WO2013031856A1 - 炭化珪素単結晶基板及びその製造方法 - Google Patents

炭化珪素単結晶基板及びその製造方法 Download PDF

Info

Publication number
WO2013031856A1
WO2013031856A1 PCT/JP2012/071885 JP2012071885W WO2013031856A1 WO 2013031856 A1 WO2013031856 A1 WO 2013031856A1 JP 2012071885 W JP2012071885 W JP 2012071885W WO 2013031856 A1 WO2013031856 A1 WO 2013031856A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
single crystal
silicon carbide
crystal
carbide single
Prior art date
Application number
PCT/JP2012/071885
Other languages
English (en)
French (fr)
Inventor
佐藤 信也
藤本 辰雄
弘志 柘植
勝野 正和
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2012551012A priority Critical patent/JP5506954B2/ja
Priority to CN201280031177.7A priority patent/CN103620095B/zh
Priority to KR1020137029782A priority patent/KR101530057B1/ko
Priority to EP12828338.9A priority patent/EP2752508A4/en
Priority to US14/241,623 priority patent/US9234297B2/en
Publication of WO2013031856A1 publication Critical patent/WO2013031856A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/06Heating of the deposition chamber, the substrate or the materials to be evaporated
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/36Carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/21Circular sheet or circular blank

