WO2013021971A1 - 有機光電変換素子、およびそれを用いた有機太陽電池 - Google Patents

有機光電変換素子、およびそれを用いた有機太陽電池 Download PDF

Info

Publication number
WO2013021971A1
WO2013021971A1 PCT/JP2012/069986 JP2012069986W WO2013021971A1 WO 2013021971 A1 WO2013021971 A1 WO 2013021971A1 JP 2012069986 W JP2012069986 W JP 2012069986W WO 2013021971 A1 WO2013021971 A1 WO 2013021971A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
electrode
photoelectric conversion
carbon atoms
Prior art date
Application number
PCT/JP2012/069986
Other languages
English (en)
French (fr)
Inventor
伊東 宏明
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to US14/237,850 priority Critical patent/US9871216B2/en
Priority to EP12822318.7A priority patent/EP2744005B1/en
Priority to JP2013528021A priority patent/JP5928469B2/ja
Publication of WO2013021971A1 publication Critical patent/WO2013021971A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/04Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/78Benzo [b] furans; Hydrogenated benzo [b] furans
    • C07D307/79Benzo [b] furans; Hydrogenated benzo [b] furans with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
    • C07D307/80Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/74Benzo[b]pyrans, hydrogenated in the carbocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • H10K85/146Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE poly N-vinylcarbazol; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention is an organic photoelectric conversion element having a transparent first electrode, a power generation layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and a second electrode on a transparent substrate
  • the power generation layer is a bulk heterojunction type power generation layer containing a p-type organic semiconductor material and an n-type organic semiconductor material, and further a compound represented by the above general formula (I) or (II) (hereinafter referred to as an antioxidant)
  • Organic photoelectric conversion that is characterized by containing the above-mentioned compounds in the power generation layer, improving the conversion efficiency by improving the morphology, and at the same time suppressing the short-circuit current (Jsc) attenuation during light irradiation
  • Jsc short-circuit current
  • the organic photoelectric conversion element 10 has a transparent first electrode 12 on a transparent substrate 11, a power generation layer 14 on the first electrode 12, and a second electrode on the power generation layer 14. 13
  • the transparent substrate 11 and the first electrode 12 are transparent, and light used for photoelectric conversion enters from the transparent substrate 11 and the first electrode 12 in FIG. 1 and reaches the power generation layer 14.
  • the power generation layer 14 is a layer that converts light energy into electrical energy, and contains a p-type organic semiconductor material and an n-type organic semiconductor material.
  • the p-type organic semiconductor material functions relatively as an electron donor (donor), and the n-type organic semiconductor material functions relatively as an electron acceptor.
  • the electron donor and the electron acceptor are “an electron donor in which, when light is absorbed, electrons move from the electron donor to the electron acceptor to form a hole-electron pair (charge separation state)”.
  • an electron acceptor which does not simply donate or accept electrons like an electrode, but donates or accepts electrons by a photoreaction.
  • the generated electric charge is generated between the electron acceptors due to the internal electric field, for example, when the work functions of the first electrode 12 and the second electrode 13 are different, due to the potential difference between the first electrode 12 and the second electrode 13. And the holes pass between the electron donors and are carried to different electrodes, and a photocurrent is detected.
  • Figure 2 shows an example of another configuration.
  • the first electrode 12 and the first power generation layer 14 ′ are stacked on the substrate 11, the charge recombination layer 15 is stacked, the second power generation layer 16, and then the second electrode 13.
  • the tandem configuration can be obtained.
  • the second power generation layer 16 may be a layer that absorbs the same spectrum as the absorption spectrum of the first power generation layer 14 ′ or a layer that absorbs a different spectrum, but is preferably a layer that absorbs a different spectrum.
  • R 1 represents a substituted or unsubstituted aryl group
  • Z 1 and Z 2 each represent a substituted or unsubstituted alkylene group having 1 to 3 carbon atoms.
  • the total number of carbon atoms of the alkylene group represented by Z 1 and Z 2 is 3-6.
  • A represents an oxygen atom
  • NZ 3 represents an oxygen atom
  • S (O) n5 represents an alkyl group or an aryl group.
  • n5 represents an integer of 0-2.
  • Examples of the aryl group represented by R 1 include a phenyl group, a 1-naphthyl group, and a pyridinyl group, and these aryl groups may have a substituent.
  • Examples of the substituent include alkyl groups having 1 to 20 carbon atoms (for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, tetradecyl group).
  • acyl having a carbon number of 2 ⁇ 20 (-COR b) group e.g., acetyl group, ethylcarbonyl group, propyl group, pentyl group, a cyclohexyl group, Chi ylcarbonyl group, 2-ethylhexyl group, a dodecyl group, a phenyl group, naphthyl group, pyridyl group, etc.
  • acyloxy carbon atoms 2 ⁇ 20 (-OCOR b) group alkylcarbonyloxy group
  • alkylcarbonyloxy group e.g., An acetyloxy group, an ethylcarbonyloxy group, a butylcarbonyloxy group, an octylcarbonyloxy group, a dodecylcarbonyloxy group, a tridecylcarbonyloxy group, a phenylcarbonyloxy group
  • an amide
  • substituents may be further substituted with a substituted or unsubstituted alkyl group or alkoxy group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group or aryloxy group having 6 to 20 carbon atoms.
  • the substituent is an alkyl group having 1 to 20 carbon atoms.
  • a halogen atom an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, a hydroxyalkyl group having 1 to 20 carbon atoms, or an amino group having 0 to 20 carbon atoms is preferable. More preferably, it is an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an amino group having 0 to 20 carbon atoms.
  • an alkyl group having 1 to 20 carbon atoms for example, methyl group, ethyl group, propyl group, isopropyl group, tert-butyl group, pentyl group, hexyl group, octyl group, dodecyl group, tridecyl group, Tetradecyl group, pentadecyl group, etc.
  • cycloalkyl group having 4 to 20 carbon atoms eg, cyclopentyl group, cyclohexyl group, etc.
  • alkenyl group having 2 to 20 carbon atoms eg, vinyl group, allyl group, etc.
  • carbon number 2 Alkoxy groups such as -20 alkynyl groups (eg, ethynyl group, propargyl group, etc.), aryl groups having 6-20 carbon atoms (eg, phenyl group, 4-dodecyloxyphenyl group, 4- (2-ethylhex
  • A represents an oxygen atom, NZ 3 , or S (O) n5 , preferably S (O) n5 .
  • the alkyl group represented by Z 3 represents, for example, a linear or branched alkyl group having 1 to 24 carbon atoms
  • the aryl group represents, for example, a phenyl group. It may have a substituent.
  • the substituent is preferably an alkyl group having 1 to 20 carbon atoms or an alkoxy group.
  • n5 represents an integer of 0 to 2, and is preferably 2.
  • substituents may be further substituted with a substituted or unsubstituted alkyl group or alkoxy group having 1 to 20 carbon atoms, or a substituted or unsubstituted aryl group or aryloxy group having 6 to 20 carbon atoms.
  • the substituent is an alkyl group having 1 to 20 carbon atoms.
  • R 2 and R 3 each represents an alkyl group, an alkoxy group, an amino group, a thioether group, an ester group or an alkylcarbonyloxy group. Further, an alkoxy group having 1 to 20 carbon atoms is more preferable.
  • M5 and l5 represent an integer of 0 to 4, preferably an integer of 0 to 2, m5 is more preferably 0, and l5 is more preferably 1.
  • R 4 represents a hydrogen atom, a substituted or unsubstituted alkyl group or a trialkylsilyl group.
  • examples of R 4 include a hydrogen atom, a carbon number of 1 Or an alkyl group having ⁇ 20 (for example, methyl, ethyl, octyl, lauryl, etc.) or a trialkylsilyl group having 1 to 20 carbon atoms (for example, a trimethylsilyl group, dimethylpropylsilyl group, triethylsilyl group, etc.).
  • examples of R 5 , R 6 , R 7 , R 8 and R 9 include a hydrogen atom and an alkyl group having 1 to 20 carbon atoms (for example, methyl, ethyl, octyl, lauryl, etc.) ), An alkoxy group having 1 to 20 carbon atoms (for example, methoxy, ethoxy, butyloxy, octyloxy, etc.), an aryl group (for example, phenyl, naphthyl, etc.), an aryloxy group having 6 to 20 carbon atoms (for example, phenoxy, naphthoxy, etc.) Etc.), an alkenyl group having 2 to 20 carbon atoms (for example, octenyl), an alkenyloxy group having 2 to 20 carbon atoms (for example, octenyloxy etc.), an acylamino group having 2 to 20 carbon atoms (for example, acetylamino
  • two groups of R 4 to R 9 may be linked to form a substituted or unsubstituted 5- to 6-membered ring (eg, indane, spiroindane, chroman, spirochroman ring, etc.).
  • two groups of R 4 to R 9 are linked to form a heterocyclic ring such as oxolane (tetrahydrofuran) or oxane (tetrahydropyran), and the phenyl ring represented by the general formula (II) And condensed form.
  • the 5- to 6-membered ring (heterocycle) may further have a substituent.
  • substituents examples include an alkyl group having 1 to 20 carbon atoms, an alkoxy group, an aryl group having 6 to 20 carbon atoms, Or they may further form a ring.
  • the concept of a substituent that a 5- to 6-membered ring (heterocycle) has is a spiro atom in which the carbon constituting the 5- to 6-membered ring (heterocycle) further forms a ring by sharing the carbon with other rings. Other rings are also included.
  • substituent when the 5- to 6-membered ring (heterocycle) has a spiro atom include tetrahydropyran and chroman. Some of these substituents are shared with a 5- to 6-membered ring (heterocycle). Preferred forms of these forms are shown in the following formula (II-1), (II-2) or (II-3).
  • R 6 and R 8 are preferably not alkoxy groups.
  • the concept of a substituent that a 5- to 6-membered ring has is a ring in which the carbon constituting the 5- to 6-membered ring is a spiro atom that forms a ring by sharing carbon with another ring.
  • Examples of the substituent when the 5- to 6-membered ring has a spiro atom include tetrahydropyran, chroman and the like.
  • Preferred forms when R 11 and R 13 are linked include the forms of formulas (II-1) to (II-3) of the above general formula (II).
  • R 10 to R 13 each independently represents an alkyl group, or R 10 represents an alkyl group, and R 11 and R 13 are linked to form 5 to A six-membered form of the formula (II-1), (II-2), and (II-3).
  • R 10 to R 13 examples include alkyl groups having 1 to 20 carbon atoms (eg, methyl, ethyl, octyl, lauryl, etc.).
  • the antioxidant by containing the antioxidant having the above structure in the power generation layer, it functions as an oxygen scavenger in which singlet oxygen is quenched, and as a result, durability during light irradiation is excellent.
  • the mechanism is unknown, the structure of the cyclic tertiary amine in the general formula (I) and the structure of the cyclic ether in the general formula (II) of the antioxidant efficiently transfers energy from singlet oxygen. It is presumed that the antioxidant consumes energy by fluorescence emission or thermal non-radiation deactivation. Note that the present invention is not limited to this mechanism.
  • the solubility parameter can be calculated using the method introduced in Hansen Solubility Parameters A User's Handbook, 2nd Ed (CRC Press).
  • solubility parameters of organic compounds can be estimated from their molecular structures. It can be calculated using simulation software that calculates solubility parameters from the SMILE equation, for example, HSPiP (http://www.hansen-solubility.com).
  • the solubility parameter used in the present invention can be determined from the so-called Hansen solubility parameter, which is decomposed into a dispersion component ⁇ D, a polarization component ⁇ P, and a hydrogen bond component ⁇ H, using the following equation (1). .
  • Hansen solubility parameter which is decomposed into a dispersion component ⁇ D, a polarization component ⁇ P, and a hydrogen bond component ⁇ H, using the following equation (1). .
  • Hansen solubility parameter are as follows: HANSEN SOLUBILITY PARAMETERS A User's Handbook Second Edition, Charles M. Demanded based on the theory described in Hansen.
  • the antioxidant added to the p-type organic semiconductor material and the n-type organic semiconductor material can be added without significantly impairing the power generation efficiency by selecting the solubility parameter from the preferred range shown above. Particularly in the preferred range of the present invention, it is considered that the addition of the p-type organic semiconductor material can be effectively performed without affecting the crystallinity of the p-type organic semiconductor material because it is more compatible with the n-type organic semiconductor material. . Although the mechanism is unknown, it is speculated that the solubility parameter of the antioxidant exists in the domain of the organic semiconductor closer to the solubility parameter, thereby inhibiting the conversion efficiency even when the antioxidant is added. Is considered to be suppressed.
  • Examples of the p-type organic semiconductor material used for the power generation layer (bulk heterojunction layer) of the present invention include various condensed polycyclic aromatic low molecular compounds and conjugated polymers.
  • condensed polycyclic aromatic low-molecular compound examples include anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumanthracene, bisanthene, zeslen, Compounds such as heptazeslen, pyranthrene, violanthene, isoviolanthene, cacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bisethylenetetrathiafulvalene (BEDTTTTF ) -Perchloric acid complexes, and derivatives and precursors thereof.
  • TTF tetra
  • Examples of the derivative having the above condensed polycycle include WO 03/16599 pamphlet, WO 03/28125 pamphlet, US Pat. No. 6,690,029, JP 2004-107216 A.
  • conjugated polymer for example, a polythiophene such as poly-3-hexylthiophene (P3HT) and an oligomer thereof, or a technical group described in Technical Digest of the International PVSEC-17, Fukuoka, Japan, 2007, p1225. Polythiophene, Nature Material, (2006) vol. 5, p328, polythiophene-thienothiophene copolymer, WO200808000664 polythiophene-diketopyrrolopyrrole copolymer, Adv Mater, polythiophene-thiazolothiazole copolymer described in 2007p4160, APPLIED PHYSICS LETTERS vol. 92, p033307 (2008). Amer.
  • P3HT poly-3-hexylthiophene
  • the present invention is a low band gap polymer having absorption up to a wavelength longer than 650 nm, Adv. Mater. , Vol. 19 (2007) p2295, polythiophene-carbazole-benzothiadiazole copolymer (PCDTBT), Nature Mat. vol. 6 (2007), p497, a polythiophene copolymer such as PCPDTBT is preferable.
  • PCDTBT polythiophene-carbazole-benzothiadiazole copolymer
  • PCPDTBT polythiophene copolymer
  • the n-type organic semiconductor material used for the bulk heterojunction layer of the present invention is not particularly limited.
  • fullerenes, octaazaporphyrins, and other p-type organic semiconductor perfluoro compounds perfluoropentacene, perfluorophthalocyanine, etc.
  • aromatic carboxylic acid anhydrides such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, and perylenetetracarboxylic acid diimide, and polymer compounds containing an imidized product thereof as a skeleton. .
  • Fullerene derivatives include fullerene C60, fullerene C70, fullerene C76, fullerene C78, fullerene C84, fullerene C240, fullerene C540, mixed fullerene, fullerene nanotubes, multi-walled nanotubes, single-walled nanotubes, nanohorns (conical), etc.
  • PCBM PC 60 BM
  • PCBnB phenyl C61-butyric acid-n-butyl ester
  • PCBiB -Phenyl C61-butyric acid-isobutyl ester
  • PCBH Adv. Mater. , Vol.
  • fullerene derivative having a substituent and having improved solubility such as fullerene having an ether group.
  • the organic photoelectric conversion element according to the present invention has at least a transparent first electrode (hereinafter also referred to as a transparent electrode) and a second electrode (hereinafter also referred to as a counter electrode). Further, when a tandem configuration is adopted, the tandem configuration can be achieved by using an intermediate electrode.
  • a transparent first electrode hereinafter also referred to as a transparent electrode
  • a second electrode hereinafter also referred to as a counter electrode
  • the hole transport layer is formed between the first electrode and the power generation layer as described above because of the configuration in which holes are mainly extracted from the carriers composed of holes and electrons. It is preferable to have.
  • the second electrode is a cathode, it is preferable to have an electron transport layer between the second electrode and the power generation layer because of the configuration in which electrons are mainly extracted.
  • Transparent electrode As the transparent electrode in the organic photoelectric conversion element, a material using an electrode substance of a metal, an alloy, an electrically conductive compound and a mixture thereof is preferably used.
  • transparent means that the transmittance is 80% or more for visible light having a wavelength of 550 nm.
  • compositions with shallow work function include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) mixture , Indium, lithium / aluminum mixture, rare-earth metal, etc.
  • an ultra-thin film such as gold, silver, or platinum, or a nanoparticle / nanowire layer thereof, a conductive metal oxide material such as indium tin oxide (ITO), SnO 2 , or ZnO, And conductive polymers.
  • a material such as IDIXO (In 2 O 3 —ZnO) that can form an amorphous light-transmitting conductive film may be used.
  • the auxiliary electrode is preferably a metal from the viewpoint of good conductivity, and examples of the metal material include gold, silver, copper, iron, nickel, and chromium.
  • the metal of the conductive part may be an alloy, and the metal layer may be a single layer or multiple layers.
  • the shape of the auxiliary electrode is not particularly limited, but, for example, the conductive portion has a stripe shape, a mesh shape, or a random mesh shape.
  • a metal layer can be formed on the entire surface of the substrate and can be formed by a known photolithography method.
  • a conductor layer is formed on the entire surface of the substrate using one or more physical or chemical forming methods such as vapor deposition, sputtering, plating, etc., or a metal foil is applied to the substrate with an adhesive. After laminating, it can be processed into a desired stripe shape or mesh shape by etching using a known photolithography method.
  • a method of printing an ink containing metal fine particles in a desired shape by various printing methods such as screen printing, flexographic printing, gravure printing, or an ink jet method, and a variety of similar catalytic inks that can be plated are used.
  • a method of applying a silver halide photographic technique can be used as a method of applying a desired shape by a printing method and then plating, and as another method.
  • the method of printing ink containing metal fine particles in a desired shape by various printing methods can be manufactured in a simple process, so that it is possible to reduce the entrainment of foreign matters that may cause leakage at the time of manufacture. Since ink is used only at the location, there is little liquid loss, and since no special chemical is required, there is no concern about contamination of chemicals that cannot be removed, so this is the most preferred embodiment in the present invention. .
  • the sheet resistance of the transparent electrode is preferably several hundred ⁇ / ⁇ or less, more preferably 50 ⁇ / ⁇ , and further preferably 15 ⁇ / ⁇ or less. Further, although the film thickness depends on the material, it is usually selected from the viewpoint of transmittance / resistance in the range of 10 to 1000 nm, preferably 100 to 200 nm.
  • an auxiliary electrode when provided, it is preferably 10 ⁇ / ⁇ or less, more preferably 0.01 to 8 ⁇ / ⁇ .
  • the sheet resistance is determined by the shape (line width, height, pitch, shape) of the auxiliary electrode, and in the case of a material having a higher resistance than the auxiliary electrode, the resistance of the window portion is hardly affected.
  • Counter electrode a metal, an alloy, an electrically conductive compound and a mixture thereof are preferably used.
  • metals and the like do not need to be thin films, and there are no particular limitations on the film thickness and composition as long as desired electrical conductivity can be obtained. Further, it is preferable to select a material having an optimum work function according to the charge transport layer in contact therewith. As a specific material, the same material as the example mentioned in the above-mentioned transparent electrode can be used.
  • a material having a shallower work function is selected from the above-described materials so that electrons can be efficiently extracted.
  • Charge transport layer hole transport layer, electron transport layer>
  • the original function of the charge transport layer is to serve as a blocking layer that transports only holes or electrons generated in the power generation layer to the electrode and prevents transport of the opposite carrier.
  • the hole transport layer can be referred to as an electron blocking layer, and the electron transport layer as a hole blocking layer.
  • the electron blocking layer has a function of a hole transport layer in a broad sense. More specifically, the electron blocking layer is made of a material that has a function of transporting holes and has an extremely small ability to transport electrons, and transports holes. However, the probability of recombination of electrons and holes can be improved by blocking electrons. Moreover, the structure of the positive hole transport layer mentioned later can be used as an electron blocking layer as needed.
  • the dry film thickness of the charge transport layer of the present invention is preferably 5 to 2000 nm.
  • the charge transport layer (for example, 18 in FIG. 1) on the electrode formation side later preferably has a thickness of 50 nm or more from the viewpoint of suppressing damage during electrode formation, and is 100 nm or more from the viewpoint of further improving the leak prevention effect.
  • the film thickness is Moreover, it is more preferable that it is a film thickness of 1000 nm or less from a viewpoint of maintaining high transmittance
  • the charge transport layer on the substrate side (for example, 12 in FIG. 1) preferably has a thickness of 200 nm or less, more preferably 3 to 100 nm, and further preferably 5 to 100 nm from the viewpoint of film resistance and light transmittance. Is most preferred.
  • the hole transport layer contains a hole transport material having a function of transporting holes, and in a broad sense, a hole injection layer and an electron blocking layer are also included in the hole transport layer.
  • the hole transport layer can be provided as a single layer or a plurality of layers.
  • the hole transport material has either hole injection or transport or electron barrier properties, and may be either organic or inorganic.
  • triazole derivatives oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives and pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, Stilbene derivatives, silazane derivatives, aniline copolymers, conductive polymer oligomers, especially thiophene oligomers such as poly (3,4-ethylenedioxythiophene (PEDOT), poly (4-styrenesulfonic acid) (PSS), etc. Styrene oligomers, or mixtures thereof.
  • the above-mentioned materials can be used as the hole transport material, but it is preferable to use a porphyrin compound, an aromatic tertiary amine compound and a styrylamine compound, particularly an aromatic tertiary amine compound.
  • JP-A-11-251067 J. Org. Huang et. al. A so-called p-type hole transport material described in a book (Applied Physics Letters 80 (2002), p. 139) can also be used.
  • metal complexes of 8-quinolinol derivatives such as tris (8-quinolinol) aluminum (Alq 3 ), tris (5,7-dichloro-8-quinolinol) aluminum, tris (5,7-dibromo-8-quinolinol) Aluminum, tris (2-methyl-8-quinolinol) aluminum, tris (5-methyl-8-quinolinol) aluminum, bis (8-quinolinol) zinc (Znq), etc.
  • Mg Metal complexes replaced with Cu, Ca, Sn, Ga, or Pb can also be used as electron transport materials.
  • metal-free or metal phthalocyanine or those having terminal ends substituted with an alkyl group or a sulfonic acid group can be preferably used as the electron transporting material.
  • inorganic semiconductors such as n-type-Si and n-type-SiC can also be used as the electron transport material.
  • an electron transport layer having a high n property doped with impurities examples thereof include JP-A-4-297076, JP-A-10-270172, JP-A-2000-196140, 2001-102175, J.A. Appl. Phys. 95, 5773 (2004), and the like.
  • n-type conductive inorganic oxides titanium oxide, zinc oxide, etc.
  • titanium oxide titanium oxide, zinc oxide, etc.
  • the intermediate electrode material required in the case of the tandem structure is preferably a layer using a compound having both transparency and conductivity, and the materials (ITO, AZO, FTO, etc.) used in the transparent electrode , Transparent metal oxides such as titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, conductive polymer materials such as PEDOT: PSS, polyaniline, etc.) Can do.
  • Transparent metal oxides such as titanium oxide, very thin metal layers such as Ag, Al, Au, or layers containing nanoparticles / nanowires, conductive polymer materials such as PEDOT: PSS, polyaniline, etc.
  • the condensing layer for example, it is processed so as to provide a structure on the microlens array on the sunlight receiving side of the support substrate, or the amount of light received from a specific direction is increased by combining with a so-called condensing sheet. Conversely, the incident angle dependency of sunlight can be reduced.
  • an element is formed on a pair of comb-shaped electrodes instead of the sandwiched structure between the first electrode and the second electrode as shown in FIG.
  • the back contact type organic photoelectric conversion element can also be configured.
  • the entire device may be sealed with two substrates with a barrier, and preferably a moisture getter, oxygen getter, etc. are enclosed. Is more preferred in the present invention.
  • PCDTBT polythiophene-carbazole-benzothiadiazole copolymer
  • Example 1 [Production of Organic Photoelectric Conversion Device SC-101] Glass substrate ⁇ BR> SOPNO, indium tin oxide (ITO) transparent conductive film deposited 150nm thick (sheet resistance 10 ⁇ / ⁇ ) is patterned to 20mm width using normal photolithography technology and wet etching A first electrode was formed. The patterned first electrode was washed in the order of ultrasonic cleaning with a surfactant and ultrapure water, followed by ultrasonic cleaning with ultrapure water, dried with nitrogen blow, and finally subjected to ultraviolet ozone cleaning.
  • ITO indium tin oxide
  • a liquid containing 1 part of PEDOT-PSS (Clevios P 4083, HC Starck Co., Ltd.) composed of a conductive polymer and a polyanion, and 2 parts of isomalogen (0.1% by mass) made by Kao Chemical Co., Ltd. and isopropanol was applied and dried so as to have a dry film thickness of about 100 nm, followed by heat treatment at 120 ° C. for 10 minutes to form a hole transport layer. .
  • the substrate on which the series of functional layers has been formed is moved into a vacuum deposition apparatus chamber, the inside of the vacuum deposition apparatus is depressurized to 1 ⁇ 10 ⁇ 4 Pa or less, and then the deposition rate is 1.0 nm / second.
  • a second electrode was formed by laminating 200 nm of Ag metal.
  • the obtained organic photoelectric conversion element SC-101 is moved to a nitrogen chamber and sealed with a sealing cavity glass and a UV curable resin, and the light receiving part has an organic photoelectric conversion element SC- of about 5 ⁇ 20 mm size. 101 was produced.
  • the organic photoelectric conversion element SC was manufactured in the same manner as in the preparation of SC-101 except that 0.3% by mass of the compound represented by Compound E was added as an antioxidant in the formation of the power generation layer of the organic photoelectric conversion element SC-101. -102 was produced.
  • Table 1 shows the calculated solubility parameters of each antioxidant.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Furan Compounds (AREA)
  • Pyrane Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】発電層におけるモルフォロジー改善により変換効率を高め、また同時に、光照射時の短絡電流(Jsc)減衰を抑制した有機光電変換素子、およびそれを用いた有機太陽電池を提供することにある。 【解決手段】透明基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する発電層、および第二の電極を有する有機光電変換素子であって、該発電層が、p型有機半導体材料とn型有機半導体材料とを含有するバルクヘテロジャンクション型の発電層であり、更には下記一般式(I)または(II)で表される化合物を含有する、有機光電変換素子。

Description

有機光電変換素子、およびそれを用いた有機太陽電池
 本発明は、有機光電変換素子に関し、更に詳しくは、有機太陽電池に用いることのできる有機光電変換素子に関し、更に詳しくは、発電性能と素子耐久性とを両立させた有機光電変換素子、およびそれを用いた有機太陽電池に関する。
 有機太陽電池(有機光電変換素子)は、透明電極上にp型半導体とn型半導体を含む発電層と、発生した電荷を電極まで輸送する電荷輸送層とを有し、光吸収によって形成した励起子を失活する前に電荷分離し、発生した電荷を効率よく電極まで取り出せる構成であり、近年その効率向上は著しいものがある。
 また、有機太陽電池は有機物を含む溶液を塗布法や印刷法といった簡便な方法で製膜し生産できることから、ロールツーロールの大量生産に最適とされ、従来の太陽電池に対して大幅なコストダウンが期待される次世代の太陽電池といわれている。
 しかしながら、有機太陽電池は結晶Si型太陽電池や、無機半導体薄膜からなる太陽電池に対し、未だ発電効率が乏しく、上述のコストメリットが発揮できていない課題がある。
 また、有機太陽電池は一般的な有機エレクトロニクスデバイス(例えばOTFTやOLED)と同様に酸素・水分の影響を受け、素子寿命が著しく劣化するため、酸素・水分を侵入させないバリア部材(一般的にはバリアフィルム)が必要となる。中でも、酸素の混入により、連続した光照射に対して、有機物の分解を伴う短絡電流(Jsc)の減衰が起き、有機太陽電池の寿命が大きく劣化してしまうことが課題となっている。
 この様な課題に対し、p型半導体共役高分子およびn型半導体フラーレンの溶液に、低分子量アルキル含有分子を1つ以上添加することで変換効率を改善させた技術が公開されている(例えば、特許文献1)。この様な添加剤の効果により、p型半導体高分子とn型半導体フラーレンよって形成されるバルクヘテロジャンクション層(以下、発電層ともいう)のモルフォロジー改良によって、光伝導性、電荷輸送性が改善することが知られている。また、水酸基を有する特定の低分子芳香族化合物を添加し、塗布乾燥させることで、より高い変換効率が得られる技術が開示されている(例えば、特許文献2)。この様な添加剤を塗布液に添加することで、一般的にはポリマーまたはフラーレンの凝集状態を制御し、より好ましいモルフォロジーを形成させることが期待される。
 また、酸素影響を低減するため、一重項酸素クエンチャとして1,4-ヂアゾビシクロ[2,2,2]オクタン(DABCO)を添加することで、酸素による退色を抑制する技術などが開示されている(例えば、非特許文献1)。
特表2010-512005号公報 特開2010-80478号公報
J.Am.Chem.Soc.,2011,133,1885-1894
 ところが、発明者らの鋭意検討の結果、これらの添加剤は一般的に高沸点または室温で固体であるため、有機太陽電池の発電層内にとどまり、太陽電池の寿命劣化の要因となってしまう課題があることがわかった。
 また、上記公開技術は、上述したような連続した光照射に対する短絡電流の減衰の課題に対しては効果が示されておらず、添加剤によって変換効率と光照射時の素子耐久性を両立する技術が得られていなかった。
 本発明の目的は、発電層におけるモルフォロジー改善により変換効率を高め、また同時に、光照射時の短絡電流(Jsc)減衰を抑制した有機光電変換素子、およびそれを用いた有機太陽電池を提供することにある。
 本発明の上記課題は、以下の構成により達成することができる。
 1、透明基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する発電層、および第二の電極を有する有機光電変換素子であって、該発電層が、p型有機半導体材料とn型有機半導体材料とを含有するバルクヘテロジャンクション型の発電層であり、更には下記一般式(I)または(II)で表される化合物を含有する、有機光電変換素子。
Figure JPOXMLDOC01-appb-C000009
〔式中、Rは、置換または非置換のアリール基を表し、Z及びZは、それぞれ、置換または非置換の炭素数1~3のアルキレン基を表す。但し、Z及びZで表されるアルキレン基の炭素数の総和は3~6である。Aは、酸素原子、N-Z、S(O)n5を表し、Zはアルキル基またはアリール基を表す。n5は0~2の整数を表す。〕
Figure JPOXMLDOC01-appb-C000010
〔式中、Rは水素原子、または置換もしくは非置換のアルキル基もしくはトリアルキルシリル基を表し、R、R、R、R及びRは、それぞれ、水素原子、または、置換もしくは非置換の、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アルケニル基、アルケニルオキシ基、アシルアミノ基、ハロゲン原子、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アシルオキシ基、アシル基、スルホンアミド基、トリアルキルシリル基、複素環、縮合環もしくはこれらの組み合わせを表す。R~Rのうちの二つの基が連結して、置換または非置換の5~6員環を形成しても良い。〕
 2、前記一般式(I)が下記一般式(I-A)~(I-E)のいずれか1つで表されることを特徴とする前記1に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
(式中、R及びRは、ハロゲン原子、または置換もしくは非置換のアルキル基(-R)、ヒドロキシアルキル基(-R(OH))、アルコキシ基(-OR)、アリールオキシ基(-SR)、アミノ基(-NH、-NHR、-N(R)、チオエーテル(-SR)基、エステル基、-COR、-COOR、-NHCOR、-NHCOOR、-NHSOもしくはアルキルカルボニルオキシ(-OCOR)基を表し、この際、Rは、置換または非置換の炭素数1~20のアルキル基または炭素数6~20のアリール基であり、m5及びl5は0~4の整数を表す。)
 3、前記一般式(II)が下記一般式(II-A)で表されることを特徴とする前記1に記載の有機光電変換素子。
Figure JPOXMLDOC01-appb-C000016
(一般式(II-A)において、R10~R13は、それぞれ独立して、水素原子、または置換もしくは非置換のアルキル基を表す。この際、R11とR13とが連結して、置換または非置換の5~6員環を形成してもよい。)
 4、前記1~3のいずれか1項に記載の一般式で示される化合物の溶解性パラメータ(SP値)が19~23である前記1~3のいずれか1項に記載の有機光電変換素子を有することを特徴とする有機太陽電池。
 本発明により、発電層におけるモルフォロジー改善により変換効率を高め、また同時に、光照射時の短絡電流(Jsc)減衰を抑制した有機光電変換素子、およびそれを用いた有機太陽電池を提供することができた。
本発明の光電変換素子を例示した図である。 本発明の有機光電変換素子の構成の他の例を示す概略断面図である。 タンデム型の発電層を備えた、本発明の有機光電変換素子の例を示す概略断面図である。
 本発明は、透明基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する発電層、および第二の電極を有する有機光電変換素子であって、該発電層が、p型有機半導体材料とn型有機半導体材料とを含有するバルクヘテロジャンクション型の発電層であり、更には上記一般式(I)または(II)で表わされる化合物(以下、酸化防止剤とも呼ぶ)を含有することを特徴とし、発電層に上述の化合物を含有することで、モルフォロジー改善により変換効率を高め、また同時に、光照射時の短絡電流(Jsc)減衰を抑制した有機光電変換素子、およびそれを用いた有機太陽電池を提供することができる。
 (有機光電変換素子の構成)
 図1は、本発明の有機光電変換素子の構成の例を示す概略断面図である。
 有機光電変換素子10は、透明基板11上に、透明な第一の電極12を有し、第一の電極12の上に発電層14を有し、さらに発電層14の上に第二の電極13を有する。
 図1の例では、第一の電極12と発電層14との間に後述する正孔輸送層17を有し、発電層14と第二の電極13との間に後述する電子輸送層18を有する。
 本発明においては、透明基板11および第一の電極12は透明であり、光電変換に用いられる光は、図1の透明基板11および第一の電極12から入射し、発電層14に到達する。
 発電層14は、光エネルギーを電気エネルギーに変換する層であって、p型有機半導体材料とn型有機半導体材料とを含有する。
 p型有機半導体材料は、相対的に電子供与体(ドナー)として機能し、n型有機半導体材料は、相対的に電子受容体(アクセプタ)として機能する。
 ここで、電子供与体及び電子受容体は、“光を吸収した際に、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)を形成する電子供与体及び電子受容体”であり、電極のように単に電子を供与あるいは受容するものではなく、光反応によって、電子を供与あるいは受容するものである。
 図1において、透明基板11を介して第一の電極12から入射された光は、発電層14の発電層14における電子受容体あるいは電子供与体で吸収され、電子供与体から電子受容体に電子が移動し、正孔と電子のペア(電荷分離状態)が形成される。
 発生した電荷は内部電界、例えば、第一の電極12と第二の電極13との仕事関数が異なる場合では第一の電極12と第二の電極13との電位差によって、電子は電子受容体間を通り、また正孔は電子供与体間を通り、それぞれ異なる電極へ運ばれ、光電流が検出される。
 図1の例では、第一の電極12の仕事関数は第二の電極13の仕事関数よりも大きいため、正孔は第一の電極12へ、電子は第二の電極13へ輸送される。この場合、第二の電極13には仕事関数が小さく酸化されやすい金属が用いられる。この場合、第一の電極はアノード(陽極)として、第二の電極はカソード(陰極)として機能する。
 図2に他の構成の例を示す。
 図2においては、図1の場合とは、反対に第一の電極12の仕事関数よりも第二の電極13の仕事関数を大きくすることで、電子を第一の電極12へ、正孔を第二の電極13へと輸送するように設計した場合を示した。この場合には、第一の電極12と発電層14との間に電子輸送層18を有し、発電層14と第二の電極13との間に後述する正孔輸送層17を有し、第一の電極はカソード(陰極)として、第二の電極はアノード(陽極)として機能する。
 本発明においては、耐久性の面から特に、図2に示す構成、即ち、第一の電極がカソード(陰極)であり、第二の電極がアノード(陽極)であることが好ましい態様である。
 なお、図1、図2には記載していないが、本発明の有機光電変換素子は、正孔ブロック層、電子ブロック層、電子注入層、正孔注入層、あるいは平滑化層等の層を有していてもよい。
 更に、太陽光利用率(光電変換効率)の向上を目的として、このような光電変換素子を積層した、タンデム型の構成としてもよい。図3は、タンデム型の発電層を備える有機光電変換素子を示す断面図である。
 タンデム型構成の場合、基板11上に第一の電極12、第一の発電層14’を積層し、電荷再結合層15を積層した後、第二の発電層16、次いで第二の電極13を積層することで、タンデム型の構成とすることができる。
 第二の発電層16は、第一の発電層14’の吸収スペクトルと同じスペクトルを吸収する層でもよいし、異なるスペクトルを吸収する層でもよいが、好ましくは異なるスペクトルを吸収する層である。
 また、第一の発電層14’、第二の発電層16と各電極の間には、正孔輸送層17や電子輸送層18を有していても良いが、本発明においてはタンデム構成においてもそれぞれの発電層は、図2に示されるような構成を有していることが好ましい。
 以下に、これらの層を構成する材料について述べる。
 〈酸化防止剤〉
 本発明は、発電層が、p型有機半導体材料とn型有機半導体材料とを含有するバルクヘテロジャンクション型の発電層であり、更には上記一般式(I)または(II)で表わされる化合物(以下、酸化防止剤とも呼ぶ)を含有することを特徴とする。本発明で好ましく用いることができる酸化防止剤の具体例を例示するが、同様な効果が得られる化合物であればこれらに限定されない。本発明では、発電層が、酸化防止剤として、一般式(I)または(II)で表される化合物を含むことで、一重項酸素が消光される酸素スカベンジャ―としての機能を発揮する。
 本発明における一般式〔I〕で表される化合物について説明する。
 一般式〔I〕において、Rは、置換または非置換のアリール基を表し、Z及びZは、それぞれ、置換または非置換の炭素数1~3のアルキレン基を表す。但し、Z及びZで表されるアルキレン基の炭素数の総和は3~6である。Aは、酸素原子、N-Z、S(O)n5を表し、Zはアルキル基またはアリール基を表す。n5は0~2の整数を表す。
 Rで表されるアリール基としては例えば、フェニル基、1-ナフチル基、ピリジニル基等が挙げられ、これらのアリール基には置換基を有しても良い。置換基としては、炭素数1~20のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、炭素数4~20のシクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、炭素数2~20のアルケニル基(例えば、ビニル基、アリル基等)、炭素数2~20のアルキニル基(例えば、エチニル基、プロパルギル基等)、炭素数6~20のアリール基(例えば、フェニル基、4-ドデシルオキシフェニル基、4-(2-エチルヘキシルオキシ)フェニル基などのアルコキシ置換されたフェニル基、ナフチル基等)、炭素数3~20の芳香族複素環基(例えば、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、ピラゾリル基、チアゾリル基、キナゾリニル基、フタラジニル基等)、複素環基(例えば、ピロリジル基、イミダゾリジル基、モルホリル基、オキサゾリジル基等)、炭素数1~20のアルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基、ペンチルオキシ基、t-ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、t-オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基、ヘキサデシルオキシ基等)、炭素数4~20のシクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、炭素数6~20のアリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、炭素数1~20のヒドロキシアルキル基(例えば、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基等)、炭素数1~20のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、炭素数4~20のシクロアルキルチオ基(例えば、シクロペンチルチオ基、シクロヘキシルチオ基等)、炭素数6~20のアリールチオ基(例えば、フェニルチオ基、ナフチルチオ基等)、炭素数1~20のアルコキシカルボニル(-COOR)基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、炭素数6~20のアリールオキシカルボニル(-COOAr)基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、スルファモイル基(例えば、アミノスルホニル基、メチルアミノスルホニル基、ジメチルアミノスルホニル基、ブチルアミノスルホニル基、ヘキシルアミノスルホニル基、シクロヘキシルアミノスルホニル基、オクチルアミノスルホニル基、ドデシルアミノスルホニル基、フェニルアミノスルホニル基、ナフチルアミノスルホニル基、2-ピリジルアミノスルホニル基等)、炭素数2~20のアシル(-COR)基(例えば、アセチル基、エチルカルボニル基、プロピルカルボニル基、ペンチルカルボニル基、シクロヘキシルカルボニル基、オクチルカルボニル基、2-エチルヘキシルカルボニル基、ドデシルカルボニル基、フェニルカルボニル基、ナフチルカルボニル基、ピリジルカルボニル基等)、炭素数2~20のアシルオキシ(-OCOR)基(アルキルカルボニルオキシ基)(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、トリデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、炭素数1~20のアミド(-NHCOR)基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、炭素数1~20のアルコキシカルボニルアミノ(-NHCOOR)基(例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、プロピルオキシカルボニルアミノ基、ペンチルオキシカルボニルアミノ基、シクロヘキシルオキシカルボニルアミノ基、2-エチルヘキシルオキシカルボニルアミノ基、オクチルオキシカルボニルアミノ基、ドデシルオキシカルボニルアミノ基、フェノキシカルボニルアミノ基、ナフチルオキシカルボニルアミノ基等)、炭素数1~20のアルキルスルホニルアミノ(-NHSO-R)基(メチルスルホニルアミノ基、エチルスルホニルアミノ基、ブチルスルホニルアミノ基、シクロヘキシルスルホニルアミノ基、2-エチルヘキシルスルホニルアミノ基、ドデシルスルホニルアミノ基、オクタデシルスルホニルアミノ基等)、炭素数6~20のアリールスルホニルアミノ(-NHSO-Ar)基(フェニルスルホニルアミノ基、ナフチルスルホニルアミノ基、2-ピリジルスルホニルアミノ基等)、炭素数0~20のカルバモイル(-CONH、-CONHR、または-CON(R)基(例えば、アミノカルボニル基、メチルアミノカルボニル基、ジメチルアミノカルボニル基、プロピルアミノカルボニル基、ペンチルアミノカルボニル基、シクロヘキシルアミノカルボニル基、オクチルアミノカルボニル基、2-エチルヘキシルアミノカルボニル基、ドデシルアミノカルボニル基、フェニルアミノカルボニル基、ナフチルアミノカルボニル基、2-ピリジルアミノカルボニル基等)、炭素数0~20のウレイド(-NHCONH、-NHCONHR、または-NHCON(R)基(例えば、メチルウレイド基、エチルウレイド基、ペンチルウレイド基、シクロヘキシルウレイド基、オクチルウレイド基、ドデシルウレイド基、フェニルウレイド基、ナフチルウレイド基、2-ピリジルアミノウレイド基等)、炭素数1~20のスルフィニル(-S(=O)-R)基(例えば、メチルスルフィニル基、エチルスルフィニル基、ブチルスルフィニル基、シクロヘキシルスルフィニル基、2-エチルヘキシルスルフィニル基、ドデシルスルフィニル基、フェニルスルフィニル基、ナフチルスルフィニル基、2-ピリジルスルフィニル基等)、アルキルスルホニル(-S(=O)-R)基(例えば、メチルスルホニル基、エチルスルホニル基、ブチルスルホニル基、シクロヘキシルスルホニル基、2-エチルヘキシルスルホニル基、ドデシルスルホニル基等)、炭素数6~20のアリールスルホニル(-S(=O)-Ar)基(フェニルスルホニル基、ナフチルスルホニル基、2-ピリジルスルホニル基等)、炭素数0~20のアミノ(-NH、-NHR、または-N(R)基(例えば、アミノ基、エチルアミノ基、エチルオクチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、メチル(2-テトラヒドロフラニル)アミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、炭素数1~20のフッ化炭化水素基(例えば、フルオロメチル基、トリフルオロメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基等)、シアノ基、ニトロ基、ヒドロキシ基、メルカプト基、シリル基(例えば、トリメチルシリル基、トリイソプロピルシリル基、トリフェニルシリル基、フェニルジエチルシリル基等)、等が挙げられる(なお、上記中、Rは、置換または非置換の炭素数1~20のアルキル基、またはArは、炭素数6~20のアリール基を表す。)。これらの置換基は、更に、炭素数1~20の置換もしくは非置換のアルキル基もしくはアルコキシ基、または炭素数6~20の置換もしくは非置換のアリール基もしくはアリールオキシ基で置換されていてもよく、この際の置換基は、炭素数1~20のアルキル基である。
 この中でも好ましくは、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のヒドロキシアルキル基または炭素数0~20のアミノ基である。より好ましくは、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基または炭素数0~20のアミノ基である。
 Z及びZは、それぞれ、置換または非置換の炭素数1~3のアルキレン基を表すが、Z及びZで表されるアルキレン基の総和は3~6である。アルキレン基が置換される場合は、上記のRで表されるアリール基の置換基と同様のものが採用されうる。これらのうち、好ましくは、炭素数1~20のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、炭素数4~20のシクロアルキル基(例えば、シクロペンチル基、シクロヘキシル基等)、炭素数2~20のアルケニル基(例えば、ビニル基、アリル基等)、炭素数2~20のアルキニル基(例えば、エチニル基、プロパルギル基等)、炭素数6~20のアリール基(例えば、フェニル基、4-ドデシルオキシフェニル基、4-(2-エチルヘキシルオキシ)フェニル基などのアルコキシ置換されたフェニル基、ナフチル基等)、炭素数1~20のアルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基、ペンチルオキシ基、t-ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、t-オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基、ヘキサデシルオキシ基等)、炭素数4~20のシクロアルコキシ基(例えば、シクロペンチルオキシ基、シクロヘキシルオキシ基等)、炭素数6~20のアリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、炭素数1~20のヒドロキシアルキル基(例えば、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基等)、炭素数1~20のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)である。
 Aは、酸素原子、N-Z、S(O)n5を表すが、好ましくはS(O)n5である。また、Zで表されるアルキル基としては、例えば、炭素数1~24の直鎖または分岐のアルキル基を表し、またアリール基としては、例えば、フェニル基を表し、これらの各基は更に置換基を有していてもよい。当該置換基としては、炭素数1~20のアルキル基もしくはアルコキシ基であるのが好ましい。n5は0~2の整数を表し、好ましくは2である。
 本発明においては、一般式(I)の中でも、前記一般式(I-A)~(I-E)に表される化合物を用いることが好ましい。
 一般式(I-A)~(I-E)中、R及びRは、ハロゲン原子、または置換もしくは非置換のアルキル基(-R)、ヒドロキシアルキル基(-R(OH))、アルコキシ基(-OR)、アリールオキシ基(-SR)、アミノ基(-NH、-NHR、-N(R)、チオエーテル(-SR)基、エステル基、-COR、-COOR、-NHCOR、-NHCOOR、-NHSOもしくはアルキルカルボニルオキシ(-OCOR)基を表し、この際、Rは、置換または非置換の炭素数1~20のアルキル基または炭素数6~20のアリール基であり、m5及びl5は0~4の整数を表す。なお、「置換または非置換の」は、上記した置換基全てが置換されてもよいことを意味する。
 R及びRにおけるアルキル基(-R)、ヒドロキシアルキル基(-R(OH))、アルコキシ基(-OR)、アリールオキシ基(-SR)、アミノ基(-NH、-NHR、-N(R)、チオエーテル(-SR)基、エステル基、-COR、-COOR、-NHCOR、-NHCOOR、-NHSO、アルキルカルボニルオキシ(-OCOR)基としては、
上記のRで表されるアリール基の置換基と同様のものが採用されうる。
 これらのうち、好ましくは、炭素数1~20のアルキル基(例えば、メチル基、エチル基、プロピル基、イソプロピル基、tert-ブチル基、ペンチル基、ヘキシル基、オクチル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基等)、炭素数6~20のアリール基(例えば、フェニル基、4-ドデシルオキシフェニル基、4-(2-エチルヘキシルオキシ)フェニル基などのアルコキシ置換されたフェニル基、ナフチル基等)、炭素数1~20のアルコキシ基(例えば、メトキシ基、エトキシ基、プロピルオキシ基、ブチルオキシ基、ペンチルオキシ基、t-ペンチルオキシ基、ヘキシルオキシ基、2-エチルヘキシルオキシ基、オクチルオキシ基、t-オクチルオキシ基、デシルオキシ基、ドデシルオキシ基、テトラデシルオキシ基、ヘキサデシルオキシ基等)、炭素数6~20のアリールオキシ基(例えば、フェノキシ基、ナフチルオキシ基等)、炭素数1~20のヒドロキシアルキル基(例えば、ヒドロキシメチル基、2-ヒドロキシエチル基、3-ヒドロキシプロピル基等)、炭素数1~20のアルキルチオ基(例えば、メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基、ペンチルチオ基、ヘキシルチオ基、オクチルチオ基、ドデシルチオ基等)、炭素数1~20のアルコキシカルボニル(-COOR)基(例えば、メチルオキシカルボニル基、エチルオキシカルボニル基、ブチルオキシカルボニル基、オクチルオキシカルボニル基、ドデシルオキシカルボニル基等)、炭素数6~20のアリールオキシカルボニル(-COOR)基(例えば、フェニルオキシカルボニル基、ナフチルオキシカルボニル基等)、炭素数2~20のアシルオキシ(-OCOR)基(アルキルカルボニルオキシ基)(例えば、アセチルオキシ基、エチルカルボニルオキシ基、ブチルカルボニルオキシ基、オクチルカルボニルオキシ基、ドデシルカルボニルオキシ基、トリデシルカルボニルオキシ基、フェニルカルボニルオキシ基等)、炭素数1~20のアミド(-NHCOR)基(例えば、メチルカルボニルアミノ基、エチルカルボニルアミノ基、ジメチルカルボニルアミノ基、プロピルカルボニルアミノ基、ペンチルカルボニルアミノ基、シクロヘキシルカルボニルアミノ基、2-エチルヘキシルカルボニルアミノ基、オクチルカルボニルアミノ基、ドデシルカルボニルアミノ基、フェニルカルボニルアミノ基、ナフチルカルボニルアミノ基等)、炭素数1~20のアルコキシカルボニルアミノ(-NHCOOR)基(例えば、メトキシカルボニルアミノ基、エトキシカルボニルアミノ基、プロピルオキシカルボニルアミノ基、ペンチルオキシカルボニルアミノ基、シクロヘキシルオキシカルボニルアミノ基、2-エチルヘキシルオキシカルボニルアミノ基、オクチルオキシカルボニルアミノ基、ドデシルオキシカルボニルアミノ基、フェノキシカルボニルアミノ基、ナフチルオキシカルボニルアミノ基等)、炭素数1~20のアルキルスルホニルアミノ(-NHSO-R)基(メチルスルホニルアミノ基、エチルスルホニルアミノ基、ブチルスルホニルアミノ基、シクロヘキシルスルホニルアミノ基、2-エチルヘキシルスルホニルアミノ基、ドデシルスルホニルアミノ基、オクタデシルスルホニルアミノ基等)、炭素数6~20のアリールスルホニルアミノ(-NHSO-R)基(フェニルスルホニルアミノ基、ナフチルスルホニルアミノ基、2-ピリジルスルホニルアミノ基等)、炭素数0~20のアミノ(-NH、-NHR、または-N(R)基(例えば、アミノ基、エチルアミノ基、エチルオクチルアミノ基、ジメチルアミノ基、ブチルアミノ基、シクロペンチルアミノ基、2-エチルヘキシルアミノ基、ドデシルアミノ基、アニリノ基、ナフチルアミノ基、2-ピリジルアミノ基、メチル(2-テトラヒドロフラニル)アミノ基等)、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子等)、等が挙げられる。これらの置換基は、更に、炭素数1~20の置換もしくは非置換のアルキル基もしくはアルコキシ基、または炭素数6~20の置換もしくは非置換のアリール基もしくはアリールオキシ基で置換されていてもよく、この際の置換基は、炭素数1~20のアルキル基である。
 より好ましくは、一般式(I-A)~(I-E)において、R及びRは、アルキル基、アルコキシ基、アミノ基、チオエーテル基、エステル基またはアルキルカルボニルオキシ基を表し、この中でも、炭素数1~20のアルコキシ基がさらに好ましい。
 また、m5及びl5は0~4の整数を表し、好ましくは0~2の整数であり、m5はより好ましくは0であり、l5はより好ましくは1である。
 また、Rは、ベンゼン環のパラ位(すなわち、置換基である「窒素を含む環」に対してパラ位)になるよう置換されるのが好ましい。
 以下、一般式(I)における具体的化合物を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 次に、一般式(II)で表される酸化防止剤について説明する。
 一般式(II)において、Rは水素原子、または置換もしくは非置換のアルキル基もしくはトリアルキルシリル基を表すが、一般式(II)において、Rの例としては、水素原子、炭素数1~20のアルキル基(例えば、メチル、エチル、オクチル、ラウリル等)または炭素数1~20のトリアルキルシリル基(例えば、トリメチルシリル基、ジメチルプロピルシリル基、トリエチルシリル基等)が挙げられる。
 一般式(II)において、R、R、R、R及びRは、それぞれ、水素原子、または、置換もしくは非置換の、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アルケニル基、アルケニルオキシ基、アシルアミノ基、ハロゲン原子、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アシルオキシ基、アシル基、スルホンアミド基、トリアルキルシリル基、複素環、縮合環もしくはこれらの組み合わせを表す。なお、「置換または非置換の」は、上記した置換基全てが置換されてもよいことを意味する。
 一般式(II)において、R、R、R、R及びRの例としては、それぞれ、水素原子、炭素数1~20のアルキル基(例えば、メチル、エチル、オクチル、ラウリル等)、炭素数1~20のアルコキシ基(例えば、メトキシ、エトキシ、ブチルオキシ、オクチルオキシ等)、アリール基(例えば、フェニル、ナフチル等)、炭素数6~20のアリールオキシ基(例えば、フェノキシ、ナフトキシ等)、炭素数2~20のアルケニル基(例えば、オクテニル等)、炭素数2~20のアルケニルオキシ基(例えば、オクテニルオキシ等)、炭素数2~20のアシルアミノ基(例えば、アセチルアミノ、パルミトイルアミノ、ベンゾイルアミノ等)、ハロゲン原子(例えば、塩素、臭素等)、炭素数1~20のアルキルチオ基(例えば、オクチルチオ、ラウリルチオ等)、炭素数6~20のアリールチオ基(例えば、フェニルチオ)、炭素数1~20のアルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニル、ヘキサデシルオキシカルボニル等)、炭素数2~20のアシルオキシ基(例えば、アセチルオキシ、ベンゾイルオキシ等)、炭素数2~20のアシル基(例えば、アセチル、バレリル、ステアロイル、ベンゾイル等)、炭素数1~20のスルホンアミド基(例えば、オクチルスルホンアミド、ラウリルスルホンアミド等)、炭素数1~20のトリアルキルシリル基(例えば、トリメチルシリル基、ジメチルプロピルシリル基、トリエチルシリル基等)、Oを有する複素環(例えば、オキソラン(テトラヒドロフラン)、オキサン(テトラヒドロピラン)等)、縮合環(複素環とベンゼンとの縮合環等(例えば、クロマン等))、が挙げられる。また、これらの基が、他の環と炭素を共有してさらに環を形成したスピロ原子を有していてもよい。スピロ原子が有する環としては、テトラヒドロピランやクロマンが挙げられる。また、これらの置換基は、更に、炭素数1~20のアルキル基もしくはアルコキシ基、または炭素数6~20のアリール基で置換されていてもよい。
 また、R~Rのうちの二つの基が連結して、置換または非置換の5~6員環(例えば、インダン、スピロインダン、クロマン、スピロクロマン環等)を形成してもよい。具体的には、R~Rのうちの二つの基が連結して、オキソラン(テトラヒドロフラン)、オキサン(テトラヒドロピラン)等の複素環を形成し、一般式(II)で表されるフェニル環と縮合した形態である。また、5~6員環(複素環)は更に置換基を有していてもよく、置換基としては、炭素数1~20のアルキル基、もしくはアルコキシ基、炭素数6~20のアリール基、またはそれらが更に環を形成してもよい。また、5~6員環(複素環)が有する置換基という概念は、5~6員環(複素環)を構成する炭素が、他の環と炭素を共有してさらに環を形成したスピロ原子である場合の、他の環をも包含する。5~6員環(複素環)がスピロ原子を有する場合の置換基の例としては、テトラヒドロピランやクロマン等が挙げられる。なお、これらの置換基のうちのある炭素が、5~6員環(複素環)と共有される。これらの形態の好ましい形態を、下記式(II-1)、(II-2)または(II-3)に示す。
Figure JPOXMLDOC01-appb-C000024
 式(II-1)~(II-3)中、Rは、水素原子、または炭素数1~20のアルキル基もしくはアルコキシ基を表す。炭素数1~20のアルキル基、アルコキシ基としては、上記のRで表されるアリール基の置換基と同様のものが採用されうる。
 一般式(II)において、R、Rはアルコキシ基でないことが好ましい。
 特に一般式(II)においては、前記一般式(II-A)で表されることが好ましい。
 一般式(II-A)において、R10~R13は、それぞれ独立して、水素原子、または置換もしくは非置換のアルキル基を表す。この際、R11とR13とが連結して、置換または非置換の5~6員環を形成しても良い。R11とR13とが連結して5~6員環を形成する形態としては、式(II)のR~Rのうちの二つの基が連結して、置換または非置換の5~6員環を形成する場合と同様である。すなわち、5~6員環が有する置換基という概念が、5~6員環を構成する炭素が、他の環と炭素を共有してさらに環を形成したスピロ原子である場合の、他の環をも包含するのも、上記と同様である。5~6員環がスピロ原子を有する場合の置換基の例としては、テトラヒドロピランやクロマン等が同様に挙げられる。R11とR13とが連結した場合の好ましい形態としても、上記一般式(II)の式(II-1)~(II-3)の形態が挙げられる。
 一般式(II-A)において、好ましくは、R10~R13は、それぞれ独立して、アルキル基を表す、またはR10がアルキル基を表し、R11とR13とが連結して5~6員環した、式(II-1)、(II-2)、および(II-3)の形態である。
 R10~R13の例としては、炭素数1~20のアルキル基(例えば、メチル、エチル、オクチル、ラウリル等)が挙げられる。
 以下、一般式(II)で表される化合物の具体的化合物例を挙げるが、本発明はこれらに限定されない。
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
 本発明において、上記の構造の酸化防止剤を発電層に含むことで、一重項酸素が消光される酸素スカベンジャ―としての機能を発揮し、結果として光照射時の耐久性が優れる。当該メカニズムは不明であるが、酸化防止剤の、一般式(I)における環状3級アミンの構造、および一般式(II)の環状エーテルの構造により、1重項酸素から効率的にエネルギー移動し、酸化防止剤が蛍光発光または熱的な無輻射失活によりエネルギーが消費されるものとなると推測される。なお、本発明は当該メカニズムに限定されない。
 本発明において、上記説明した各酸化防止剤は、有機半導体材料100質量部に対して、0.1~15質量部の範囲で添加することが好ましい。酸化防止剤の添加量が0.1質量部以上ある場合、本発明の光劣化を抑制でき、一方で、酸化防止剤の添加量が5質量部以下である場合、発電阻害を抑えることができる。なお、酸化防止剤の添加量は、有機半導体材料100質量部に対して0.5~12質量部が更に好ましく、0.7~10質量部が特に好ましい。なお、有機半導体材料とは、発電層に用いたp型半導体とn型半導体との合計を意味する。
 上述のように本発明に係る酸化防止剤を添加することで、光電変換素子が光照射下におかれても短絡電流(Jsc)の減衰を抑制し太陽電池の素子寿命を延ばすことができる。
 〈溶解性パラメータ〉
 本発明で好ましく用いることが出来る酸化防止剤は、19~23の範囲である溶解性パラメータ(SP値)を有することが好ましい。なお、本願において、「溶解度パラメータ値(SP)値」とは、Hansenによって提唱された理論であり、2成分以上の成分の相溶性の目安となるものであり、そのもののパラメータ値は分子間力を表す尺度として示される。従って、SP値の高いものは水などの極性化合物が挙げられ、SP値が低いものは疎水性化合物が挙げられる。
 溶解性パラメータは、Hansen Solubility Parameters A User’s Handbook,2nd Ed(CRC Press)で紹介される方法を用いて算出することができる。
 また、有機化合物の溶解性パラメータはその分子構造から推算することが可能である。SMILEの式から溶解性パラメータを計算するシミュレーションソフトウェア、例えばHSPiP(http://www.hansen-solubility.com)を用いて計算することができる。本発明で用いた溶解性パラメータは分散成分δD、分極成分δP、水素結合成分δHに分解される、所謂Hansenの溶解性パラメータから、下記式(1)を用いて溶解性パラメータを求めることができる。なお、これらの溶解性パラメータは、HANSEN SOLUBILITY PARAMETERS  A User’s Handbook Second Edition、Charles M. Hansenに記載の理論に基づき、求められている。
Figure JPOXMLDOC01-appb-M000028
 本発明で好ましく用いることができる酸化防止剤は、溶解性パラメータ(SP値)が、16~28の範囲であるのが好ましく、17~25の範囲であるのがより好ましく、19~23の範囲であることがさらに好ましい。特に好ましくは19.5~22.5、更に好ましくは20~22である。
 溶解性パラメータが16以上であればp型有機半導体とn型有機半導体とに相溶し、28以下であれば少なくともn型有機半導体に相溶できるため好ましい。なお、p型有機半導体およびn型有機半導体の溶解性パラメータは、好ましくは16~28、より好ましくは17~25、さらに好ましくは18~22のものを用いることで、さらに効果が発揮される。すなわち、p型有機半導体および/またはn型有機半導体と、酸化防止剤との溶解性パラメータの差が、5以内であるのが好ましく、3以内であるのがより好ましく、2以内であるのがさらに好ましい。
 p型有機半導体材料およびn型有機半導体材料に添加する酸化防止剤は、溶解性パラメータを上記に示す好ましい範囲から選ぶことで、発電効率を著しく阻害することなく酸化防止剤を添加できる。特に本発明の好ましい範囲では、よりn型有機半導体材料側に相溶する効果から、p型有機半導体材料の結晶性を阻害しないため、発電効率に影響なく効果的に添加できたものと考えられる。当該メカニズムは不明であるが、酸化防止剤の溶解性パラメータが、溶解性パラメータの近い方の有機半導体のドメインに存在すると推測され、それにより、酸化防止剤を添加しても、変換効率の阻害が抑制されると考えられる。本発明においては、n型有機半導体側のドメインに酸化防止剤が存在することがより好ましく、変換効率を阻害しない効果がより発揮されると考えられる。換言すれば、酸化防止剤の溶解性パラメータが、n型有機半導体の溶解性パラメータと上記範囲内の差であるのが特に好ましい。なお、本発明は当該メカニズムに限定されない。
 〈p型有機半導体材料〉
 本発明の発電層(バルクヘテロジャンクション層)に用いられるp型有機半導体材料としては、種々の縮合多環芳香族低分子化合物や共役系ポリマーが挙げられる。
 縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。
 また上記の縮合多環を有する誘導体の例としては、国際公開第03/16599号パンフレット、国際公開第03/28125号パンフレット、米国特許第6,690,029号明細書、特開2004-107216号公報等に記載の置換基をもったペンタセン誘導体、米国特許出願公開第2003/136964号明細書等に記載のペンタセンプレカーサ、J.Amer.Chem.Soc.,vol127.No14.4986、J.Amer.Chem.Soc.,vol.123、p9482、J.Amer.Chem.Soc.,vol.130(2008)、No.9、2706等に記載のトリアルキルシリルエチニル基で置換されたアセン系化合物等が挙げられる。
 共役系ポリマーとしては、例えば、ポリ3-ヘキシルチオフェン(P3HT)等のポリチオフェン及びそのオリゴマー、またはTechnical Digest of the International PVSEC-17,Fukuoka,Japan,2007,p1225に記載の重合性基を有するようなポリチオフェン、Nature Material,(2006)vol.5,p328に記載のポリチオフェン-チエノチオフェン共重合体、WO2008000664に記載のポリチオフェン-ジケトピロロピロール共重合体、Adv Mater,2007p4160に記載のポリチオフェン-チアゾロチアゾール共重合体,APPLIED PHYSICS LETTERS vol.92,p033307(2008)に記載のPFDTBT、J.Amer.Chem.Soc.,vol.131,p7792(2009)に記載のPTB1~6などが挙げられるが、中でも本発明においては650nmよりも長波長まで吸収を有する低バンドギャップポリマーである、Adv.Mater.,vol.19(2007)p2295に記載のポリチオフェン-カルバゾール-ベンゾチアジアゾール共重合体(PCDTBT)、Nature Mat.vol.6(2007),p497に記載のPCPDTBT等のようなポリチオフェン共重合体が好ましい。
 〈n型有機半導体材料〉
 本発明のバルクヘテロジャンクション層に用いられるn型有機半導体材料としては、特に限定されないが、例えば、フラーレン、オクタアザポルフィリン等、p型有機半導体のパーフルオロ体(パーフルオロペンタセンやパーフルオロフタロシアニン等)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
 本発明のチオフェン含有縮合環を有する材料をp型有機半導体材料として用いる場合、効率的な電荷分離を行えるフラーレン誘導体が好ましい。フラーレン誘導体としては、フラーレンC60、フラーレンC70、フラーレンC76、フラーレンC78、フラーレンC84、フラーレンC240、フラーレンC540、ミックスドフラーレン、フラーレンナノチューブ、多層ナノチューブ、単層ナノチューブ、ナノホーン(円錐型)等、およびこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
 中でも[6,6]-フェニルC61-ブチリックアシッドメチルエステル(略称PCBM(PC60BM))、[6,6]-フェニルC61-ブチリックアシッド-nブチルエステル(PCBnB)、[6,6]-フェニルC61-ブチリックアシッド-イソブチルエステル(PCBiB)、[6,6]-フェニルC61-ブチリックアシッド-nヘキシルエステル(PCBH)、Adv.Mater.,vol.20(2008),p2116等に記載のbis-PCBM、特開2006-199674号公報等のアミノ化フラーレン、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7329709号明細書等の環状エーテル基を有するフラーレン等のような、置換基を有してより溶解性が向上したフラーレン誘導体を用いることが好ましい。
 〈電極〉
 本発明に関わる有機光電変換素子においては、少なくとも透明な第一の電極(以下、透明電極ともいう)と第二の電極(以下、対電極ともいう)とを有する。また、タンデム構成をとる場合には中間電極を用いることでタンデム構成を達成することができる。以下に好ましい透明電極、及び対電極の構成について述べる。
 なお、透明電極及び対電極は、透光性があるかどうかといった機能から表現した電極の名称であるが、キャリアの流れる種類で電極を呼び分ける場合、本発明においては主に正孔が流れる電極を陽極と呼び、主に電子が流れる電極を陰極と呼ぶ。
 第1の電極が陽極である場合は、正孔と電子からなるキャリアの内、正孔を主に取り出す構成のため、上述した様に、第1の電極と発電層の間に正孔輸送層を有することが好ましい。同様に、第2の電極が陰極である場合は電子を主に取り出す構成のため、第2の電極と発電層との間に電子輸送層を有することが好ましい。
 〈透明電極〉
 有機光電変換素子における透明電極としては、金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。ここで「透明」とは、波長550nmの可視光線に対して80%以上の透過率を示すことを意味する。
 電荷輸送層との接合構成に応じて最適な仕事関数の材料組成を選択できる。仕事関数が浅い組成としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等の極薄膜が挙げられる。また、仕事関数の深い組成としては、金、銀、白金等の極薄膜、またはそれらのナノ粒子・ナノワイヤー層、インジウムチンオキシド(ITO)、SnO、ZnO等の導電性金属酸化物材料、および導電性ポリマー等が挙げられる。また、IDIXO(In-ZnO)等非晶質で光透過性の導電膜を作製可能な材料を用いてもよい。
 更には、このような金属薄膜、ナノ粒子・ナノワイヤー、金属酸化物材料を併用して高透過率と高導電性を両立した透明電極とすることも本発明の好ましい態様である。
 更に本発明においては、大面積化した場合にもフィルファクターを大幅に減少させないために、開口部を有する補助電極(グリッド電極、バスライン電極ともいう)を併用することが好ましい。
 補助電極は導電性がよい点で金属であることが好ましく、金属材料としては、例えば、金、銀、銅、鉄、ニッケル、クロム等が挙げられる。また導電部の金属は合金でもよく、金属層は単層でも多層でもよい。
 補助電極の形状は特に制限はないが、例えば、導電部がストライプ状、あるいはメッシュ状、あるいは、ランダムな網目状である。導電部がストライプ状、あるいはメッシュ状の補助電極を形成する方法としては、特に制限はなく、従来公知な方法が利用できる。例えば、基板全面に金属層を形成し、公知のフォトリソ法によって形成できる。具体的には、基板上に全面に、蒸着、スパッタ、めっき等の1あるいは2以上の物理的あるいは化学的形成手法を用いて導電体層を形成する、あるいは、金属箔を接着剤で基板に積層した後、公知のフォトリソ法を用いて、エッチングすることにより、所望のストライプ状、あるいはメッシュ状に加工できる。
 別な方法としては、金属微粒子を含有するインクをスクリーン印刷、フレキソ印刷、グラビア印刷、あるいは、インクジェット方式などの各種印刷法により所望の形状に印刷する方法や、メッキ可能な触媒インクを同様な各種印刷法で所望の形状に塗布した後、メッキ処理する方法、さらに別な方法としては、銀塩写真技術を応用した方法も利用できる。こうした方法の中でも、金属微粒子を含有するインクを各種印刷法により所望の形状に印刷する方法は簡便な工程で製造できることから製造時にリークの原因となるような異物の巻き込みを低減でき、また、必要個所にしかインクを使用しないので液のロスが少なく、また、特殊な化学的を必要としないため、除去しきれない薬品のコンタミの懸念もないことから、本発明においては最も好ましい実施形態である。
 透明電極のシート抵抗は数百Ω/□以下が好ましく、50Ω/□が更に好ましく、15Ω/□以下が更に好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは100~200nmの範囲で透過率/抵抗の観点から選ばれる。
 更に補助電極を有する場合は、10Ω/□以下であることが好ましく、より好ましくは0.01~8Ω/□である。この場合、シート抵抗は補助電極の形状(線幅、高さ、ピッチ、形状)によって決まり、補助電極よりも抵抗の高い材料の場合は窓部の抵抗影響はほとんど受けない。
 〈対電極〉
 一方、対電極も同様に、金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが好ましく用いられる。但し、金属類などは薄膜である必要はなく、所望の電気伝導度が得られれば特に膜厚や組成に制限はない。また、接する電荷輸送層に応じて最適な仕事関数の材料を選択することが好ましい。具体的な材料としては、上述の透明電極で挙げた例と同様な材料を用いることができる。
 対電極側から電子を取り出す構成の場合、より好ましくは上述の材料の中から、より仕事関数が浅い材料を選択することで、電子を効率よく取り出すことができより好ましい。
 〈電荷輸送層:正孔輸送層、電子輸送層〉
 電荷輸送層の本来の機能として、発電層で発生した正孔または電子のみを電極まで輸送し、反対のキャリアの輸送を阻止する阻止層としての役割がある。この場合、正孔輸送層を電子阻止層、電子輸送層を正孔阻止層と言い換えることができる。
 正孔阻止層とは広い意味では電子輸送層の機能を有し、より詳しくは電子を輸送する機能を有しつつ正孔を輸送する能力が著しく小さい正孔阻止材料からなり、電子を輸送しつつ正孔を阻止することで電子と正孔の電極上での再結合確率を向上させることができる。また、後述する電子輸送層の構成を必要に応じて、本発明に係る正孔阻止層として用いることができる。正孔阻止層は、発電層に隣接して設けられていることが好ましい。
 一方、電子阻止層とは広い意味では正孔輸送層の機能を有し、より詳しくは正孔を輸送する機能を有しつつ電子を輸送する能力が著しく小さい材料からなり、正孔を輸送しつつ電子を阻止することで電子と正孔の再結合確率を向上させることができる。また、後述する正孔輸送層の構成を必要に応じて電子阻止層として用いることができる。
 上述のように、本発明の電荷輸送層の乾燥膜厚は、5~2000nmであることが好ましい。特に後から電極形成する側の電荷輸送層(例えば、図1中18)は、電極形成時のダメージ抑制の観点から50nm以上の膜厚がより好ましく、リーク防止効果をより高める視点からは100nm以上の膜厚であることがさらに好ましい。また、高い透過率と膜としての抵抗低減を維持する視点から1000nm以下の膜厚であることがより好ましい。
 一方、基板側の電荷輸送層(例えば、図1中12)は200nm以下の膜厚であることが好ましく、膜抵抗および光透過率の観点から、3~100nmがより好ましく、更には5~100nmが最も好ましい。
 〈正孔輸送層〉
 正孔輸送層とは正孔を輸送する機能を有する正孔輸送材料を含有し、広い意味で正孔注入層、電子阻止層も正孔輸送層に含まれる。正孔輸送層は単層または複数層設けることができる。
 正孔輸送材料としては、正孔の注入または輸送、電子の障壁性のいずれかを有するものであり、有機物、無機物のいずれであってもよい。例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体及びピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、アニリン系共重合体、また導電性高分子オリゴマー、特にポリ(3,4-エチレンジオキシチオフェン(PEDOT)などのチオフェンオリゴマー、ポリ(4-スチレンスルホン酸)(PSS)などのスチレンオリゴマー、またはこれらの混合物等が挙げられる。
 正孔輸送材料としては上記のものを使用することができるが、ポルフィリン化合物、芳香族第3級アミン化合物及びスチリルアミン化合物、特に芳香族第3級アミン化合物を用いることが好ましい。
 更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。また、p型-Si、p型-SiC、酸化ニッケル、酸化モリブデン等の無機化合物も正孔注入材料、正孔輸送材料として使用することができる。
 また、特開平11-251067号公報、J.Huang et.al.著文献(Applied Physics Letters 80(2002),p.139)に記載されているような所謂、p型正孔輸送材料を用いることもできる。
 また、不純物をドープしたp性の高い正孔輸送層を用いることもできる。その例としては、特開平4-297076号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 〈電子輸送層〉
 電子輸送層とは電子を輸送する機能を有する材料を含有し、広い意味で電子注入層、正孔阻止層も電子輸送層に含まれる。電子輸送層は単層または複数層設けることができる。
 材料としては従来公知の化合物の中から任意のものを選択して用いることができ、例えば、ニトロ置換フルオレン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド、フレオレニリデンメタン誘導体、アントラキノジメタン及びアントロン誘導体、オキサジアゾール誘導体等が挙げられる。更に、上記オキサジアゾール誘導体において、オキサジアゾール環の酸素原子を硫黄原子に置換したチアジアゾール誘導体、電子吸引基として知られているキノキサリン環を有するキノキサリン誘導体も、電子輸送材料として用いることができる。更にこれらの材料を高分子鎖に導入した、またはこれらの材料を高分子の主鎖とした高分子材料を用いることもできる。
 また、8-キノリノール誘導体の金属錯体、例えば、トリス(8-キノリノール)アルミニウム(Alq)、トリス(5,7-ジクロロ-8-キノリノール)アルミニウム、トリス(5,7-ジブロモ-8-キノリノール)アルミニウム、トリス(2-メチル-8-キノリノール)アルミニウム、トリス(5-メチル-8-キノリノール)アルミニウム、ビス(8-キノリノール)亜鉛(Znq)等、及びこれらの金属錯体の中心金属がIn、Mg、Cu、Ca、Sn、GaまたはPbに置き替わった金属錯体も、電子輸送材料として用いることができる。その他、メタルフリーもしくはメタルフタロシアニン、またはそれらの末端がアルキル基やスルホン酸基等で置換されているものも、電子輸送材料として好ましく用いることができる。正孔注入層、正孔輸送層と同様にn型-Si、n型-SiC等の無機半導体も電子輸送材料として用いることができる。
 また、不純物をドープしたn性の高い電子輸送層を用いることもできる。その例としては、特開平4-297076号公報、同10-270172号公報、特開2000-196140号公報、同2001-102175号公報、J.Appl.Phys.,95,5773(2004)等に記載されたものが挙げられる。
 また、n型の伝導性を有する無機酸化物(酸化チタン、酸化亜鉛等)も用いることができる。
 具体例としては、N,N’-ビス(3-メチルフェニル)-(1,1’-ビフェニル)-4,4’-ジアミン(TPD)や4,4’-ビス[N-(ナフチル)-N-フェニル-アミノ]ビフェニル(α-NPD)等の芳香族ジアミン化合物やその誘導体、オキサゾール、オキサジアゾール、トリアゾール、イミダゾール、イミダゾロン、スチルベン誘導体、ピラゾリン誘導体、テトラヒドロイミダゾール、ポリアリールアルカン、ブタジエン、ポリエチレンイミン等のイミン系化合物、グリセロールプロポキシレートトリグリシジルエーテル等のグリシジルエーテル系化合物、4,4’,4’’-トリス(N-(3-メチルフェニル)N-フェニルアミノ)トリフェニルアミン(m-MTDATA)、ポルフィン、テトラフェニルポルフィン銅、フタロシアニン、銅フタロシアニン、チタニウムフタロシアニンオキサイド等のポリフィリン化合物、トリアゾール誘導体、オキサジザゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アニールアミン誘導体、アミノ置換カルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、シラザン誘導体などを用いることができ、高分子材料では、フェニレンビニレン、フルオレン、カルバゾール、インドール、ピレン、ピロール、ピコリン、チオフェン、アセチレン、ジアセチレン等の重合体や、その誘導体等を好ましく用いることができる。
 〔中間電極〕
 また、タンデム構成の場合に必要となる中間電極の材料としては、透明性と導電性を併せ持つ化合物を用いた層であることが好ましく、前記透明電極で用いたような材料(ITO、AZO、FTO、酸化チタン等の透明金属酸化物、Ag、Al、Au等の非常に薄い金属層またはナノ粒子・ナノワイヤーを含有する層、PEDOT:PSS、ポリアニリン等の導電性高分子材料等)を用いることができる。
 なお前述した正孔輸送層と電子輸送層の中には、適切に組み合わせて積層することで中間電極(電荷再結合層)として働く組み合わせもあり、このような構成とすると1層形成する工程を省くことができ好ましい。
 (透明基板)
 本発明における透明基板はこの光電変換される光を透過させることが可能な、即ちこの光電変換すべき光の波長に対して透明な部材である。ここで透明とは、波長550nmの可視光線に対して80%以上の透過率を示すことを意味する。
 透明基板は、例えば、ガラス基板や樹脂基板等が好適に挙げられるが、軽量性と柔軟性の観点から透明樹脂フィルムを用いることが望ましい。本発明で透明基板として好ましく用いることができる透明樹脂フィルムには特に制限がなく、その材料、形状、構造、厚み等については公知のものの中から適宜選択することができる。例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)変性ポリエステル等のポリエステル系樹脂フィルム、ポリエチレン(PE)樹脂フィルム、ポリプロピレン(PP)樹脂フィルム、ポリスチレン樹脂フィルム、環状オレフィン系樹脂等のポリオレフィン類樹脂フィルム、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂フィルム、ポリエーテルエーテルケトン(PEEK)樹脂フィルム、ポリサルホン(PSF)樹脂フィルム、ポリエーテルサルホン(PES)樹脂フィルム、ポリカーボネート(PC)樹脂フィルム、ポリアミド樹脂フィルム、ポリイミド樹脂フィルム、アクリル樹脂フィルム、トリアセチルセルロース(TAC)樹脂フィルム等を挙げることができるが、可視域の波長(380~800nm)における透過率が80%以上である樹脂フィルムであれば、本発明に係る透明樹脂フィルムに好ましく適用することができる。中でも透明性、耐熱性、取り扱いやすさ、強度及びコストの点から、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルム、ポリエーテルサルホンフィルム、ポリカーボネートフィルムであることが好ましく、二軸延伸ポリエチレンテレフタレートフィルム、二軸延伸ポリエチレンナフタレートフィルムであることがより好ましい。
 本発明に用いられる透明基板には、塗布液の濡れ性や接着性を確保するために、表面処理を施すことや易接着層を設けることができる。表面処理や易接着層については従来公知の技術を使用できる。例えば、表面処理としては、コロナ放電処理、火炎処理、紫外線処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理等の表面活性化処理を挙げることができる。また、易接着層としては、ポリエステル、ポリアミド、ポリウレタン、ビニル系共重合体、ブタジエン系共重合体、アクリル系共重合体、ビニリデン系共重合体、エポキシ系共重合体等を挙げることができる。
 また、酸素及び水蒸気の透過を抑制する目的で、透明基板にはバリアコート層が予め形成されていてもよいし、透明導電層を転写する反対側にはハードコート層が予め形成されていてもよい。
 (光学機能層)
 本発明の有機光電変換素子は、太陽光のより効率的な受光を目的として、各種の光学機能層を有していて良い。光学機能層としては、たとえば、反射防止膜、マイクロレンズアレイ等の集光層、陰極で反射した光を散乱させて再度発電層に入射させることができるような光拡散層などを設けても良い。
 反射防止層としては、各種公知の反射防止層を設けることができるが、例えば、透明樹脂フィルムが二軸延伸ポリエチレンテレフタレートフィルムである場合は、フィルムに隣接する易接着層の屈折率を1.57~1.63とすることで、フィルム基板と易接着層との界面反射を低減して透過率を向上させることができるのでより好ましい。屈折率を調整する方法としては、酸化スズゾルや酸化セリウムゾル等の比較的屈折率の高い酸化物ゾルとバインダー樹脂との比率を適宜調整して塗設することで実施できる。易接着層は単層でもよいが、接着性を向上させるためには2層以上の構成にしてもよい。
 集光層としては、例えば、支持基板の太陽光受光側にマイクロレンズアレイ上の構造を設けるように加工したり、あるいは所謂集光シートと組み合わせたりすることにより特定方向からの受光量を高めたり、逆に太陽光の入射角度依存性を低減することができる。
 マイクロレンズアレイの例としては、基板の光取り出し側に一辺が30μmでその頂角が90度となるような四角錐を2次元に配列する。一辺は10~100μmが好ましい。これより小さくなると回折の効果が発生して色付き、大きすぎると厚みが厚くなり好ましくない。
 また光散乱層としては、各種のアンチグレア層、金属または各種無機酸化物などのナノ粒子・ナノワイヤー等を無色透明なポリマーに分散した層などを挙げることができる。
 (製膜方法・表面処理方法)
 電子受容体と電子供与体とが混合された発電層、および輸送層・電極の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、発電層の形成方法としては、蒸着法、塗布法(キャスト法、スピンコート法を含む)等を例示することができる。このうち、前述の正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有する素子を作製するためには、塗布法が好ましい。
また塗布法は、製造速度にも優れている。
 この際に使用する塗布方法に制限は無いが、例えば、スピンコート法、溶液からのキャスト法、ディップコート法、ブレードコート法、ワイヤバーコート法、グラビアコート法、スプレーコート法等が挙げられる。さらには、インクジェット法、スクリーン印刷法、凸版印刷法、凹版印刷法、オフセット印刷法、フレキソ印刷法等の印刷法でパターニングすることもできる。
 塗布後は残留溶媒及び水分、ガスの除去、及び半導体材料の結晶化による移動度向上・吸収長波化を引き起こすために加熱を行うことが好ましい。製造工程中において所定の温度でアニール処理されると、微視的に一部が凝集または結晶化が促進され、発電層を適切な相分離構造とすることができる。その結果、発電層のキャリア移動度が向上し、高い効率を得ることができるようになる。
 発電層(バルクヘテロジャンクション層)は、p型有機半導体とn型有機半導体とが混在された層で構成してもよいが、それぞれ混合比が膜厚方向で異なる複数層または混合比のグラデーション構成でもよい。p型有機半導体とn型有機半導体の混合比は、p型有機半導体:n型有機半導体=2:8~8:2が好ましい。
 (その他の機能層)
 太陽光利用率(光電変換効率)の向上を目的として、図1に示されるような第1の電極および第2の電極間でサンドイッチした構造に替わり、一対の櫛歯状電極上に素子を形成させたバックコンタクト型の有機光電変換素子が構成とすることもできる。
 更には図1には記載していないが、光電変換効率の向上や、素子寿命の向上を目的に、各種中間層を素子内に有する構成としてもよい。中間層の例としては、正孔注入層、電子注入層、励起子ブロック層、UV吸収層、光反射層、波長変換層、平滑化層等などを挙げることができる。
 対電極の導電材として金属材料を用いれば対電極側に来た光は反射されて第1の電極側に反射され、この光が再利用可能となり、発電層で再度吸収され、より光電変換効率が向上し好ましい。
 (パターニング)
 本発明に係る電極、発電層、正孔輸送層、電子輸送層、ブロック層等をパターニングする方法やプロセスには特に制限はなく、公知の手法を適宜適用することができる。
 発電層、輸送層等の可溶性の材料であれば、ダイコート、ディップコート等の全面塗布後に不要部だけ拭き取っても良いし、製膜後に炭酸レーザーなどを用いてアブレーションする方法、スクライバで直接削り取る方法等でパターニングしてもよいし、インクジェット法やスクリーン印刷、グラビア印刷等の各種印刷方法を使用して直接パターニングしても良い。
 電極材料などの不溶性の材料の場合は、真空蒸着法や真空スパッタ法、プラズマCVD法、電極材料の微粒子を分散させたインキを用いたスクリーン印刷法やグラビア印刷法、インクジェット法などの各種印刷方法、蒸着膜に対しエッチングまたはリフトオフする等の公知の方法、また、別の基板上に形成したパターンを転写することによってパターンを形成しても良い。
 (封止)
 作製した有機光電変換素子が大気中の酸素、水分等で劣化しないために、公知の手法によって封止することが好ましい。例えば、アルミまたはガラスでできたキャップを接着剤によって接着することによって封止する手法、アルミニウム、酸化ケイ素、酸化アルミニウム等のガスバリア層が形成されたプラスチックフィルムと有機光電変換素子上を接着剤で貼合する手法、ガスバリア性の高い有機高分子材料(ポリビニルアルコール等)をコートする方法、ガスバリア性の高い無機薄膜(酸化ケイ素、酸化アルミニウム等)または有機膜(パリレン等)を真空下で堆積する方法、及びこれらを複合的に積層する方法等を挙げることができる。
 更に本発明においては、エネルギー変換効率と素子寿命向上の観点から、素子全体を2枚のバリア付き基板で封止した構成でもよく、好ましくは、水分ゲッター、酸素ゲッター等を同封した構成であることが本発明においてより好ましい。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 〔p型有機半導体材料の調製〕
 p型有機半導体材料として、ポリチオフェン-カルバゾール-ベンゾチアジアゾール共重合体(PCDTBT)を、Adv.Mater.,vol.19(2007)p2295に従いモノマー合成および重合した。ソックスレー抽出により精製し、数平均分子量Mnが35,000、PDIが2.0のp型有機半導体材料PCDTBTを得た。当該PCDTBTの溶解性パラメータは18.5であった。
 〔実施例1〕
 〔有機光電変換素子SC-101の作製〕
 ガラス基板・BR>繧ノ、インジウム・スズ酸化物(ITO)透明導電膜を150nm堆積したもの(シート抵抗10Ω/□)を、通常のフォトリソグラフィ技術と湿式エッチングとを用いて20mm幅にパターニングし第1の電極を形成した。パターン形成した第1の電極を、界面活性剤と超純水による超音波洗浄、超純水による超音波洗浄の順で洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った。
 この透明電極上に、イソプロパノールに溶解したポリエチレンイミンと、グリセロールプロポキシレートトリグリシジルエーテル(いずれもSigma-Aldrich社製)の1%イソプロパノール溶液を塗布し、ホットプレート上で120℃10分間乾燥させ、正孔阻止層(電子輸送層)を製膜した。
 続けて、o-ジクロロベンゼンに、上記合成したPCDTBTとPC60BM(フロンティアカーボン社製E100H:6,6-フェニル-C61-ブチリックアシッドメチルエステル(溶解性パラメータ 20.1)とを、重量比1:1で固形分が3.0質量%になるように混合した液を調製し、フィルタでろ過し乾燥膜厚が約100nmになるよう前記基板上に発電層を製膜した。続けて、導電性高分子およびポリアニオンからなるPEDOT-PSS(Clevios P 4083・H.C.スタルク社製)1部に対し、花王ケミカル株式会社製エマルゲン(0.1質量%)、イソプロパノール2部を含む液を調液し、乾燥膜厚が約100nmになるように塗布し乾燥させた。更に120℃で10分間加熱処理し正孔輸送層を製膜した。
 なお、以上のプロセスは全て大気中で行った。
 次に、上記一連の機能層を製膜した基板を真空蒸着装置チャンバー内に移動し、1×10-4Pa以下にまでに真空蒸着装置内を減圧した後、蒸着速度1.0nm/秒でAgメタルを200nm積層することで第2の電極を形成した。得られた有機光電変換素子SC-101を窒素チャンバーに移動し、封止用キャビティグラスとUV硬化樹脂を用いて封止を行って、受光部が約5×20mmサイズの有機光電変換素子SC-101を作製した。
 〔有機光電変換素子SC-102の作製〕
 前記有機光電変換素子SC-101の発電層の製膜において、酸化防止剤として化合物Eで表わされる化合物を0.3質量%添加した以外はSC-101の作製と同様にして有機光電変換素子SC-102を作製した。
 〔有機光電変換素子SC-103~SC119の作製〕
 前記有機光電変換素子SC-101の発電層の製膜において、酸化防止剤として化合物Eに代わり、表1に示す酸化防止剤種を0.3質量%添加した以外はSC-101の作製と同様にして有機光電変換素子SC-103~SC-119を作製した。
 ここで、Hansenの溶解性パラメータに従い、溶解性パラメータシミュレーションソフトHSPiPを用いてSMILEの式から溶解性パラメータ(SP値)を算出した。
 各酸化防止剤の溶解性パラメータ計算値を表1に示す。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-T000030
 《素子性能の評価》
 上記作製した光電変換素子について、ソーラーシミュレーター(AM1.5Gフィルタ)の100mW/cmの強度の光を照射し、有効面積を1cmにしたマスクを受光部に重ね、I-V特性を評価することで、短絡電流密度Jsc(mA/cm)、開放電圧Voc(V)及びフィルファクターFFを求めた。また、光電変換効率ηを式2より求め、結果を表2に示した。
 (式2) 光電変換効率η=Jsc(mA/cm)×Voc(V)×FF(%)/入射光強度(mW/cm
 《素子寿命の評価》
 上記作製した光電変換素子について、85℃ホットプレート上において、2波長タイプの白色LED(東芝製小型SMD)を光源に用い、上記素子性能の評価で測定した短絡電流密度Jscとほぼ同値(約1Sun)になるようLEDの光量を調整し、1000時間光照射後の短絡電流密度Jscを上記素子性能の評価に従って測定し、初期Jscに対する劣化後のJsc比を求め同じく表2に示した。
Figure JPOXMLDOC01-appb-T000031
 表2から明らかなように、本発明にかかる酸化防止剤を発電層に添加することで、初期効率の低下を抑え、光照射によるJsc減衰に対しても優位な効果が得られることが示され、光電変換素子の寿命改善効果を得ることができた。 なお、本出願は、2011年8月9日に出願された日本国特許出願第2011-173672号に基づいており、その開示内容は、参照により全体として引用されている。
 10 有機光電変換素子
 11 透明基板
 12 透明な第一の電極
 13 第二の電極
 14 発電層
 14’ 第一の発電層
 15 電荷再結合層
 16 第二の発電層
 17 正孔輸送層
 18 電子輸送層

Claims (4)

  1.  透明基板上に、透明な第一の電極、p型有機半導体材料とn型有機半導体材料とを含有する発電層、および第二の電極を有する有機光電変換素子であって、該発電層が、p型有機半導体材料とn型有機半導体材料とを含有するバルクヘテロジャンクション型の発電層であり、更には下記一般式(I)または(II)で表される化合物を含有する、有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000001
    〔式中、Rは、置換または非置換のアリール基を表し、Z及びZは、それぞれ、置換または非置換の炭素数1~3のアルキレン基を表す。但し、Z及びZで表されるアルキレン基の炭素数の総和は3~6である。Aは、酸素原子、N-Z、S(O)n5を表し、Zはアルキル基またはアリール基を表す。n5は0~2の整数を表す。〕
    Figure JPOXMLDOC01-appb-C000002
    〔式中、Rは水素原子、または置換もしくは非置換のアルキル基もしくはトリアルキルシリル基を表し、R、R、R、R及びRは、それぞれ、水素原子、または、置換もしくは非置換の、アルキル基、アルコキシ基、アリール基、アリールオキシ基、アルケニル基、アルケニルオキシ基、アシルアミノ基、ハロゲン原子、アルキルチオ基、アリールチオ基、アルコキシカルボニル基、アシルオキシ基、アシル基、スルホンアミド基、トリアルキルシリル基、複素環、縮合環もしくはこれらの組み合わせを表す。R~Rのうちの二つの基が連結して、置換または非置換の5~6員環を形成しても良い。〕
  2.  前記一般式(I)が下記一般式(I-A)~(I-E)のいずれか1つで表される、請求項1に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000003
    Figure JPOXMLDOC01-appb-C000004
    Figure JPOXMLDOC01-appb-C000005
    Figure JPOXMLDOC01-appb-C000006
    Figure JPOXMLDOC01-appb-C000007
    (式中、R及びRは、ハロゲン原子、または置換もしくは非置換のアルキル基(-R)、ヒドロキシアルキル基(-R(OH))、アルコキシ基(-OR)、アリールオキシ基(-SR)、アミノ基(-NH、-NHR、-N(R)、チオエーテル(-SR)基、エステル基、-COR、-COOR、-NHCOR、-NHCOOR、-NHSOもしくはアルキルカルボニルオキシ(-OCOR)基を表し、この際、Rは、置換または非置換の炭素数1~20のアルキル基または炭素数6~20のアリール基であり、m5及びl5は0~4の整数を表す。)
  3.  前記一般式(II)が下記一般式(II-A)で表される、請求項1に記載の有機光電変換素子。
    Figure JPOXMLDOC01-appb-C000008
    (一般式(II-A)において、R10~R13は、それぞれ独立して、水素原子、または置換もしくは非置換のアルキル基を表す。この際、R11とR13とが連結して、置換または非置換の5~6員環を形成してもよい。)
  4.  請求項1~3のいずれか1項に記載の一般式で示される化合物の溶解性パラメータ(SP値)が19~23である請求項1~3のいずれか1項に記載の有機光電変換素子を有する、有機太陽電池。
PCT/JP2012/069986 2011-08-09 2012-08-06 有機光電変換素子、およびそれを用いた有機太陽電池 WO2013021971A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/237,850 US9871216B2 (en) 2011-08-09 2012-08-06 Organic photoelectric conversion element and organic solar cell using the same
EP12822318.7A EP2744005B1 (en) 2011-08-09 2012-08-06 Organic photoelectric conversion element and organic solar cell employing same
JP2013528021A JP5928469B2 (ja) 2011-08-09 2012-08-06 有機光電変換素子、およびそれを用いた有機太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-173672 2011-08-09
JP2011173672 2011-08-09

Publications (1)

Publication Number Publication Date
WO2013021971A1 true WO2013021971A1 (ja) 2013-02-14

Family

ID=47668478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069986 WO2013021971A1 (ja) 2011-08-09 2012-08-06 有機光電変換素子、およびそれを用いた有機太陽電池

Country Status (4)

Country Link
US (1) US9871216B2 (ja)
EP (1) EP2744005B1 (ja)
JP (1) JP5928469B2 (ja)
WO (1) WO2013021971A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202184A1 (en) 2013-06-21 2014-12-24 Merck Patent Gmbh Conjugated polymers
WO2015036075A1 (en) 2013-09-11 2015-03-19 Merck Patent Gmbh Cyclohexadiene fullerene derivatives
WO2015067336A2 (en) 2013-11-06 2015-05-14 Merck Patent Gmbh Conjugated polymers
WO2015139802A1 (en) 2014-03-17 2015-09-24 Merck Patent Gmbh Organic semiconducting compounds
WO2015192942A1 (en) 2014-06-17 2015-12-23 Merck Patent Gmbh Fullerene derivatives
WO2016076213A1 (ja) * 2014-11-13 2016-05-19 住友化学株式会社 インク組成物およびそれを用いて製造した光電変換素子
EP3070756A1 (en) 2015-03-18 2016-09-21 Merck Patent GmbH Semiconductor mixtures comprising nanoparticles
EP3173435A1 (en) 2015-11-26 2017-05-31 Merck Patent GmbH Semiconducting mixtures
WO2017157782A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
WO2017157504A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
WO2018007431A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Fused dithienothiophene derivatives and their use as organic semiconductors
WO2018041768A1 (en) 2016-08-29 2018-03-08 Merck Patent Gmbh 1,3-dithiolo[5,6-f]benzo-2,1,3-thiadiazole or 1,3-dithiolo[6,7-g]quinoxaline based organic semiconductors
JP2019117734A (ja) * 2017-12-27 2019-07-18 優美特創新材料股▲ふん▼有限公司 バックライトモジュール
US10768477B2 (en) 2016-06-27 2020-09-08 Unique Materials Co., Ltd. Backlight module
WO2020187867A1 (en) 2019-03-19 2020-09-24 Raynergy Tek Inc. Organic semiconductors

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6046649B2 (ja) * 2013-03-29 2016-12-21 富士フイルム株式会社 光電変換素子及びそれを用いた撮像素子
US10388876B2 (en) * 2014-10-14 2019-08-20 Toray Industries, Inc. Organic semiconductor composition, photovoltaic element, photoelectric conversion device, and method of manufacturing photovoltaic element
CN108530977B (zh) * 2017-03-06 2021-02-23 中国科学院苏州纳米技术与纳米仿生研究所 有机光活性层复合墨水、有机太阳能电池及其制备方法
JP7284128B2 (ja) * 2020-07-17 2023-05-30 住友化学株式会社 光電変換素子及びその製造方法
CN114361338A (zh) * 2022-01-07 2022-04-15 天津大学 一种增强n型半导体稳定性的方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
WO2003016599A1 (fr) 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Element a semi-conducteur organique
WO2003028125A2 (en) 2001-09-27 2003-04-03 3M Innovative Properties Company Substituted pentacene semiconductors
US20030136964A1 (en) 2001-11-26 2003-07-24 International Business Machines Corporation Thin film transistors using solution processed pentacene precursor as organic semiconductor
US6690029B1 (en) 2001-08-24 2004-02-10 University Of Kentucky Research Foundation Substituted pentacenes and electronic devices made with substituted pentacenes
JP2004107216A (ja) 2002-09-13 2004-04-08 Seiko Epson Corp 膜形成方法
JP2006199674A (ja) 2004-05-17 2006-08-03 Mitsubishi Chemicals Corp アミノ化フラーレンの製造方法
WO2008000664A1 (en) 2006-06-30 2008-01-03 Ciba Holding Inc. Diketopyrrolopyrrole polymers as organic semiconductors
US7329709B2 (en) 2004-06-02 2008-02-12 Konarka Technologies, Inc. Photoactive materials and related compounds, devices, and methods
JP2008130889A (ja) 2006-11-22 2008-06-05 Japan Science & Technology Agency 光電変換素子およびその素子を用いた太陽電池
JP2008293877A (ja) * 2007-05-28 2008-12-04 Konica Minolta Business Technologies Inc 光電変換素子、太陽電池、光センサー及び電子写真感光体
JP2009126097A (ja) * 2007-11-26 2009-06-11 Nippon Zeon Co Ltd 積層体
JP2010080478A (ja) 2008-09-24 2010-04-08 Sumitomo Chemical Co Ltd 有機光電変換素子
JP2010512005A (ja) 2006-12-01 2010-04-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 改善された溶液処理方法による有機半導体膜の性能特性の向上
JP2011119701A (ja) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd 有機光電変換素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4965216B2 (ja) * 2006-10-10 2012-07-04 三井化学株式会社 4−メチル−1−ペンテン系重合体離型フィルム
US20100130638A1 (en) * 2007-03-30 2010-05-27 Fujifilm Corporation Ultraviolet absorbent composition
WO2009013282A1 (de) * 2007-07-23 2009-01-29 Basf Se Photovoltaische tandem-zelle
JP5609022B2 (ja) * 2008-06-23 2014-10-22 住友化学株式会社 金属錯体の残基を含む高分子化合物及びそれを用いた素子

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04297076A (ja) 1991-01-31 1992-10-21 Toshiba Corp 有機el素子
JPH10270172A (ja) 1997-01-27 1998-10-09 Junji Kido 有機エレクトロルミネッセント素子
JPH11251067A (ja) 1998-03-02 1999-09-17 Junji Kido 有機エレクトロルミネッセント素子
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2001102175A (ja) 1999-09-29 2001-04-13 Junji Kido 有機エレクトロルミネッセント素子、有機エレクトロルミネッセント素子群及びその発光スペクトルの制御方法
WO2003016599A1 (fr) 2001-08-09 2003-02-27 Asahi Kasei Kabushiki Kaisha Element a semi-conducteur organique
US6690029B1 (en) 2001-08-24 2004-02-10 University Of Kentucky Research Foundation Substituted pentacenes and electronic devices made with substituted pentacenes
WO2003028125A2 (en) 2001-09-27 2003-04-03 3M Innovative Properties Company Substituted pentacene semiconductors
US20030136964A1 (en) 2001-11-26 2003-07-24 International Business Machines Corporation Thin film transistors using solution processed pentacene precursor as organic semiconductor
JP2004107216A (ja) 2002-09-13 2004-04-08 Seiko Epson Corp 膜形成方法
JP2006199674A (ja) 2004-05-17 2006-08-03 Mitsubishi Chemicals Corp アミノ化フラーレンの製造方法
US7329709B2 (en) 2004-06-02 2008-02-12 Konarka Technologies, Inc. Photoactive materials and related compounds, devices, and methods
WO2008000664A1 (en) 2006-06-30 2008-01-03 Ciba Holding Inc. Diketopyrrolopyrrole polymers as organic semiconductors
JP2008130889A (ja) 2006-11-22 2008-06-05 Japan Science & Technology Agency 光電変換素子およびその素子を用いた太陽電池
JP2010512005A (ja) 2006-12-01 2010-04-15 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 改善された溶液処理方法による有機半導体膜の性能特性の向上
JP2008293877A (ja) * 2007-05-28 2008-12-04 Konica Minolta Business Technologies Inc 光電変換素子、太陽電池、光センサー及び電子写真感光体
JP2009126097A (ja) * 2007-11-26 2009-06-11 Nippon Zeon Co Ltd 積層体
JP2010080478A (ja) 2008-09-24 2010-04-08 Sumitomo Chemical Co Ltd 有機光電変換素子
JP2011119701A (ja) * 2009-10-30 2011-06-16 Sumitomo Chemical Co Ltd 有機光電変換素子

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
ADV. MATER., 2007, pages 4160
ADV. MATER., vol. 19, 2007, pages 2295
ADV. MATER., vol. 20, 2008, pages 2116
APPLIED PHYSICS LETTERS, vol. 92, 2008, pages 033307
CHARLES M. HANSEN: "Hansen Solubility Parameters A, User's Handbook, 2nd Ed", CRC PRESS
J. AM. CHEM. SOC., vol. 133, 2011, pages 1885 - 1894
J. AMER. CHEM. SOC., vol. 123, pages 9482
J. AMER. CHEM. SOC., vol. 127, no. 14, pages 4986
J. AMER. CHEM. SOC., vol. 130, no. 9, 2008, pages 2706
J. AMER. CHEM. SOC., vol. 131, 2009, pages 7792
J. APPL. PHYS., vol. 95, 2004, pages 5773
J. HUANG, APPLIED PHYSICS LETTERS, vol. 80, 2002, pages 139
NATURE MAT., vol. 6, 2007, pages 497
NATURE MATERIAL, vol. 5, 2006, pages 328
See also references of EP2744005A4
TECHNICAL DIGEST OF THE INTERNATIONAL PVSEC-17, 2007, pages 1225

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014202184A1 (en) 2013-06-21 2014-12-24 Merck Patent Gmbh Conjugated polymers
WO2015036075A1 (en) 2013-09-11 2015-03-19 Merck Patent Gmbh Cyclohexadiene fullerene derivatives
WO2015067336A2 (en) 2013-11-06 2015-05-14 Merck Patent Gmbh Conjugated polymers
WO2015139802A1 (en) 2014-03-17 2015-09-24 Merck Patent Gmbh Organic semiconducting compounds
WO2015192942A1 (en) 2014-06-17 2015-12-23 Merck Patent Gmbh Fullerene derivatives
EP4008708A1 (en) 2014-06-17 2022-06-08 Nano-C, Inc. Fullerene derivatives for organic semiconductors
JPWO2016076213A1 (ja) * 2014-11-13 2017-06-29 住友化学株式会社 インク組成物およびそれを用いて製造した光電変換素子
WO2016076213A1 (ja) * 2014-11-13 2016-05-19 住友化学株式会社 インク組成物およびそれを用いて製造した光電変換素子
EP3070756A1 (en) 2015-03-18 2016-09-21 Merck Patent GmbH Semiconductor mixtures comprising nanoparticles
WO2017088955A1 (en) 2015-11-26 2017-06-01 Merck Patent Gmbh Semiconducting mixtures
EP3173435A1 (en) 2015-11-26 2017-05-31 Merck Patent GmbH Semiconducting mixtures
WO2017157782A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
WO2017157504A1 (en) 2016-03-15 2017-09-21 Merck Patent Gmbh Organic semiconductors
US10768477B2 (en) 2016-06-27 2020-09-08 Unique Materials Co., Ltd. Backlight module
WO2018007431A1 (en) 2016-07-08 2018-01-11 Merck Patent Gmbh Fused dithienothiophene derivatives and their use as organic semiconductors
WO2018041768A1 (en) 2016-08-29 2018-03-08 Merck Patent Gmbh 1,3-dithiolo[5,6-f]benzo-2,1,3-thiadiazole or 1,3-dithiolo[6,7-g]quinoxaline based organic semiconductors
JP2019117734A (ja) * 2017-12-27 2019-07-18 優美特創新材料股▲ふん▼有限公司 バックライトモジュール
WO2020187867A1 (en) 2019-03-19 2020-09-24 Raynergy Tek Inc. Organic semiconductors

Also Published As

Publication number Publication date
JP5928469B2 (ja) 2016-06-01
EP2744005A4 (en) 2015-04-15
JPWO2013021971A1 (ja) 2015-03-05
US9871216B2 (en) 2018-01-16
EP2744005B1 (en) 2016-07-13
US20140190566A1 (en) 2014-07-10
EP2744005A1 (en) 2014-06-18

Similar Documents

Publication Publication Date Title
JP5928469B2 (ja) 有機光電変換素子、およびそれを用いた有機太陽電池
JP6149856B2 (ja) 有機光電変換素子およびこれを用いた太陽電池
WO2013073581A1 (ja) 有機光電変換素子、ならびにそれを用いた太陽電池及び光センサアレイ
JP5838975B2 (ja) 有機光電変換素子および太陽電池
WO2010134432A1 (ja) 有機光電変換素子
JP5845937B2 (ja) 有機光電変換素子
JP2013254912A (ja) 有機光電変換素子およびこれを用いた太陽電池
JP5920341B2 (ja) 有機光電変換素子、その製造方法及び太陽電池
WO2011148717A1 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP6090166B2 (ja) 有機光電変換素子およびこれを用いた太陽電池
JP5853852B2 (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP6135668B2 (ja) タンデム型有機光電変換素子およびこれを用いた太陽電池
JP5686141B2 (ja) 有機光電変換素子および太陽電池
JP2013201252A (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP2014053383A (ja) タンデム型の有機光電変換素子およびこれを用いた太陽電池
JP2012124297A (ja) 有機光電変換素子および太陽電池
JP5891924B2 (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
JP5867987B2 (ja) 有機光電変換素子、該素子を用いた太陽電池
JP5790404B2 (ja) 共役系高分子化合物およびこれを用いた有機光電変換素子
CN110392677B (zh) 杂环化合物及包含其的有机光电器件
JP2011060998A (ja) 有機光電変換素子、その製造方法、有機光電変換素子を用いた太陽電池及び光センサアレイ
JP2012018958A (ja) 有機光電変換素子、それを用いた太陽電池
JP2012134337A (ja) 有機光電変換素子
JP5573140B2 (ja) 有機光電変換素子、太陽電池及び光センサアレイ
JP2024027112A (ja) 有機半導体ポリマーおよびそれを含む有機光電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013528021

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012822318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14237850

Country of ref document: US

Ref document number: 2012822318

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE