WO2013024767A1 - Method for manufacturing wiring pattern, and member for plating - Google Patents

Method for manufacturing wiring pattern, and member for plating Download PDF

Info

Publication number
WO2013024767A1
WO2013024767A1 PCT/JP2012/070206 JP2012070206W WO2013024767A1 WO 2013024767 A1 WO2013024767 A1 WO 2013024767A1 JP 2012070206 W JP2012070206 W JP 2012070206W WO 2013024767 A1 WO2013024767 A1 WO 2013024767A1
Authority
WO
WIPO (PCT)
Prior art keywords
plating
parent
wiring pattern
support
manufacturing
Prior art date
Application number
PCT/JP2012/070206
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 小泉
敬 杉▲崎▼
宮本 健司
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2013024767A1 publication Critical patent/WO2013024767A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4685Manufacturing of cross-over conductors
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • C23C18/1641Organic substrates, e.g. resin, plastic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2046Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by chemical pretreatment
    • C23C18/2073Multistep pretreatment
    • C23C18/2086Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/28Sensitising or activating
    • C23C18/30Activating or accelerating or sensitising with palladium or other noble metal
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/18Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material
    • H05K3/181Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating
    • H05K3/182Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method
    • H05K3/185Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using precipitation techniques to apply the conductive material by electroless plating characterised by the patterning method by making a catalytic pattern by photo-imaging
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0104Properties and characteristics in general
    • H05K2201/0108Transparent
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0245Flakes, flat particles or lamellar particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0248Needles or elongated particles; Elongated cluster of chemically bonded particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/0565Resist used only for applying catalyst, not for plating itself
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/0585Second resist used as mask for selective stripping of first resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1415Applying catalyst after applying plating resist

Definitions

  • the present invention relates to a method for manufacturing a wiring pattern and a member for plating. This application claims priority based on Japanese Patent Application No. 2011-177423 for which it applied on August 15, 2011, and uses the content here.
  • electroless plating which is a plating method using reduction by contact action of a material surface. Since electroless plating does not use electrical energy, it is possible to apply plating to resin materials and glass that are nonconductors.
  • the plating film obtained in this way it is necessary that the plating film does not peel off in the environment where the plated product is used.
  • difficult-to-plat materials such as resin materials and glass have weak adhesion to the formed plating film, and the plating is easily peeled off due to the internal stress of the plating film, resulting in peeling such as swelling.
  • the surface of the resin material is preliminarily etched with a chromic acid solution to chemically roughen the surface. Yes. Thereby, since the plating film to be formed is formed so as to bite into the unevenness of the roughened resin material, adhesion can be obtained (anchor effect).
  • a general resin plating process is represented by washing ⁇ etching ⁇ catalyst application ⁇ electroless plating.
  • the catalyst application is a step of attaching palladium (Pd) or the like, which becomes a reaction initiator (catalyst) for electroless plating, to the surface.
  • a process of reducing and activating palladium by applying a colloidal solution of divalent palladium salt and divalent tin (Sn) salt and then immersing it in an acid or alkali solution called an accelerator.
  • the electroless plating include electroless Cu plating and electroless NiP plating.
  • the process is the same as the resin plating process.
  • a method is generally used in which irregularities are formed on the surface of the glass by etching treatment such as hydrofluoric acid and the adhesion is improved by an anchor effect.
  • an SOG (Spin-on Glass) or porous SOG base film is provided on the surface of the hard-plated substrate, and electroless plating is performed on the base film (see Patent Document 1).
  • a method of providing a base film made of a filler component such as powdered silica and a resin composition component and performing electroless plating on the base film is disclosed.
  • Plating products formed using electroless plating are used as constituent materials for various products.
  • plated products with metal plating on glass or transparent resin can be applied to products that can utilize the light transmittance of glass and transparent resin, such as displays and solar cells that require high light transmittance. Application is expected.
  • An object of an aspect of the present invention is to provide a wiring pattern manufacturing method and a plating member capable of forming a wiring satisfactorily without impairing the transparency of a light-transmitting difficult plating material.
  • a base film including a light-transmitting base material and alumina particles having an average particle diameter of 100 nm or less is selected on a light-transmitting support.
  • the plating member according to the second aspect of the present invention includes a light-transmissive support and a base film selectively formed on the surface of the support, and the base film is light-transmissive. And an alumina particle having an average particle diameter of 100 nm or less.
  • the wiring pattern can be satisfactorily formed without impairing the transparency of the light-transmitting difficult plating material.
  • Example 2 is a photograph showing the results of Example 1.
  • FIG. 2 is a photograph showing the results of Example 1.
  • FIG. 2 is a photograph showing the results of Example 1.
  • FIG. 2 is a photograph showing the results of Example 1.
  • FIG. 2 is a photograph showing the results of Example 1.
  • FIG. 2 is a photograph showing the results of Example 1.
  • FIG. 2 is a table showing the results of Example 1.
  • 6 is a photograph showing the results of Example 2.
  • 6 is a photograph showing the results of Example 3.
  • 6 is a photograph showing the results of Example 3.
  • 6 is a photograph showing the results of Example 4.
  • 6 is a photograph showing the results of Example 4.
  • FIGS. 1 to 5C a method for manufacturing a wiring pattern according to the present embodiment will be described with reference to FIGS. 1 to 5C.
  • the basic reaction of the wiring pattern manufacturing method of the present embodiment will be described with reference to FIGS. 1 to 3E, and then the wiring pattern manufacturing method of the present embodiment will be described with reference to FIGS. 4A to 5C. Will be explained.
  • the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.
  • FIG. 1 is a schematic diagram showing an example of a plating member 1 used in the wiring pattern manufacturing method of the present embodiment.
  • the plating member 1 includes a support 2 that is difficult to plate and has light transmittance, and a parent plating layer (undercoat film) 3 formed on one surface side of the support 2.
  • the support 2 examples include inorganic polymers such as glass, quartz glass, and silicon nitride, and organic polymers (resins) such as acrylic resins, polycarbonate resins, polyester resins such as PET (polyethylene terephthalate) and PBT (polybutylene terephthalate). Can be used. These materials are light transmissive and do not form metal bonds with a metal plating film formed as a result of electroless plating. For this reason, in the present embodiment, these materials are handled as difficult-to-platable materials in which it is difficult to directly form a plating film and the formed plating film is easily peeled off. For the same reason, any material can be used as the material for forming the support 2 as long as the plating film is easily peeled off and has light transmittance.
  • inorganic polymers such as glass, quartz glass, and silicon nitride
  • organic polymers such as acrylic resins, polycarbonate resins, polyester resins such as PET (polyethylene terephthalate) and
  • the parent plating layer 3 has alumina particles having an average particle diameter of about 100 nm, 90 nm, 80 nm, 70 nm, 60 nm, 50 nm, 40 nm, 30 nm, 20 nm, or 10 nm or less.
  • an alumina particle if an average particle diameter is about 100 nm or less, shapes, such as a granular form, rod shape, and feather shape, are employable.
  • the “average particle diameter” is obtained by employing a volume average particle diameter, an area average particle diameter, a cumulative median diameter (Median diameter), etc., using a known method such as a dynamic light scattering method as a measurement principle. This is a possible value.
  • the maximum diameter (size in the longitudinal direction) in one particle is the above average particle size, and the short direction in one particle The size of shows a value smaller than the above-mentioned average particle diameter.
  • the parent plating layer 3 has a binder (base material) for dispersing the alumina particles.
  • the binder is a resin material having optical transparency.
  • a photocurable resin can be used, and in particular, an ultraviolet curable resin can be used.
  • resin materials include epoxy resins, acrylic resins, acrylic urethane resins, phenol resins, ene / thiol resins, and polysiloxanes. In the following description, it is assumed that an ultraviolet curable resin is used as the binder of the parent plating layer 3.
  • FIG. 2A and FIG. 2B are process diagrams showing the manufacturing process of the plating member 1 of the present embodiment.
  • a coating solution in which the above-described alumina molecules are uniformly dispersed in a solution containing a precursor of the above-described resin material is applied to the surface of the support 2 to form a coating film 3A.
  • the application method include generally known methods such as spin coating, dip coating, spray coating, roll coating, brush coating, printing methods such as flexographic printing and screen printing.
  • a polar solvent can be used as a solvent for the coating solution.
  • Usable solvents include, for example, alcohols such as methanol, ethanol, 1-propanol and 2-propanol (isopropyl alcohol, IPA), ethers such as propylene glycol monomethyl ether acetate (PGMEA), and aromatics such as toluene.
  • IPA isopropyl alcohol
  • ethers such as propylene glycol monomethyl ether acetate (PGMEA)
  • aromatics such as toluene.
  • hydrocarbons hydrocarbons
  • nitriles such as acetonitrile
  • esters such as acetate.
  • the viscosity of the whole coating solution can be adjusted and the film thickness of the coating film 3A can be controlled by changing the concentration and the type of the solvent. That is, the layer thickness of the parent plating layer 3 formed from the coating film 3A can be controlled by appropriately selecting the concentration of the coating solution and the type of solvent.
  • the viscosity of the coating liquid increases, so that the coating liquid can be applied thickly.
  • a coating liquid suitable for thick coating can be obtained by selecting a relatively high viscosity solvent from among a number of solvents, it becomes easy to thicken the coating film 3A. If a relatively low viscosity is selected, a coating solution suitable for thin coating can be obtained, so that it is easy to form the coating film 3A thinly.
  • a coating solution using a low-boiling point solvent it may dry immediately upon application, resulting in uneven coating or streaks on the surface of the coating film 3A. Therefore, it is preferable to select a solvent having an appropriate boiling point according to the working environment in which the coating liquid is applied so that coating unevenness and coating stripes do not occur. On the other hand, it is preferable that the solvent has a low boiling point to such an extent that the solvent can be easily removed after application of the coating solution.
  • solvents may be used alone or as a mixture of two or more thereof.
  • PGMEA which is a high boiling point / high viscosity solvent
  • methanol which is a low boiling point / low viscosity solvent
  • the precursor is cured by ultraviolet irradiation to form the parent plating layer 3.
  • the curing step can be performed at room temperature in the production of the plating member 1, so that the resulting plating member 1 is unlikely to contain residual stress. Therefore, for example, when a material having a low elastic modulus is used as the support 2 or when a material that is thin enough to be wound into a roll is used, the problem that the plating member 1 is distorted by residual stress can be suppressed.
  • the reaction may be completed (so-called post-bake) by heating for a certain time after the curing reaction by ultraviolet irradiation. Even in this case, since most of the precursor is cured before post-baking, residual stress is hardly generated and the advantage of using an ultraviolet curable resin can be enjoyed.
  • the plating member 1 as described above hardly scatters light because the particle diameter of the alumina particles of the parent plating layer 3 is about 100 nm or less and is shorter than the wavelength in the visible light region. Therefore, the parent plating layer 3 becomes a transparent film, and the plating member 1 becomes a transparent member.
  • the shape of the alumina particles contained in the parent plating layer 3 is a rod shape or a feather shape
  • the alumina particles are smaller than the average particle size with respect to light that vibrates in the direction intersecting the longitudinal direction of the particles. Acts like a particle with a diameter. That is, when the vibration direction of visible light passing through the parent plating layer 3 is a direction intersecting with the longitudinal direction of the alumina particles, the alumina particles are less likely to be a scattering source with respect to the visible light and transmit visible light. It becomes easy to do. Therefore, it shows high light transmittance.
  • 3A to 3E are explanatory views showing a method of manufacturing a wiring pattern, and are process diagrams for manufacturing a plated product 10 by performing electroless plating on the plating member 1.
  • a description will be given on the assumption that the plated wiring product 10 is manufactured by forming metal wiring by plating.
  • a resist material is applied on the parent plating layer 3 of the plating member 1 and pre-baked to form a resist layer 4.
  • a positive photoresist is used as the resist material.
  • the resist layer 4 is irradiated with ultraviolet light L through a mask M provided with an opening Ma at a position corresponding to a region where the metal wiring is formed and a light shielding portion Mb in a region where the metal wiring is not formed. Layer 4 is exposed.
  • a part of the resist layer 4 is removed by developing with a developing solution that dissolves the resist layer irradiated with ultraviolet rays, and an opening 4a is formed.
  • a catalyst (electroless plating catalyst) 5 used for electroless plating is applied to the parent plating layer 3 exposed in the opening 4 a formed in the resist layer 4.
  • the catalyst 5 include metallic palladium. Specifically, a colloidal solution of a divalent palladium salt and a divalent tin (Sn) salt is applied, and then immersed in an acid or alkali solution called an accelerator to reduce palladium to zero valence. A catalyst 5 made of palladium is applied.
  • the parent plating layer 3 contains alumina particles having extremely fine irregularities, it is considered that metal palladium as a plating catalyst adheres to the extremely minute irregularities. Thereby, it is considered that the bond at the interface between the parent plating layer 3 and the catalyst 5 becomes strong.
  • the entire surface of the remaining resist layer is exposed to ultraviolet rays, and then the resist layer is removed with a developer.
  • the plated product 10 on which a target pattern is formed can be manufactured.
  • 4A to 5C are process diagrams showing a method for manufacturing a wiring pattern of the present embodiment.
  • a description will be given on the assumption that a metal wiring is formed by a plating process to manufacture a plated product in which two metal wirings intersect.
  • a coating liquid 3A is formed on the surface of the support 2 by applying a coating solution using an ultraviolet curable resin as a binder. Thereafter, the coating film 3A is irradiated with ultraviolet rays L through a mask M provided with an opening Ma at a position corresponding to a region where the metal wiring is formed and a light shielding portion Mb in a region where the metal wiring is not formed. To expose.
  • a catalyst (not shown) used for electroless plating is applied to the parent plating layer 13 over the entire surface of the support 2, and then the electroless plating solution is brought into contact with the surface of the support 2.
  • the metal ions dissolved in the electroless plating solution can be reduced and deposited, and the metal wiring 16 can be formed on the surface of the parent plating layer 13.
  • the catalyst adheres to a portion (indicated by reference numeral 2x in the figure) where the parent plating layer 13 is not formed on the surface of the support 2. It is conceivable that plating is also applied to a portion where the parent plating layer 13 is not formed by contacting the plating solution. However, unlike the parent plating layer 13, the portion indicated by reference numeral 2x does not contain alumina particles having extremely fine irregularities, and therefore metal palladium that is an electroless plating catalyst is difficult to adhere.
  • the metal deposited by reduction of metal ions in the electroless plating solution is formed so as to bite into the extremely fine irregularities of the alumina particles, so that adhesion can be obtained by a so-called anchor effect.
  • the anchor effect is hardly exhibited.
  • the metal wiring (conductive member) 16 is selectively formed on the surface of the parent plating layer 13. Can be formed.
  • a coating liquid containing an ultraviolet curable resin as a binder is applied to the surface of the support 2 and exposed and developed through a mask while partially overlapping the metal wiring 16.
  • Crossing parent plating layers 23 are formed.
  • a resist layer 24 having an opening 24a is formed on the parent plating layer 23 by the same method as in the above-described FIGS. 3A and 3B, and the same method as in the above-described FIG. 3C.
  • a catalyst (electroless plating catalyst) 25 used for electroless plating is applied to the parent plating layer 23 exposed in the opening 24a of the resist layer 24.
  • the electroless plating solution ES is brought into contact with the parent plating layer 23 exposed in the opening 24a, thereby depositing metal on the surface of the catalyst 25 and selectively forming the metal wiring 26 in the opening 24a. be able to. Since the catalyst 25 is formed at a position on the surface of the parent plating layer 23 and not in contact with the lower metal wiring 16, the metal wiring 16 and the metal wiring 26 are not in contact with each other.
  • the plated product 20 in which the metal wiring 16 and the metal wiring 26 intersect can be manufactured.
  • the parent plating layer 23 has insulating properties as a whole. Therefore, by changing the concentration of the coating solution and the type of solvent for forming the parent plating layer 23, the thickness of the parent plating layer 23 is increased to such an extent that dielectric breakdown does not occur at the voltage used. An insulating layer between the metal wiring 16 and the metal wiring 26 can be formed.
  • the metal wiring formed on the catalyst can hardly be peeled off. Since the member for plating has high transparency, the portion where the metal wiring of the plated product is not formed exhibits high transparency.
  • the plated product 10 manufactured by the method of the present embodiment can be increased in thickness or formed as a multilayer metal film by performing further electroless plating or electroplating as necessary. It is.
  • the present invention is not limited to this.
  • FIGS. 6A to 6E after forming the metal wiring 6 on the parent plating layer 3 provided on the surface of the support 2 (FIG. 6A), the metal wiring 6 is covered, A parent plating layer 33 having a thickness that can be used as an insulating layer of the metal wiring 6 is selectively formed (FIG. 6B). Then, after forming the resist 34 having the opening 34a (FIG. 6C), a catalyst 35 for electroless plating (electroless plating catalyst) 35 is applied, and electroless plating is performed to form the metal wiring 36 (FIG. 6). 6D). Thereafter, by removing the resist, it is possible to form a plated product 30 in which metal wirings are laminated in multiple layers.
  • the parent plating layer is patterned by selectively exposing the photocurable resin.
  • the present invention is not limited to this.
  • the parent plating layer is formed on the entire surface of the support. After that, the parent plating layer may be patterned by selectively removing unnecessary portions of the parent plating layer.
  • the metal wiring can be formed on the PET substrate by forming the metal wiring with the formed plating film.
  • the plating member having a parent plating layer formed on the film is wound up in a roll shape, and conveyed while unwinding the plating member.
  • the metal wiring can be formed on the PET film in a so-called roll-to-roll process in which the manufactured plated product is wound into a roll.
  • the plating member When performing electroless plating using such a process, in the manufacturing method described above, since the alumina particles contained in the parent plating layer are as small as 100 nm or less, the plating member exhibits high transparency, and the film is rolled. When the film is wound on, the parent plating layer exhibits high followability, and the parent plating layer is less likely to crack or peel off. Therefore, it is possible to manufacture a high-quality plated product with high productivity.
  • a resist material (SUMIRESIST PFI-34A6, manufactured by Sumitomo Chemical Co., Ltd.) is spin-coated on the surface of the plating member on which the parent plating layer is formed or the surface on which the treatment layer is formed, and heated at 90 ° C. for 30 minutes ( A resist layer was formed by pre-baking.
  • the spin coating conditions were 1000 rpm for 10 seconds, and a resist layer having a thickness of about 1 ⁇ m was formed.
  • an ultraviolet ray having an intensity of 30 mW / cm 2 is exposed through a photomask for 6 seconds, heated at 110 ° C. for 30 minutes (post-baked), and then immersed in a 2.38% TMAH solution for 5 minutes.
  • the mask pattern was developed on the layer to form openings.
  • Electroless plating method About the member for plating in which the resist layer was formed, ultrasonic water washing was performed at room temperature for 30 seconds, and then the catalyst colloid solution for electroless plating (Melplate Activator 7331, manufactured by Meltex) was added at room temperature. It was immersed for 300 seconds, and the catalyst was attached to the parent plating layer or the treatment layer exposed at the opening of the resist layer.
  • the catalyst adhering to the opening of the resist layer was immersed in a catalyst activator for electroless plating (Melplate PA-7340, manufactured by Meltex) at room temperature for 300 seconds. Activated.
  • a catalyst activator for electroless plating Melplate PA-7340, manufactured by Meltex
  • the surface is washed with water and dried, and the entire surface including the remaining resist layer is exposed to ultraviolet light having an intensity of 30 mW / cm 2 for 2 minutes, and then immersed in an aqueous NaOH solution having a concentration of 50 g / L for 2 minutes. The layer was removed, and a plated product was produced.
  • FIG. 7A and 7B are photographs showing the results of a reference example in which electroless plating was applied to a plating member having a parent plating layer or a treatment layer formed on the surface of a 50 mm ⁇ 50 mm square glass plate by a vacuum deposition method. is there.
  • FIG. 7A is a photograph showing the result of electroless plating on the Al 2 O 3 layer
  • FIG. 7B is a photograph showing the result of electroless plating on the SiO 2 layer.
  • dark colored parts (indicated by symbol A in the figure) expressing letters and patterns are parts where a plating film is formed by electroless plating.
  • a pattern by metal plating is formed on the Al 2 O 3 layer, whereas a pattern by metal plating is not formed on the SiO 2 layer as shown in FIG. 7B.
  • FIG. 8 is an enlarged photograph after electroless plating is performed on the Al 2 O 3 layer shown in FIG. 7A, and it was confirmed that a good pattern could be formed up to 3 ⁇ m / 3 ⁇ m by L / S.
  • Example 1 colloidal alumina particles (manufactured by Aldrich) are used as the alumina particles, and a parent plating layer using an ultraviolet curable acrylic resin (Art Resin UN-3220HA, manufactured by Negami Kogyo Co., Ltd.) as the binder is used. A member was created. The sample of the obtained member for plating was subjected to electroless plating, and the adhesion and transparency of the parent plating layer were evaluated.
  • an ultraviolet curable acrylic resin Article Resin UN-3220HA, manufactured by Negami Kogyo Co., Ltd.
  • FIG. 9 is a TEM image of the colloidal alumina particles used in this example, and is a granular nanoparticle having a volume average particle diameter of about 20 nm using a separate measuring instrument based on the dynamic light scattering method. It was confirmed.
  • a plurality of coating solutions having different alumina concentrations relative to the binder are prepared, applied to a 50 mm ⁇ 50 mm square PET substrate, dried, and then cured by irradiating with ultraviolet rays, and a plurality of parent plating layers Formed.
  • the coating liquid is applied onto a substrate by spin coating (3000 rpm ⁇ 30 seconds) and dried, and then ultraviolet rays of 365 nm are emitted using an ultraviolet irradiation device (Multilight, manufactured by USHIO INC.). Irradiation was performed under the conditions of illuminance: 37 mW / cm 2 and irradiation time: 40 seconds (irradiation amount: 1480 mJ / cm 2 ). Then, it heated at 120 degreeC for 2 minute (s), and formed the parent plating layer.
  • an ultraviolet irradiation device Multilight, manufactured by USHIO INC.
  • concentration of the alumina with respect to the binder in a coating liquid was prescribed
  • the alumina density was 3.97 g / cm 3 and the binder density was 1.19 g / cm 3, which was converted to weight from these values.
  • the coating solution was prepared by mixing with a 2% by mass methanol solution. In addition, 3% by mass of a polymerization initiator (irgacure 1173, manufactured by Ciba Specialty Chemicals) was added to the coating solution and used.
  • the solution was adjusted to form a parent plating layer.
  • concentration of alumina with respect to the binder may be referred to as “alumina content”.
  • FIGS. 10A to 10C are photographs of metal wiring prepared by electroless nickel-phosphorus (NiP) plating on the parent plating layer.
  • FIGS. 10A and 10B are parent plating layers having an alumina content of 5% by volume.
  • the photograph shown about a sample and FIG. 10C are photographs shown about the parent plating layer sample of alumina content rate 0 volume%.
  • FIG. 12A is a diagram showing the evaluation results of translucency in a portion where each metal-plated product is not subjected to metal plating, and shows the transmittance with respect to d-line (587 nm). As shown in the figure, it can be seen that when the alumina content is 5% by volume or more, the transmittance is 98% or more, and there is almost no decrease in the transmittance.
  • FIG. 12B shows the wavelength dependence of translucency of a parent plating layer produced with an alumina content of 30% by volume.
  • the alumina particles used in this example have an average particle size (volume average) of about 20 nm, and since the particle size is smaller than the visible light wavelength, light scattering is extremely small, so long as the light has a wavelength in the visible light region. It was found that the transmittance decrease is very small even in the short wavelength region.
  • FIG. 13 is a photograph showing an evaluation result of a cross-cut tape test evaluation after plating for a plated product having electroless plating applied to the entire surface.
  • the evaluation was performed in accordance with JISK5600-5-6 (General coating test method-Part 5: Mechanical properties of coating film-Section 6: Adhesion (cross-cut method)).
  • FIG. 14 is a table summarizing the evaluation results shown in FIGS.
  • the alumina content in the parent plating layer is preferably 5% by volume or more and 99% by volume or less in this example. Even when the alumina content is 99% by volume (that is, the binder content is 1% by volume), the parent plating layer in this example can sufficiently exhibit adhesion to the substrate and is difficult to peel off. Was found to be possible.
  • Example 2 In this example, a coating solution having an alumina content of 5% by volume was applied to a 50 mm ⁇ 50 mm square PET substrate in the same manner as in Example 1 and dried, and then 365 nm via a photomask. Were irradiated under the conditions of irradiance: 30 mW / cm 2 and irradiation time: 30 seconds (irradiation amount: 900 mJ / cm 2 ). Next, after heating at 120 ° C. for 2 minutes, the whole substrate was developed by sonication while being immersed in acetone to form a parent plating layer. The immersion time was 10 seconds.
  • Example 3 In this example, first, a 1% by mass epoxysilane coupling agent was applied to a 50 mm ⁇ 50 mm square PET substrate by spin coating, dried, and heated at 120 ° C. for 5 minutes for surface treatment.
  • the coating solution was prepared by mixing 0.1 g of 20 mass% colloidal alumina (manufactured by Aldrich), 0.35 g of 10 mass% methanol solution of binder, and 0.35 g of 10 mass% PGMEA solution of binder.
  • As the binder an ultraviolet curable acrylic resin (Art Resin UN-3220HA, manufactured by Negami Kogyo Co., Ltd.) was used, and 3% by mass of the above polymerization initiator was added.
  • the whole substrate was subjected to ultrasonic treatment for 10 seconds while being immersed in acetone to form a parent plating layer.
  • electroless plating was performed by the method described above.
  • FIG. 16A is a photograph of the metal wiring obtained by performing electroless plating on the 1 mm-wide parent plating layer
  • FIG. 16B is an optical microscope image of the obtained metal wiring.
  • metal wiring was formed along the parent plating layer formed by selective ultraviolet irradiation (FIG. 16A), and no rough or missing portions (that is, portions that were not plated) were found on the surface of the metal wiring. . Therefore, it was confirmed that a patterned metal wiring can be created without forming a resist layer.
  • Example 4 In this example, first, a parent plating layer having an alumina content of 5% by volume is formed on the entire surface of a 50 mm ⁇ 50 mm square PET substrate by the same method as in Example 1, and the resist layer is formed by the above-described method. After creation, electroless plating was selectively performed to create NiP wiring (metal wiring). In the following description, this metal wiring is referred to as “first metal wiring”.
  • the coating liquid was prepared by mixing 0.25 g of a 2% by mass methanol dispersion of colloidal alumina (manufactured by Aldrich) and 1.43 g of a 2% by mass methanol solution of a binder, and further adding 1 g of 1-propanol. It adjusted by mixing.
  • an ultraviolet curable acrylic resin (Art Resin UN-3220HA, manufactured by Negami Industrial Co., Ltd.) was used.
  • FIG. 17A is a photograph of the created first metal wiring
  • FIG. 17B is an enlarged photograph of the first metal wiring. It can be seen that a flat wiring with few irregularities is formed.
  • a silane coupling agent (KBE903, manufactured by Shin-Etsu Silicone) was applied by spin coating on the entire surface of the PET substrate where the first metal wiring was formed.
  • Example 2 After applying a coating solution having an alumina content of 5% by volume, selectively irradiating with ultraviolet rays through a photomask and heating at 120 ° C. for 1 minute, Development with acetone selectively formed a parent plating layer.
  • the selectively formed parent plating layer is referred to as a “selective parent plating layer”.
  • FIG. 18A is a photograph of the substrate on which the selective parent plating layer is formed
  • FIG. 18B is an enlarged photograph of the selective parent plating layer in the region surrounded by the broken line in FIG. 18A.
  • the filler was sufficiently dispersed in the selective parent plating layer, and aggregates and the like were not confirmed.
  • the film thickness was about 350 nm.
  • the metal patterned on the selective parent plating layer by performing the formation of the resist layer and the electroless plating on the entire surface of the PET substrate where the selective parent plating layer is formed by the above-described method.
  • a wiring (NiP wiring) was formed.
  • the surface of the metal wiring could be covered with Au by performing electroless gold (Au) plating.
  • Au electroless gold
  • FIG. 19 is a cross-sectional SEM image of the multilayer wiring structure produced by the above procedure.
  • continuity between the first metal wiring and the second metal wiring was measured with a tester, no leakage current was confirmed. Therefore, it was confirmed that the parent plating layer of this example can also be used as an insulating layer.

Abstract

A method for manufacturing a wiring pattern comprises the steps of: selectively forming a parent plating layer (13) on an optically transparent support (2), the parent plating layer including an optically transparent base material and alumina particles having an average particle diameter of 100 nm or less; causing a catalyst to be supported on at least a portion of the surface of the parent plating layer (13); and bringing an electroless plating solution into contact with the surface of the parent plating layer (13) and performing electroless plating.

Description

配線パターンの製造方法及びめっき用部材Wiring pattern manufacturing method and plating member
 本発明は、配線パターンの製造方法及びめっき用部材に関するものである。
 本願は、2011年8月15日に出願された特願2011-177423号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a method for manufacturing a wiring pattern and a member for plating.
This application claims priority based on Japanese Patent Application No. 2011-177423 for which it applied on August 15, 2011, and uses the content here.
 従来、材料表面の接触作用による還元を利用しためっき法である化学めっき(無電解めっき)が知られている。無電解めっきでは電気エネルギーを用いないため、不導体である樹脂材料やガラスなどに対してもめっきを施すことが可能である。 Conventionally, chemical plating (electroless plating), which is a plating method using reduction by contact action of a material surface, is known. Since electroless plating does not use electrical energy, it is possible to apply plating to resin materials and glass that are nonconductors.
 このようにして得られるめっき皮膜が十分に機能を発揮するためには、めっき処理品の使用環境でめっき皮膜が剥離しないことが必要である。しかし、樹脂材料やガラスなどの難めっき材料は、形成されるめっき皮膜との間の密着力が弱く、めっき皮膜の内部応力によって簡単にめっきが剥がれ、膨れなどの剥離を生じてしまう。 In order for the plating film obtained in this way to fully function, it is necessary that the plating film does not peel off in the environment where the plated product is used. However, difficult-to-plat materials such as resin materials and glass have weak adhesion to the formed plating film, and the plating is easily peeled off due to the internal stress of the plating film, resulting in peeling such as swelling.
 このような剥離を防止するため、樹脂材料にめっきを施す場合には、予め樹脂材料の表面にクロム酸溶液などを用いてエッチング処理を施し、表面を化学的に粗化することが行われている。これにより、形成されるめっき皮膜が、粗化された樹脂材料の凹凸に食い込むようにして形成されるため、密着力を得ることができる(アンカー効果)。 In order to prevent such peeling, when the resin material is plated, the surface of the resin material is preliminarily etched with a chromic acid solution to chemically roughen the surface. Yes. Thereby, since the plating film to be formed is formed so as to bite into the unevenness of the roughened resin material, adhesion can be obtained (anchor effect).
 すなわち、一般的な樹脂のめっき工程は、洗浄→エッチング→触媒付与→無電解めっきで示される。ここで、触媒付与は、無電解めっきの反応開始剤(触媒)となるパラジウム(Pd)などを表面に付着させる工程である。通常は、2価パラジウム塩と2価スズ(Sn)塩とのコロイド溶液を塗布し、その後アクセレーターと呼ばれる酸またはアルカリ溶液に浸漬することで、パラジウムを0価に還元して活性化する工程を含む。無電解めっきとしては、無電解Cuめっきや無電解NiPめっきが例示できる。 That is, a general resin plating process is represented by washing → etching → catalyst application → electroless plating. Here, the catalyst application is a step of attaching palladium (Pd) or the like, which becomes a reaction initiator (catalyst) for electroless plating, to the surface. Usually, a process of reducing and activating palladium by applying a colloidal solution of divalent palladium salt and divalent tin (Sn) salt and then immersing it in an acid or alkali solution called an accelerator. including. Examples of the electroless plating include electroless Cu plating and electroless NiP plating.
 また、ガラスにめっきする場合も樹脂のめっき工程と同様の工程となる。ガラスにめっきする場合には、フッ化水素酸などのエッチング処理でガラスの表面に凹凸を形成し、アンカー効果によって密着力を向上させる方法が一般的に用いられている。 Also, when plating on glass, the process is the same as the resin plating process. In the case of plating on glass, a method is generally used in which irregularities are formed on the surface of the glass by etching treatment such as hydrofluoric acid and the adhesion is improved by an anchor effect.
 しかし、エッチングで粗化する処理を用いないで密着力の高いめっき皮膜を形成することが出来れば、工程の簡素・短縮化ができ望ましい。そこで、難めっき基板の表面上にSOG(Spin-on Glass)やポーラスSOGの下地膜を設け、その下地膜の上に無電解めっきを行う方法(特許文献1参照)や、基板表面上に微粉末シリカなどのフィラー成分と樹脂組成成分からなる下地膜を設け、その下地膜上に無電解めっきを行う方法(特許文献2参照)が開示されている。 However, it would be desirable to be able to simplify and shorten the process if it is possible to form a plating film with high adhesion without using a roughening process by etching. Therefore, an SOG (Spin-on Glass) or porous SOG base film is provided on the surface of the hard-plated substrate, and electroless plating is performed on the base film (see Patent Document 1). A method of providing a base film made of a filler component such as powdered silica and a resin composition component and performing electroless plating on the base film (see Patent Document 2) is disclosed.
特開2006-2201号公報Japanese Patent Laid-Open No. 2006-2201 特開2008-208389号公報JP 2008-208389 A
 無電解めっきを用いて形成しためっき処理品は、種々の製品の構成材料として用いられる。例えば、ガラスや透明樹脂に対して金属めっきを施しためっき処理品は、高い光透過性を要求するディスプレーや太陽電池など、ガラスや透明樹脂が有する光透過性を利用することができる製品への応用が期待される。 Plating products formed using electroless plating are used as constituent materials for various products. For example, plated products with metal plating on glass or transparent resin can be applied to products that can utilize the light transmittance of glass and transparent resin, such as displays and solar cells that require high light transmittance. Application is expected.
 しかし上述の特許文献に示された方法は、光透過性という要求物性について着目したものではなく、得られるめっき処理品が光透過性を有するための技術が十分に開示されてはいなかった。 However, the method disclosed in the above-mentioned patent document does not pay attention to the required physical property of light transmission, and the technology for allowing the obtained plated product to have light transmission has not been sufficiently disclosed.
 本発明の態様は、光透過性を有する難めっき材料の透明性を損なわず良好に配線を形成することが可能な配線パターンの製造方法及びめっき用部材を提供することを目的とする。 An object of an aspect of the present invention is to provide a wiring pattern manufacturing method and a plating member capable of forming a wiring satisfactorily without impairing the transparency of a light-transmitting difficult plating material.
 本発明の第1の態様の配線パターンの製造方法は、光透過性を有する支持体に、光透過性を有する基材と、平均粒径が100nm以下のアルミナ粒子と、を含む下地膜を選択的に形成することと、前記下地膜の表面の少なくとも一部に無電解めっき用触媒を担持させることと、前記下地膜の表面に無電解めっき液を接触させ無電解めっきを行うことと、を有する。 In the wiring pattern manufacturing method according to the first aspect of the present invention, a base film including a light-transmitting base material and alumina particles having an average particle diameter of 100 nm or less is selected on a light-transmitting support. Forming an electroless plating catalyst on at least a part of the surface of the base film, and performing electroless plating by bringing an electroless plating solution into contact with the surface of the base film. Have.
 本発明の第2の態様のめっき用部材は、光透過性を有する支持体と、該支持体の表面に選択的に形成された下地膜と、を有し、前記下地膜は、光透過性を有する基材と、平均粒径が100nm以下のアルミナ粒子と、を有する。 The plating member according to the second aspect of the present invention includes a light-transmissive support and a base film selectively formed on the surface of the support, and the base film is light-transmissive. And an alumina particle having an average particle diameter of 100 nm or less.
 本発明の態様によれば、光透過性を有する難めっき材料の透明性を損なわず、良好に配線パターンを形成することができる。 According to the aspect of the present invention, the wiring pattern can be satisfactorily formed without impairing the transparency of the light-transmitting difficult plating material.
配線パターンの製造方法で用いるめっき用部材の説明図である。It is explanatory drawing of the member for plating used with the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 配線パターンの製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of a wiring pattern. 参考例の結果を示す写真である。It is a photograph which shows the result of a reference example. 参考例の結果を示す写真である。It is a photograph which shows the result of a reference example. 参考例の結果を示す写真である。It is a photograph which shows the result of a reference example. 実施例1の結果を示す写真である。2 is a photograph showing the results of Example 1. FIG. 実施例1の結果を示す写真である。2 is a photograph showing the results of Example 1. FIG. 実施例1の結果を示す写真である。2 is a photograph showing the results of Example 1. FIG. 実施例1の結果を示す写真である。2 is a photograph showing the results of Example 1. FIG. 実施例1の結果を示す写真である。2 is a photograph showing the results of Example 1. FIG. 実施例1の結果を示す図である。It is a figure which shows the result of Example 1. 実施例1の結果を示す図である。It is a figure which shows the result of Example 1. 実施例1の結果を示す写真である。2 is a photograph showing the results of Example 1. FIG. 実施例1の結果を示す表である。2 is a table showing the results of Example 1. 実施例2の結果を示す写真である。6 is a photograph showing the results of Example 2. 実施例3の結果を示す写真である。6 is a photograph showing the results of Example 3. 実施例3の結果を示す写真である。6 is a photograph showing the results of Example 3. 実施例4の結果を示す写真である。6 is a photograph showing the results of Example 4. 実施例4の結果を示す写真である。6 is a photograph showing the results of Example 4. 実施例4の結果を示す写真である。6 is a photograph showing the results of Example 4. 実施例4の結果を示す写真である。6 is a photograph showing the results of Example 4. 実施例4の結果を示す写真である。6 is a photograph showing the results of Example 4.
 以下、図1~図5Cを参照しながら、本実施形態に係る配線パターンの製造方法について説明する。以下の説明では、まず、図1~3Eを用いて本実施形態の配線パターンの製造方法の基本的な反応を説明し、次いで、図4A~5Cを用いて本実施形態の配線パターンの製造方法を説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率などは適宜異ならせてある。 Hereinafter, a method for manufacturing a wiring pattern according to the present embodiment will be described with reference to FIGS. 1 to 5C. In the following description, first, the basic reaction of the wiring pattern manufacturing method of the present embodiment will be described with reference to FIGS. 1 to 3E, and then the wiring pattern manufacturing method of the present embodiment will be described with reference to FIGS. 4A to 5C. Will be explained. In all the drawings below, the dimensions and ratios of the constituent elements are appropriately changed in order to make the drawings easy to see.
 図1は、本実施形態の配線パターンの製造方法で用いるめっき用部材1の一例を示す模式図である。めっき用部材1は、難めっき性であり光透過性を有する支持体2と、支持体2の一面側に形成された親めっき層(下地膜)3と、を有する。 FIG. 1 is a schematic diagram showing an example of a plating member 1 used in the wiring pattern manufacturing method of the present embodiment. The plating member 1 includes a support 2 that is difficult to plate and has light transmittance, and a parent plating layer (undercoat film) 3 formed on one surface side of the support 2.
 支持体2としては、例えば、ガラス、石英ガラス、窒化ケイ素等の無機物や、アクリル樹脂、ポリカーボネート樹脂、PET(ポリエチレンテレフタレート)やPBT(ポリブチレンテレフタレート)などのポリエステル樹脂等の有機高分子(樹脂)を用いることができる。これらの材料は、光透過性を有し、且つ無電解めっきの結果形成される金属製のめっき皮膜と金属結合を形成しない。そのため、本実施形態においては、これらの材料を、直接めっき皮膜を形成しにくく、また形成されるめっき皮膜が剥離しやすい難めっき性の材料として取り扱う。同様の理由によりめっき皮膜が剥離しやすく光透過性を有する材料であれば、同様に支持体2の形成材料として用いることができる。 Examples of the support 2 include inorganic polymers such as glass, quartz glass, and silicon nitride, and organic polymers (resins) such as acrylic resins, polycarbonate resins, polyester resins such as PET (polyethylene terephthalate) and PBT (polybutylene terephthalate). Can be used. These materials are light transmissive and do not form metal bonds with a metal plating film formed as a result of electroless plating. For this reason, in the present embodiment, these materials are handled as difficult-to-platable materials in which it is difficult to directly form a plating film and the formed plating film is easily peeled off. For the same reason, any material can be used as the material for forming the support 2 as long as the plating film is easily peeled off and has light transmittance.
 親めっき層3は、平均粒径が約100nm、90nm、80nm、70nm、60nm、50nm、40nm、30nm、20nm、又は10nm以下のアルミナ粒子を有している。アルミナ粒子としては、平均粒径が約100nm以下であれば、粒状、棒状、羽毛状などの形状を採用することができる。ここで「平均粒径」とは、動的光散乱法など公知の方法を測定原理として、体積平均粒径、面積平均粒径、累積中位径(Median径)などを採用して求めることができる値である。また、アルミナ粒子が、棒状や羽毛状など異形の形状を有する場合には、一粒子のなかでの最大径(長手方向の大きさ)が上述の平均粒径であり、一粒子において短手方向の大きさは上述の平均粒径よりも小さい値を示す。 The parent plating layer 3 has alumina particles having an average particle diameter of about 100 nm, 90 nm, 80 nm, 70 nm, 60 nm, 50 nm, 40 nm, 30 nm, 20 nm, or 10 nm or less. As an alumina particle, if an average particle diameter is about 100 nm or less, shapes, such as a granular form, rod shape, and feather shape, are employable. Here, the “average particle diameter” is obtained by employing a volume average particle diameter, an area average particle diameter, a cumulative median diameter (Median diameter), etc., using a known method such as a dynamic light scattering method as a measurement principle. This is a possible value. Further, when the alumina particles have an irregular shape such as a rod shape or a feather shape, the maximum diameter (size in the longitudinal direction) in one particle is the above average particle size, and the short direction in one particle The size of shows a value smaller than the above-mentioned average particle diameter.
 また、親めっき層3は、上記アルミナ粒子を分散させるバインダー(基材)を有している。バインダーは、光透過性を有する樹脂材料である。樹脂材料としては、光硬化性樹脂を用いることができ、特に紫外線硬化性樹脂を用いることができる。このような樹脂材料としては、エポキシ樹脂、アクリル樹脂、アクリルウレタン樹脂、フェノール樹脂、エン・チオール樹脂、ポリシロキサンなどを例示することができる。以下の説明においては、親めっき層3のバインダーとして紫外線硬化性樹脂を用いるものとして説明する。 The parent plating layer 3 has a binder (base material) for dispersing the alumina particles. The binder is a resin material having optical transparency. As the resin material, a photocurable resin can be used, and in particular, an ultraviolet curable resin can be used. Examples of such resin materials include epoxy resins, acrylic resins, acrylic urethane resins, phenol resins, ene / thiol resins, and polysiloxanes. In the following description, it is assumed that an ultraviolet curable resin is used as the binder of the parent plating layer 3.
 図2A、図2Bは、本実施形態のめっき用部材1の製造工程を示す工程図である。まず、図2Aに示すように、支持体2の表面に、上述の樹脂材料の前駆体を含む溶液に上述のアルミナ分子を均一に分散させた塗布液を塗布し、塗膜3Aを形成する。塗布の方法としては、スピンコート、ディップコート、スプレーコート、ロールコート、刷毛塗り、フレキソ印刷やスクリーン印刷といった印刷法などの通常知られた方法を例示することができる。なお、塗布液に少量の光重合開始剤を添加することとしても良い。 FIG. 2A and FIG. 2B are process diagrams showing the manufacturing process of the plating member 1 of the present embodiment. First, as shown in FIG. 2A, a coating solution in which the above-described alumina molecules are uniformly dispersed in a solution containing a precursor of the above-described resin material is applied to the surface of the support 2 to form a coating film 3A. Examples of the application method include generally known methods such as spin coating, dip coating, spray coating, roll coating, brush coating, printing methods such as flexographic printing and screen printing. In addition, it is good also as adding a small amount of photoinitiators to a coating liquid.
 塗布液の溶媒としては極性溶媒を用いることができる。使用可能な溶媒として、例えば、メタノール、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール、IPA)などのアルコール類、プロピレングリコールモノメチルエーテルアセテート(PGMEA)のようなエーテル類、トルエンのような芳香族炭化水素、アセトニトリルのようなニトリル類、酢酸エステルのようなエステル類を挙げることができる。 A polar solvent can be used as a solvent for the coating solution. Usable solvents include, for example, alcohols such as methanol, ethanol, 1-propanol and 2-propanol (isopropyl alcohol, IPA), ethers such as propylene glycol monomethyl ether acetate (PGMEA), and aromatics such as toluene. There may be mentioned hydrocarbons, nitriles such as acetonitrile, and esters such as acetate.
 塗布液においては、濃度や溶媒の種類を変更することにより、塗布液全体の粘度を調整し、塗膜3Aの膜厚を制御することができる。すなわち、塗布液の濃度や溶媒の種類を適宜選択することにより、塗膜3Aから形成される親めっき層3の層厚を制御することができる。 In the coating solution, the viscosity of the whole coating solution can be adjusted and the film thickness of the coating film 3A can be controlled by changing the concentration and the type of the solvent. That is, the layer thickness of the parent plating layer 3 formed from the coating film 3A can be controlled by appropriately selecting the concentration of the coating solution and the type of solvent.
 例えば、塗布液に含まれる樹脂材料の濃度が高まると、塗布液の粘度が上昇するため、塗布液を厚塗りすることが可能となる。 For example, when the concentration of the resin material contained in the coating liquid increases, the viscosity of the coating liquid increases, so that the coating liquid can be applied thickly.
 また、塗布液の溶媒として、数ある溶媒の中から相対的に高粘度のものを選択すると、厚塗りに適した塗布液とすることができるため、塗膜3Aを厚くすることが容易となり、相対的に低粘度のものを選択すると、薄塗りに適した塗布液とすることができるため、塗膜3Aを薄く形成することが容易となる。 Moreover, since a coating liquid suitable for thick coating can be obtained by selecting a relatively high viscosity solvent from among a number of solvents, it becomes easy to thicken the coating film 3A. If a relatively low viscosity is selected, a coating solution suitable for thin coating can be obtained, so that it is easy to form the coating film 3A thinly.
 さらに、塗布液の溶媒の沸点に着目すると、沸点が低い溶媒は比較的低粘度のものが多く、沸点が高いものは比較的高粘度のものが多いため、沸点に着目して溶媒を選択してもよい。 Furthermore, focusing on the boiling point of the solvent of the coating solution, many solvents with a low boiling point have a relatively low viscosity, and those with a high boiling point have a relatively high viscosity. May be.
 加えて、低沸点溶媒を用いた塗布液では、塗布すると直ちに乾固して塗膜3Aの表面に塗りムラや塗りスジが生じることがある。そのため、塗布液を塗布する作業環境に応じて、塗りムラや塗りスジが生じないように適切な沸点の溶媒を選択するとよい。一方で、塗布液の塗布後に、溶媒を容易に除去できる程度には沸点が低い溶媒であることが好ましい。 In addition, in the case of a coating solution using a low-boiling point solvent, it may dry immediately upon application, resulting in uneven coating or streaks on the surface of the coating film 3A. Therefore, it is preferable to select a solvent having an appropriate boiling point according to the working environment in which the coating liquid is applied so that coating unevenness and coating stripes do not occur. On the other hand, it is preferable that the solvent has a low boiling point to such an extent that the solvent can be easily removed after application of the coating solution.
 これらの溶媒は、単独で用いることとしてもよく、2種以上を適宜混合して用いることとしても構わない。例えば、高沸点・高粘度の溶媒であるPGMEAに低沸点・低粘度の溶媒であるメタノールを適宜混合して用いることで、塗布液の粘度と沸点とのバランスを調整することが可能である。さらに、必要に応じて重ね塗りをして塗膜を厚くすることとしてもかまわない。 These solvents may be used alone or as a mixture of two or more thereof. For example, it is possible to adjust the balance between the viscosity and the boiling point of the coating liquid by using PGMEA, which is a high boiling point / high viscosity solvent, and methanol, which is a low boiling point / low viscosity solvent, as appropriate. Furthermore, it is possible to make the coating thicker by recoating as necessary.
 次いで、図2Bに示すように、紫外線照射を行うことにより、前駆体を硬化させて親めっき層3を形成する。 Next, as shown in FIG. 2B, the precursor is cured by ultraviolet irradiation to form the parent plating layer 3.
 アルミナ粒子を分散させるバインダーとして紫外線硬化性樹脂を用いると、めっき用部材1の製造において硬化の工程を常温で行うことが可能となるため、できあがるめっき用部材1に残留応力が含まれにくい。したがって、例えば支持体2として弾性率が低い材料を用いる場合や、ロール状に巻き取ることが可能なほど薄いものを用いる場合において、残留応力によってめっき用部材1が歪んでしまう不具合を抑制できる。 When an ultraviolet curable resin is used as the binder for dispersing the alumina particles, the curing step can be performed at room temperature in the production of the plating member 1, so that the resulting plating member 1 is unlikely to contain residual stress. Therefore, for example, when a material having a low elastic modulus is used as the support 2 or when a material that is thin enough to be wound into a roll is used, the problem that the plating member 1 is distorted by residual stress can be suppressed.
 なお、上記親めっき層3の形成時には、紫外線照射による硬化反応後に一定時間の加熱を行い、反応を完結させる(いわゆるポストベーク)こととしても良い。この場合であっても、ポストベーク前に前駆体の大半が硬化しているため、残留応力は生じにくく、紫外線硬化性樹脂を用いる利点を享受することができる。 It should be noted that when the parent plating layer 3 is formed, the reaction may be completed (so-called post-bake) by heating for a certain time after the curing reaction by ultraviolet irradiation. Even in this case, since most of the precursor is cured before post-baking, residual stress is hardly generated and the advantage of using an ultraviolet curable resin can be enjoyed.
 以上のようなめっき用部材1は、親めっき層3が有するアルミナ粒子の粒径が約100nm以下であり、可視光領域の波長より短いためほとんど光を散乱しない。そのため、親めっき層3は透明な皮膜となり、めっき用部材1は透明な部材となる。 The plating member 1 as described above hardly scatters light because the particle diameter of the alumina particles of the parent plating layer 3 is about 100 nm or less and is shorter than the wavelength in the visible light region. Therefore, the parent plating layer 3 becomes a transparent film, and the plating member 1 becomes a transparent member.
 ここで、親めっき層3に含まれるアルミナ粒子の形状が棒状や羽毛状である場合、粒子の長手方向と交差する方向に振動する光に対して、アルミナ粒子は、平均粒径よりも小さい粒径を有する粒子のようにふるまう。すなわち、親めっき層3を透過する可視光線の振動方向がアルミナ粒子の長手方向と交差する方向である場合には、該可視光線に対してアルミナ粒子は散乱源になりにくくなり、可視光線を透過しやすくなる。したがって、高い光透過性を示す。 Here, when the shape of the alumina particles contained in the parent plating layer 3 is a rod shape or a feather shape, the alumina particles are smaller than the average particle size with respect to light that vibrates in the direction intersecting the longitudinal direction of the particles. Acts like a particle with a diameter. That is, when the vibration direction of visible light passing through the parent plating layer 3 is a direction intersecting with the longitudinal direction of the alumina particles, the alumina particles are less likely to be a scattering source with respect to the visible light and transmit visible light. It becomes easy to do. Therefore, it shows high light transmittance.
 図3A~3Eは、配線パターンの製造方法を示す説明図であり、めっき用部材1に対して無電解めっきを行い、めっき処理品10を製造する工程図である。ここでは、めっき処理により金属配線を形成してめっき処理品10を製造することとして説明する。 3A to 3E are explanatory views showing a method of manufacturing a wiring pattern, and are process diagrams for manufacturing a plated product 10 by performing electroless plating on the plating member 1. Here, a description will be given on the assumption that the plated wiring product 10 is manufactured by forming metal wiring by plating.
 まず、図3Aに示すように、めっき用部材1の親めっき層3上にレジスト材料を塗布し、これをプリベークすることでレジスト層4を形成する。レジスト材料としては、ここではポジ型フォトレジストを用いる。 First, as shown in FIG. 3A, a resist material is applied on the parent plating layer 3 of the plating member 1 and pre-baked to form a resist layer 4. Here, a positive photoresist is used as the resist material.
 その後、金属配線を形成する領域に対応する位置に開口部Maを備え、金属配線を形成しない領域に遮光部Mbを備えたマスクMを介し、レジスト層4に紫外線Lを照射することで、レジスト層4を露光する。 Thereafter, the resist layer 4 is irradiated with ultraviolet light L through a mask M provided with an opening Ma at a position corresponding to a region where the metal wiring is formed and a light shielding portion Mb in a region where the metal wiring is not formed. Layer 4 is exposed.
 次いで、図3Bに示すように、紫外線が照射されたレジスト層を溶解する現像液で現像することにより、レジスト層4の一部を除去し、開口部4aを形成する。 Next, as shown in FIG. 3B, a part of the resist layer 4 is removed by developing with a developing solution that dissolves the resist layer irradiated with ultraviolet rays, and an opening 4a is formed.
 次いで、図3Cに示すように、レジスト層4に形成された開口部4aに露出している親めっき層3に、無電解めっきに用いる触媒(無電解めっき用触媒)5を付与する。触媒5としては、金属パラジウムが挙げられる。具体的には、2価パラジウム塩と2価スズ(Sn)塩とのコロイド溶液を塗布し、その後アクセレーターと呼ばれる酸またはアルカリ溶液に浸漬して、パラジウムを0価に還元することで、金属パラジウムからなる触媒5を付与する。 Next, as shown in FIG. 3C, a catalyst (electroless plating catalyst) 5 used for electroless plating is applied to the parent plating layer 3 exposed in the opening 4 a formed in the resist layer 4. Examples of the catalyst 5 include metallic palladium. Specifically, a colloidal solution of a divalent palladium salt and a divalent tin (Sn) salt is applied, and then immersed in an acid or alkali solution called an accelerator to reduce palladium to zero valence. A catalyst 5 made of palladium is applied.
 このとき、親めっき層3には極微細な凹凸をもつアルミナ粒子が含まれているため、この極微細な凹凸にめっきの触媒である金属パラジウムが付着すると考えられる。これにより、親めっき層3と触媒5との界面の結合が強固になると考えられる。 At this time, since the parent plating layer 3 contains alumina particles having extremely fine irregularities, it is considered that metal palladium as a plating catalyst adheres to the extremely minute irregularities. Thereby, it is considered that the bond at the interface between the parent plating layer 3 and the catalyst 5 becomes strong.
 次いで、図3Dに示すように、無電解めっき液に浸漬することにより、触媒5の表面で無電解めっき液に溶解する金属イオンを還元して析出させ、開口部4a内に選択的に金属配線6を形成することができる。 Next, as shown in FIG. 3D, by immersing in the electroless plating solution, metal ions dissolved in the electroless plating solution are reduced and deposited on the surface of the catalyst 5, and the metal wiring is selectively formed in the opening 4a. 6 can be formed.
 次いで、図3Eに示すように、残存するレジスト層の全面に紫外線を露光した後に、現像液でレジスト層を除去する。
 以上のようにして、目的とするパターンが形成されためっき処理品10を製造することができる。
Next, as shown in FIG. 3E, the entire surface of the remaining resist layer is exposed to ultraviolet rays, and then the resist layer is removed with a developer.
As described above, the plated product 10 on which a target pattern is formed can be manufactured.
 図4A~5Cは、本実施形態の配線パターンの製造方法を示す工程図である。ここでは、めっき処理により金属配線を形成して、2本の金属配線が交差するめっき処理品を製造することとして説明する。 4A to 5C are process diagrams showing a method for manufacturing a wiring pattern of the present embodiment. Here, a description will be given on the assumption that a metal wiring is formed by a plating process to manufacture a plated product in which two metal wirings intersect.
 まず、図4Aに示すように、支持体2の表面に紫外線硬化樹脂をバインダーとする塗布液を塗布し塗膜3Aを形成する。その後、金属配線を形成する領域に対応する位置に開口部Maを備え、金属配線を形成しない領域に遮光部Mbを備えたマスクMを介し、塗膜3Aに紫外線Lを照射し、塗膜3Aを露光する。 First, as shown in FIG. 4A, a coating liquid 3A is formed on the surface of the support 2 by applying a coating solution using an ultraviolet curable resin as a binder. Thereafter, the coating film 3A is irradiated with ultraviolet rays L through a mask M provided with an opening Ma at a position corresponding to a region where the metal wiring is formed and a light shielding portion Mb in a region where the metal wiring is not formed. To expose.
 次いで、図4Bに示すように、塗膜を溶解する溶媒Sで現像することにより、未硬化の塗布液を除去し、パターニングされた親めっき層13を形成する。 Next, as shown in FIG. 4B, by developing with a solvent S that dissolves the coating film, the uncured coating solution is removed, and a patterned parent plating layer 13 is formed.
 次いで、図4Cに示すように、支持体2の表面全面に親めっき層13に無電解めっきに用いる触媒(不図示)を付与した後、支持体2の表面に無電解めっき液を接触させることで、無電解めっき液に溶解する金属イオンを還元して析出させ、親めっき層13の表面に金属配線16を形成することができる。 Next, as shown in FIG. 4C, a catalyst (not shown) used for electroless plating is applied to the parent plating layer 13 over the entire surface of the support 2, and then the electroless plating solution is brought into contact with the surface of the support 2. Thus, the metal ions dissolved in the electroless plating solution can be reduced and deposited, and the metal wiring 16 can be formed on the surface of the parent plating layer 13.
 なお、支持体2の表面に触媒を付与する際に、支持体2の表面において親めっき層13が形成されていない部分(図中、符号2xで示す)にも触媒が付着するため、無電解めっき液を接触させることにより、親めっき層13が形成されていない部分にもめっきが施されることが考えられる。しかし、符号2xで示される部分では、親めっき層13と異なり極微細な凹凸をもつアルミナ粒子が含まないため、無電解めっきの触媒である金属パラジウムが付着し難い。 In addition, when applying a catalyst to the surface of the support 2, the catalyst adheres to a portion (indicated by reference numeral 2x in the figure) where the parent plating layer 13 is not formed on the surface of the support 2. It is conceivable that plating is also applied to a portion where the parent plating layer 13 is not formed by contacting the plating solution. However, unlike the parent plating layer 13, the portion indicated by reference numeral 2x does not contain alumina particles having extremely fine irregularities, and therefore metal palladium that is an electroless plating catalyst is difficult to adhere.
 また、親めっき層13では、無電解めっき液中の金属イオンの還元により析出する金属がアルミナ粒子の極微細な凹凸に食い込むようにして形成されるため、いわゆるアンカー効果により密着力を得ることができるが、符号2xで示される部分では、表面にアルミナ粒子がないためアンカー効果が発現しにくい。 Further, in the parent plating layer 13, the metal deposited by reduction of metal ions in the electroless plating solution is formed so as to bite into the extremely fine irregularities of the alumina particles, so that adhesion can be obtained by a so-called anchor effect. However, in the portion indicated by reference numeral 2x, since there is no alumina particle on the surface, the anchor effect is hardly exhibited.
 したがって、符号2xで示される部分に金属めっきが施されたとしても、表面の洗浄により容易に除去することができ、結果として、親めっき層13の表面に選択的に金属配線(導電部材)16を形成することができる。 Therefore, even if metal plating is applied to the portion indicated by reference numeral 2x, it can be easily removed by cleaning the surface. As a result, the metal wiring (conductive member) 16 is selectively formed on the surface of the parent plating layer 13. Can be formed.
 次に、図5Aに示すように、支持体2の表面に紫外線硬化樹脂をバインダーとする塗布液を塗布し、マスクを介して露光して現像することで、金属配線16と部分的に重なりながら交差する親めっき層23を形成する。 Next, as shown in FIG. 5A, a coating liquid containing an ultraviolet curable resin as a binder is applied to the surface of the support 2 and exposed and developed through a mask while partially overlapping the metal wiring 16. Crossing parent plating layers 23 are formed.
 次いで、図5Bに示すように、上述の図3A、3Bと同様の手法にて、親めっき層23上に開口部24aを有するレジスト層24を形成し、さらに、上述の図3Cと同様の手法にてレジスト層24の開口部24aに露出している親めっき層23に、無電解めっきに用いる触媒(無電解めっき用触媒)25を付与する。 Next, as shown in FIG. 5B, a resist layer 24 having an opening 24a is formed on the parent plating layer 23 by the same method as in the above-described FIGS. 3A and 3B, and the same method as in the above-described FIG. 3C. A catalyst (electroless plating catalyst) 25 used for electroless plating is applied to the parent plating layer 23 exposed in the opening 24a of the resist layer 24.
 その後、開口部24aに露出している親めっき層23に無電解めっき液ESを接触させることにより、触媒25の表面に金属を析出させ、開口部24a内に選択的に金属配線26を形成することができる。触媒25は、親めっき層23の表面であって下層の金属配線16と接しない位置に形成されているため、金属配線16と金属配線26とが接することがない。 Thereafter, the electroless plating solution ES is brought into contact with the parent plating layer 23 exposed in the opening 24a, thereby depositing metal on the surface of the catalyst 25 and selectively forming the metal wiring 26 in the opening 24a. be able to. Since the catalyst 25 is formed at a position on the surface of the parent plating layer 23 and not in contact with the lower metal wiring 16, the metal wiring 16 and the metal wiring 26 are not in contact with each other.
 次いで、図5Cに示すように、残存するレジスト層を除去することで、金属配線16と金属配線26とが交差するめっき処理品20を製造することができる。 Next, as shown in FIG. 5C, by removing the remaining resist layer, the plated product 20 in which the metal wiring 16 and the metal wiring 26 intersect can be manufactured.
 このようにして製造するめっき処理品20においては、親めっき層23を構成するアルミナ粒子および樹脂材料は、いずれも絶縁性の材料であることから、親めっき層23は全体として絶縁性を有する。そのため、親めっき層23を形成する塗布液の濃度や溶媒の種類を変更することにより、使用する電圧において絶縁破壊が生じない程度に親めっき層23の層厚を厚くし、親めっき層23を金属配線16と金属配線26との間の絶縁層とすることができる。 In the plated product 20 manufactured in this way, since the alumina particles and the resin material constituting the parent plating layer 23 are both insulating materials, the parent plating layer 23 has insulating properties as a whole. Therefore, by changing the concentration of the coating solution and the type of solvent for forming the parent plating layer 23, the thickness of the parent plating layer 23 is increased to such an extent that dielectric breakdown does not occur at the voltage used. An insulating layer between the metal wiring 16 and the metal wiring 26 can be formed.
 以上のような配線パターンの製造方法によれば、親めっき層と無電解めっき用の触媒との密着力が高いため、触媒上に形成される金属配線を剥離し難いものとすることができる。めっき用部材は高い透明性を有しているため、めっき処理品の金属配線が形成されていない部分では、高い透明性を示すものとなる。 According to the wiring pattern manufacturing method as described above, since the adhesion between the parent plating layer and the electroless plating catalyst is high, the metal wiring formed on the catalyst can hardly be peeled off. Since the member for plating has high transparency, the portion where the metal wiring of the plated product is not formed exhibits high transparency.
 また、親めっき層を選択的に形成することにより、親めっき層の形状に追随した無電解めっきを行うことができ、パターン形成が容易となる。 Also, by selectively forming the parent plating layer, electroless plating following the shape of the parent plating layer can be performed, and pattern formation becomes easy.
 さらに、親めっき層を選択的に形成することにより、親めっき層を絶縁層として用いつつ、親めっき層を挟持する2つの金属配線パターンを形成することが可能となり、設計自由度が高まる。 Furthermore, by selectively forming the parent plating layer, it is possible to form two metal wiring patterns that sandwich the parent plating layer while using the parent plating layer as an insulating layer, thereby increasing the degree of design freedom.
 したがって、光透過性を有する難めっき材料に対し良好にめっき処理を施した配線パターンの製造方法を提供することができる。 Therefore, it is possible to provide a method of manufacturing a wiring pattern in which a difficult plating material having light transmittance is satisfactorily plated.
 なお、本実施形態の方法によって製造されためっき処理品10は、必要に応じて更なる無電解めっきや電気めっきを施すことによって、厚さを増やすことや多層の金属膜を形成することも可能である。 The plated product 10 manufactured by the method of the present embodiment can be increased in thickness or formed as a multilayer metal film by performing further electroless plating or electroplating as necessary. It is.
 また、本実施形態においては、金属配線16と金属配線26とが交差するめっき処理品20を製造することとして説明したが、もちろん、本発明はこれにかぎらない。 Further, in the present embodiment, it has been described that the plated product 20 in which the metal wiring 16 and the metal wiring 26 cross each other is manufactured, but the present invention is not limited to this.
 例えば、図6A~6Eの概略断面図に示すように、支持体2の表面に設けられた親めっき層3上に、金属配線6を形成した後(図6A)、金属配線6を覆って、金属配線6の絶縁層として使用可能な層厚の親めっき層33を選択的に形成する(図6B)。その後、開口部34aを有するレジスト34を形成した後に(図6C)、無電解めっき用の触媒(無電解めっき用触媒)35を付与し、無電解めっきを行って金属配線36を形成する(図6D)。その後、レジストを除去することで、金属配線が多層に積層されためっき処理品30を形成することができる。 For example, as shown in the schematic cross-sectional views of FIGS. 6A to 6E, after forming the metal wiring 6 on the parent plating layer 3 provided on the surface of the support 2 (FIG. 6A), the metal wiring 6 is covered, A parent plating layer 33 having a thickness that can be used as an insulating layer of the metal wiring 6 is selectively formed (FIG. 6B). Then, after forming the resist 34 having the opening 34a (FIG. 6C), a catalyst 35 for electroless plating (electroless plating catalyst) 35 is applied, and electroless plating is performed to form the metal wiring 36 (FIG. 6). 6D). Thereafter, by removing the resist, it is possible to form a plated product 30 in which metal wirings are laminated in multiple layers.
 また、本実施形態においては、光硬化性樹脂に選択的に露光することにより、親めっき層をパターニングすることとしたが、これに限らず、例えば、支持体の表面全面に親めっき層を形成した後に、選択的に親めっき層の不要な部分を除去することにより、親めっき層のパターニングを行っても構わない。 In the present embodiment, the parent plating layer is patterned by selectively exposing the photocurable resin. However, the present invention is not limited to this. For example, the parent plating layer is formed on the entire surface of the support. After that, the parent plating layer may be patterned by selectively removing unnecessary portions of the parent plating layer.
 以上、添付図面を参照しながら本発明に係る実施の形態例について説明したが、本発明は係る例に限定されないことは言うまでもない。上述した例において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。 The embodiments according to the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. Various shapes, combinations, and the like of the constituent members shown in the above-described examples are examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
 例えば、支持体としてPET基板を用いて、前記基板上に親めっき層を形成しためっき用部材を複数用意し、複数のめっき用部材を搬送しながら搬送過程において上述のめっき処理品の製造方法を用いて無電解めっきを行うことで、形成されるめっき皮膜で金属配線を形成することにより、PET基板上に金属配線を形成することができる。 For example, using a PET substrate as a support, preparing a plurality of members for plating with a parent plating layer formed on the substrate, and carrying out the method for producing the above-mentioned plated product in the transport process while transporting a plurality of members for plating By using the electroless plating, the metal wiring can be formed on the PET substrate by forming the metal wiring with the formed plating film.
 さらに、支持体として長尺のPETフィルムを用い、前記フィルム上に親めっき層を形成しためっき用部材をロール状に巻き取っておき、前記めっき用部材を巻出しながら搬送し、上述のめっき処理品の製造方法を用いて連続的に金属配線を形成した後に、製造されるめっき処理品をロール状に巻き取る、所謂ロールトゥロール工程においてPETフィルム上に金属配線を形成することができる。 Further, using a long PET film as a support, the plating member having a parent plating layer formed on the film is wound up in a roll shape, and conveyed while unwinding the plating member. After forming metal wiring continuously using the manufacturing method, the metal wiring can be formed on the PET film in a so-called roll-to-roll process in which the manufactured plated product is wound into a roll.
 このようなプロセスに用いて無電解めっきを行う場合、上述の製造方法では、親めっき層に含まれるアルミナ粒子が100nm以下と小さいため、めっき用部材が高い透明性を示すとともに、フィルムをロール状に巻き取った場合に親めっき層が高い追随性を示し、親めっき層が亀裂や剥離を生じにくい。したがって、高品質なめっき処理品を高い生産性で製造することが可能となる。 When performing electroless plating using such a process, in the manufacturing method described above, since the alumina particles contained in the parent plating layer are as small as 100 nm or less, the plating member exhibits high transparency, and the film is rolled. When the film is wound on, the parent plating layer exhibits high followability, and the parent plating layer is less likely to crack or peel off. Therefore, it is possible to manufacture a high-quality plated product with high productivity.
[実施例]
 以下に本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
[Example]
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
 本明細書の実施例、比較例および参考例においては、親めっき層が形成された種々のめっき用部材、および親めっき層と対比される処理層が形成された比較例のめっき用部材に対して、以下に示す方法により、レジスト層の作成、及び無電解めっきを施した。 In the examples, comparative examples and reference examples of the present specification, various plating members on which a parent plating layer is formed and comparative plating members on which a treatment layer to be compared with the parent plating layer is formed. Then, a resist layer was prepared and electroless plating was performed by the following method.
[レジスト層の作成方法]
 めっき用部材の親めっき層が形成された面または処理層が形成された面に対し、レジスト材料(SUMIRESIST PFI-34A6、住友化学株式会社製)をスピンコートし、90℃にて30分間加熱(プリベーク)することにより、レジスト層を形成した。スピンコートの条件は1000rpmで10秒間であり、約1μmの厚さのレジスト層を形成した。 
[Method for creating resist layer]
A resist material (SUMIRESIST PFI-34A6, manufactured by Sumitomo Chemical Co., Ltd.) is spin-coated on the surface of the plating member on which the parent plating layer is formed or the surface on which the treatment layer is formed, and heated at 90 ° C. for 30 minutes ( A resist layer was formed by pre-baking. The spin coating conditions were 1000 rpm for 10 seconds, and a resist layer having a thickness of about 1 μm was formed.
 次いで、フォトマスクを介して、30mW/cmの強度の紫外線を6秒間露光し、110℃で30分間加熱(ポストベーク)した後に、2.38%TMAH溶液に5分間浸漬することにより、レジスト層にマスクパターンを現像し開口部を形成した。 Next, an ultraviolet ray having an intensity of 30 mW / cm 2 is exposed through a photomask for 6 seconds, heated at 110 ° C. for 30 minutes (post-baked), and then immersed in a 2.38% TMAH solution for 5 minutes. The mask pattern was developed on the layer to form openings.
[無電解めっき方法]
 レジスト層が形成されためっき用部材について、室温にて30秒間、超音波水洗を行った後に、無電解めっき用の触媒コロイド溶液(メルプレート アクチベーター7331、メルテックス社製)に、室温にて300秒間浸漬し、レジスト層の開口部に露出している親めっき層または処理層に触媒を付着させた。
[Electroless plating method]
About the member for plating in which the resist layer was formed, ultrasonic water washing was performed at room temperature for 30 seconds, and then the catalyst colloid solution for electroless plating (Melplate Activator 7331, manufactured by Meltex) was added at room temperature. It was immersed for 300 seconds, and the catalyst was attached to the parent plating layer or the treatment layer exposed at the opening of the resist layer.
 次いで、表面を水洗した後に、無電解めっきの触媒活性化剤(メルプレート PA-7340、メルテックス社製)に、室温にて300秒間浸漬し、レジスト層の開口部に付着している触媒を活性化させた。 Next, after washing the surface with water, the catalyst adhering to the opening of the resist layer was immersed in a catalyst activator for electroless plating (Melplate PA-7340, manufactured by Meltex) at room temperature for 300 seconds. Activated.
 次いで、表面を水洗した後に、無電解めっき液(メルプレート NI-867、メルテックス社製)に、73℃にて180秒間浸漬し、レジスト層の開口部に付着している触媒上にニッケルを析出させてニッケルめっきを行った。 Next, after rinsing the surface with water, it was immersed in an electroless plating solution (Melplate® NI-867, manufactured by Meltex) for 180 seconds at 73 ° C., and nickel was deposited on the catalyst adhering to the opening of the resist layer. Precipitation was performed and nickel plating was performed.
 次いで、表面を水洗した後に乾燥させ、残存するレジスト層を含む全面に、30mW/cmの強度の紫外線を2分間露光した後、50g/Lの濃度のNaOH水溶液に2分間浸漬することでレジスト層を除去し、めっき処理品の製造を行った。 Next, the surface is washed with water and dried, and the entire surface including the remaining resist layer is exposed to ultraviolet light having an intensity of 30 mW / cm 2 for 2 minutes, and then immersed in an aqueous NaOH solution having a concentration of 50 g / L for 2 minutes. The layer was removed, and a plated product was produced.
(参考例1)
 図7A、7Bは、50mm×50mm角のガラス板の表面に真空蒸着法によって形成した親めっき層または処理層を有するめっき用部材に対し、無電解めっきを施した参考例の結果を示す写真である。図7Aは、Al層上に無電解めっきを施した結果、図7Bは、SiO層上に無電解めっきを施した結果を示す写真である。
(Reference Example 1)
7A and 7B are photographs showing the results of a reference example in which electroless plating was applied to a plating member having a parent plating layer or a treatment layer formed on the surface of a 50 mm × 50 mm square glass plate by a vacuum deposition method. is there. FIG. 7A is a photograph showing the result of electroless plating on the Al 2 O 3 layer, and FIG. 7B is a photograph showing the result of electroless plating on the SiO 2 layer.
 なお、以下に示す写真において、文字や模様を表現している濃い色の部分(図中、符号Aで示す)が、無電解めっきによりめっき皮膜が形成されている部分である。 In the photographs shown below, dark colored parts (indicated by symbol A in the figure) expressing letters and patterns are parts where a plating film is formed by electroless plating.
 図7Aに示すように、Al層には金属めっきによるパターンが形成されているのに対し、図7Bに示すように、SiO層上には金属めっきによるパターンが形成されていない。 As shown in FIG. 7A, a pattern by metal plating is formed on the Al 2 O 3 layer, whereas a pattern by metal plating is not formed on the SiO 2 layer as shown in FIG. 7B.
 図8は、図7Aに示すAl層上に無電解めっきを施した後の拡大写真であり、L/Sで3μm/3μmまで良好なパターンが形成できたことを確認した。 FIG. 8 is an enlarged photograph after electroless plating is performed on the Al 2 O 3 layer shown in FIG. 7A, and it was confirmed that a good pattern could be formed up to 3 μm / 3 μm by L / S.
(実施例1)
 本実施例においては、アルミナ粒子としてコロイダルアルミナ粒子(Aldrich社製)を用い、バインダーとして紫外線硬化型アクリル樹脂(アートレジンUN-3220HA、根上工業株式会社製)を用いた親めっき層を有するめっき用部材を作成した。得られためっき用部材のサンプルについて無電解めっきを施し、親めっき層の密着力と透明性とを評価した。
(Example 1)
In this embodiment, colloidal alumina particles (manufactured by Aldrich) are used as the alumina particles, and a parent plating layer using an ultraviolet curable acrylic resin (Art Resin UN-3220HA, manufactured by Negami Kogyo Co., Ltd.) as the binder is used. A member was created. The sample of the obtained member for plating was subjected to electroless plating, and the adhesion and transparency of the parent plating layer were evaluated.
 図9は、本実施例で用いたコロイダルアルミナ粒子のTEM像であり、別途、動的光散乱法を測定原理とする測定器を用いて、体積平均粒子径が20nm程度の粒状ナノ粒子であることを確認した。 FIG. 9 is a TEM image of the colloidal alumina particles used in this example, and is a granular nanoparticle having a volume average particle diameter of about 20 nm using a separate measuring instrument based on the dynamic light scattering method. It was confirmed.
 本実施例においては、バインダーに対するアルミナの濃度が異なる塗布液を複数調整し、50mm×50mm角のPET基板に塗布して乾燥させた後に、紫外線を照射することにより硬化させ、複数の親めっき層を形成した。 In this example, a plurality of coating solutions having different alumina concentrations relative to the binder are prepared, applied to a 50 mm × 50 mm square PET substrate, dried, and then cured by irradiating with ultraviolet rays, and a plurality of parent plating layers Formed.
 詳しくは、基板上に塗布液をスピンコート(3000rpm×30秒)にて塗布して乾燥させた後、紫外線照射装置(マルチライト、ウシオ電機株式会社製)を用いて、365nmの紫外線を、放射照度:37mW/cm、照射時間:40秒(照射量:1480mJ/cm)の条件で照射した。その後、120℃で2分間加熱して親めっき層を形成した。 Specifically, the coating liquid is applied onto a substrate by spin coating (3000 rpm × 30 seconds) and dried, and then ultraviolet rays of 365 nm are emitted using an ultraviolet irradiation device (Multilight, manufactured by USHIO INC.). Irradiation was performed under the conditions of illuminance: 37 mW / cm 2 and irradiation time: 40 seconds (irradiation amount: 1480 mJ / cm 2 ). Then, it heated at 120 degreeC for 2 minute (s), and formed the parent plating layer.
 塗布液におけるバインダーに対するアルミナの濃度は体積比により規定し(体積%)、アルミナおよびバインダーの密度を考慮して調整した。本実施例においては、アルミナの密度として3.97g/cm、バインダーの密度として1.19g/cmを用いて、これらの値から重量換算し、アルミナの2質量%メタノール分散液と、バインダーの2質量%メタノール溶液とを混合することで、塗布液を調整した。また、塗布液には、バインダーに対し3質量%の重合開始剤(irgacure1173、チバスペシャリティケミカルズ社製)を添加して用いた。 The density | concentration of the alumina with respect to the binder in a coating liquid was prescribed | regulated by the volume ratio (volume%), and it adjusted considering the density of the alumina and the binder. In this example, the alumina density was 3.97 g / cm 3 and the binder density was 1.19 g / cm 3, which was converted to weight from these values. The coating solution was prepared by mixing with a 2% by mass methanol solution. In addition, 3% by mass of a polymerization initiator (irgacure 1173, manufactured by Ciba Specialty Chemicals) was added to the coating solution and used.
 本実施例においては、バインダーに対するアルミナの濃度が、0体積%、5体積%、10体積%、30体積%、50体積%、70体積%、90体積%、99体積%となる8水準の塗布液を調整し、親めっき層を形成した。以下の説明においては、バインダーに対するアルミナの濃度を「アルミナ含有率」と称することがある。 In this example, the application of 8 levels in which the concentration of alumina with respect to the binder is 0% by volume, 5% by volume, 10% by volume, 30% by volume, 50% by volume, 70% by volume, 90% by volume, and 99% by volume. The solution was adjusted to form a parent plating layer. In the following description, the concentration of alumina with respect to the binder may be referred to as “alumina content”.
 図10A~10Cは、親めっき層の上に、無電解ニッケル-リン(NiP)めっきを施して作成した金属配線の写真であり、図10A、10Bは、アルミナ含有率5体積%の親めっき層サンプルについて示す写真、図10Cはアルミナ含有率0体積%の親めっき層サンプルについて示す写真である。 FIGS. 10A to 10C are photographs of metal wiring prepared by electroless nickel-phosphorus (NiP) plating on the parent plating layer. FIGS. 10A and 10B are parent plating layers having an alumina content of 5% by volume. The photograph shown about a sample and FIG. 10C are photographs shown about the parent plating layer sample of alumina content rate 0 volume%.
 図10Aに示すように、本実施例の親めっき層に対しては、良好に金属めっきによるパターンが形成できていることがわかった。また、図10Bに示すように、本実施例のめっき処理品では、支持体ごと全体を湾曲させても、金属めっきが剥離することなく、形成された金属めっきは良好に密着していた。なお、アルミナ含有量が10体積%~99体積%である他のサンプルについても同様の結果であった。 As shown in FIG. 10A, it was found that a pattern by metal plating was successfully formed on the parent plating layer of this example. In addition, as shown in FIG. 10B, in the plated product of this example, even when the entire support was curved, the formed metal plating adhered well without peeling off the metal plating. Similar results were obtained for other samples having an alumina content of 10% to 99% by volume.
 対して、図10Cに示すように、アルミナを含有しない親めっき層(すなわち、バインダーのみで形成された親めっき層)では、めっきが親めっき層上に付着していないことが分かった。 On the other hand, as shown in FIG. 10C, it was found that in the parent plating layer not containing alumina (that is, the parent plating layer formed only with the binder), the plating did not adhere to the parent plating layer.
 図11は、各アルミナ含有量の親めっき層上に無電解めっきを施した後の拡大写真であり、L/S=5μm/5μmの配線めっき性能の評価結果を示す写真である。図に示すように、アルミナ含有率が5体積%以上のサンプルにおいて良好な配線が形成されたことが分かる。 FIG. 11 is an enlarged photograph after electroless plating is performed on the parent plating layer having each alumina content, and is a photograph showing an evaluation result of the wiring plating performance of L / S = 5 μm / 5 μm. As shown in the figure, it can be seen that a good wiring was formed in a sample having an alumina content of 5% by volume or more.
 図12Aは、各めっき処理品における金属めっきを施していない部分での透光性の評価結果を示す図であり、d線(587nm)に対する透過率を示している。図に示すように、5体積%以上のアルミナ含有率では透過率が98%以上であり、殆ど透過率の減少が無いことがわかる。 FIG. 12A is a diagram showing the evaluation results of translucency in a portion where each metal-plated product is not subjected to metal plating, and shows the transmittance with respect to d-line (587 nm). As shown in the figure, it can be seen that when the alumina content is 5% by volume or more, the transmittance is 98% or more, and there is almost no decrease in the transmittance.
 また、図12Bは、アルミナ含有率30体積%で作製した親めっき層の、透光性の波長依存性を示す。本実施例で使用したアルミナ粒子は、平均粒径(体積平均)が20nm程度であり、粒径が可視光波長よりも小さいため光の散乱が極めて少なく、可視光領域の波長の光であれば短波長領域においても透過率の減少が極めて少ないことが分かった。 FIG. 12B shows the wavelength dependence of translucency of a parent plating layer produced with an alumina content of 30% by volume. The alumina particles used in this example have an average particle size (volume average) of about 20 nm, and since the particle size is smaller than the visible light wavelength, light scattering is extremely small, so long as the light has a wavelength in the visible light region. It was found that the transmittance decrease is very small even in the short wavelength region.
 図13は、全面に無電解めっきを施しためっき処理品について、めっき後の碁盤目テープ試験評価の評価結果を示す写真である。評価は、JISK5600-5-6(塗料一般試験方法-第5部:塗膜の機械的性質-第6節:付着性(クロスカット法))に準拠して行った。 FIG. 13 is a photograph showing an evaluation result of a cross-cut tape test evaluation after plating for a plated product having electroless plating applied to the entire surface. The evaluation was performed in accordance with JISK5600-5-6 (General coating test method-Part 5: Mechanical properties of coating film-Section 6: Adhesion (cross-cut method)).
 図に示すように、アルミナ含有率が5体積%~99体積%で十分な密着力が得られており、めっき皮膜の剥離が発生していないことがわかる。 As shown in the figure, it can be seen that sufficient adhesion was obtained when the alumina content was 5% to 99% by volume, and no plating film peeling occurred.
 図14は、図11から図13に示した評価結果をまとめた表である。評価の結果、本実施例においては、親めっき層におけるアルミナ含有率は5体積%以上99体積%以下であると良いことが分かった。アルミナ含有率が99体積%(すなわち、バインダー含有率1体積%)であっても、本実施例における親めっき層は基板への密着力を十分に発現することができ、剥離しにくい無電解めっきが可能であることが分かった。 FIG. 14 is a table summarizing the evaluation results shown in FIGS. As a result of the evaluation, it was found that the alumina content in the parent plating layer is preferably 5% by volume or more and 99% by volume or less in this example. Even when the alumina content is 99% by volume (that is, the binder content is 1% by volume), the parent plating layer in this example can sufficiently exhibit adhesion to the substrate and is difficult to peel off. Was found to be possible.
(実施例2)
 本実施例においては、50mm×50mm角のPET基板に、実施例1と同様の方法にて、アルミナ含有率が5体積%の塗布液を塗布して乾燥させた後、フォトマスクを介して365nmの紫外線を、放射照度:30mW/cm、照射時間:30秒(照射量:900mJ/cm)の条件で照射した。次いで、120℃で2分間加熱した後、基板全体をアセトンに浸漬しながら超音波処理を行って現像し、親めっき層を形成した。浸漬時間は10秒間であった。
(Example 2)
In this example, a coating solution having an alumina content of 5% by volume was applied to a 50 mm × 50 mm square PET substrate in the same manner as in Example 1 and dried, and then 365 nm via a photomask. Were irradiated under the conditions of irradiance: 30 mW / cm 2 and irradiation time: 30 seconds (irradiation amount: 900 mJ / cm 2 ). Next, after heating at 120 ° C. for 2 minutes, the whole substrate was developed by sonication while being immersed in acetone to form a parent plating layer. The immersion time was 10 seconds.
 図15には、L/S=10μm/10μmのマスクで紫外線照射を行い硬化した親めっき層の光学顕微鏡像を示す。観察の結果、紫外線を照射した部分にのみ、選択的に親めっき層が形成されていることが確認された。 FIG. 15 shows an optical microscope image of the parent plating layer cured by ultraviolet irradiation with a mask of L / S = 10 μm / 10 μm. As a result of observation, it was confirmed that a parent plating layer was selectively formed only on the portion irradiated with ultraviolet rays.
(実施例3)
 本実施例においては、まず、50mm×50mm角のPET基板に、1質量%エポキシシランカップリング剤をスピンコートで塗布して乾燥させ、120℃で5分間加熱して、表面処理を行った。
(Example 3)
In this example, first, a 1% by mass epoxysilane coupling agent was applied to a 50 mm × 50 mm square PET substrate by spin coating, dried, and heated at 120 ° C. for 5 minutes for surface treatment.
 次いで、実施例2と同様の方法にて、下記の塗布液を塗布して乾燥させた後、フォトマスクを介して365nmの紫外線を、放射照度:30mW/cm、照射時間:30秒(照射量:900mJ/cm)の条件で照射した。 Next, after applying the following coating solution in the same manner as in Example 2 and drying, 365 nm ultraviolet rays were applied through a photomask, the irradiance: 30 mW / cm 2 , and the irradiation time: 30 seconds (irradiation (Amount: 900 mJ / cm 2 )
 塗布液は、20質量%コロイダルアルミナ(Aldrich社製)0.1gと、バインダーの10質量%メタノール溶液0.35gと、バインダーの10質量%PGMEA溶液0.35gと、を混合して調整した。バインダーには、紫外線硬化型アクリル樹脂(アートレジンUN-3220HA、根上工業株式会社製)を用い、上述の重合開始剤を3質量%添加した。 The coating solution was prepared by mixing 0.1 g of 20 mass% colloidal alumina (manufactured by Aldrich), 0.35 g of 10 mass% methanol solution of binder, and 0.35 g of 10 mass% PGMEA solution of binder. As the binder, an ultraviolet curable acrylic resin (Art Resin UN-3220HA, manufactured by Negami Kogyo Co., Ltd.) was used, and 3% by mass of the above polymerization initiator was added.
 次いで、120℃で2分間加熱した後、基板全体をアセトンに浸漬しながら10秒間超音波処理を行って現像し、親めっき層を形成した。 Next, after heating at 120 ° C. for 2 minutes, the whole substrate was subjected to ultrasonic treatment for 10 seconds while being immersed in acetone to form a parent plating layer.
 次いで、120℃で30分間加熱した後、上述の方法にて無電解めっきを行った。 Then, after heating at 120 ° C. for 30 minutes, electroless plating was performed by the method described above.
 図16Aは、1mm幅の親めっき層に対して無電解めっきを施して得られた金属配線についての写真であり、図16Bは、得られた金属配線の光学顕微鏡像である。 FIG. 16A is a photograph of the metal wiring obtained by performing electroless plating on the 1 mm-wide parent plating layer, and FIG. 16B is an optical microscope image of the obtained metal wiring.
 観察の結果、選択的な紫外線照射により形成した親めっき層に沿って金属配線が形成され(図16A)、金属配線の表面に荒れや欠落部分(すなわち、めっきされなかった部分)も見あたらなかった。従って、レジスト層を形成することなく、パターニングされた金属配線を作成できることが確認された。 As a result of the observation, metal wiring was formed along the parent plating layer formed by selective ultraviolet irradiation (FIG. 16A), and no rough or missing portions (that is, portions that were not plated) were found on the surface of the metal wiring. . Therefore, it was confirmed that a patterned metal wiring can be created without forming a resist layer.
(実施例4)
 本実施例においては、まず、50mm×50mm角のPET基板に、実施例1と同様の方法にて、アルミナ含有率5体積%の親めっき層を全面に形成し、上述の方法でレジスト層を作成した後、選択的に無電解めっきを行い、NiP配線(金属配線)を作成した。以下の説明では、この金属配線を「第1金属配線」と称する。
(Example 4)
In this example, first, a parent plating layer having an alumina content of 5% by volume is formed on the entire surface of a 50 mm × 50 mm square PET substrate by the same method as in Example 1, and the resist layer is formed by the above-described method. After creation, electroless plating was selectively performed to create NiP wiring (metal wiring). In the following description, this metal wiring is referred to as “first metal wiring”.
 塗布液は、コロイダルアルミナ(Aldrich社製)の2質量%メタノール分散液0.25gと、バインダーの2質量%メタノール溶液1.43gと、を混合したものに、更に1-プロパノール1gを添加して混合することで調整した。バインダーには、紫外線硬化型アクリル樹脂(アートレジンUN-3220HA、根上工業株式会社製)を用いた。 The coating liquid was prepared by mixing 0.25 g of a 2% by mass methanol dispersion of colloidal alumina (manufactured by Aldrich) and 1.43 g of a 2% by mass methanol solution of a binder, and further adding 1 g of 1-propanol. It adjusted by mixing. As the binder, an ultraviolet curable acrylic resin (Art Resin UN-3220HA, manufactured by Negami Industrial Co., Ltd.) was used.
 図17Aは、作成した第1金属配線の写真であり、図17Bは第1金属配線の拡大写真である。凹凸の少ない平坦な配線が形成しているのが分かる。 FIG. 17A is a photograph of the created first metal wiring, and FIG. 17B is an enlarged photograph of the first metal wiring. It can be seen that a flat wiring with few irregularities is formed.
 次いで、PET基板において第1金属配線が形成された側の全面に、シランカップリング剤(KBE903、信越シリコーン社製)をスピンコートで塗布した。 Next, a silane coupling agent (KBE903, manufactured by Shin-Etsu Silicone) was applied by spin coating on the entire surface of the PET substrate where the first metal wiring was formed.
 次いで、実施例2と同様の方法にて、アルミナ含有率5体積%の塗布液を塗布し、フォトマスクを介して紫外線を照射して選択的に硬化させ、120℃で1分間加熱した後に、アセトンで現像して選択的に親めっき層を形成した。以下の説明では、選択的に形成した親めっき層を「選択的親めっき層」と称する。 Then, in the same manner as in Example 2, after applying a coating solution having an alumina content of 5% by volume, selectively irradiating with ultraviolet rays through a photomask and heating at 120 ° C. for 1 minute, Development with acetone selectively formed a parent plating layer. In the following description, the selectively formed parent plating layer is referred to as a “selective parent plating layer”.
 図18Aは、選択的親めっき層を作成した基板の写真であり、図18Bは、図18Aの破線で囲まれた領域内の選択的親めっき層の拡大写真である。観察の結果、選択的親めっき層ではフィラーが十分に分散しており、凝集体などは確認されなかった。
また、段差測定機で選択的親めっき層の厚さを測定したところ、膜厚は350nm程度であった。
FIG. 18A is a photograph of the substrate on which the selective parent plating layer is formed, and FIG. 18B is an enlarged photograph of the selective parent plating layer in the region surrounded by the broken line in FIG. 18A. As a result of the observation, the filler was sufficiently dispersed in the selective parent plating layer, and aggregates and the like were not confirmed.
Moreover, when the thickness of the selective parent plating layer was measured with a level difference measuring device, the film thickness was about 350 nm.
 次いで、PET基板において選択的親めっき層が形成された側の全面に、上述の方法にてレジスト層の作成と、無電解めっきとを行うことにより、選択的親めっき層上にパターニングされた金属配線(NiP配線)を形成した。加えて、レジスト剥離後に、無電解金(Au)めっきを行うことで、金属配線の表面をAuで覆うことが出来た。以下の説明では、このNiP/Au配線を「第2金属配線」と称する。 Next, the metal patterned on the selective parent plating layer by performing the formation of the resist layer and the electroless plating on the entire surface of the PET substrate where the selective parent plating layer is formed by the above-described method. A wiring (NiP wiring) was formed. In addition, after the resist was stripped, the surface of the metal wiring could be covered with Au by performing electroless gold (Au) plating. In the following description, this NiP / Au wiring is referred to as “second metal wiring”.
 図19は、上記の手順で作製した多層配線構造の断面SEM像である。第1金属配線と第2金属配線との間の導通をテスターで計測したところ、リーク電流は確認されなかった。従って、本実施例の親めっき層は絶縁層としても使用可能であることが確認された。 FIG. 19 is a cross-sectional SEM image of the multilayer wiring structure produced by the above procedure. When continuity between the first metal wiring and the second metal wiring was measured with a tester, no leakage current was confirmed. Therefore, it was confirmed that the parent plating layer of this example can also be used as an insulating layer.
 以上の結果より、本発明の有用性が確かめられた。 From the above results, the usefulness of the present invention was confirmed.
 2…支持体、3,13,23,33…親めっき層(下地膜)、5,25,35…触媒(無電解めっき用触媒)、16…金属配線(導電部材)、ES…無電解めっき液。 2 ... support, 3, 13, 23, 33 ... parent plating layer (underlayer), 5, 25, 35 ... catalyst (electroless plating catalyst), 16 ... metal wiring (conductive member), ES ... electroless plating liquid.

Claims (13)

  1.  光透過性を有する支持体に、光透過性を有する基材と、平均粒径が100nm以下のアルミナ粒子と、を含む下地膜を選択的に形成することと、
     前記下地膜の表面の少なくとも一部に無電解めっき用触媒を担持させることと、
     前記下地膜の表面に無電解めっき液を接触させ無電解めっきを行うことと、を有する配線パターンの製造方法。
    Selectively forming a base film including a light-transmitting base material and alumina particles having an average particle size of 100 nm or less on a light-transmitting support;
    Carrying an electroless plating catalyst on at least a part of the surface of the base film;
    A method of manufacturing a wiring pattern comprising: performing electroless plating by bringing an electroless plating solution into contact with the surface of the base film.
  2.  前記基材が絶縁性を有し、
     前記支持体に設けられた導電部材に重なって前記下地膜を形成することと、
     前記下地膜の表面であって前記導電部材と接しない位置に、前記無電解めっき用触媒を担持させることと、を有する請求項1に記載の配線パターンの製造方法。
    The substrate has an insulating property;
    Forming the base film overlying a conductive member provided on the support;
    The wiring pattern manufacturing method according to claim 1, further comprising: supporting the electroless plating catalyst at a position on the surface of the base film that is not in contact with the conductive member.
  3.  前記基材は光硬化性樹脂であり、
     前記支持体に前記基材の前駆体と前記アルミナ粒子とを含む溶液を配置した後に、選択的に光照射を行うことで、前記下地膜を形成する請求項1または2に記載の配線パターンの製造方法。
    The substrate is a photocurable resin;
    3. The wiring pattern according to claim 1, wherein the base film is formed by selectively irradiating light after arranging a solution containing the precursor of the base material and the alumina particles on the support. Production method.
  4.  前記光硬化性樹脂が、紫外線硬化性樹脂である請求項3に記載の配線パターンの製造方法。 4. The method of manufacturing a wiring pattern according to claim 3, wherein the photocurable resin is an ultraviolet curable resin.
  5.  前記下地膜の表面全面に前記無電解めっき用触媒を担持させ、前記下地膜の表面全面に無電解めっきを行う請求項1から4のいずれか1項に記載の配線パターンの製造方法。 The wiring pattern manufacturing method according to any one of claims 1 to 4, wherein the electroless plating catalyst is supported on the entire surface of the base film, and electroless plating is performed on the entire surface of the base film.
  6.  前記支持体の形成材料が、非金属材料である請求項1から5のいずれか1項に記載の配線パターンの製造方法。 The method for producing a wiring pattern according to any one of claims 1 to 5, wherein a material for forming the support is a non-metallic material.
  7.  前記支持体の形成材料が、樹脂材料である請求項1から5のいずれか1項に記載の配線パターンの製造方法。 The method for manufacturing a wiring pattern according to any one of claims 1 to 5, wherein a material for forming the support is a resin material.
  8.  前記支持体が、可撓性を有する請求項7に記載の配線パターンの製造方法。 The method for manufacturing a wiring pattern according to claim 7, wherein the support has flexibility.
  9.  光透過性を有する支持体と、該支持体の表面に選択的に形成された下地膜と、を有し、
     前記下地膜は、光透過性を有する基材と、平均粒径が100nm以下のアルミナ粒子と、を有するめっき用部材。
    A support having light permeability, and a base film selectively formed on the surface of the support,
    The said base film is a member for plating which has a base material which has a light transmittance, and an alumina particle with an average particle diameter of 100 nm or less.
  10.  前記基材の形成材料が、紫外線硬化性樹脂である請求項9に記載のめっき用部材。 The member for plating according to claim 9, wherein the base material is an ultraviolet curable resin.
  11.  前記支持体の形成材料が、非金属材料である請求項9または10に記載のめっき用部材。 The member for plating according to claim 9 or 10, wherein the forming material of the support is a non-metallic material.
  12.  前記支持体の形成材料が、樹脂材料である請求項9または10に記載のめっき用部材。 The member for plating according to claim 9 or 10, wherein a forming material of the support is a resin material.
  13.  前記支持体が、可撓性を有する請求項12に記載のめっき用部材。 The member for plating according to claim 12, wherein the support has flexibility.
PCT/JP2012/070206 2011-08-15 2012-08-08 Method for manufacturing wiring pattern, and member for plating WO2013024767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011177423 2011-08-15
JP2011-177423 2011-08-15

Publications (1)

Publication Number Publication Date
WO2013024767A1 true WO2013024767A1 (en) 2013-02-21

Family

ID=47715087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/070206 WO2013024767A1 (en) 2011-08-15 2012-08-08 Method for manufacturing wiring pattern, and member for plating

Country Status (3)

Country Link
JP (1) JPWO2013024767A1 (en)
TW (1) TW201313951A (en)
WO (1) WO2013024767A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197143A (en) * 2013-03-29 2014-10-16 Jsr株式会社 Conductive pattern forming method, resin composition, conductive pattern, and electronic circuit
JP2015089951A (en) * 2013-11-05 2015-05-11 キヤノン・コンポーネンツ株式会社 Article with metallic film and production method thereof, and wiring board

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150353A (en) * 2004-11-26 2006-06-15 Rohm & Haas Electronic Materials Llc Uv-curable catalyst composition
JP2008208389A (en) * 2007-02-23 2008-09-11 Kaneka Corp Material for electroless plating, laminate and printed wiring board
JP2009068106A (en) * 2007-08-22 2009-04-02 Osaka Prefecture Method for manufacturing polymer base material having metallic film, and polymer base material
JP2010173170A (en) * 2009-01-29 2010-08-12 Toppan Printing Co Ltd Card

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006150353A (en) * 2004-11-26 2006-06-15 Rohm & Haas Electronic Materials Llc Uv-curable catalyst composition
JP2008208389A (en) * 2007-02-23 2008-09-11 Kaneka Corp Material for electroless plating, laminate and printed wiring board
JP2009068106A (en) * 2007-08-22 2009-04-02 Osaka Prefecture Method for manufacturing polymer base material having metallic film, and polymer base material
JP2010173170A (en) * 2009-01-29 2010-08-12 Toppan Printing Co Ltd Card

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014197143A (en) * 2013-03-29 2014-10-16 Jsr株式会社 Conductive pattern forming method, resin composition, conductive pattern, and electronic circuit
JP2015089951A (en) * 2013-11-05 2015-05-11 キヤノン・コンポーネンツ株式会社 Article with metallic film and production method thereof, and wiring board

Also Published As

Publication number Publication date
JPWO2013024767A1 (en) 2015-03-05
TW201313951A (en) 2013-04-01

Similar Documents

Publication Publication Date Title
JP5924342B2 (en) Method for manufacturing transistor
JP7375294B2 (en) Method for manufacturing conductive substrate, electronic device, and display device
JP2004012635A (en) Substrate compositely mounted with photoelectric wiring and method for manufacturing the same
JP5891814B2 (en) Pattern structure manufacturing method and pattern forming substrate used therefor
TW201911983A (en) Conductive substrate, electronic device and display device
WO2015129799A1 (en) Wiring pattern production method and transistor production method
WO2013024767A1 (en) Method for manufacturing wiring pattern, and member for plating
KR20040014996A (en) Light scattering reflection substrate-use photosensitive resin composition, light scattering reflection substrate, and production methods therefor
US20110008548A1 (en) Process for manufacturing conductive tracks
JP5689609B2 (en) Light transmissive electromagnetic wave absorber
JP2013189661A (en) Method for producing laminate, and laminate
WO2014106955A1 (en) Composition, laminate, method for producing laminate, transistor, and method for producing transistor
JP2012057210A (en) Plating member, method of producing plated product, and display device
JP5075157B2 (en) Wiring substrate manufacturing method and wiring substrate obtained by the manufacturing method
US10423065B2 (en) Pattern forming method and pattern structural body
JP4663206B2 (en) Method for manufacturing conductive pattern forming body
JP3922378B2 (en) Wiring board manufacturing method
JP4266597B2 (en) Method for manufacturing conductive pattern forming body
JP5835633B1 (en) Method for producing conductive substrate
WO2023145714A1 (en) Transparent conductive member, touch panel, antenna element, and transparent heater
JP2007324255A (en) Resist film forming method and apparatus thereof
JP2009263404A (en) Paste composition and resin composition using the same
JP3441057B2 (en) Porous photoreceptor and method for producing the same
JP2009081441A (en) Method of manufacturing conductive pattern-formed body
JP2012109323A (en) Method for forming pattern of film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823711

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823711

Country of ref document: EP

Kind code of ref document: A1