Definitions

  • the present invention relates to a method for producing a silicon carbide single crystal having a high crystal quality with few screw dislocations, and a silicon carbide single crystal substrate obtained thereby.
  • a silicon carbide single crystal substrate manufactured by processing and polishing steps from a silicon carbide single crystal obtained by the manufacturing method of the present invention is mainly used as various semiconductor electronic devices or their substrates.
  • the present invention relates to a silicon carbide single crystal substrate cut out from a bulk silicon carbide single crystal grown by a sublimation recrystallization method, and more specifically, silicon carbide having less screw dislocations in the peripheral portion than in the central portion of the substrate.
  • the present invention relates to a single crystal substrate.
  • Silicon carbide is a wide bandgap semiconductor with a wide forbidden band of 2.2 to 3.3 eV, and has been researched and developed as an environmentally resistant semiconductor material because of its excellent physical and chemical characteristics. ing. In particular, in recent years, it has been attracting attention as a material for short-wavelength optical devices from blue to ultraviolet, high-frequency electronic devices, high withstand voltage / high output electronic devices, etc., and research and development for producing devices (semiconductor elements) using SiC has become active. Yes.
  • SiC single crystal ingot a substantially cylindrical SiC bulk single crystal (SiC single crystal ingot)
  • SiC single crystal substrate is manufactured by cutting to a thickness of about 300 to 600 ⁇ m.
  • dislocation defects include threading edge dislocations, basal plane dislocations, and screw dislocations.
  • screw dislocations are 8 ⁇ 10 2 to 3 ⁇ 10 3 (pieces / cm 2 )
  • threading edge dislocations are 5 ⁇ 10 3 to 2 ⁇ 10 4 (pieces / cm 2).
  • about 2 ⁇ 10 3 to 2 ⁇ 10 4 (pieces / cm 2 ) of basal plane dislocations have been reported (see Non-Patent Document 1).
  • Non-Patent Documents 2 and 3 In recent years, research and investigation on SiC crystal defects and device performance have progressed, and the effects of various defects are becoming apparent. In particular, it has been reported that screw dislocation causes a leakage current of the device and reduces the lifetime of the gate oxide film (see Non-Patent Documents 2 and 3), and a high-performance SiC device is produced. Requires at least a SiC single crystal substrate with reduced screw dislocations.
  • the sublimation recrystallization method after growing a SiC single crystal as an initial growth layer at a predetermined growth pressure and substrate temperature, the crystal growth is performed while gradually decreasing the substrate temperature and pressure, thereby producing a micropipe.
  • a method for obtaining a SiC single crystal with few screw dislocations has also been reported (see Patent Document 1).
  • the screw dislocation density of the SiC single crystal obtained by this method is 10 3 to 10 4 (pieces / cm 2 ) (see the specification [Effects of the Invention] column of Patent Document 1), and a high-performance SiC device. Considering the application to the above, further reduction of screw dislocation is necessary.
  • an object of the present invention is to provide a method for producing a SiC single crystal having high crystal quality and particularly extremely low screw dislocation density.
  • Another object of the present invention is to provide a silicon carbide single crystal ingot and a silicon carbide single crystal substrate obtained by this method and having a very low screw dislocation density.
  • the object of the present invention is a substrate cut from a bulk silicon carbide single crystal grown by a sublimation recrystallization method, and has a lower screw dislocation density in the peripheral portion than in the central portion, and is partially helical.
  • the object is to provide a silicon carbide single crystal substrate with reduced dislocations.
  • a silicon carbide single crystal has a predetermined growth atmosphere and seed crystal temperature in a silicon carbide (SiC) single crystal grown by a sublimation recrystallization method. It has been newly found that the screw dislocation contained in the silicon carbide single crystal can be converted into a stacking fault by growing it to a thickness. Furthermore, the present inventors surprisingly, when growing a bulk SiC single crystal, by adopting a predetermined growth condition in a part thereof, the SiC single crystal grown after that was cut out. In the SiC single crystal substrate, it has been newly found that the screw dislocation density in the peripheral portion is lower than that in the central portion of the substrate.
  • the gist of the present invention is as follows.
  • (1) A disc-shaped silicon carbide single crystal substrate cut out from a bulk SiC single crystal grown by a sublimation recrystallization method, where the diameter of the substrate is R and the center point O of the substrate is 0.5 ⁇
  • an average value of the screw dislocation density observed in the donut-shaped peripheral region is:
  • the average value of the screw dislocation density observed in the peripheral region of the donut shape is 60% or less of the average value of the screw dislocation density observed in the central circle region.
  • the average value of the screw dislocation density observed in the doughnut-shaped peripheral region is 50% or less of the average value of the screw dislocation density observed in the central circle region.
  • the average value of the screw dislocation density observed in the doughnut-shaped peripheral region is the average of the values measured at a total of 16 measurement points from the following iv) to v): i) Center point O ii) a 1 to a 8 iii) b 1 to b 8 iv) c 1 to c 8 v) d 1 to d 8
  • the numbers attached to the symbols a to d correspond to the numbers of the radii r 1 to r 8 , and for example, a 1 , b 1 , c 1 and d 1 are measurements existing on the radius r 1. Is a point.
  • a and b are measurement points in the range of more than 0 and 0.5 or less at each radius
  • c and d are measurement points in the range of more than 0.5 and 1 or less at each radius.
  • a method for producing a silicon carbide single crystal by a sublimation recrystallization method using a seed crystal A silicon carbide single crystal having a thickness of at least 0.5 mm at a first growth atmosphere pressure of 3.9 kPa to 39.9 kPa and a first growth temperature of 2100 ° C. to less than 2300 ° C.
  • a second growth step of growing a thick silicon carbide single crystal A method for producing a silicon carbide single crystal.
  • the first growth process is performed from the start of crystal growth to a time less than or equal to half of the total growth process (8) to (11)
  • the SiC single crystal substrate (wafer) processed from the SiC single crystal ingot obtained thereby can be applied to various electronic devices, and can improve device characteristics, yield, and the like. it can.
  • the SiC single crystal substrate of the present invention has a lower screw dislocation density in the peripheral portion than in the central portion of the substrate, for example, a high-performance SiC device can be manufactured by making devices separately in the substrate. It becomes possible.
  • it is possible to fabricate devices according to the distribution of screw dislocations in this way it is an industrially extremely useful invention, such as an improvement in yield.
  • FIG. 1 is a schematic cross-sectional view illustrating a bulk SiC single crystal for obtaining a SiC single crystal substrate of the present invention.
  • FIG. 2 is a schematic plan view illustrating the SiC single crystal substrate of the present invention.
  • FIG. 3 is a schematic plan view showing an example of measurement points selected when obtaining the average value of the screw dislocation densities observed in the central circular region and the donut-shaped peripheral region of the SiC single crystal substrate.
  • FIG. 4 is a schematic cross-sectional view showing a single crystal manufacturing apparatus for manufacturing a bulk SiC single crystal used to obtain the SiC single crystal substrate of the present invention.
  • the disc-shaped SiC single crystal substrate in the present invention is cut from a bulk SiC single crystal grown by a sublimation recrystallization method.
  • MSE method screw dislocations in crystal growth by the MSE method
  • CVD method epitaxial growth of SiC by the CVD method.
  • the epitaxial growth of SiC by the MSE method or the CVD method is 1/10 or less of the growth rate of a general SiC single crystal by the sublimation recrystallization method, and the sublimation recrystallization like the SiC single crystal substrate of the present invention.
  • the dimension of productivity is completely different from the form of cutting and manufacturing from a bulk SiC single crystal grown by the method.
  • this sublimation recrystallization method there has been no report on a method for reducing screw dislocations, particularly a method for reducing screw dislocations in a donut-shaped peripheral region.
  • screw dislocations or the above-described complex screw dislocations undergo structural transformation into stacking faults.
  • a part of the screw dislocation 3 generated by inheriting from the seed crystal 1 is a structure conversion layer 2 formed by the growth conditions related to the structure conversion at the initial stage of growth (i).
  • the extension in the growth direction stops and the stacking fault 4 is converted.
  • this structure conversion has a higher probability of occurring in the peripheral portion than in the central portion of the crystal growth surface by the mechanism described later, and the extension direction of the stacking fault 4 is substantially perpendicular to the growth direction. Therefore, it is discharged from the side surface of the crystal as the growth proceeds.
  • the schematic cross-sectional view shown in FIG. 1 is a case where a SiC single crystal is grown on a SiC seed crystal having a (000-1) plane as a main surface.
  • such a structural conversion has a small difference between the amount of attached atoms when the SiC sublimated raw material is sublimated and recrystallized and the amount of detached atoms from the crystal surface. That is, it is considered to occur when an equilibrium state or a state close thereto is created in the sublimation recrystallization method. Therefore, when the growth rate of a general SiC single crystal in the sublimation recrystallization method is 300 ⁇ m / h or more, in the present invention, it is 100 ⁇ m / h or less, preferably 50 ⁇ m / h or less, more preferably 30 ⁇ m / hr or less, and even more preferably.
  • the crystal growth rate is preferably as described above, and in terms of the length of time of the crystal growth process, 1 to 40 hours. It is preferable to grow the crystal by taking time.
  • the growth rate of the structure conversion layer 2 in the initial stage of growth refers to the rate at the center where crystal growth is likely to proceed.
  • the center of the grown crystal When the growth rate at the part is 300 ⁇ m / h or less, the temperature of the grown crystal is higher in the peripheral part than in the central part, so that the amount of atoms detached from the crystal surface in the peripheral part is larger, It is inferred that an equilibrium state or a state close thereto is created in the part. Note that if the growth rate at the center of the growth crystal is too slow, the time for forming the structure conversion layer 2 becomes too long and the productivity is lowered. Therefore, the growth rate of the structure conversion layer 2 related to this structure conversion is 1 ⁇ m / h. The above is desirable.
  • the specific growth conditions relating to the formation of the structure conversion layer 2 can be appropriately selected based on the growth rate in the central portion of the growth crystal as described above.
  • the temperature of the seed crystal is preferably 2100 ° C. or higher and 2400 ° C. or lower, and preferably 2200 ° C. or higher and 2300 ° C. or lower.
  • the central portion be lower than 0 ° C. and 20 ° C. or lower than the peripheral portion of the grown crystal.
  • the growth atmosphere pressure is 2.6 kPa or more and 65 kPa or less, the lower limit is preferably 3.9 kPa or more, more preferably 6.5 kPa or more, further preferably 13.3 kPa or more, and the upper limit is 39 kPa or less. Is good. By combining these, it is possible to create an equilibrium state or a state close thereto at least in the periphery of the grown crystal. Also in this step, the growth atmosphere pressure is set to 39.9 kPa or less because it is necessary to grow a silicon carbide crystal, and the growth rate becomes slower as the growth atmosphere pressure becomes higher, which is not suitable as an industrial production method. .
  • the thickness of the structural conversion layer 2 related to structural conversion is preferably at least 0.5 mm, and preferably grown to be 1 mm or more. If the thickness of the structure conversion layer 2 does not reach 0.5 mm, the structure conversion from the screw dislocation to the stacking fault may not be sufficiently performed. Further, the structural conversion from the screw dislocation to the stacking fault is promoted by the increase in the thickness of the structural conversion layer 2, but the effect is saturated and the productivity is lowered, so that the thickness is 10 mm as the upper limit. be able to.
  • the structure conversion layer 2 may be formed after the SiC single crystal is grown with a certain thickness at a general growth rate in the sublimation recrystallization method, but the desired structure conversion is surely realized. It is preferable to introduce it at the initial stage of growth. More specifically, it is preferably introduced at the start of growth so that it is first formed on the seed crystal.
  • the SiC single crystal may be grown by raising the temperature of the seed crystal and lowering the growth atmosphere pressure under the growth conditions related to this structure conversion. That is, there are no particular restrictions on the growth conditions of the main crystal growth portion (main growth crystal) 5 to be grown after the structure conversion layer 2, and as described above, a part of the screw dislocation 3 is caused to be a stacking fault by the structure conversion layer 2. Since the structure can be changed to 4, the screw dislocations 3 are partially reduced in the main growth crystal 5 grown in the middle and later stages (ii) of the subsequent growth. Therefore, considering productivity and the like, the growth rate should be 100 ⁇ m / h or more, and preferably 300 ⁇ m / h or more.
  • the growth conditions related to the structural conversion are within the range of 2100 ° C. to 2400 ° C.
  • the temperature of the seed crystal is made higher than that, preferably 2200 ° C. or higher and 2300 ° C. or lower.
  • the center portion of the grown crystal is lowered by more than 0 ° C. and 20 ° C. or less.
  • the growth atmosphere pressure should be lower than the growth conditions related to structural transformation within the range of 0.13 kPa to 2.6 kPa, and preferably within the range of 0.65 kPa to 1.95 kPa. It should be inside.
  • This main growth crystal 5 is a portion that is mainly grown in the SiC bulk single crystal 6, and taking into account the removal of the SiC single crystal substrate 7 of the present invention from the obtained SiC bulk single crystal 6, the structure conversion layer It is desirable that the thickness of the main growth crystal 5 grown after 2 is 10 mm or more. Then, as shown in FIG. 1, the SiC single crystal substrate 7 cut out from the main crystal growth portion 5 grown in the middle / late stage (ii) of the growth, as shown in FIG. )] Appears less in the peripheral part than in the central part.
  • the upper limit of the crystal growth rate is about 1000 ⁇ m / h, and the upper limit of the thickness (length) is not particularly limited. In consideration of the above, the upper limit is about 200 mm, more practically about 150 mm.
  • the pressure is preferably reduced at a pressure change rate of 12 kPa or less per hour, and more preferably per hour. 1 kPa or less, more preferably 0.5 kPa or less per hour.
  • the larger the change width per unit time the larger the time change amount of the growth rate. Therefore, the crystal growth during that time becomes unstable, and crystal defects such as mixing of different polytypes may occur.
  • by reducing the pressure change rate (changing it over time), the effect of the structural transformation process is made more reliable. In other words, stacking faults are reliably discharged out of the crystal and the occurrence of screw dislocations again.
  • the pressure change rate is preferably as low as possible, but the lower limit is 0.1 kPa / hr in consideration of productivity and workability.
  • the growth temperature is preferably switched at a temperature change rate of 40 ° C. or less per hour, more preferably 10 ° C. or less, more preferably 5 ° C. per hour. It should be: The same idea as the pressure change rate can be applied to this temperature change rate, and the lower limit is 1 ° C./hr.
  • the off-angle of the substrate used for the seed crystal is 0 ° to 15 °, and more preferably 0 ° to 8 °.
  • the present invention can be applied to obtaining bulk SiC single crystals such as 4H type, which is a typical polytype, 6H type, 3C type, and the like.
  • 4H type SiC single crystal substrate which is considered promising as a power device application, can be obtained.
  • a silicon carbide single crystal manufacturing apparatus utilizing a generally used sublimation recrystallization method, for example, the amount of nitrogen gas supplied into the growth atmosphere using a high purity gas pipe or a mass flow controller, etc.
  • Nitrogen doping or the like can be performed in the crystal as appropriate according to the application. Furthermore, there is no particular limitation on the crystal diameter of the obtained bulk SiC single crystal. Therefore, the present invention can be applied to a crystal growth process having a diameter of 50 mm or more and 300 mm or less, which is considered most promising at the present time.
  • SiC single crystal substrate 7 according to the present invention can be obtained. As shown in FIG. 2, the obtained SiC single crystal substrate 7 had a diameter of 0.5 ⁇ R centering on the center point O, with the substrate diameter being R, the center point of the substrate being O, and the center point O being the center. If the central circular region 7a and the remaining donut-shaped peripheral region 7b after removing the central circular region 7a are defined, the average value of the screw dislocation density observed in the donut-shaped peripheral region 7b is observed in the central circular region 7a.
  • the average value of the screw dislocation density is 80% or less, preferably 60% or less, more preferably 50% or less. That is, the SiC single crystal substrate has a lower screw dislocation density in the peripheral portion than the central portion of the substrate and partially reduced screw dislocations.
  • the measurement method is not particularly limited, but most commonly, the substrate surface is etched by immersion in molten KOH at about 500 ° C.
  • a method of measuring the screw dislocation density by observing the shape of the etch pits with an optical microscope can be employed. Then, the screw dislocation density is measured by the optical microscope at a plurality of measurement points in each region, and the average value of each is obtained.
  • the measurement points in each region are selected as follows, and the screw dislocation density is as follows. It is better to calculate the average value of each. It should be noted that the selection of measurement points as described below is an example, and of course, the measurement points are not limited thereto.
  • the center point O of the substrate is set to zero and extends radially from the center point O.
  • the average value of the screw dislocation density observed in the central circle region 7a is the sum of the following i) to iii) It is determined from the average of the values measured at 17 measurement points.
  • the average value of the screw dislocation density observed in the doughnut-shaped peripheral region 7b is obtained from the average of the values measured at a total of 16 measurement points from the following iv) to v).
  • the numbers given to the symbols a to d correspond to the numbers of the radii r 1 to r 8 , and for example, a 1 , b 1 , c 1 and d 1 exist on the radius r 1. It is a measurement point.
  • a and b are measurement points where the scale is within the range of more than 0 and less than 0.5 at each radius
  • c and d are measurements where the scale is within the range of more than 0.5 and less than 1 at each radius. Is a point.
  • the scale 0 corresponds to the center point O of the substrate
  • the scale 1 represents a position corresponding to a point on the circumference of the substrate.
  • eight measurement points having the same symbol are present on the same circle for each of the symbols a to d.
  • the average value of the screw dislocation density observed in the central circle region 7a is about 1000 pieces / cm 2 , whereas it is observed in the donut-shaped peripheral region 7b.
  • the average value of the screw dislocation density is 500 pieces / cm 2 or less.
  • the average value of the screw dislocation density observed in the central circular region 7a is mainly in the range of 800 to 1200 pieces / cm 2 , whereas the screw dislocation observed in the donut-shaped peripheral region 7b.
  • the average value of the density is 500 pieces / cm 2 or less, preferably 300 pieces / cm 2 or less, more preferably 100 pieces / cm 2 or less, and the average value of the screw dislocation density observed in the donut-shaped peripheral region 7b. Is 80% or less, preferably 60% or less, more preferably 50% or less of the average value of the screw dislocation density observed in the central circle region 7a. Considering the fact that screw dislocations inevitably occur due to growth disturbance factors such as impurities contained in the raw material and the adhesion of graphite from the wall of the graphite crucible to the growth surface, it is observed in the donut-shaped peripheral region 7b.
  • the lower limit of the average value of the screw dislocation density is theoretically 0.1 piece / cm 2 and substantially 1 piece / cm 2 is the lower limit.
  • the SiC single crystal substrate obtained by the present invention is partially reduced in screw dislocations, and especially in the donut-shaped peripheral region, the screw transition is reduced.
  • the yield of device fabrication can be improved.
  • the peripheral portion of the substrate with few screw dislocations it becomes possible to produce a high-performance device with little leakage current caused by screw dislocations and less lifetime of the oxide film, which is suitable for producing MOSFETs, JFETs, and the like.
  • the SiC single crystal substrate obtained by the present invention in which screw dislocations are partially reduced.
  • another aspect of the present invention will be described in more detail.
  • the SiC single crystal substrate (wafer) processed from the SiC single crystal ingot obtained thereby can be applied to various electronic devices, and can improve device characteristics, yield, and the like. it can.
  • the present inventors have a first growth atmosphere pressure of 3.9 kPa to 39.9 kPa and a temperature of the seed crystal of 2100 ° C. or higher and lower than 2300 ° C.
  • a first growth atmosphere pressure of 3.9 kPa to 39.9 kPa
  • a temperature of the seed crystal of 2100 ° C. or higher and lower than 2300 ° C.
  • This structural transformation stops the extension of screw dislocations in the growth direction, and the extension direction of stacking faults is substantially perpendicular to the growth direction, so that stacking faults are discharged out of the crystal from the crystal side as the growth proceeds. Therefore, a silicon carbide single crystal ingot with few screw dislocations can be obtained by using this structural transformation (structural transformation induced growth).
  • the mechanism by which the structural conversion of this screw dislocation into a stacking fault is inferred as follows.
  • the MSE method is a crystal growth method under an isothermal environment, and is said to be a crystal growth method that realizes a quasi-equilibrium state that is closest to the equilibrium state among various SiC single crystal growth methods.
  • the conversion of screw dislocations into stacking faults in a quasi-equilibrium state suggests that stacking faults are more energetically stable than screw dislocations in SiC single crystals.
  • the growth rate in the MSE method is 1/10 or less of that in the sublimation recrystallization method, and even if these growth conditions including the CVD method are applied to the sublimation recrystallization method as they are, a similar equilibrium state is immediately created. It is not possible.
  • a quasi-equilibrium state in the sublimation recrystallization method can be realized by growing a silicon carbide single crystal at the first growth atmospheric pressure and the first growth temperature. That is, when the growth atmosphere pressure is increased, the diffusion of the source gas is delayed, so that the amount of the source gas reaching the crystal growth surface is reduced. On the other hand, the amount of atoms leaving the crystal surface is determined by the growth surface temperature. Therefore, by maintaining the temperature of the seed crystal at 2100 ° C. or higher and lower than 2300 ° C.
  • the growth atmosphere pressure is 39.g. because it is necessary to grow a silicon carbide crystal and the growth rate becomes slower as the growth atmosphere pressure becomes higher, which is not suitable as an industrial production method. 9 kPa or less.
  • the silicon carbide single crystal grown at the first growth atmospheric pressure and the first growth temperature is at least 0.5 mm in thickness, preferably 1 mm or more. If the thickness does not reach 0.5 mm, there is a risk that the structural conversion from screw dislocations to stacking faults is not sufficiently performed.
  • the structural conversion from screw dislocations to stacking faults is promoted by the increase in the thickness of the silicon carbide single crystal grown in the first growth step. However, when the effect is saturated or productivity is considered, the thickness is increased.
  • the upper limit can be 10 mm.
  • the crystal growth rate in the first growth step should be 100 ⁇ m or less per hour, preferably 50 ⁇ m / hr or less, more preferably 30 ⁇ m / hr or less.
  • the crystal growth rate in the first growth process should be as described above, which can be expressed by the length of the crystal growth process. For example, it is preferable that crystal growth takes about 1 to 30 hours.
  • the crystal growth rate in the first growth step is preferably 1 ⁇ m / hr or more in consideration of productivity and the like.
  • the second growth atmosphere pressure of 0.13 kPa to 2.6 kPa, and the temperature of the seed crystal is higher than the first growth temperature and lower than 2400 ° C.
  • a second growth step of growing the silicon carbide single crystal thicker than the first growth step at the growth temperature is lowered as compared with the first growth step, and the seed crystal temperature is raised to increase the crystal growth rate so that the silicon carbide single crystal is mainly grown. . That is, since the screw dislocations can be structurally converted into stacking faults by the first growth step, the screw dislocations contained in the silicon carbide single crystal grown in the second growth step are extremely reduced. Further, by increasing the temperature of the seed crystal in this second growth step, high-speed growth with good productivity at a growth rate exceeding 100 ⁇ m / hr can be performed while obtaining a high-quality silicon carbide single crystal.
  • the crystal growth rate in the second growth step should be more than 100 ⁇ m per hour, preferably 300 ⁇ m / hr or more. Further, the thickness of the silicon carbide single crystal grown in the second growth step is 10 mm or more in consideration of manufacturing the silicon carbide single crystal ingot according to the present invention and taking out the silicon carbide single crystal substrate. Is desirable. In consideration of using existing equipment, the upper limit of the crystal growth rate in the second growth step is about 1000 ⁇ m / hr, and the thickness (long) of the silicon carbide single crystal grown in the second growth step is long.
  • the upper limit of (a) is not particularly limited, but is about 200 mm, more practically about 150 mm, considering the performance of the current manufacturing apparatus.
  • the pressure when switching from the first growth step to the second growth step, it is preferable to reduce the pressure at a pressure change rate of 12 kPa or less per hour, more preferably 1 kPa or less, more preferably 1 hour per hour. It should be 0.5 kPa or less per hour. The larger the change width per unit time, the larger the time change amount of the growth rate. For this reason, the crystal growth during that time becomes unstable, and crystal defects such as mixing of different polytypes may occur. Therefore, the pressure should be reduced at a pressure change rate of 12 kPa / hr or less.
  • the pressure change rate is preferably as low as possible, but the lower limit is 0.1 kPa / hr in consideration of productivity and workability.
  • the growth temperature is preferably switched at a temperature change rate of 40 ° C. or less per hour, more preferably 10 ° C. or less, more preferably 5 ° C. per hour. It should be: The same idea as the pressure change rate can be applied to this temperature change rate, and the lower limit is 1 ° C./hr.
  • the first growth step is preferably performed from the start of crystal growth to a time equal to or less than half of the total growth step among all the growth steps including the first and second growth steps. More preferably, it is preferably performed from the start of crystal growth to a time of one third or less of the entire growth process. It is desirable to cause the structural transformation of screw dislocations to occur as early as possible in the crystal growth, since the ingot region from which a substrate with few screw dislocations can be taken out can be increased.
  • the crystal may be grown in the first growth step at the start of crystal growth on the seed crystal, and then grown in the second growth step, or the second growth step ( Alternatively, the crystal may be grown in a crystal growth step equivalent to this, followed by the first growth step and further in the second growth step.
  • the first growth step is included in the middle of crystal growth as in the latter case, screw dislocations included in the seed crystal are once generated in the crystal growth direction, and they are formed into stacking faults by the first growth step.
  • the purpose is to convert.
  • the first growth step is preferably performed after crystal growth with a thickness of 1 mm or more, and more preferably 2 mm or more. However, the thickness is preferably 5 mm or less in consideration of saturation of the effect and productivity.
  • the pressure when switching from the second growth step to the first growth step, the pressure should be increased at a pressure change rate of 12 kPa / hr or less, and a temperature change rate of 40 ° C. or less. It is better to lower the temperature.
  • the structural conversion of screw dislocations into stacking faults is performed by controlling the growth atmosphere pressure and growth temperature, it does not depend on the off-angle of the seed crystal used for crystal growth within the applicable range.
  • the present inventors have confirmed that when the off-angle is large, the probability that a heterogeneous polytype is generated increases. Therefore, preferably, the off-angle of the substrate used for the seed crystal is 0 ° to 15 °, and more preferably 0 ° to 8 °.
  • the screw dislocation is reduced by utilizing the structural transformation of dislocations
  • there is no limitation on the polytype of the obtained silicon carbide single crystal and typical polytypes such as 4H type, 6H type and It can be applied as a method of obtaining a 3C type silicon carbide single crystal.
  • the screw dislocation reduction in the present invention is performed by controlling the atmospheric pressure and the growth temperature, there is no limitation on the crystal diameter of the resulting silicon carbide single crystal. Therefore, the present invention can be applied to a crystal growth process having a diameter of 50 mm or more and 300 mm or less, which is considered most promising at the present time.
  • a silicon carbide single crystal production apparatus using a generally used sublimation recrystallization method can be used, for example, a high-purity gas pipe or a mass flow controller is used. Then, by controlling the amount of nitrogen gas supplied into the growth atmosphere, etc., it is possible to arbitrarily dope nitrogen into the crystal depending on the application.
  • a silicon carbide single crystal with few screw dislocations can be obtained. That is, since the first growth step in the present invention induces structural transformation from screw dislocations to stacking faults and crystal growth with less screw dislocations can be performed in the subsequent second growth step, it is included in the seed crystal.
  • the screw dislocation density By reducing the screw dislocation density to about 1/3 to 1/10 or less (in some cases, to 1/20 or less), a high-quality silicon carbide single crystal can be obtained. More specifically, the silicon carbide single crystal ingot obtained by the method of the present invention has a screw dislocation density represented by the number of screw dislocations per unit area in the cross section of 300 pieces / cm 2 or less, preferably 100 pieces.
  • the crystal growth rate is increased by switching from the first growth step to the second growth step, but in addition to that, the raw material used for the sublimation recrystallization method at a growth temperature of 2200 ° C. or higher It is also possible to employ means for increasing the amount of gas sublimation.
  • FIG. 4 is an apparatus for manufacturing a bulk SiC single crystal used to obtain an SiC single crystal substrate according to an embodiment of the present invention, and shows an apparatus for growing a single crystal by an improved Rayleigh method (sublimation recrystallization method).
  • the crystal growth is performed by sublimating the SiC sublimation raw material 8 by induction heating and recrystallizing on the SiC seed crystal 1.
  • the seed crystal 1 is attached to the inner surface of the graphite lid 10, and the sublimation raw material 8 is filled inside the graphite crucible 9.
  • the graphite crucible 9 and the graphite lid 10 are coated with a graphite felt 13 for heat shielding, and are installed on the graphite support rod 12 inside the double quartz tube 11.
  • the evacuation device 17 After the inside of the quartz tube 11 is evacuated by the evacuation device 17, high-purity Ar gas and nitrogen gas are introduced into the quartz tube 11 while being controlled by the mass flow controller 16 through the pipe 15, and the pressure inside the quartz tube (growth atmosphere pressure) is evacuated. While adjusting with the exhaust device 17, a high-frequency current was passed through the work coil 14 to heat the graphite crucible 9, thereby growing crystals. Here, the growth temperature was the temperature of the SiC seed crystal 1.
  • Example A1 First, a 4H type SiC single crystal substrate having a (0001) plane with a diameter of 75 mm as a main surface and an off angle inclined by 4 degrees in the ⁇ 11-20> direction was cut out from a previously obtained SiC single crystal and mirror-polished. A seed crystal was prepared. The seed crystal 1 is attached to the inner surface of the graphite lid 10 of the single crystal growth apparatus described above, set in a graphite crucible 9 filled with a sublimation raw material 8, covered with a graphite felt 13, and then on the graphite support rod 12. And placed inside the double quartz tube 11.
  • the pressure was subsequently reduced at a pressure change rate of 1.3 kPa / h and the temperature was increased at a temperature change rate of 20 ° C./h.
  • the growth atmosphere pressure was 1.3 kPa and the seed crystal temperature was 2240 ° C. over 2 hours.
  • crystal growth was performed for 80 hours while maintaining the growth atmosphere pressure and the seed crystal temperature.
  • the obtained bulk SiC single crystal (ingot) had a diameter of 75 mm and a thickness (height) of 25 mm.
  • the thickness of the main crystal growth portion obtained from the crystal growth for 80 hours is considered to be 24 mm when estimated from the results of measurement under the same conditions (growth rate 300 ⁇ m / h).
  • an SiC single crystal substrate having a thickness of 400 ⁇ m and a diameter of 75 mm according to Example A1 was obtained.
  • This SiC single crystal substrate is immersed in molten KOH at 520 ° C. for 5 minutes so that the entire surface of the substrate is immersed, and is subjected to molten KOH etching, and the (0001) plane of the etched substrate is observed with an optical microscope (magnification: 80 ⁇ ). Then, the screw dislocation density was measured.
  • the screw dislocation density was measured according to the method described in J. Takahashi et al., Journal of Crystal Growth, 135, (1994), 61-70, basal plane dislocation of shell-type pits and through-blade dislocations of small round pits The middle and large hexagonal pits were classified as screw dislocations, and the dislocation defects due to the etch pit shape were classified to determine the screw dislocation density.
  • a total of 33 measurement points (center points O, a 1 to a 8 , b 1 to b 8 , c 1 to c 8 , d 1 to d 8 ) Selected.
  • a is a position where the scale is 0.2 at each radius (radius ⁇ 0.2)
  • b is a position where the scale is 0.4 (radius ⁇ 0.4)
  • c is a position where the scale is 0.6 (radius ⁇ 0.6).
  • D is a position where the scale is 0.8 (radius ⁇ 0.8), and the number of screw dislocations in a 4 mm ⁇ 3 mm region centered on each measurement point is measured to determine the screw dislocation density at each measurement point. It was. The results are shown in Table 1.
  • the average value of the screw dislocation density observed in this donut-shaped peripheral region 7b was 464 pieces / cm 2 , which was 80% or less of the average value of the screw dislocation density observed in the central circle region.
  • the (1-100) plane substrate was cut out from the crystal containing the seed crystal among the SiC single crystal lump remaining after cutting out the SiC single crystal substrate.
  • This (1-100) -plane substrate was immersed in molten KOH at 520 ° C. for 5 minutes to perform molten KOH etching, and then the surface of the etched substrate was observed with an optical microscope (magnification: 100 times).
  • an optical microscope magnification: 100 times.
  • linear etching traces extending almost perpendicular to the growth direction were observed, resulting in many stacking faults. I found out that In particular, the origins of the stacking faults are concentrated in the periphery of the bulk SiC single crystal.
  • the SiC single crystal having a height of 1 mm grown on the seed crystal 1 acts as a structure conversion layer, and screw dislocations are stacked. It shows that the structure is converted into a defect.
  • Example A2 First, after the inside of the double quartz tube 11 was evacuated, high-purity Ar gas was introduced as an atmospheric gas, and the temperature of the seed crystal 1 was increased to 2200 ° C. while maintaining the pressure in the quartz tube at 80 kPa. Thereafter, the pressure is reduced to 6.5 kPa, which is the growth pressure, over 30 minutes, and the crystal growth is performed for 10 hours under the growth conditions where the pressure in the quartz tube is 6.5 kPa and the temperature of the seed crystal 1 is 2200 ° C. A structural conversion layer made of SiC single crystal having a thickness of 0.8 mm was grown thereon (growth rate 80 ⁇ m / h).
  • Example A1 The procedure was the same as Example A1 except that crystal growth was performed for 80 hours while maintaining the atmospheric pressure and the seed crystal temperature.
  • the obtained bulk SiC single crystal (ingot) had a diameter of 75 mm and a thickness (height) of 24.8 mm.
  • the thickness of the main crystal growth portion obtained from the crystal growth for 80 hours is considered to be 24 mm when estimated from the results of measurement under the same conditions (growth rate 300 ⁇ m / h).
  • an SiC single crystal substrate having a thickness of 400 ⁇ m and a diameter of 75 mm according to Example A2 was obtained.
  • This SiC single crystal substrate was subjected to molten KOH etching in the same manner as in Example A1, and the (0001) plane of the etched substrate was observed with an optical microscope to determine the screw dislocation density. Selection of measurement points and measurement of screw dislocation density were performed in the same manner as in Example A1. The results are shown in Table 1.
  • the average value of the screw dislocation density observed in the central circle region 7a is 862. Pieces / cm 2 .
  • the average value of the screw dislocation density observed in the donut-shaped peripheral region 7b is 454 / cm. 2. It was 60% or less of the average value of the screw dislocation density observed in the central circle region.
  • the (1-100) plane substrate was cut out from the crystal containing the seed crystal out of the SiC single crystal lump remaining after cutting out the SiC single crystal substrate of Example A2. Then, molten KOH etching was performed in the same manner as in Example A1, and the surface of the etched substrate was observed with an optical microscope. As in Example A1, a thickness of 1 mm initially grown on the seed crystal was obtained. In the SiC single crystal portion (structure conversion layer), linear etching marks extending almost perpendicular to the growth direction were observed, and it was found that many stacking faults occurred. In particular, the origins of the stacking faults are concentrated in the periphery of the bulk SiC single crystal.
  • Example A2 the region where the stacking fault was generated was observed by a high-resolution X-ray topograph in the same manner as in Example A1.
  • the X-ray topographic image was almost the same as in Example A1, and it was confirmed that screw dislocations were converted into defects extending in a direction substantially perpendicular to the growth direction.
  • the SiC single crystal having a height of 1 mm grown on the seed crystal 1 acts as a structure conversion layer, and the screw dislocations were structurally converted into stacking faults.
  • Example A3 First, after the inside of the double quartz tube 11 was evacuated, high-purity Ar gas was introduced as an atmospheric gas, and the temperature of the seed crystal 1 was increased to 2200 ° C. while maintaining the pressure in the quartz tube at 80 kPa. Thereafter, the pressure is reduced to 13.3 kPa, which is the growth pressure, over 30 minutes, and the crystal growth is performed for 20 hours under the growth conditions in which the pressure in the quartz tube is 13.3 kPa and the temperature of the seed crystal 1 is 2200 ° C. A structure conversion layer made of a SiC single crystal having a thickness of 1 mm was grown thereon (growth rate 50 ⁇ m / h).
  • Example A1 The procedure was the same as Example A1 except that crystal growth was performed for 80 hours while maintaining the atmospheric pressure and the seed crystal temperature.
  • the obtained bulk SiC single crystal (ingot) had a diameter of 75 mm and a thickness (height) of 25 mm.
  • the thickness of the main crystal growth portion obtained from the crystal growth for 80 hours is considered to be 24 mm when estimated from the results of measurement under the same conditions (growth rate 300 ⁇ m / h).
  • an SiC single crystal substrate having a thickness of 400 ⁇ m and a diameter of 75 mm according to Example A3 was obtained.
  • This SiC single crystal substrate was subjected to molten KOH etching in the same manner as in Example A1, and the (0001) plane of the etched substrate was observed with an optical microscope to determine the screw dislocation density. Selection of measurement points and measurement of screw dislocation density were performed in the same manner as in Example A1. The results are shown in Table 1.
  • the average value of the screw dislocation density observed in the central circle region 7a is 868. Pieces / cm 2 .
  • the average value of the screw dislocation density observed in the donut-shaped peripheral region 7b is 387 / cm. 2 , which was less than half of the average value of the screw dislocation density observed in the central circle region.
  • Example A4 First, after the inside of the double quartz tube 11 was evacuated, high-purity Ar gas was introduced as an atmospheric gas, and the temperature of the seed crystal 1 was increased to 2200 ° C. while maintaining the pressure in the quartz tube at 80 kPa. Thereafter, the pressure is reduced to 26.6 kPa, which is the growth pressure, over 30 minutes, and the crystal growth is performed for 30 hours under the growth conditions in which the pressure in the quartz tube is 26.6 kPa and the temperature of the seed crystal 1 is 2200 ° C. A structural conversion layer made of a SiC single crystal having a thickness of 0.75 mm was grown thereon (growth rate 25 ⁇ m / h).
  • Example A1 The procedure was the same as Example A1 except that crystal growth was performed for 80 hours while maintaining the atmospheric pressure and the seed crystal temperature.
  • the obtained bulk SiC single crystal (ingot) had a diameter of 75 mm and a thickness (height) of 24.75 mm.
  • the thickness of the main crystal growth portion obtained from the crystal growth for 80 hours is considered to be 24 mm when estimated from the results of measurement under the same conditions (growth rate 300 ⁇ m / h).
  • an SiC single crystal substrate having a thickness of 400 ⁇ m and a diameter of 75 mm according to Example A4 was obtained.
  • This SiC single crystal substrate was subjected to molten KOH etching in the same manner as in Example A1, and the (0001) plane of the etched substrate was observed with an optical microscope to determine the screw dislocation density. Selection of measurement points and measurement of screw dislocation density were performed in the same manner as in Example A1. The results are shown in Table 2.
  • the average value of the screw dislocation density observed in the central circular region 7a is 1052. Pieces / cm 2 .
  • the average value of the screw dislocation density observed in the donut-shaped peripheral region 7b is 282 / cm. 2. It was 1/3 or less of the average value of the screw dislocation density observed in the central circle region.
  • Example A5 First, after the inside of the double quartz tube 11 was evacuated, high-purity Ar gas was introduced as an atmospheric gas, and the temperature of the seed crystal 1 was increased to 2200 ° C. while maintaining the pressure in the quartz tube at 80 kPa. Thereafter, the pressure is reduced to 39.9 kPa, which is the growth pressure, over 30 minutes, and the crystal growth is performed for 50 hours under the growth conditions in which the pressure in the quartz tube is 39.9 kPa and the temperature of the seed crystal 1 is 2200 ° C. A structure conversion layer made of a SiC single crystal having a thickness of 0.75 mm was grown thereon (growth rate 15 ⁇ m / h).
  • Example A1 The procedure was the same as Example A1 except that the crystal growth was performed for 80 hours while maintaining the growth atmosphere pressure and the seed crystal temperature.
  • the obtained bulk SiC single crystal (ingot) had a diameter of 75 mm and a thickness (height) of 24.75 mm.
  • the thickness of the main crystal growth portion obtained from the crystal growth for 80 hours is considered to be 24 mm when estimated from the results of measurement under the same conditions (growth rate 300 ⁇ m / h).
  • an SiC single crystal substrate having a thickness of 400 ⁇ m and a diameter of 75 mm according to Example A5 was obtained.
  • This SiC single crystal substrate was subjected to molten KOH etching in the same manner as in Example A1, and the (0001) plane of the etched substrate was observed with an optical microscope to determine the screw dislocation density. Selection of measurement points and measurement of screw dislocation density were performed in the same manner as in Example A1. The results are shown in Table 2.
  • Example A1 The same procedure as in Example A1 was performed until the inside of the double quartz tube 11 was evacuated, and then high-purity Ar gas was introduced as an atmospheric gas to bring the pressure in the quartz tube to 80 kPa. Under this pressure, a current was passed through the work coil 14 to increase the temperature, and the temperature of the seed crystal 1 was increased to 2200 ° C. After reducing the growth pressure to 1.3 kPa over 30 minutes, crystal growth was performed for 100 hours to grow a bulk SiC single crystal having a diameter of 75 mm and a thickness (height) of 30 mm (growth rate: 300 ⁇ m / h).
  • a SiC single crystal substrate having a thickness of 400 ⁇ m and a diameter of 75 mm according to Comparative Example A1 was obtained.
  • This SiC single crystal substrate was subjected to molten KOH etching in the same manner as in Example A1, and the (0001) plane of the etched substrate was observed with an optical microscope to determine the screw dislocation density. Selection of measurement points and measurement of screw dislocation density were performed in the same manner as in Example A1. The results are shown in Table 2.
  • the (1-100) plane substrate was cut out from the crystal containing the seed crystal out of the SiC single crystal lump remaining after cutting out the SiC single crystal substrate of Comparative Example A1, and the molten KOH etching was performed as in Example A1.
  • the surface of the etched substrate was observed with an optical microscope. As a result, stacking faults as seen in Examples A1 and 2 were not particularly confirmed, and no structural transformation of screw dislocations was observed.
  • Example B As in Example A, a single crystal growth apparatus based on the modified Rayleigh method of FIG. 4 was used.
  • the seed crystal prepared above is attached to the inner surface of the graphite lid 4 of the single crystal growth apparatus, set in a graphite crucible container 9 filled with a sublimation raw material 8, covered with a graphite felt 13, and then on the graphite support rod 12. It was placed and installed inside the double quartz tube 11. Then, after evacuating the inside of the quartz tube, high-purity Ar gas was introduced as an atmospheric gas, and the pressure in the quartz tube was set to 80 kPa. Under this pressure, a current was passed through the work coil to increase the temperature, and the seed crystal temperature was increased to 2200 ° C. Thereafter, the pressure was reduced to 13.3 kPa, which is the growth pressure, over 30 minutes to start crystal growth.
  • the nitrogen flow rate is 0.01 L / min in all growth steps (at the same flow rate, the nitrogen concentration in the grown crystal is about 1 ⁇ 10 19 cm ⁇ 3 . And keep it until the end of growth.
  • first growth step when crystal growth was performed for 20 hours under the conditions of the growth atmosphere pressure and the seed crystal temperature, it was confirmed that a silicon carbide single crystal having a diameter of 50 mm and a height of 1 mm was grown (first growth step).
  • a (0001) plane substrate is cut out from the obtained crystal, and after mirror polishing, molten KOH etching (520 ° C., 5 to 10 minutes) is performed, and the screw dislocation density is determined by the above-described method at any four points on the periphery of the substrate. When the average value was measured, it was 100 / cm 2 .
  • a (1-100) plane substrate of the crystal was cut out, and similarly, mirror polishing was performed, followed by molten KOH etching and observation with an optical microscope. Linear etching marks extending almost perpendicular to the growth direction were observed, and it was found that many stacking faults occurred. The region where the stacking fault occurred was observed with a high-resolution X-ray topograph. In observation, (0004) was taken as the diffraction plane. In the X-ray topographic image, defects extending parallel to the growth direction were observed in the seed crystal and the initial growth region immediately above the seed crystal.
  • this defect can be identified as a dislocation defect including a screw dislocation component whose Burgers vector is ⁇ 0001>. That is, this screw dislocation is converted into a defect extending in a direction substantially perpendicular to the growth direction, and at the same time, the location of the defect coincides with the position where the stacking fault is observed in the molten KOH etching. This indicates that screw dislocations are converted into stacking faults.
  • a (1-100) plane substrate was cut out from a (0001) plane substrate obtained from the crystal, and after mirror polishing, observed by a high resolution X-ray topograph. It was observed that multiple screw dislocations were converted into stacking faults. Since screw dislocations do not penetrate through the substrate in the ⁇ 0001> direction, if a device is fabricated from this substrate, it is considered possible to reduce leakage current and improve oxide film formation failure.
  • Example B1 structural transformation induced growth was performed in the same manner as in the confirmation experiment for structural transformation (step I). Subsequently, the pressure was reduced at a pressure change rate of 1.2 kPa / hr, the temperature was increased at a temperature change rate of 10 ° C./hr, the growth atmosphere pressure was increased to 1.3 kPa, and the seed crystal temperature was increased to 2300 ° C. over 10 hours (transition conditions: Step II), crystal growth was performed for 30 hours while maintaining the growth atmosphere pressure and the seed crystal temperature (normal growth: step III).
  • the obtained silicon carbide single crystal (ingot) had a diameter of 50 mm and a thickness (full length) of 13 mm. Of these, the thickness of the single crystal grown in Step III is considered to be 11 mm when estimated from the results of measurement under the same conditions.
  • a (0001) plane substrate was cut out from the single crystal of the portion grown in the above step III, and after mirror polishing, melted KOH etching (520 ° C., 5 to 10 minutes) was performed, and the above-described process was performed at any four points on the periphery of the substrate.
  • the screw dislocation density was measured by an optical microscope according to the method and the average value was obtained, it was 110 / cm 2 . That is, it was confirmed that the screw dislocation density was significantly reduced compared with the value in the seed crystal.
  • Examples B2 to 8, Comparative Examples B1 to B4 As shown in Table 3, a silicon carbide single crystal was grown in the same manner as in Example B1 except that the conditions in Step I, Step II, and Step III were changed. Further, among the finally obtained silicon carbide single crystal, the (0001) plane substrate was cut out from the portion of the single crystal grown in Step III, and the screw dislocation density was determined in the same manner as in Example B1. The results are shown in Table 3.
  • Example B As can be seen from the results shown in Table 3, in all cases of Example B according to the present invention, the screw dislocation density was significantly reduced as compared with Comparative Example B. In addition, in the case of Comparative Example B4, the mixing of different polytypes not confirmed in Example B was observed, and the occurrence of micropipes was also confirmed.
  • Examples B9 to 14, Comparative Example B5 Crystal growth comprising the growth steps shown in Table 4 was carried out using a seed crystal substantially equivalent to Example B1 (screw dislocation density of 1000 / cm 2 ).
  • the growth atmosphere pressure at the start of growth is set to 1.3 kPa
  • the seed crystal temperature is set to 2200 ° C.
  • crystal growth is performed for 20 hours, and a silicon carbide single crystal having a thickness of 4 mm is formed. Grown up.
  • the conditions are changed over 1 to 10 hours depending on the pressure change rate and temperature change rate shown in Step II, and the structure transformation induced growth is carried out by 10 to 33.30 while maintaining the growth atmosphere pressure and seed crystal temperature shown in Step III.
  • the crystal growth for 30 hours is carried out while maintaining the growth atmosphere pressure and seed crystal temperature shown in Step V. Went.
  • the thickness and the crystal growth rate of the crystal obtained in the step III corresponding to the first growth step of the present invention are as shown in Table 4, and these values were estimated from the result of performing the same growth separately.
  • the thickness of the single crystal grown by the process V corresponding to the second growth process is 9 to 12 mm, and the growth rate is 300 to 400 ⁇ m / hr.
  • Each (0001) plane substrate is cut out from the single crystal of the portion grown in the above step V, mirror-polished, and then subjected to molten KOH etching (520 ° C., 5 to 10 minutes). Was measured. The results are shown in Table 4.
  • Example B6 A 4H-type SiC single crystal substrate having a (0001) plane with a diameter of 50 mm as a main surface and an off angle inclined by 4 degrees in the ⁇ 11-20> direction was cut out from a silicon carbide single crystal ingot grown in advance. After polishing, a seed crystal was obtained. Crystal growth was performed in the same way as the confirmation experiment for structural conversion, but the atmospheric pressure during crystal growth was adjusted to 1.3 kPa with a vacuum exhaust device, and the current value of the work coil was adjusted so that the growth temperature was 2250 ° C did. When the crystal growth was performed for 60.5 hours under the conditions of the growth atmosphere pressure and the seed crystal temperature, the diameter of the obtained silicon carbide single crystal was 52 mm and the height was about 12 mm.
  • the single crystal (0001) plane substrate obtained above was cut out, mirror-polished, and subjected to molten KOH etching in the same manner as the confirmation experiment of structural conversion.
  • the screw dislocation density was It was 1000 pieces / cm 2 .
  • a (1-100) plane substrate of the crystal was cut out, and similarly, mirror polishing was performed, followed by molten KOH etching, and observation with an optical microscope. As a result, stacking faults are not observed, indicating that conversion of screw dislocations into stacking faults has not occurred.
  • Example B15 4H-type SiC seed single crystals with a diameter of 100 mm having a screw dislocation density of 2600, 3100, and 3600 pieces / cm 2 were prepared respectively, and using these seed crystals, a diameter of 100 mm was obtained in the same manner as in Example B1 of Table 3. 4H type SiC single crystal growth was performed.
  • the thickness of the structural transformation inducing layer obtained by Step I was about 1 mm
  • the thickness of the normal growth layer obtained by Step III was about 10 mm.
  • the screw dislocation density was measured in the same manner as in Example B1.
  • the substrate taken out from the normal growth layer portion of the ingot prepared from 2600,3100,3600 amino / cm 2 seed crystal, respectively was 140,180,210 pieces / cm 2.
  • the screw dislocation density can be reduced to 300 pieces / cm 2 or less by using the production method of the present invention. It was shown that there is.
  • Example B7 Similar to Example B15, a 4H type SiC seed single crystal with a diameter of 100 mm and a screw dislocation density of 2600 pieces / cm 2 was prepared, and using this seed crystal, a diameter of 100 mm was obtained in the same manner as in Comparative Example B3 of Table 3. 4H type SiC single crystal growth was performed.
  • the structure transformation-induced growth time in Step I was 4 hours
  • the normal growth time in Step III was 50 hours.
  • the thickness of the structural transformation inducing layer in Step I was about 0.2 mm
  • the thickness of the normal growth layer in Step II was 20 mm.
  • Example B16 A 4H—SiC single crystal was produced under the same conditions as in Example B1, a 0.5 mm thick substrate was cut out so as to include a part of the structural transformation inducing layer in Step I, and a SiC single crystal substrate having a thickness of 350 ⁇ m was polished. Produced. In the same manner as confirmed in Example B1, when the substrate cut out from the region where the structural transformation of the screw dislocations into the stacking faults was observed by X-ray topography, a plurality of screw dislocations were converted into the stacking faults. I found out that Due to this structural transformation, the screw dislocation density has been reduced to 110 / cm 2.
  • a 3 mm square SBD (Schottky barrier diode) with a withstand voltage of 600 V is fabricated from this region, and the leakage current is measured to be 10 ⁇ 8 A. It was as follows, and it was possible to fabricate a device with a sufficiently small leakage current.
  • Comparative Example B8 A 4H—SiC single crystal was produced under the same conditions as in Comparative Example B6, a 0.5 mm thick substrate was cut out, and a SiC single crystal substrate having a thickness of 350 ⁇ m was produced by polishing.
  • the screw dislocation density was measured by the same method as in Example B1, it was 1000 / cm 2 .
  • a 3 mm square SBD with a withstand voltage of 600 V class was produced from this substrate, and the leakage current was measured to be 10 -4 A.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

結晶品質が高く、特にらせん転位密度の極めて低いSiC単結晶の製造方法、及びこの方法によって得られたSiC単結晶インゴットを提供する。特に、昇華再結晶法で成長させたバルクの炭化珪素単結晶から切り出された基板であって、中心部に比べて周辺部でのらせん転位密度が小さく、部分的にらせん転位が低減された炭化珪素単結晶基板を提供する。 種結晶を用いた昇華再結晶法によるSiC単結晶の製造方法であって、これによって得られたSiC単結晶インゴットである。特に、基板の直径をRとして、基板の中心点Oを中心にして0.5×Rの直径を有した中心円領域と、該中心円領域を除いた残りのドーナツ状周辺領域とを定義したとき、前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値が、前記中心円領域で観察されるらせん転位密度の平均値の80%以下であることを特徴とする炭化珪素単結晶基板である。

Description

炭化珪素単結晶基板及びその製造方法
 本発明は、らせん転位の少ない、結晶品質の高い炭化珪素単結晶の製造方法、及びこれによって得られた炭化珪素単結晶基板に関するものである。本発明の製造方法により得られる炭化珪素単結晶から加工及び研磨工程を経て製造される炭化珪素単結晶基板は、主として各種の半導体電子デバイス、あるいはそれらの基板として用いられる。特に、この発明は、昇華再結晶法で成長させたバルクの炭化珪素単結晶から切り出した炭化珪素単結晶基板に関し、詳しくは、基板の中心部に比べて周辺部でのらせん転位が少ない炭化珪素単結晶基板に関する。
 炭化珪素(SiC)は、2.2~3.3eVの広い禁制帯幅を有するワイドバンドギャップ半導体であり、その優れた物理的、化学的特性から、耐環境性半導体材料として研究開発が行われている。特に近年では、青色から紫外にかけての短波長光デバイス、高周波電子デバイス、高耐圧・高出力電子デバイス等の材料として注目されており、SiCによるデバイス(半導体素子)作製の研究開発が盛んになっている。
 SiCデバイスの実用化を進めるにあたっては、大口径のSiC単結晶を製造することが不可欠であり、その多くは、昇華再結晶法(レーリー法又は改良型レーリー法)によってバルクのSiC単結晶を成長させる方法が採用されている。すなわち、坩堝内にSiCの昇華原料を収容し、坩堝の蓋体にはSiC単結晶からなる種結晶を取り付けて、原料を昇華させることで、再結晶により種結晶上にSiC単結晶を成長させる。そして、略円柱状をしたSiCのバルク単結晶(SiC単結晶インゴット)を得た後、一般には、300~600μm程度の厚さに切り出すことでSiC単結晶基板が製造され、電力エレクトロニクス分野等でのSiCデバイスの作製に供されている。
 ところで、SiC単結晶中には、マイクロパイプと呼ばれる成長方向に貫通した中空ホール状欠陥のほか、転位欠陥、積層欠陥等の結晶欠陥が存在する。これらの結晶欠陥はデバイス性能を低下させるため、その低減がSiCデバイスの応用上で重要な課題となっている。
 このうち、転位欠陥には、貫通刃状転位、基底面転位、及びらせん転位が含まれる。例えば、市販されているSiC単結晶基板では、らせん転位が8×102~3×103(個/cm2)、貫通刃状転位が5×103~2×104(個/cm2)、基底面転位が2×103~2×104(個/cm2)程度存在するとの報告がある(非特許文献1参照)。
 近年、SiCの結晶欠陥とデバイス性能に関する研究・調査が進み、各種欠陥の及ぼす影響が明らかになりつつある。なかでも、らせん転位がデバイスのリーク電流の原因となることや、ゲート酸化膜寿命を低下させることなどが報告されており(非特許文献2及び3参照)、高性能なSiCデバイスを作製するには、少なくとも、らせん転位を低減させたSiC単結晶基板が求められる。
 そして、SiC単結晶におけるらせん転位の低減に関して、例えば、準安定溶媒エピタキシ法(MSE法)により67(個/cm2)に減らしたとする報告例がある(非特許文献4参照)。また、化学気相成長法(CVD法)でのエピタキシャル成長中には、らせん転位がフランク型の積層欠陥に分解するといった内容が報告されている(非特許文献5参照)。しかしながら、これらの方法は、SiC単結晶の成長速度がいずれも数μm/hrであり、昇華再結晶法による一般的なSiC単結晶の成長速度の10分の1以下であることから、工業的生産法として確立するのは難しい。
 一方で、昇華再結晶法においては、所定の成長圧力及び基板温度で初期成長層としてのSiC単結晶を成長させた後、基板温度及び圧力を徐々に減じながら結晶成長を行うことで、マイクロパイプと共にらせん転位の少ないSiC単結晶を得る方法が報告されている(特許文献1参照)。しかしながら、この方法によって得られたSiC単結晶のらせん転位密度は103~104(個/cm2)であり(特許文献1の明細書[発明の効果]の欄参照)、高性能SiCデバイスへの応用を考えると、らせん転位の更なる低減が必要である。
 また、所定の成長圧力、及び基板温度によってSiC単結晶を初期成長層として成長させた後、基板温度はそのまま維持し、減圧して成長速度を高めて結晶成長させることで、マイクロパイプの発生を抑え、かつ、らせん転位等の転位密度を少なくさせる方法が報告されている(特許文献2参照)。しかしながら、この方法によっても、らせん転位の低減効果は不十分である。
 なお、昇華再結晶法では、〈0001〉のバーガースベクトルを持つらせん転位のほか、1/3〈11-20〉(0001)のバーガースベクトルを持って基底面内を伝播する貫通刃状転位から複合らせん転位が生成することが報告されている(非特許文献6参照)。ところが、この現象は結晶成長中に偶発的に起こるものであって、本発明者等が知る限りでは、それを制御したという報告例は無い。
特開2002-284599号公報 特開2007-119273号公報
大谷昇、SiC及び関連ワイドギャップ半導体研究会第17回講演会予稿集、2008、p8 坂東ら、SiC及び関連ワイドギャップ半導体研究会第19回講演会予稿集、2010、p140-141 山本ら、SiC及び関連ワイドギャップ半導体研究会第19回講演会予稿集、2010、p11-12 長田ら、SiC及び関連ワイドギャップ半導体研究会第18回講演会予稿集、2009、p68-69 H. Tsuchida et al., Journal of Crystal Growth, 310, (2008), 757-765 D. Nakamura et al. Journal of Crystal Growth 304 (2007) 57?63
 したがって、本発明の目的は、結晶品質が高く、特にらせん転位密度の極めて低いSiC単結晶の製造方法を提供することにある。また、本発明の別の目的は、この方法によって得られて、らせん転位密度を極めて低減させた炭化珪素単結晶インゴット、及び炭化珪素単結晶基板を提供することにある。特に、本発明の目的は、昇華再結晶法で成長させたバルクの炭化珪素単結晶から切り出された基板であって、中心部に比べて周辺部でのらせん転位密度が小さく、部分的にらせん転位が低減された炭化珪素単結晶基板を提供することにある。
 本発明者等は、上記事情に鑑みて鋭意検討を行った結果、昇華再結晶法による炭化珪素(SiC)単結晶の成長において、特定の成長雰囲気及び種結晶温度で炭化珪素単結晶を所定の厚みまで成長させることで、炭化珪素単結晶に含まれるらせん転位を積層欠陥に構造変換させることができることを新たに見出した。さらに、本発明者等は、驚くべきことには、バルクのSiC単結晶を成長させる際に、その一部において所定の成長条件を採用することで、それ以降に成長したSiC単結晶から切り出したSiC単結晶基板では、基板の中心部に比べて周辺部でのらせん転位密度が少なくなることを新たに見出した。
 そして、部分的でもらせん転位が低減したSiC単結晶基板であれば、基板内でデバイスの作り分けを行なうことで高性能SiCデバイスの作製が可能になり、また、デバイス作製の歩留まり向上にも資することから、本発明を完成させるに至った。
 すなわち、本発明の要旨は次のとおりである。
(1)昇華再結晶法により成長させたバルクのSiC単結晶から切り出した円盤状の炭化珪素単結晶基板であり、基板の直径をRとして、基板の中心点Oを中心にして0.5×Rの直径を有した中心円領域と、該基板の該中心円領域を除いた残りのドーナツ状周辺領域とを定義したとき、前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値が、前記中心円領域で観察されるらせん転位密度の平均値の80%以下であることを特徴とする炭化珪素単結晶基板。
 (2)前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値が、前記中心円領域で観察されるらせん転位密度の平均値の60%以下であることを特徴とする(1)に記載の炭化珪素単結晶基板。
 (3)前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値が、前記中心円領域で観察されるらせん転位密度の平均値の50%以下であることを特徴とする(1)に記載の炭化珪素単結晶基板。
(4)前記基板の円周を8等分する4本の直径を基板内で任意に選択し、該基板の中心点Oをゼロにして該中心点Oから放射状に伸びる8本の半径r1~r8をそれぞれ0から1までの目盛を有した軸に見立てたとき、前記中心円領域で観察されるらせん転位密度の平均値は、下記i)~iii)の合計17の測定点で測定した値の平均であり、また、前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値は、下記iv)~v)の合計16の測定点で測定した値の平均であり、
  i)中心点O
  ii)a1~a8
  iii)b1~b8
  iv)c1~c8
  v)d1~d8
ここで、記号a~dに付された数字は半径r1~r8の数字に対応するものであって、例えばa1、b1、c1及びd1は半径r1上に存在する測定点である。このうちa及びbは、各半径において0超0.5以下の範囲内にある測定点であり、c及びdは、各半径において0.5超1以下の範囲内にある測定点である。また、同一記号を有した8つの測定点は、記号a~dごとにそれぞれ同一円上に存在する、(1)~(3)のいずれかに記載の炭化珪素単結晶基板。
(5)前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値は500個/cm2以下である(4)に記載の炭化珪素単結晶基板。
 (6)前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値は300個/cm2以下である(4)に記載の炭化珪素単結晶基板。
 (7)前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値は100個/cm2以下である(4)に記載の炭化珪素単結晶基板。
 (8)種結晶を用いた昇華再結晶法による炭化珪素単結晶の製造方法であって、
 3.9kPa以上39.9kPa以下の第1の成長雰囲気圧力、及び、種結晶の温度が2100℃以上2300℃未満である第1の成長温度にて、少なくとも厚さ0.5mmの炭化珪素単結晶を成長させる第1の成長工程と、
 0.13kPa以上2.6kPa以下の第2の成長雰囲気圧力、及び、種結晶の温度が第1の成長温度より高くて2400℃未満である第2の成長温度にて、第1の成長工程より厚く炭化珪素単結晶を成長させる第2の成長工程とを含む、
ことを特徴とする炭化珪素単結晶の製造方法。
 (9)1時間あたり12kPa以下の圧力変化速度で第1の成長雰囲気圧力から第2の成長雰囲気圧力に減圧させる(8)に記載の炭化珪素単結晶の製造方法。
 (10)1時間あたり40℃以下の温度変化速度で第1の成長温度から第2の成長温度に昇温させる(8)または(9)に記載の炭化珪素単結晶の製造方法。
 (11)第1の成長工程における結晶成長速度が100μm/hr以下である(8)~(10)のいずれかに記載の炭化珪素単結晶の製造方法。
 (12)第1及び第2の成長工程を含む全成長工程のうち、第1の成長工程を結晶成長開始から全成長工程の2分の1以下の時間までに行う(8)~(11)のいずれかに記載の炭化珪素単結晶の製造方法。
 本発明によれば、らせん転位を大幅に低減させた高品質のSiC単結晶を製造することができる。そのため、これによって得られたSiC単結晶インゴットから加工されたSiC単結晶基板(ウェハ)は、種々の電子デバイスに適用することが可能であって、しかも、デバイス特性や歩留まり等を向上させることができる。特に、本発明のSiC単結晶基板は、基板の中心部に比べて周辺部でのらせん転位密度が小さいことから、例えば、基板内でデバイスの作り分けを行うことで高性能SiCデバイスの作製が可能になる。また、このようならせん転位の分布に応じたデバイス作製が可能になることから、歩留まりを向上させることができるなど、工業的には極めて有用な発明である。
図1は、本発明のSiC単結晶基板を得るためのバルクSiC単結晶について説明した断面模式図である。 図2は、本発明のSiC単結晶基板を説明する平面模式図である。 図3は、SiC単結晶基板の中心円領域及びドーナツ状周辺領域で観察されるそれぞれのらせん転位密度の平均値を求める際に選択する測定点の一例を示す平面模式図である。 図4は、本発明のSiC単結晶基板を得るのに用いたバルクSiC単結晶を製造するための単結晶製造装置を示す断面模式図である。
 以下、本発明についてより詳細に説明する。
 本発明における円盤状のSiC単結晶基板は、昇華再結晶法で成長させたバルクのSiC単結晶から切り出されたものである。先に述べたように、MSE法による結晶成長やCVD法によるSiCのエピタキシャル成長において、らせん転位を低減させることに成功した報告例は存在する。
 しかしながら、MSE法やCVD法によるSiCのエピタキシャル成長は、昇華再結晶法による一般的なSiC単結晶の成長速度の10分の1以下であり、本発明のSiC単結晶基板のように、昇華再結晶法により成長させたバルクのSiC単結晶から切り出して製造する形態とは、そもそも生産性の次元が全く異なる。この昇華再結晶法において、らせん転位を低減させる、特に、ドーナツ状周辺領域でらせん転位を低減化させる方法についての報告例はこれまでに無い。
 本発明者等は、昇華再結晶法を用いて、らせん転位が低減したSiC単結晶基板を得る手段について鋭意検討を重ねた結果、バルクのSiC単結晶を成長させる際、その成長初期に所定の成長条件を採用することで、らせん転位、或いは前記の複合らせん転位(本明細書ではこれらをまとめてらせん転位と呼ぶ)が積層欠陥に構造変換することを見出した。
 すなわち、図1に示したように、種結晶1から承継されるなどして発生したらせん転位3の一部は、成長初期(i)の構造変換に係る成長条件によって形成された構造変換層2により、成長方向への伸展が止まり、積層欠陥4に変換される。その際、この構造変換は、後述するような仕組みによって、結晶成長面の中央部に比べて周辺部で発生する確率が高く、また、積層欠陥4の伸展方向は、成長方向に対してほぼ垂直であるため、成長が進むにつれて結晶の側面から外へと排出される。そのため、昇華再結晶法においてこのような構造変換を用いれば、それ以降の成長中・後期(ii)に成長した結晶では、らせん転位3が少なくなり、結果として周辺部でのらせん転位が低減されたバルクのSiC単結晶6を得ることができる。なお、図1に示した模式断面図は、(000-1)面を主面としたSiC種結晶上にSiC単結晶を結晶成長させた場合であって、図1の断面図は(1-100)面を表す。
 このような構造変換は、例えば原料としてSiCの粉末を用いる場合、このSiC昇華原料が昇華して再結晶する際の原子の付着量と結晶表面から原子が離脱する離脱量との差が小さいとき、つまり、昇華再結晶法において平衡状態又はそれに近い状態が作り出された場合に生じるものと考えられる。そこで、昇華再結晶法における一般的なSiC単結晶の成長速度が300μm/h以上であるところ、本発明では100μm/h以下、好ましくは50μm/h以下、より好ましくは30μm/hr以下、さらに好ましくは25μm/h以下の低速成長が行われる成長条件を作り出して、構造変換層2を形成する。上述したような平衡状態を作り出してらせん転位を積層欠陥に構造変換させるためには、結晶成長速度は上記のようにするのがよく、結晶成長工程の時間の長さで言えば1時間から40時間程度を要して結晶成長させるのがよい。
 ここで、昇華再結晶法では、一般に、ポリタイプの安定したSiC単結晶を得る目的から、成長結晶の周辺部に比べて中央部の方が低くなるような温度勾配を設けるようにし、凸形の結晶成長表面を維持しながらバルクのSiC単結晶を形成する。そのため、成長初期における上記構造変換層2の成長速度とは、結晶成長が進み易い中央部での速度を言うものとし、本発明者等が行なった種々の実験結果によれば、成長結晶の中央部での成長速度が300μm/h以下であると、成長結晶の温度は中央部よりも周辺部の方が高いことから、周辺部における結晶表面からの原子の離脱量はより多くなって、周辺部において平衡状態又はそれに近い状態が作り出されるものと推察される。なお、成長結晶の中央部における成長速度が遅すぎると構造変換層2を形成する時間が長くなり過ぎて生産性が落ちることから、この構造変換に係る構造変換層2の成長速度は1μm/h以上にするのが望ましい。
 この構造変換層2の形成に係る具体的な成長条件については、上記のような成長結晶の中央部における成長速度を目安にして、適宜選択することができる。通常、成長雰囲気圧力を高くするとSiC昇華原料の原料ガスの拡散が遅くなるため、結晶成長表面へ到達する原子の量が減る。一方で、結晶表面からの原子の離脱量は成長表面温度で決まる。そこで、例えば、口径100mmのSiC単結晶基板を切り出すバルクのSiC単結晶を得る場合、種結晶の温度は2100℃以上、2400℃以下にするのがよく、好ましくは2200℃以上、2300℃以下にするのがよい。その際、成長結晶の周辺部に比べて中央部の方が0℃超20℃以下程度低くなるようにするのが望ましい。また、成長雰囲気圧力については2.6kPa以上65kPa以下とし、下限については好ましくは3.9kPa以上、より好ましくは6.5kPa以上、さらに好ましくは13.3kPa以上とし、上限については39kPa以下にするのがよい。そして、これらを組み合わせることで、少なくとも成長結晶の周辺部において、平衡状態又はそれに近い状態を作り出すことができる。なお、この工程においても炭化珪素結晶を成長させる必要があることや、成長雰囲気圧力が高くなるにつれて成長速度が遅くなり工業的生産法としてそぐわないことなどから、成長雰囲気圧力は39.9kPa以下とする。
 また、構造変換に係る構造変換層2の厚さについては、少なくとも厚さ0.5mmであるのがよく、好ましくは1mm以上となるように成長させるのがよい。構造変換層2の厚みが0.5mmに達しないと、らせん転位から積層欠陥への構造変換が十分になされないおそれがある。また、構造変換層2の厚みが増す分だけ、らせん転位から積層欠陥への構造変換は促進されるが、その効果が飽和し、生産性が落ちること等を考慮すると、厚み10mmを上限とすることができる。なお、この構造変換層2は、昇華再結晶法における一般的な成長速度によってある程度の厚みでSiC単結晶を成長させた後に形成するようにしてもよいが、所望の構造変換を確実に実現させるには成長初期に導入するのがよく、より詳しくは、成長開始時に導入するようにして、種結晶上に最初に形成するようにするのが好適である。
 構造変換層2を成長させた後は、この構造変換に係る成長条件よりも種結晶の温度を高くし、かつ、成長雰囲気圧力を下げて、SiC単結晶を成長させればよい。すなわち、構造変換層2以降に成長させる主たる結晶成長部分(主たる成長結晶)5について、その成長条件については特に制限はなく、上記のとおり、構造変換層2によってらせん転位3の一部を積層欠陥4に構造変換させることができるため、それ以降の成長中・後期(ii)に成長させた主たる成長結晶5では、部分的にらせん転位3が少なくなる。そのため、生産性等を考慮すると、成長速度が100μm/h以上となるようにするのがよく、好ましくは300μm/h以上となるようにするのがよい。
 具体的には、先と同様、例えば、口径100mmのSiC単結晶基板を切り出すバルクのSiC単結晶を得る場合、種結晶の温度は2100℃以上2400℃以下の範囲内で構造変換に係る成長条件よりも種結晶の温度を高くし、好ましくは2200℃以上2300℃以下の範囲内とするのがよい。その際、同様に成長結晶の中央部が0℃超20℃以下程度低くなるようにするのが望ましい。また、成長雰囲気圧力は0.13kPa以上2.6kPa以下の範囲内で構造変換に係る成長条件よりも成長雰囲気圧力を下げるようにするのがよく、好ましくは0.65kPa以上1.95kPa以下の範囲内とするのがよい。
 この主たる成長結晶5は、SiCバルク単結晶6において主立って成長させる部分であり、得られたSiCバルク単結晶6から本発明のSiC単結晶基板7を取り出すことなどを勘案すれば、構造変換層2以降に成長させる主たる成長結晶5の厚みは10mm以上であるのが望ましい。そして、図1に示したように、この成長中・後期(ii)に成長させた主たる結晶成長部分5から切り出したSiC単結晶基板7は、図2に示したとおり、その表面〔(0001面)〕に現れるらせん転位は、中心部に比べて周辺部の方が少なくなる。なお、既存の設備を用いることなどを考慮すると、その結晶成長の速度は1000μm/h程度が上限であり、また、その厚み(長さ)の上限は特に制限されないが、現状の製造装置の性能等を勘案すると、その上限は200mm程度、より現実的には150mm程度である。
 また、構造変換層2を成長させた後、主たる成長結晶5の成長条件へと切り替える際には、好ましくは1時間あたり12kPa以下の圧力変化速度で減圧させるのがよく、より好ましくは1時間あたり1kPa以下、更に好ましくは1時間あたり0.5kPa以下であるのがよい。単位時間あたりの変更幅が大きいほど成長速度の時間変化量は大きくなる。そのため、その間の結晶成長が不安定となり、異種ポリタイプ混在等の結晶欠陥が生じるおそれがあるためである。また、この圧力変化速度を小さくして変化(時間を掛けて変化)させることで、構造変換工程による作用をより確かにし、つまり積層欠陥を確実に結晶外へ排出させて再度のらせん転位の発生を防止して、らせん転位の少ない、特にドーナツ状周辺でらせん転移の少ない炭化珪素単結晶を得ることができる。なお、これらの点を鑑みれば圧力変化速度は遅いほど望ましいが、生産性や作業性等を考慮すれば、その下限は0.1kPa/hrである。同様の理由から、成長温度の切り替えについては、好ましくは1時間あたり40℃以下の温度変化速度で昇温させるのがよく、より好ましくは1時間あたり10℃以下、更に好ましくは1時間あたり5℃以下であるのがよい。この温度変化速度に関しても圧力変化速度と同様の考え方が適用でき、また、その下限については1℃/hrである。
 本発明において、らせん転位の積層欠陥への構造変換は、成長雰囲気圧力及び成長温度制御によって行われるため、この構造変換に関して結晶成長に使用する種結晶のオフ角に依らない。ただし、オフ角が大きい場合、異種ポリタイプが発生する確率が高くなる場合があることを本発明者らは確認している。そのため、好適には、種結晶に用いる基板のオフ角は0度以上15度以下であるのがよく、より好ましくは0度以上8度以下であるのがよい。
 また、上記のようならせん転位の構造変換を利用するため、得られるSiC単結晶のポリタイプによる制限はない。例えば、代表的なポリタイプである4H型をはじめ、6H型、3C型等のバルクSiC単結晶を得る場合にも適用可能である。特に、パワーデバイス応用として有力視されている4H型のSiC単結晶基板を得ることができる点で有利である。更には、一般に使用される昇華再結晶法を利用した炭化珪素単結晶製造装置を用いることができるため、例えば、高純度ガス配管やマスフローコントローラを使用して成長雰囲気中に供給する窒素ガス量等を制御しながら、用途に応じて適宜結晶中に窒素ドープ等を行うことができる。更にまた、得られるバルクSiC単結晶の結晶口径に関しても特に制限を受けない。そのため、現時点で最も有力視されている口径50mm以上300mm以下の結晶成長プロセスへの適用が可能である。
 そして、構造変換層2を経て成長させた主たる結晶成長部分5から基板を切り出す際には公知の方法を採用することができ、基板の厚み等についても特に制限はなく、必要に応じて各種研磨等を行うことで、本発明に係るSiC単結晶基板7を得ることができる。得られたSiC単結晶基板7は、図2に示したように、基板の直径をRとし、基板の中心点をOとして、中心点Oを中心にして0.5×Rの直径を有した中心円領域7aと、この中心円領域7aを取り除いた残りのドーナツ状周辺領域7bとを定義すれば、ドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は、中心円領域7aで観察されるらせん転位密度の平均値の80%以下であり、好適には60%以下、更に好適には50%以下である。すなわち、基板の中心部に比べて周辺部でのらせん転位密度が小さく、部分的にらせん転位が低減されたSiC単結晶基板である。
 中心円領域7a及びドーナツ状周辺領域7bにおける各らせん転位密度の平均値を求めるに際して、その測定方法は特に制限されないが、最も一般的には、500℃程度の溶融KOHに浸して基板表面をエッチングし、光学顕微鏡によってエッチピットの形状を観察してらせん転位密度を計測する方法を採用することができる。そして、この光学顕微鏡によるらせん転位密度の計測を各領域の複数の測定点で行い、それぞれの平均値を求めるようにすればよい。
 その際、中心部に比べて周辺部でのらせん転位密度が少ない基板であるかどうかについて、好適に判断するには、例えば、以下のように各領域での測定点を選択し、らせん転位密度を計測してそれぞれの平均値を求めるようにするのがよい。なお、下記のような測定点の選択はその一例であって、勿論これらに制限されるものではない。
 すなわち、基板の円周を8等分する4本の直径を基板内で任意に選択し、図3に示したように、基板の中心点Oをゼロにして、この中心点Oから放射状に伸びる8本の半径r1~r8をそれぞれ0から1までの目盛を有した軸に見立てたとき、中心円領域7aで観察されるらせん転位密度の平均値は、下記i)~iii)の合計17の測定点で測定した値の平均から求めるようにする。同じく、ドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は、下記iv)~v)の合計16の測定点で測定した値の平均から求めるようにする。
  i)中心点O
  ii)a1~a8
  iii)b1~b8
  iv)c1~c8
  v)d1~d8
 ここで、記号a~dに付された数字は半径r1~r8の数字に対応するものであって、例えばa1、b1、c1及びd1は、半径r1上に存在する測定点である。このうちa及びbは、各半径において目盛が0超0.5以下の範囲内にある測定点であり、c及びdは、各半径において目盛が0.5超1以下の範囲内にある測定点である。ここで、目盛0は基板の中心点Oに相当し、目盛1は基板の円周上の点に相当する位置を表す。また、同一記号を有した8つの測定点は、記号a~dごとにそれぞれ同一円上に存在する。
 そして、本発明のSiC単結晶基板では、例えば、中心円領域7aで観察されるらせん転位密度の平均値が1000個/cm2程度であるのに対して、ドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は500個/cm2以下である。具体的には、中心円領域7aで観察されるらせん転位密度の平均値は主に800~1200個/cm2の範囲内であるのに対して、ドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は500個/cm2以下、好適には300個/cm2以下、更に好適には100個/cm2以下であり、ドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は、中心円領域7aで観察されるらせん転位密度の平均値の80%以下、好適には60%以下、更に好適には50%以下である。なお、原料中に含まれる不純物や黒鉛坩堝の壁面からの黒鉛の成長面への付着などの成長の擾乱因子によってらせん転位が不可避的に発生することなどを勘案すると、ドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は、理論的には0.1個/cm2が下限であり、実質的には1個/cm2が下限である。
 本発明によって得られたSiC単結晶基板は部分的にらせん転位が低減されているため、特にドーナツ状周辺領域でらせん転移が低減されているため、例えば基板内でデバイスの作り分けを行なうことで、デバイス作製の歩留まりを向上させることができる。また、らせん転位の少ない基板の周辺部においては、らせん転位起因のリーク電流や酸化膜寿命低下の少ない高性能デバイスの作製が可能となり、例えば、MOSFETやJFET等の作製に好適である。
 上記では主に、部分的にらせん転位が低減されている本発明によって得られたSiC単結晶基板について説明してきた。以下では、本発明の別の態様について、より詳細に説明する。この態様では、らせん転位を大幅に低減させた高品質のSiC単結晶を製造することができる。そのため、これによって得られたSiC単結晶インゴットから加工されたSiC単結晶基板(ウェハ)は、種々の電子デバイスに適用することが可能であって、しかも、デバイス特性や歩留まり等を向上させることができる。
 先に述べたように、MSE法による結晶成長や化学気相成長法(CVD法)によるエピタキシャル成長において、成長途中にらせん転位が積層欠陥に分解することは知られていたが、昇華再結晶法において同様な現象が起きることについて、本発明者等が知る限りではこれまで報告された例はない。
 本発明者らは、昇華再結晶法での炭化珪素単結晶成長において、3.9kPa以上39.9kPa以下の第1の成長雰囲気圧力、及び、種結晶の温度が2100℃以上2300℃未満である第1の成長温度にて、少なくとも厚さ0.5mmの炭化珪素単結晶を成長させる第1の成長工程によって、らせん転位あるいは前記の複合らせん転位(以下、まとめてらせん転位と記す)が積層欠陥に構造変換することを見出した。この構造変換によって、成長方向へのらせん転位の伸展は止まり、積層欠陥の伸展方向は成長方向とほぼ垂直であるため、成長が進むにつれて積層欠陥は結晶側面より結晶外へ排出される。そのため、この構造変換(構造変換誘発成長)を用いれば、らせん転位の少ない炭化珪素単結晶インゴットを得ることができる。
 このらせん転位の積層欠陥への構造変換が起きるメカニズムは、以下のように推察される。
 MSE法は等温環境下での結晶成長法であり、様々なSiC単結晶成長法の中でも平衡状態に最も近い、準平衡状態が実現された結晶成長法と言われている。準平衡状態において、らせん転位が積層欠陥に変換することは、SiC単結晶中では、らせん転位よりも積層欠陥の方がエネルギー的に安定であることを示唆している。しかしながら、MSE法での成長速度は昇華再結晶法の10分の1以下であり、CVD法を含めてこれらの成長条件をそのまま昇華再結晶法に適用しても、直ちに同様な平衡状態を作り出すことはできない。
 そこで、上記第1の成長雰囲気圧力、及び、第1の成長温度にて炭化珪素単結晶を成長させることで、昇華再結晶法における準平衡状態を実現可能にしている。すなわち、成長雰囲気圧力を高くすると原料ガスの拡散が遅くなるために、結晶成長表面へ到達する原料ガス量が減る。一方で、結晶表面からの原子の離脱量は成長表面温度で決まる。そのため、種結晶の温度を結晶成長に適した2100℃以上2300℃未満に保ち、成長雰囲気圧力を3.9kPa以上39.9kPa以下、好ましくは13.3kPa以上39.9kPa以下にすることで、原子の付着量と離脱量の差を小さくすることができ、平衡状態に近づけることができると考えられる。なお、この第1の成長工程においても炭化珪素結晶を成長させる必要があることや、成長雰囲気圧力が高くなるにつれて成長速度が遅くなり工業的生産法としてそぐわないことなどから、成長雰囲気圧力は39.9kPa以下とする。
 また、上記第1の成長雰囲気圧力、及び、第1の成長温度にて成長させる炭化珪素単結晶は少なくとも厚さ0.5mm、好ましくは1mm以上となるようにする。厚みが0.5mmに達しないと、らせん転位から積層欠陥への構造変換が十分になされないおそれがある。この第1の成長工程で成長させる炭化珪素単結晶の厚みが増す分だけ、らせん転位から積層欠陥への構造変換は促進されるが、その効果が飽和したり、生産性等を考慮すると、厚み10mmを上限とすることができる。
 また、第1の成長工程における結晶成長速度は1時間あたり100μm以下となるようにするのがよく、好ましくは50μm/hr以下、より好ましくは30μm/hr以下であるのがよい。上述したような平衡状態を作り出してらせん転位を積層欠陥に構造変換させるためには、第1の成長工程での結晶成長速度は上記のようにするのがよく、結晶成長工程の長さで言えば1時間から30時間程度を要して結晶成長させるのがよい。なお、この第1の成長工程における結晶成長速度は、生産性等を考慮すると1μm/hr以上とするのがよい。
 本発明では、第1の成長工程と共に、0.13kPa以上2.6kPa以下の第2の成長雰囲気圧力、及び、種結晶の温度が第1の成長温度より高くて2400℃未満である第2の成長温度にて、第1の成長工程より厚く炭化珪素単結晶を成長させる第2の成長工程とを含む。この第2の成長工程では、第1の成長工程に比べて成長雰囲気圧力を下げ、かつ、種結晶温度を高くして結晶成長速度を上げて、炭化珪素単結晶を主立って成長させるようにする。すなわち、第1の成長工程によってらせん転位を積層欠陥に構造変換させることができるため、この第2の成長工程で成長する炭化珪素単結晶に含まれるらせん転位は極めて少なくなる。また、この第2の成長工程で種結晶の温度を高くすることで、高品質の炭化珪素単結晶を得ながら、成長速度100μm/hr超の生産性の良い高速成長を行うことができる。
 第2の成長工程における結晶成長速度は1時間あたり100μm超となるようにするのがよく、好ましくは300μm/hr以上であるのがよい。また、第2の成長工程において成長させる炭化珪素単結晶の厚みについては、本発明によって炭化珪素単結晶インゴットを製造し、炭化珪素単結晶基板を取り出すことなどを勘案すれば、10mm以上であるのが望ましい。なお、既存の設備を用いることなどを考慮すると、第2の成長工程における結晶成長速度は1000μm/hr程度が上限であり、また、第2の成長工程で成長させる炭化珪素単結晶の厚み(長さ)の上限は特に制限されないが、現状の製造装置の性能等を勘案すると200mm程度、より現実的には150mm程度である。
 また、第1の成長工程から第2の成長工程へと切り替える際には、好ましくは1時間あたり12kPa以下の圧力変化速度で減圧させるのがよく、より好ましくは1時間あたり1kPa以下、更に好ましくは1時間あたり0.5kPa以下であるのがよい。単位時間あたりの変更幅が大きいほど成長速度の時間変化量は大きくなる。そのため、その間の結晶成長が不安定となり、異種ポリタイプ混在等の結晶欠陥が生じるおそれがあることから、12kPa/hr以下の圧力変化速度で減圧するのがよい。また、この圧力変化速度を小さくして変化(時間を掛けて変化)させることで、第1の成長工程による構造変換の作用をより確かにし、つまり積層欠陥を確実に結晶外へ排出させて再度のらせん転位の発生を防止して、らせん転位の少ない炭化珪素単結晶を得ることができる。なお、これらの点を鑑みれば圧力変化速度は遅いほど望ましいが、生産性や作業性等を考慮すれば、その下限は0.1kPa/hrである。
 同様の理由から、成長温度の切り替えについては、好ましくは1時間あたり40℃以下の温度変化速度で昇温させるのがよく、より好ましくは1時間あたり10℃以下、更に好ましくは1時間あたり5℃以下であるのがよい。この温度変化速度に関しても圧力変化速度と同様の考え方が適用でき、また、その下限については1℃/hrである。
 また、本発明では、第1及び第2の成長工程を含む全成長工程のうち、好ましくは、第1の成長工程を結晶成長開始から全成長工程の2分の1以下の時間までに行うのがよく、より好ましくは結晶成長開始から全成長工程の3分の1以下の時間までに行うのがよい。らせん転位の構造変換をできるだけ結晶成長初期で起させることで、らせん転位の少ない基板が取り出せるインゴット領域を増加させることができるので望ましい。
 ここで、種結晶への結晶成長開始時に第1の成長工程で結晶成長させ、その後に第2の成長工程で結晶成長させるようにしてもよく、或いは、結晶成長開始時に第2の成長工程(又はこれと同等程度の結晶成長工程)で結晶成長させ、その後に第1の成長工程を含めるようにして、更に第2の成長工程にて結晶成長させるようにしてもよい。後者のように結晶成長の途中で第1の成長工程を含める場合は、種結晶中に含まれたらせん転位を一旦結晶成長方向に発生させて、それらを第1の成長工程により積層欠陥に構造変換させる趣旨である。そのため、好適には1mm以上の厚さで結晶成長させた後に第1の成長工程を行うようにするのがよく、より好適には2mm以上であるのがよい。但し、その効果が飽和することや生産性等を考慮すれば、その厚みは5mm以下であるのがよい。また、例えば先に行う第2の成長工程から第1の成長工程へと切り替えるときには、12kPa/hr以下の圧力変化速度で圧力を上げるようにするのがよく、また、40℃以下の温度変化速度で降温させるのがよい。
 本発明では、らせん転位の積層欠陥への構造変換は、成長雰囲気圧力及び成長温度制御によって行われるため、その適用範囲で結晶成長に使用する種結晶のオフ角に依らない。但し、オフ角が大きい場合、異種ポリタイプが発生する確率が高くなることを本発明者らは確認している。そのため、好適には、種結晶に用いる基板のオフ角は0度以上15度以下であるのがよく、より好ましくは0度以上8度以下であるのがよい。
 また、本発明では、転位の構造変換を利用したらせん転位の低減化であることから、得られる炭化珪素単結晶のポリタイプによる制限はなく、代表的なポリタイプである4H型、6H型及び3C型の炭化珪素単結晶を得る方法として適用可能である。特に、パワーデバイス応用として有力視されている4H型にも適用可能である点で有利である。
 更には、本発明におけるらせん転位の低減は、雰囲気圧力及び成長温度を制御することで行われるため、得られる炭化珪素単結晶の結晶口径の制限もない。そのため、現時点で最も有力視されている口径50mm以上300mm以下の結晶成長プロセスへの適用が可能である。
 更にまた、本発明の炭化珪素単結晶の製造方法では、一般に使用される昇華再結晶法を利用した炭化珪素単結晶製造装置を用いることができるため、例えば、高純度ガス配管やマスフローコントローラを使用して成長雰囲気中に供給する窒素ガス量等を制御して、用途に応じて任意に結晶中に窒素ドープ等を行うことができる。
 本発明によれば、らせん転位が少ない炭化珪素単結晶を得ることができる。すなわち、本発明における第1の成長工程によってらせん転位から積層欠陥への構造変換を誘発し、その後の第2の成長工程によってらせん転位の少ない結晶成長を行うことができることから、種結晶に含まれたらせん転位密度を1/3~1/10程度以下まで低減させて(場合によっては1/20以下まで低減させて)、高品質の炭化珪素単結晶を得ることができる。より詳しくは、本発明の方法によって得られた炭化珪素単結晶インゴットは、横断面における単位面積あたりのらせん転位の数で表されるらせん転位密度が300個/cm2以下、好適には100個/cm2以下、更に好適には50個/cm2以下にすることが可能なため、このインゴットから切り出した炭化珪素単結晶基板によれば、らせん転位起因のリーク電流や酸化膜寿命低下の少ない高性能デバイスの作製が可能となる。特に、トランジスタにおいて酸化膜信頼性を著しく向上させることができる。
 なお、本発明では、第1の成長工程から第2の成長工程への切り替えにより結晶成長速度を増加させているが、それ以外にも成長温度を2200℃以上にして昇華再結晶法に用いる原料ガスの昇華量を増やす手段を採用することも可能である。
 以下、実施例等に基づき本発明をより具体的に説明する。なお、本発明は以下の実施例の内容に制限されるものではない。
 実施例A
 図4は、本発明の実施例に係るSiC単結晶基板を得るのに用いたバルクSiC単結晶を製造するための装置であって、改良レーリー法(昇華再結晶法)による単結晶成長装置の一例を示す。結晶成長は、SiCの昇華原料8を誘導加熱により昇華させ、SiC種結晶1上に再結晶させることにより行われる。種結晶1は黒鉛蓋10の内面に取り付けられており、昇華原料8は黒鉛坩堝9の内部に充填される。この黒鉛坩堝9及び黒鉛蓋10は、熱シールドのために黒鉛製フェルト13で被膜されており、二重石英管11内部の黒鉛支持棒12の上に設置される。石英管11の内部を真空排気装置17によって真空排気した後、高純度Arガス及び窒素ガスを、配管15を介してマスフローコントローラ16で制御しながら流入させ、石英管内圧力(成長雰囲気圧力)を真空排気装置17で調整しながら、ワークコイル14に高周波電流を流し、黒鉛坩堝9を加熱することで結晶成長を行った。ここで、成長温度はSiC種結晶1の温度とした。
(実施例A1)
 先ず、予め得られたSiC単結晶より口径75mmの(0001)面を主面とした、オフ角が〈11-20〉方向に4度傾いた4H型のSiC単結晶基板を切り出し、鏡面研磨して種結晶を準備した。この種結晶1を上記で説明した単結晶成長装置の黒鉛蓋10の内面に取り付け、昇華原料8を充填した黒鉛坩堝9にセットし、黒鉛製フェルト13で被覆した後、黒鉛支持棒12の上に載せて二重石英管11の内部に設置した。
 そして、二重石英管11の内部を真空排気した後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を80kPaに保ちながら、種結晶1の温度が2200℃になるまで上昇させた。成長圧力である3.9kPaまで30分かけて減圧し、その後10時間の結晶成長を行った。同様の条件で別途結晶成長させて測定した結果から見積もると、この10時間の結晶成長により種結晶上に厚さ1mmのSiC単結晶が成長したことになる(成長速度100μm/h)。なお、この結晶成長に際して窒素を適量導入して、成長結晶中の窒素濃度が約1×1019cm-3とし、これ以降の結晶成長を含めた全成長工程では、成長終了までその窒素導入量を保つようにした。
 上記のようにして厚さ1mmのSiC単結晶(構造変換層)を成長させた後、引き続き、圧力変化速度1.3kPa/hで減圧すると共に20℃/hの温度変化速度で温度を上げ、2時間かけて成長雰囲気圧力を1.3kPa、種結晶温度を2240℃にした。そして、この成長雰囲気圧力及び種結晶温度を保って80時間の結晶成長を行った。その結果、得られたバルクのSiC単結晶(インゴット)の口径は75mmであり、厚み(高さ)は25mmであった。このうち、80時間の結晶成長から得られた主たる結晶成長部分の厚みは、同様の条件で測定した結果から見積もると24mmであると考えられる(成長速度300μm/h)。
 上記で得られたバルクSiC単結晶について、種結晶側を底面とした場合に高さ約20mmにある主たる結晶成長部分から(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、実施例A1に係る厚さ400μm、直径75mmのSiC単結晶基板を得た。
 このSiC単結晶基板について、520℃の溶融KOHに基板の全面が浸るように5分間浸して溶融KOHエッチングを行い、エッチングされた基板の(0001)面を光学顕微鏡(倍率:80倍)で観察してらせん転位密度を計測した。ここでは、J. Takahashi et al., Journal of Crystal Growth, 135, (1994), 61-70に記載されている方法に従って、貝殻型ピットを基底面転位、小型の丸型ピットを貫通刃状転位、中型・大型の6角形ピットをらせん転位として、エッチピット形状による転位欠陥を分類し、らせん転位密度を求めた。また、光学顕微鏡による観察では、先の図3で説明したとおり、全33箇所の測定点(中心点O、a1~a8、b1~b8、c1~c8、d1~d8)を選択した。その際、aは各半径において目盛が0.2の位置(半径×0.2)、bは目盛が0.4の位置(半径×0.4)、cは目盛が0.6の位置(半径×0.6)、dは目盛が0.8の位置(半径×0.8)とし、各測定点を中心にした4mm×3mmの領域内のらせん転位の数を計測して、それぞれの測定点におけるらせん転位密度を求めた。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示したとおり、基板の中心点Oを中心にして0.5×Rの直径を有する中心円領域7aに含まれるi)~iii)の合計17の測定点(中心点O、a1~a8、b1~b8)で測定した値を平均すると、この中心円領域7aで観察されるらせん転位密度の平均値は605個/cm2である。一方、基板から中心円領域7aを取り除いた残りのドーナツ状周辺領域7bに含まれるiv)~v)の合計16の測定点(c1~c8、d1~d8)で測定した値を平均すると、このドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は464個/cm2であり、中心円領域で観察されるらせん転位密度の平均値の80%以下であった。
 また、上記SiC単結晶基板を切り出して残ったSiC単結晶の塊のうち、種結晶を含んだ結晶から(1-100)面基板を切り出した。この(1-100)面基板について、520℃の溶融KOHに5分間浸して溶融KOHエッチングを行った後、エッチングされた基板の表面を光学顕微鏡(倍率:100倍)によって観察した。その結果、種結晶上に最初に成長させた厚さ1mmのSiC単結晶の部分(構造変換層)では、成長方向に対してほぼ垂直に伸びる線状エッチング痕が見られ、積層欠陥が多数発生していることが分かった。特に、この積層欠陥の発生起点は、バルクSiC単結晶の周辺部に集中していた。
 そこで、積層欠陥が発生していた領域を高分解能X線トポグラフによって観察した。観察では(0004)を回折面とした。その結果、X線トポグラフ像には、種結晶1、及びその上の厚さ1mmのSiC単結晶の部分で成長方向に対してほぼ垂直に伸びる欠陥が見られた。観察条件(透過(0004))との関係から、この欠陥は、バーガースベクトルが〈000n〉の成分を含む結晶欠陥であると同定できる。すなわち、らせん転位が成長方向に対してほぼ垂直方向に伸展する欠陥に変換していることが確認された。この欠陥の発生箇所が溶融KOHエッチングにおいて積層欠陥が観察された位置と一致することから、種結晶1上に成長させた高さ1mmのSiC単結晶が構造変換層として作用し、らせん転位が積層欠陥に構造変換することを示している。
(実施例A2)
 先ず、二重石英管11の内部を真空排気した後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を80kPaに保ちながら、種結晶1の温度が2200℃になるまで上昇させた。その後、成長圧力である6.5kPaまで30分かけて減圧し、石英管内圧力が6.5kPa、種結晶1の温度が2200℃の成長条件下で10時間の結晶成長を行うことで、種結晶上に厚さ0.8mmのSiC単結晶からなる構造変換層を成長させた(成長速度80μm/h)。引き続き、圧力変化速度1.3kPa/hで減圧すると共に25℃/hの温度変化速度で温度を上げて、4時間かけて石英管内圧力を1.3kPa、種結晶温度を2300℃にし、この成長雰囲気圧力及び種結晶温度を保って80時間の結晶成長を行った以外は実施例A1と同様にした。
 その結果、得られたバルクのSiC単結晶(インゴット)の口径は75mmであり、厚み(高さ)は24.8mmであった。このうち、80時間の結晶成長から得られた主たる結晶成長部分の厚みは、同様の条件で測定した結果から見積もると24mmであると考えられる(成長速度300μm/h)。
 上記で得られたバルクSiC単結晶について、種結晶側を底面とした場合に高さ約20mmにある主たる結晶成長部分から(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、実施例A2に係る厚さ400μm、直径75mmのSiC単結晶基板を得た。
 このSiC単結晶基板について、実施例A1と同様にして溶融KOHエッチングを行い、エッチングされた基板の(0001)面を光学顕微鏡で観察してらせん転位密度を求めた。測定点の選択、及びらせん転位密度の計測についても実施例A1と同様にして行なった。
 結果を表1に示す。
 表1に示したとおり、中心円領域7aに含まれるi)~iii)の合計17の測定点で測定した値を平均すると、この中心円領域7aで観察されるらせん転位密度の平均値は862個/cm2である。一方、ドーナツ状周辺領域7bに含まれるiv)~v)の合計16の測定点で測定した値を平均すると、このドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は454個/cm2であり、中心円領域で観察されるらせん転位密度の平均値の60%以下であった。
 また、この実施例A2のSiC単結晶基板を切り出して残ったSiC単結晶の塊のうち、種結晶を含んだ結晶から(1-100)面基板を切り出した。そして、実施例A1と同様に溶融KOHエッチングを行い、エッチングされた基板の表面を光学顕微鏡で観察したところ、実施例A1の場合とほぼ同様に、種結晶上に最初に成長させた厚さ1mmのSiC単結晶の部分(構造変換層)では、成長方向に対してほぼ垂直に伸びる線状エッチング痕が見られ、積層欠陥が多数発生していることが分かった。特に、この積層欠陥の発生起点は、バルクSiC単結晶の周辺部に集中していた。
 また、この積層欠陥が発生していた領域について、実施例A1と同様にして高分解能X線トポグラフによって観察した。その結果、X線トポグラフ像は実施例A1の場合とほぼ同様であり、らせん転位が成長方向に対してほぼ垂直方向に伸展する欠陥に変換していることが確認された。そして、この実施例A2の場合についても種結晶1上に成長させた高さ1mmのSiC単結晶が構造変換層として作用して、らせん転位が積層欠陥に構造変換したと考えられる。
(実施例A3)
 先ず、二重石英管11の内部を真空排気した後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を80kPaに保ちながら、種結晶1の温度が2200℃になるまで上昇させた。その後、成長圧力である13.3kPaまで30分かけて減圧し、石英管内圧力が13.3kPa、種結晶1の温度が2200℃の成長条件下で20時間の結晶成長を行うことで、種結晶上に厚さ1mmのSiC単結晶からなる構造変換層を成長させた(成長速度50μm/h)。引き続き、圧力変化速度1.2kPa/hで減圧すると共に10℃/hの温度変化速度で温度を上げて、10時間かけて石英管内圧力を1.3kPa、種結晶温度を2300℃にし、この成長雰囲気圧力及び種結晶温度を保って80時間の結晶成長を行った以外は実施例A1と同様にした。
 その結果、得られたバルクのSiC単結晶(インゴット)の口径は75mmであり、厚み(高さ)は25mmであった。このうち、80時間の結晶成長から得られた主たる結晶成長部分の厚みは、同様の条件で測定した結果から見積もると24mmであると考えられる(成長速度300μm/h)。
 上記で得られたバルクSiC単結晶について、種結晶側を底面とした場合に高さ約20mmにある主たる結晶成長部分から(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、実施例A3に係る厚さ400μm、直径75mmのSiC単結晶基板を得た。
 このSiC単結晶基板について、実施例A1と同様にして溶融KOHエッチングを行い、エッチングされた基板の(0001)面を光学顕微鏡で観察してらせん転位密度を求めた。測定点の選択、及びらせん転位密度の計測についても実施例A1と同様にして行なった。
 結果を表1に示す。
 表1に示したとおり、中心円領域7aに含まれるi)~iii)の合計17の測定点で測定した値を平均すると、この中心円領域7aで観察されるらせん転位密度の平均値は868個/cm2である。一方、ドーナツ状周辺領域7bに含まれるiv)~v)の合計16の測定点で測定した値を平均すると、このドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は387個/cm2であり、中心円領域で観察されるらせん転位密度の平均値の2分の1以下であった。
(実施例A4)
 先ず、二重石英管11の内部を真空排気した後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を80kPaに保ちながら、種結晶1の温度が2200℃になるまで上昇させた。その後、成長圧力である26.6kPaまで30分かけて減圧し、石英管内圧力が26.6kPa、種結晶1の温度が2200℃の成長条件下で30時間の結晶成長を行うことで、種結晶上に厚さ0.75mmのSiC単結晶からなる構造変換層を成長させた(成長速度25μm/h)。引き続き、圧力変化速度1.265kPa/hで減圧すると共に5℃/hの温度変化速度で温度を上げて、20時間かけて石英管内圧力を1.3kPa、種結晶温度を2300℃にし、この成長雰囲気圧力及び種結晶温度を保って80時間の結晶成長を行った以外は実施例A1と同様にした。
 その結果、得られたバルクのSiC単結晶(インゴット)の口径は75mmであり、厚み(高さ)は24.75mmであった。このうち、80時間の結晶成長から得られた主たる結晶成長部分の厚みは、同様の条件で測定した結果から見積もると24mmであると考えられる(成長速度300μm/h)。
 上記で得られたバルクSiC単結晶について、種結晶側を底面とした場合に高さ約20mmにある主たる結晶成長部分から(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、実施例A4に係る厚さ400μm、直径75mmのSiC単結晶基板を得た。
 このSiC単結晶基板について、実施例A1と同様にして溶融KOHエッチングを行い、エッチングされた基板の(0001)面を光学顕微鏡で観察してらせん転位密度を求めた。測定点の選択、及びらせん転位密度の計測についても実施例A1と同様にして行なった。
 結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示したとおり、中心円領域7aに含まれるi)~iii)の合計17の測定点で測定した値を平均すると、この中心円領域7aで観察されるらせん転位密度の平均値は1052個/cm2である。一方、ドーナツ状周辺領域7bに含まれるiv)~v)の合計16の測定点で測定した値を平均すると、このドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は282個/cm2であり、中心円領域で観察されるらせん転位密度の平均値の3分の1以下であった。
(実施例A5)
 先ず、二重石英管11の内部を真空排気した後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を80kPaに保ちながら、種結晶1の温度が2200℃になるまで上昇させた。その後、成長圧力である39.9kPaまで30分かけて減圧し、石英管内圧力が39.9kPa、種結晶1の温度が2200℃の成長条件下で50時間の結晶成長を行うことで、種結晶上に厚さ0.75mmのSiC単結晶からなる構造変換層を成長させた(成長速度15μm/h)。引き続き、圧力変化速度1.29kPa/hで減圧すると共に3.3℃/hの温度変化速度で温度を上げて、30時間かけて石英管内圧力を1.3kPa、種結晶温度を2300℃にし、この成長雰囲気圧力及び種結晶温度を保って80時間の結晶成長を行った以外は実施例A1と同様にした。
 その結果、得られたバルクのSiC単結晶(インゴット)の口径は75mmであり、厚み(高さ)は24.75mmであった。このうち、80時間の結晶成長から得られた主たる結晶成長部分の厚みは、同様の条件で測定した結果から見積もると24mmであると考えられる(成長速度300μm/h)。
 上記で得られたバルクSiC単結晶について、種結晶側を底面とした場合に高さ約20mmにある主たる結晶成長部分から(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、実施例A5に係る厚さ400μm、直径75mmのSiC単結晶基板を得た。
 このSiC単結晶基板について、実施例A1と同様にして溶融KOHエッチングを行い、エッチングされた基板の(0001)面を光学顕微鏡で観察してらせん転位密度を求めた。測定点の選択、及びらせん転位密度の計測についても実施例A1と同様にして行なった。
 結果を表2に示す。
 表2に示したとおり、中心円領域7aに含まれるi)~iii)の合計17の測定点で測定した値を平均すると、この中心円領域7aで観察されるらせん転位密度の平均値は899個/cm2である。一方、ドーナツ状周辺領域7bに含まれるiv)~v)の合計16の測定点で測定した値を平均すると、このドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は92個/cm2であり、中心円領域で観察されるらせん転位密度の平均値の約10分の1であった。
(比較例A1)
 二重石英管11の内部を真空排気するまで実施例A1と同様にし、その後、雰囲気ガスとして高純度Arガスを流入させて、石英管内圧力を80kPaにした。この圧力下において、ワークコイル14に電流を流して温度を上げ、種結晶1の温度が2200℃になるまで上昇させた。成長圧力である1.3kPaに30分かけて減圧した後に、100時間の結晶成長を行い、口径75mm、厚み(高さ)30mmのバルクSiC単結晶を成長させた(成長速度300μm/h)。
 上記で得られたバルクSiC単結晶について、種結晶側を底面とした場合に高さ約25mmにある主たる結晶成長部分から(0001)面基板を切り出し、ダイヤモンドポリッシュによって表面荒さRa=1nm程度まで研磨して、比較例A1に係る厚さ400μm、直径75mmのSiC単結晶基板を得た。
 このSiC単結晶基板について、実施例A1と同様にして溶融KOHエッチングを行い、エッチングされた基板の(0001)面を光学顕微鏡で観察してらせん転位密度を求めた。測定点の選択、及びらせん転位密度の計測についても実施例A1と同様にして行なった。
 結果を表2に示す。
 表2に示したとおり、中心円領域7aに含まれるi)~iii)の合計17の測定点で測定した値を平均すると、この比較例A1に係るSiC単結晶基板の中心円領域7aで観察されるらせん転位密度の平均値は947個/cm2である。一方、ドーナツ状周辺領域7bに含まれるiv)~v)の合計16の測定点で測定した値を平均すると、ドーナツ状周辺領域7bで観察されるらせん転位密度の平均値は878個/cm2であり、中心円領域7aとドーナツ状周辺領域7bとは同程度の値であった。
 そして、この比較例A1のSiC単結晶基板を切り出して残ったSiC単結晶の塊のうち、種結晶を含んだ結晶から(1-100)面基板を切り出し、実施例A1と同様に溶融KOHエッチングを行って、エッチングされた基板の表面を光学顕微鏡で観察した。その結果、実施例A1及び2の場合で見られたような積層欠陥は特に確認できず、らせん転位の構造変換は認められなかった。
 以下、本発明の別の態様を実施例Bに基づき具体的に説明する。
 この実施例Bでは、実施例Aと同様に、図4の改良レーリー法による単結晶成長装置を用いた。
[第1の成長工程による構造変換の確認実験]
 先ず、予め得られたSiC単結晶より口径50mmの(0001)面を主面とした、オフ角が〈11-20〉方向に4度傾いた4H型のSiC単結晶基板を切り出し、鏡面研磨して種結晶とした。また、同じSiC単結晶から別途(0001)面基板を切り出し、鏡面研磨の後に、溶融KOHエッチング(520℃、5~10分)を行い、光学顕微鏡によってらせん転位密度を計測した。ここでは、J. Takahashi et al., Journal of Crystal Growth, 135, (1994), 61-70に記載されている方法に従って、貝殻型ピットを基底面転位、小型の6角形ピットを貫通刃状転位、中型・大型の6角形ピットをらせん転位として、エッチピット形状による転位欠陥の分類を行ったところ、らせん転位密度は1000個/cm2であった。
 上記で準備した種結晶を単結晶成長装置の黒鉛蓋4の内面に取り付け、昇華原料8を充填した黒鉛坩堝容器9にセットし、黒鉛製フェルト13で被覆した後、黒鉛支持棒12の上に乗せ、二重石英管11の内部に設置した。そして、石英管の内部を真空排気した後、雰囲気ガスとして高純度Arガスを流入させ、石英管内圧力を80kPaにした。この圧力下において、ワークコイルに電流を流し温度を上げ、種結晶温度が2200℃になるまで上昇させた。その後、成長圧力である13.3kPaに30分かけて減圧して結晶成長を開始した。なお、以下では、実施例B及び比較例Bを含めて、全成長工程において窒素流量を0.01L/min(同流量にて、成長結晶中の窒素濃度が約1×1019cm-3となる)とし、成長終了時まで保つようにした。
 先ず、上記成長雰囲気圧力及び種結晶温度の条件で20時間の結晶成長を行ったところ、口径50mm、高さ1mmの炭化珪素単結晶が成長したことを確認した(第1の成長工程)。得られた結晶より(0001)面基板を切り出し、鏡面研磨の後に、溶融KOHエッチング(520℃、5~10分)を行い、基板周辺部の任意の4点において上述した方法によってらせん転位密度を計測し、その平均値を求めたところ100個/cm2であった。
 また別途、結晶の(1-100)面基板を切り出し、同様に鏡面研磨の後に、溶融KOHエッチングを行い、光学顕微鏡観察を行った。成長方向に対してほぼ垂直に伸びる線状エッチング痕が見られ、積層欠陥が多数発生していることが分かった。積層欠陥が発生していた領域を高分解能X線トポグラフによって観察した。観察では(0004)を回折面とした。X線トポグラフ像には、種結晶と種結晶直上の成長初期領域には成長方向に対して平行に伸びる欠陥が見られた。観察条件(透過(0004))との関係から、この欠陥は、バーガースベクトルが〈0001〉であるらせん転位成分を含む転位欠陥であると同定できる。すなわち、このらせん転位が成長方向に対してほぼ垂直方向に伸展する欠陥に変換していることを示していると同時に、この欠陥の発生箇所が溶融KOHエッチングにおいて積層欠陥が観察された位置と一致することから、らせん転位が積層欠陥に変換していることを示している。
 更に別途、結晶から得られた(0001)面基板より(1-100)面基板を切り出して、鏡面研磨の後に、高分解能X線トポグラフによって観察を行った。複数個のらせん転位が積層欠陥に変換している様子が観察された。基板中をらせん転位が〈0001〉方向に貫通していないために、仮にこの基板からデバイスを作製した場合、リーク電流の低減及び酸化膜形成不良の改善が可能と考えられる。
(実施例B1)
 先ず、上記構造変換の確認実験と同様にして構造変換誘発成長を行った(工程I)。引き続き、圧力変化速度1.2kPa/hrで減圧すると共に10℃/hrの温度変化速度で温度を上げ、10時間かけて成長雰囲気圧力を1.3kPa、種結晶温度を2300℃にし(遷移条件:工程II)、この成長雰囲気圧力及び種結晶温度を保って30時間の結晶成長を行った(通常成長:工程III)。得られた炭化珪素単結晶(インゴット)の口径は50mmであり、厚み(全長)は13mmであった。このうち、工程IIIによって成長した単結晶の厚みは、同様の条件で測定した結果から見積もると11mmであると考えられる。
 上記工程IIIによって成長した部分の単結晶から(0001)面基板を切り出し、鏡面研磨の後に、溶融KOHエッチング(520℃、5~10分)を行い、基板周辺部の任意の4点において上述した方法によって光学顕微鏡によりらせん転位密度を計測し、その平均値を求めたところ、110個/cm2であった。すなわち、種結晶での値に比べて、らせん転位密度が大幅に減少していることが確認された。これらの結果等についてまとめて表3に示す。
Figure JPOXMLDOC01-appb-T000003
(実施例B2~8、比較例B1~4)
 表3に示したように、工程I、工程II、及び工程IIIにおける各条件を変えた以外は実施例B1と同様にして、炭化珪素単結晶の成長を行った。また、最終的に得られた炭化珪素単結晶のうち、工程IIIによって成長した部分の単結晶から(0001)面基板を切り出し、実施例B1と同様にして、らせん転位密度を求めた。結果を表3に示す。
 表3に示した結果から分るように、本発明に係る実施例Bの場合には、いずれも比較例Bに比べてらせん転位密度が大幅に減少した。加えて、比較例B4の場合には、実施例Bでは確認されなかった異種ポリタイプの混在が認められ、また、マイクロパイプの発生も確認された。
(実施例B9~14、比較例B5)
 実施例B1とほぼ同等(らせん転位密度1000個/cm2)の種結晶を用いて、表4に示した成長工程からなる結晶成長を行った。
 先ず、工程Iとして示したように、成長開始時の成長雰囲気圧力を1.3kPaにすると共に種結晶温度を2200℃にして、20時間の結晶成長を行い、厚さ4mmの炭化珪素単結晶を成長させた。引き続き、工程IIに示した圧力変化速度及び温度変化速度により1~10時間かけて条件を変化させ、工程IIIに示した成長雰囲気圧力及び種結晶温度を保って構造変換誘発成長を10~33.3時間行った。更に、工程IVに示した圧力変化速度及び温度変化速度により1~60時間かけて条件を変化させた後、最後に工程Vに示した成長雰囲気圧力及び種結晶温度を保って30時間の結晶成長を行った。なお、本発明の第1の成長工程にあたる工程IIIで得られた結晶の厚みと結晶成長速度は表4に示したとおりであり、これらの値は別途同様の成長を行った結果から見積もった。また、第2の成長工程に相当する工程Vによって成長した単結晶の厚みは9~12mmであり、成長速度は300~400μm/hrである。
 上記工程Vによって成長した部分の単結晶からそれぞれ(0001)面基板を切り出し、鏡面研磨の後に、溶融KOHエッチング(520℃、5~10分)を行い、上述した方法によって光学顕微鏡によりらせん転位密度を計測した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
(比較例B6)
 予め成長しておいた炭化珪素単結晶インゴットから、口径50mmの(0001)面を主面とした、オフ角が〈11-20〉方向に4度傾いた4H型のSiC単結晶基板を切り出し、研磨後、種結晶とした。結晶成長は構造変換の確認実験と同様にして行ったが、真空排気装置で結晶成長中の雰囲気圧力を1.3kPaに調整し、成長温度は2250℃になるようにワークコイルの電流値を調整した。そして、この成長雰囲気圧力及び種結晶温度の条件で結晶成長を60.5時間行ったところ、得られた炭化珪素単結晶の口径は52mmであり、高さは約12mmであった。
 上記で得られた単結晶の(0001)面基板を切り出し、鏡面研磨の後、構造変換の確認実験と同様にして溶融KOHエッチングを行い、光学顕微鏡によってらせん転位を観察したところ、らせん転位密度は1000個/cm2であった。また別途、結晶の(1-100)面基板を切り出し、同様に鏡面研磨の後に、溶融KOHエッチングを行い、光学顕微鏡観察を行った。その結果、積層欠陥は観察されず、らせん転位の積層欠陥への変換は生じていないことを示している。
(実施例B15)
 らせん転位密度がそれぞれ2600、3100、3600個/cm2の口径100mmの4H型SiC種単結晶を作製し、これらの種結晶を用いて、表3の実施例B1と同様な方法で口径100mmの4H型SiC単結晶成長を行った。得られた結晶は、工程Iによって得られた構造変換誘発層の厚さは約1mmであり、工程IIIによって得られた通常成長層の厚さは約10mmであった。
 工程IIで得られた炭化珪素単結晶について、実施例B1と同様な方法でらせん転位密度を測定した。その結果、2600、3100、3600個/cm2の種結晶より作製したインゴットの通常成長層部分から取り出した基板では、それぞれ、140、180、210個/cm2であった。このように、らせん転位密度が2500個/cm2を超える種結晶であっても、本発明の製造方法を用いることにより、らせん転位密度を300個/cm2以下に低減化することが可能であることが示された。
(比較例B7)
 実施例B15と同様にらせん転位密度が2600個/cm2の口径100mmの4H型SiC種単結晶を作製し、この種結晶を用いて、表3の比較例B3と同様な方法で口径100mmの4H型SiC単結晶成長を行った。ここで、工程Iの構造変換誘発成長の時間は4時間で、工程IIIの通常成長の時間は50時間とした。その結果、得られた結晶は、工程Iの構造変換誘発層の厚さは約0.2mmであり、また、工程IIにおける通常成長層の厚さは20mmであった。
 上記で得られたSiC単結晶について、実施例B1と同様な方法によりらせん転位密度を計測したところ基板全面平均で1900個/cm2であった。
(実施例B16)
 実施例B1と同条件で4H-SiC単結晶を作製し、工程Iの構造変換誘発層の一部を含むようにして厚さ0.5mmの基板を切り出し、研磨により厚さ350μmのSiC単結晶基板を作製した。実施例B1で確認したのと同様にして、らせん転位の積層欠陥への構造変換が生じた領域から切り出された基板をX線トポグラフによって観察したところ、複数のらせん転位が積層欠陥へと構造変換していることが分った。この構造変換によってらせん転位密度が110個/cm2に低減しており、この領域から3mm角の耐圧600V級のSBD(ショットキーバリアダイオード)を作製し、リーク電流を測定したところ10-8A以下であり、十分にリーク電流の少ないデバイスの作製が可能であった。
(比較例B8)
 比較例B6と同条件で4H-SiC単結晶を作製し、厚さ0.5mmの基板を切り出し、研磨により厚さ350μmのSiC単結晶基板を作製した。実施例B1と同様な方法によりらせん転位密度を計測すると1000個/cm2であった。この基板から3mm角の耐圧600V級のSBDを作製してリーク電流を測定したところ10-4Aであった。
1:種結晶、2:構造変換層、3:らせん転位、4:積層欠陥、5:主たる成長結晶、6:バルクSiC単結晶、7:SiC単結晶基板、7a:中心円領域、7b:ドーナツ状周辺領域、8:SiC昇華原料、9:黒鉛坩堝、10:黒鉛蓋、11:二重石英管、12:黒鉛支持棒、13:黒鉛製フェルト、14:ワークコイル、15:配管、16:マスフローコントローラ、17:真空排気装置。

Claims (12)

  1.  昇華再結晶法により成長させたバルクの炭化珪素単結晶から切り出した円盤状の炭化珪素単結晶基板であり、基板の直径をRとして、基板の中心点Oを中心にして0.5×Rの直径を有した中心円領域と、該基板の該中心円領域を除いた残りのドーナツ状周辺領域とを定義したとき、前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値が、前記中心円領域で観察されるらせん転位密度の平均値の80%以下であることを特徴とする炭化珪素単結晶基板。
  2.  前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値が、前記中心円領域で観察されるらせん転位密度の平均値の60%以下であることを特徴とする請求項1に記載の炭化珪素単結晶基板。
  3.  前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値が、前記中心円領域で観察されるらせん転位密度の平均値の50%以下であることを特徴とする請求項1に記載の炭化珪素単結晶基板。
  4.  前記基板の円周を8等分する4本の直径を基板内で任意に選択し、該基板の中心点Oをゼロにして該中心点Oから放射状に伸びる8本の半径r1~r8をそれぞれ0から1までの目盛を有した軸に見立てたとき、前記中心円領域で観察されるらせん転位密度の平均値は、下記i)~iii)の合計17の測定点で測定した値の平均であり、また、前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値は、下記iv)~v)の合計16の測定点で測定した値の平均であり、
      i)中心点O
      ii)a1~a8
      iii)b1~b8
      iv)c1~c8
      v)d1~d8
    ここで、記号a~dに付された数字は半径r1~r8の数字に対応するものであって、例えばa1、b1、c1及びd1は半径r1上に存在する測定点である。このうちa及びbは、各半径において0超0.5以下の範囲内にある測定点であり、c及びdは、各半径において0.5超1以下の範囲内にある測定点である。また、同一記号を有した8つの測定点は、記号a~dごとにそれぞれ同一円上に存在する、請求項1~3のいずれかに記載の炭化珪素単結晶基板。
  5.  前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値は500個/cm2以下である請求項4に記載の炭化珪素単結晶基板。
  6.  前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値は300個/cm2以下である請求項4に記載の炭化珪素単結晶基板。
  7.  前記ドーナツ状周辺領域で観察されるらせん転位密度の平均値は100個/cm2以下である請求項4に記載の炭化珪素単結晶基板。
  8.  種結晶を用いた昇華再結晶法による炭化珪素単結晶の製造方法であって、
     3.9kPa以上39.9kPa以下の第1の成長雰囲気圧力、及び、種結晶の温度が2100℃以上2300℃未満である第1の成長温度にて、少なくとも厚さ0.5mmの炭化珪素単結晶を成長させる第1の成長工程と、
     0.13kPa以上2.6kPa以下の第2の成長雰囲気圧力、及び、種結晶の温度が第1の成長温度より高くて2400℃未満である第2の成長温度にて、第1の成長工程より厚く炭化珪素単結晶を成長させる第2の成長工程とを含む、
    ことを特徴とする炭化珪素単結晶の製造方法。
  9.  1時間あたり12kPa以下の圧力変化速度で第1の成長雰囲気圧力から第2の成長雰囲気圧力に減圧させる請求項8に記載の炭化珪素単結晶の製造方法。
  10.  1時間あたり40℃以下の温度変化速度で第1の成長温度から第2の成長温度に昇温させる請求項8または9に記載の炭化珪素単結晶の製造方法。
  11.  第1の成長工程における結晶成長速度が100μm/hr以下である請求項8~10のいずれかに記載の炭化珪素単結晶の製造方法。
  12.  第1及び第2の成長工程を含む全成長工程のうち、第1の成長工程を結晶成長開始から全成長工程の2分の1以下の時間までに行う請求項8~11のいずれかに記載の炭化珪素単結晶の製造方法。
PCT/JP2012/071885 2011-08-29 2012-08-29 炭化珪素単結晶基板及びその製造方法 WO2013031856A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012551012A JP5506954B2 (ja) 2011-08-29 2012-08-29 炭化珪素単結晶基板
CN201280031177.7A CN103620095B (zh) 2011-08-29 2012-08-29 碳化硅单晶基板及其制造方法
KR1020137029782A KR101530057B1 (ko) 2011-08-29 2012-08-29 탄화규소 단결정 기판 및 그 제조 방법
EP12828338.9A EP2752508A4 (en) 2011-08-29 2012-08-29 SILICON CARBIDE CRYSTAL WAFERS AND MANUFACTURING METHOD THEREFOR
US14/241,623 US9234297B2 (en) 2011-08-29 2012-08-29 Silicon carbide single crystal wafer and manufacturing method for same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011-186362 2011-08-29
JP2011186362 2011-08-29
JP2012-088413 2012-04-09
JP2012088413 2012-04-09
JP2012152039 2012-07-06
JP2012-152039 2012-07-06

Publications (1)

Publication Number Publication Date
WO2013031856A1 true WO2013031856A1 (ja) 2013-03-07

Family

ID=47756336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071885 WO2013031856A1 (ja) 2011-08-29 2012-08-29 炭化珪素単結晶基板及びその製造方法

Country Status (6)

Country Link
US (1) US9234297B2 (ja)
EP (1) EP2752508A4 (ja)
JP (3) JP5506954B2 (ja)
KR (1) KR101530057B1 (ja)
CN (1) CN103620095B (ja)
WO (1) WO2013031856A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129103A1 (ja) * 2013-02-20 2014-08-28 株式会社デンソー 炭化珪素単結晶および炭化珪素単結晶の製造方法
JP2014227319A (ja) * 2013-05-23 2014-12-08 株式会社豊田中央研究所 SiC単結晶及びその製造方法
WO2015045652A1 (ja) * 2013-09-25 2015-04-02 住友電気工業株式会社 炭化珪素半導体基板および炭化珪素半導体基板を備えた炭化珪素半導体装置
WO2016088883A1 (ja) * 2014-12-05 2016-06-09 新日鐵住金株式会社 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板
JP2016164120A (ja) * 2016-03-15 2016-09-08 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハ
CN106415245A (zh) * 2014-05-30 2017-02-15 新日铁住金高新材料株式会社 块状碳化硅单晶的评价方法以及在该方法中使用的参照用碳化硅单晶
JP2017088416A (ja) * 2015-11-02 2017-05-25 新日鐵住金株式会社 炭化珪素単結晶の製造方法
JP2018104231A (ja) * 2016-12-26 2018-07-05 昭和電工株式会社 SiCウェハの製造方法及びSiCウェハ
JP2018140903A (ja) * 2017-02-28 2018-09-13 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
JP2021070601A (ja) * 2019-10-30 2021-05-06 昭和電工株式会社 単結晶成長方法
CN113652749A (zh) * 2021-08-18 2021-11-16 山东天岳先进科技股份有限公司 一种小角晶界少的碳化硅晶体、衬底及其制备方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101530057B1 (ko) * 2011-08-29 2015-06-18 신닛테츠스미킨 카부시키카이샤 탄화규소 단결정 기판 및 그 제조 방법
JP5692466B2 (ja) * 2012-11-15 2015-04-01 新日鐵住金株式会社 炭化珪素単結晶の製造方法
WO2016084561A1 (ja) * 2014-11-27 2016-06-02 住友電気工業株式会社 炭化珪素基板およびその製造方法、および炭化珪素半導体装置の製造方法
JP5975192B1 (ja) * 2015-01-21 2016-08-23 住友電気工業株式会社 炭化珪素単結晶成長装置および炭化珪素単結晶の製造方法
KR101960209B1 (ko) 2015-02-18 2019-03-19 쇼와 덴코 가부시키가이샤 탄화규소 단결정 잉곳의 제조 방법 및 탄화규소 단결정 잉곳
US20170275779A1 (en) * 2015-10-07 2017-09-28 Sumitomo Electric Industries, Ltd. Silicon carbide epitaxial substrate and method for manufacturing silicon carbide semiconductor device
JP6621304B2 (ja) * 2015-11-10 2019-12-18 学校法人関西学院 半導体ウエハの製造方法
DE112017000725T5 (de) * 2016-02-09 2018-10-31 Sumitomo Electric Industries, Ltd. Siliziumkarbit-Einkristallsubstrat
CN107385512B (zh) * 2017-06-30 2019-06-25 山东天岳先进材料科技有限公司 一种抑制碳化硅单晶中碳包裹体缺陷的生长方法
TWI660076B (zh) * 2017-10-06 2019-05-21 環球晶圓股份有限公司 碳化矽晶體及其製造方法
JP2019156698A (ja) * 2018-03-15 2019-09-19 信越半導体株式会社 炭化珪素単結晶の製造方法
KR102647522B1 (ko) * 2018-11-30 2024-03-14 재단법인 포항산업과학연구원 고품질 SiC 단결정 성장방법
JP7393900B2 (ja) * 2019-09-24 2023-12-07 一般財団法人電力中央研究所 炭化珪素単結晶ウェハ及び炭化珪素単結晶インゴットの製造方法
KR102297750B1 (ko) * 2019-09-27 2021-09-03 주식회사 포스코 고품질 SiC 단결정 성장방법
KR102192525B1 (ko) * 2020-02-28 2020-12-17 에스케이씨 주식회사 웨이퍼, 에피택셜 웨이퍼 및 이의 제조방법
JPWO2021215120A1 (ja) * 2020-04-22 2021-10-28
JP7057014B2 (ja) 2020-08-31 2022-04-19 セニック・インコーポレイテッド 炭化珪素インゴットの製造方法及びそれによって製造された炭化珪素インゴット
AT523729B1 (de) * 2020-09-28 2021-11-15 Ebner Ind Ofenbau Vorrichtung zum Züchten von Kristallen mit einer thermischen Umhüllungseinheit
JP2022064015A (ja) * 2020-10-13 2022-04-25 一般財団法人電力中央研究所 炭化珪素単結晶の製造方法及び製造装置並びに炭化珪素単結晶インゴット
EP4060098A1 (de) 2021-03-19 2022-09-21 SiCrystal GmbH Herstellungsverfahren für einen sic-volumeneinkristall inhomogener schraubenversetzungsverteilung und sic-substrat
EP4060099A1 (de) 2021-03-19 2022-09-21 SiCrystal GmbH Herstellungsverfahren für einen sic-volumeneinkristall homogener schraubenversetzungsverteilung und sic-substrat
CN114264652A (zh) * 2021-12-09 2022-04-01 浙江大学杭州国际科创中心 碳化硅中位错产生及演变的逆向分析方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278985A (ja) * 1998-03-26 1999-10-12 Toyota Central Res & Dev Lab Inc 単結晶の製造方法
JP2002284599A (ja) 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology 炭化珪素単結晶の成長方法
JP2007119273A (ja) 2005-10-26 2007-05-17 Matsushita Electric Ind Co Ltd 炭化珪素単結晶の成長方法
JP2010064920A (ja) * 2008-09-10 2010-03-25 Bridgestone Corp 6h型炭化ケイ素単結晶の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5948792B2 (ja) * 1982-08-17 1984-11-28 工業技術院長 炭化けい素結晶成長法
JP2804860B2 (ja) 1991-04-18 1998-09-30 新日本製鐵株式会社 SiC単結晶およびその成長方法
US6428621B1 (en) 2000-02-15 2002-08-06 The Fox Group, Inc. Method for growing low defect density silicon carbide
JP4329211B2 (ja) * 2000-03-01 2009-09-09 株式会社デンソー 炭化珪素単結晶を用いた炭化珪素半導体装置およびその製造方法
JP4691815B2 (ja) 2001-04-06 2011-06-01 株式会社デンソー SiC単結晶の製造方法
JP3764462B2 (ja) * 2003-04-10 2006-04-05 株式会社豊田中央研究所 炭化ケイ素単結晶の製造方法
US7314520B2 (en) * 2004-10-04 2008-01-01 Cree, Inc. Low 1c screw dislocation 3 inch silicon carbide wafer
JP4818754B2 (ja) 2006-03-01 2011-11-16 新日本製鐵株式会社 炭化珪素単結晶インゴットの製造方法
JP5517930B2 (ja) * 2007-06-27 2014-06-11 トゥー‐シックス・インコーポレイテッド ゆがみ及び反りの少ないSiC基質の製造
KR101530057B1 (ko) 2011-08-29 2015-06-18 신닛테츠스미킨 카부시키카이샤 탄화규소 단결정 기판 및 그 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11278985A (ja) * 1998-03-26 1999-10-12 Toyota Central Res & Dev Lab Inc 単結晶の製造方法
JP2002284599A (ja) 2001-03-27 2002-10-03 National Institute Of Advanced Industrial & Technology 炭化珪素単結晶の成長方法
JP2007119273A (ja) 2005-10-26 2007-05-17 Matsushita Electric Ind Co Ltd 炭化珪素単結晶の成長方法
JP2010064920A (ja) * 2008-09-10 2010-03-25 Bridgestone Corp 6h型炭化ケイ素単結晶の製造方法

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
BANDO ET AL., PROCEEDINGS OF THE 19TH SIC AND RELATED WIDE BANDGAP SEMICONDUCTORS, 2010, pages 140 - 141
H. TSUCHIDA ET AL., JOURNAL OF CRYSTAL GROWTH, vol. 310, 2008, pages 757 - 765
J. TAKAHASHI ET AL., JOURNAL OF CRYSTAL GROWTH, vol. 135, 1994, pages 61 - 70
NAGATA ET AL., PROCEEDINGS OF THE 18TH SIC AND RELATED WIDE BANDGAP SEMICONDUCTORS, 2009, pages 68 - 69
NOBORU OHTANI, PROCEEDINGS OF THE 17TH SIC AND RELATED WIDE BANDGAP SEMICONDUCTORS, 2008, pages 8
See also references of EP2752508A4 *
YAMAMOTO ET AL., PROCEEDINGS OF THE 19TH SIC AND RELATED WIDE BANDGAP SEMICONDUCTORS, 2010, pages LL-12

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129103A1 (ja) * 2013-02-20 2014-08-28 株式会社デンソー 炭化珪素単結晶および炭化珪素単結晶の製造方法
JP2014227319A (ja) * 2013-05-23 2014-12-08 株式会社豊田中央研究所 SiC単結晶及びその製造方法
WO2015045652A1 (ja) * 2013-09-25 2015-04-02 住友電気工業株式会社 炭化珪素半導体基板および炭化珪素半導体基板を備えた炭化珪素半導体装置
CN106415245A (zh) * 2014-05-30 2017-02-15 新日铁住金高新材料株式会社 块状碳化硅单晶的评价方法以及在该方法中使用的参照用碳化硅单晶
US20170199092A1 (en) * 2014-05-30 2017-07-13 Nippon Steel & Sumikin Materials Co., Ltd. Evaluation method for bulk silicon carbide single crystals and reference silicon carbide single crystal used in said method
US10048142B2 (en) * 2014-05-30 2018-08-14 Showa Denko K.K. Evaluation method for bulk silicon carbide single crystals and reference silicon carbide single crystal used in said method
KR101936007B1 (ko) 2014-12-05 2019-01-07 쇼와 덴코 가부시키가이샤 탄화규소 단결정의 제조 방법 및 탄화규소 단결정 기판
WO2016088883A1 (ja) * 2014-12-05 2016-06-09 新日鐵住金株式会社 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板
US10711369B2 (en) 2014-12-05 2020-07-14 Showa Denko K.K. Method for producing silicon carbide single crystal and silicon carbide single crystal substrate
JP2017088416A (ja) * 2015-11-02 2017-05-25 新日鐵住金株式会社 炭化珪素単結晶の製造方法
JP2016164120A (ja) * 2016-03-15 2016-09-08 新日鉄住金マテリアルズ株式会社 炭化珪素単結晶ウェハ
JP2018104231A (ja) * 2016-12-26 2018-07-05 昭和電工株式会社 SiCウェハの製造方法及びSiCウェハ
JP2018140903A (ja) * 2017-02-28 2018-09-13 昭和電工株式会社 炭化珪素単結晶インゴットの製造方法
JP2021070601A (ja) * 2019-10-30 2021-05-06 昭和電工株式会社 単結晶成長方法
JP7447431B2 (ja) 2019-10-30 2024-03-12 株式会社レゾナック 単結晶成長方法
CN113652749A (zh) * 2021-08-18 2021-11-16 山东天岳先进科技股份有限公司 一种小角晶界少的碳化硅晶体、衬底及其制备方法

Also Published As

Publication number Publication date
JP5682643B2 (ja) 2015-03-11
CN103620095A (zh) 2014-03-05
JP5506954B2 (ja) 2014-05-28
CN103620095B (zh) 2017-02-15
JP2014028736A (ja) 2014-02-13
US9234297B2 (en) 2016-01-12
JPWO2013031856A1 (ja) 2015-03-23
EP2752508A4 (en) 2015-02-25
EP2752508A1 (en) 2014-07-09
JP6109028B2 (ja) 2017-04-05
JP2014028757A (ja) 2014-02-13
US20140363607A1 (en) 2014-12-11
KR20130137247A (ko) 2013-12-16
KR101530057B1 (ko) 2015-06-18

Similar Documents

Publication Publication Date Title
JP5682643B2 (ja) 炭化珪素単結晶の製造方法
JP6584428B2 (ja) 炭化珪素単結晶の製造方法及び炭化珪素単結晶基板
CN106435733B (zh) 碳化硅单晶和碳化硅单晶晶片
JP6239490B2 (ja) バルク炭化珪素単結晶
JP4585359B2 (ja) 炭化珪素単結晶の製造方法
JP4603386B2 (ja) 炭化珪素単結晶の製造方法
WO2016133172A1 (ja) 炭化珪素単結晶インゴットの製造方法及び炭化珪素単結晶インゴット
JP2005324994A (ja) SiC単結晶の成長方法およびそれにより成長したSiC単結晶
JP5418385B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP4690906B2 (ja) 炭化珪素単結晶育成用種結晶及びその製造方法並びに炭化珪素単結晶の製造方法
JP5614387B2 (ja) 炭化珪素単結晶の製造方法、及び炭化珪素単結晶インゴット
JP4408247B2 (ja) 炭化珪素単結晶育成用種結晶と、それを用いた炭化珪素単結晶の製造方法
JP6335716B2 (ja) 炭化珪素単結晶インゴットの製造方法
JP6594148B2 (ja) 炭化珪素単結晶インゴット
JP5370025B2 (ja) 炭化珪素単結晶インゴット
JP6628557B2 (ja) 炭化珪素単結晶の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012551012

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137029782

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14241623

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE