are applied to the cutting edge, and high speed intermittent cutting conditions. It exhibits excellent high-temperature strength and high-temperature hardness, exhibits no cutting and chipping of the hard coating layer, and exhibits cutting performance over a long period of use.
  • FIG. 4 is a diagram showing an inclination angle formed by a normal line on the surface of a tool base and a normal line on a (11-20) plane that is a crystal plane of an Al 2 O 3 crystal grain in an upper layer in the surface-coated tool of the embodiment of the present invention. is there. It is a schematic diagram of the interface of the upper layer and lower layer in the surface coating tool of embodiment of this invention.
  • the frequency distribution diagram of the inclination angle formed by the normal of the tool base surface and the normal of the (11-20) plane which is the crystal plane of the Al 2 O 3 crystal grains of the upper layer It is. It is a figure which shows the graph of the measurement result of the area ratio of this invention coated tool.
  • Ti compound layer lower layer: As shown in FIG. 1, the Ti compound layer 3 (for example, TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer) basically exists as a lower layer of the Al 2 O 3 layer 2 and has its own A high temperature strength is imparted to the hard coating layer 4 by the excellent high temperature strength. In addition, the Ti compound layer 3 is in close contact with both the tool base 5 and the Al 2 O 3 layer 2 and has an action of maintaining the adhesion of the hard coating layer 4 to the tool base 5.
  • the Ti compound layer 3 for example, TiC layer, TiN layer, TiCN layer, TiCO layer, and TiCNO layer
  • the total average layer thickness of the Ti compound layer 3 When the total average layer thickness of the Ti compound layer 3 is less than 3 ⁇ m, the above-described effect cannot be exhibited sufficiently. On the other hand, when the total average layer thickness of the Ti compound layer 3 exceeds 20 ⁇ m, it becomes easy to cause thermoplastic deformation particularly in high-speed heavy cutting and high-speed intermittent cutting with high heat generation, which causes uneven wear. From the above, the total average layer thickness of the Ti compound layer 3 was set in the range of 3 to 20 ⁇ m.
  • the outermost surface layer of the lower layer is formed as follows, for example. That is, first, using a normal chemical vapor deposition apparatus, various Ti compound layers consisting of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer are formed by vapor deposition (in addition, Of course, it is possible to form only the TiCN layer by vapor deposition). Then, using the same chemical vapor deposition equipment, Reaction gas composition (volume%): TiCl 4 3 to 8%, CH 3 CN 1.0 to 2.0%, N 2 40 to 60%, balance H 2 , Reaction atmosphere temperature: 750 to 900 ° C.
  • Reaction atmosphere pressure 6 to 10 kPa
  • a TiCN layer containing oxygen (hereinafter referred to as oxygen-containing TiCN) layer is formed as the outermost surface layer of the lower layer.
  • the chemical vapor deposition is performed by adding CO gas so that the total reaction gas amount is 1 to 5% by volume.
  • an oxygen-containing TiCN layer containing 0.5 to 3 atomic% of oxygen is deposited only in a depth region up to 500 nm in the layer thickness direction.
  • the outermost surface layer of the lower layer 3 made of an oxygen-containing TiCN layer is, for example, a layer thickness of at least 500 nm or more in order to form preferable Al 2 O 3 crystal grains thereon (see (d) below).
  • 0.5 to 3 atomic% of oxygen is contained only in a depth region from the interface between the oxygen-containing TiCN layer and the upper layer 2 to 500 nm in the layer thickness direction of the oxygen-containing TiCN layer. It is desirable that the depth region exceeding 500 nm is composed of an oxygen-containing TiCN layer not containing oxygen.
  • the average oxygen content in the depth region up to 500 nm of the oxygen-containing TiCN layer is limited as described above because when oxygen is contained in a region deeper than 500 nm in the depth direction of the film.
  • the orientation of the Al 2 O 3 crystal grains immediately above the outermost surface layer of the lower layer 3, (11-20) oriented Al 2 O 3 crystal grains ( 11-20) Oriented Al 2 O 3 crystal grains will be described later. This is because it becomes impossible to achieve the desired distribution state.
  • orientation of the Al 2 O 3 crystal grains (11-20) can not satisfy the distribution of orientation Al 2 O 3 crystal grains.
  • the average oxygen content in this depth region exceeds 3 atomic%, in the upper layer Al 2 O 3 immediately above the interface, (0001) oriented Al 2 O 3 crystal grains (note that (0001) oriented Al 2 O The area ratio occupied by 3 crystal grains is less than 45 area% with respect to the total area of Al 2 O 3 in the entire upper layer, and the high-temperature strength of the upper layer 2 is reduced.
  • the average oxygen content is titanium (Ti) in a depth region up to 500 nm in the thickness direction of the TiCN layer from the interface between the TiCN layer and the upper layer 2 constituting the outermost surface layer of the lower layer 3.
  • a TiCNO layer film thickness is 2 to 18 ⁇ m
  • the oxygen content of the entire TiCNO layer is 0.05 to 3.02% by mass.
  • the crystal grain width is reduced to prevent coarsening of the hard coating layer surface and formation of local protrusions.
  • the oxidation state of the outermost surface of TiCN is adjusted so that only 0.5 to 3 atomic% of oxygen is contained in the region. That is, in the step before the generation of Al 2 O 3 nuclei, the grain boundaries on the TiCN surface and the uneven portions on the crystal plane are relatively strongly oxidized to generate ⁇ -Al 2 O 3 nuclei.
  • the nuclei are formed in a distributed state.
  • the crystal orientation of TiCN and the Al 2 O The orientation relationship of the three nuclei can be controlled, and (11-20) -oriented Al 2 O 3 crystal grains can be generated on the grain boundaries on the TiCN surface and the irregularities on the crystal plane.
  • the lower layer (TiCNO layer) having a thickness of 2 to 18 ⁇ m described in Patent Document 2 contains oxygen in a depth region exceeding 500 nm in the layer thickness direction (at least a depth region of 2 ⁇ m or more). Therefore, the present invention is fundamentally different from the above prior art in this respect.
  • an oxygen-containing TiCN layer is formed as the outermost surface layer of the lower layer 3, but an outermost surface layer of another form of the lower layer may be formed as shown below. it can. That is, as in the case of (b), first, using an ordinary chemical vapor deposition apparatus, various kinds of one or more of TiC layer, TiN layer, TiCN layer, TiCO layer and TiCNO layer are used.
  • Reaction gas composition (volume%): AlCl 3 0.1 to 1%, balance H 2 , Atmospheric temperature: 750 to 900 ° C, Atmospheric pressure: 6 to 10 kPa, Time: 1 to 5 min, AlCl 3 gas etching is performed under the conditions of Reaction gas composition (volume%): CO 5 to 10%, NO 5 to 10%, balance H 2 , Atmospheric temperature: 750 to 900 ° C, Atmospheric pressure: 6 to 10 kPa,
  • Reaction gas composition volume%: CO 5 to 10%, NO 5 to 10%, balance H 2 , Atmospheric temperature: 750 to 900 ° C, Atmospheric pressure: 6 to 10 kPa
  • the Al compound nuclei necessary for ⁇ -Al 2 O 3 nucleation are uniformly dispersed on the outermost surface of the Ti compound layer, In the step before the generation of Al 2 O 3 nuclei, ⁇ -Al 2 O 3 nuclei can be uniformly dispersed
  • Reaction gas composition volume%): TiCl 4 1 to 5%, H 2 10 to 30%, balance Ar, Atmospheric temperature: 750 to 900 ° C, Atmospheric pressure: 6 to 10 kPa, The TiCl 4 gas etching process is performed under the conditions.
  • the inclination angle 11 (see FIG. 2) formed by the normal line 10 of the (11-20) plane 7 that is the crystal plane of the Al 2 O 3 crystal grains 6 of the upper layer 2 with respect to the normal line 9 of the tool base surface is It can be measured by the following procedure. First, a tool cross-section polishing surface perpendicular to the surface-coated tool base of this embodiment is prepared (see FIG. 1).
  • the area ratio of crystal grains having an inclination angle of 0 to 10 degrees (hereinafter referred to as “(11-20) -oriented Al 2 O 3 crystal grains”) is measured.
  • the area ratio in which (11-20) -oriented Al 2 O 3 crystal grains obtained by the above procedure are formed is higher than that of H 2 gas in the above-described deposition conditions, particularly in TiCl 4 gas etching, compared with Ar gas. Further, it is influenced by increasing the amount of CO 2 gas relative to the amount of AlCl 3 gas in Al 2 O 3 vapor deposition conditions at a reaction time of 5 to 30 minutes.
  • the vertically long columnar structure of the upper layer Al 2 O 3 crystal grains 6 is inclined with respect to the layer thickness direction. And the fine vertical columnar crystal grains are lost, and the adhesion strength between the upper layer Al 2 O 3 and the lower layer 3 is reduced.
  • the existing ratio of (11-20) oriented Al 2 O 3 crystal grains exceeds 70 area%, the area ratio of (0001) oriented Al 2 O 3 crystal grains (described later) of the upper layer Al 2 O 3 is increased. It becomes less than 45 area% based on the total area of the upper layer entire Al 2 O 3 crystal grains, the high temperature strength of the upper layer Al 2 O 3 is decreased. Therefore, for the Al 2 O 3 crystal grains 6 in the upper layer just above the interface between the upper layer 2 and the lower layer 3, the abundance ratio of (11-20) oriented Al 2 O 3 crystal grains is determined to be 30 to 70 area%. .
  • Reaction atmosphere pressure 6 to 10 kPa
  • Time (until the target upper layer thickness is reached)
  • the Al 2 O 3 crystal grains in (e) above grow as fine vertical columnar Al 2 O 3 crystal grains in a direction substantially parallel to the layer thickness direction. Moreover, (0001) -oriented Al 2 O 3 crystal grains are formed with respect to the Al 2 O 3 crystal grains of the entire upper layer.
  • the area ratio of (0001) -oriented Al 2 O 3 crystal grains was determined by purging the inside of the reaction apparatus under an Ar atmosphere after etching using AlCl 3 gas in an Ar gas atmosphere. This is influenced by the adsorption amount of the AlCl 3 gas adsorbed on the Al 2 O 3 surface.
  • the high-temperature hardness and high-temperature strength of the upper layer Al 2 O 3 are maintained when the area ratio of the formed (0001) oriented Al 2 O 3 crystal grains occupies 45% by area or more.
  • the area ratio of (0001) -oriented Al 2 O 3 crystal grains in the upper layer was determined to be 45 area% or more.
  • the area ratio of the (0001) oriented Al 2 O 3 crystal grains is obtained by the following procedure. First, a tool cross-section polishing surface perpendicular to the surface-coated tool base 5 of this embodiment is prepared.
  • the individual crystal grains having a hexagonal crystal lattice existing within the measurement range of the tool cross-section polished surface are electrons. Irradiation is performed to obtain data relating to the orientation of the Al 2 O 3 crystal grains. Based on this data, the inclination angle 11 formed by the normal line 10 of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line 9 of the tool base surface. The measured average value of the area ratio of crystal grains ((0001) -oriented Al 2 O 3 crystal grains) that is 10 degrees is obtained.
  • the thickness of the entire upper layer is less than 2 ⁇ m, excellent high-temperature strength and high-temperature hardness cannot be exhibited over a long period of use, whereas if it exceeds 15 ⁇ m, chipping is likely to occur.
  • the layer thickness of the upper layer was determined to be 2 to 15 ⁇ m.
  • the number of Al 2 O 3 crystal grains immediately above the outermost surface layer of the lower layer 3 is the outermost surface layer of the lower layer 3 (the oxygen-containing TiCN layer formed in the (b), the (c).
  • the value of the ratio of the Ti compound layer to the number of Ti compound crystal grains (that is, (number of Al 2 O 3 crystal grains) / (number of Ti compound crystal grains) at the interface between the upper layer 2 and the lower layer 3) ) within the range of 0.01 to 0.5. If this value is less than 0.01, the size of the Al 2 O 3 crystal grains is relatively small, and the bonding with the irregularities of the crystal planes of the Ti compound crystal grains at the interface deteriorates.
  • the adhesion strength between the Al 2 O 3 and the lower layer 3 is reduced and pores are easily generated.
  • this value exceeds 0.5, the size of the Al 2 O 3 crystal grains is relatively large, and pores are easily formed when the Al 2 O 3 is formed in the upper layer 2. While the hardness and strength of Al 2 O 3 are lowered, the adhesion strength with the Ti compound in the lower layer is lowered.
  • the value of the ratio of the Al 2 O 3 crystal grain number of the upper layer 2 at the interface between the upper layer 2 and the lower layer 3 to the Ti compound crystal grain number of the outermost surface layer of the lower layer 3 (( The number of Al 2 O 3 crystal grains) / (the number of Ti compound crystal grains)) is set in the range of 0.01 to 0.5.
  • the size of the Al 2 O 3 crystal grains 6 in the vicinity of the interface is desirably 10 nm to 50 nm.
  • FIG. 1 shows the structure of the lower layer 3 and the upper layer 2
  • FIG. 3 shows the ratio of the number of crystal grains at the interface between the upper layer 2 and the lower layer 3.
  • WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, and Co powder each having an average particle diameter of 1 to 3 ⁇ m were prepared. These raw material powders were blended into the blending composition shown in Table 1, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, and press-molded into a compact of a predetermined shape at a pressure of 98 MPa. This green compact is vacuum-sintered at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. As a result, tool bases A to F made of WC-base cemented carbide having a throwaway tip shape specified in ISO ⁇ CNMG160608 were produced.
  • Mo 2 C powder Mo 2 C powder
  • ZrC powder ZrC powder
  • NbC powder NbC powder
  • TaC powder WC powder
  • Co powder and Ni powder were prepared.
  • These raw material powders were blended in the blending composition shown in Table 2, wet mixed for 24 hours with a ball mill, dried, and then press-molded into a green compact at a pressure of 98 MPa.
  • the green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, the cutting edge portion had a width of 0.1 mm and an angle of 20 degrees Chamfer Honing.
  • f was formed from a tool base a made of TiCN base cermet having a chip shape of ISO standard / CNMG160608.
  • each of the tool bases A to F and the tool bases a to f was charged into a normal chemical vapor deposition apparatus, and the inventive coated tools 1 to 7 and 8 to 13 were manufactured according to the following procedure.
  • Table 3 (l-TiCN in Table 3 shows the conditions for forming a TiCN layer having a vertically elongated crystal structure described in JP-A-6-8010, and the other conditions are ordinary granularity.
  • the Ti compound layers having the target layer thicknesses shown in Tables 8 and 9 were formed by vapor deposition under the conditions shown in Table 8 and 9.
  • the inventive coated tools 8 to 13 were produced by the following procedure.
  • (B2) Under the conditions shown in Table 5, the oxygen-containing TiCN layer as the outermost surface layer of the lower layer (ie, 0.5 to 3 atomic% (O 2 only in the depth region from the surface of the layer to 500 nm) / (Ti + C + N + O) ⁇ 100)) was formed at the target layer thickness shown in Table 9.
  • the surface of the oxygen-containing TiCN layer formed in (b2) above was subjected to TiCl 4 gas etching treatment under the conditions shown in Table 6 in the same manner as in (c), and then the inside of the apparatus was purged with Ar gas. did.
  • the coated tool 8 of the present invention is formed by forming the upper Al 2 O 3 layer with the target layer thickness shown in Table 9 under the three-stage conditions shown in Table 7. To 13 were produced respectively.
  • Reaction gas composition (volume%): TiCl 4 3 to 8%, CH 3 CN 1.0 to 2.0%, N 2 40 to 60%, balance H 2 , Reaction atmosphere temperature: 750 to 900 ° C.
  • Reaction atmosphere pressure 6 to 10 kPa
  • Chemical vapor deposition was performed to form a TiCN layer that does not intentionally contain oxygen (hereinafter referred to as inevitable oxygen-containing TiCN) layer with a layer thickness of 3 ⁇ m or more.
  • the oxygen content inevitably contained in a region deeper than 100 nm in the layer thickness direction from the surface of the inevitable oxygen-containing TiCN layer is measured by using an Auger electron spectroanalyzer to contain Ti, C, N,
  • the inevitable oxygen content obtained from the ratio of the total content of O and determined within the accuracy range of the Auger electron spectroscopic analyzer was determined to be 0.5 atomic%.
  • the cross-sectional polished surface is irradiated with an electron beam having a diameter of 10 nm from the outermost surface of the lower Ti carbonitride layer to a distance corresponding to the thickness of the Ti carbide layer, and the intensity of the Auger peaks of Ti, C, N, and O
  • the ratio of the Auger peak intensity of O is calculated from the sum of the peak intensities, and the value obtained by subtracting the unavoidable oxygen content is the acid of the TiCN layer constituting the outermost surface layer. It was determined as the content. Tables 9 and 11 show these values.
  • the Al 2 O 3 crystal grains at the interface between the lower layer and the upper layer and the TiCN crystal grains of the outermost surface layer of the lower layer were analyzed by a field emission electron microscope. And measuring the number of 50 ⁇ m wide Al 2 O 3 grains and TiCN grains in the direction parallel to the tool substrate at the interface between the lower layer and the upper layer, The value of the ratio of (number of Al 2 O 3 crystal grains) / (number of Ti compound crystal grains) at the interface between the upper layer and the lower layer was determined.
  • the identification of the outermost Al 2 O 3 crystal grains at the interface between the lower layer and the upper layer and the Ti compound crystal grains on the outermost surface of the lower layer was performed more specifically as follows.
  • the crystal grains having a hexagonal crystal lattice of the upper aluminum oxide layer existing within the measurement range of the cross-sectional polished surface using a field emission scanning electron microscope and an electron backscatter diffraction image apparatus Each was irradiated with an electron beam, and the inclination angle formed by the normal lines of the (0001) plane and (10-10) plane, which are crystal planes of the crystal grains, was measured with respect to the normal line of the tool base surface.
  • the angles at which the normal lines of the (0001) plane and the normal lines of the (10-10) plane cross each other at the interface between adjacent crystal grains are obtained, and The case where the angle between the normal lines of the (0001) planes and the normal lines of the (10-10) planes was 2 degrees or more was identified as a crystal grain.
  • a field emission scanning electron microscope is used to irradiate the crystal grains of the outermost layer of the Ti compound layer existing within the measurement range of the cross-section polished surface with an electron beam, thereby The inclination angle formed by the normal lines of the (001) plane and the (011) plane, which are the crystal planes of the crystal grains, was measured.
  • the average size and number of fine pores in the Al 2 O 3 crystal grains immediately above the interface between the lower layer and the upper layer of the inventive coated tools 1 to 13 and the comparative coated tools 1 to 13 are 50,000 times cross section measured by a transmission electron microscope. Investigated using dark field observation.
  • the average size of the fine pores existing within a width of 50 ⁇ m in parallel with the tool base surface is drawn by drawing a straight line parallel to the tool base surface on the fine pore, and the intersection width where the width between the intersections of the straight line and the pore is the maximum value is the pore size.
  • the size of pores existing in a width of 50 ⁇ m was calculated by the above-described calculation method, and the average value thereof was defined as the average size of fine pores.
  • the number of fine pores was calculated as an existing number with a width of 50 ⁇ m. Tables 8 to 11 show these values.
  • the area ratio of (11-20) -oriented Al 2 O 3 crystal grains was determined using a field emission scanning electron microscope according to the following procedure. And measured.
  • the measurement range (0.3 ⁇ m ⁇ 50 ⁇ m) of the cross-section polished surface was set in a lens barrel of a field emission scanning electron microscope.
  • an electron beam with an acceleration voltage of 15 kV at an incident angle of 70 degrees is applied to the polished surface with an irradiation current of 1 nA, and each crystal grain having a hexagonal crystal lattice existing within the measurement range of each polished surface is irradiated.
  • a measurement area of 0.3 ⁇ 50 ⁇ m is a crystal plane of the crystal grain with respect to the normal of the tool base surface at an interval of 0.1 ⁇ m / step ( The inclination angle formed by the normal of the 11-20) plane was measured.
  • the Al 2 O 3 crystal of the entire upper layer is used.
  • the grains using a field emission scanning electron microscope, as described above, each crystal grain having a hexagonal crystal lattice existing within the measurement range of the cross-sectional polished surface was irradiated with an electron beam, and the surface of the tool base was The tilt angle formed by the normal line of the (0001) plane, which is the crystal plane of the crystal grain, is measured with respect to the normal line, and the crystal grain ((0001) -oriented Al 2 O 3 with the tilt angle of 0 to 10 degrees is measured.
  • the term “whole upper layer” as used herein refers to the measurement range from the interface between the lower layer and the upper layer to the outermost surface of the upper layer, and the measurement of (11-20) oriented Al 2 O 3 crystal grains immediately above the interface. Including range. Tables 8 to 11 show these values.
  • the graph of the measurement result of the area ratio of this invention coated tool 10 is shown in FIG.
  • the thicknesses of the constituent layers of the hard coating layers of the inventive coated tools 1 to 13 and the comparative coated tools 1 to 13 were measured using a scanning electron microscope (longitudinal section measurement).
  • the average layer thickness (average value of 5-point measurement) was substantially the same.
  • coated tools 1 to 13 and comparative coated tools 1 to 13 are screwed to the tip of the tool steel tool with a fixing jig
  • Work material JIS / S45C lengthwise equidistant 4 grooved
  • Cutting speed 350 m / min.
  • Cutting depth 2mm
  • Feed 0.4 mm / rev.
  • Cutting time 5 minutes Dry high-speed intermittent cutting test of nickel chromium molybdenum alloy steel under the conditions (cutting condition A) (normal cutting speed is 300 m / min., Respectively)
  • Work material JIS / SNCM439 round bar
  • Cutting speed 370 m / min.
  • Cutting conditions B Normal cutting speed and depth of cut are 250 m / min, 2 mm / rev., Respectively
  • Work material JIS / FCD700 round bar
  • Cutting speed 320 m / min.
  • Incision 2.5mm
  • Feed 0.2 mm / rev.
  • Cutting time 5 minutes Dry high-speed high-cut cutting test of ductile cast iron under the conditions (cutting condition C) (normal cutting speed and cutting amount are 250 m / min. And 1.5 mm, respectively),
  • cutting condition C normal cutting speed and cutting amount are 250 m / min. And 1.5 mm, respectively
  • the value of the ratio of the number of Al 2 O 3 grains immediately above the interface between the lower layer and the upper layer to the oxygen-containing TiCN grains is 0.01 to 0.5. It was. Moreover, it occupied in Al 2 O 3 crystal grains immediately above the interface of the lower layer and the upper layer (11-20) area ratio of alignment Al 2 O 3 crystal grains was 30 to 70 area%. Furthermore, Attta in occupied Al 2 O 3 crystal grains of the whole upper layer (0001) oriented Al 2 O 3 area ratio of crystal grains is 45% or more by area.
  • the number of fine pores formed in the upper layer is small and the size thereof is small, so that high heat generation occurs and a high load is applied to the cutting blade under high load.
  • these hard coating layers showed excellent peeling resistance and chipping resistance.
  • the oxygen-containing TiCN layer which is the outermost surface layer of the lower layer contains 0.5 to 3 atomic% of oxygen only in the depth region up to 500 nm. .
  • the comparative coated tools 1 to 13 reach the service life in a relatively short time due to occurrence of peeling and chipping of the hard coating layer in high-speed heavy cutting and high-speed intermittent cutting. .
  • the coated tool of the present invention is capable of high-speed heavy load in which high load, intermittent / impact load acts on the cutting blade as well as continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. Even under severe cutting conditions such as cutting and high-speed interrupted cutting, peeling of the hard coating layer and chipping will not occur, and excellent cutting performance will be demonstrated over a long period of use. In addition, it is possible to sufficiently satisfy the labor-saving and energy-saving of the cutting process and the cost reduction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 硬質被覆層が高速重切削、高速断続切削ですぐれた耐剥離性、耐チッピング性を発揮する表面被覆切削工具を提供する。下部層がTi化合物層、上部層がα型Al層からなる硬質被覆層を蒸着形成してなる表面被覆切削工具であって、下部層直上のAl結晶粒の30から70%は(11-20)配向Al結晶粒からなり、上部層の全Al結晶粒の45%以上は、(0001)配向Al結晶粒からなり、さらに好ましくは、下部層の最表面層は、500nmまでの深さ領域にわたってのみ0.5から3原子%の酸素を含有する酸素含有TiCN層からなり、また、下部層最表面層の酸素含有TiCN結晶粒数と、下部層と上部層の界面におけるAl結晶粒数との比の値が0.01から0.5である表面被覆切削工具。

Description

表面被覆切削工具
 本発明は、長期に亘ってすぐれた耐摩耗性を示す表面被覆切削工具(以下、被覆工具という)に関する。この被覆工具では、各種の鋼や鋳鉄などの切削加工を、高速で、かつ、高切り込みや高送りなどの切刃に高負荷が作用する重切削条件で行った場合でも、また、高速で、かつ、切刃に断続的・衝撃的負荷が作用する断続切削条件で行った場合でも、硬質被覆層がすぐれた耐剥離性と耐チッピング性を発揮する。
 本願は、2011年8月31日に、日本に出願された特願2011-189003号、および2012年8月28日に、日本に出願された特願2012-187859号に基づき優先権を主張し、その内容をここに援用する。
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、Al層で示す)、
以上(a)および(b)で構成された硬質被覆層が蒸着形成された被覆工具が知られている。
 しかし、上記従来の被覆工具は、例えば各種の鋼や鋳鉄などの連続切削や断続切削では優れた耐摩耗性を発揮するが、これを、高速重切削、高速断続切削に用いた場合には、被覆層の剥離やチッピングが発生しやすく、工具寿命が短命になるという問題点があった。
 そこで、被覆層の剥離、チッピングを抑制するために、下部層、上部層に改良を加えた各種の被覆工具が提案されている。
 例えば、下部層の改善に関するものとしては、特許文献1および特許文献2が知られている。特許文献1に記載される被覆工具下部層では、下部層のTiCN層の粒子幅を小さくし、かつ、硬質被覆層の表面を適正な表面粗さとすることによって、耐衝撃性、耐欠損性、耐摩耗性の向上を図っている。また、特許文献2に記載される被覆工具下部層では、Ti化合物層として少なくとも膜厚が2から18μmのTiCNO層を形成している。このTiCNO層では、X線回折ピーク最強度面が、(422)面または(311)面である。また、このTiCNO層中の酸素量は、0.05から3.02質量%である。上記の構成に加えてさらに、TiCN結晶粒幅を小さくすることによって、特許文献2に記載される被覆工具では、硬質被覆層表面の結晶粒粗大化および局所的突起の形成の防止が図られ、さらに、TiCNO自体の強度の向上、および下部層と上部層との密着性の向上も図られてる。
 また、上部層の改善に関するものとしては、例えば、特許文献3および特許文献4が知られている。この特許文献3に記載される被覆工具では、上部層を構成するAl層を、X線回折における(030)面のピーク強度I(030)が、(104)面のピーク強度I(104)よりも大であるAl層で構成することによって、耐摩耗性、耐欠損性の向上を図っている。特許文献4に記載される被覆工具では、上部層を構成するAl層を、それぞれ下位層と上位層からなる2層構造としている。さらに電界放出型走査電子顕微鏡を用い、(0001)面の法線がなす傾斜角を測定し、上位層については0から45度、下位層については45から90度の範囲内で傾斜角度数分布グラフを作成した場合、前記上位層は、0から15度の範囲内の傾斜角区分に最高ピークが存在し、この傾斜角区分内の度数合計が50%以上の割合を占め、一方、前記下位層は、75から90度の範囲内の傾斜角区分に最高ピークが存在し、この傾斜角区分内の度数合計が50%以上の割合を占める2層構造とすることにより、耐チッピング性を改善している。
特開2007-260851号公報 特許第3808648号明細書 特許第3291775号明細書 特開2007-152491号公報
 近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強い。これに伴い、切削加工は一段と高速化すると共に、高切り込みや高送りなどの重切削、断続切削等で切刃に高負荷が作用する傾向にある。上記の従来被覆工具を鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はない。しかし、上記従来被覆工具を、高速重切削、高速断続切削条件で用いた場合には、硬質被覆層を構成するTi化合物層からなる下部層とAl層からなる上部層の密着強度が不十分となる。そのため、上部層と下部層間での剥離、チッピング等の異常損傷が発生し、比較的短時間で使用寿命に至る。
 そこで、本発明者等は、上述のような観点から、Ti化合物層からなる下部層とAl層からなる上部層の密着性を改善し、もって、剥離、チッピング等の異常損傷の発生を防止するとともに、工具寿命の長寿命化を図るべく鋭意研究を行った。その結果、以下の知見を得た。
 Ti化合物層からなる下部層とAl層からなる上部層とを被覆形成した被覆工具において、下部層の最表面層直上のAl結晶粒の配向性を制御することで、上部層と下部層との界面に形成される微細ポアの密度を低減させ、上部層と下部層の密着性を向上させることができる。さらに、上部層全体のAl結晶粒についての配向性を制御することで、上部層全体の高温硬さと高温強度を維持することができる。上述のAl結晶粒の配向性制御により、切刃に高負荷・衝撃的負荷が作用する高速重切削、高速断続切削に用いた場合でも、上部層と下部層間での剥離、チッピング等の異常損傷の発生が抑えられ、長期の使用にわたってすぐれた切削性能を発揮する被覆工具が得られる。
 本発明は、上記知見に基づいてなされたものであって、以下に示す態様を有している。
(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体と、前記工具基体の表面に蒸着形成された硬質被覆層とを備える表面被覆切削工具であって、前記硬質被覆層は、前記工具基体の表面に形成された下部層と、前記下部層上に形成された上部層とを有し、(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3から20μmの合計平均層厚を有するTi化合物層からなり、(b)前記上部層は、2から15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するAl層からなり、(c)前記工具基体表面に対して垂直な工具断面研磨面を調製し、前記下部層の最表面層と前記上部層との界面における、前記上部層のAl結晶粒について、電界放出型走査電子顕微鏡を用い、前記工具断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(11-20)面の法線がなす傾斜角を測定した場合、前記傾斜角が0から10度であるAl結晶粒の占める面積割合は、前記測定範囲の面積の30から70面積%であり、(d)上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡を用い、前記工具断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、その傾斜角が0から10度であるAl結晶粒の占める面積割合は、前記測定範囲の面積の45面積%以上であることを特徴とする表面被覆切削工具。
(2)前記(1)記載の表面被覆切削工具であって、前記下部層の最表面層が、少なくとも500nm以上の層厚を有するTi炭窒化物層からなり、前記Ti炭窒化物層と前記上部層との界面から、前記Ti炭窒化物層の層厚方向に500nmまでの深さ領域にのみ酸素が含有されており、前記深さ領域に含有される平均酸素含有量は、前記深さ領域に含有されるTi,C,N,Oの合計含有量の0.5から3原子%である表面被覆切削工具。
(3)前記下部層の最表面層を構成する前記Ti炭窒化物層と前記上部層との界面において、前記下部層の最表面層直上のAl結晶粒数の、前記下部層の最表面層の前記Ti炭窒化物の結晶粒数に対する比の値が、0.01から0.5である前記(2)に記載の表面被覆切削工具。
 本発明の態様の被覆工具(以下、本発明の被覆工具と称する)では、硬質被覆層の下部層最表面に、例えば、酸素含有TiCN層を形成し、界面直上には、所定面積割合の(11-20)配向Al結晶粒を形成し、さらに、上部層全体として所定面積割合の(0001)配向Al結晶粒を有する上部層を形成することにより、下部層の最表面層直上のAl結晶粒の配向性と上部層全体のAl結晶粒についての配向性を制御する。さらに望ましくは、本発明の被覆工具は、下部層と上部層との界面が制御された結晶粒数比を備える。これらにより、被覆工具の硬質被覆層の下部層および上部層間の密着強度を高めることができる。そのため、各種の鋼や鋳鉄などの切削加工を高速で、かつ切れ刃に対して高負荷・衝撃的負荷が作用する高速重切削条件、高速断続切削条件で行っても、本発明の被覆工具は、すぐれた高温強度と高温硬さを示し、硬質被覆層の剥離・チッピングの発生もなく、長期の使用にわたって切削性能を発揮する。
本発明の実施形態の表面被覆工具における、工具基体表面に垂直方向の断面の模式図である。 本発明の実施形態の表面被覆工具における、工具基体表面の法線と上部層のAl結晶粒の結晶面である(11-20)面の法線とがなす傾斜角を示す図である。 本発明の実施形態の表面被覆工具における、上部層と下部層との界面の模式図である。 本発明の実施形態の表面被覆工具における、工具基体表面の法線と上部層のAl結晶粒の結晶面である(11-20)面の法線とがなす傾斜角の度数分布図である。 本発明被覆工具10の面積割合の測定結果のグラフを示す図である。
 本発明の態様である被覆工具の実施形態について説明する。特に、本実施形態の被覆工具1の硬質被覆層4を構成する各層について、詳細に説明する。
(a)Ti化合物層(下部層):
 図1に示すように、Ti化合物層3(例えば、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層)は、基本的にはAl層2の下部層として存在し、自身の持つすぐれた高温強度によって、硬質被覆層4に対して高温強度を与える。その他にも、Ti化合物層3は、工具基体5、Al層2のいずれにも密着し、硬質被覆層4の工具基体5に対する密着性を維持する作用を有する。このTi化合物層3の合計平均層厚が3μm未満である場合、前記作用を十分に発揮させることができない。一方、このTi化合物層3の合計平均層厚が20μmを越える場合、特に高熱発生を伴う高速重切削・高速断続切削では熱塑性変形を起し易くなり、偏摩耗の原因となる。以上から、Ti化合物層3の合計平均層厚は、3から20μmの範囲内に定めた。
(b)下部層の最表面層:
 本発明における下部層3の最表面層は、例えば、以下のようにして形成する。
 即ち、まず、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成(なお、TiCN層のみを蒸着形成することも勿論可能である)する。その後、同じく通常の化学蒸着装置を使用して、
 反応ガス組成(容量%):TiCl 3から8%、CHCN 1.0から2.0%、N 40から60%、残部H
 反応雰囲気温度:750から900℃、
 反応雰囲気圧力:6から10kPa、
の条件で化学蒸着して、下部層の最表面層として、例えば、酸素を含有するTiCN(以下、酸素含有TiCNという)層を形成する。
 この際、所定層厚を得るに必要とされる蒸着時間終了前の5分から30分の間は、全反応ガス量に対して1から5容量%となるようにCOガスを添加して化学蒸着を行うことにより、層厚方向に500nmまでの深さ領域にのみ0.5から3原子%の酸素を含有する酸素含有TiCN層を蒸着形成する。
 酸素含有TiCN層からなる前記下部層3の最表面層は、例えば、その上に、好ましいAl結晶粒を形成するためには(後記(d)参照)、少なくとも500nm以上の層厚として形成するとともに、さらに、この酸素含有TiCN層と上部層2との界面から、この酸素含有TiCN層の層厚方向に500nmまでの深さ領域にのみ、0.5から3原子%の酸素を含有させ、500nmを超える深さ領域には酸素を含有させていない酸素含有TiCN層で構成することが望ましい。
 ここで、酸素含有TiCN層の500nmまでの深さ領域における平均酸素含有量を上記のように限定したのは、膜の深さ方向に500nmより深い領域において酸素が含有されていると、TiCN最表面の組織形態が柱状組織から粒状組織に変化するとともに、下部層3の最表面層直上のAl結晶粒の配向性、(11-20)配向Al結晶粒(なお、(11-20)配向Al結晶粒については、後記する。)の分布状態を所望のものとできなくなるためである。
 ただ、深さ領域500nmまでの平均酸素含有量が0.5原子%未満では、上部層2と下部層TiCNの付着強度の向上を望むことはできないばかりか、下部層3の最表面層直上のAl結晶粒の配向性、(11-20)配向Al結晶粒の分布状態を満足させることはできない。一方、この深さ領域における平均酸素含有量が3原子%を超えると、界面直上の上部層Alにおいて、(0001)配向Al結晶粒(なお、(0001)配向Al結晶粒については、後記する。)の占める面積割合が、上部層全体のAlの全面積に対して45面積%未満となり、上部層2の高温強度が低下する。
 ここで、平均酸素含有量は、下部層3の最表面層を構成する前記TiCN層と上部層2との界面から、このTiCN層の層厚方向に500nmまでの深さ領域におけるチタン(Ti),炭素(C),窒素(N)及び酸素(O)の合計含有量に占める酸素(O)含有量を原子%(=O/(Ti+C+N+O)×100)で表したものをいう。
 なお、先行技術として引用した前記特許文献2には、Ti化合物層として少なくともTiCNO層(膜厚は2から18μm)を形成し、このTiCNO層全体の酸素量を0.05から3.02質量%とした下部層を備える表面被覆切削工具について記載されているが、この先行技術では、結晶粒幅を小さくして、硬質被覆層表面の結晶粒粗大化、局所的突起の形成を防止するとともに、TiCNO自体の強度の向上、上部層との密着性向上を図っているものであるが、上部層の配向性については、何らの工夫もされていない。
 しかるに、本発明では、Al核生成前の工程において、下部層3の最表面層を構成するTiCN層と上部層2との界面から、このTiCN層の層厚方向に500nmまでの深さ領域にのみ、0.5から3原子%の酸素が含有されるように、TiCN最表面の酸化状態を調整しておく。つまり、Al核生成前の工程において、TiCN表面の粒界及び結晶面の凹凸部を相対的に強く酸化してα-Al核を生成させる。このように、Al核生成前の工程で、TiCN最表面の酸化状態を変化させておくことで、核を分布させた状態で形成させ、その際にTiCNの結晶方位とAl核の方位関係を制御することができ、TiCN表面の粒界及び結晶面の凹凸部上に(11-20)配向Al結晶粒を生成させることができる。
 前記特許文献2に記載される2から18μmの膜厚の下部層(TiCNO層)は、層厚方向500nmを超える深さ領域(少なくとも、2μm以上の深さ領域)にまで酸素を含有するものであるから、この点で本発明は上記先行技術と根本的に異なる。
(c)前記(b)は、下部層3の最表面層として、酸素含有TiCN層を形成するものであるが、以下に示すように別の形態の下部層の最表面層を形成することもできる。
 即ち、前記(b)の場合と同様に、まず、通常の化学蒸着装置を使用して、TiC層、TiN層、TiCN層、TiCO層およびTiCNO層のうちの1層または2層以上からなる種々のTi化合物層を蒸着形成した後、この蒸着形成した下部層3の表面に対して、
 反応ガス組成(容量%):AlCl 0.1から1%、残部H
 雰囲気温度:750から900℃、
 雰囲気圧力:6から10kPa、
 時間:1から5min、
という条件でAlClガスエッチングを行い、その後、
 反応ガス組成(容量%):CO 5から10%、NO 5から10%、残部H
 雰囲気温度:750から900℃、
 雰囲気圧力:6から10kPa、
 時間:1から5min、という条件でCOとNO混合ガスによる酸化処理を行うことによって、α-Al核生成に必要なAl化合物の核をTi化合物層最表面に均一分散させることで、Al核生成前の工程において、Ti化合物層最表面にα-Al核を均一分散させることができる。
(d)下部層の最表面層直上のAl結晶粒:
 上記(b)で成膜した0.5から3原子%の酸素を含有する酸素含有TiCN層の表面に、あるいは、上記(c)で成膜したα-Al核が均一分散したTi化合物層の表面に、例えば、
 反応ガス組成(容量%):TiCl 1から5%、H 10から30%、残部Ar、
 雰囲気温度:750から900℃、
 雰囲気圧力:6から10kPa、
という条件で、TiClガスエッチング処理を施す。
 ついで、装置内をAr雰囲気とし、温度750から900℃、圧力:6から10kPaとして、装置内雰囲気をパージした後、
 反応ガス組成(容量%):AlCl 1から3%、CO 10から30%、残部H
 反応雰囲気温度:960から1040℃、
 反応雰囲気圧力:6から10kPa、
 時間:5から30min、
の条件でAlを蒸着することにより、下部層3の最表面層直上に、(11-20)配向Al結晶粒が、測定範囲の面積の30から70面積%を占めるAl結晶粒を形成することができる。
 工具基体表面の法線9に対して、上部層2のAl結晶粒6の結晶面である(11-20)面7の法線10がなす傾斜角11(図2を参照)は、以下の手順で測定することができる。
 まず、本実施形態の表面被覆工具基体に対して垂直な工具断面研磨面を調製する(図1参照)。次に、下部層3の最表面層直上(上部層と下部層の界面直上)に形成された上記(d)のAl結晶粒を測定対象として、電界放出型走査電子顕微鏡を用い、前記工具断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、前記Al結晶粒6の配向性に関わるデータを得る。そして、このデータを基に、前記工具基体表面の法線9に対して、前記結晶粒の結晶面である(11-20)面の法線10がなす傾斜角11(図2参照)を測定し、その傾斜角が0から10度である結晶粒(以下、「(11-20)配向Al結晶粒」という)の面積割合を測定する。
 上記の手順で得られる(11-20)配向Al結晶粒が形成される面積割合は、上記蒸着条件のうちの、特に、TiClガスエッチングにおいて、Hガスと比較し、Arガスの割合を多くすること、さらに、反応時間5から30minにおけるAl蒸着条件において、AlClガス量に対してCOガス量を相対的に多くすることによって影響される。(11-20)配向Al結晶粒が測定範囲の面積の30面積%未満であると、上部層Al結晶粒6の縦長柱状組織が層厚方向に対して、傾斜した状態で形成され、微細な縦長柱状結晶粒でなくなり、上部層Alと下部層3との付着強度が低下する。一方、(11-20)配向Al結晶粒の存在割合が70面積%を超えると、上部層Alの(0001)配向Al結晶粒(後記する)の面積割合が上部層全体のAl結晶粒の全面積に対して45面積%未満となり、上部層Alの高温強度が低下する。
 したがって、上部層2と下部層3との界面直上における上部層のAl結晶粒6について、(11-20)配向Al結晶粒の存在割合を30から70面積%と定めた。
(e)上部層のAl結晶粒:
 下部層3の最表面層直上に上記(d)のAl結晶粒を蒸着形成した後、上部層のAl結晶粒を以下の条件で形成する。
 即ち、上記(d)で形成したAl結晶粒(即ち、(11-20)配向Al結晶粒が30から70面積%存在するAl結晶粒)の表面を、
 反応ガス組成(容量%):AlCl 1から5%、残部Ar、
 温度:960から1040℃、
 雰囲気圧力:6から10kPa、時間:1から5min、の条件でエッチング処理した後、
 反応ガス組成(容量%):AlCl 1から5%、CO 5から15%、HCl 1から5%、HS 0.5から1%、残部H
 反応雰囲気温度:960から1040℃、
 反応雰囲気圧力:6から10kPa、
 時間:(目標とする上部層層厚になるまで)
という条件で蒸着することにより、層厚方向とほぼ平行に成長した微細な縦長柱状Al結晶粒で構成され、(0001)配向Al結晶粒の面積割合が、上部層全体のAl結晶粒に対して45面積%以上を占めるAl層からなる上部層を形成することができる。
 上記(e)のAl結晶粒は、層厚方向とほぼ平行な方向に微細な縦長柱状Al結晶粒として成長する。しかも、上部層全体のAl結晶粒に対して、(0001)配向Al結晶粒が形成される。(0001)配向Al結晶粒の面積割合は、上記蒸着条件のうちの、特に、Arガス雰囲気下でAlClガスを用いたエッチング処理した後、Ar雰囲気下で反応装置内を敢えてパージしないことで、Al表面に吸着したAlClガスの吸着量によって影響される。
 形成される(0001)配向Al結晶粒の面積割合が、45面積%以上を占める場合に、上部層Alの高温硬さ、高温強度が維持されることから、本発明では、上部層の(0001)配向Al結晶粒の面積割合を、45面積%以上と定めた。
 上記(0001)配向Al結晶粒の面積割合は、以下の手順で得られる。まず、本実施形態の表面被覆工具基体5に対して垂直な工具断面研磨面を調製する。次に、上部層全体のAl結晶粒を測定対象として、電界放出型走査電子顕微鏡を用い、前記工具断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射し、前記Al結晶粒の配向性に関わるデータを得る。そして、このデータを基に、前記工具基体表面の法線9に対して、前記結晶粒の結晶面である(0001)面の法線10がなす傾斜角11を測定し、その傾斜角が0から10度である結晶粒((0001)配向Al結晶粒)の面積割合の測定平均値が求められる。
 なお、上部層全体の層厚が、2μm未満であると長期の使用にわたってすぐれた高温強度および高温硬さを発揮することができず、一方、15μmを越えると、チッピングが発生し易くなることから、上部層の層厚は2から15μmと定めた。
下部層と上部層の界面の結晶粒数比:
 本実施形態では、下部層3の最表面層直上におけるAl結晶粒数の、下部層3の最表面層(前記(b)で形成した酸素含有TiCN層、前記(c)で形成したTi化合物層のいずれでも可)のTi化合物結晶粒数に対する比の値(即ち、上部層2と下部層3の界面における(Al結晶粒の数)/(Ti化合物結晶粒の数))を、0.01から0.5の範囲内に定めている。この値が0.01未満であると、相対的にAl結晶粒のサイズが小さすぎて、界面におけるTi化合物結晶粒の結晶面の凹凸との結合性が悪くなり、上部層2のAlと下部層3との付着強度が低下するとともにポアが発生しやすくなる。一方、この値が0.5を超えると、相対的にAl結晶粒のサイズが大きすぎて、上部層2のAl形成時にポアが形成されやすくなり、そのため上部層2のAlの硬さ、強度が低下するともに、下部層のTi化合物との付着強度が低下する。
 そこで、本実施形態においては、上部層2と下部層3の界面における上部層2のAl結晶粒数の、下部層3の最表面層のTi化合物結晶粒数に対する比の値((Al結晶粒の数)/(Ti化合物結晶粒の数))は、0.01から0.5の範囲に定めている。
 界面近傍におけるAl結晶粒6の大きさは、10nmから50nmであることが望ましい。
 図1に下部層3および上部層2の構造を表す図、図3に上部層2と下部層3の界面における結晶粒数の比率を表す図を示した。
 つぎに、本発明の被覆工具を実施例により具体的に説明する。
 原料粉末として、いずれも1から3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、およびCo粉末を用意した。これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形した。この圧粉体を5Paの真空中、1370から1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG160608に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体AからFをそれぞれ製造した。
 また、原料粉末として、いずれも0.5から2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意した。これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形した。この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分に幅:0.1mm、角度:20度のチャンファーホーニング加工を施すことによりISO規格・CNMG160608のチップ形状をもったTiCN基サーメット製の工具基体aからfを形成した。
 ついで、これらの工具基体AからFおよび工具基体aからfのそれぞれを、通常の化学蒸着装置に装入し、以下の手順で本発明被覆工具1から7及び8から13をそれぞれ製造した。
 (a)まず、表3(表3中のl-TiCNは特開平6-8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表8、9に示される目標層厚のTi化合物層を蒸着形成した。
 (b1)ついで、表4に示される条件にて、下部層の最表面のTi化合物層にAlClガスエッチング及びCOとNO混合ガスによる酸化処理を行った。
 (c)ついで、上記(b)の処理を施したTi化合物層の表面を、表6に示される条件にて、TiClガスエッチング処理し、その後、装置内をArガスでパージした。
 (d)ついで、表7に示される三段階の条件にて、上部層のAl層を表8に示される目標層厚で形成することにより、本発明被覆工具1から7をそれぞれ製造した。
 また、上記(a)で目標層厚のTi化合物層を蒸着形成した後、以下の手順で本発明被覆工具8から13をそれぞれ製造した。
 (b2)表5に示される条件にて、下部層の最表面層としての酸素含有TiCN層(即ち、該層の表面から500nmまでの深さ領域にのみ、0.5から3原子%(O/(Ti+C+N+O)×100)の酸素が含有される)を表9に示される目標層厚で形成した。
 ついで、上記(b2)で形成した酸素含有TiCN層の表面を、前記(c)と同様に、表6に示される条件にて、TiClガスエッチング処理し、その後、装置内をArガスでパージした。
 ついで、前記(d)と同様に、表7に示される三段階の条件にて、上部層のAl層を表9に示される目標層厚で形成することにより、本発明被覆工具8から13をそれぞれ製造した。
 また、比較の目的で、上記本発明被覆工具1から7の上記工程(b1),(c)を行わずに、その他は本発明被覆工具1から7と同一の条件で成膜することにより、表10に示す比較被覆工具1から7を製造した。
 さらに、比較のため、上記本発明被覆工具8から13の上記工程(b2)から外れた条件(表5で、本発明外として示す)で酸素を含有させ,また、同じく(c)から外れた条件(表6で、本発明外条件として示す)でTiClガスエッチング処理を施し、また、同じく(d)から外れた条件(表7で、本発明外として示す)でAl層を形成し、その他は本発明被覆工具8から13と同一の条件で成膜することにより、表11に示す比較被覆工具8から13を製造した。
このTi炭窒化物層に意図的に添加した酸素含有量を求めるため、別途炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に、
 反応ガス組成(容量%):TiCl 3から8%、CHCN 1.0から2.0%、N 40から60%、残部H
 反応雰囲気温度:750から900℃、
 反応雰囲気圧力:6から10kPa、 
の条件で化学蒸着して、酸素を意図的に含有しないTiCN(以下、不可避酸素含有TiCNという)層を3μm以上の層厚で形成した。この不可避酸素含有TiCN層の表面から層厚方向に100nmより深い領域に不可避的に含まれる酸素含有量を、オージェ電子分光分析器を用いて前記深さ領域に含有されるTi,C,N,Oの合計含有量に対する割合から求め、オージェ電子分光分析器の精度の範囲内で求められる不可避酸素含有量を0.5原子%と定めた。
 ついで、上記の本発明被覆工具8から13と比較被覆工具8から13については、下部層の最表面層を構成するTiCN層について、このTiCN層の層厚方向に500nmまでの深さ領域における平均酸素含有量(=O/(Ti+C+N+O)×100)、さらに、500nmを超える深さ領域における平均酸素含有量(=O/(Ti+C+N+O)×100)を、オージェ電子分光分析器を用い、被覆工具の断面研磨面に下部層Ti炭窒化物層の最表面からTi炭化物層の膜厚相当の距離の範囲に直径10nmの電子線を照射させていき、Ti,C,N,Oのオージェピークの強度を測定し、それらのピーク強度の総和からOのオージェピーク強度の割合を算出し、さらに不可避酸素含有量を差し引いた値を該最表面層を構成するTiCN層の酸素含有量として求めた。 表9、11にこれらの値を示す。
 また、上記の本発明被覆工具1から13と比較被覆工具1から13について、下部層と上部層の界面におけるAl結晶粒と下部層の最表面層のTiCN結晶粒を電界放出電子顕微鏡と電子後方散乱回折像装置を用いて識別し、下部層と上部層の界面において、工具基体と平行な方向の50μm幅のAl結晶粒数とTiCN結晶粒数を計測することにより、上部層と下部層の界面における(Al結晶粒の数)/(Ti化合物結晶粒の数)の比の値を求めた。
 ここで、下部層と上部層の界面における最表面のAl結晶粒および下部層の最表面のTi化合物結晶粒の識別は、より具体的には、次のとおり行った。
 前記Al結晶粒の場合、電界放出型走査電子顕微鏡と電子後方散乱回折像装置を用い、断面研磨面の測定範囲内に存在する上部層酸化アルミニウム層の六方晶結晶格子を有する結晶粒個々に電子線を照射して、工具基体表面の法線に対して、前記結晶粒の結晶面である(0001)面および(10-10)面の法線がなす傾斜角を測定した。そして、この結果得られた測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(0001)面の法線同士、および(10-10)面の法線同士の交わる角度を求め、さらに、前記(0001)面の法線同士、および(10-10)面の法線同士の交わる角度が2度以上の場合を結晶粒として定義することで識別した。
 前記Ti化合物結晶粒の場合、電界放出型走査電子顕微鏡を用い、断面研磨面の測定範囲内に存在するTi化合物層の最表層の結晶粒個々に電子線を照射して、工具基体表面の法線に対して、前記結晶粒の結晶面である(001)面および(011)面の法線がなす傾斜角を測定した。そして、この結果得られた測定傾斜角から、それぞれ隣接する結晶粒相互間の界面における(001)面の法線同士、および(011)面の法線同士の交わる角度を求め、さらに、前記(001)面の法線同士、および(011)面の法線同士の交わる角度が2度以上の場合を結晶粒として定義することで識別した。
 表8から表11にこれらの値を示す。
 さらに、本発明被覆工具1から13、比較被覆工具1から13の下部層と上部層の界面直上のAl結晶粒における微細ポアの平均サイズ、数を透過型電子顕微鏡による50000倍の断面暗視野観察を用いて調べた。工具基体表面に平行な直線距離50μm幅に存在する微細ポアの平均サイズは微細ポアに工具基体表面に平行な直線を引き、その直線とポアの交点間の幅が最大値となる交点幅をポアサイズとし算出し、50μm幅に存在するポアのサイズを前記算出法により算出し、それらの平均値を微細ポアの平均サイズとした。微細ポアの数は50μm幅で存在数として算出した。
 表8から表11にこれらの値を示す。
 ついで、硬質被覆層の下部層と上部層との界面直上のAlについて、(11-20)配向Al結晶粒の面積割合を、以下の手順で電界放出型走査電子顕微鏡を用いて測定した。
 まず、上記の本発明被覆工具1から13、比較被覆工具1から13の下部層と上部層との界面から上部層の深さ方向へ0.3μm、また、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(0.3μm×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットした。次に、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、0.3×50μmの測定領域を0.1μm/stepの間隔で、前記工具基体表面の法線に対して、前記結晶粒の結晶面である(11-20)面の法線がなす傾斜角を測定した。この測定結果に基づいて、前記測定傾斜角が0から10度である結晶粒((11-20)配向Al結晶粒)の面積割合を測定した。
 表8から表11にこれらの値を示す。
 図4に本発明被覆工具10の面積割合の測定結果のグラフを示す。
 さらに、本発明被覆工具1から13、比較被覆工具1から13の硬質被覆層の上部層全体の(0001)配向Al結晶粒の面積割合については、上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡を用い、前記と同様、その断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定し、その傾斜角が0から10度である結晶粒((0001)配向Al結晶粒)の面積割合を測定することによって求めた。
 なお、ここでいう「上部層全体」とは、下部層と上部層との界面から上部層最表面までの測定範囲をいい、界面直上の(11-20)配向Al結晶粒の測定範囲も含む。表8から表11にこれらの値を示す。
 図5に本発明被覆工具10の面積割合の測定結果のグラフを示す。
 また、本発明被覆工具1から13、比較被覆工具1から13の硬質被覆層の各構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 つぎに、上記の本発明被覆工具1から13、比較被覆工具1から13の各種の被覆工具について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
 被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り、
 切削速度:350m/min.、
 切り込み:2mm、
 送り:0.4mm/rev.、
 切削時間:5分、
の条件(切削条件Aという)でのニッケルクロムモリブデン合金鋼の乾式高速断続切削試験(通常の切削速度は、それぞれ、300m/min.、)、
 被削材:JIS・SNCM439の丸棒、
 切削速度:370m/min.、
 切り込み:3.5mm、
 送り:0.25mm/rev.、
 切削時間:8分、
の条件(切削条件Bという)でのニッケルクロムモリブデン合金鋼の乾式高速重切削試験(通常の切削速度および切込量は、それぞれ、250m/min.、2mm/rev.)、
 被削材:JIS・FCD700の丸棒、
 切削速度:320m/min.、
 切り込み:2.5mm、
 送り:0.2mm/rev.、
 切削時間:5分、
の条件(切削条件Cという)でのダクタイル鋳鉄の乾式高速高切込切削試験(通常の切削速度および切込量はそれぞれ250m/min.、1.5mm)、
を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
 表12にこの測定結果を示した。
Figure JPOXMLDOC01-appb-T000012
 表8、9、12に示される結果から、以下のことが示された。まず、本発明被覆工具1から13は、いずれも、下部層と上部層の界面直上のAl結晶粒数の酸素含有TiCN結晶粒に対する比の値は0.01から0.5であった。また、下部層と上部層の界面直上のAl結晶粒に占める(11-20)配向Al結晶粒の面積割合は30から70面積%であった。さらに、上部層全体のAl結晶粒に占める(0001)配向Al結晶粒の面積割合は45面積%以上であっった。本発明被覆工具1から13では、上部層中に形成される微細ポアの存在数が少なく、そのサイズが小さいために、高熱発生を伴い、かつ、切刃に高負荷が作用する高速重切削条件、あるいは、切刃に断続的・衝撃的負荷が作用する高速断続切削条件に用いた場合でも、これらの硬質被覆層は優れた耐剥離性および耐チッピング性を示した。
 なお、本発明被覆工具8から13は、いずれも、下部層の最表面層である酸素含有TiCN層が、500nmまでの深さ領域にのみ0.5から3原子%の酸素を含有している。
 これに対して、比較被覆工具1から13では、高速重切削加工、高速断続切削加工においては、硬質被覆層の剥離発生、チッピング発生により、比較的短時間で使用寿命に至ることが明らかである。
 上述のように、本発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃に高負荷、断続的・衝撃的負荷が作用する高速重切削、高速断続切削という厳しい切削条件下でも、硬質被覆層の剥離、チッピングが発生することはなく、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
 1  被覆工具
 2  上部層(Al層)
 3  下部層(Ti化合物層)
 4  硬質被覆層
 5  工具基体
 6  六方晶Al結晶粒
 7  六方晶Al結晶粒の(11-20)面
 8  工具基体表面
 9  工具基体表面の法線
 10 六方晶Al結晶粒の(11-20)面の法線
 11 工具基体表面の法線に対して(11-20)面の法線のなす傾斜角

Claims (3)

  1.  炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体と、
     前記工具基体の表面に蒸着形成された硬質被覆層とを備える表面被覆切削工具であって、
     前記硬質被覆層は、前記工具基体の表面に形成された下部層と、前記下部層上に形成された上部層とを有し、
    (a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ、3から20μmの合計平均層厚を有するTi化合物層からなり、
    (b)前記上部層は、2から15μmの平均層厚を有し、化学蒸着した状態でα型の結晶構造を有するAl層からなり、
    (c)前記工具基体表面に対して垂直な工具断面研磨面を調製し、前記下部層の最表面層と前記上部層との界面における、前記上部層の前記Al結晶粒について、電界放出型走査電子顕微鏡を用い、前記工具断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(11-20)面の法線がなす傾斜角を測定した場合、前記傾斜角が0から10度であるAl結晶粒の占める面積割合は、前記測定範囲の面積の30から70面積%であり、
    (d)上部層全体のAl結晶粒について、電界放出型走査電子顕微鏡を用い、前記工具断面研磨面の測定範囲内に存在する六方晶結晶格子を有する結晶粒個々に電子線を照射して、前記工具基体の表面の法線に対して、前記結晶粒の結晶面である(0001)面の法線がなす傾斜角を測定した場合、その傾斜角が0から10度であるAl結晶粒の占める面積割合は、前記測定範囲の面積の45面積%以上であることを特徴とする表面被覆切削工具。
  2.  請求項1記載の表面被覆切削工具であって、
     前記下部層の最表面層が、少なくとも500nm以上の層厚を有するTi炭窒化物層からなり、
     前記Ti炭窒化物層と前記上部層との界面から、前記Ti炭窒化物層の層厚方向に500nmまでの深さ領域にのみ酸素が含有されており、
     前記深さ領域に含有される平均酸素含有量は、前記深さ領域に含有されるTi,C,N,Oの合計含有量の0.5から3原子%である表面被覆切削工具。
  3.  前記下部層の最表面層を構成する前記Ti炭窒化物層と前記上部層との界面において、前記下部層の最表面層直上のAl結晶粒数の、前記下部層の最表面層の前記Ti炭窒化物の結晶粒数に対する比の値が、0.01から0.5である請求項2に記載の表面被覆切削工具。
PCT/JP2012/072168 2011-08-31 2012-08-31 表面被覆切削工具 WO2013031952A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP12828780.2A EP2752264B1 (en) 2011-08-31 2012-08-31 Surface-coated cutting tool
CN201280042290.5A CN103764323B (zh) 2011-08-31 2012-08-31 表面包覆切削工具
KR1020147005832A KR20140063666A (ko) 2011-08-31 2012-08-31 표면 피복 절삭 공구
US14/241,681 US9636748B2 (en) 2011-08-31 2012-08-31 Surface-coated cutting tool

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011189003 2011-08-31
JP2011-189003 2011-08-31
JP2012187859A JP5257535B2 (ja) 2011-08-31 2012-08-28 表面被覆切削工具
JP2012-187859 2012-08-28

Publications (1)

Publication Number Publication Date
WO2013031952A1 true WO2013031952A1 (ja) 2013-03-07

Family

ID=47756427

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072168 WO2013031952A1 (ja) 2011-08-31 2012-08-31 表面被覆切削工具

Country Status (6)

Country Link
US (1) US9636748B2 (ja)
EP (1) EP2752264B1 (ja)
JP (1) JP5257535B2 (ja)
KR (1) KR20140063666A (ja)
CN (1) CN103764323B (ja)
WO (1) WO2013031952A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129030A (ja) * 2011-12-22 2013-07-04 Mitsubishi Materials Corp 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP2015120224A (ja) * 2013-12-24 2015-07-02 三菱マテリアル株式会社 表面被覆切削工具
JP2015231662A (ja) * 2014-05-16 2015-12-24 三菱マテリアル株式会社 表面被覆切削工具
EP2818573B1 (en) 2013-06-27 2016-02-03 Sandvik Intellectual Property AB Coated cutting tool
JP5872747B1 (ja) * 2015-08-28 2016-03-01 住友電工ハードメタル株式会社 表面被覆切削工具
JP2017042901A (ja) * 2016-01-08 2017-03-02 住友電工ハードメタル株式会社 表面被覆切削工具
JP2017042902A (ja) * 2016-01-08 2017-03-02 住友電工ハードメタル株式会社 表面被覆切削工具
EP3112064A4 (en) * 2014-02-26 2017-10-11 Mitsubishi Materials Corporation Cutting tool made of surface-coated titanium carbonitride-based cermet having exceptional chipping resistance
WO2020170571A1 (ja) * 2019-02-19 2020-08-27 住友電工ハードメタル株式会社 切削工具

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5994623B2 (ja) * 2012-12-20 2016-09-21 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具
JP6548072B2 (ja) * 2014-05-30 2019-07-24 三菱マテリアル株式会社 表面被覆切削工具
JP6620482B2 (ja) * 2014-09-30 2019-12-18 三菱マテリアル株式会社 耐チッピング性にすぐれた表面被覆切削工具
JP6738556B2 (ja) * 2015-06-26 2020-08-12 三菱マテリアル株式会社 表面被覆切削工具
KR102126105B1 (ko) 2015-10-09 2020-06-23 스미또모 덴꼬오 하드메탈 가부시끼가이샤 표면 피복 절삭 공구 및 그 제조 방법
EP3360630B1 (en) * 2015-10-09 2020-02-19 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
US9844816B2 (en) 2015-10-09 2017-12-19 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2017080878A (ja) 2015-10-28 2017-05-18 三菱マテリアル株式会社 表面被覆切削工具
JP2017080879A (ja) * 2015-10-28 2017-05-18 三菱マテリアル株式会社 表面被覆切削工具
JP6905807B2 (ja) * 2016-08-29 2021-07-21 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性、耐剥離性を発揮する表面被覆切削工具
JP6761597B2 (ja) * 2016-09-02 2020-09-30 三菱マテリアル株式会社 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2019004018A1 (ja) * 2017-06-29 2019-01-03 京セラ株式会社 被覆工具、切削工具及び切削加工物の製造方法
CN111867761B (zh) * 2018-01-29 2023-04-28 京瓷株式会社 涂层刀具和具备它的切削刀具
WO2020170570A1 (ja) 2019-02-19 2020-08-27 住友電工ハードメタル株式会社 切削工具
JP6946614B1 (ja) * 2020-04-10 2021-10-06 住友電工ハードメタル株式会社 切削工具

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068010A (ja) 1992-06-25 1994-01-18 Mitsubishi Materials Corp 耐チッピング性にすぐれた表面被覆炭化タングステン基超硬合金製切削工具
JP3291775B2 (ja) 1992-07-10 2002-06-10 三菱マテリアル株式会社 表面被覆切削工具
JP3808648B2 (ja) 1998-11-25 2006-08-16 日立ツール株式会社 炭窒酸化チタン膜被覆工具
JP2007152491A (ja) 2005-12-05 2007-06-21 Mitsubishi Materials Corp 硬質被覆層が高速重切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2007260851A (ja) 2006-03-29 2007-10-11 Kyocera Corp 表面被覆切削工具
JP2010089201A (ja) * 2008-10-07 2010-04-22 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2010207953A (ja) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp 硬質合金鋼の高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2927181B2 (ja) 1994-05-31 1999-07-28 三菱マテリアル株式会社 硬質被覆層がすぐれた層間密着性を有する表面被覆炭化タングステン基超硬合金製切削工具
KR100432108B1 (ko) 1995-11-30 2004-11-16 산드빅 악티에볼라그 피복된선삭용인서트및그제조방법
JP2004284003A (ja) 2003-02-28 2004-10-14 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2005131730A (ja) 2003-10-30 2005-05-26 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具
JP4466841B2 (ja) * 2004-06-30 2010-05-26 三菱マテリアル株式会社 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
CN1966264B (zh) * 2005-11-18 2012-07-04 三菱麻铁里亚尔株式会社 表面包覆金属陶瓷制切削工具
EP2409798B1 (en) 2009-03-18 2017-04-19 Mitsubishi Materials Corporation Surface-coated cutting tool

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068010A (ja) 1992-06-25 1994-01-18 Mitsubishi Materials Corp 耐チッピング性にすぐれた表面被覆炭化タングステン基超硬合金製切削工具
JP3291775B2 (ja) 1992-07-10 2002-06-10 三菱マテリアル株式会社 表面被覆切削工具
JP3808648B2 (ja) 1998-11-25 2006-08-16 日立ツール株式会社 炭窒酸化チタン膜被覆工具
JP2007152491A (ja) 2005-12-05 2007-06-21 Mitsubishi Materials Corp 硬質被覆層が高速重切削ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP2007260851A (ja) 2006-03-29 2007-10-11 Kyocera Corp 表面被覆切削工具
JP2010089201A (ja) * 2008-10-07 2010-04-22 Mitsubishi Materials Corp 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP2010207953A (ja) * 2009-03-10 2010-09-24 Mitsubishi Materials Corp 硬質合金鋼の高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆切削工具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2752264A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013129030A (ja) * 2011-12-22 2013-07-04 Mitsubishi Materials Corp 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
EP2818573B1 (en) 2013-06-27 2016-02-03 Sandvik Intellectual Property AB Coated cutting tool
JP2015120224A (ja) * 2013-12-24 2015-07-02 三菱マテリアル株式会社 表面被覆切削工具
EP3112064A4 (en) * 2014-02-26 2017-10-11 Mitsubishi Materials Corporation Cutting tool made of surface-coated titanium carbonitride-based cermet having exceptional chipping resistance
US10076789B2 (en) 2014-02-26 2018-09-18 Mitsubishi Materials Corporation Surface-coated titanium carbonitride-based cermet cutting tool having excellent chipping resistance
JP2015231662A (ja) * 2014-05-16 2015-12-24 三菱マテリアル株式会社 表面被覆切削工具
EP3144085A4 (en) * 2014-05-16 2017-12-06 Mitsubishi Materials Corporation Surface coating cutting tool
JP5872747B1 (ja) * 2015-08-28 2016-03-01 住友電工ハードメタル株式会社 表面被覆切削工具
WO2017037796A1 (ja) * 2015-08-28 2017-03-09 住友電工ハードメタル株式会社 表面被覆切削工具
US9828254B2 (en) 2015-08-28 2017-11-28 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2017042902A (ja) * 2016-01-08 2017-03-02 住友電工ハードメタル株式会社 表面被覆切削工具
JP2017042901A (ja) * 2016-01-08 2017-03-02 住友電工ハードメタル株式会社 表面被覆切削工具
WO2020170571A1 (ja) * 2019-02-19 2020-08-27 住友電工ハードメタル株式会社 切削工具
JPWO2020170571A1 (ja) * 2019-02-19 2021-03-11 住友電工ハードメタル株式会社 切削工具
CN113226603A (zh) * 2019-02-19 2021-08-06 住友电工硬质合金株式会社 切削工具
CN113226603B (zh) * 2019-02-19 2024-03-01 住友电工硬质合金株式会社 切削工具
US11998993B2 (en) 2019-02-19 2024-06-04 Sumitomo Electric Hardmetal Corp. Cutting tool

Also Published As

Publication number Publication date
CN103764323B (zh) 2016-02-24
EP2752264A4 (en) 2015-09-30
US9636748B2 (en) 2017-05-02
JP5257535B2 (ja) 2013-08-07
EP2752264B1 (en) 2018-07-18
JP2013063504A (ja) 2013-04-11
US20140287210A1 (en) 2014-09-25
CN103764323A (zh) 2014-04-30
EP2752264A1 (en) 2014-07-09
KR20140063666A (ko) 2014-05-27

Similar Documents

Publication Publication Date Title
JP5257535B2 (ja) 表面被覆切削工具
JP6590255B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
WO2015182746A1 (ja) 表面被覆切削工具
JP5907406B2 (ja) 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
WO2015174490A1 (ja) 表面被覆切削工具
JP2013188833A (ja) 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP4946333B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP4512989B2 (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5838789B2 (ja) 硬質被覆層が高速断続切削ですぐれた耐チッピング性を発揮する表面被覆切削工具
JP6198137B2 (ja) 表面被覆切削工具
JP5003308B2 (ja) 表面被覆切削工具
JP2006198740A (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5748125B2 (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP5176787B2 (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP2009166193A (ja) 高速断続切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具
JP4530141B2 (ja) 硬質被覆層がすぐれた耐チッピング性を有する表面被覆サーメット製切削工具
JP4474644B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP5187573B2 (ja) 高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP2005313245A (ja) 硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4857950B2 (ja) 硬質被覆層が高速断続切削加工ですぐれた耐チッピング性および耐摩耗性を発揮する表面被覆サーメット製切削工具
JP5682500B2 (ja) 硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具
JP5742572B2 (ja) 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP5682501B2 (ja) 硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具
JP4730702B2 (ja) 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具
JP4692065B2 (ja) 厚膜化α型酸化アルミニウム層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削工具

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280042290.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147005832

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241681

Country of ref document: US